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Abstract

In many structural reliability problems, the maxima of random fields are important.
In most of the existing methods, those maxima are approximated using upcrossing
techniques.

Sun’s Tube Method uses a different approach. The method is based on geomet-
rical concepts and it can be used to compute the maxima of both homogeneous and
non-homogeneous Gaussian random fields.

Different discretizations to which this method is applicable are discussed. The
special case of nonstationary stochastic processes is analyzed in detail. The method
provides results that are in good agreement with simulation. The maxima of earth-
quake signals and structural responses to those signals are computed. Both linear
and non-linear responses are discussed. It is indicated how the maxima of higher-
dimensional random fields can be approximated.

Sun’s Tube Method gives good results with little computational effort and there
is hardly any restriction to the type of random fields that can be analyzed.
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Chapter 1

Introduction

1.1 Scope

Stochastic processes and random fields are frequently used to model random influ-
ences on structures. A common feature of structural reliability techniques used in
safety analysis is to reformulate the problem into a time-invariant one using the ex-
treme value distribution of the random field or stochastic process. Therefore, it is
important to have the best possible appraximation of the maxima of these processes
and fields. Most existing methods use some kind of upcrossing technique to establish
those approximations. In this thesis a new method, first employed by Sun (1993),
is studied. The method can be used to approximate the extreme value distribution
of both homogeneous and non-homogeneous Gaussian random fields and processes.
The main part of this thesis will focus on the application of Sun’s Tube Method to
stochastic processes.

In Chapter 2, the classical technique of upcrossings is discussed and some results
from literature are given. In Chapter 3, different discretization methods are intro-
duced. All those methods yield the format that is required to apply Sun’s Tube
Method. In Chapter 4, the method is introduced and discussed in detail. In Chap-
ter 5, the results obtained using Sun’s Tube Method are compared with simulation
results for several random processes. In Chapter 6, two extensions of the method
are given. It is discussed how the method can be used to compute the extreme value



distribution of non-linear responses and higher-dimensional random fields.

1.2 Objectives

The objectives of this thesis are to explore, test and implement the usage of Sun’s
Tube Method to compute the extreme value distribution of stochastic processes. The
method will be tested by comparing the results of Sun’s Tube Method with Monte
Carlo simulation results. In order to fully understand the fundamentals of Sun’s
Method, the geometrical concepts on which the method is based, will be discussed
in detail.

1.3 Preliminary Definitions

While ’random fields’ are random functions defined over some Euclidean space, the
term ’stochastic process’ is used for the specific case where the random function is
defined over a one-dimensional Euclidean space. An example of a stochastic process
is the horizontal component of the ground acceleration during an earthquake. An
example of a three-dimensional random field is the height of the ocean surface above
a given point (f;,%2) at time 3. In this Section, some definitions and properties
of stochastic processes are given. A detailed study of the properties of stochastic
processes can be found for instance in Lin (1967) or Papoulis (1991). For properties
and definitions of higher-dimensional random fields, we refer to Section 6.2.

A stochastic process X (t,() defined in an interval [0, T'] is a rule for assigning to
every outcome { of an experiment S a function X (¢,{). Thus a stochastic process
is a family of time functions depending on the parameter {. The domain of ¢ is the



set of all experimental outcomes and the domain of ¢ is the interval [0,7]. A sample
z (t) of a stochastic process X (¢) is obtained by considering the function X (¢, () for
a given outcome {. If ¢ is fixed and all possible outcomes { are considered, then
X (t) is a random variable called the state of the given process at time ¢. In what
follows, we shall use the notation X (t) to represent a stochastic process, omitting
its dependence on (.

A stochastic process X (t) is a noncountable infinity of random variables, one for
each t. To characterize this process completely in a probabilistic sense, it is necessary
to establish F (z; 3, ..., Zm; t1 2, ..., tm), the joint distribution of the random variables
X (t1), X (t2) , - X (tm):

F(Z1,Z2, ey Tmit1, 82y oo tm) = Pr{(X (£1) < 21, X (£2) < Z2, .., X (tm) < Zm) (1.1)

for every z;, t; and m. In Equation (1.1), Pr (A) denotes the probability that event
A occurs. F (Z1,Z3,...,Tm;t1,t2, .. tm) is called the n**-order distribution of the
stochastic process X (t). Usually in engineering fields, it is sufficient to establish
only the first two of those distributions, i.e. F (z1;¢,) and F (z,, Zy;t1,t2)-

The mean px (t) of a stochastic process X (t) is defined as:

px () =E{X ()} (1.2)

In Equation (1.2), E{X} represents the expected value or mean of a random variable
X defined by
E{X}= /_: zf (z)dz (1.3)



where f (z) is the probability density function of the random variable X.
The autocorrelation function Rxx (t;,£2) of the process X (£) is given by

Rxx (t1,t2) = E{X (1) X (t2)} (1.4)

When no confusion is possible, the notations u (t) and R (X, X;) are used instead
of px (t) and Rxx (t1,%2). The variance 0% (£) of a stochastic process is given by

ok (t) = E{X (t) X (t)} = R(t,t) (1.5)

A stochastic process X (t) is called strict-sense stationary if its distributions (1.1)
are invariant to a shift of the origin. This means that the processes X () and
X (t + c) have the same distributions for any c.

A stochastic process X (t) is called wide-sense stationary if the mean y (t) of the
process is constant and if the autocorrelation function depends only on the difference
T=1ts —{1:

RN =E{X{®)X({t+1)} (1.6)

Notice that it follows from (1.5) and (1.6) that a wide-sense stationary process must
have a constant variance. '

A stochastic process is said to be a normal or Gaussian process if the random
variables X (¢;),X (t2) ,..., X (t,) are jointly normal for any n and ¢1,¢,,....,t.. A
Gaussian process is completely determined in terms of its means and autocorrelation
functions. Therefore, a wide-sense stationary normal process is also a strict-sense

stationary process.
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The power spectral density of a wide-sense stationary process X () is the Fourier
transform S (w) of its autocorrelation function

Sw) = 5-1; [ R@me*ar (17)

where j is the imaginary unit defined as j2 = —1. The second order spectral moment
A2 of a stochastic process X (t) is given by:

A =2 /om WS (w) dw = — (‘Fz g"))mo (1.8)

The maximum Mx (T') of the stochastic process X (¢) in the interval [0,T] is
defined as:
My (T) =gax, (X (©) (19)

For a given process X (t) and a specified interval [0, T], Mx (T) is a random variable.
The distribution P (3) of the maximum is called the extreme value distribution of
the stochastic process X (t) in the interval [0, T]:

P(B) =Pr(M(T) > ) (1.10)

where f is a specified level. If X (t) represents for instance the load effect in a
structural member and B is the structural resistance, then the structure will fail
during [0, T'] with probability P (3).



Chapter 2

Extremes of Stochastic Processes

2.1 Extremes Based on Level Upcrossings

Except for a few closed-form solutions discussed in Section 2.2, the large majority
of approximate solutions to the problem of computing the maxima of stochastic
processes is based on the concept of upcrossings. One uses the fact that the maximum
of a process will exceed a level 3 if there is at least one upcrossing of that level.
Several authors discuss this upcrossing technique in detail (Adler, 1981 - Breitung,
1994 - Papoulis, 1991). The fundamental ideas of this approach are given in this
Section.

Let X (t) be a stochastic process defined in the interval [0, T]. Then X (t) is said
to have an upcrossing of the level § at the point ¢, if there exists an € > 0 such that
X (t) < Bin to —¢,to] and X (t) > F in [ty, %o + €]. The number of such points £
in [0, T is called the number of upcrossings of 3 by X (¢) in [0, T}, and it is denoted
N3 (T). Note that this number Ng(T) is a discrete random variable for a given level
B and a specified length of time T. An example is given in Figure 2.1. For the
process X (t) in that Figure, N3 (T') equals 3. The rate of upcrossings is defined as
the number of upcrossings per unit time. A well know result by Rice (1944, 1945)
gives the expected value v (t) of the rate of upcrossing:

vy = B{ gn, BEON - [ e a0 )



3 upcrossings of the level g

Figure 2.1: Upcrossings of the Level 3 by a Stochastic Process X (t)

where a superposed dot indicates the derivative with respect to time and f;: (z, Z,¢)
is the joint probability density function of z (t) and its derivative Z (t) at time ¢.
In the case of a zero-mean, stationary, Gaussian process X (t), we can use formula

(2-1) to compute the expected number of upcrossings N (T) of the level 3 in the

interval [0, T}:
1 |-R(0) B2
E {Ns (T>}=ml—nza)"‘*""(‘m) (22)

where R (7) is the autocorrelation function of the stationary process X (t) as defined
in Section 1.3. This formula is now used to establish an upperbound for the extreme
value distribution My (T') (1.9) of a stationary Gaussian process X (t):

Pr(Mx (T) 2 B) (2.3)
= Pr(X(0)>Bor N3(T)>1) (2.4)



Pr(X(0) 2 8) + Pr P (Ng(T) 2 1) — Pr(X (0) > Band Ny(T) 21)(2.5)

[

IA

Pr(X(0)28) +Pr(Ns(T) 2 1) (2.6)
< Pr(X(0) 28)+E{Ns(T)} 2.7

Insertion of Rice’s formula (2.2) in (2.7) yields an upperbound for the extreme value
distribution Mx (T') of a stationary Gaussian random process. It is clear that one
would expect the upper bound to be very tight if 3 is a high level.

It can be proven that for some special processes, Equation (2.7) actually gives
the exact extreme value distribution. One of those processes is the stationary normal
process £ (t) defined in [0, T] by

£ (t) = X cos (wt) + Xz sin (wt) (2.8)

where w is a fixed constant and where X; and X; are independent, standard normal

random variables. It is assumed that
0<T<Z (2.9)
(73
Due to this restriction on the length of the interval [0, T'], the probability
Pr (X (0) > Band N3(T) > 1) (2.10)

in Equation (2.5) is equal to zero. Furthermore, the random variable N (T') can only
take on the values 0 or 1 for values of T satisfying (2.9). Therefore, the upperbound



(2.7) is in fact the exact extreme value distribution for this specific process £ (t):

P (T)26) = Pr(£©) 2 )+ E (N} @.11)
= 1-209)+ e (-5) (212)
27 2

where ® (-) denotes the standard normal distribution. This analytical result will be
compared with the result obtained using Sun’s Tube Method in Section 5.2.1.

2.2 Results in Literature

Exact formulas for the extreme value distribution of a stochastic process exist only
for a limited number of processes. One of those processes is the process £ () defined
in (2.8). Other examples can be found in Adler (1990). For several other cases,
approximations exist. Those approximations are all derived on the basis of upcross-
ings as described in Section 2.1. Rather than listing the resulting formulas, we will
indicate where they can be found.

Approximations for stationary processes with a finite second order spectral mo-
ment Ap (See Section 1.3) are given in Cramer and Leadbetter (1967) and Leadbetter
et al. (1983). Approximations for maxima of functions of stationary Gaussian vector
processes (vectors with components that are stochastic processes) are discussed in
Breitung (1994, Chapter 8). Bounds for univariate non-stationary Gaussian pro-
cesses and for functions of non-stationary Gaussian vector processes are derived in
Breitung (1990).

The main problem of methods based on upcrossings is to prove that the obtained
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approximations are not just upperbounds, but that they are also asymptotically
correct. This is usually done by proving that the approximating point processes
converge to a Poisson process which involves much more complicated mathematics
than the derivation of the approximation itself.

The method discussed in this thesis uses a totally different approach, based on
Sun’s Tube Method (1993). A direct approximation of the maximum distribution
is used so that assumptions about upcrossings are unnecessary. Derivation of the
final formula is straightforward and the method can be applied to a wide range of

discretizations.



Chapter 3
Discretization of Stochastic Processes

In order to use Sun’s method to compute the extreme value distribution of a stochas-
tic process, the process has to be represented in a specific discretized format. In Sec-
tion 3.1, the discretized format, required to apply Sun’s tube method is discussed.
In Sections 3.2 through 3.4 different discretization methods that have the necessary
format are introduced. The methods discussed in Section 3.2 and 3.3 can easily
be adapted to higher dimensional random fields. Section 3.4 describes a discretiza-
tion that is particularly well suited to model earthquake signals and their structural

responses.

3.1 Format Required to Apply Sun’s Method

Let X (t) denote a zero-mean, Gaussian random process defined in {0,T]. This
process is not necessary stationary. Since the process is Gaussian, it is completely
defined by the autocorrelation function (ACF):

Rxx (ti,t2) = E{X (t1) X (£2)} (3.1)
and the variance function

0% (t) = Rxx (t,t) = E{X (t) X (t)} (3.2)

11



This process X (t) is now discretized to X (t):

N
X @) — X (¢ =Z;X.-ff Q) (3.3)

The X;'s are a sequence of independent standard normal random variables (zero
mean, unit variance and zero correlation) and the functions f; (z) are a set of deter-
ministic functions. This specific format, basically a linear combination of standard
normal random variables and deterministic functions, is the format that is required
to apply Sun’s Method. Several discretization methods yield this format, as is shown
in the following Sections. -

Note that due to the independence of the standard normal random variables X;
in (3.3):

N
Rig (ti,t2) = fi(t) fi (t2) (3.4)
=1
and
N
0% (t) =Rex (t,0) = f2(2) (3.5)
=1

3.2 Truncated Karhunen-Loéve Expansion

One possibility is to represent a Gaussian process X (t) using an eigenflmct:.ion ex-
pansion. This expansion, the Karhunen-Loéve Expansion, is discussed extensively in
literature (Adler, 1981 - Papoulis, 1991 - Li and Der Kiureghian, 1993). The basic

concepts are given here for the one-dimensional case of a stochastic process.



13

The random process is expressed in terms of its spectral decomposition:
X ® =3 % (vAh (@) (36)
=1

where the X;’s are independent standard normal random variables. A; and k; (t) are
the eigenvalues and eigenfunctions respectively of the covariance function obtained
from the integral equation

T
| Rt he () dty = b () i=1,2,... (3.7)
The eigenfunctions h; (t) are normalized to _satisfy:
) .
L he (£) by (2) & = 6i; (3.8)

Furthermore, it is assumed that the eigenvalue sequence \; is decreasing.

The random process X (t) is represented by an infinite set of random variables
X:,i=1,2,... (3.6). However, usually only the few terms with the larger eigenvalues
contribute significantly to the expansion. Since it is assumed that the eigenvalues are

ordered in decreasing magnitude, the process X (£) can be approximated by X (#):
A N
X () = X =Y X (v/2h: ) (39)
=1

where N is the number of terms that are included in the discretization. This is a
discretization which meets the requirements set out in Section 3.1. Provided that

the exact eigenfunctions of the autocovariance function are available, this method
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is the most efficient method for discretizing a random process, i.e. it requires the
smallest number of random variables to describe the process within a given level of
accuracy (Li and Der Kiureghian, 1993). Unfortunately, for most autocorrelation
functions, the exact solutions of the integral (3.8) are not available in closed form
In this case, approximate methods have to be used. Basically, the integral problem
(3.8) can be converted into a matrix eigenvalue problem using a discrete integration
rule or a Galerkin-type approximation (See Mura and Koya, 1992). However, Li
and Der Kiureghian (1993) prove that these approximate implementations of the
Karhunen-Loéve expansion are inferior to the method described in Section 3.3.

3.3 Expansion Optimal Linear Estimation Method

Li and Der Kiureghian (1993) suggest the use of the Expansion Optimal Linear Es-
timation Method to discretize non-homogeneous Gaussian random fields. .In this
Section, the fundamental concepts of this method are described for the case of a
zero-mean Gaussian random process. In Section 3.3.1, the Optimal Linear Esti-
mation Method is discussed. While the discretizations obtained with this method
do not satisfy the requirements set out in Section 3.1, they are the starting point
for the Expansion Optimal Linear Estimation Method (See Section 3.3.2). It will be
shown that this expansion method yields discretizations that do satisfy the necessary
requirements for Sun’s Tube Method.
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3.3.1 Optimal Linear Estimation Method

The stochastic process X (t) in [0, T] is described as the scalar product of a vector
of M nodal values

V=>W,V,.., Vi) =(X(t1),X (t2}, -, X (trr)) (3.10)
and a vector of deterministic functions
b () = (b1 () ,b2(t), -, bar (t)) (3.11)
Writing (x,y) for the scalar product of two vectors x and y, we have:
) M
X(@t)—=X@®)=(V,b(t)) =) Vb (t) (3.12)
=1

in which M is the number of nodal points in the interval [0, T]. The functions b; (t)

are to be determined by minimizing the variance of the discretization error subject

to X () being an unbiased estimator of X (t) in the mean. Therefore we minimize
E {|x ) - X (t)|’} (3.13)

subject to
E{X@®)}=0 (3.14)

The solution is (Li and Der Kiureghian, 1993):

b(t) = C'a(t) (3.15)
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In Equation (3.15), a(t) is the vector containing the covariances of X (t) with the

elements of the vector V:

(Ex@®)-vi} \ [ Rex(t.ty) )

a(t) = E{X (t) -V2} _ Rxx .(t, t2)

\ E{X(®)-Vu} | \ Bxx(t.tr) J

and C is the covariance matrix:

[ R(tnt) Rltut) - (bt |
R(t1,t2) R(ta,t2)

| R(t1,ta) (tat tae)

(3.16)

(3.17)

Among all linear representations of X (t) in terms of the nodal random variables

X (t;) = V;, the preceding representation is optimal in the sense that it minimizes

the error in the variance (3.13) at any given time. This is particularly desirable for

the Gaussian distribution, which is completely defined by means of its mean and

variance. The Optimal Linear Estimation Method constructs the random process

by employing shape functions that take into account the correlation structure of the

process. This is the key to the superior accuracy of this method, as is illustrated in

Li and Der Kiureghian (1993).

The random variables V; are dependent and do not have unit variance. Hence,

the method as explained in this section does not satisfy the requirements set out

in Section 3.1. The Expansion Optimal Linear Estimation Method offers a remedy
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to this problem and, in addition, it improves the efficiency of the Optimal Linear
Estimation Method.

3.3.2 Expansion Optimal Linear Estimation Method

Assuming that C is non-singular, the M-dimensional vector V can be expressed in

terms of its spectral decomposition:
M .
V=3 X./0:8; (3.18)
=1

where the X;’s are independent standard normal random variables. §; and ®; are the
eigenvalues and eigenvectors of the covariance matrix C (3.17) obtained by solving

the eigenvalue problem
C®; =6;9; i=1.2,...M (3.19)
The eigenvectors are normalized such that
(B:, B;) = b5 (3.20)

Furthermore, it is assumed that the eigenvalues in (3.18) are ordered by decreasing
magnitude. Equations (3.18) and (3.19) are now combined with (3.12). This gives

the following discretization for the random process X (t):

. M X,
X(t)~X@t)= El 78 (®;,a(t)) (3.21)



18

where a (t) is defined in (3.16). We have now established a discretization (3.21) that
meets the requirements discussed in Section 3.1.

The efficiency of this method can be improved by using a subset N < M of the
terms in (3.21) corresponding to the largest eigenvalues:

o N X;
X@) =X 0 =% 75 @:al) (3:22)

This enables us to reduce the number of random variables that describe the stochastic
process X (t). Li and Der Kiureghian (1993) prove that the error resulting from this
truncation is non-oscillatory, i.e. the truncation of each term further reduces the

variance of the discretization error.

3.4 Discretization of an Earthquake Signal

3.4.1 Introduction

In this Section, an approach that is particularly well suited to model earthquake
ground motions and responses to ground motions is discussed. This approach was
first introduced by Der Kiureghian and Li (1996). It will be shown how both temporal
and spectral non-stationarity can be modeled.

Although the Karhunen-Loé&ve expansion offers the most efficient discretization

in terms of error variance,

E (|x ®-X (t)[z) (3.23)

it requires the solution of an integral eigenvalue problem (3.8) that can be very
large for broad-band processes, such as earthquake ground motions. Typically, such
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motions have a zero mean and are approximately Gaussian. Therefore, the ground
motion X (£) can be represented in the following discretized form:

N
X(t) =3 Wi () (3-24)

N represents the number of discretization functions. The coefficients W;, i =
1,2,..., N are Gaussian random variable with zero mean and variance ¢2. The func-
tions a; (t) are a set of deterministic functions that will be determined in this Section.

X (t) can now be considered as the response of a linear filter to a white noise
excitation W (t). The white noise can be thought of as the broad-band excitation at
the bedrock level and the filter can be imagined to represent the local soil system or
wave propagation path. Instead of discretizing X (t) directly, the trick is to discretize
W (¢).

Let ¢, ¢ = 0,1,..., N, denote a set of closely and equally spaced time points
at intervals At = ¢; — t;_;. We can now define a sequence of random pulses with
magnitudes

W= [ W(t)dt i=1,2,..,N (3.25)

It can now be shown (See Appendix A) that W; are statistically independent

Gaussian random variables with zero mean and constant variance
a? = o2 = DAL (3.26)

where the intensity ®, is the constant power spectral density (See Section 1.3) of the
white noise W (t). The sequence W; i = 1,2,..., N represents W (t) in the discrete



form of a random pulse train.

Expression for the Unit-Impulse Response Function k¢ (t)
A natural choice for the deterministic function e; (t) in (3.24) is

a; (£) = hy (- &) (3.27)

where h¢(t) is the unit-impulse response function of the filter. k¢ (t) can be obtained
by considering a second order linear filter (the local soil) subjected to a white noise
input (the wide band excitation at the bedrock level). The equation of motion can
be expressed as:

iy (8) + 2Cgwrits (t) + whur (8) = —W (£) (3-28)

In (3.28), wy represents the natural frequency of the soil and (s represents its damp-
ing ratio. So w; and (s respectively control the predominant frequency and the
bandwidth of the motion. u, is the displacement of the soil layer relative to the
bedrock. The above concepts are illustrated in Figure 3.1. Of interest is the abso-
lute acceleration X (t) of the filter, which with the above interpretation is the same

as the absolute acceleration at the ground surface (See Figure 3.1):
X({t)=1dst)+W(t) (3.29)

It can be verified (Der Kiureghian and Li, 1996) that the unit-impulse-response
function for the absolute acceleration of the ground surface is given by:

kg (t) = — (Cysin (wat) + C; cos (wat)) exp (—(ywyt) (3.30)



21

sjeudig ayenbyjey 0)
sosuodsay] 0135810038 pue sjeudig axenbyjaey] 921991081(] 03 Pas() [OPON 1€ aandig

UONON  UONo[N  asuodsay]
¥O0Ipag Ppunoly) [eInjpnng

S\HH 1
ﬂ
+s

yooipeg]

N

()

—— 110§ [eco] ——

cererresenrsnectsstononcsssnroncnsod

D

' Af
(2)’n

ur eA )'e

2
W

T g

Gy

)
0

aInjonyg

R R N N N N Y E Y R RN WYY LS

SUOLJONN,
uoyj8z1aI0si(]

0000 000000030000 00000 N0GIRIIRLIINNIRILTS

1PPOIN

L

q

g

C
S
=




with

Wy = w‘/l-g} (3.31)

_wr(1-2¢3) :
G = —\/——1—_7 (3.32)
C: = 2wy (3.33)

Optimal Choice for the Discretization Function q; (1)

While the unit-impulse response function is a natural choice for the discretization
functions a; (£) in (3.24), it is not the best choice. A better choice is obtained by
minimizing the variance of the discretization error (3.23) relative to a; (t), with X (t)
denoting the exact solution of the filter response to the white noise input. It can be
proven (See Appendix A) that minimization of (3.23) leads to:

1 pmin(tt)
a )= 5 /m(m_l) h(t —7)dr (339

where h (t) is defined in (3.30). Insertion of (3.30) in (3.34) gives the following

expression for a; (t):

[0 t<tig
m {exp (—Cswy (¢ — tie1)) sin (wa (2 — tim1) — 6)}

a(t) =9 +& i <t<t;
i (o0 (G (6 — i) sin (wa (t — 1) - 0)

| —exp (—Crwy (E—t;))sin (wa (t — &) — 0)} ti<t

(3.35)
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Figure 3.2: Two Options for the Discretization Functions of a Ground Acceleration
Process

with
8 = arccos (¢y) (3.36)

Both options for the discretization functions (k (t — ¢:) and a;(t) as defined in re-
spectively (3.30) and (3.35)) are plotted in Figure 3.2. The difference between the
two functions is minimal for small values of At. However, one important difference
between the two functions is that the function a; () as defined in (3.35) is contin-
uous. As is discussed in Section 4.3, this property simplifies the use of Sun’s Tube
Method significantly.




24

3.4.2 Modeling of Non-Stationarity

The above discretization defines a stationary process. Earthquake motions, however,
are typically nonstationary in both the time and frequency domain.

To account for temporal nonstationarity, the pulse train (3.25) is multiplied by
a deterministic modulation function g (). The discrete representation (3.24) then

becomes:

X =§W:—q (t:) a: (£) (3.37)

The following modulation function is used:

0 o2t
q(t) =\ g0 {exp[—a(t —to)] —exp [~b(t — t0)]} (3.38)
o<t

where g, a, b and ¢, are constants. For a < b, the above function is non-negative and,
as is typical of the intensity of earthquake motions, it gradually increases from zero
at t = tg to a peak value at £t = {5 + (Inb — Ina) / (b — a) and then decays towards
zero for large t. An example of such a modulation function is given in Figure 3.3.
To account for spectral nonstationarity, 2 filters, each with their own modulation

function g (t) are considered.
R N 2
XO) =YW a(t:) a (2) (3.39)
=1 k=1

In (3.39), ai (t) denotes the deterministic function obtained from (3.35) in terms of

the unit-impulse-response function of the k* filter.
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Modulation Function g(¢)
o
(=]

0.4+
0.2 +
0. - o+ + + i +———
0. 2. 4. 6. 8. 10. 12. 14 16. 18. 20

Time ¢ (s)

Figure 3.3: Modulation Function g (2)

By choosing appropriate values for the filter properties and for the parameters in
the modulation function, any type of spectral and temporal nonstationarity can be
accounted for.

If we introduce

m = Xid’ (3.40)

where o is defined in Equation (3.26) and X; is a standard normal random variable,

we can write Equation (3.39) as

X@®= ixi.f : (t) (3.41)
=1
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In expression (3.41) f; is defined by
2
fi(®) = Y oqe (&) aue (2) (3-42)
=1
Note that this is exactly the format (3.3) required to apply Sun’s Tube Method.

3.4.3 Linear Stochastic Structural Responses

The previous discussion illustrates how the required discrete format can be con-
structed for a seismic ground motion process. However, it should be emphasized
that any stochastic response Y (t) of a linear system subject to this ground mo-
tion process X (£) can be obtained in the same discrete format. Let hy (£) be the
unit-impulse-response function of the linear filter to which the earthquake signal is
applied and f;y (£) the response of the linear filter to an input function f; (¢) (3.42).
Since linear systems are considered, the response f;y () to one of the functions f; ()
can be computed using convolution (Clough and Penzien, 1975):

for® = [ £ by E-r)dr (343)
The stochastic response ¥ (£) can now be written as
A N
Y(t) =) Xifor (2) (3.44)
=1

which is exactly the format required to apply Sun’s Tube Method. In Section 5.4.1,
the above technique is used to model the displacement of a linear filter subjected to
an earthquake ground motion.
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3.4.4 Non-Linear Stochastic Structural Responses

In Section 6.1, it will be shown how Sun’s Tube Method can be applied to non-linear

responses.

3.5 Linear Combination of Sine and Cosine Functions

A special kind of cyclic process results from the linear combination of sine and cosine
functions.

X@) = i(xugaksin (wit) + Xoxbi cos (wit)) " (3.45)
with X;; and X5;, ¢ = 1,..N standard normal random variables and a; and b;, the
coefficient of respectively the sine and cosine functions. Note that the discretization
(3.45) has the format needed to apply Sun’s Tube Method.

A stationary process can be obtained by choosing:

gk = b = cx k=1,2,..,N (3.46)

and then

N
éw=§& (347)

Although the processes resulting from (3.45) do not have direct practical appli-
cations, these processes are a good tool to understand the principles of Sun’s Tube
method and the geometry of the N-dimensional unit sphere, as is described in Section
5.2. '



Chapter 4
Sun’s Tube Method

In this Chapter, the fundamentals of Sun’s Method are discussed. In Section 4.1,
a spherical representation of discretized stochastic processes is introduced. This
representation is the starting point for the derivation of Sun’s Formula in Section 4.2.
Section 4.3 deals with the probabilities associated with endpoints and discontinuities.
In Section 4.4, Sun’s Formula is discussed. Section 4.5 illustrates how other statistics
associated with the extreme value can be computed using Sun’s Formula. In Section
4.6, it is shown how Sun’s Formula can easily be used to compute the extreme value
distribution of non-zero-mean Gaussian Processes.

Sun’s Tube Method is mostly based on geometrical principles. While it is tedious
to interpret the derivation in higher dimensions, it is intuitive if one thinks about
it in three dimensions (N = 3). To facilitate this interpretation, several Figures
are included. Those Figures are purely indicative and do not have the pretention of

being exact.

4.1 Spherical Representation of a Discretized Random Pro-

cess

It is assumed that the random process X (t) is represented in the discretized format
discussed in Section 3.1:

N

=1

28
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with X;, ¢ = 1,2,..., N a sequence of independent standard normal random vari-
ables and the functions f;(f) a set of deterministic functions. Different types of
discretization that yield this format, have been discussed in the previous chapter.
Without loss of generality, it is assumed that the process is scaled in such a way
that
0<o% <1 (4.2)

over the entire time interval [0, 7] and that its peak value in this interval is exactly
equal to 1. Note that this requirement can always be met by considering the scaled

process

X ()
\/MaXeeo,T] 0%

The discretized process (4.1) can be rewritten as the scalar product of a constant

Xs(t) = (4.3)

random vector

X =(X1,Xs,..., XN) (44)

and a deterministic, time-dependent vector

£@) =), L2, fn () (4.5)

to yield
X (t) = (X,£(2)) (4.6)

The vector X is a standard normal random vector and it can therefore be written

as the following product:
X
X-—le-[—}-(-I»-RN»U (4.7)
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@ The random variable Ry in Equation (4.7) represents the length of the random
vector X:
Rx =/|X]? (4.8)

From Equation (4.8), it is clear that Ry is the square root of a y’-random
variable with N degrees of freedom (Wiley, 1972). Therefore, Ry is said to
be a xy-random variable. The probability density function of this xy-random

variable is

r<0

o (1) = oi=& -1 (4.9)

S e (-7) r20

This density function is plotted for 5, 20 and 100 degrees of freedom in Figure
41.

e The random vector U in Equation (4.7) is defined by:

(X X2 Xw
v= (IXI’ X[ IXI) (.10)

U, a vector with unit length, has a uniform distribution on the N-dimensional
unit sphere. The N-dimensional unit sphere SV in the N-dimensional space
RY is the locus of a point y which is at a constant distance 1 from the origin:

N
SN = {y 1Y = (Y1, Y2, - UN) gy’ =ly’= 1} (4.11)

Furthermore, it can be proven that the random vector U is independent of
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Figure 4.1: Probability Density Function of a x-Random Variable with 5, 20 and
100 Degrees of Freedom

Ry = [X|.

After scaling the vector f (t) to unit length, the random process X (t) (5.32) can

be expressed as

x@) =R~|f(t)|<v, ,—ﬁ-%’-,} (412)

The importance of the above expression can hardly be overstated: according
to (4.12), each sample Z (t) of the stochastic process X (t) can be represented as
(r~ |f (£)]) times the scalar product of two vectors with unit length. The first vector
is the realization u, which is constant in time for a given sample. The second vector
is a deterministic vector f (t) / |f ()|, which, in time, describes a path on the surface
of the N-dimensional unit sphere.

The spherical representation of two such samples Z (t) is given in Figure 4.2. The
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Su

Figure 4.2: Spherical Representation of Two Samples £ (t) of the Random Process
X (¢)

vector f (t) / |f (t)| is deterministic. Therefore, the path described by this vector is

the same for all samples. Samples only differ in the position of the random vector

u.

4.2 Sun’s Formula without Endpoint Probabilities

In this Section, the main term of Sun’s Formula (4.44) is computed. In Section 4.2.1,
the exceedance probability P () is rewritten to yield a format to which the relative
frequency approach can be applied (Section 4.2.2). In Section 4.2.3, the integral

expression is derived.



4.2.1 Introduction

The probability of interest is

P(B)=Pr (:nfa'%"] X@ > ﬂ) (4.13)

Insertion of (4.12) and division by (Rx | f (£)|) yields:

P - (g (Owe) > mre) @

If Ry takes on a particular value r, it is useful to introduce the conditional probability
P (B| Ry =r) defined as

P(B|Ry=1) = Pr(t%)i’(t)>ﬂi RN=r) (4.15)
- »(zs (o) > mir =) @9
- » (@ (v w0n) > va) (&4

P (B) is computed by integration of the conditional probability P (3| Ry =) over
all possible values of the random variable Ry:

P(g) = /:’ P(B|Ry =T) fy, (r) dr (4.18)
where f,, (r) is the probability density function of a xy-distribution as defined in
(4.9). Since

£(t) £(t) | _
285 (O ) <1 | = (419)



the probability P (8| Ry =r) can only contribute to P () if (See (4.17):

B
;Tf—(t)—[ <1 (4.20)
¢ .
_B_
r > o] (4.21)
Since
B
m >80 for all t € [0, T (4.22)
the lower endpoint of the integral in (4.18) can be changed to 5:
P(B)= [ P(BI Ry =) fux () dr (4.23)

4.2.2 Relative Frequency Approach

The probability P (3| Ry = r) as defined in equation (4.17) is now computed using
the relative frequency approach (Sun, 1993). Of all possible realizations u of the
random vector U on the unit sphere, only a specific set of random vectors will result
in a scalar product (U, ﬁ%) that satisfies the inequality

fO\N__8
mmex <U’ |f(t)|> 0] (424

These are the random vectors U that contribute to the conditional probability
P{(B|Rnx =) (4.17). From (4.24), it is clear that the area on the N-dimensional
unit sphere covered by those random vectors U is dependent on 3 and r. Therefore,
the surface area of that part of the N-dimensional unit sphere that is spanned by the
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endpoints of those random vectors U is represented by A (8,r). Once an expression
is derived for this surface area, the conditional probability P (5| Ry =r) can be
computed as this surface area A (8, r) divided by the total area of the unit sphere.

Tube Around Curve on Unit Sphere
First, the inequality (4.24) is further examined. Introducing © (t) as the ar_:gle be-
tween the two vectors U and f (t) / |f ()|, we can express the left-hand-side in in-

equality (4.24) as follows:

£(¢) \ _ £ (t) _
oy <U’ If(t_)l> = ':UJ[ Fof| = ©®) | =mageos(®F)  (425)
=1

From (4.25), it is obvious that the inequality (4.24) cannot be satisfied for values of
B/ (r|£ (t)]) that are greater than 1. In Figure 4.3, the angle 8 () is sketched for the
two samples given in Figure 4.2. Therefore, only the cases where

8
@S (420

are considered. The inequality (4.24) can now be written as

max cos (6 (t)) > (4.27)

_B_
oo rEQ
¢

. B
12[1(},1111 o (t) < arccos (r—lf—(m) (4.28)
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dom Process X (t)

The right-hand-side of inequality (4.28) is plotted in Figure 4.3. For this purpose,
it is assumed that X (f) is a random process that has an increasing variance in
the interval [0,7] and the maximum of the variance is reached at time t = 7. We
can conclude that for Sample I, inequality (4.28) is satisfied, while this is not the
case for Sample II. In general, only those realizations u of the random vector U
that lie sufficiently close to the path of f () / |f (t)| will at some point in the interval
[0, T] result in an angle 6 (t) that satisfies the inequality (4.28). Those vectors u
are enclosed in a tube around the path of f(¢) /|f (t)|. The word "tube” is used
in higher-dimensional geometry to refer to the area around a manifold. The width
of this tube is variable in time. A measure for this width is the plane angle a (t)

- measured in a plane perpendicular to the path - between the path and the outer
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f(2)/if(o)

Figure 4.4: Tube around the path of the vector f (t) / [f ()| on the unit sphere

bound of the tube. From (4.28), it follows that this angle is given by:

arceos (785)  (B/rIf@)) <1
0 B/iE@D) >1

a(t)= (4.29)

In Figure 4.4, this tube is sketched together with the two realizations u' and u™ of
the random vector U. It can be observed that realization u' corresponding to Sample
I lies within the tube around the path of the vector f (t) / |f (£)|, while this is not the
case for the realization u'! corresponding to Sample II. In general, if the realization
u of the random vector U lies within the tube with width a (¢), it will satisfy (4.28),
which means that it will indeed result in a stochastic process X (£) with a maximum
greater that 3. Notice that the tube has zero-width at the time-instances for which

B/ (riE@) > 1.



Surface Area of Tube Around Path on Unit Sphere
Hotelling (1939) determined that the surface area dA of a tube around a curve of
elementary arclength ds on the N-dimensional unit sphere is given by
252
dA = ——sin¥~? (a) ds (4.30)
r(%)

with a the plane angle, measured in a plane perpendicular to the curve, between the
curve and the outer bound of the tube. T’ (-) is the Gamma-function (Abramowitz

and Stegun, 1972), defined by
L(z) = /:" £l gt (4.31)

Hotelling (1939) indicates that (4.30) takes no account of overlapping of the tube
with itself. This overlapping will occur if the curvature of the curve on the unit
sphere is excessive in relation to the width of the tube. An example where such
overlap will occur is if there are sharp turns in the curve. This is the case in the
application discussed in Section 5.3.3.
The total area A (3, r) of the tube determined by 2 and r is given by integration
over the path of f () / [f (t)|:
x5

s(t=T)
inV =2 (a (t)) ds (t 4.32
Jry S @(®) ds) (4.32)
where « (t) is defined in (4.29) and s (¢) is the arclength of the path described by the
vector f (t) / |f (¢)| on the N-dimensional unit sphere. We emphasize that expression
(4.30) only takes into account the area perpendicular to the path of the vector
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f (t) / |f (t)|- How the areas at the endpoints of the curve can be taken into account
is discussed in Section 4.3.
The surface area An of the N-dimensional unit sphere S is given by (Kendall,

1961)
oy

= (4.33)
r(%)

Ay

4.2.3 Derivation of the Integral Expression

The relative frequency approach as described in Section 4.2.2 can now be used to
compute the probability in the integrand of (4.23) as the ratio of the surface. area of
the tube divided by the surface area of the N-dimensional unit sphere:

P(B|Ry=1) = %Bi'r_) (4.34)
- = (:)T’ sin-2 (a (2)) ds (t) (4.35)

Insertion of (4.35) in (4.23) and changing the order of integration results in:

PO =g [0 750" (@) fo () dr ds(®) (4.36)

The definition for a (£) (4.29) can now inserted in (4.36):

_ 1 rs(t=T) . No B :
PB) =5 s(t=0) !B:f(c)l sin" (arccos (r £ (t)l)) fre () dj de®)  (437)
=I(Bt)

In what follows, it will be shown that the asymptotic approximation (8 — oo) for
(4.37) derived in Maes and Breitung (1996), is actually the exact solution for all 5.
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First the integral I (3,¢) will be computed. Noting that

arccos () = arcsin (VI— %) for 0<z<1 (4.38)

I(B,t) can be written as

2
I(B,t) = /ﬁ: el sinV—2 (amsin (\11— (?_lf%ﬂ) )) fxw (r)dr (4.39)

N=2

~ (8 2\ ]
- /s:f(tn (1 (r B (t)l)) Fen () (440

If we now make the substitution

 ~ ()
2

rey= (4.41)

we obtain that

_ aw \T BV |ay (aa2
I(B,1) /om(2y+fff%l") fm( T (2“[“%’) o

The probability density function fy (-) (4.9) is inserted in (4.42):

N=2 N1

_ 21-% 2y z 62 Tz
189 = @[(2y+ﬁﬁr) (2y+lf(t)l2) '

2y+]-f(%z 1 i
op | ——— | | = | %
2y + 5o
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Further simplification gives:
~ T
I1(3,¢) = expr(, (i',“ ) /myTajcp(—y) dy
=r(¥)

- 2

- ( 2lf(t)|2)
Equation (4.37) can now be written as

-% wn (B _

PO = [ ep(~52m) e (443

with s(t) the arclength of the path described on the unit sphere by the vector

£(2)/1€@)-
Introducing the function ¢(t) defined by

o) = |52 (4.44)
equation (4.43) can be written as:

PO = [ o (~5hm) et (4.45)

An expression for ¢(t) in terms of the discretization functions f; () and the deriva-
tives of those discretization functions f!(t) can be obtained by observing that the
elementary arclength ds (t) is given by:




Therefore, c(t) can be computed as

c(t) = l ds (t) | \l ( ( l ? ((tt))| )) wan
TS ——
- J g:? 8 (z.zzgl ?’(i;s@) (4.48)

The first term in the square-root in expression (4.48) can be simplified to yield

SR _ k@
SN T0) (449)

Similarly, the second term of the square-root in expression (4.48) can be re-interpreted.

Since
1 /[do
(%) - wa@ s
1
- L (t)zdt (Zﬂ(t) ) (4.51)

the second term in the square-root in expression (4.48) can be written as

-GN e

We now insert (4.49) and (4.53) in the expression for c (t) (4.47). This results in a



definition for ¢(t) in terms of the variances:

_ 2@ (1 dox(®))
e = \l 20 (ﬂ’x © & ) - (459)

4.3 Probability Associated with Endpoints and Discontinu-
ities

The probabilities discussed in this Section are not considered by Sun (1993). Taking
into account the probabilities associated with the endpoints improves the accuracy
of the method, as is illustrated in Section 5.2.1. The probabilities associated with
discontinuities enable the use of discontinuous discretization functions.

The expression given by Hotelling to compute the surface area of a tube around
a curve on a sphere includes only the area perpendicular to the curve. The surface
area of the hemi-spherical caps over the endpoints of the tube has to be accounted
for separately. This is indicated in Figure 4.5. The additional probability associated

with these endpoints is:

(o))

where @ (-) denotes the standard normal distribution. A mathematical derivation of
(4.56) is given in Appendix B.

For certain types of discretization, the discretization functions are discontinuous.
In that case, the path of the vector f(£)/|f (t)| consists of non-consecutive arcs,
since each discontinuity causes a "jump” in the path of f (¢)/|f (¢)]. Two hemi-



Figure 4.5: Hemi-Sperical Caps Associated with Endpoints and Discontinuities

spherical caps have to be added in the computation of the area of the tube for each
discontinuity (See Figure 4.5). Assuming that the discretization functions in (4.1)
are discontinuous at M points £;, the additional probability is given by:

58 (~751) (4.57)

=t

Adding the terms (4.57) gives an approximate solution for the problem of dis-
continuities in the path of f (¢) / |f (£)|. The two hemi-spherical areas added on both
sides of the discontinuity may overlap if the "jump” caused by the discontinuity is
small (See Figure 4.6). Other problems of self-overlap of the tube with itself oc-
cur if the path described by f (¢) / |f ()| passes more than once through tt!e same
point. Self-overlap may also be a local phenomenon (Hotelling, 1939) resulting from

the curvature of the curve being greater than some critical radius or from a sudden



45

Overlap
f()/16(¢)

Figure 4.6: Self-Overlap Caused by a Small’ discontinuity in the Path of the Vector
£(t) /£ (£)| on the Unit Sphere :
change in direction of the path of £ (t) / |f (t)|, caused by a discontinuity in the first
derivative of the discretization functions f; (£) (See Figure 4.7). The latter possibility
is discussed in Section 5.3.3.

By adding the probabilities in expressions (4.56) and (4.57) to the probability
in expression (4.46), the following approximation is obtained for the extreme value
distribution:

P(B) = %er(-ﬁj)C(t)dt
+=

( Ifgl)l +;‘I’( lf(T)[) “‘12_:1‘1’( T )|) (4.58)



46

Sudden turn in
the path of the

vector £(£)/If(2)|

ﬁ\

1]}!
Area that is not considered | ' Area that is counted twice
by Hotelling’s formula by Hotelling’s formula

Figure 4.7: Self-Overlap Caused by a Sudden Change in Direction of the Path of the
Vector f (t) / If (t)| on the Unit Sphere

4.4 Discussion of Sun’s Formula

The extreme value distributions of both stationary and non-stationary G.aussian
processes can be obtained using equation (4.58) with little computational effort.
Once ¢ (t) is computed, the first integral in (4.58) can be computed using numerical
integration.

For a stationary process, with no discontinuities in the discretization functions,
(4.58) can be simplified to yield:
POy = e (-5) +e(-0) (459

which is the well known formula for exceedance probabilities of stationary Gaussian

processes with unit variance (See Section 2.1). In Section 5.2.1, the extreme value
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distribution of such a process is computed using (4.59).
It should be noted that equation (4.58) cannot be applied blindly. As is discussed
in Section 4.3, the user should pay attention to possible problems of self-overlap.

4.5 Other Statistics Based on Sun’s Formula

The purpose of this Section is to indicate how Sun’s Method can be employed to
compute some other useful results related to the extreme value distribution of a
stochastic process.

In this Section S5’ () denotes the spherical cap around the point f (¢) / |f (t)| on
the N-dimensional unit sphere S¥ (See Appendix B). L denotes that part of the

unit-sphere S¥ that does not belong to the area L:

LUL=8¥

LNL=9

(4.60)

The operator A (L) is used to represent the surface area of the area L on the N-
dimensional unit sphere SV.

4.5.1 Exceedance Probability at a Given Time

The probability that at specified time ¢ the value of the stochastic process will be
greater than a given level 3 is simply the exceedance probability:

Pr(X()>6) =2 (--U:W) (4.61)



4.5.2 Conditional Probabilities of Exceedance

We will now compute the conditional probability
Pr(X (%) > B| X (t1) > B) (4.62)

For this purpose, we use the formula

Pr((X (t2) > B) n (X (tr) > B))
Pr(X (t:) > B)

Pr (X (t2) > ﬁl X(t) > 5) = (4.63)

The probability in the denominator of (4.63) is given in (4.61). For the computation
of the numerator, we use the same technique as we employed for the derivation of

Sun’s Formula. Using the relative frequency approach, the conditional probability
Pr({(X(t2) > B) n (X (t2) > B)| Bw =T) (4.64)

is given by the surface area of the intersection of the spherical caps around the points
t; and t; divided by the surface area of the unit sphere:

. - Sy (t) NSy
Pr (2> )0 (%) > )| Ry =) = AT W) (g

This intersection area is plotted in Figure 4.8. This can be explained by observing
that samples u of the random vector U in that intersection area will result in a
value for Z (t) that is greater than 3 both at time ¢, and time ¢;. An estimate for
the surface area can be obtained by simulation. Once the conditional probability
(4.64) is computed, the probability in the numerator of (4.63) can be computed by
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Figure 4.8: Spherical Representation of Conditional Probability of Exceedance

integration over all possible values of the random variable Ry (See Section 4.2.1).

4.5.3 Rate of Upcrossings

The mean rate of upcrossings v (t) of X (t) above a level 3 is defined as

v (t) = lim E(Nﬂ (At))

At~0 At (4.66)

where Nj(At) is the number of upcrossings as defined in Chapter 2. Hagen and
Tvedt (1991) prove that v (£) can be written in the limiting form

(4.67)

() = lim, Pr((X(t) <B) 1 (tX (t + At) > B))
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The numerator denotes the probability that the process X (t) has a value smaller
than 3 at time ¢ and a value greater than f at a slightly later time ¢ + At. If this is
the case, one or more up-crossings must have occurred during the interval Af. Der
Kiureghian and Li (1996) show that for sufficiently small values At, the probability
of more than one up-crossing can be neglected. The conditional probability

Pr((X@) <B)n(X(t+A4t)>8)| Ry =) (4.68)
can again be computed using the relative frequency approach:

N N
Pr((X@) <B)n(X(t+48)>p)|Rv=r)= A (S (tif(gj’v)(t +41) (4.69)

A representation of the area @ﬁ)' NSy (t+ At)) in Equation (4.69) is given in
Figure 4.9. Realizations u of the vector U that lie within this area contribute to the
probability in (4.69). Since those vectors u do not lie in the spherical cap "around
the point f () /|f (¢)|, they will result in a process Z (t) that has a value smaller
than 8 at time ¢t. However, those vectors u do lie in the spherical cap around the
point f (t + At) / |f (t + At)|. Therefore, the value £ (t + At) will be greater than
(. Integration of the conditional probability (4.69) over all possible values of the
x~-random variable yields the probability in the numerator of (4.67).

4.5.4 Cumulative Excursion Time

The length of time in the interval [0, 7] during which the stochastic process X (t)
takes on a value greater than 3 is called the cumulative excursion time 7 (T"). Der
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Figure 4.9: Computation of Rate of Upcrossings Using Spherical Represeni;ation

Kiureghian and Li (1996) indicate how the first two moments of this random variable

can be computed:

T N
Ea@) = [ Pr(X@®)>p)a (4.70)
E(m) = [ [ Pe((R@)>6)n (X >0))dnde (a7

The probability in the integrand of expression (4.70) can be computed using (4.61)
and the probability in the integrand of expression (4.71) is computed in Section 4.5.2
(See equation (4.65) ). Subsequently, numerical evaluation of the integrals in (4.70)
and (4.71) is employed to determine the first and second moment of the random
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variable 77 (t). The variance can then be computed using
Var(n(T)) = E (1 () ~ E* (n(¥)) (472)

4.5.5 Duration of a Single Excursion

The duration D (t) of an excursion following the occurrence of an upcrossing of the
level B at time t is defined as:

D (#) =inf [r >t and X (1) < 4] (4.73)

In Equation (4.73), inf [| denotes the smallest value of T for which the argument is
true. For a given ¢, D (t) is a random variable. Der Kiureghian and Li (1996) show
that the mean value of this random variable D (t) can be approximated by:

Pr (X (t) > B)

E(D@®)* ——r

(4.74)

Notice that the computation of the numerator and the denominator in (4.74) are

discussed respectively in (4.5.1) and (4.5.4).

4.6 Sun’s Tube Method Applied to Non-Zero-Mean Gaus-
sian Processes
So far, it has been assumed that the random process X (t) has a constant zero

mean. Suppose now that we want to use Sun’s Method to compute the extreme

value distribution of a process Y (¢) having a non-zero mean function uy (t). Instead
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of discretizing the process Y (t), we discretize the zero-mean random process Z (t):

ZH) =Y () —pr®) . (4.75)

Further we notice that

P =P (max 7> ) =Pr (max 200> (65— sy @) @

Sun’s Formula then becomes

GCREILIC Ifz(t(l)l )eoe
*1‘1’( Ifz((?)))l) ( lfz((11?)|)+2@( Ifz((z))l) &)

where 3 (t) is defined as:

'Gt

B(t) =B~ ug (t) ' (4.78)

The vector £z () in Equation (4.77) lists the discretization functions of the zero-mean
process Z (t) (4.75):
£z (t) = (£, (£), £z (t) .- fzy (2)) (4.79)

From (4.77), it is clear that the assumption of a zero-mean stochastic process in the
derivation of Sun’s Formula does not affect the generality of the method. Strongly
fluctuating means could however affect the quality of Sun’s Method.



Chapter 5

Applications of Sun’s Tube Method

In this Chapter, the formula to approximate extreme value distributions is applied to
several stochastic processes. The results of Sun’s method are compared with extreme
value distributions obtained by means of simulation. In Section 5.1, it is indicated
how the simulation is performed. Results of two discretizations described in Chapter
3 are discussed. In Section 5.2, stochastic processes that are the sum of sine and
cosine functions are considered. In Section 5.3, Sun’s Tube method is applied to an
earthquake signal and to a stochastic response to this signal.

5.1 Exceedance Probabilities Obtained by Simulation

In Monte Carlo simulation, a number Ng of independent samples z (t) of the random
process X (t) are generated. An estimator P (3) for the exceedance probability P ()
is obtained by checking if the generated sample z () has a maximum that is greater
than 3:

. 1 X

P(ﬂ)=-&-;i§1(rgga:(t)>ﬁ) (5.1)

where 1(-) is the indicator function that is equal to one when its argument is true

and equal to zero otherwise. This estimator is unbiased:

E(P(8) =P(g) (52)

54
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and asymptotically exact: as the number of samples N goes to infinity, the estimator
P converges to the true exceedance probability P (3). However, the convergence rate
is slow. As discussed in Rubenstein (1981), this way of sampling can be compared
to a sequence of N5 Bernoulli trials with probability of success p = P (8). Hence,
the Coefficient of Variation (COV) of estimator P (3) is equal to

- 1 1
cov (B(B)) = \/; PBA-P@) \} N.P(B) (1-2(8) -

The accuracy of the estimator is proportional to the COV. This means that 107

simulations are necessary to estimate an exceedance probability P (8) of 10~ with
a COV of 0.1. In structural reliability problems, one is typically interested in small
probabilities, which implies that simulation is a very expensive method to compute
extreme value distributions. However, if no analytical solution is known, it is the
only possible way to verify results obtained with approximation methods.

The discrete format required to apply Sun’s method (3.3), makes simulation rel-
atively simple. To generate a sample z (t), N independent standard normal random
variables z; are geperated using the polar method, as described in Ross (1990). Val-
ues for z (¢;) at discrete times ¢; € [0, T'] can then easily be computed using equation
(3.3).
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5.2 Extreme Value Distribution of Linear Combination of

Sine and Cosine Functions

In this Section, the extreme value distribution of process of the form (3.45) will be
discussed. This type of processes is very instructive to understand the concepts of
geometry in N-dimensions and the problems with overlap.

5.2.1 Stationary Process

In this Section, we compute the maximum of the special process
£(t) = X coswt + Xypsinwt (5.4)

where w is a fixed positive constant. There are three reasons why this process
is chosen as a first example. The extreme value distribution of this process can
be computed analytically (See Chapter 2). It will be shown that Sun’s formula
yields the same result. The simple form of the process makes it easy to verify its
representation on the unit sphere. Finally, some interesting observations about the
problem of self-overlap can be made.

First, note that the process £ (t) is already in the form (3.3) with

N=2
fi(t) = coswt (5.5)

f2(t) =sinwt
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The variance of the process is constant:
02 (¢) = cos? wt +sin’wt =1 (5.6)

Since the process is stationary, the expression for c (t) (4.48) in Sun’s Formula (4.58)

can be simplified to yield:
2 2
)=, fity=w (5.7)
=1

Insertion of (5.7) and (5.5) in Sun’s formula (4.58) gives:

PO = g [ wen(-F)a+jocn o0 68
- .“.2’%@ (—%) +&(=A) (5.9)

This is exactly the analytical result derived in Section 2.1 with the restriction that
this result (5.9) is only valid for values of T satisfying

0<T<Z (5.10)
W

While the result obtained with Sun’s Formula do not implicitly carry this restric-
tion, it will be proven that (5.10) is necessary to avoid overlap. In order to explain
this, we go back to the basic principles on which Sun’s Method is based. Since there
are only two discretizatioﬁ functions, the process £ (t) can be represented on a circle
with radius 1. The vector f (t)/|f (£)| is travelling with constant velocity on the
perimeter of this circle. The representation is given in Figure 5.1. For the time
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£(2) /1)l

Figure 5.1: Representation of the Process £ (t) on the Unit Circle

being. we assume that

T=3T % (5.11)

Sun’s formula was derived by integration of the conditional exceedance probabil-
ity P(8| Ry =) cover all possible values of the random variable Ry (See Section
4.2.1):

P(B) = [ P(BIRy=1) fu (r)dr (5.12)

where f,, (7) is the probability density function of a xs-random variable with 2 de-
grees of freedom as defined in (4.9). For each value of Ry, the conditional probability
P (B Ry =) can be computed using the relative frequency approach. (See Section

4.2.2 and Appendix B). Rewriting equation (B.8) for the special case N = 2, we
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obtain:
fP(ﬁIRN=r)=2i“(\w;+\ﬁod+£L) (5.13)
I It m
with
o | B B/t 510
0 Bg/r>1

Term I in equation (5.13) is the arclength associated with the path of the vector
f (@) /|f (t)]- Term IT and III represent arcs that are the two-dimensional equivalent
of the N-dimensional hemi-spherical caps. Term I, II and III are represented in
Figure 5.1.

It can now be explained why restriction (5.10) is necessary. From (5.14), it follows
that

r — 00 = 60,07 — 12[ (5.15)

For values of T > Z, the two angles 6y and 0r will start to overlap as r increases.
This is illustrated in Figure 5.2. As a consequence, the arclength associated with the
overlap would be counted twice in the computation of P (8| Ry = r). This can also
be concluded from equation (5.13), which yields values for the conditional probabil-
ity that are greater than one. This example illustrates a weakness of Sun’s Method.
Restrictions to avoid overlap are not an automatic result of the method. One has to
look carefully into the geometrical representation on the unit-sphere to detect pos-
sible problems of overlap. This is relatively easy for the problem discussed here, but

it is much more cumbersome when there are more than two discretization functions.
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f(2)/1E(o)

Figure 5.2: QOverlap for Values of T > 7/w

If restriction (5.10) is used with wpay the highest frequency in the discretization, i.e.

0<T < — (5.16)

Wmax

then, we can conclude with absolute certainty that there will be no overlaps. It
should be noted however that (5.16) is a rather severe requirement.

As an example, the following process is studied:

5
X (t) =Y ci(Xucoswt + Xossinwit) for t €[0,0.3] (5.17)
=l
with
o; = A%
VG i=1,2..5 (5.18)

= ()
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Probability of Exceedance P(83)

Figure 5.3: Extreme Value Distribution of the Stationary Process X (t)

Note that this is a stationary process with unit variance. The results obtained with
Sun’s method are compared with simulation results in Figure 5.3. The simulation
results are based on 10® simulations. The graph shows clearly that neglecting the
endpoint probabilities seriously underestimates the exceedance probability.

5.2.2 Non-Stationary Process

As discussed in Section 3.5, non-stationary processes can be obtained by taking
different coefficients for the sine and cosine functions in the discretization. Sun’s

method is applied to a non-stationary process Y (¢):
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Realizations of the Random Process

D5 L
2.5 & (s)

Figure 5.4: Samples of the Non-Stationary Process Y (¢)

Y (t) = % sin (§t) + Xpsin (§t) + Xasin (xt)
+ X sin (rt) + X;s cos (xt) + Xg cos (xt) (5.19)

fort € [0,4]
In Figure 5.4, 3 samples of this process are given. In Figure 5.5, the variance of
the processes is plotted, together with the autocorrelation function at time-instances
t=1s,2sand 3s. As can be concluded from Figure 5.6, the results obtained with

Sun’s method are in good agreement with the exceedance probabilities obtained with

simulation.
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Figure 5.6: Extreme Value Distribution of the Non-Stationary Process Y ()




5.3 Extreme Value Distribution of an Earthquake Signal

In order to apply Sun’s Method to an earthquake signal, the discretization described
in Section 3.4 is used. In Section 5.3.1, the two ground acceleration models proposed
by Der Kiureghian and Li (1996) are introduced. In Section 5.3.2, some aspects of
the simujation of such signals is discussed. In Section 5.3.3, Sun’s Method is used to
compute the extreme value distribution of a motion on firm ground.

5.3.1 Two Ground Acceleration Models

Der Kiureghian and Li (1996) use the discretization discussed in Section 3.4 to de-
scribe two ground motion processes. In both motions, the predominant frequency
corresponds to the second filter. The first process describes a motion on a firm
ground, and has a predominant frequency of 57 rad/s and the other, with a pre-
dominant frequency of 2« rad/s describes a motion on a soft ground or deep alluvial
deposit. The assumed values of the parameters &, wy, {f, g0, @, b and ¢, for each
filter of the two models are listed in Table 5.1.

Sample realizations of the two processes are shown in Figures 5.7 and 5.8.
For these representation At = 0.02 s is used, which means that 20 s duration of
each motion is described by 1000 random variable. The intensity parameter @, is
selected such that for g; (t) = 1 each acceleration record has a stationary root-mean-
square value equal to 0.2g (g = 9.81 m/s?). Note that the processes are distinctly
nonstationary in both time and frequency domains. Consistent with typical ground
motions, each process is initially rich in high frequencies and then it becomes richer

in lower frequencies, which are dominant during the strong motion and coda phases
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Parameter @o(m?/s’) wy(rad/s) (s g a(s™!) b(s7Y) to
Acceleration Process on Firm Ground

Filter 1 0.0233 10r 0.6 0.718 0256 2.568 0.0

Filter 2 0.0233 5 04 1300 0.193 2901 3.0

Acceleration Process on Soft Ground
Filter 1 0.0509 5 04 0718 0.256 2.568 0.0
Filter2 0.0509 2r 02 1300 0.193 2901 30

Table 5.1: Selected Parameter Values for Two Models of Ground Acceleration Pro-
cess
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Figure 5.7: Realization of a Ground Acceleration Process on Firm Ground
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Figure 5.8: Realization of a Ground Acceleration Process on Soft Ground

of the record. The motion in Figure 5.7 is typical of acceleration records on firm
ground, whereas the motion in Fugure 5.8 is typical of ground accelerations on deep
soil deposits such as in Mexico city. In Figure 5.9, the variance of the ground motion
process on firm ground is given, together with the Auto Covariance Function at
time-instances t =2 s, 5 s and 10 s. Figure 5.10 shows variance and covariances for
the ground motion process on soft ground. Note how the correlation-length for the
motion of soft ground is much larger than for the motion of soft ground. This can
be explained by the fact that the damping ratio for firm ground motions is greater
than for soft ground motions (See Table 5.1).
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Figure 5.9: Variance and ACF of a Ground Acceleration Process on Firm Ground
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Figure 5.10: Variance and ACF of a Ground Acceleration Process on Soft Ground



5.3.2 Simulation of Earthquake Signals

We repeat the formula for the discretization of earthquake signals given in Section
3.4:

X0 =S XH0) (5.20)
t=1
with
2
£i©) = 3 oan () 0 0 (5.21)
k=1

where the summation is over the two filter considered in the models. Equation (5.20)
and (5.21) can be combined to yield

R N 2
X0 =03 X (_zzjqk(t,-)a.-k(t)) (5.2

Simulation of the earthquake signal (5.22) is computationally cumbersome. With
At = 0.02 s and Tipee; = 20 s, 1000 random variables have to be generated for each
realization. Furthermore, hundreds of discretization functions have to be added to
find the value of Z (t) at a given time instance {. However, generating samples can
be made more efficient by noting that (See equation (3.35)):

ax(t)=0 if t<ti, (5.23)
Therefore, N in expression (5.22) can be replaced by

N(t) =int (&) +2 (5.24)
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Next, it can be observed that

0 t<t;
aix (t) = (5.25)
a1 (t—t;) t>tia
This means that the function a; (t) as defined in (3.35) has to be computed only

once for both filters. The process (5.22) can now be written as
X N() 2
2@ =03 X(LaEout-1) (5.26)
=1 1

Finally, we can observe that, due to the relatively large damping ratio, the values for
the discretization function a; (£) become small after a short length of time. This is
illustrated in Figure 5.11 , where the discretization function f;, (t) for an acceleration
process on firm ground is plotted. As a consequence, the contribution of a specific
discretization function f; (t) to the value of Z (£) can be neglected for values

£>t; (5.27)

While all the foregoing observations enable us to improve the efficiency of sam-
pling significantly, simulation remains computationally demanding.

5.3.3 Results of Sun’s Method

In this Section, Sun’s Method is used to compute the extreme value distribution
of a ground acceleration process on firm ground. The results are given in Figure
5.12. The results are in good agreement with Monte Carlo simulation. For the level
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Figure 5.12: Extreme Value Distribution of a Ground Acceleration Process on Firm
Ground
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B = 4.5, Sun’s Method underestimates the log(exceedance probability) = (log(P (8))
obtained using simulation by 2.5 %. This difference can be explained by the nature
of the discretization functions. One of those discretization functions is plotted in
Figure 5.11. The function is continuous in time but, due to the way f; (¢) is defined
in Equation (3.35), its first derivative has a discontinuity at ¢t =¢;_; and at t = ¢;.
This means that the path, described on the unit sphere by the vector f () / [£ (£)], is
continuous, but that there is a sudden change in direction after every time-interval
At. At those points, the tube around the path of f (¢) / |f ()| has self-overlap (See
Figure 4.7 in Section 4.3). This self~overlap decreases with increasing 5. To obtain a
more accurate estimation of the area of the tube at those points, higher order terms

should be considered.

5.4 Extreme Value Distribution of a Stochastic Response

As discussed in Section 3.4.3, discretized stochastic responses are obtained by ap-
plying the earthquake signal (5.22) to a filter. In Section 5.4.1, a specific stochastic
response is introduced. In Section 5.4.2, some observations about the discretization
and simulation of stochastic responses are made. In Section 5.4.3, Sun’s Method is
used to compute the extreme value distribution of the stochastic response defined in
Section 5.4.1. Finally, in Section 6.1, it is explained how Sun’s Method can be used

to compute the response of non-linear systems.
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5.4.1 Stochastic Responses

The acceleration process of a motion on firm ground is now considered as the input
signal to a single-degree-of-freedom linear oscillator whose motion is governed by the
following dynamic equation of motion:

i (£) + 2ot (2) +wfu (£) = X (¢) (5-28)

X (t) is the absolute acceleration of the ground in a discretized form as defined in
equation (5.22). u(t) is the displacement of the mass relative to the ground and wyq
and (g are the natural frequency and viscous damping ratio of the oscillator. These
concepts are given in Figure 3.1 on page 21. In this example, the following values
are assumed for the oscillator properties:

G = 0.5 (5.29)

wo = 2mrrad/s (5.30)

f

Note that this represents a case where the oscillator frequency is less than the pre-
dominant frequency of the ground motion, which is 57 rad/s for a motion on firm
ground. As discussed in Section 3.4.3, the resulting stochastic response Y (t) can be
computed in the following discretized form:

P) =3 Xefir (© (5.31)
=1
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Figure 5.13: Realization of the Filter Displacement Y (t)

with fiy () the response to the discretization function f; (t), which is now considered
as an input signal:

for () = L ‘() hy (E— 1) dr (5.32)

with Ay (t) the unit-impulse-response functions of the linear oscillator (Clough and

Penzien, 1975) defined by the governing equation (5.28):
hy (£) = ——esin (wo\/ 1= (3t) (5.33)
wo‘/_l-_—E ;

5.4.2 Simulation of Stochastic Responses

A sample of the stochastic response Y (¢) is given in Figure 5.13. In Figure 5.14, the
variance of the response is given, together with the autocorrelation function at times

t=2s,5s and 10s. The same observations that were made for the simulation of
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-1.+ Time ¢, (s)

 Figure 5.14: Variance and ACF of the Stochastic Response ¥ (t)

earthquake signals (See Section 5.3.2), are valid for the simulation of stochastic re-
sponses, except for the fact that in this case, the value of the discretization functions
does not decrease as rapidly as in the case of earthquake-signals. This is illustrated
in Figure 5.15, where the discretization function fioy (£) of the stochastic response
Y (t) (5.31) is plotted. This can be explained by the small damping ratiq of the
linear oscillator (o = 0.05). As a consequence, simulation of stochastic responses is

even more computationally demanding than the simulation of earth-quake signals.

5.4.3 Results of Sun’s Method

In this section, Sun’s Method is used to compute the extreme value distribution of
the stochastic response defined in 5.4.1. These results are given in Figure 5.16. The
results obtained using Sun’s Method are exceptionally good. For the level 8 = 4.5,
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Figure 5.16: Extreme Value Distribution of the Stochastic Response Y (t)
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Sun’s Method underestimates the log(exceedance probability) obtained using simu-
lation by about 0.6 %. The fact that the method gives better results for a stochastic
response to an earthquake signal than for the earthquake signal itself can be ex-
plained by the nature of the discretization functions. Unlike the discretization func-
tions f; () for the earthquake signal (See Figure 5.11), the discretization functions
fav (t) for the stochastic response Y (t) (Figure 5.31) do not have discontinuities in
the first derivative (See Section 5.3.3). The functions fiy (t) are the result of a con-
volution (4.6) of the functions f; () (which are discontinuous in the first derivative)
and hy (t). Therefore, the functions f;y () are discontinous in the second derivative.
As a consequence, there are no sharp turns in the path of the vector £ (t) / |f (£)] in
the case of stochastic responses. The ’smoothness’ of the curve prevents problems

with self-overlap.



Chapter 6
Extensions of Sun’s Tube Method

In this Chapter, two interesting extensions of Sun’s Method are discussed. In Section
6.1, it is shown how Sun’s Method can be applied to non-linear stochastic responses.
In Section 6.2, it is discussed how Sun’s Method can be applied to higher-dimensional
random fields.

6.1 Non-Linear Stochastic Structural Responses

6.1.1 Introduction

In this Section, it will be shown how Sun’s Method can be used to compute the
extreme value distribution of non-linear responses. In the case of a non-linear filter,
the convolution technique discussed in Section 3.4.3 can no longer be used since
convolution is based on the principle of superposition. There are however many
important structural dynamics problems which cannot assumed to be linear, e.g.
the response of a building to an earthquake motion severe enough to cause serious
damage (Clough and Penzien, 1975).

In Sections 6.1.2 and 6.1.3, we assume that the system parameters, such as the
damping ratio ¢ and the natural frequency w are fixed. In Section 6.1.4, it is shown
how the following approach can be adapted to also deal with stochastic system

parameters.
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The equation of motion for a non-linear filter can be written as
i (t) + 20w (£) + S (u (£) , 3 (£)) u (8) = X () (6.1)

where S (u (t) ,%(¢)) is the restoring force, which is a function of the displacement
u (t) and the velocity 1 (t) of the filter.

6.1.2 Limit-State Function

We are interested in finding the probability that the non-linear response u (X,t)
exceeds a level 3 in an interval [0, T]. In other words, we are interested in computing

Pr (,ze:[gg,,g(u (X,4),5) so) 6.2)

where g (v (X, t), B), is the limit-state function at time ¢ defined as
9(x(X,?),8) =B8—-u(X?) (6.3)

In (6.3), X are the independent standard normal random variables that determine
the input signal (See Section 3.1) and ¢ and 3 are deterministic parameters that
determine respectively the time and the threshold.

In order to compute the probability (6.2), we divide [0, 7] in n small intervals
At;, 1 =1,2,...,n and choose the time points ¢, £, ...t, in the middle of each interval
At; (See Figure 6.1). For hlgh levels of 3, the probability (6.2) can be approximated
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Figure 6.1: Discretization of the Interval [0, T)

by adding up elementary exceedance probabilities:

Pr(min g(u(X,t),ﬂ)SO) ~ ipr(ggg(u(x,t),a)golteAt,-)(ﬁ.4)
=1

te0,T]
= Y R(f)

=1

(6.5)

where P;(8) denotes the probability that the limit-state function g{u(X,t),8) is

negative in the interval A¢;. This is equivalent to the probability that the non-linear

stochastic response will exceed the level 8 in the interval A¢;.

6.1.3 Computation of Elementary Probabilities Using Sun’s Formula

It will now be indicated how the elementary exceedance probabilities in equation

(6.5) can be approximated using Sun’s Tube Method. For each time point ¢; in the

middle of the interval A¢;, the most likely failure point x} is computed. The most

likely failure point x! is the point on the limit state surface closest to the origin of

the standard-normal domain. Since the random variables describing the input signal

X (t) are standard normal and independent, no transformation is needed. To find the
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most likely failure point x?, the algorithm developed by Zhang and Der Kiureghian
(1995) can be used. This algorithm requires repeated computations of the limit-state
function g (u (X, t), B). Therefore, deterministic computations of equation (6.1) and
its gradients

(2 @) )

= (u(2))

Vi (u(?) = (6.6)

| 22 (u(®)

are required. Equation (6.1) can be solved using a Newmark Integration Method
(Craig, 1981, p. 147) and the required derivatives (6.6) can be obtained directly by
differentiating the discretized equations of motion (Der Kiureghian and Li, 1996).
Once the most likely failure point x} is determined, the limit state function at time

t; is linearized at the point x} to yield
9(u(X,8),8) = B — [u(xf, ) + Viu (x;, &) (X - x7)] (6.7)

Expression (6.7) is obtained by approximating u (X, t) in expression (6.3) by its first-
order Taylor Expansion around the point x;. We now group all the terms that are
constant and deterministic for a specific interval At;, so that we can write:

g (u (xs tt) HB) ~ p -u (x:, tl) +vvxu (x:a tt) (’C:), -Viu (x:, tt) X (68)
8
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Next, it is assumed that the limit-state-function g (x (X, t) , B) for points ¢ sufficiently

close to ¢t; (i.e. t € At; ), can be approximated by

g: (u(X,t),08) = B — Vyeu(x;,t) X i=12..,n (6.9)
N, par—
X: ()
where g; (-) represents the linearized limit-state function and X (t) defines a stochas-
tic process in the interval At;. Equation (6.9) shows that each probability P; (8) in
(6.5) can be considered as the probability that a stochastic process X; (t) exceeds
the level 37 (See Figure 6.2): If we insert the definition for the gradient of » (x},¢) in

the expression for X7 () (6.9), the following representation is obtained for X7 (¢):
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X (@) = (Vau(x,t),X) (6-10)
= if;(t)X,— i=1,2,..,n (6.11)
J=l1

where f; (t) is defined as
@)= -52- (3, 2) (6.12)

Notice that this is the format required to apply Sun’s Tube Method (See Section
3.1). Therefore, each probability P;(B) in (6.5) can be computed using Equation
(4.57).

6.1.4 Stochastic System Parameters

The method discussed above can also be extended to the case of non-linear systems
with stochastic system parameters. Let those system parameters be represented by
the random vector V. Now, the limit state function includes the set of random
variable V. A transformation will be needed to represent the system random vari-
ables V in the standard-normal domain. An algorithm for this transformation can
be found in Hobenbichler and Rackwitz (1981). The most likely failure point will
now depend on both the input and the system random variables: (x},v}). As a
consequence, gradients of u (x{,t) with respect to v will be included in the first-
order Taylor Expansion of the limit-state function around the most likely failure
point (x}, v}). Those gradients will also be present in the definition of the stochastic

process X (t). However, the main steps outlined in Section 6.1.3 remain the same.



6.2 Extremes of Random Fields

While this thesis mainly focuses on the application of Sun’s Method to one-dimen-
sional random fields (i.e. stochastic processes), the method can also be applied to
higher d-dimensional random fields (Sun, 1993 and Maes and Breitung, 1996). In
fact, Sun’s method becomes increasingly attractive as d increases, since traditional
upcrossings techniques (See Section 2.1) become more cumbersome and less accurate,
while Sun’s approach requires little additional analytical effort.

In Section 6.2.1, the problem is reformulated for random fields of dimension 2 and
higher. The fundamental ideas of Sun’s method for higher dimensional random fields
and the differences with the one-dimensional case are discussed in Section 6.2.2. In

Section 6.2.3, the results of the two-term asymptotic approximation are given.

6.2.1 Formulation

Let T denote a compact subset of R?. Consider a d-dimensional Gaussian random
field Z(t) with t = (t;,¢2,...,%35) € T in the following discretized form:

N
Z(t) = Y Zih(t) (6.13)

The Z;’s are a set of independent standard normal random variables and the func-
tions h;(t) are a set of deterministic functions, defined in the domain T. Possible
discretizations include, but are not limited to, the truncated Karhunen-Loeve ex-
pansion (Section 3.2) and the discretization obtained with the Expansion Linear
Optimization Method (Li and Der Kiureghian (1993) or Section 3.3 of this thesis).
The objective is to obtain the extreme value distribution of this random field



Z(t) within the domain T. More precisely, we are interested in approximating
P(8) =Pr (% Z(t) > ﬁ) (6.14)

Adler (1981) gives a one-term approximation for this probability, based on the
concept of approximating the process of upcrossings by a Poisson process. Sun (1993)
notes that this approximation often becomes very inaccurate for higher dimensions
and is only applicable to homogeneous (i.e. stationary) random fields. Furthermore,
Adler’s approach of the problem cannot be used to obtain higher order approxima-

tions.

Note that due to the independence of the random variables Z;, the autocorrelation

function R (s,t) can be computed as
N
R(s.t) = E(Z(S) Z() =L k(8 hi(®) (6.15)
and the variance 0% (t) is simply
N
oz (t) = R(t,t) =) hZ(t) (6.16)
=1

Further, it is assumed that the field is scaled in such a way that this variance is less
that or equal to 1 over the entire domain 7" and that its peak value in T is exactly

equal to 1.



6.2.2 Fundamentals of Sun’s Method for Random Fields

The general concept is analogous as for stochastic processes. The main ideas are
given here.

The vector Z = (Z,, 22, ..., Zx) is written as the product of random variable
Ry with a yy-distribution having N degrees of freedom and a random vector U
with a uniform distribution on the N-dimensional unit sphere. This enables the
computation of P (§) by integration over all possible values of the random variable
Ry:

PB)= [ P(BIRx=") fon (r)dr (6.17)

where f,, (r) is the probability density function of a xy-random variable. The
conditional probability P (8| Ry = r) is defined by

P(B| Ry =7) =Pr (max Z(t) 2 f| Rw =) (6.18)

This conditional probability can be computed using the relative frequency approach.
It can be expressed as the surface area of a subset of the N-dimensional sphere fulfill-
ing the inequality (6.14) divided by the area of that sphere. To find an approximation
for such areas, geometric results from Hotelling (1939) and Weyl (1939) about the
volume of tubes around manifolds on spheres may be used. The difference with the
one-dimensional case of stochastic processes lies in the fact that, we are now dealing
with tubes around d-dimensional manifolds, rather than with tubes around curves.
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A d-dimensional manifold V¥ in the N-dimensional space R"is defined as:
V=LV (), t =(trto, . ta) € T, vV (t) = (01 () , 2 (¢) ;- on (£)}  (6:19)

As a consequence, the geometrical interpretation of the problem is less straightfor-
ward. In the one-dimensional case, the formula provided by Hotelling (1939) for the
surface area yields a one term approximation for the extreme value distribution of a
stochastic process. The surface area of tubes around higher dimensional manifolds
may be found in Weyl (1939). As illustrated in Sun (1993) and Maes and Breitung
(1996), those expressions can be used to obtain approximation for P (3) with any
degree of accuracy. In the next section, the two term asymptotic approximation is

given.

6.2.3 Two-Term Approximation of Tail Probability
First we introduce the d x d symmetric tensor matrix G (t) which has elements g;;

defined as follows:

R (s, t
9i; (t) = -_58—15:?)

8Z (t) 0Z (t) }
=F{ ———— (6.20)
=t { ot 6t:’

From the independence of the standard normal random variables Z;, it follows that

the ¢z by j element of the matrix G (t) can also be written as:

e o OB () O (&)
9i; (t) kgl 0&; atj

(6.21)
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d-Dimensional Random Fields

Sun (1993) lists a number of broad regularity conditions under which the tail proba-
bility (6.14) may be approximated by a two-term asymptotic expansion. The metric
tensor matrix G (t) plays a geometric key role in the two-term expansion of the tail
probability (Maes and Breitung, 1996):

Pr(max Z(t) 2 8) > Ai(B) + P»(8) (6.22)

e the first term is a volume term (the volume of the manifold is simply the
integral of the measure [|G(t)[[/ over the domain T):

P(B) = [ 6,(8.4) G} de (6:23)
where the function 6,(3, t) is defined as
1 2
61(B,t) = sl (5 2) (6.24)
with I'(a, u) the incomplete gamma function

I'(a,u) = /Q % le~%dx (6.25)

e the second term of the approximation is:

p@) = [0, (-0 - L) jeorme @29
T




where the function #;(3, t) is defined as:

02(16rt) 4 (4.(,1)/2 d—l fal‘i'(}') (6'27)

S (t) is the intrinsic scalar curvature of the manifold at point t. For a detailed
mathematical description of S (t), we refer the reader to Kreyszig (1968, p.310).

Notice that, when Z (t) is homogeneous, g;; (t) is the corresponding second-order
spectral moment of Z (t), which does not depend on t. As a consequence, such a
random field has zero curvature S, which means that the second term P»(3) of the
approximation (6.22) can be combined with the first one to yield:

d(d 1)

P& = [ (060 -2 0p0) lc@ime  ©2)

Two-Dimensional Random Fields
Two-dimensional random fields are frequently encountered in structural reliability
problems. Therefore, the asymptotic results for this case are given here.

We have that the metric tensor matrix is simply the second moment matrix:

aZ 3Z 8Z
varz* COVAarz= ==
Gt ts) = % %: otz (6.29)
32 3Z 9z

The approximation for d = 2 becomes:

Pr(rgg Z (t1,t) >ﬁ) = ’(‘2‘1'})'57'2'[/ [1‘ @%m)
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+0 (3 20'22(1:))] (552 -1) Vesc i o

Once a suitable discretization is established for the random field Z (t), computa-

tion of (6.30) is straightforward. Expressions (6.16) and (6.21) indicate how oz (t)
and g;; (t) can easily be computed using the discretization functions and their deriva-
tives. The only difference that might arise lies in the computation of the curvature
term S (t). However, a more detailed study of the problem is required to determine
if this will be the case. Once the integrand in (6.30) is computed for a set of points
(ti,t;), (6.30) can be evaluated numerically.



Chapter 7

Conclusions and Recommendations

7.1 Summary and Conclusions

In the present thesis, the computation of the maxima of random fields is studied.
While traditional methods are based on upcrossings, Sun’s Tube method yields di-
rect approximations of the extreme value distribution of both homogeneous and
non-homogeneous discretized random fields. The present work focuses on the one-
dimensional case of stochastic processes.

In Chapter 2, the traditional method to approximate the extreme value distri-
bution of a stochastic process is explained. The technique is based on upcrossings
and provides an upperbound for the exceedance probability. It is shown that there
is a limited number of stationary processes for which this method provides exact
closed-form solutions.

In Chapter 3, several discretization methods are discussed. The common feature
of these methods is that they all yield discretized stochastic processes in the format
required to employ Sun’s Tube Method. Of interest are:

e the linear combination of sine and cosine functions.

The stochastic processes obtained using this method form an instructive tool
for the understanding of the geometrical concepts of Sun’s Tube Method.

e the discretization of earthquake signals and seismic structural responses.

90
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The seismic discretization methods described in the present work enable the
modeling of non-stationarity in both the time and the frequency domain. Next
to the ground motion process itself, any stochastic response of a linear system
subject to this ground motion process can be obtained in the required discrete

format.

In Chapter 4, Sun’s Method is studied in detail. The stochastic process is rewrit-
ten as the scalar product of a deterministic and a random vector. In doing so, the
exceedance probability can be expressed as a geometrical problem. Results from
Hoteling (1939) about the volumes of tubes around curves on spheres are used for
geometrical measures on the N-dimensional unit sphere. Sun'’s approach can be used
to compute other statistics related to the extreme value distribution of a stochastic
process. It is indicated how conditional probabilities of exceedance, the rate of up-
crossings, the cumulative excursion time and the duration of a single excursion can
be computed.

In Chapter 5, Sun’s Method is applied to both stationary and non-stationary

processes:

e Sun’s Tube Method is applied to a stationary process consisting of two dis-
cretization functions. This simple example explains the geometrical concepts
on which Sun’s Tube Method is based and illustrates the problems caused by
self-overlap.

e The extreme value distribution of an earthquake signal is computed. The
results are in good agreement with Monte Carlo simulation. Sun’s Method
underestimates the log(exceedance probability) by about 2.5 %. This error can
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be explained by the discontinuity in the first derivative of the discretization
functions of the earthquake signal.

e The present method is used to approximate the extreme value distribution of
a linear stochastic response to an earthquake signal. Comparison of the results
obtained using Sun’s Tube Method with simulation results show that the re-
sults are exceptionally good. Sun’s Method underestimates the log(exceedance
probability) by about 0.6 %. This can be explained by the fact that the dis-
cretization functions of the stochastic response now have a continuous first
derivative, since they are obtained by convolution of a function with a discon-
tinuous first derivative and a unit-impulse-response function. This accurate
estimate is a very positive result, because, in engineering applications, the
maxima of stochastic responses are the variables of interest in assessing safety
and reliability.

In Chapter 6, two extensions of Sun’s Tube Method are given. The application of
Sun’s Tube Method to compute the extreme value distribution of non-linear stochas-
tic responses is discussed. It is indicated how the method can be used to approximate
the maxima of higher-dimensional random fields.

The disadvantages of Sun’s Tube Method are:

e The problems of self-overlap and jumps cannot be identified a priori. They can
however be diagnosed

e The method is tied to discretized stochastic processes.

The main advantages of Sun’s Tube Method are:
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e The new approach gives direct approximations of the extreme value distribution
of a stochastic process without any assurnptions about point-processes and

treshold crossings.

e The method is suitable for any type of stochastic process, as long as the coeffi-
cients in the discretization are standard normal random variables. This is the
preferred way of discretizing anyway.

e The maxima of both stationary and non-stationary processes can be approxi-

mated.

e The method produces accurate results with little computational effort.

7.2 Recommendations for Future Research

Based on the work done in the present study, we can conclude that Sun’s Tube
Method has a great potential. The most important future developments should
focus on applying Sun’s Tube Method to the computation of:

e the distribution and moments of random variables associated with the maxi-

mum of a stochastic process
e the extreme value distribution of non-linear stochastic responses

e the maxima of higher-dimensional random fields
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The Distribution and Moments of Random Variables Associated with the
Maximum of a Stochastic Process

In Section 4.5, it is indicated how Sun’s approach can be used to compute statistics
associated with the extreme value distribution of a stochastic process. Before the
concept outlined in that Section can be used, an expression has to be derived for the
surface area of the intersection of two spherical caps on the unit-sphere. There are
two possible ways to solve this mathematical problem. One way is to use Monte Carlo
simulation to estimate the surface area of the intersection. While it is guaranteed
that this approach will yield a result, it might not be a very efficient way. Preferably,
a closed form expression should be derived. For this purpose, an in-depth study of
the geometry in higher dimensions will be required.

The Extreme Value Distribution of Non-Linear Stochastic Responses

In Section 6.1, it is discussed how Sun’s Method can be applied to approximate the
extreme value distribution of non-linear responses. The quality of those approxi-
mations has to be assessed by comparing them with other existing approximation
techniques or with the exceedance probabilities obtained using Monte Carlo simula-
tion. The problem of using other approximation techniques to test the accuracy of
Sun’s Tube Method is that one cannot determine if differences between the two ap-
proximation methods actually mean that one method is superior to the other. Monte
Carlo simulation of the maxima of non-linear stochastic responses is a computation-
ally tedious task. The methods discussed in Section 5.4.2 to improve the efficiency
of the simulation of linear stochastic responses can no longer be used, because these
methods are based on the linearity of the filter. In the case of a non-linear filter, two
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steps are required for the simulation of each maximum. First, a sample of the ground
acceleration process has to be generated. Since the filter representing the local soil
behavior is assumed to be linear, the techniques discussed in Section 5.3.2 to improve
the efficiency of the simulation can still be employed. Next, the response of the non-
linear filter to this input process has to be determined. This requires a deterministic
solution of the equation of motion. These two steps have to be repeated for each
simulation. This simulation may be cumbersome but it is the only means to assess
the absolute quality of the approximations obtained by Sun’s Method. However, if
the degree of non-linearity is not too large, then there is no reason to believe that
the application of Sun’s Tube Method to compute the extreme value distribution

will cause any problems.

The Maxima of Higher-Dimensional Random Fields

Another large field of further study is the application of Sun’s Method to higher-
dimensional random fields (See Section 6.2). The first step is to derive the expression
for the intrinsic scalar curvature (6.2.3). Once this expression is established, applica-
tion of Sun’s formula becomes straightforward. The estimates obtained using Sun’s
Tube Method have to be compared with Monte Carlo simulation results or with

other existing approximations.



Bibliography

[1] Abramowitz, M. and Stegun, I.A., 1972, Handbook of Mathematical Functions.
Dover Publications, New York.

[2] Adler, R.J., 1981, The Geometry of Random Fields. Wiley, New York.

(3] Adler, R.J., 1990, An Introduction to Continuity, Eztrema, and Related Topics
Jor General Gaussian Processes. IMS, Hayward.

[4] Breitung, K., 1990, The Eztreme Value Distribution of Non-Stationary Vector
Processes. Proceedings ICOSSAR ’89, 5th International Conference on Struc-
tural Safety and Reliability, Vol. II, pp1327-1332.

[5] Breitung, K., 1994, Asymptotic Approzimations for Probability Integrals.
Springer, Berlin.

[6] Breitung, K., Maes, M.A., and Huyse, L., 1995, The Computation of Mazima
of Non-Stationary Gaussian Processes, Proceedings First Intl. Conference on
Engineering Computing and Simulation, Changsha, China, November.

(7] Clough, R.W. and Penzien, P., 1975, Dynamics of Structures. McGraw-Hill,
New York.

[8] Cramer, H. and Leadbetter, M.R., 1967, Stationary and Related Stochastic Pro-
cesses. Wiley, New York.

[9] Der Kiureghian, A. and Li, C-C., 1996, A New Method for Seismic Reliabil-
ity Assessment of Nonlinear Structures. Chapter 5 in Reliability-Based Optimal

96



97

Aseismic Design of Reinforced Concrete Buildings. A. H-S. Ang, et Al (Eds.),
Final Technical Report, CUREe - Kajima Research Project, Phase 2, pp101-142.

[10] Hagen, O., and Tvedt, L., 1991, Vector Process Out-Crossing as Parallel System
Sensitivity Measure, J. Eng. Mech., ASCE, vol. 117, pp2201-2220.

[11] Hohenbichler, M. and Rackwitz, R., 1981, Non-normal Dependent Vectors in
Structural Safety. J. Eng. Mech., ASCE, vol. 107, pp1227-1238.

[12] Hoteling, H., 1939, Tubes and Spheres on n-spaces and a Class of Statistical
Problems. Am. J. of Mathematics, Vol. 61, pp 440-460.

[13] Johnson, N. and Kotz, S., 1972, Continuous Univariate Distributions. Wiley,
New York.

[14] Kendall, M.G., 1961, A Course in the Geomeiry of n Dimensions. Griffin’s
Statistical Monographs and Courses.

[15] Kreyszig, E., 1968, Introduction to Differential Geometry and Riemannian Ge-

ometry. University of Toronto Press.

[16] Leadbetter, M.R., Lindgren G., and Rootzén, 1983, Extremes and Related Prop-
erties of Random Sequences and Processes. Springer, New York.

[17] Li, C-C. and Der Kiureghian, A., 1993, Optimal Discretization of Random
Fields. Journal of Engineering Mechanics, 119(6), ppl1136-1154.

[18] Lin, Y.K., 1967, Probabilistic Theory of Structural Dynamics, McGraw-Hill,
New York, and Krieger Pub., Huntington.



98

[19] Maes, M.A., and Breitung, K.W., 1996, Direct Approzimation of the Eztreme
Value Distribution of Non-Homogeneous Gaussian Random Fields. Proceedings
of the 15th Intl. Conference on Offshore Mechanics and Arctic Engineering,
Vol.2, pp103-109.

[20] Mura, T. and Koya, T., 1992, Variational Methods in Mechanics. Oxford Uni-

versity Press.

[21] Papoulis, A., 1991, Probability, Random Variables and Stochastic Processes,
McGraw-Hill, New York, 3rd edition.

[22] Rice, S.0., 1944, Mathematical Analysis of Random Notse. Bell System. Tech.
J., Vol.23, pp 282-332.

[23] Rice, S.O., 1945, Mathematical Analysis of Random Noise. Bell System. Tech.
J., Vol.24, pp 46-156.

[24] Ross, S.M., 1990, A Course in Simulation. Macmillan, New York.

[25] Rubipstein, R.Y., 1981, Simulation and the Monte Carlo Method. Wiley, New
York.

[26] Roy, R.C.Jr., 1981, Structural Dynamics, An Introduction to Computer Meth-
ods. Wiley, New York.

[27] Sommerville, D.M.Y., 1958, An Introduction to the Geometry of N dimensions.
Dover Publications, New York.

[28] Sun, J., 1993, Tail Probabilities of the Mazima of Gaussian Random Fields.
Annals of Probability, 21(1), pp 34-71.



99

[29] Weyl, H., 1939, On the Volume of Tubes. Am. J. of Mathematics, Vol. 61, pp
461-472.

[30] Zhang, Y., and Der Kiureghian, A., (1993). Two improved algorithns for relia-
bility analysis. Proceedings, 6th IFIP WG 7.5 Working Conference on Structural
Reliability and Optimization, Assisi, [taly, September 1994 (Rackwitz, R., G.
Augusti, E. Borri, Eds.), Chapman and Hall, New York.



Appendix A

Discretization Function Obtained by Minimizing

Error Variance
The expression for the error variance is
~ 2
E ([x ® - X @) ) (A.1)

X (t) is the filter response obtained by discretization of the white noise input (See

Section 3.4):
R N
X@) = > W) (.2)
=1
W: = /“ W (t) i=12,..,N (A.3)

-1

X (t) is the exact solution of the filter response to the white noise input (See Clough
and Penzien, 1975):

X (t) = /o ‘W (r)h(t—1)dr (A.4)

where A (t) is the unit-impulse-response function of the filter.

Equations (A.2) and (A.4) are inserted in the expression for the error variance

100
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(A.1):

E ([x &) — X @) [’)

= E((/:W(f)h(t-r)dr)z)

—2ga¢(t)E(W,-./O’W(f)h(t-f)dr)

+5°a ) B (W) | (A5)
i=]1

In order to minimize the error variance, Equation (A.5) is derived with respect to

a; (t):

[s) . 2
50D [E (IX(t) - X @) )] =0 e
3
oy (M-/:W(r)h(t—f)df) +20:(8) E (W2) = 0
i = 1,2,...N (A7)
Equation (A.7) can now be solved for a; (£):
E(W;- [y W (r)h(t —7)dr) i1o N (48

)= EWD
First, the denominator is caiculated. Using (A.3), we have that

E (mz) = E ( L: _[: W (1) W (72) d"’zdﬁ) (A.9)

L t; ]t‘ : E(W ()W (r2))drdn | (A.10)

]
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The autocorrelation function of white noise (Clough and Penzien, 1975) is given by
R(r)=E(W ()W (t+ 7)) = 2n®e6 (7) "(A.11)

where & is the intensity of the white noise and & (7) is the Dirac impulse function
defined by

6(t—171)=
( ’r) o0 t=171 (A.12)

5. 6t—-r)dt=1
With this expression for the autocorrelation function of white noise (A.11), Equation

(A.10) can be written as:

E (W) = 2rd, /: [ 15(72-71) drsdry

t;
= 2P, drmi
L1

2P At (A.13)

Next, the numerator of (A.8) is further examined. Using (A.3), we can write that:

E(W,--j:W(r)h(t—‘r)df)
= E ( L : [0 "W (r) W (1) h (¢ — 7a2) d‘rgd'rl)

= /; /otE(W(ﬁ)W(Tg))h(t-Tz) drydry (A.14)

The expression for the autocorrelation function of white noise (A.11) is inserted in
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equation (A.14) to yield

E(I‘V,--/:W(f)h(t—-r)dr)
s t
= 2rd, /; N /o 8(r2 — 1) b (t — 72) dradmy (A.15)

Three different cases can be considered:

L t<t;
In this case, the two integration intervals [t;_;, ;] and [0, {] in expression (A.15)
do not overlap. Therefore, from the definition of the Dirac impulse function
(A.12), it follows that expression (A.15) equals zero.

2. i1 St<yy

In this case, the integration interval [t;_;, ;] in (A.15) is split into [t;—;,¢] and

[t, ti]:

t t
211’@0 L-1£ 6(1’2—1’1)’&(t—1'2)d1’2d‘r];

.
= fti-—l h(t—n)dn,

¢ 4
+27g /t jo §(ry — 71) h (¢ — 72) dmadry (A.16)

o e

=0

. t>¢;

In this case, the integration interval [0, £] in (A.15) is divided into three intervals
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[0; ti-l]s [tt'-la ti] and [tn t]:

t; ti—1
27, jﬂ N /o §(ro—1) h(t — 1) dr,dfi

T

=0

+21Po ./t:‘ /:‘ é(m — n)h (t — 1) drodmy (A.17)

Jti-1 St ,,

=[i} | A-m)dn
+2r® /"' /‘5( ) b (t — 73) drad (A.18)
Ty — —-T T
0 :i—l . 2 1 2 2 I;
=0

The above expressions for the numerator and the expression for the denominator

(A.13) are inserted in (A.8). We can conclude that:

&) =L [ he-mn)d ;=1,2,...N (A.19)
a; -E min(t, 1) T1)amn L= 1,4y -



Appendix B

Computation of Probability Associated with

Endpoints and Discontinuities

In Section B.1, an expression is derived for the surface of a spherical cap on the unit-
sphere. In Section B.2, this expression is used to compute the additional probability
using the relative frequency approach as explained in Section 4.2.2. For simplicity
of notation, the derivation is given for the additional probability at the endpoints
of the process. Extension to probabilities associated with possible discontinuities in

the path of the vector f (¢) / |f (¢)| is straightforward.

B.1 Surface of a Spherical Cap on the Unit Sphere

Let S7', a spherical cap around a fixed point y = (1, %2...., yx) on the N-dimensional

'y

unit sphere SV be defined as the locus of a point x so that:
N
S = {xix= o an) Y= tad <0} (B
=1

where yx is the angle between the vectors y and x. The angle 8 denotes the angle
between the centre and the border of the cap. To compute the surface area A (Sé" ) of
this cap, we use the theorem (Sommerville,1958, p.138) that the surface of a variety
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of revolution of species N — 2 generated by a curve

Ta-1 = f (zn) (B.2)

rotating about the axis of z is given by

(N - 1) x3®¥-1)
r (—-.r".'_

f {f @)V Pdzy (B.3)
In this case, the generating curve is
o =1-z% for cosf<zN<1 (B.4)

Inserting this expression for the generating curve (B.4) in (B.3) gives the following
expression for the surface area A (S{,"' ) of a spherical cap with top angle 6:

A(Sév) 1) 71’2(N 1)/'0 N-2 . (B.5)

Using
F(z)=(z-1T(z-1) (B-6)

equation (B.5) can be written as:

v-1)
A(sy) = 2’”N_1 f N-2pdy (B.7)
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B.2 Probability Associated with Endpoints

Samples of the random vector U lying in one of the two hemi-spherical caps at the
endpoints of the path of the vector £ (£) / |f ()| will result in stochastic processes
with a maximum greater than 3. Therefore, the area of these two hemi-spherical
caps has to be added to the area of the tube T}, in equation (4.34), so that we now

obtain:

_A(TH) 1A(SK)  1A(SE)
P(BlEy=m) =™ Y3 T2AEY (B-8)

The top angles 8y and 0 are defined by expression (4.29):

oo arccos (h) B/ (£©)|7) <1 (©9)
0, 8/ (£Q)ir) >1

o = arccos (), (B/(E(D)In)) <1 (B.10)
0, 8/ (I (D) 7)) > 1

Let P.4i(3) denote the additional probability associated with the endpoints.
Following the same reasoning as in Section 4.2, we can write that

Paad (B) = A(S )f (r ) (Sg)

2 B/1£(0)] A(SN) xw 2 aer) A (SY)

.a(ﬁ) PL‘(B)

— = fxn (r)ar (B.11)

In this Appendix, the derivation for the computation of P2, (3) in expression (B.11)
is given. The computation of PL,(8) is analogous. Combining expressions (B.7),
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(4.9), (B.9) and (4.33) gives the following expression for P2, (8):

P8 = CEW (i;f 7= /;; o ( f:“ sin"‘zzda:) M lexp (-522—) dr (B.12)

Changing the order of integration gives:

2% 2 . N2 -1 _f_z_) r)
Pou(B) = (,,,_1) T b f sin z(j;; I‘r(mlm)r“’ exp( 5 | dr ) dz (B-13)

First we will compute

2 (P 8) (B.14)

Using

e g
2 ([ 1waw) = [ |2t @] ar6ag-f@ag ®19

we obtain that

d _ ¥ g enan¥2p 1 (___!9__)2 i
dg (P"w(ﬂ))— F(%ﬂ)ﬁlf(ﬂ)lN o cosNz exp( 2 \|£(0)| cosz
(B.16)
Making the substitution ,
_ _1_ Btanz
T—-v= 3 (—_If(O)I ) (B.17)
gives

m‘P( () )

d
EE(PO“‘(B))= V2rIf ()T (¥52)

f:’ = exp (—v) dv

=r(252)




S Sy Y -
= \/fﬂf(O)lexP( 2(If(0)l))

By integration of £ (P (8)) , we find that:

P (B)

f_f; 3% (Pl (1)) @v+ Pl —(—00)

=1

8 2
= 7 |1f(0)|/-w”“’("% (7o) )"”“

_ 1 B8/180) 1{ p \?
T Ve @"P(‘E(ﬂaﬁ))d”“

- (b

In a similar way, it can be proven that
B
P =¢ | ——rr
2 = (~z(ry)

B.3 Probability Associated with Discontinuities
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(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

The derivation of the expression for probabilities associated with discontinuities is

analogous to the proof in Section B.2.





