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In many structural reliabüity problemst the m&ma of random fields are important. 

In most of the Bosting methods, th- maxima are appmxïmated using upcmsing 

techniques. 

Sun's 'Iùbe Method uses a different approach. The method is based on geomet- 

rical concepts and it can be used to cornpute the maxima of both homogeneous and 

non-homogeneous Gaussian random fields. 

Diffaent discretizations to whidi this method is applicable are discussed. The 

special case of nonstationary stochastic processes P d y z e d  in detail. The method 

provides results that are in gmd agreement with simulation. The maxima of earth- 

quake signals and structural responses ta those signals are computed Both linear 

and non-linear responses are dkusseà. It is indicated how the maxima of higher- 

dimensional random fields can be appra]Cim8teded 

Sun's 'liibe Method gives g d  d t s  with littIe computational dort and there 

is hardly any restriction to the type of random fields that can be d y z e d .  



Acknowledgements 

1 wouid Iike to express my deep gratitude to all of those who supportai me throughout 

m y  education and contributeci in same =y to the development of this research: my 

parents, my superpisor Dr. Maes and my fdow students Jim G i i d  and Luc 

Huyse. 



Table of Contents 

A p p t 4  Page ii 

Abstract 

Adaiowedgements 

Table of CoPtents 

List of Sgbles 

List of Figures 

1 Introduction 1 

1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1.2 Objectives.. . . . . . . . . . . . . . . . . . . . . . .  . . .  . . .  . . . 2 

1.3 Prelimùiary Definitions . . . . . . . . . . . . . . . . . - . . - . . . . . 2 

2 Extrema of Stochastic Processes 6 

2.1 Extremes Based on Level Upcrossings . . . . . . . . . . . . . . . . - . 6 

2.2 Results inLiterature . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

3 Discretization of Stor,hnntic Processes 11 

3.1 Format Required to Apply Sun's Method . . . . . . . . . . . . . . . . 11 

3.2 'Ihincated K8lchu11en--Loèv -ansion . . . . . . . . . . . . . . . . . 12 

3.3 Expansion Optimal Lin- Estimation Method . . . . . . . . . . . . 14 

3.3.1 Optimal Lin- Estimation Method . . . . . . . . . . . . . . . 15 

3-3.2 w o n  Optimal Linear Estimrrtion Method . . . . . . . . . 17 
3.4 DiscretizationofanEarthquakeSigmd . . . . . . . . . . . - . . . . . 18 



3.4.1 hmduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

3.4.2 Modeling of Non-Stat im . . . . . . . . . . . . . . . . . .  24 

3.4.3 Linear Stochastic Structutal Responses . . . . . . . . . . . . .  26 

3.4.4 Non-hear Stochastic Structurai Respo~lses . . . . . . . . . .  27 

3.5 h e a r  Combination of Sine and Cosine Fûnctions . . . . . . . . . . .  27 

4 Sun's Tùbe Method 28 

4.1 Spherical Representation of a Discretized Random Process . . . . . .  28 

4.2 Sun's Formula without Endpomt Pmbabïilities . . . . . . . . . . . . .  32 

42.1 Introduction . . . . . . . . . . . . . . . . . . . . O . . . . . . .  33 

42.2 Relative Ebque~cy Approach . . . . . . . . . . . . . . . . . .  34 

12.3 Derivation of the htegral Ekpression . . . . . . . . . . . . . .  39 

4.3 Robabiüty Associated with Endpoints and Discontinuities . . . .  . 43 

. . . . . . . . . . . . . . . . . . . . . . .  4.4 Discussion of Sun's Formula 46 

4.5 M e r  Statistics Based on Sun's Formula . . . . . . . . . . . . . . . .  47 

. . . . . . . . . . . .  4.5.1 Exceedance Robabiliv at a Given T h e  47 

. . . . . . . . . . . .  4.5.2 Conditional Probbilitis of E3xceedruice 48 

4.5.3 RateofUpcrossings . . . . . . . . . . . . . . . . . . . . . . . .  49 

4.5.4 Cumulative E x d o n  T i e  . . . . . . . . . . . . . . . . . . .  50 

. . . . . . . . . . . . . . . . .  4.5.5 Duration of a Single E x d o n  52 

4.6 Sun's Tube Method Applied to Non-Zero-Mean Gaussian Rocesses . 52 

5 Applications of Sun's nibe Method 54 

5.1 Exceedance Robabilities Obtained by Simulation . . . . . . . . . . .  54 

5.2 Extreme Vdue Distribution of Linear Combination of Sine and Cosine 



51.1 Staticmary Proces . . . . . . . . . . . . . . . . . . . . . . . .  56 

5.2.2 Non-StationaryProceslr . . . . . . . . . . . . . . . . . . . . . .  61 
5.3 Extreme Value Distribution of an Earthqpake Signal . . . . . . . . .  64 

5.3.1 Two Gromd Aderation Modeis . . . . . . . . . . . . . . . .  64 

. . . . . . . . . . . . . . . .  5.3.2 Simulation of Earthqyake Signals 68 

. . . . . . . . . . . . . . . . . . . . .  5.3.3 Results of Sun's Method 69 

. . . . . . . . .  5-4 Extreme Value Distribution of a Stochastic b Response 71 

. . . . . . . . . . . . . . . . . . . . . . .  5.4.1 StochasticResponses 72 

5-42 Simulation of Stocbtic Responses . . . . . . . . . . . . . . .  73 

. . . . . . . . . . . . . . . . . . . . .  5.4.3 R d t s  of Sun's Method 74 

6 Extensions of Sun's Tube Method 77 

. . . . . . . . . . . . . .  6.1 Non-Linear Stochastic Structmal Responses 77 

6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 

. . . . . . . . . . . . . . . . . . . . . . .  6.1.2 LimitState Function 78 

6.1.3 Computation of Elementary Probabilities Using Sun's Formula 79 

. . . . . . . . . . . . . . . . . .  6.1.4 StoChastcSystemParameters 82 

. . . . . . . . . . . . . . . . . . . . . . .  6.2 Extrema of Random Fidds 83 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  6.2.1 Formulation 83 

6.2.2 hdamentals of Sun's Method for Randorn Fields . . . . . . .  85 

6.2.3 TmTerm Approltimation of Taü Probabiliq . . . . . . . . .  86 

7 Conclusions and Recommendationn 90 

7-1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . -  90 

7.2 Recommendatiori~ for Fhture Research . . . . . . . . . . . . . . . . .  93 



Bibliography 96 

A Discretization Ebction O b U  by M h h h h g  Emor Variance 100 

B Computation ofPmbabgity Associateci with Endpoints and Discon- 
t inuities 105 

. . . . . . . . . . . . .  B.l Surfece of a Spherical Cap on the Unit Sphem 105 

. . . . . . . . . . . . . . .  B.3 Probabiliity Associated with Discontinuities 109 



List of Tables 

5.1 Selected Parameter values for 'hm hbdels of Ground Ader8tion 

R ~ * . * . . * * - * . - * - * * - . - * * * - * * * * * . - . . - * . *  65 



List of Figures 

Upumshgs of the Level a by a Stochastic Rocess X (t) . . . . . . . 

Mode1 Used to Dbmetk  Earthq& Signais and Stocktic Responses 

t o E s r t b ~ S i g n a l s  . . . . . . . . * . . . . . . . . . . . . * . . . .  

Two Options for the Discretization hctions of a Ground Acceler* 

tion Proeess-.....,.........-............... 

Modulation Fundion q (t) . . . . . . . . . . . . . . . . . . . . . . . . 

Probabiity Densi@ Eûnction of a pRandom Vkriable with 5,20 and 

100 Degrees of & d o m  . . . . . . . . . . . . . . . . . . . . . . . . . 
Spherical Reptesentation of Two Samples Z (t) of the Random Pro- 

R(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . * .  

Plane Angles (t) , (t) and a (t) = arcas (pl (r 1 f (t)l)) for the 

Random Process x (t) . . . . . . . . . . . . . . . . . . . . . . . . . . 
nibe around the path of the vector f (t) / If (t)l on the unit sphere . . 

Hemi-Sperid Caps Associateci with Endpoints and Dkontinuities . 

=ûverlap C 8 d  by a 'Smd' disconthuitsf in the Path of the 

Vector f (t) / If (t)l on the Unit Sphere . . . . . . . . . . . . . . . . . 
Self-Overlap Caused by a Sudden Change in Dkection of the Path of 

the Vector f (t) / (f (t)( on the Unit Spbae . . . . . . . . . . . . . . . 
Spherical Representation of Conditional Robabiüty of Ekceedance . . 
Computation of Rate of Upaossin&s Using Spherid Representation . 



Representation of the Process c(t) on the Unit Circle . . . . . . .  . 
Overlap for Values of T > ?r/w . . . . . . . . . . . . . . . . . . . . .  
Weme Vdue Distribution of the Stationary Proces X (t) . . . . . .  
Sarnples of the NonStatonary hmss Y (2) . . . . . . . . . . . . .  

VsRBnce aod ACF of the Nm-Stationay Proeeos Y (t) . . . . . . . .  

b e r n e  Value Distribution of the Non-Stationlifv Proceas Y (t) . . .  

Realization of a Ground Aderation Process on Firm Ground . . . .  
M a t i o n  of a Ground Aderation Process on Soft Ground . . . .  

Variance and ACF of a Ground Acceleration Proass on Firm Ground 

Variance and ACF of a Ground Acceleration Process on Soft Ground 

Dhetization h c t i o n  flo (t) of a Ground Motion on F i  Ground . 

Extrerne Value Distribution of a Groimd Acceleration Process on FA 
Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~ealization of the mter ~isplacement P (t) . . . . . . . . . . . . . .  

~ariance and ACF of the ~toc$a9tic ~esponse P (t) . . . . . . . . . .  

Discretization Function fiou (t) of the Sbchastic Response P (t) . . 

W e m e  Value Distribution of the Stochastic Response P (t) . . . . .  

Discretization of the I n t d  [O. Tl . . . . . . . . . . . . . . . . . . .  



Chapter 1 

Introduction 

StoChSLQtjc processes and random fields aie kpently used to mode1 random influ- 

ences on structures. A cornmon fature of stnictural reliability techniques used in 

safety anlilysis is to reformulate the probIem into a fime-uivariant one using the ex- 

treme value distribution of the raadom field or stochastïc proces. Therefore, it is 

important to have the best possible approximation of the maxima of these processes 

and fields. Most existhg methods use mme land of upaosging technique to establish 

those apprmimations. In this thesis a n e -  method, first employed by Sun (1993), 

is studied- The method can be used to appraxïmate the extrenie value distribution 

of both homogeneous and non-homogeneous Gaussian random fields and processes. 

The main part of this thesis will focus on the application of Sun's 'hbe Method to 

stochastic processes. 

Jn Chapter 2, the classical technicpe of upcroasings is disciLased and some r d t s  

fiom literature are givai. In Chapter 3, Werent h t i z a t i o n  methods are intro- 

duced. Ail those methods yieM the format that is qyired to apply Sun's Thbe 

Method. In Chapter 4, the method is introduced and disnissed in detail- Iri Chap 

ter 5, the r d t s  obtaîned using Sun's nbe Method are compared with simulation 

results for several random proasses. In Chapter 6, two extensions of the rndhod 

are given. It is discussed how the method can be used to cornpute the extreme value 



distribution of non-iînear responses and aigher-dimensional random fields. 

1.2 Objectives 

The objectives of this thesis are to explore, te& and implement the usage of Sun's 

Tùbe Method to mmpute the sttreme value distribution of stocbastic p~oceses. The 

method will be tested by comparing the results of Sun's The Method with Monte 

Car10 simulation results. In order to M y  undexstand the fuadamentals of Sun's 

Method, the gwmetrid concepts on which the method is based, will be discussed 

in detail. 

1.3 Preliminary Definitions 

While 'random fields' are random functions defined over some Euclidean space, the 

term 'stocbstic process' is used for the specific case where the random function is 

d&ed over a one-dimensi01181 Euclidean space- An example of a stochastic process 

is the horizontal component of the ground derat ion  during an earthcpake. An 

exampIe of a thretdhensional random field is the height of the ocean surfhce above 

a given point (tl, tz) at time t 3 .  In this Section, some delkitions and properties 

of stochastic processes are given. A detaüed study of the properties of stachastic 

proceases can be foud for instance in Lin (1967) or Papoulis (1991). For properties 

and definitions of higher-dimensional randbm fields, we r e k  to Section 6.2. 

A stochastic process X (t, C) defiiaed in an interval [O, T] is a d e  for aosigning to 

wery outcome C of an experimént S a function X (t, C). Thus a stochastic process 

is a family of time functions depending on the paranieter C. The domain of C is the 



set of dl experhental outcornes and the domain of t is the intenial [O, T]. A sample 

z (t) of a stochsstic process X (t) is obtained by considering the function X (t, c) for 
a given outcome If t is ked and all poesib1e outwmes C are considered, then 

X (t) is a random variable called the state of the gben proces at time t. In what 

foUows, we shall uee the notation X (t) to represent a stochestic pllocess? OaLitting 

its dependence on c. 
A stochastic procesp X (t) is a noncountable infinity of random variables, one for 

6 

each t. To characterize this process complebly in a probabilistic sense, it is necessary 

to establish F (ztx2, ..-, xm; tl,tz ..., t,,,) , the joint distribution of the random variables 

x (td , x ( t 2 )  1 *-X (L): 

for every zi, and m. In Equation (1.1), Pr (A) denotes the pmbabilîty that ment 

A occurs. F (x l ,  q, ..., z,,,; t l ,  t2, ..., t,,J is d e d  the n%rder distribution of the 

stochastic pr- X (t) . Usually in engineering fields, it is suffiCient to establish 

only the first two of those distributions, Le. F (x i ;  tl) and F ( x l ,  22; t l ,  t2). 

The mean px (t) of a stochsstic process X (t) is defineci as: 

In Equation (1.2), E { X )  represents the expected value or mean of a random variable 



whae f (x )  is the probability d d t y  functicm of the random -able X. 

The autoamelation hction Rxx (tl, tz) d the process X (t) is given by 

When no confusion is pobsible, the notations p (t) and R (XI, X') are instead 

of px (t) and Rxx (tl. t2). The variance O=$ (t) of a &&astic p- is @ven by 

c& (t) = E { X  ( t ) X ( t ) )  = R(t , t )  (1.5) 

A stochastic process X (t) is d e d  stncbseme stationary if its distributions (1.1) 

are inMuiant to a shift of the origin. This means that the processes X (t) and 

X (t f c) have the same distributions for any c. 

A stochastic pcocess X (t) is d e d  wide-sense statiomuy if the mesn p (t) of the 

pro- is constant and if the autocorrelation function depends only on the difkence 

7- = t2 - tl: 
R ( r )  = E { X  ( t ) X  (t + T ) )  (1-6) 

Notiœ that it follm from (1.5) and (1.6) that a widesense stationary ptocess m m  

have a constant variance. 

A stochastic process is said ta be a n o d  or Gaussian process if the randam 

variables X ( t l )  , X ( t 2 )  ,..., X(&)  are jointly n o d  for any n and tl ,t2 ,..., L. A 

Gaussian proceas is completely determineci in terms of its means and autocorrelation 

functiom. Therefore, a adesense statiomq normal process is also a strictserise 

stationary procens. 



The power spectral density of a wide-sense stationary procers X (t) is the Fourier 

t r d o r m  S (w) of its autocorrelation fimction 

s (w) = 1 R (r) e0fl*dr 
Zn -00 

where j is the imaginsry unit d&ed as j2 = -1. The second order spectral moment 

Az of a stochastic process X (t) is given bg: 

For a @en process X (t) and a specified i n t d  [O, Tl, Mx (T) is a random variable. 

The distribution P (p) of the maximum js calleci the extreme value distribution of 

the stochastic process X (t) in the interval [O, T j :  

where p is a specified level. If X (t) represents for instance the load &ect in a 

stmctural member and p is the structural raistance, then the structure will fail 

during [O, T ]  with probabüity P (p). 



Chapter 2 

Extremes of Stochastic Processes 

2.1 Extremes Based on Level Upcrossîngs 

Except for a few d d - f o r m  solutions discussed in Section 2.2, the large majority 

of approximate solutions to the problem of mmputing the maxima of stochastic 

procepses is based on the concept of upcmssings. One uses the tact that the maximum 

of a pro- will exceed a levelp if there is at least one upcrossing of that l e d  

Several authors discuss this upmosshg technique in detail (Adler, 1981 - Breitung, 

1994 - Papoulis, 1991). 'Rte fundamental ideas of this a p p r d  are given in this 

Section- 

Let X (t) be a stochastic process defined in the intend [O, Tj. Then X (t) is said 

to have an upcrossing of the Ievelp at the point & if there ex&s an E > O such that 

X (t) 5 p in [ta - E, and X (t) 2 B in [to, to + €1. The number of such points 

in [O, is called the number of upcrasiqp of /? by X (t) in [O, T ] ,  and it is denoted 

NB (T). Note that this n . e r  NB (T) is a discrete random variable for a given level 

,û and a spedfied length of time T. An esample is given in Figure 2.1. For the 

proceas X (t)  in that Figure, NB (T) eq, 3. The rate of upQossings is defined as 

the number of upcrossings per unit üme. A well know d t  by Rice (1944, 1945) 

gives the expected value v (t) of the rate of upabssing: 



Figure 2.1: Upcrossings of the L e d  P by a Stochastic Proces X ( t )  

where a aiperposed dot indicates the derivative with respect to time and f& (z, 2, t )  

is the joint probabüity density function of z (t) and its derivative 2 (t ) at time t. 

In the case of a zeremean, stationary, Gaussian pro- X (t), we can use formida 

(2.1) to cornpute the expected number of upcrosbgs Ng (T) of the level P in the 

intend [O, 2') 

where R (r) is the autocorrelation function of the stationary process X ( t )  as dehed 

in Section 1.3. This formula is now used to establish an uppabound for the extreme 

value distribution Mx (T) (1.9) of a stationary Gaussian process X (t): 



Insertion of Rice's formula (2.2) in (2.7) fields an upperbound for the extreme value 

distribution Mx (T) of a stationary Gaussian random p m .  It is char that one 

wouid expect the upper bound to be vay tight if fl  is a high level. 

It caa be proven that for same special processes, Equation (2.7) actually giws 

the exact extreme d u e  distribution. One of those processea is the stati0xmr-y normal 

pro- 5 (t) defined in [O, T j  by 

where w is a fixed constant and where Xi and X2 are independent, standard normal 

random variables. It is 8ssumed that 

Due to this restriction on the length of the inferval [O, T ] ,  the probability 

in Eqtmtion (2.5) is equal to zero. Fbdhermore, the random variable Np (T) can only 

tale on the values O or 1 for values of T satisfymg (2.9). Therefore, the upperbound 



(2.7) is in fàct the exact extreme value distribution for this specSc pro- (t): 

where 9 (e) denotes the standard normal distribution. This dyt i ca l  result- will be 

wmpared with the result obtaioed using Sun's Tube Method in Section 5.2.1. 

2.2 Results in Literature 

Exact formulas for the extreme value distribution of s stochastic pro- exist only 

for a Limited number of processes. One of th- processes is the process 5 (t) defined 

in (2.8). Other examples can be found in Adler (1990). For several other cases, 

approximations ex&. Those appruximations are all derived on the basis of upcroas- 

ings as describeci in Section 2.1. Rather than lisüng the resulting formulas, we wïU 

indicate where they can be found. 

Approximations for statio- processes with a nnite second order spectral me 

ment Xz (See Section 1.3) are g i .  in Cramer and Leadbetter (1967) and Leadbetter 

et al. (1983). Approximations for m w b a  of functions of statio- Gaussian vector 

processes (vectors with components that are stocbestic processes) are discussed in 

Breitung (1994, Chapter 8). Bounds for univariate non-stationary Chusian pre 

cesses and for functiom of non-stationary Gaussiao. vector p r m  are derived in 

Breitung (1990). 

The main problem of methods based on upcrossings is to prove that the obtained 



apprdmations are not just uppabounds, but that they are also asymptotidy 

correct. This is usually done by proving that the apprcximathg point processes 

converge to a Poisson process which involves much more complicated mathematics 

than the derivation of the approximation itself. 

The method discuased in this thesis uses a totdy differept 8pp& b a s d  on 

Sun's 'kbe Method (1993). A direct appircnchnation of the mzubnum dbtribution 

is used so that assumptions about upcrœsipgs are unnecessary. Derivation of the 

final formula is straightfomard and the method can be applied to a wide range of 

discretizations. 



Chapter 3 

Discretbation of Stochastic Processes 

In order to use Sun's method ta cornpute the extreme value distribution of a &chas 

tic process, the process has to be represented in a speciac discretizeù format. h Sec- 

tion 3.1, the discretized format, requUed to apply Sm's tube method is discussed. 

In Sections 3.2 through 3.4 cent discretization methods th& have the necessary 

format are introdud The methods discussed in Section 3.2 and 3.3 can eady 

be adapted to higher dimensional random fields. Section 3.4 describes a discretha- 

tion that is particularly well suited to mode1 earthquake Sgnsls and th& structural 

responses . 

3.1 Format Required to Apply Sun's Method 

Let X ( t )  denote a zeremean, Gaussian random proces d&ed in [O, T]. This 

process is not necessary stationary. Since the p r m a  is Gaussian, it is completely 

defined by the autoco~t ion  function (ACF): 

and the variance function 



This pracess X (t) is naw d k e t b d  to x (t): 

x (t) + a (t) = Xi& (t) 
6=1 

The Xi's are a SeQuence of independent standard normal random varisbles (zero 

mean, unit variance and zao correlation) and the fwictions fi (t) are a set of deta- 

ministic fimctions. This M c  format, basidy a linear combination of standard 

normal random variables and deterministic functions, is the format that is required 

to appiy Sun's M e t h d  Several dkmihation methods yield this format, as is shown 

in the following Sections. 

Note that due to the independence of the standard normal rsmlom vsrirrbies Xi 

in (3.3): 

and 

4 (t) = RZ2 (t, t )  = C ff (t) 
'-1 

One possibiliity is to represent a Gaussian proceor, X (t) usiag an eigenfunction ex- 

pansion. This expansion, the Karhmen-hève Exparision, is discuased exteasively in 

literature (Adler, 1981 - Paponlis, 1991 - Li and Der Kiureghim, 1993). The basic 

concepts are given here for the ondimensional case of a stochasüc pr-. 



The raudom process is arpressed in tenns of its spectral decornp&tion= 

where the Xi's are independent standard normal random variables. A+ and (t) are 

the eigeM181ues and eigenfunctions rapectively of the COV8Iimce hct ion obtained 

from the integral equation 

The eigenfunctions h. (t) are normalized to sa* 

lT (t) hj (t) dt = &j 

Furtbennore, it is assumeci that the eigendue sequeme & is demeasing. 

The random proceps X (t) is represented by an infinite set of random variables 

Xi, i = 1,2, ... (3.6). Haarwer, usually ody the few terms with the iarger eigendues 

contribute signiscantly to the expansion. Since it is 8ssi111ied that the e i g d u e s  are 

ordered in decreasîng magnitude, the pro- X (t) can be approlcimated by x (t): 

where N is the number of teslms that are included in the discretization. This is a 

discretization whi& mets the requirenients set out in Section 3.1. Provided that 

the exact eigenfunctions of the autoanmiance function are available, this method 



is the most &üent methoâ for disaetipng . * a random proces, Le. it requit= the 

d e r t  number of random variables to descri- the process w i t h  a &en level of 

accuracy (Li and Der Kiureghian, 1993). Unfortunately, for most autocorkhtion 

functiom, the exact soiutions of the integral (3.8) are not available in closed form 

In this case, approxîmate methods have to be d BasTcally, the integral problem 

(3.8) can be converteci mto a matrix eigendue problem using a disczete integration 

d e  or a Galerkin-me appraimation (See Mura and Koya, 1992). However, Li 

and Der Eureghian (1993) prove that these appmxûnate implementations of the 

Karhunen-Loève expansion are Merior to the method deScnbed in Section 33. 

3.3 Expansion Optimal Linear mimation Method 

Li and Der Kiureghian (1993) suggest the use of the Expansion Optimal Lïnear Es- 

tirnation Method to discretize non-homogeneous Gaussian random fields. .In this 

Section, the fundamental concepts of this method are describeci for the case of a 

zero-mean Gaussian randam process. In Section 33.1, the Optimal h e m  Esti- 

mation Method is discussed. Whjle the discretizations obtained with tbis method 

do not satisfy the requirements set out in Section 3.1, they are the starting point 

for the Expansion Optimal Linear Estimation Metbod (See Section 3.3.2). It will be 

shown that this expansion method yields discretizations that do satisfy the necessary 

requirements for Sun's Thbe Method. 



3.3.1 Optimal Linear Estjmation Method 

The stochastic process X (t) in [O, T'l is describeci as the scalar product of a YectOr 

of M nodal dues 

and a vector of determinMc functions 

Writing (x, y) for the scalar product of two vectors x and y, we have: 

X (t) * x (t) = (V, b (t)) = C&bi (t) 
*1 

in wbich M is the number of nodal points in the i n t d  [O, T j .  The functions bi (t) 

are to be deterniined by minimidn~ the variance of the discretkation error subject 

to x (t) being an unbiased estimator of X (t) in the meaa Thedore we minimize 

sub ject to 

E {X (t)) = O 

The sohtion is (Li and Der Kiureghian, 1993): 

b (t) = C ' a  (t) 



Ih J3pation (3.15), a (t) is the vector containhg the Covrrnances of X (t) with the 

elements of the vector V: 

and C is the covariance matrix 

Among all linear representations of X (t) in terms of the nodal random variables 

X (k) = the preceding reptesentation is optmial m the sense that it minimize~ 

the error in the variance (3.13) at siiy given the. This is partiCU18tly desirable for 

the Gaussian distribution, which is compktely d&ed by means of its mean and 

variance- The Optimal Linear Estimation Method mnstructs the random process 

by employing shape functions that take into account the cordation structure of the 

process. This is the key to the superior accuracy of tbis method, as is illustrateci in 

Li and Der Kiureghian (1993). 

The random variables are dependent and do not have unit VBLlTiance, Hence, 

the method as explainecl in tbis section does not sa* the requirements set out 

in Section 3.1. The Expansion O p W  Linear Estimation Method offas a remedy 



to this problem and, m addition, it irnpsoves the &ciency of the Optimal h e a r  

Estimation Methd 

3.3.2 Expanaion Optimd tinest Estimation Method 

Assuming that C is non-aingular, the M-dinidoonal vector V aui be e x p d  in 

ternis of its spectral decompœitioxx 

where the Xi's are independent standard normal random variables. Bi and *i are the 

e igdues  and eigenvectors of the d a n c e  rnatrix C (3.17) obtained by çolving 

the eigenvalue problem 

The eigenvectors are normalized such that 

Furthermore, it is 8s6umed that the eigenvalues in (3.18) are ordered by decreasing 

magnitude. Equations (3.18) and (3.19) are noar combineci with (3.12). This gives 

the follawing discretbation for the random process X (t): 

Xi X (t) -, x (t) = C - (ai, a (t)) 
i a  & 



where a (t) is defineci m (3.16). W e  have now established a discretization (3.21) that 

meets the requirements diecussed in Section 3.1, 

The efficiency of this mefhod can be împroved by using a subeet N < M of the 

tenns in (3.21) corresponduig to the kgest eigemdlues: 

This enables us to reduœ the number ofrandom variables that describe the stochastic 

pro- X (t). Li and Der Kiweghian (1993) p m  that the ermr resulting fiom this 

truncation is non-OBCi118tory, Le. the truncation of each tam M e r  reduces the 

variance of the discretization exror. 

3.4 Discretization of an Earthquake Signal 

3.4.1 Introduction 

In this Section, an a p p r d  that is particularly well suitecl to madel e a r t h m  

ground motions and responses to -und motions is discussed. This approach wss 

fint introduced by Der Kimeghiaa and Li (1996). It wiJl be shown hm bbth temporal 

and spectral non-stationarity can be modeled. 

Nthough the Karhmen--Loève w o n  offers the most scient discretization 

it rquires the solution of an integral eigendue pmblem (3.8) that can be very 

large for brd-band processes, such as earthquake ground motions. Typicallyy such 



motions hrwe a zero mean and are apprmhately GauaPian. Thdore, the ground 

motion X (t) can be repzewnted in the'fo~owing disaetized foao: 

~ ( t )  = C m  (t) 

N represents the number of discretization functio~~~. The coefncien. Wi, i = 

1,2, ..., N are Gaussian random variable with zero mean and variance $. The b c -  

tions ai (t) are a set of determiaistic functions th& wiil be detennined in this Section. 

X (t) can now be mnsidered as the response of a linear flter to a white noise 

excitation W (t). The white noise can be thought of as the bd-band excitation at 

the bedrock level and the filter can be imagineci to represent the local mil system or 

wave propagation path. krstead of discretipng X (t) directly, the tri& is ta discretize 

w (t) - 
Let ti, i = 0,1, ..., N, denote a set of closely and equslly spaced üme points 

at intenrals At = - W e  can n m  dehe a SeQuence of random pulses with 

magnitudes 

wi = g, w (t) & 

It côn ~ O W  be s h m  (See Appendix A) that Wi are statistically independent 

Gaussian random variables with zero mean and constant d a n c e  

where the intensiw 4D0 is the anstant powa spectral densi* (See Section 1.3) of the 

white noise W (t). The sequace Wk i = 1,2, ..., N represents W (t )  in the discrete 



fonn of a random pulse train. 

Expression for the U&Iinpuise Rrsponse Eûnction hf (t) 

A natural choice for the deterministic hction t~ (t) in (3.24) is 

where hf (t) is the unit-impulse response function of the fiiter. hf (t) can be obtabed 

by considering a second order linear filter (the local sail) subjected to a white noise 

input (the wide band excitation at the bedrock level). The equation of motion can 

be expressed as: 

Cf (t) + 2cf wfirf (t) + w?fu/ (t) = -W (t) (3.28) 

In (3.28), wf represents the natural fmpxency of the soiI and cf represents iti damp- 

ing ratio. So wf and C respectively contml the predominant hquency and the 

bandwidth of the motion. uf is the displacement of the soi1 layer relative to the 

bedrock. The above concepts are illustratecl in Figure 3.1. Of interest is the a b  

lute d e r a t i o n  X (t) of the nIta, which with the above interpretation is the same 

as the absolute deration at the -und d a c e  (See Figure 3.1): 

X (t) = Üf (t) + W (t) (3.29) 

It can be verifid (Der Kiureghian and Li, 1996) that the unit-impulstesponse 

function for the ahlute  derat ion  of the ground surf' is given b y  





Optimal Choice for the Discretization Function (t) 

Whüe the unitimpulse response hction is a naturd choice for the discretization 

functions (t) in (3.24), it is not the best choie. A better choice is obtained by 

miniminng the variance of the discretization eno~ (3.23) relative to (t), with X (t)  

denoting the exact solution of the dilter response to the white noise input. It can be 

proven (See Appendor A) that minimination of (3.23) leads to: 

where h (t) is definecl in (3.30). Insertion of (3.30) in (3.34) gim the foII-g 

expression for 4- (t) : 



with 

23 

= a- (CI) 

Both options for the discretkation fimctions (h (t 

. 

- ti) and ai (t)  as defined in re- 

spectiveiy (3.30) and (3.35)) are plotted in Figure 3.2. The diflerence between the 

twû fUIlctioll~ js minimal for sm$l values of At. However, one important diffaence 

between the two funcfions is that the function 4 (t) as d&ed in (3.35) is contin- 

UOUS. As is c h c m d  in Section 4.3, this property simplifies the use of Sun's Tùbe 

Methoà significantly- 

Figure 3.2: Two Options for the Discretization Functions of a Ground Aderation 
Pro- 
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3.4.2 Modem of Non-Stationarity 

The a h  disaetization defines a stationary proceas. Earthquake motions, hmmver, 

are mically nonstatiozmry in bath the time and fkpency domain. 

To account for temporal nonstationari~, the pulse train (3.25) is multiplieci by 

a det erministic modulaton function q (t). The discrete represeniation (3.24) then 

The following modulation function is used: 

where qo, a, b and & are constants. For a < b, the above function is no~negative and, 

as is iypical of the btasïty of earthquake motions, it gradually inmeases fiom zero 

at t = t ~  toapeakvslue at t =to+(lnb-ina)/(b-a) andthendecays t m d s  

zero for large t. An example of such a modulation function is given in Figure 3.3. 

To account for spectral nonstatioasrity, 2 filters, each with theh own modulation 

function qk (t) are coflsidered. 

In (3.39), ( t )  denotes the deterministic hction obtained fiom (3.35) in terms of 

the unit-impulse-response function of the kM filter. 



- - - - - - - 

Figure 3.3: Modulation Fiinction q (t) 

By choosing appropriate values for the filter properties and for the parameters in 

the modulation function, any type of spectral and temporal nonstationariw can be 

accounted for. 

If we introduce 

WC = Xia (3.40) 

where o is defined in Equation (3.26) and Xi is a standard normal random variable, 

we can write Quation (3.39) as 



Note that this is d y  the format (3.3) reQuired to appiy Sun's Thbe M e t h d  

3.4.3 Linear Stochastic Structurai Respo~~eg 

The previous discussion illustrates h m  the réquved k e t e  format can be con- 

structed for a seismic ground motion process. Hoinever, it should be emphasized 

that any stochastic response I(t) of a linear system subject to this ground mo- 

tion process x (t) can be obtained in the same discrete format. Let hy (t) be the 

unit-impubresponse function of the lin- filter to which the earth- signal is 

applied and fiu (t) the response of the lin- filter to an input functïon fi (t) (3.42). 

Since imear systems are considered, the respo~l~e fiy (t) to one of the functi0x.1~ fi (t) 

can be computed using convolution (Clough and Penzien, 1975): 

The stochastic response P (t) can now be written as 

which is exactly the format required ta apply Sun's 'hbe Method. In Section 5.4.1, 

the above technique is used to mode1 the displacement of a linear filter subjected to 

an earthwe ground motion. 



3.. No-Linear Stochrrstic Structurai Reeponses 

In Section 6.1, it will be &mm h m  Sun's 'Itibe Method ccui be applied to non-hear 

respollses. 

3.5 Linear Combination of Sine and Cosine Functions 

A speaal kind of cy&c process d t s  fkom the linear combination of sine and amine 

with Xli and XXi i = 1, ..N standard normal random variables and and bi7 the 

coefficient of respectively the sine and Cosme functions. Note that the discretization 

(3.45) has the format needed to apply Sm's nibe Method- 

A stationary pro- caa be obtained by chooBing. 

and then 

4 (t) = 

Although the processes d t i n g  from (3.45) do not have direct practical appli- 

cations, these procese are a good tool to understand the principles of Sun's nibe 

method and the geometry of the N-dimensiod unit sphere, as is describecl in Section 

5.2. 



Chapter 4 

Sun's Thbe Method 

In this Chapter, the fundament& of Sun's Method sre discussed In Section 4.1, 

a spherical representation of discretized stochastic processes is introduced. This 

representation is the staaing point for the deaivation of Sun's Formula in Section 4.2. 

Section 4.3 deals with the probabiities associateci with endpoints and discontinuities. 

In Section 4.4, Sun's Formala is discussed Section 4.5 illustrates h m  other statistics 

aPwcated with the extreme value can be computed usjng Sun's Fomnila In Section 

4.6, it is s h m  h m  Sun's Formula can d y  be used to compute the extreme value 

distribution of non-zero-mean Gaussian Processes. 

Sun's lhbe Method is mostly based on geomefrid principles- While it is tedious 

to interpret the derivation in higher dimensions, it is intuitive if one thlliks about 

it in three dimensions (N = 3). To facilitate this interpretation, several Figures 

are inchdeci. Those Figures are purely indicative and do not have the pretention of 

being exact. 

4.1 Spherical Representation of a DiscretW Random Pro- 

cess 

It is assumed that the random process x (t) is represented in the discretized format 

discussed in Section 3.1: 
N 



with Xi, i = 1,2, ..., N a Seqlfenœ of independent standard n o d  -dom vari- 

ables and the functions fi (t) a set of detenninistc functions. Di&ent types of 

discretbation that yield this format, ha= been d k u s d  in the previous chapta. 

Without loas of generality., it is ammeci that the process is d e d  in such a way 

that 

over the entire time interval [O, T ]  and that its peak value in this interval is d y  

equal to 1. Note that this requïrement can dways be met by considering the scaied 

The discretized pracess (4.1) can be rewritten as the scalar product of a constant 

and a deterministic, timdependent vector 

The vector X is a standard normal random vector and it thedore be written 

as the following product: 



The randam VaRable RN m Equation (4.7) rep- the length of the random 

Vector X: 

RN = JlxlZlxlZ (4.8) 

Rom Equation (4.8), it is cl- that RN ïs the square root of a &andom 

variable with N d m  of fireedom (Wiiey, 1972). Therefore, RN is said to 

be a m-random variable. The probabiiity density function of this m-random 

variable is 

This ddv function is plotted for 5,20 and 100 degrees of fiedom in Figure 

4-1. 

0 The random vectar U in Eqyation (4-7) is defmed by: 

U, a vector with unit length, has a d o r m  distribution on the N-dimensional 

unit sphere The N-dimeasional unit sphae SN in the N-dimensional space 

is the locus of a point y which is at a constant distance 1 fkom the origin: 

Furthemore, it can be proven that the random vector U is independent of 



After sc$ing the vector f (t) to unit length, the random process 2 (t) (5.32) c m  

The importance of the above expression can hardly be overstatd: 8ccording 

to (4.12), each sample 2 (t) of the stochsstic process x (t) ean be represented as 

(rN If (t)l) times the scaiar produa of two vecton with unit length. The b t  vector 

is the realization u, which is constant in time for 8 @ven samp1e. The second vector 

is a det ministic vector f (t) / If (t) 1 , which, in tirne, descfibes a path on the surface 

of the N-dimensiod unit sphere. 

The spherical represenaüon of two such samples 2 (t) k given in Figure 4.2. The 



Figure 4.2: Spherical Representation of Two Samples O (t) of the Random Proas 
2 (t) 

vector f (t) / If (t)l is deterministic Therefore, the path describeci by this vkctor is 

the same for alI samples. Sampies only diner in the position of the random vector 

U* 

4.2 Sun's Formula wit hout Endpoint Probabilities 

In this Section, the main term of Sun's Fomuia (4.44) is computed In Section 4-2.1, 

the exceedance probbïity P (P) is rdt ten  to yield a format to which the relative 

fkequeacy approadi can be applied (Section 4.2.2). In Section 4.2.3, the integral 

expression is derived. 



4.2.1 Introduction 

The probability of interest is 

Inserfion of (4.12) and division by (RN 1 f (t) 1) fields: 

If RN takes on a parti& value r, it is d to introduce the conditional probabiliw 

P (PI RN = r )  d&ed as 

p (p) is oomputed by htegration of the conditional probability P (PI RN = Y) over 

ail possible values of the random variable RN: 

w k e  f, (r) is the probabiliity d d t y  function of a ~~-distnbution as defmed in 



the probabiliity P (BI RN = r) can only contni'bute to P (P) if (See (4.17): 

for dl t E [O,Tj  

the lower endpoint of the integral in (4.18) can be changeci to 0: 

4.2.2 Relative Ekequency Approach 

The probability P (BI RN = r)  BS dehed in equation (4.17) is now computed using 

the relative hqyency a p p r d  (Sun, 1993). Of aJl passible makations u of the 

random vector U on the unit sphere, only a specinc set of random vectors will result 

in a scaiar product (u, B) that saWes the ineqyaliq 

These are the random vectofs U that cont&ute to the conditional probability 

P (PI RN = r )  (4.17). From (CU), it is clear that the area on the Ndimensio1181 

unit spbere covered by those random vectors U is dependent on ,B and z. Thdore, 

the sufixe area of that part of the N-dimemional unit sphere that is spamed by the 



endpoints of those raudom vectom U is represe3ited by A v, r) .  Once an expression 

is derived for this surface ares, the conditionaL probabilify P (BIRN = r )  can be 

computed as this s d k œ  area A CO, t )  divideci & the total ares of the unit sphae. 

nbe Around Curve on Unit Sphere 

First, the inequslity (4.24) is further examined. Intxoducing 8 (t) as the angIe be- 

tween the two vectors U and f (t) / If (t) l, we can express the leftrhand-side in m- 

equality (4.24) as follows: 

Rom (4.251, it is obvious that the inequaüty (4.24) cannot be satisfied for d u e s  of 

,û/ (t If (t) 1 )  th& are greater than 1. In Figure 4.3, the angle û (t) is sketched for the 

two samples given in Figure 4.2. Thdore, only the cases where 

are considerd The inequality (4.24) c m  now be WZitten as 

max cos (8 (t))  > P 

tEl0.q If (t) l 

min 8 (t) < 8rCCOS 
tEP,q (. i&I) 



Figue 4.3: Plane Angles 4 (t) , Oz (t) and a (t) = arccos (/?/ (r 1 f (t)l)) for the Ran- 
dom Process x (t) 

The right-hand-side of ineqdty (428) is plotted in Figure 4.3. For this purpose, 

it is assuzned that x (t) is a random process that has an increasing varivariance in 

the i n t d  [O, Tl and the maximum of the variance is r h e d  at time t = T. We 

can conclude that for Sample 1, inequality (4.28) is satisfied, while this is not the 

case for Sample II. In general, only those realizations u of the random vector U 

that lie d c k n t l y  dose to the ~ 8 t h  of f (t) / If (t)l will at some point in the interd 

[O, r d t  in an angle B ( t)  that satisfies the inquality (4.28). Th- vectors u 

are e n c l d  in a tube aroimd the path of f (t) / If (t)  1. The word "tube" is used 

in higher-dimensional geometry to refer to the area around a manifold. The width 

of this tube is variable in tirne. A measure for this width is the plane angle a (t) 

- measured in a plane perpendiculgt ta the path - between the path and the outer 





Surface Area of nibe Around Path on Unit Sphere 

Hotelling (1939) determineci that the sintirce area dA of a tube amund a curve of 

elementary arclength ds on the N-dimensiond unit sphere is given by 

with a the plane angle, measured in a plane perpendimh to  the c m ,  between the 

m e  and the outer bound of the tube. r (-) is the Gamma-function (AbraznoWitz 

and Stegun, 1972), d&ed by 

r (r) = jOC P-le-'& 
O 

Hotelling (1939) indicates that (4.30) takes no amount of overlapping of the tube 

with itself. This overiapping wiU occur if the curvature of the m e  on the unit 

sphere is excessive in relation to the width of the tube. An example where such 

overlap will occur is if there are sharp turns in the m e .  This is the case in the 

application discussed in Section 5.3.3. 

The total area A (fl, r )  of the tube deteminecl by f i  and r is given by integration 

over the path of f (t) / (f (t) 1: 

where 0: (t) is dehed in (4.29) and s (t) is the arclength of the path d d b e d  by the 

vector f (t) / If ( t)  1 on the N-dimensional unit sphere. W e  ernphasize that expression 

(4.30) only takes into munt  the area perpendicular to the path of the vector 



f (t) / If (t)l. How the areas at the endpoints of the curve can be taken into account 

The s d k e  area AN of the N-dimensional unit sphere SN is given bg (Keadall, 

4.2.3 Derivation of the Integral Expression 

The relative kequency approach as describeci in Section 4.2.2 can now be used to 

cornpute the probabiüty in the integrand of (4.23) as the ratio of the surfe-ares of 

the tube divided by the d a c e  area of the N-dimensi~nal unit sphere: 

Insertion of (4.35) in (4.23) and dumging the order of integration results in: 

The dehition for a (t) (4.29) can now inserted in (436): 

sinNg2 (arccos ( ' ) ) f' (r) dr dr (t) (437) 
r If (t) l 

fl 

In what follows, it will be shown that the asymptotic apprdmation @ -r OC) for 

(4.37) deriveci in Maes and Breitug (1996), is actually the exact solution for dl p. 



F i  the integral 1 @, t )  wïll  be computed. Noting that 

I (fi, t )  can be written as 

If we now d e  the substitution 

we obtain that 

The probab'ity densiq function fnr ( 0 )  (4.9) is insated in (4.42): 



Ehther simplification gives: 

Equation (4.37) can now be written as . 

with s (t) the arclength of the path d d b e d  on the unit sphere by the vector 

f (t) l I f  (t)l - 
Introducing the function c (t) dehed by 

equation (4.43) can be written as: 

elementary arclength ds (t) is g i ~ e n  

ds ( t )  = 

An expression for c (t) in terms of the discretization bctions fi (t) and the deriva- 

tives of th- dismetization functions fi (t) can be obtained by obsenhg that the 

1 



Therefore, c (t) can be mmputed as 

The first tenn ia the sguare-root in expression (4.48) can be simplified to yield 

Similarly, the second term of the squazerwt in e3cpfeSSion (4.48) can be reinterpreted. 

Since 

the second term in the square-root in expression (4.48) can be written as 

We now insert (4.49) and (4.53) in the expression for c (t) (4.47). This r d t s  in a 



d a t i o n  for c (t) in terms of the variances: 

4.3 Probability Associated with Endpoints and Discontinu- 

ities 

The probabilities discussed in this Section are not considered by Sun (1993). Taking 

into acmunt the probabilities d a t e d  with the endpoints irnproves the sccuracy 

of the methocl, as is illusftgted in Section 5.2.1. The probabilitiies associateci with 

discontbuities enable the use of discontinuous discretbation functions. 

The expression given by HoMing to ampute the surface area of a tube moud 

a curve on a sphere includes only the ama papendicular to the curve. The s h  

area of the hemi-sphérical caps over the endpoints of the tube has to be aqomted 

for separately. This is indicated in Figure 4.5. The additional probabili@ 8ssociated 

with these endpoints is: 

where O (-) denotes the standard normal distribution. A mathematid derivation of 

(4.56) is given in Appendix B. 

For certain mes of discretbation, the discretïzation hctions are discontinuous. 

In that case, the path of the vector f (t) / If (t)l consists of non-consecutive arcs, 

since each discontinuiv causes a "jump" Ïn the path of f (t) / If (t) 1. Two hem& 



Figure 4.5: Hemi-Sperical Caps Associateci with Endpoints and Dismntinuities 

spherical caps have to be added in the wmputation of the area of the tube for each 

discontinuity (See Figure 4.5). Assuming that the discretbation functions in (4.1) 

are dîscontinuous at M points t j ,  the additional probabiity is gim by: 

Adding the temis (4.57) gives an approximate solution for the problem of dis- 

continuities in the path of f (t) / If (t)l. The two hemi-spherical areas added on both 

sides of the discontinuiity may overlap if the "jumpn caused by the discontinuity is 

snall (See Figure 4.6). Other problems of self-overlap of the tube with itself oc- 

cur if the path describecl by f (t) / If (t)l passes more than once through the same 

point. Self'lap may a h  be a local phenornenon (Hotelling, 1939) r d t i n g  from 

the curvature of the curve being pater thari some aitical radius or kom a sudden 



Figure 4.6: Self-Overlap Caused by a 'SrnaIl' discontinuiw in the Path of the Vector 
f (t) / 1 f (t) 1 on the Unit Sphere 

change in direction of the path off  (t) / If (t)l, caused by a discontinu@ in the f ~ ~ t  

daivative of the discretization functions fi (t) (See Figure 4.7). The latter possibili~ 

is discussed in Section 5.3.3. 

By adding the probab'ities in expressions (4.56) and (4.57) to the probability 

in expression (4.46), the following approximation is obtained for the extreme value 

distribution: 



Figure 4.7: wOverlap Caused by a Çudden Chsnge in Direction of the Path of the 
Vedor f (t) / Jf (t)l on the Unit Sphere 

4.4 Discussion of Sun's Formula 

The extreme valw distnbution~ of both stationary and non-stationary Gaussian 

processes can be obtained using equation (4.58) with little computational effort. 

Once c (t) is computed, the first integral in (4.58) can be computed using numerid 

integration. 

For a stationary proeess, with no discontjnuities in the discretization functions, 

(4.58) can be simplified to yield: 

which is the well known formula for exceedance probabilities of stationary Gaussian 

processes with unit variance (See Section 2.1). In Section 5.2.1, the extreme value 



distribution of such a process is mmputed ir9ing (4.59). 

It should be noted that equation (4.58) m o t  be applied blindly. As is disaiased 

m Section 4.3, the user should pay attention to p d b l e  prob1ems of self-overhp. 

4.5 Other Statistics Based on Sun's Formula 

The piirpose of tbis Section is to mdicate how Sm's Method can be employed to 

compute some other useful r d t s  related to the extreme value distribution of a 

Secachastic process. 

In this Section Sf (t) denotes the spherical cap atound the point f (t) / If (t) 1 on 

the N-dimensional unit sphere SN (See Appendùr B). Z denotes that part of the 

unit-sphere SN that does pot belong to the area L: 

The operator A(L)  ïs used to represent the siirfaoe aiea of the area L on the N- 

dimensional unit sphere SN. 

4.5.1 Exceedance Probabiliw at a Given Time 

The probability that at @ed time t the d u e  of the stocbastic process wiil be 

greater than a given I d  f l  is simply the exceedance probability: 



4.5.2 Conditional Probabiïties of Exceedance 

W e  will now compute the condifi01181 pmbabïlity 

For this purpose, we use the formula 

The probability in the denorninator of (4.63) is gïven in (4.61). For the computation 

of the numerator, we use the same technique as we emploged for the derivation of 

Sun's Formuia Ushg the relative keqyency approach, the conditional probability 

is given by the sudace atea of the intersection of the spherical caps around the points 

t, and t2 divided by the surface area of the unit sphere: 

This intersection area is plotted in Figure 4.8. This can be explaineci by obeerving 

that samples u of the random vector U in that intersection ares wil l  r d t  in a 

value for 2 ( t )  that is greater than f i  both at time ti and time h. An &te for 

the surface ares can be obtained by simulation. Once the conditional probability 

(4.64) is computed, the probabiliw in the numerator of (463) can be camputed by 



Figure 4.8: Spherid Representation of Conditional Probability of Exceedance 

integration over all possible dues  of the random variable RN (See Section 42.1). 

4.5.3 Rate of Upcrossings 

The mean rate of upcrossings v ( t )  of x (t)  above a level P is defineci as 

where Np (At) is the number of upcrossings as dehed in Chapter 2. Hagen and 

Tvedt (1991) p r m  that v (t) can be written in the Iimiting form 



The numerator denotes the pmbability that the process ~ ( t )  has a value d e r  

than p at t h e  t and a value greater t h  f l  at a slightly later time t + At. If this is 

the case7 one or more up-aw&gs must have ocarrred during the interval At. Der 

Kiureghian and Li (1996) ahow that for dciently smaIl vaha At7 the probsbilily 

of more than one upaodng can be nepiected. The conditional probab'ity 

can again be computed Usmg the relative fireciuency appraachr 

A representation of the area (m n S r  (t + ~ t ) )  in Equation (4.69) is gi- in 

Figure 4.9. Reaüzations u of the vector U that lie within this area contribute to the 

probabiity in (4.69). Since those vectors u do not lie in the spherical cap &round 

the point f (t) / If (t)l, they wiïl resuit in a process Z ( t )  that has a value d e r  

than /? at time t. However, those vectors u do lie in the spherical cap around the 

point f (t + At) / (f (t + At) 1. Therefore7 the value Z (t + At) will be greater than 

B. kaegration of the conditional probability (4.69) ova all possible dues of the 

m-random variable yields the probability in the numerator of (4.67). 

4.5.4 Cunm.lative Excursion Tirne 

The length of time in the i n t d  [O, T] during which the stochastic procms x (t) 

takes on a value greater than f l  is d e d  the cumulative excursion time q (T). Der 



Figure 4.9: Cbmputation of Rate of Upmoskgs Using Spherical Representation 

Kiureghian and Li (1996) indicate h m  the 6rst two moments of this random variable 

can be cornput&- 

The probability in the integrand of expression (4.70) can be computed using (4.61) 

and the probabiüty in the integrand of expression (4.71) is computed in Section 4.5.2 

(See eqyation (4.65) ). Subeequently, numerical duatioa of the integrals in (4.70) 

and (4.71) is employed to determine the ôrst and second moment of the random 



variable 7 (t). The variance can then be computed using 

4.5.5 Duration of a Singie Excursion 

The duration D (t) of an e x d o n  foU- the ocamence of an upcrossing of the 

1evel p at the  t is defineci as: 
b 

In Equation (4-73), inf denotes the d e s t  value of T for which the argument is 
t 

mie. For a given t, D (t) is a random variable. Der Kimeghian and Li (1996) show 

that the mean value of this random variable D (t) can be apprmhnated by: 

Notice that the computation of the numerartor and the denominator in (4.74) are 

discussed respectively m (4-5.1) and (45.4). 

4.6 Sun's Thbe Method Applied to Non-Zer-Mean Gaus- 

sian Processes 

So fac, it has been assumeci tbat the random process X ( t )  has a constant zero - 

mean. Suppose now that we want to use Sun's Method to mmpute the e e m e  

value distribution of a process Y (t) having a non-zero mean function (t). Instead 
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of discretiang the proces Y (t), we discretize the -mean random p m  Z (t): 

Fùrther we notice that 

Sun's Formula then becornes 

where /3 (t) is defined as: 

The vector fi (t) in Equation (4.77) lists the discretkation functions of the zen>-mean 

pro- Z (t) (4.75): 

fi (t) = (fil (t) , fa (t) , -O*, fzN (t) (4.79) 

Rom (4.ï7), it is clear that the assumption of a zeremean stochastic process in the 

derivation of Sun's Formula does not affect the generaliv of the method. Stro~@y 

fluctuating mesns could however &kct the @ty of Sun's Method. 



Chapter 5 

Applications of Sun's Tube Method 

In this Chapter, the formula to appraïmate extreme value distributions is applied to 

several stochastc proceeses. The d t s  of Sun's method are compared with extreme 

value distributions obtained by means of simulation. In Section 5.1, it is mdicated 

h m  the simulation is pexformed. Results of two discretJzations describeci in Chapter 

3 are discussed. Ih Section 5.2, stachsstic proceises that are the sum of sine and 

mine hctiom are considered, In Section 5.3, Sun's Tube method is applied ta an 

earthquake signal and to a stochastic response to this signal- 

5.1 Exceedance Piobabilities Obtained by Simulation 

In Monte Carlo simulation, a nurnber Ns of independent samples x ( t )  of the random 

process X (t) are generated. An estimator d (p) for the exceedance probabiliw P (8) 

is obtained by ch* if the generated sample z (t) has a maahum that is peater 

where 1(-) is the indicator function that is equal to one when its argument is true 

and equal to zero otherwise. This esfimator is unbiased= 



and asymptotidy exact: as the mmiber of ~8mp1es Ns goes to W Q ,  the estirmtor 

converges to the tnie exceedance pmbability P (p). Haamer, the convergence rate 

is sloar. As disnissed in Rubemstein (1981), this way of sunpIing can be compared 

to a sequene of Ns Bernoulli trials with pmbabiliiy of success p = P CO). Hence, 

the Coefficient of Vàriation (COV) of estimata P v) is equal to 

The accmacy of the estimator is proportional to the COV. This means that 107 

simulations are necessery to estimate an exceedance probabiüty P (p) of IO-' with 

a COV of 0.1. In structural reliab'i probIems, one is - i d y  interested in s m d  

probabilities, which implies that simulation is a very expensive method to ampute 

m e m e  d u e  distributions. Howwer, if no atdytical so1ution is known, it is the 

ody possible way to verify r d t s  obtained with apprahation methods. 

The discrete format required to apply Sun's method (3.3), makes simulation rd- 

atively simple. To generate a sample x (t), N independent standard normal random 

variables zi are generated using the polar methd, as described in Rais (1990)- Val- 

ues for z (ti) at discrete times ti E [O, T ]  can then easily be cornputeci using eqution 

(3.3) - 
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5.2 Extreme Value Distribution of Linear Combination of 

Sine and Cosine Fiinctîons 

In this Section, the extréme value dishibution of pracess of the form (3.45) wdl be 

discussed. This type of pn>cesses is very instructive to understaud the concepts of 

geometry in N-dimensions and the problems with overlap. 

5.2.1 Stationary Process 

In this Section, we compute the xmdmum of the special process 

where w is a k e d  positive constant. There are three reasons why this process 

is chosen as a first example. The exfreme value distribution of this pro- can 

be computed dytically (See Chapter 2). It will be shown that Sun's formula 

yielàs the same result. The simple fonn of the process makes it easy to vaify its 

representation on the unit sphere. F i y ,  some interesting obsenmtions about the 

problem of Self-overIap can be made. 

First, note that the process (t) is already in the form (3.3) with 



The variance of the process is constant: 

Since the process is stati~mry~ the expression for c (t) (4.4) in Sun's Formula (4.58) 

can be simplified in yield: 

. (t) = J 5. (tI2 = . 
hl 

M o n  of (5.7) and (5.5) in Sun's fo~muls (4.58) @WB: 

This is exactly the analytical result derived in Section 2.1 with the restriction that 

this result (5.9) is only valid for dues of T satisfying 

While the r d t  obtained with Sm's Formula do not impiicitly carry this rcstric- 

tion, it wïU be proven that (5.10) is necessary ta avoid meriap. In order to explain 

this, we go badr to the basic prïncipIes on which Sun's Method is based. Si- there 

are ody two discretization functions, the proces (t) can be represented on a c ide  

with radius 1. The vector f (t) / 1 f (t) 1 is travelling with constant velocity on the 

perirneter of this cirde. The representstion is giwn ni Figure 5.1. For the time 



T= 

III 

Figure 5.1: Reprcsentation of the Procm ( t )  on tlic Unit Circle 

being, we assume that 

S~ui's formda was derived by inkgration of the conditional e~cecdance probabil- 

ity P (01 RN = r)  cover all possible valt~es of the random variable RN (See Section 

4.2.1): 

where f, (r)  is the probability density fimction of a ~~-random variable Mth 2 d* 

grces of fieedom as defined in (4.9). For each value of RN, the conditional probabiliv 

P (01 RN = +) c m  bc comptited iising the relative frqiicncy approach. (Scc Scction 

4.2.2 and Appendix B). Rewriting equation (8.8) for the s p d d  case N = 2, we 



with 

Term 1 in eqmtion (5.13) is the ardength associateci with the path of the vector 

f (t) / 1 f (t) 1. Tarn II and III represent arc& that are the twdimemional equivalent 

of the N-dimexsional hemi-spherical caps. Term 1, II and III are represented in 

Figure 5.1. 

It can now be qlained why restriction (5.10) is necessary. Rom (5.14) , it foUows 

that 

For values of T > 5,  the twa angles Bo and BT Wü1 start to overlap as r inmeases. 

This is illusttated in Figure 5.2. As a consequeme, the arclength associated with the 

overlap would be counted twice m the computation of P (PI RN = T )  . This can 8lso 

be concludeci fiom equation (5.13), which fields values for the conditiod probabil- 

ity that are greater than one. This example illustrates a weakness of Sun's Method. 

Restrictions to avoid ovezlap are not an automatic result of the method. One haç to 

look ~811efully into the geometrical representation on the unitsphere to detect pos- 

sible problems of owrlap. This is relatively easy for the problem discussed hae, but 

it is much more cunbersorne when there are more than two dismetbation functioxm 



Fisue 5.2: Overlap for Values of T > * /w 

If restriction (5.10) is wd with w,, the highest fkeqiiency in the discretization, ia. 

thcn, we can conclude with absolute certainty that there will be no overlaps. It 

shodd be noted howwer that (5.16) is a rather severe reqiiirement. 

As an example, the foilowing process is stiidied: 

with 

for t E [O,0.3] (5.17) 



--O Sun's Tube Method 

- 

Figure 5.3: M e m e  Value Distribution of the Stationary Process X (t) 

Note that tb f a stationary process with unit d a n c e .  The d t s  obtained d th  

Sun's method are compared with simulation d t s  in Figure 5.3. The simulation 

results are based on 108 simulations. The graph shows deady that neglecting the 

endpoint probabilities serïoudy underestimates the exceedance probability. 

method is applied to a non-ststionary process Y (t): 



Figure 5.4: Samples of the NonStationary Process Y ( t)  

Y (t)  = 9 sin ( ~ t )  + X* S ~ P  (tt) + X3 sin (Tt) 

+x, sin (irt) + Xs cos (nt) + xs cos (nt) 
for t E [O, 41 

In Figure 5.4, 3 sampIes of this process are given. In Figure 5.5, the variance of 

the procepses is plotted, together with the autmorrelation fimction at tirneinstances 

t = 1 s, 2 s and 3 S. As can be concluded fiom Figure 5.6, the results obtained with 

Sun's method are in good agreement with the e x h c e  probabilities obtained with 

simulation. 



Figure 5.5: Variance and ACE' of the Non-Stationary Process Y (t)  

a- - Simulation 
.--.-- Sun's Tube Method 

u 

Figure 5.6 Extreme Value Dibution of the Non-Stationary Process Y (t)  



5.3 Extreme Value Distribution of an Earthquake Signal 

In order to apply Sun's Methocl to an earthqyk signai, the discretization d d b e d  

in Section 3.4 is used. h Section 5.3.1, the taio ground acderation mod& p r o p d  

by Der EGureghian and Li (1996) are introduced. In Section 5.3.2, some aspects of 

the simulation of such signais is In Section 53.3, Sun's Method is used to 

compute the artreme value distributÏon of a motion on k m  ground. 

5.3.1 Two Ground Acceleration Models 

Der Kiweghian and Li (1996) use the discretization discuased in Section 3.4 to d e  

scribe two ground motion processes. In both motions, the predomhmt kequency 

corresponds to the second filter. The first process d d b e s  a motion on a h 

ground, and has a predominant freguency of 5s rad/s and the otha, with a pre- 

dominant hquency of 27r rad/s describes a motion on a soft gromd or deep alluvial 

deposit. The 8ssumed values of the parameters 4, wf,  Cf¶ go, a, b and ta  for each 

filter of the two models are kted in Table 5.1. 

Sample reaLizations of the two processes are shown in Figures 5.7 and 5.8. 

For these representation At = 0.02 s is used, which means that 20 s duration of 

each motion is describeci by 1000 random variable. The intensity parameter is 

selected such that for pk (t) = 1 each d e r a t i o n  record has a stationqf~ mot-mean- 

square value e q y d  to 0.29 (g = 9.81 m/s2). Note that the processes are distindy 

nonstationary in both time and k p e n c y  domains. Conaistent with typical ground 

motions, each proces is initially rich in high fiequenues and then it becornes richer 

in lower fkequencies, which are dominant durjng the strong motion and coda phases 



Parameter (ma/$) wf ( r d / s )  cf g a@-') b (S.') to 
-- pp-pp - 

Acceleration Proccss on F i  Ground 

Fiter 1 0.0233 10n 0.6 0.718 0.256 2.568 0.0 

Fiter 2 0.0233 5rr 0.4 1.300 0.193 2.901 3-0 

Table 5.1: Selected Parameter Values for Two Modeis of Ground Accderation P m  
eeSS 

T h e  t (s) 

Figure 5.7: Realization of a Ground Acceleration Process on Firm Ground 



Time t (s) 

- - - - - 

Figure 5.8: Reaüzation of a Ground Acceleration Process on SoR Ground 

of the record, The motion in Figure 5.7 is typical of d e r a t i o n  records on h 

ground, whaeas the motion in nigure 5.8 is typical of gound derations on dwp 

soi1 depmits such as in Mexico ci@. In Figure 5.9, the variance of the groiind motion 

process on fimi ground is gîven, together with the Auto Covariance bct ion  at 

tirne-instances t = 2 s, 5 s and 10 S. Figure 5.10 shows variance and covariances for 

the ground motion process on soft ground, Note how the correlation-length for the 

motion of soR ground is much large than for the motion of sofk ground. This cari 

be explainecl by the fad that the h p i n g  ratio for fh ground motions is greater 

than for soft ground motions (See Table 5.1). 



Figure 59: Vanance and ACF of a Ground Acceleration Pro- on Fimi Ground 

Time t2 (s) 

Figure 5.10: Variance and ACF of a Ground A d e r a t  ion Proas  on Soft Ground 



5.3.2 Simulation of Ea,tthquab Si- 

We repeat the formula for the discretization of eatthquak si@ given in Section 

where the ammation is over the taro flter consîdered in the models. Equation (5.20) 

and (5.21) can be mmb'rned to yieM 

Simulation of the earthcpake signal (5.22) is wmputationaily cumbersome, With 

At = 0.02 s and TM = 20 s, 1000 random variables have to be genaated for each 

realizatioa Mhermore, hundreds of hetization functions have to be added to 

find the value of 2 (t) at a given tirne instance t. However, generating samples can 

be made more &cient by noting that (See equation (3.35)): 

% (t) = O if t < ti-l 

Therefore, N in expression (5.22) csn be replaced by 

N (t) = int (&) + 2 



Next, it can be observed that 

This means that the function (t) as defined in (3.35) has ta be cornputeci only 

once for both fdters. The pmcegs (5.22) can now be written as 

FinAlly, we can observe that, due to the relatiively large damping ratio, the values for 

the discretization fimctïon aii (t) becorne small after a short 1-h of tirne- This is 

illustrateci in Figure 5.11 , where the discretization function flo (t) for an acceleration 

proces on firm ground is plotted. As a wnsequenœ, the contribution of a specific 

discretization hinction fi (t) to the value of 5 (t) can be neglected for values 

While all the foregoing observations enable us to improve the eSciency of sam- 

p h g  significantly, simulation remaias computatiody demanding. 

5.3.3 R e d t s  of Sun's Method 

h this Section, S u .  Method is used to cornpute the extreme value distribution 

of a ground acceleration procms on firm ground. The d t s  are given in Figure 

5.12. The results are in good agreement with Monte Cado simulation. For the level 



T i e  t (s) 

Figure 5.11: Discretbation ninction fio (t) of a Ground Motion on F i  Ground 

- Simulation . 
Sun's Tube Method 

- 

Figure 5.12: Extreme VVae Distribution of a Ground Acceleration Rocess on F i  
Ground 



,O = 4.5, Suds Method underestimates the log(exceedance probabii~) = (tog(P (B)) 

obtained us@ simuIatioo by 2-5 %. ThEs =&ence caa be acplained by the nature 

of the discretization functions. One of those discretization functions is plotted in 

Figure 5.11. The bction îs contixmous in time but, due to the way fi (t) is defined 

in Eqyation (3.35), its b t  derivative has a discontinuity at t = and at t = t+ 

This means that the path, d d b e d  on the unit sphere by the vector f ( t)  / If (t)l, is 

continuous, but that there is a sudden change in direction a h z  every t i r ne -mtd  

At. At those points, the tube around the path of f (t) / If (t)l has selfdverlap (See 

Figure 4.7 in Section 4.3). This d-0vet.h~ decreases with increashg p. To obtain a 

more accurate estimation of the area of the tube at those points, higher orda terms 

should be considered. 

5.4 Extreme Value Distribution of a Stochastic Response 

As discussed in W o n  3.4.3, discretized stochastc tespo~lses are obtained by a p  

plying the earthQuske signal (5.22) to a filter. In Section 5.4.1, a s p d c  stochastic 

response is introduced. In Section 5.4.2, same observations about the discretization 

and simulation of stochastic responses are made. In Section 5.43, Sun's Method is 

used to compute the e e m e  value dishibution of the stochastic response definecl in 

Section 5.4.1. Finally, in Section 6.1, it is explained h m  Sun's Method can be used 

to compute the response of non-Iinear systems. 



5.4.1 Stochastic Reaponsea 

The deration pro- of a motion on h n  gmund is now consided as the input 

signai to a singie-degree-of-freedom lin- OgCi118tor whose motion is gommeci by the 

fou- dynamic equation of motion= 

ü (t) + 2@& (t) + w& (t) = -x (t) (5.28) 

x (t) is the abdute d e r a t i o n  of the gnnmd in a discsetized form rrs defined in 

equation (5.22). u (t) is the displacement of the mass relative to the ground and wo 

and 6 are the naturd fiequency and viscous àamping ratio of the oscillator. These 

concepts are gïven in Figure 3.1 on page 21. In this example, the folloaring values 

are assumeci for the oscillator promes:  

Note that this represents a case where the oscillator keqpency is less than the pre- 

dominant frequency of the ground motion, which is 57r rad/s for a motion on firm 

ground. As discussed in Section 3.4.3, the rdt ing stochastic response I (t) can be 

computed in the following discretized forni: 



Figure 5.13: Reabation of the Fiter Displacement I ( t)  

with fiy (t)  the response to the discrefization function fi (t) , whidi is now considered 

as an input signal: 

with hy ( t)  the unit-impulse-response functions of the linear mcUator (Clough and 

Penzien, 1975) d&ed by the governing equation (5.28): 

5.4.2 Simulation of Stochastic Responses 

A sample of the stochastic response P (t) is given in Figure 5.13. In Figure 5.14, the 

variance of the response is given, together with the autocorrelation function at tims 

t = 2 s, 5 s and 10 S. The same observations that were made for the simulation of 





Time t (s) 

Figure 5.15: Discretization Function f iov (t) of the S tochastic Response Y (t) 

o. 1. 2. 3. 4. 5 . h d B  

- Simulation 
O - o - - -  Sun's Tube Method 

d .~- 

- - - - - - - - . 

Figure 5.16: Extrane Value Distribution of the Stochastic Response I (t) 



Sun's Method mderesfimates the log(exceedance probability) obtained ushg simu- 

lation by about 0.6 %. The faa that the metbod gbes better results for a stochagtc 

response to an earthqydse signal than for the earthquake signal itself can be ex- 

plained by the nature of the discretization functions. Unlike the discretization firnc- 

tions f i  (t) for the earthqyake signal (See Figure Ul), the dkmtization functiom 

fw (t) for the stochastic reeponse P (t) (Figure 5.31) do not have discontinuities in 

the nrst derivative (See Section 5.3.3). The functions fw (t) ate the result of a con- 

volution (4.6) of the functions fi (t) (which are discontimious in the first desivative) 

and hy (t) . Thmefore, the functions f* (t) are discontinous in the second derivative. 

As a consecpence, there are no sharp tums in the path of the vector f (t) / If (t)l in 

the case of stochasüc responss. The 'moothness' of the curve prevents problems 

with self'lap. 



Chapter 6 

Extensions of Sun's Tube Method 

In this Chapter, two hteresting extensions of S d s  Method are discus4ed. In Section 

6.1, it is shown h m  Sun's Method can be applied to non-lin- stochastic repponses. 

In Section 6.2, it is disaissed h m  Sun's Method can be applied to higher-dimensional 

random fields- 

6.1 Non-Linear Stochastic Structural Responses 

6 1 Introduction 

In this Section, it will be s h m  how Sun's Method can be used to cornpute the 

extreme value distribution of non-linear responses. In the case of a non-lins filter, 

the molution technique discussed in Section 3.4.3 can no longer be used since 

convolution is based on the principIe of superposition. There are however many 

important structural dynaniics problems which cannot m e d  to be linear, e-g. 

the response of a building to an eatthqyake motion severe enough to cause serious 

damage (Clou& and P d e n ,  1975). 

Ln Sections 6.1.2 and 6.1.3, we assume that the system parameters, such as the 

damping ratio C and the naturd frequency w are hed. In Section 6.1.4, it is shown 

h m  the follwing approach can be adapted to also deal with stocbstic system 

parmeters. 



The e~uation of motion for a non-lin- nIta can be written as 

û (t) + 2cwîl (t) + S (74 (t) ,u (t)) u (t) = -x (t) (6.1) 

where S (u (t) , u (t)) is the testorhg force, wbich is a fimction of the displacement 

u (t) and the velociv u (t) of the filter. 

6.1.2 Cimit-State m e i o n  

W e  are interested in kding the probab'ili.ty that the non-linear response u(X,t) 

exceeds a level fl  in an interval [O, T]. h other words, we are interested in computing 

where g (u (X, t )  , p), is the limit-state function at t h e  t defined as 

In (6.3), X are the independent standard normal random variables that determine 

the input signal (See Section 3.1) and t and j3 are determin&ïc parametem that 

determine respectively the t h e  and the threshold. 

Ln order to compte the probabiliw (6.2), we divide [O, T] in n small intemals 

AG, i = 1,2, ..., n and ch- the time points ti, t2, ... t, in the middle of each intenml 

Ak (See Figure 6.1). For high levels of B, the probability (6.2) can be apprmimated 



Figure 6.1: Dixretization of the Intervai [O, T] 

by adding ~ i p  elementary exceedance probabiiities: 

min g ( ~ ( ~ , t ) , p ) < O )  
~ E C O , ~ ~  

where Pi (p) denotes the probabiüty that the Limit-state fiinctioii g (u (X, t) ,4)  is 

ncgative in the interval A&. This is eqiiivalent to the probabiüty that the non-liriear 

stoo+astic: response di exceed the level in the intend At*. 

6.1.3 Computation of Elementary Probabilities Using Sun's Formula 

It wiil now be indicated how the elementary exceedance probabilities in eqilation 

(6.5) can be approximated iising Stm's 'Iùbe Method For each time point ti in the 

middle of the interval Ati, the most likely faihxre point is compiited. The most 

likely fniliue point is the point on the Iimit state siufxc closest to the origin of 

the standard-normal domain. Since the random variables describing the input signal 

X ( t)  are standard normai and independent, no transformation is n d c d .  To find the 



most likely m u r e  point g, the algorithm developed by Zbang and Der Kiureghian 

(1995) can be used. This algorithm requireb repeated amputations of the hit-state 

hmction g (u (X, t )  ,p). Therefore, ddetamùiisc mmputations of e~uatioa (6.1) and 

are recpired- Equation (6.1) can be solved using a Newmark Integration Method 

(craig, 1981, p. 147) and the requted derivatives (6.6) can be obtained directly by 

Merentiating the discretized equations of motion (Der Kiureghian and Li, 1996). 

Once the most likely Esilme point is determbed, the limit state function at time 

ti is linearized at the point q* to yield 

Expression (6.7) is obtained by apprOaarnating u (X, t )  in expression (6.3) by its h t -  

order Taylor Expansion around the point d. W e  now group rJ1 the te- that are 

constant and detaPiinistic for a s p d c  interval Ati, so that we can write: 



Figure 6.2: n level-upcrossing problems 

Next, it is a s s i d  that the LMit-state-fimction g (u (X, t )  , P )  for pohts t sifnciently 

close to ti (Le. t E Ati ), can be approximated by 

where gi (-) represents the Linearized limit-state hmction and X,r ( t )  defines a stochas- 

tic process in the interval AG. Equation (6.9) shows that e h  probabiliQ Pi (P)  in 

(6.5) can be considered as the probabity that a stochastic proces X' ( t )  exceeds 

the level E(See Figue 6.2): If we insert the dennition for the gradient of u (x,', t )  in 

the expression for Xi' (t) (Gag), the following representation is obtained for Xt. ( t ) :  



where f: (t) is defineci as 

Notice that this is the format required to apply Sun's 'hbe Method (See Section 

3.1). Therefore, each probability Pi p) in (6.5) can be cornputed using Equation 

(4.57). 

6.1.4 Stochastic System Parameters 

The method discussed above can also be extendecl to the case of non-linear systems 

with stochsstic system parameters. Let thcse system parameters be represented by 

the random vector V. Now, the ümit state function indudes the set of random 

variable V. A transformation w i l l  be needed to represent the system random vari- 

ables V in the standard-normal domain. An algorithm for this transformation can 

be found in Hohenbichler and F&ckwitz (1981). The most likely failure point will 

now depend on both the input and the system random variables: (e,v:). As a 

consequeme, gradients of u t )  orrith respect to u wiU be included in the first- 

order Taylor Ewpamion of the Iiniit-state function around the most M y  fdure 

point (G, V;). T h e  gradients Win alsa be present in the definition of the stochastic 

pro= Xf (t). However, the main steps outlined in Section 6.1.3 temain the same. 



6.2 Extremes of Random Fields 

Whüe this thesis mainly foa~ses on the application of Sun's Method to one-dimen- 

sional random fields (Le. stochasfic processes), the method can also be applied to 

higher d-diniensional random fields (Sun, 1993 and Maes and Breitung, 1996). In 

fact, Sun's method becornes increasingly aftr8Ctive as d inCr-, &ce traditiod 

upcrosings techniques (See Section 2.1) becorne more cumbersome and les  accurate, 

while Sun's approach reqpires littIe additional d y t i d  d o r t .  

In Section 6.2.1, the problem is dormulated for random fields of dimension 2 and 

higher. The fundamental ideas of Sun's method for higher dimensional random fields 

and the diâerences with the one-disiensïod case are discussed in Section 6.2.2. In 

Section 6.2.3, the r d t s  of the twc+ferm asymptotic apprdmation are given. 

Let T denote a compact subset of 'Rd. Consider a daimensional Gaussian random 

field Z(t) with t = (tl,  t2' . . . , td) E T in the fo11owhg dimetized form: 

The Zi9s are a set of independent standard n o d  random variables and the funcc 

tions (t) are a set of deterministic functions, defined in the domain T. Possible 

discretizations indude, but are not limited to, the tnincated Karhunen-Loève ex- 

pansion (Section 3.2) and the discretbation obtained with the Expansion Linear 

Optimization Method (Li and Der Kiweghian (1993) or Section 3.3 of this thesis). 

The objective is to obtain the extreme value distribution of this random field 



Z(t) within the domain T. More precisely, we are inferesteci in app-ting 

Adler (1981) gives a oneterm apprdmation for this probabilityy b a i 4  on the 

concept of appmcimaüng the pmcess ofupcrossings by a Poisson process. Sun (1993) 

notes that this apprarcimation often becornes vexy inaccurate for higher dimensions 

and is only applïcab1e to homogenedus (Le. stationary) random fields. Ftufhermore, 

Adler's appmach of the probIem cannot be used to obtain higher order approlama- 

tions. 

Note that due to the independence of the random variables Zjy the autocorrelation 

functim R (s, t) can be computed as 

and the variance 4 (t) ïs simply 

&(t) = R(ty t) = C h :  (t) 

Ruther, it is assumed that the fieid is d e d  in such a way that this variance is les 

that or e q d  to 1 over the entire dornain T and that its peak value in T is exactly 

equal to 1. 



6.2.2 FitnAlimentais of Sun's Method for Random Fields 

The generd concept is d o g o u s  as for stochastic proceasas. The main ideas are 

given here. 

The vector Z = (Z', Zz, ..., ZN) is written as the product of random variable 

RN with a ~-distn'bution having N degrees of fieedom and a random vector U 

with a d o m  distribution on the N-dimensional unit sphere. This enables the 

cornputaiion of P @) by integration over all pOBSib1e values of the random variable 

where f, ( r )  is the probability density hinction of a m-random variable. The 

conditional probabiiiw P (PI RN = r) is d&ed by 

This conditional probabüity can be cornputeci using the relative fkequency approsch- 

It can be expressed as the m h c e  area of a s u k t  of the N-dimensional sphere fulfill- 

ing the inequality (6.14) dMded by the area of that sphere. To find an approximation 

for such areas, geometric results fiom Hotelling (1939) and Weyl (1939) about the 

volume of tubes around mBllif01ds on spheres may be used. The Waence with the 

one-dimemiional case of stochastc proeesses lies in the fact that, we are now deelkig 

with tubes around ÛGdimensiond madolds, rather than with tubes mund cwes. 



A CGdimensional d o 1 d  VN in the Naimensional space RNis deûned as: 

As a consequence, the geomefrical interrpretation of the problem is less straightfot- 

ward. h the o n ~ e n s i o n a l  case, the fonnda providecl by Hotelüng (1939) for the 

surhroe area yields a one term apprdmation for the extrane value distribution of a 

stochastic process. The surface area of tubes around higher dimensional d o l l d s  

may be found in Weyl (1939). As illustrated in Sun (1993) and Maes and Breitung 

(1996), those expressions can be used to obtaïn approximation for P (@) with any 

degree of accuracy. In the next section, the two tenn asymptotic approximation is 

given. 

6.2.3 -Te= Approximation of TaiL Probability 

First we introduce the d x d symmefric tensor mstrix G (t) which has elements ge 

defined as follows: 

Rom the independence of the standatd normal random variables Zi, it follows that 

the i by j element of the matrix G (t) can also be written as: 



&Dimensional Random Fields 

Sun (1993) lists a nimiber of broad regulsrity conditions under which the tail p r o b  

biity (6.14) may be apprdmated by a tw+fenn asymptotic expansion- The metric 

tensor matrix G (t) pbys a geometric key rde  in the înmtena expansion of the t d  

probability (Maes and Breitung, 1996): 

0 the fkt tenn is a volume term (the v01ume of the manifold is simply the 

integrai of the measure [ [~ ( t )  [11/2 avar the domain T): 

where the function 4CB, t) is defineci as 

with r(a,  u) the incomplete gamma function 

a the second term of the apprQMmation k 



where the fimction Os(& t) i8 d&ed as: 

S (t) is the inkitsic scalat amrature of the manifold at point t. For a detailed 

mathematcal description of S (t), we rder the d e r  to Kreyszig (1968, p.310). 

Notiœ that, when Z (t) is homogeneous, gq (t) is the corresponding second-order 

spectral moment of Z (t) , which does not depend on t. As a consequene, such a 

random field has zero amrature S, which means that the second term 4(p) of the 

approximation (6.22) can be combined with the h t  one to yield: 

(d - 'b2(~,  t)) ~ j ~ ( t )  11112 d t  
2 

Tw-Dimensional Random Fields 

Two-dimensional random fields are heqently encomtetecl in structural reliabgili~ 

problems. Therefore, the asymptotic results for this case are given here. 

We have that the metric tensor mafrix is simply the second moment ma- 

The approximation for d = 2 becornes * 



Once a suitable discretization is estabIished for the randorn field Z (t), cornputa- 

tion of (6.30) is s t r a i g h d o d  Expressions (6.16) and (6.21) indiate how cz (t) 

and g~ (t) can eady be computed using the dkmthation functions and their deriva- 

tives. The only diffhnce that might srise Iies in the cornputaton of the cumature 

tam S (t). Hoarever, a more detailed study of the problem is required to determine 

if this will be the case. Once the integrand in (6.30) is computed for a set of points 

(ti Y t,) Y (6.30) can be d u a t e d  flll~lleridy. 



Chapter 7 

Conclusions and Recommendations 

7.1 Summary and Conclusions 

In the present thesis, the cornputaton of the m&ma of random fields is studied. 

Whüe traditional methods are based on upcrossings, Sun's Tùbe method yields di- 

rect apprcncimations of the extreme value distribution of both homogeneous and 

non-homogeneous discretized random fields. The present work f m  on the one- 

dimensional case of stochastic procegses. 

In Chapter 2, the traditional method ta appmcimate the extreme d u e  distri- 

bution of a stochastic process is explainecl. The technique is based on upcIossings 

and p~uvïdes an uppezbound for the exœedance probabiliw. It is shown that there 

is a limited n& of stationary processes for whkh this method provides exact 

cld-fonn solutions. 

In Chapter 3, several discretization methods are discuased. The common fatue 

of these methods is that they dl yield discretized stochastic proesses in the format 

required to employ Sun's Tbbe Method Of interest me: 

a the linear combination of sine and cosine functions. 

The stochastic processes obtained ushg this method form an instructive tool 

for the understanding of the geometrid concepts of Sun's 'Iùbe Method. 

the discretization of earthqyake signals and seismîc structural responses. 



The seismic discretkation methuds deScnbed in the present mrk enable the 

modeling of non-statiomrity in both the time and the m e n c y  domain. Next 

to the ground motion proces iw any stochseac respoilse of a bear system 

subject to this ground motion process can be obfained in the requUed discrete 

format. 

In Chapter 4 Sun's Method is shidied in detail. The stochastic process is rewrit- 

ten as the d a r  product of a dderniinistic snd a randam vector. Ln doing so, the 

ex&- probabiiity can be expressed as a geometrical problem. Results h m  

Hotehg (1939) about the volumes of tubes around nnves on spheres are used for 

geometrical measma on the N-dimensional unit sphere. Sunk approach can be used 

to compute other statistics relatecl to the extreme value distribution of a stocbt ic  

process. It is indicated how conditional pmbabïlities of exceedance, the rate of ug 

crossings, the cumulative excursion time and the duration of a single e x d o n  can 

be computed. 

In Chapter 5, Sun's Methad is applied to both stationary and non-stationary 

processes: 

0 Sun's Tbbe Method is applied to a stationary process coIlSiSting of hm dis- 

aetization functioas. This simple example e x p h  the geometrid concepts 

on which Sun's 'hbe Method is based and illustrates the problems c a d  by 

self-overlap. 

The extreme value distribution of an earthwe signal is computed. The 

results are in good agreement with Monte Carlo simulation. Sun's Method 

underestimates the log(exceedance probabüity) by about 2.5 %. This error can 



be acpiamed by the discontinuiq in the h t  dezivative of the discretbation 

functions of the earthquake @pal. 

The present method is used to appmàmate the extreme value distribution of 

a linear &&astic lte8ponse to an earthqgake signai. Cornparison of the results 

obtained uaing Sm's nibe Method with simulation d t s  show that the r+ 

sults are exceptiody g o d  Sun's Methoci undexesthates the log(exc=eedanœ 

probability) by about 0.6 W. This can be exphed by the fact that the dis- 

cretization functions of the stochasüc response nuw have a mntinuous b t  

derivative, since they are obtained by amvolution of a function with a discon- 

tinuous first derivative and a unit-impuise-respome function. This accurate 

gtimate is a very positive result, because, in engineering applications, the 

maxima of stocbastic responses are the variables of interest in aPsessing safety 

and reliability. 

In Chapter 6, two extensions of Sun's Tube Method are @IRIL The application of 

Sun's Tube Method to cornpute the extreme value distribution of non-lins stochas- 

tic responses is cibcusd. It is indicated h m  the method can be used to approximate 

the macima of higher-dimensional random fields. 

The dbdvantages of Sun's M e  Method are: 

The problems of self-overlap and jump cannot be idenad  a priori. They can 

h.owever be diagnœed 

The method is tieà to discretized stochastic processes. 

The main advantages of Sm's 'Ibbe Method are: 



The new approach gives &ect approximations of the extrexne d u e  dishibution 

of a stochastic process without any asmmptioas about point-processes and 

tresh01d crcdngs. 

The method is suitable for any tgpe of stochastc process, as long as the m e 5  

cients in the discretization are standard normal random variables. This is the 

p r e f d  way of discretizing aqgway. 

The maJoma of both stationazy and non-statiomuy processes can be apprcoà- 

mated. 

The mdhod produces accuTate r d t s  with little computational effort. 

7.2 Recommendations for a ture  Research 

Baseci on the work done in the present study, we can conclude that Sun's nibe 

Method has a great potential. The most important future developrnents should 

focus on applying Sun's 'Iùbe Method to the computation ofi 

0 the distribution and moments of random variables associateci with the d- 

nium of a stoduxdic process 

a the &eme value distribution of non-lins stochastic responses 

a the maxima of higher-dimensional random fields 



The Distribution and Momeats of Random Variables Associated with the 

Maximum of a Stochastic Pro- 

In Section 4.5, it is indicated how Sun's a p p d  ain be used to cornpute statist;ics 

associateci with the Bctreme value distribution of a stochastic process. M o r e  the 

concept outlined in that Section can be used, an expmsion has to be derived for the 

surface area of the inkrsection of two spherical cape on the Mit-spheze. There are 

two possible ways to solve this mathematical problem. One way is to use Monte Carlo 

simulation to estimate the siirface area of the intersection. While it is guaranteed 

that this approach will yield a result, it might not be a very efBcient way. Preferably, 

a dosed form expression should be derïved. For this purpose, an in-depth study of 

the geometry in higher dimensions w i l l  be requùed. 

The Extrerne Value Distribution of Non-Linear S t o M c  Responses 

In Section 6.1, it is d i d  h m  Sun's Method can be applied to apprcximate the 

extreme d u e  distribution of non-linear responses. The mty of those approxi- 

mations has to be asses& by comparing them with other &g apprmimation 

techniques or with the exceaiance probabiïties obtained using Monte CarIo simula- 

tion The problem of using 0th- app~oximation techniques to test the accuz'scy of 

Sun's 'kbe Method is that one cannot determine if difkences between the two a g  

proxhation methods actually mean that one methud is superîor to the other. Monte 

Carlo simulation of the mdma of non-linear stochastic responses îs a computation- 

ally tedious task. The methods discussed in Section 5.4.2 to improve the efliciency 

of the simulation of linear stochmtïc responses can no longer be used, because these 

methods are based on the liaearity of the filter. In the case of a non-linear filter, two 



steps are required for the simulation of each maiamum. First, a eemple of the gmround 

acceleration process ha9 to be generated- Since the flter representing the local soil 

bhvior  is assumecl to be linear, the techniques discussed in Section 5.3.2 to improve 

the aciency of the simulation can stiII be emploged. Next, the respanse of the non. 

linear filter ta this input process has to be determined. This requires a deteïministi 
. .  * 

C 

solution of the equation of motion. These two steps have to be repeated for each 

simulation. This simulation may be cumbarsome but it is the ody means to assess 

the absolute Quaity of the approximations obtained by Sun's Methd Haaiwa, if 

the degree of non-linearity is not too large, then there is no reason to believe that 

the application of Sun's Thbe Method to compute the actreme value distribution 

will cause any problems. 

The Mwima of Higher-Dimensional Random Fields 

Another large field of further study is the application of Sun's Method to higher- 

dimensional random fields (See Section 6.2). The first step is to derive the expression 

for the intrinsic scalar CUrVBture (6.2.3). Once this expression is established, applica- 

tion of Sun's formula becornes straightforward. The estimates obtahed using Sun's 

Tbbe Method have to be compareci with Monte Car10 simulation results or with 

other existing approximations. 
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Appendix A 

Discretbation Fhction Obtained by Minimizing 

Error Variance 

The expression for the -01: variance is 

x (t) is the filter response obtained by discretbation of the white noise input (See 

Section 3.4): 

N 
x (t) = C w ~ i  (t) 

'-1 

X (t) is the exact solution of the filter response to the white noise input (See Clough 

and Penzien, 1975): 

where h (t) is the unitimpubresponse function of the filter. 

Equations (A.2) and (A.4) are inserted in the expression for the emn variance 



(A. 1) : 

In order to minimiae the =or variance, m t i o n  (A.5) is d e r i d  with respect to 

ar (t): 

Equation (A.7) can now be m i .  for (t): 

First, the denominator is calculateci- Ushg (A03), we have that 



The autocorrelation function of white noise (Clough and Penzien, 1975) is giwn by 

R (r) = E (W (t) W (t + 7))  = 2 d 0 6  (7) ' (kll) 

where & is the intensity of the white noise and 6 (r) is the Dirac impulse function 

With this expression for the autocorrelation function of white noise (A-11), Equation 

(A.10) can be written as: 

= 2 d 0 j 9  tirl 
ti-1 

= 2 d 0 A t  (A. 13) 

Next, the numerator of (A.8) is furtber examineci. Using (A.3), we can write that: 

The expression for the autoco1~~elation function of white noise (A.11) is mserted in 



(A. 15) 

1- t < ti-l 

ki this crrse, the two integration i n t d  [G-~,  and [O, t] in expression (A.15) 

do not overlap. Therefore, fiom the definition of the Dirac impulse function 

(A.12), it follows that expression (A.15) equals zero. 

(A. 16) 

3. t 2 ti 

h tbis case, the integration intwrsl [O, t] in (A.15) is divided into three intends 



The above expressions for the ~~umerator and the expression for the denominator 

(A.13) are inserted in (AB). W e  can conclude that: 

(t) = - h (t - rl) drl i = l9 2? ..., N 



Appendix B 

Computation of Probability Associated with 

Endpoints and Discontinuities 

In Section B.1, an expression is derived for the sudace of a spherîcd cap on the unit- 

sphere. In Section B.2, this expression is used to compute the additional probabiiity 

using the relative frequency approach as explaineci in M o n  4.2.2. For simplici@ 

of notation, the derivation is given for the additional probability at the endpoints 

of the process. Extension to probabilities asociated with possible discontinuities in 

the path of the vector f (t) / (f (t)l is straightforward. 

B.l  Surface of a Spherical Cap on the Unit Sphere 

Let ~ f ,  a spherid cap azound a hed point y = (yl, a ..., yN) on the N-dimensional 

unit sphere sN be defined as the locus of a point x so that: 

where is the angle between the vectors y and x. The angle 0 denotes the angle 

behween the centre and the border of the cap. To compute the surfiace area A (sr) of 

this cap, we use the theorem (Sommde,l958, p.138) that the surfha of a d e t y  



rotating about the a;wis of ZN is given by 

In this case, the generating cunte is 

Enserting tbis expression for the generating curve (B.4) in (B.3) gives the followïng 

expression for the d a c e  area A ( s , )  of a sphecal cap with top angle 0: 

equation (B.5) can be anitten as: 



B .2 Probability Associated wit h Endpoints 

Samples of the random vector U lying in one of the two hemi-spherical caps at the 

endpoints of the path of the vector f (t) / If (t)[ will result in stochastic processes 

with a h u m  greater than 6. Thdore, the area of these taro hemi-spherid 

caps has to be added to the area of the tube TFp in equation (4.34), so that we n m  

obtaim 

The top angles O. and & are dehed by expression (4.29): 

Let Pd CO) denote the additional probabiity associated with the endpoints. 

Following the same reasoning as in Section 42, we can write that 

In this Appendix, the derivation for the computation of (p) in expression (B.11) 

is given. The computation of P L  (P) is analogous. C o m b ' i  expressions (B-7), 



(4.9), (B.9) and (4.33) gives the following expression for (p) : 

Chmghg the order of inkgration ghs: 

(B. 15) 

Making the substitution 
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(B. 18) 

In a simüat way, it csn be proven that 

B .3 Probability Associated with Discont inuities 

The derivation of the acprasion for probabilities asociated 6 t h  discontinuities is 

analogous to the proof in Section B.2. 




