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Abstract

Graph colouring is a classic problem in mathematics. In this thesis we are concerned
with finding upper and lower bounds of the chromatic number of specific cases of the
Generalized Kneser Graph, G = G(n,r,q). Using both graph theory and algebraic
topology along with a computer we are able to compute some lower bounds for the

chromatic number, x(G), and in many cases to show that these lower bounds coincide

with or are very close to (easily obtainable) upper bounds.
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Chapter 1

Introduction

1.1 Historical Background

It was either fate or a string of good luck early in Leonhard Euler’s life (1707 - 1783)
that embarked him upon a remarkable career in mathematics. There were a few times
in his life where he could have had a completely different career. First, his father
wanted Leonhard at age 17 to enter the ministry, but once Jean Bernoulli informed
him of his son’s outstanding talent in mathematics he no longer pressured Leonhard
to continue with theology. Second, Euler could not find a job in Basel (his birth town)
so he left his native Switzerland to take a position in medicine at the St. Petersburg
Academy, which had been established a few years earlier by Empress Catherine I.
That very day of his arrival she passed away, which threatened the survival of the
Academy. Out of desperation, he almost accepted a naval lieutenancy. About three
years later he acquired the Chair of Natural Philosophy. He eventually succeeded
Daniel Bernoulli, a good friend, and married Mademoiselle Gsell, a Swiss lady whose
father was a painter brought to Russia by Peter the Great. Third, Euler was blind
for the last 17 years of his life. Yet this did not slow him down. In fact his work in
mathematics flourished. Students would write down everything he would dictate. He
could add extremely large numbers in his head, correctly. Even though his eye sight
had diminished, his imagination strengthened. Among his copious mathematical

works, which fill some twenty-four volumes, is a paper which solves the Konigsberg
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bridge problem. This is regarded as the first paper in graph theory.

The British mathematician, James Joseph Sylvester (1814 - 1897) was known for
his imaginative and sometimes fantastic choice of terminology. In fact, he has been
credited with the term ‘graph’ (which was derived from the chemical graph notation)
as it is used today in mathematics (as well as in this dissertation). Sylvester was also
very close friends with Arthur Cayley, an even more famous British mathematician
who applied graphs to group theory.

In October 1852 Francis Guthrie, a young mathematician, was colouring “... a
map showing the counties of England.”(cf.[4] p.150-151) from which the celebrated
four-colour problem emerged. A map must be coloured so that any two counties
(regions) sharing a common boundary do not share the same colour. It occured
to him that just four colours would suffice, for any (planar) map. Hence the four-
colour problem. Francis Guthrie could not solve the problem, so he contacted his
brother, Fredrick, and discussed it with him. His brother being a physics student
decided to present the problem to his mathematics professor who happened to be
a prominent English mathematician at the time, Augustus de Morgan. Both de
Morgan and Guthrie independently proved that four colours were necessary. De
Morgan was able to take it a step further, proving that it was impossible for five
counties to all be adjacent to each other. Unfortunately, de Morgan could not solve
the four colour problem, so he informed his students about it as well as Sir William
Hamilton (the discoverer of quaternions). Even by 1878 the problem still had not
been solved when Cayley presented the members of the London Mathematical Society
with it. A number of “proofs” were given over the following ninety years which

later were shown to be incorrect. In 1976 Kenneth Appel and Wolfgang Haken of



the University of Illinois announced that they had solved the four-colour problem.
However, at first their proof struck a nerve with the mathematical community, which
lead to much criticism. Their proof was extremely dependent on the output of
a computer program. There were so many computations and details that it was
overwhelming for a human to check the validity of the output. This changed the
concept of a mathematical proof, which was that a mathematician would express
his proof through a stream of statements, while another mathematician would be
able to check the validity of each step instead of enormous numbers of calculations.
Although with time the resistance to their proof has lowered, it was still clouded with
some doubt due to “... periodic rumours that a subtle error had been found in the
computer program which would render the proof useless.”(cf.[4] p.149). Currently it
is still unknown if a “standard” proof is obtainable.

Seven years after Guthrie found the four colour problem, Hamilton invented a
game known as ‘The Traveller’'s Dodecahedron’, ‘A Voyage Round the World’, or
‘The Icosian Game’. The game consisted of twenty vertices/pegs which represented
“important places” such as Canton, Brussels, Delhi, etc., on a dodecahedron. The
game also required thread which was used to loop around the pegs. The goal of the
game was to loop each peg only once. If this was achieved it was called a ‘voyage
round the world’. Unfortunately, even though Hamilton sold the idea of the game
to a dealer in games and puzzles for £25, it did not become very successful. The
idea behind this game, however, is now famous in graph theory under the name
Hamiltonian circuit.

The Danish mathematician Julius Petersen (1839 - 1910) was the first to discuss

(generally) the problem of factoring graphs. His idea of graphs was two dimensional.



He considered them as figures formed by points and lines in a plane. This caused
many edges to cross (where there were no points/vertices). He actually discovered a
graph that could not be divided into three-disjoint one-factors, contained no leaves
and was trivalent, nowadays known as the Petersen graph (cf.[14], p.10, Example
1.1.9). We now leave graph theory and turn to algebraic topology.

Through a series of papers from 1895 to 1904, the great French mathematician

Henri Poincaré laid the foundation for algebraic topology. He had

... developed a method for construction of geometrical objects, which he
called ‘complexes’ (following Listing), from basic building blocks called
‘cells’. In order to describe how the cells fit together, he adapted Kirch-
hoff’s technique, replacing the system of linear equations by a matrix.
The simplest kinds of cells are the 0-cells (vertices) and the 1-cells(edges);
a complex constructed from such cells is a graph, and the matrix Poincaré
used to describe how the cells are fitted together in this case is now called

the ‘incidence matrix’ of the graph (cf.[2] p.133).

This technique (or theory) became instantly popular. It was included in “... the
third volume of the famous Encyklopddie der Mathematischen Wissenschaften, a
monumental work which was intended to survey all the mathematical knowledge
available at the time.” (cf.[2] p.135).

Poincaré was not alone in propagating the spread of topology. The Americans
George David Birkhoff and Oswald Veblen also helped spread topology through
the United States. Thus there was enormous development in both homology and

homotopy theory in the 1900’s.
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Since algebraic topology mainly deals with questions in spaces of arbitrary dimen-
sion, compared to the two-dimensional case of graph theory, the two subjects tended
to grow in quite separate directions in the twentieth century. However, in 1978 the
Hungarian mathematician L. Lovdsz [7] was able to prove a famous conjecture in
combinatorial set theory known as the Kneser Conjecture, using tools from algebraic
topology. This work leads to a fascinating connection between the two seemingly
disparate branches of mathematics, graph colouring and homotopy theory. Gener-
alizations of this can be found in further work of Lovdsz [1] and stronger versions
of some of these theorems in the recent work of Milgram and Zvengrowski [8]. It
also is very remarkable that purely combinatorial conjectures such as the Kneser
Conjecture (or a generalization called the Erdos Conjecture) can only be proved by

homotopy theoretic means, at least to date.

1.2 Techniques

There are five main tools used in this dissertation: forming the neighbourhood com-
plex of a graph, homology theory, the Hurewicz Theorem, the Lovasz Theorem al-
luded to above, and com-puter implementation of homology calculations. The precise
mathematical formulations of each of these methods appears in the appropriate chap-
ter, e.g. for the definition of a neighbourhood complex see Chapter 4, Section 4.3.
Here we give only a thumbnail sketch of each concept.

A simplicial complex is the n-dimensional generalization of a “triangular” polyhe-
dron, made up of vertices, edges, triangles, tetrahedra, etc. Given any finite graph,

its neighbourhood complex is a certain simplicial complex formed by considering



neighbouring vertices in the graph. Once one has any finite simplicial complex X,
the algebraic tool of homology theory can be applied to analyze it. It gives a finite
sequence of (finitely generated) abelian groups Ho(X), H1(X),-.., H,(X). This is
a straightforward but possibly lengthy computation, and can be implemented on a
computer using a fairly standard routine called the integral Smith normal form for
a matrix (with integer entries). After we have found the homology of the neighbour-
hood complex, we can deterraine a lower bound on the number of colours required
to “colour” G using the Hurewicz Theorem, together with some theorems proved in
Chapter 5, and the Lovasz Theorem. We shall apply all these tools to the general-
ized Kneser graphs, a family of graphs which include the classical Kneser graphs as
a special case.

The main goal of this thesis is to generate a few generalized Kneser graphs and
study their connectivity. We need to take a few smaller steps in order to accomplish
this. First, we generate the generalized Kneser graph, called G(n,r,¢). Second, us-
ing Lovasz’s construction of the neighbourhood complex, mentioned earlier, we form
the neighbourhood complex. Third, the homology algorithm is implemented on a
computer to explicitly determine the homology groups of the neighbourhood com-
plex. Fourth, using the Hurewicz Theorem, together with certain theorems proved
in Chapter 5, information about the homotopy of the neighbourhood complex is
found (in particular its connectivity). Then finally, through the Lovisz Theorem, we
can obtain applications to colourings and other questions. This is illustrated in the

following diagram.



Generalized Lovasz Neighbourhood
Kneser Construction Complex
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Computer
implementation
of the
homology algorithm
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Loviasz
Theorem

Applications to
colouring and
other questions

Diagram 1.1: Schematic Flow Chart

1.3 Overviews of the Chapters

In Chapter 2, the reader will be given a brief description of homology theory starting
with simplicial complexes. Then chain complexes and homology groups as well as
the integral Smith normal form of a matrix are defined and described. In Chapter 3,
there will be a brief introduction to graph theory, dealing with chromatic numbers
and what it means to colour a graph. The generalized Kneser graphs are intro-
duced in this chapter. Homotopy theory and the fundamental groups will appear in
Chapter 4, as well as the previously mentioned theorems by Hurewicz and Lovasz.

In Chapter 5, the generalized Kneser graphs are studied in more detail. Several



theorems giving conditions for their neighbourhood complexes to be connected and
simply connected are proved. These theorems are original results, and they enable
one to apply the Hurewicz Theorem to then obtain information about the homotopy
of these neighbourhood complexes. In particular the connectivity is determined, and
the Lovdsz Theorem is then applied to finding lower bounds for the chromatic num-
ber of the generalized Kneser graphs, at least in the cases that could be handled by

a computer.

1.4 Conclusions

This dissertation contains a good deal of expository material leading to the problem
of colouring generalized Kneser graphs G(n,r,¢). For ¢ = 0 this problem had been
completely solved by Lovidsz [7]. Here we make a beginning on the cases ¢ > 0. For
a sample of the results the author has obtained see Section 5.5 and Section 35.6.
There were certain original theorems that Dr. Peter Zvengrowski and the author

worked on together which appear in this dissertation. These would be the following.

1. The Duality Theorem, Theorem 3.3.3 on page 31.

[\]

. Lemma 5.1.6 on page 71.

3. Theorem 5.2.1 on page 72.

4. Lemma 5.3.3 on page 73.

5. Corollary 5.3.4 on page T6.

6. Theorem 5.3.6 on page 77.



7. Theorem 3.3.7 on page 79.
8. Section 5.5 on page 96.

The author wrote the Maple programs deriving her own functions, except for the
procedure and function called binsearch and gsort which are standard procedures
in programming. The ISmith program was due solely to Arne Storjohann. The
author of this dissertation also derived the computational examples generated by

the program, which are found throughout the thesis.



Chapter 2

Homology Theory and Computational Procedure

2.1 Introduction

Topology is sometimes referred to as “rubber geometry” or “rubber sheet geome-
try”. For example, a square, circle, triangle, or even the outline of a musical note

(Figure 2.1) are considered “equivalent” (homeomorphic to be more precise).

OA ]

Figure 2.1: Topological circles.

The following four shapes are also homeomorphic to each other.

— /M@

Figure 2.2: Topological line segments

However, none of the shapes in Figure 2.1 are homeomorphic to any shape in

10
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Figure 2.2. Although statements of this type are intuitively obvious, mathematical
proofs may not be easy. A tool that enables one to find such proofs is homology
theory. Homology theory creates homology groups. Each space X has associated to
it a sequence of abelian groups H,(X), where n € Z and n > 0, called the homology
groups of X. These are precisely defined in the following sections. Intuitively,
however, they measure “n-dimensional holes” in the space. For example, the shapes
in Figure 2.1 all have a single 1-dimensional hole, and satisfy H;(X) = Z, while the
shapes in Figure 2.2 have no such 1-dimensional hole, and for these H;(X) = 0.
Thus one obtains a precise proof that the two types are not homeomorphic.

In Section 2.2 the algebraic background for homology is described. In Section 2.3
the fundamental class of spaces to which we shall apply homology theory, the simpli-
cial complexes, is introduced. The previous two sections are combined in Section 2.4
to define the homology of simplicial complexes. Further, linear algebra is applied
in Section 2.5, namely the integral Smith normal form, and computer procedures to

implement this are given in Section 2.6.

2.2 Chain Complexes and Homology

Definition 2.2.1 A chain complex (S.,8) is a sequence of abelian groups S, and

homomorphisms 8, forn € Z

On+1 )
R pe—Y TL+1"—’Sn_ﬁ) n—1 —F " , nez

such that 0,0,+1 =0 foralln € Z. The homomorphism 8, is called the differential

map of degree n. One calls S, the n-chains.
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We can generalize this definition to a chain complex of R-modules where R is a com-
mutative ring with unit. However, for this dissertation we will restrict our attention

to abelian groups, as in the above definition.
Remark 2.2.2 Notice that §,0,41 =0 < imOn41 C ker O,.

If, for some p < ¢, S, =0 for all » > g or n < p, then we write:

3, a
0_—)Sq._q>5q_1_)..._). p+1_p_+_1ySp.—)O
instead of
9, 9p+1
..—)0_)Sq_)5q_1_.).-.—)5!l_ysp__-)o__)....

Definition 2.2.3 Let (S.,38) be a chain complez. We say that (S.,8') is a sub-
chain complex of (5.,0) if S, C Sn and 0, = Oals:, for all n € Z. In this case
one can also form the quotient chain complex (7.,0") where T,, = S,./S;,, with

differential the obvious homomorphism S,/S! — Sn-1/S,_, induced by 0.
We now give a few examples of chain complexes.
Examples 2.2.4
1. Let S be an abelian group and 0 be its additive identity. Consider the sequence
Y . - QLI U

where k(s) =0 for all s € S.

Clearly, imk = 0 and kerk = S. Therefore, kk(s) = 0 for all s € S. Thus
kk = 0.

Therefore this sequence is a chain complex.
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2. Consider 0 — z == Z =+ Z,, — 0, where tn(n) = m -n and = is the

natural projection with (1) = 1.

Since mtm(n) = w(mn) =m - v(n) =0 € Z,, we have 7t, = 0.

3. Consider the sequence 0 — A <L, B £, ¢ — 0 where A.B,C are free

abelian groups with the bases {a1,a2, a3}, {b1,b2,b3,b4} and {c;,c;} respec-

tively. Let f and g be defined as follows:

fla;) = 66, + 6b,
fla2) = 96,
flas) = —45b,
g(by) = —6a
g(b2) = 3a
g(bs) = 9a
g(by) = —Taq.

— 1255
— 18b3
— 36b3

18b4
27b,
27by

We now show that gf = 0 using the fact that f and g are homomorphisms.

gf(a1) = g(6b + 6b2
69(br) + 6g(b2)

= —36c; + 18¢;
= 0,

gf(az) = 9(9%.
= 9g(b2)
= 27¢y

- 1265
— 12g(bs)
- 108¢c;
+ 18b3
+ 18g(bs)
+ 162¢;

18b4)

12661

97bs)

27g(bs)
18961
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gf(as) = g(—45b, + 36bs +  27by)
= —45g(b2) + 369(bs) + 27g(b4)
= —135¢; + 324¢; — 189c;
= 0.

It follows that g f(nia1 +nq2a2+nzaz) = n1-gf(a1)+n2-gf(az)+ns-gf(az) =0

where n;,ny,n3 € Z. Therefore, gf = 0 and we have a chain complex.

This can be done in a more condensed manner, by taking advantage of matrices.

The matrices associated to f and g respectively are:

-6 0
6 6 —12 —18
30
Ms= |0 9 —18 —27 |.M, =
9 0
0 —45 —36 -27
-7 0

One can easily check that M- My, = 0342, where 0, x» is the m x n zero matrix,

and since My - My = My, it follows that gf = 0.

Definition 2.2.5 A sequence of two homomorphisms (of groups) A L BLCis

exact at B if im f = kerg. A sequence of abelian groups {Sp}nez and homomor-
phisms {On }nez,

On+1 3
cee n+1ﬂ_+’5n—1’5n—1—_""7 nez

is exact if it is exact at each S,. That is, im 0,43 = ker 0, for alln € Z.

A short exact sequence is an ezact sequence of the form

0A45LBSC—o0.



Notice that f is then necessarily monic (1-1) and g is necessarily epic (onto).
Examples 2.2.6

1. 0 -+ A — 0 is exact if and only if A = 0.
Proof: The sequence 0 -5 4 % 0 is exact.
< imf =kerg, (definition of exactness)
< kerg =0, sinceim f =0,

& A =0, since kerg = A.

2.0 — AL B = 0is exact if and only if f is an isomorphism.
Proof: The sequence 0 5 A L B A 0is exact
< img = ker f and im f = kerh,
< O0=kerf and im f = B, since img = 0,kerh = B,
< f is monic and epic,

& f is an isomorphism.

3. For any homomorphism f : A — B, there is a short exact sequence
0—>kerf—i>A£-’>imf—->0

Here 7 is the inclusion (iz = z for all = € ker f) and f’ is the corestriction of f

to its codomain, i.e f’(a) = f(a) for all a € A.
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Proof: Assume f : A — B is a homomorphism and consider the sequence
0 — ker f AL im f — 0, with ¢ and f’ as previously described. Clearly 7
is monic since 2 is the inclusion map. Similarly f’ is epic, since im f/ = im f.
It follows that the sequence is exact at ker f and at im f.

All that remains is to show that the sequence is exact at A. Now im: = ker f
and ker f’ = ker f, since 7 is the inclusion map and f’(a) = f(a) for all a € A.

Thus im¢ = ker f’, and the sequence is therefore exact at A. a
4. If A is a subgroup of B then
0—-ASBS B/A—0

is exact, where ¢ = inclusion and = = natural projection.

Proof: Let ¢ be an inclusion map and 7 be the natural projection where 0 —
A< B I B/A—0.
By their definitions, ¢ is monic and 7 is epic. Since kerr = A = imz, the

sequence is short exact. a

Definition 2.2.7 If (S.,0) is a chain complez, then ker 0, is called the group of
n-cycles and denoted Zy(S.,0); im Onyy is called the group of n-boundaries and
is denoted by By(S.,8). The nth homology group of this complez is Hp(S.,0) =
Zn(5.,0)/By(S-.,0).

One often writes just Z,(S.) or simply Z, for Zn(Sx,0), and similarly B,(S.) or
B, for By(S.,0), and H,(S.) or H, for H,(S.,0) when it is clear that (S.,8) is the

only chain complezr under consideration.
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If z€ Z,, then z.B, € H, is called the homology class of z and it is denoted

by [z].

Remark 2.2.8 Notice that for this definition to make sense, one needs B,(S.,8) C

Zn(5.,0), and we have already seen that this is so (cf. Remark 2.2.2).

Theorem 2.2.9 A chain complez (S.,0) is ezxact if and only if H,(S.,8) = 0 for

alln €2

Proof: Z, = B, if and only if ker8, = im 0,4;. a
Intuitively, this means that homology groups “measure” deviation of a chain complex
from being exact. It is also convenient, recalling Definition 2.2.3 to define the “rela-

tive homology™ of a chain complex (5., d), with a given sub-chain complex (5!, 8").

Definition 2.2.10 Let (S.,3') be a sub-chain complez of (S.,8). The relative ho-
mology of the pair (S.,S.) is defined as Hn(S.,S.) = H,(S5./S.).

Example 2.2.11 If L = M then H,(L,M) =0 for all n € Z.

For a less trivial example see Example 2.5.8.

2.3 Simplicial Complexes

Intuitively, a simplex is an n-dimensional generalization of a point (0-simplex), a line
segment (1-simplex), a solid triangle (2-simplex), a solid tetrahedron (3-simplex), etc.
Any subset of the vertices of a simplex o determines a smaller simplex (or o itself)
called a face of 0. One thinks of the empty set as a (—1)-simplex. The following

figure illustrates simplexes of dimensions 0,1,2,3 respectively.
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' AN

Figure 2.3

Notice that in order to illustrate a solid three dimensional shape we used a darker
shading compared to a solid two dimensional shape.

A simplicial complex is a space made up of simplexes as its building blocks,
which fit together “nicely”, meaning that the intersection of any two simplexes is a
common face of each (or is empty). Its dimension is the maximal dimension of any

of its simplexes.

Example 2.3.1 The shapes shown here (Figure 2.4) are examples of a 1-dimensional,

a 2-dimensional, and a 3-dimensional simplicial complex respectively.

Figure 2.4

Example 2.3.2 None of the three shapes shown in Figure 2.5 on page 19 is a sim-

plicial complex.
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= 208

Figure 2.5

Further subdivisions could be made to transform them into simplicial complexes (see

Figure 2.6). Also keep in mind that these subdivisions are not unique.

P2 AN

Figure 2.6
Notice that any simplicial complex is determined by
1. a set of vertices,

2. the specification of those subsets of vertices that form the simplexes.

This leads to the following definition:

Definition 2.3.3 For any set V, let P(V) denote the power set of V, which is the
set of all subsets of V (including the empty set). An abstract simplicial complex
K is a pair K = (V, %), where £ C P(V), such that

1. ForallveV, {v} X
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2. IfreXandoc CT,theno € X.

The elements of V are called the vertices of K. The elements of ¥ are called
the simplexes of K. Note that an abstract simplicial complez is finite if |V| < oo.
A simplex with r + 1 vertices is called an r-simplex. A 1-simplex is also known as

an edge.

Definition 2.3.4 A simplez {vo,...,v.} is ¢ maximal simplex of a simplicial
complez K = (V,X) if {vo,...vn,w} is not a simplex in K for any w € V where

wHFuv forald <i<n.

Remark 2.3.5 It is often convenient to describe an abstract simplicial complex by
giving only the maximal simplexes; then all simplexes are obtained from these and

their subsets (faces).

Definition 2.3.6 A subcomplex K’ = (V',¥’) of a simplicial complez K = (V,X)

is a stmplicial complez such that V' CV and &' C X.
Next we define the geometric idea behind the abstract simplicial complex.

Definition 2.3.7 An ordered set of points {vg,v1,--.,vn} C R™ is affine indepen-
dent if {vy —vg,v2—vg,...,Vn—Up} is a linearly independent subset of the real vector

space R™.

Remark 2.3.8 It is not hard to prove that this definition is independent of the

ordering.
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Definition 2.3.9 Let {vg,...,v,} be an affine independent set of some euclidean
space. A g-simplex s = (vo,.-.,v,) is the smallest convez subset containing the
vertices Uvg,...,Vy, also called the convex hull of {vg,...,v.}. (See Figures 2.3,
page 18 and 2.9, page 40 for some basic ezamples.) For any subset {w,...,w,} C
{vo, .- .,vg}, the convez hull of {wy,...,w.} is called a face of s. It is convenient to

consider the empty set, 0, as a (—1)-simplez.

Definition 2.3.10 A finite geometric simplicial complex a finite collection of
simplezes in RV such that for any simplezes o,7 € X, o N T is a common face of

each.

Definition 2.3.11 Let K denote the set of all finite geometric simplicial complezes,
K2 denote the set of all finite abstract simplicial complezes. Any geometric simplicial
complez X € K determines an underlying abstract simplicial complez K = U(X)
where U : K — K°®. The vertices V of U(X) = (V, %) are the same as the vertices of
X, and a collection {vo,...,vn} of vertices in V forms a simplex of T if and only if

there is a geometric simplex o of X with vertices vo,...,Un.

Definition 2.3.12 Given an abstract simplicial compler K, we say that a simplicial

complez X is a geometric realization of K if U(X) = K.

While it may be very difficult to visualize a geometric simplicial complex, espe-
cially in dimensions greater than three, the underlying abstract simplicial complex
gives a simple combinatorial model. In this connection, it is interesting to note the

following theorem.
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Theorem 2.3.13 Any finite abstract simplicial complez K admits a geometric real-

ization X in RV for some N €N, i.e. UX) =K.

A proof of Theorem 2.3.13 can be found in [11], p.142. One writes | K| (or simply
X)) for the topological space determined by K, as a subspace of R™. This space is

unique up to homeomorphism.

Definition 2.3.14 Let K = (V,X) be any abstract simplicial complez. The r-
skeleton of K is K := (V,£() where £ contains all j-simplezes for j < r.
It is also a simplicial complez (subcomplez of K). A similar definition applies to

geometric simplicial complezes.

Notice that the 1-skeleton can also be regarded as a graph, since it only contains
vertices and edges. In order to construct a hollow triangle, i.e. a (topological) circle,
we need three 1-simplexes arranged appropriately. For details on this example and

for further examples see Figure 2.10 on page 41.

Nlustrations have been frequently applied in mathematics to help “visualize”
a mathematical situation. An old saying goes: “a picture is worth a thousand
words,” and it rings true in mathematics as well. Suitable diagrams are often helpful
in visualizing the large amount of algebra that is associated with these geometric

objects.
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Example 2.3.15 See Figure 2.11, on page 42, for the r-skeleta of the simplicial

complex K, where K is indicated by the next diagram.

2

Figure 2.7

2.4 Homology of Simplicial Complexes

It is often quite difficult to visualize, let alone prove, whether or not two given simpli-
cial complexes are homeomorphic. This might occur if the simplicial complexes are
too complicated to picture, in a dimension higher than three, or the characteristics of
the complexes in question have never been researched, and so on. Whatever the rea-
son is, homology groups will furnish algebraic invariants and thereby replace intuition
with precise mathematical proofs. Homology groups can be effectively computed, as
we shall see in Section 2.3. First, however, in order to determine the homology of

simplicial complexes, we need to set up some definitions.

Definition 2.4.1 Let (S.,d) be a chain complez. We say, for any two cycles z,y €
Zn(S..0), that = is homologous to y (z~y) if and only if y — z € By(S.,8). We

also write z, B,(S.,0) = [z] for the equivalence class of all cycles homologous to z.

Definition 2.4.2 Let K = (V,X) be an abstract simplicial complez and suppose the

vertices V are given some simple order <. For each n-simplez ¢ € L, one can
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uniquely write 0 = {vg,...,Un} Wwith vog < v; < --- < v,. We then define the n-
chains of K, Cy(K), to be the free abelian group having as generators all symbols
(Voy«+-40n), one for each o € £, where 0 = {vg,...,vn} and vog < vy < --- < v,.
Writing (o) = (vo,-..,vn), we thus have

Cn(K)={Za;(a’,~):a,—€Z, m2>1, |oil=n+1, 0;: €L, ISiSm}.

=1
Definition 2.4.3 Let K be an abstract stmplicial complez with some simple order
given on its vertices V, as in Definition 2.4.2. We define the map

dn : Co(K) — Cr—1(K) on the generators by

dn(vo, -, vn) = D (=1)(vos- -y Dis - -, Va),

=0

where U; represents the deleted vertez v;, and extend this linearly to all of C(K).

It is a standard fact that d,_;d, = 0 (cf.[11], p.44, Theorem 7.11), so C.(K) is a

chain complex (cf.[11], p.63, Theorem 4.6).

Definition 2.4.4 The homology of a simplicial complez K is defined to be the ho-
mology of C.(K), i.e. H,(K) := H,(C.(K)).

It is a deep theorem of aigebraic topology, the so-called “Invariance Theorem,”
that the homology groups H.(K) depend only on X = |K|, which means that the
particular decomposition of X into a simplicial complex and the order chosen for
the vertices have no effect on H.(K). One therefore is justified in writing H.(X) =

H.(K).

Example 2.4.5 We calculate the homology of S?, a circle. Let X be the geometric

simplicial complex shown in the next figure.



Figure 2.8

Let K be the abstract simplicial complex of X, with the vertex order a < b < c.

Therefore, K = {0, {a}, {8}, {c}; {a, b}, {a,c}, {b,c}}, and consider

C.(K): - — C3(K) 2, Co(K) 22 Cl(K) — Co(K) %, 0. (2.1)

Let us determine a basis for the n-chains of K, C,(K) where n > 0. A basis for
Co(K) is {(a), (b),(c)}. A basis for Ci(K) is {(a,d), (b,c},(a,c)}, and we also have
Co(K)=C3(K)=---=0.

Hence Co(K) =20 Z28 2z, CL(K)=Z@ZSZ, C2( K)=C3(K)=---=0.

Now the sequence (2.1) becomes

Cu(K):0—= Cl(K) — Co(K) =, 0. (2.2)

In order to compute Ho(K) = kerdp/imd;, we need to find kerdy and imd;.

First of all it is clear that kerdy = Co(K). Using the definition of d,, for n = 1 we

have:
d1(a,b) = (b) — (a)
d1(a,c) = (c) — (a)
di(b,¢) = (¢) — (8).

Therefore, (@) ~ (b), since di(a,b) = (b) — {(a), and
() ~ (c), since dy(b,c) = (c) — (b).
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Therefore (a) ~ (b) ~ (c), so Ho(K) =~ Z with generator [(a}].

Now let us compute H;(K) = kerd;/imd,. Clearly, imd; = 0. To find kerd,, let
z € kerd; and write z = u;(a, b) + u2({a,c) + uz(b, ¢) for integers u;, uz, uz. We have
di(z)=0
di(ur{a, b) + uqz(a,c) + usz(b,c)) =0
uydi(a, b) + uadi{a,c) + usd;(b,c) =0
u1(() — (@) + u2({c) — (a)) + ua({c) — (b)) =0

(a)(—u1 — uz) + (b) (w1 — us) + (c)(uz + u3) =0

¢ 4y

—U; — Uy = Uy — U3z = Uz +uz = 0.

Therefore, u; = —u; and uz = —u,. Therefore, z = k(a, b) — k(a,c) + k(b,c) for
some k € Z, and thus, (a,b) — (a,c) + (b,c) generates kerd;, so kerd; =~ Z. Then
H,(K) = kerd;/imd, = kerd; /0 = kerd; = Z, generated by (a,b) — (a,c) + (b,¢).
In conclusion, we have

Hy(SY) = HaK)~{ = P00
0, n>1.

The technique used to find the homology groups in this simple example rapidly
becomes very tedious for larger or more complicated simplicial complexes. Using
linear algebra helps to increase the efficiency of the computation. Indeed, it gives an
algorithmic method for these computations that can be implemented on a computer,
as discussed in the following section. Before doing this we briefly define the idea of
relative homology, which is also useful in simplifying the computations.

Let L be a subcomplex of a simplicial complex K.

Then C.(L) forms a sub-chain complex of C.(K). Using Definition 2.2.10 we define
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the relative homology of K and L by the following definition.

Definition 2.4.6 Let L be a subcomplez of a simplicial complex K. Then the rela-
tive homology of K with respect to L is H.(K,L) := H.(C.(K),C.(L)).

2.5 Integral Smith Normal Form for Matrices

Definition 2.5.1 Let M., ».(Z) denote the set of all matrices of size m x n with
entries from Z. For any B € Mn o(Z), we say B is in ISmith normal form

(integral Smith normal form) if

B diag(zy,...,zk) Okn—k ’

Om—k.k Om—k.n—k

where z;|zi1 (i.e. z; i a divisor of Tiy1), 1 < i < k—1, and diag(z:,...,zk) is the

diagonal matriz with z,,....z, on the main diagonal and zeroes elsewhere.

Note: Any m x n matrix A over the integers Z has an ISmith normal form B
and it is unique up to multiplication of each z; by +1 ([6] p.109, Theorem 7.10 and
p.118, Theorem 7.17). The ISmith normal form can be obtained by methods similar
to Gaussian elimination but using both row and column operations, and restricted
to only integral operations (i.e. division is not allowed). Examples are given in

Example 2.5.3 and later.

Remark 2.5.2 A standard interpretation of a matrix A over the integers Z is as a
linear transformation ¢ : F, — F,,, where F; is the free abelian group on ¢ generators.

The ISmith form B for A can then be interpreted as the matrix of ¢ relative to some
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other bases for Fy, F,,. Since B has a very simple form, it makes it quite easy to

determine im ¢ and ker ¢, and herein lies the advantage of this method.

Example 2.5.3 Compute the ISmith normal form of the matrix A, where

R1 HR3

5R, + R,
—2R; + Rs

Ca+Cy

14 -5 12 -14

4 =2
A=1]114 5
5 —1

3 -1 6 =5
5 1 6 =5

0 39 42 -39

0

-6 —13 6

1 0 00
0 39 42 0

0 —6 —-18 0

C1 HCQ

-5C1 + Cs
—6C) + Cs

5C, + Cy

6Rs + R»

0 39 42 -39
0 —6 -—-18 6

1 0 00
0 3 —-66 0
0 -6 -18 0
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10 00 10 00
2R; + R3 22C, + C3
0 3 —66 0 0 3 0 0|=8.
—_— —_—
0 0 —150 0 0 0 —150 O

Notice that 1|3 and 3|150. Also, the notation R; <+ R; denotes the elementary
operation interchanging the :th and jth rows, while the notation aR; + R; denotes
the elementary operation replacing the jth row by itself plus a times the ith row

(similarly for columns).

Notation 2.5.4 It is convenient to use the notation A=B, when (as in Exam-

ple 2.5.3) B is the integral Smith normal form of A.

Example 2.5.5 Now let us look at Example 2.4.5 (on page 24) again. We have the
sequence:

03 Ci(K) B Co(K) S 0.
Clearly, kerdy = Co(K). In order to find Hy(K) we need to set up the differential

matrix. The differential matrix is constructed as follows: the rows represent the

elements of C;(K') and the columns represent the elements of Co(K). We have
di(a,b) = (b) — (a)

di{a,c) = (c) — (a)
dy(b,c) = (c) — (b).
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Thus the following array represents the homomorphism d;:

di | (a) | (B) | ()
(g, 01 —-1{ 110

(g,e) =110 |1

(b,e) | O -1} 1

Now we can form the differential matrix for d;, called D,. Therefore

-1 10
Di=| -1 01
0 -1 1

One readily finds that the ISmith normal form of D, is

1 00
010

0 060

Having this ISmith form for D;, and considering Remark 2.5.2, this means that there

are new bases {a;, 81,71} and {ao, 8o, Y0} for C1(K), Co(K) respectively such that

di(e) = o, di(B1) = Bo, di(m) = 0. Thus imd; is generated by ag, Bo. Since

kerdy = Co(K), this implies Ho(K') & Z, with generator [y,]. Furthermore ker d; is

generated by v, hence H;(K) = kerd, /imd, = kerd; /0 = kerd; = Z, generated by
[nl-

Clea.rly, HQ(K) = H3(K) =---=0.

zZ, n=40,1
Therefore H,(S') =~ H,(K) ~
0, n>1.
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Example 2.5.6 Let X be the simplicial complex below. Determine the homology
of X. Notice that the geometrical realization of X is the Mébius band (left and right

vertical edges are identified with opposite orientation).
a

Let L = (V,X) be the abstract simplicial complex of X with the order a < b <
¢ <d < e< f. Therefore, £ = {0, {a}, {b}, {c}, {d}, {e}. {F}, {a. b}, {a,c}, {a,d},
{a,e}, {a.f}, {b,d}, {b,e}, {c,d}, {c,e}, {c,f}, {d. f}, {e, f}. {a,b,e}, {a,c,e},
{a,b,d}. {a.d, f}, {¢,d, f}, {c.e, f}}.
Therefore,
a basis of Co(L) is  {(a), (8),{c), (d), (e}, ()}
a basis of C1(L) is  {(a.,b), {a.c), {a,d), (a,e€), {a,f), (b,d), (b,e), {c,d),
(c;e), (e, ) (d, f), (e, )}
a basis of C,(L) is {(a, b, €),(a,c,e), (a,b,d), (a,d, f), (c,d, f), (c, e, F)},
and Cs(L) = Cy(L) = --- = 0.

Thus we have the following sequence
C.(L): 05 Cy(L) B (L) S Co(L) S 0.

Now let us construct the differential matrices, as shown in the following arrays.
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d2 | {a,b) | (a,c) | (a;d) | (a.€) | (a,f) | (b,d) | (b,e) | {c,d) | (c.e) | (e, ) | (d, f) | (e, f)
(a,be) | 1 | 0 0 | -1 o 0o | 1 0| o 0 0 0
(@bdy| 1 | 0 | =1 o 0 1| o 0| o 0 0 0
(a,ce) | 0 1 o | -1} o o | o 0 | 1 0 0 0
(@,d,fy|] 0 | 0 1 o | -1{ 0| o 0] o 0 1 0
{c.d. f) 0 0 0 0 0 0 0 1 0 -1 1 0
(c.e. Y| 0 | 0 0 0 0 0 | o 0| 1| -1] o 1

dy | (a) | (8) | {c) [ (d) | (e} | (f)
(a,0) |=1| 1} 0] 0] 0|0
(@,c)|-11 0| 1|00 ]|O
(a,d)y |- 0|01 0|0
(a,e)|-11 0|00} 1]0O
(e, fY{-110 (00|01
(b,dy | 0 {—=11 0|1 f{0}0
(be) | 0 |=1| 0|01 |0
(,dy | 0[O0 |-1]1 0|0
(c,ey | O[O0 (-=1]0 |10
)00 |-10(0]|1
dfHio|lo0}j0|-1{0]|1
(,f){0]0[0]0|-1]1

Thus we have the corresponding matrices,




(10 o0
10 -1
R
00 1
00 0
(00 0
[ 1

-1

-1

-1

-1

o] °
0

0

0

0

0

|0

After computing the ISmith normal forms of D, and D; we obtain

o O o o o

(o)
o O o o

0

o O o o o

0

DzE[IG OGXG] and D, =

o o o o

- O o o

o O

0
-1

Is

= o o O o

o O o o

L]

Osx1

07x5 07x 1

O o o

o O o o o

33
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where I, represents the n x n identity matrix and Omxn is the m by n zero matrix.

Therefore,

kerd, =0, imd, =~ ZS,
kerd1 ~ Z7, imd1 =~ 75.

It follows that
HQ(L) = kerdg/imds = 0,

Hi(L) =kerd;/imd, =~Z7/(z°80) =z,
Ho(L) =kerdy/imd; = 2%/(2°60) = Z.
We also know that H;(L) =0 for all 7 > 2 since C:(L) =0 for all z > 2.

Therefore,

Z, for:=0,1
H,(X) = H,(L) ~
0, forz>2.

Notice that the homology of the Mdbius band is the same as the homology of a
circle, which was computed in Example 2.4.5. There is a reason for this, namely
the two spaces have the same homotopy type (see 4.2.7; this is a more general
equivalence than homeomorphism), and this suffices to imply their homology groups
are isomorphic.

Example 2.5.7 Let X be the simplicial complex below. Determine the homology of
X (its geometrical realization is the real projective plane R P2, which can be thought

of as a disc with antipodal points on the boundary identified).




35

Let L = (V, ) be the abstract simplicial complex of X, with the vertex order a <
b<c<d<e< f. Without going through the tedious calculations, we will list ¥ and
state the homology. Thus, ¥ = {0, {a}, {8}, {c}, {d}, {e}, {f}, {a,b}, {a,c}, {a,d},
{a.e}, {a, f}, {b; ¢}, {b,d}, {b,e}, {b, f}, {c,d}, {c, e}, {c, ). {d, e}, {d. f}, {e, f}.
{a.b,d}, {a,b, f}, {a,c,e}, {a,c.d}, {a,e, f}, {b,c,e}, {b,c, f}, {b,d, e}, {c,d, f},
{d.e, f}}.

Now we will determine a basis for C,(L) for n > 0.

A basis for Co(L) is  {(a), (8), (c), (d), (e}, ()}

A basis for C1(L) is  {(a,b), (a,c), (a,d), (a,€), (a, f), (b.c), (b,d), (b,e), (b, f),
(c:d)s (e, €), (¢, f), (d,e), (d, f), (e. f)}-

A basis for C3(L) is  {(a,b,d), (a,d,f), (a,c,d), (a,c.e), (a,e,f), (b,c,e),

(b7 c’ f)7 (b7 d’ e)’ (c’ d’ f)’ (d’ e’ f)}'
Finally, Cp,(L) =0 for all n > 3.

Thus we consider the sequence
C.(L): 08 Co(L) B CL(L) B Co(L) B 0.

The homology of L is

Z, n=20,
Hn(]sz) ~ Hn(L) ~ Zya n= 1,

0, n>1.

We now turn to an example of relative homology.

Example 2.5.8 Let us consider the M&bius band X as in Example 2.5.6 and let Y

be the subcomplex consisting of its boundary. Define M to be the subcomplex of
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L corresponding to Y, its maximal simplexes are {a,c}, {c,d}, {b,d}, {a, f}, {b, ¢},
{e, f} (the dashed lines in the diagram).

a [

Therefore,

a basis of Co(M) is  {(a), (8}, (c). (d), (e), ()},

a basis of C1(M) s {(a,c), (c,d), (b,d), (a, f), (b, €}, (e, )},

a basis of C;(M)is 0forall:>2,i.e. Ci(M) =0fori>2.

Keeping in mind the bases of L shown in Example 2.5.6, the relative chains
C.(L.M) = C.(L)/C.(M) are now seen to be
Co(L, M) =0,
Ci(L, M) has basis  {(a,b),(a,€),(a,d), (c,e),(c, f), {d, f)}
Ca(L, M) has basis {(a,b,e€),(a,d,d), (a,c,e),(a,d, f),{c,d, f),{c,e, f)}, since
Co(L, M) = (C2(L))/Co(M) = C2(L)/0 = Co(L)

Ci(L,M) =0 for all > 3.

Thus we only need to consider the sequence

Cu(L, M) : 0 — Co(L, M) B Cy(L, M) B Co(L, M) =0 B 0.



Therefore, we have the following relationship,

& |(a,0) |[(a,d) | (a,e) | (ce) | (e, f) | (4, )
(@bey| 1 | 0 | =1 | o 0
(@bdy| 1 | =1 0 | ol o 0
(@ee)| 0 | 0 | -1 | 1] o 0
(a,d,f)| 0 1 | oo ] o0 1
(cdfy| 0 | 0 | 0 [ 0 | -1] 1
(e, )| O | 0 | 0 | 1 | ~-1] 0
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(2.3)

Also notice that d; maps to 0, which implies that ker d, = Ci(L,M) and imd, =

0. Thus we only need to determine kerd, and im d;. To do this we will resort to the

computation of the ISmith normal form of the matrix D, which corresponds to the

homomorphism d; (cf. Array 2.3)

o

)

Il
© © o o

Thus we find that

0 -10 O
-1 00 0
0 -1 1 0
1 00 0
0 00 -1
6 01 -1
kerd, = 0,

kerd; ~ z%, imd; = 0.

o o O

imd, ~ zZ° @ 2z,

o O O o o

o O o o

o O o

o o o

o O o o

N o o o o o
J
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Therefore,

Hy(L, M) =kerd,/imds = 0,
Hy(L,M) =kerd, /imd, ~ 78/(Z° ® 2Z) = Z,,
Ho(L, M) = kerdo/imd; = 0.

Also since Ci(L, M) = 0 for all z > 2, this implies that H;(L, M) =0 for all z > 2.

As we have seen, the homology of the Mébius band (Example 2.5.6) is the same
as that of a circle, only detecting the 1-dimensional hole and ignoring the twist in
the Mobius band. But the relative homology of the Mobius band with respect to its

boundary (Example 2.5.8) detects the twist, namely H;(L, M) = Z,.

2.6 Computer Algorithm for Homology

There are two main programs, one of which calculates the homology of the neigh-
bourhood complex while the other calculates the relative homology of the neigh-
bourhood complex with respect to the star (cf. 5.4.2) of a vertex. The birth of the
latter program was due to the overwhelming size of the differential matrices in the
initial program. Both programs generate the edges of the Kneser graph G(n,r,q)
(cf. Chapter 3 for definition) using the NOEDGES and the kneser procedures.
Some idea of the complexity of these calculations may be obtained, for example,
from G(7,2,0). In this case the size of the matrices range up to 4340 x 4872. For
details of the programs see Appendices A and B. We give just an outline here.

The edges are sent to the knngbdsimplex procedure, which then generates
the maximal simplexes of the neighbourhood complex (see 4.3.7 for definition) of

the Kneser graph. The maximal simplexes are then passed over to the knhomology
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procedure. Both programs generate “backup” file(s) for each differential matrix. This
is a safety precaution, just in case the computer crashes at a particular stage resulting
in the loss of hours/weeks of computations. If this occurs then the remainder of the
computations may be carried out manually, asking MAPLE to run each procedure
in the correct order. The file pertaining to the ith differential matrix D; in both
programs is called differentiali. This differentiali file contains the ith differential
matrix in the appropriate form to use Arne Storjohann’s ISmith program. Currently
his program has not been officially documented (cf. Appendix C). Then, once out of
MAPLE, we can use Arne Storjohann’s ISmith program, which has been written in
C, to compute the integral Smith normal form of the differential matrices. Then we
can directly interpret the kernel and image of the associated differential maps and

compute the homology groups accordingly.

Generalized knngbdsimplex
Kneser
Graphs Maximal Simplexesl
G(n,r,q)
differential
H.(S,0) ismith C(5.9)
homology chain complex

We close this chapter with three diagrams that may help in the visualization of

some of the concepts that have been discussed.
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Abstract Simplicial Geometric
Simplex Complex Realization
(-1)-simplex
the empty set {0}
0-simplex is
a vertex. {0, {v}} o,
1-simplex is w
an edge. {0 {v}v {w}{v7 w}}
v
2-simplex is {0. {a}, {6}, {c}, a
a (SOﬁd) {av b}7 {a7 C}, {b? C},
triangle {a,b,c}}
: . {0,{a}, {5}, {c},{d},
S-simplex is {a,8},{a.c}. {a,d}, {b,c},
a (solid)
tetrahedron {6,d}, {c.d}, b
{a,b,c}, {a,b,d},{a,c,d},{a,b,d}
{a,b,c,d}}

Figure 2.9: Simplexes



Abstract Simplicial
Complex

{0, {a}, {8}, {e},
{a.8}.{a,c}, {b,c}}

{0, {a}, {8}, {c},
{d}, {e}, {f}. {g},
{a,b},{a,c}, {a,d}, {b,c},
{b’ d}7 {c’ d}’ {d7 e}’ {e7 f}’
{e.9}.{f. g}, {a.b,d}}

{0, {a}, {6}, {c}, {d},
{a.6},{b.c}, {c,d}

Figure 2.10:
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Realization

Simplicial complexes



S
r=3
r=2
r=1
r=0

Maximal
Simplexes

{a,b,c,d},
{d,e}, {d, f}, {e, f},
{e7g}7 {g7 h7i}

{a,b,c},{a,b,d},
{a,c,d}, {b,¢,d},
{9, h,2},{d. e}, {d. f}.
{e, f}. {e. g} 5

{a, b}, {a,c}, {a,d},

{b, ¢}, {b,d},{c,d},

{d,e}. {d, f}.{e, f}

{e,g}. {9, R}, {9.i}, b
{h,2}

{a}, {0}, e}, .
{d}, {e}, {f},
{oh. {8}, {3} ) ®

Figure 2.11: Skeleton example.

Geometric
Realization

®g
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Chapter 3

Graph Colouring

3.1 Introduction

There is a very natural link between graph theory and topology. In fact, one could
regard graph theory and topology as fraternal twins. Both basically originated with
the same paper written by Leonhard Euler in 1736, solving the Kdnigsberg bridge
problem (Figure 3.1, page 44). This problem originated with the townspeople of
Konigsberg, a town that was divided into four regions by the river flowing through
it. The question was whether one could find a walk over all seven bridges connecting
the various regions, without crossing the same bridge twice and returning to one’s
starting point.

In a problem of this type (electrical networks form a similar example), distances
are irrelevant. Only the connections between the regions are significant. This is
typical of graph theory, and more generally of topology. One of the most famous
problems in graph theory, and indeed of mathematics, is the celebrated Four Colour
Problem (cf.[4] p.148-150,174-175). Graph theory is not only concerned with colour-
ing; other important areas of graph theory are Hamilton cycles, convex embeddings,
hereditary systems, algorithms, matchings and factors. There are also numerous ap-
plications, such as chemical graphs, networks, broadcasting, as well as applications
in other branches of mathematics.

In this chapter we will define graphs and their chromatic number. Then the
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The map of
Konigsberg

Two equivalent graphs
representing this map

Figure 3.1: Konigsberg Bridge Problem
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generalized Kneser graphs are introduced. The primary aim of this dissertation is to
obtain some information about colouring these graphs, i.e. finding their chromatic

number.

3.2 Graph Theory and Colourings

Roughly speaking a graph consists of a set of points called vertices and a collection
of pairs of these vertices called edges. Graphs (cf. Definition 3.2.2 below) are
essentially 1-dimensional simplicial complexes. We start, however, with some more

general definitions.

Definition 3.2.1 A directed multigraph G is an ordered pair G = (V, E), where

1. V is a nonempty set, called the set of vertices,

2. E = (ey,...,em), where e; € V x V. The collection E is called the “set” of

edges.

Note that edges are ordered pairs which may repeat (that is two vertices v,w
may be joined by several edges e;) and loops (i.e. edges of the form e = (v,v))

are possible, with this definition of edges.

A directed multigraph with no loops and/or multiple edges is called a directed

graph (or sometimes a simple directed graph).

Definition 3.2.2 If the edges e € E in the graph G = (V, E) are considered as
unordered pairs, i.e. (v,w) = (w,v), then G is called an undirected multigraph
(or just a multigraph). A multigraph with no loops and/or multiple edges is called

a graph (or a simple graph).
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From now on the convention (v,w) = (w, v) will be assumed for the edges of any

undirected multigraph.

Examples 3.2.3

Directed multigraph, Directed graph,
Loops No loops Not a graph

)2 F= R
o 9 I

Undirected multigraph,
No loops Not a graph Not a graph

Multigraph,
Loops Simple graph Not a graph

Henceforth we shall deal with only simple graphs.

Definition 3.2.4 Let G = (V, E) and H = (V', E') be graphs. H is a subgraph of
GifV CVand E'CE.
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Definition 3.2.5 A walk in a graph G = (V, E) froma to b (a,b € V) is a sequence

of edges ey, e3,---,em € E where

&G = (G,Cl)
e2 = (e1,¢2)
em = (cm-1,0) withc, €V for1 <i<m-1.

Definition 3.2.6 A graph G is connected if, given any two distinct vertices v and

w, there ezxists a walk from v to w.

Remark 3.2.7 According to this definition, a graph with only one vertex and no

edges is connected.

Definition 3.2.8 For any graph G, a component of G consists of all edges and
vertices which occur in walks starting at some particular vertez of G. Equivalently,

a component :s a marimal connected subgraph.
Thus any connected graph has only one component.
Examples 3.2.9

1. Two components
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2. Six components

Femr”

Definition 3.2.10 The chromatic number, x(G), of a graph G is the smallest
number of colours required to colour the vertices of a graph so that any two vertices

sharing a common edge do not have the same colour.
Definition 3.2.11 A graph G = (V, E) is k-colourable, if x(G) < k.

Notice that a k-colouring of the vertices is equivalent to a partition (V4,..., Vi)
of V into k sets, each representing the vertices of one of the k different colours, such

that if a.b € V; then (a,b) € E. Also keep in mind that & < |V].

Examples 3.2.12 The reader may like to verify that the following graphs have

chromatic numbers, respectively 2,3,4 and 5.

(2) (b) (c) (d)

Figure 3.2

Remark 3.2.13 In Figure 3.2 the graphs (a), (b) are called respectively a 6-cycle
(Cé) and a 5-cycle (Cs); (d) is called a complete graph on five vertices (K).
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Definition 3.2.14 Let G = (V,E), G' = (V', E’) be two graphs. We say that G and
G’ are isomorphic (G = G’) if and only if there ezists a bijection ¢ : V — V' of

the vertices such that (v,w) € E if and only if (6(v), ¢(w)) € E'.

3.3 Generalized Kneser graphs

Definition 3.3.1 A generalized Kneser graph, G(n,r,q) = (V, E), s a graph
with vertex set, V= {A: |A| =7 with AC {1,2,...,n}}, and with the edge set,
E={(A,B):|ANB|=q, AALBEV}. Hren>r>q¢>0andr > 1.

One calls V the r-subsets of the n-element set n = {1,2,...,n}. Note that the
number of such subsets, i.e. the number of vertices in G(n,r, ¢), equals the binomial
coefficient (’:) The cases where ¢ = 0, i.e. A, B disjoint, are the classical Kneser

graphs (cf. [7]). The next set of figures illustrate a few generalized Kneser graphs.

{2}
{1} {2}

{1} {3}

{4} {3} {5} {4}
Figure 3.3: G(4,1,0) and G(5, 1, 0) respectively



{1,2} @- @ (3.4}
{173} o— —9 {274}
{1,4} @ @ {2,3}

Figure 3.4: G(4,2,0)

{1,2}
{1,3} {2,3}
{2,3}
{1,3}
(1.4) {2,4} (1,4} {1,2}
{3,4} {3.4} {2,4}

Figure 3.5: G(4,2,1), two perspectives of the same graph
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{1,2} 51

{3,5} {3,4}

{2,4} {1,5}
Figure 3.6: G(3,2,0)

Remark 3.3.2 Some of the Kneser graphs are familiar graphs. For example, the
graph G(4,2,1) in Figure 3.5 on page 50 is the octahedral graph, and G(5,2,0) in
Figure 3.6 is the Petersen graph. Other familiar cases are G(n,r,r) which is the
empty graph on (’:) vertices (that is, a graph with no edges), and G(n,1,0) which
is K, the complete graph on n vertices in (K, and K are illustrated in Figure 3.3

on page 49).
Theorem 3.3.3 (Duality) Forn>r>4¢ >0, G(n,r,q) % G(n,n—r,n—2r+q).

Proof: Let G(n,r,q) = (V,E) and G(n,n —r,n — 2r + q) = (V', E").

Let ¢ : G(n,7,q) — G(n,n — r,n — 2r + q) be defined by ¢(4) = n\A. Of
course [n\A| =n — |A| = n —r, so ¢(A) is an (n — r)-subset of n, i.e. a vertex of
G(n,n —r,n—2r + q).

Notice that [V| = (7) and [V'| = (,*,) = (%). Therefore [V| = [V"|.

First we show that ¢ is one-to-one and onto. To show ¢ is one-to-one, suppose

&(A) = o(B), then n\A = n\B, and hence A = B. This implies that ¢ is one-to-
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one. Since |V| = [V’| and is finite, ¢ is must also be onto. Therefore ¢ is a bijection
between V and V’. Notice that ¢~! is given by the same formula, i.e. $~1(C) = r\C.

We also have to show that (A, B) € E if and only if (¢(A), #(B)) € E'.

1. Assumethat (A,B) € E. Then [ANB| = ¢, and |[AUB| = |A|+|B|—|ANB| =
2r — q. In order for (¢(A),#(B)) € E’, |¢(A)N¢(B)| =n —2r + q.

|6(A) N é(B)| = [(=\4)N (=\B)|
= [z\(AU B)|
= n—|AUB|
= n—(2r—gq)

= n—2r+gq.

Therefore (¢(A), 6(B)) € E'.

2. Assume that (C,D) € E’' for some C,D € V'. Then |CND|=n—2r +q and
|C| =|D| =n—r. Thus [CUD| = |C|+|D|-|CND|=2(n—r)—(n—2r+q) =
n — q. In order for (¢67}(C), ¢~1(D)) € E we need |¢7}(C) N ¢~1(D)| = q.

[67H(C)N¢7H(D) = [(=\C)N(z\D)]
= |n\(CU D)
= n—|CUD|
= n—(n—gq)

=q,

Therefore (¢~1(C), $~1(D)) € E.
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Thus (A,B) € FE if and only if (#(4),#(B)) € E’, which means that ¢ is an
isomorphism. Therefore G(n,r,q) = G(n,n — r,n — 2r + q). a
In view of the Duality Theorem, we shall henceforth make the following assump-

tions for the values of n,r and q.
l.r>gq,
2. n4q2>2r.

The reason for (1) is that, as we have seen in Remark 3.3.2, G(n,r,r) is an
empty graph and therefore of no interest to us. The reason for (2) is that unless
n+q—2r > 0 the graph G(n,r,q) will again be empty; this is a consequence of
the the Duality Theorem. Another consequence of the Duality Theorem is that it
suffices to just consider those G(n,r,q) with n > 2r. This is taken into account in

the computations, which are thereby reduced by half.



Chapter 4

Homotopy and Relations to Graph Colouring

4.1 Introduction

The birth of homotopy theory was due to physics and analysis combined with their
mutual interest in properties of n-dimensional manifolds (a circle would be a 1-
dimensional manifold, a surface a 2-dimensional manifold, etc.). The first definition
of a homotopy group, called the fundamental group (7;) was due to Henri Poincaré
in 1895. It took about forty years for the higher dimensional homotopy groups (x,)
to fully emerge into the world. This is usually credited to Witold Hurewicz in 1935,
but is actually due to Eduard Cech in 1930. Homotopy theory basically classifies
maps from an n-sphere to a manifold (or more generally to a topological space). It
gives rise to very important invariants of topological spaces, namely the homotopy
groups. Just like the homology groups in Chapter 2, the homotopy groups have
algebraic properties, which help to simplify comparisons and strengthen results or
properties of the spaces. In general, the homotopy groups carry more information
than the homology groups, but they are more difficult to compute (no algorithm
exists, in contrast to homology).

In this chapter we will define homotopy and some of its basic properties. Then
we describe connectivity and neighbourhood complexes. We will also show the con-
nection between homotopy and graph colouring which is due to Lovdsz (see Theo-

rem 4.3.10), along with related theorems and other more recent results.
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4.2 Homotopy Theory
Definition 4.2.1 Let I = [0, 1] denote the unit interval. Assume f,g: X — Y are

continuous maps from a space X to space Y. We say f is homotopic to g, (f~g)

if there ezists a continuvous map F : X x I — Y such that
F(z,0) = f(z) and
F(z,1) = g¢g(z) foralz € X.

F is called a homotopy and we denote this by F : f ~ g.

f
X xI Y

Definition 4.2.2 Let f : X — Y be a continuous map where X and Y are spaces.

[fl={g9:X — Y, g continuous and g ~ f} is termed the homotopy class of f.
A useful tool for constructing homotopies is the Gluing Lemma.

Lemma 4.2.3 (Gluing Lemma) Let X = X; U X, U---U X, where each X; is
closed in X. Let f; : X; = Y be a map with fi|x.nx, = filxinx, for each 1 < i,j < n.
Then there ezists a unique map f : X — Y with f|x, = fi. If each f; is continuous,

then so is f.

Proof: Clearly, there exists a well defined function f with f|x, = f;. Now we just

have to show that f is continuous.



Recall that f is continuous & f~(C) is closed in X for all closed C C Y.
Let C be closed in Y.

i) = Fonx
= fTHC)N (VLX)
= UL, (f(C)nXy)
= UL,(fF(C)), since flx, = fifor 1 <i<n
fi is continuous => f7!(C) is closed in X;

= f71(C) is closed in X since X; is closed in X.
Hence f~!(C) is a finite union of closed sets and therefore is itself closed. ]

Definition 4.2.4 An equivalence relation R on a set A satisfies the following

properties:

1. R isreflexive, i.e. aRa, for all a € A,

o

. R is symmetric, i.e. aRb = bRa, for all a,b € A and

3. R is transitive, i.e. aRb and bRc = aRc for all a,b,c € A.
Examples 4.2.5

1. = is an equivalence relation.
(a) Reflexive: a = a,
(b) Symmetric: ¢ = b=>b=a and

(c) Transitive: a=band b=c=>a=c.



2. < is not an equivalence relation.
(a) Reflexivity fails since a £ a and
(b) Symmetry fails since a < b % b < a.
Lemma 4.2.6 Homotopy is an equivalence relation.

Proof: We need to show that homotopy is reflexive, symmetric and transitive.

1. Show =~ is reflexive.
Let f: X — Y be continuous. Let J : X x I — Y such that J(z,t) = f(z) for
all t € I. Therefore, J(z,0) = f(z) = J(z,1). Since f is continuous, J is also

continuous. Therefore f ~ f.

o

Show that = is symmetric. Let f,g : X — Y be continuous maps. Let Fj :
X x I — Y be a continuous map such that F}: f ~g. Define F5 : X xI =Y
such that Fy(z,1 —t) = Fi(z,t)forallz € X, forall t € I.

Clearly F5 is continuous since F) is continuous, the function ¢ — 1 —t is

continuous, and the composition of continuous functions is continuous. Also
Fy(z,1) = Fy(z,0) = f(z), and
F{z,0) = Fi(z,1) = g(=).

Therefore, Fy : g ~ f.

3. Show that =~ is tranmsitive. Let f,g,h : X — Y be continuous maps. Let

F,F; : X xI — Y, also be continuous maps such that F; : f ~ g and



F,:g~h. Let us define F3 : X x I — Y such that

F1(.’L‘,2t), 0 <t<

M L]

?

F3(I,t) =
Fy(z,2t —1), 3 <t<1.

Thus,
F3(z,0) = Fi(z,0) = f(z) and
F3(z,1) = Fi(z,1)= k().
Also,
F(z,1) = g(z),
Fy(z,0) = g(z).
Therefore, F3(z,1/2) = Fi(z,1) = F3(z,0) is well defined, and hence Fj is

continuous, by the Gluing Lemma. Thus, f ~ g and g ~ A implies f ~ h. O

Definition 4.2.7 A continuous function f : X — Y is ¢ homotopy equivalence

if there ezists a continuous function g : Y — X such that gf ~ 1x and fg=~ly.

In this case the spaces X,Y are said to be homotopy equivalent (or to have

the same homotopy type).

Definition 4.2.8 A space X that is homotopy equivalent to a point is called con-

tractible.
Examples 4.2.9 The spaces I, R, R", and any convex subset of R?, are contractible.

For the purposes of homotopy theory, it turns out to be important to consider
maps and homotopies that also fix a distinguished point, the “basepoint”, of each

space. We now give the minor changes necessary to define these “based homotopies™.
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Definition 4.2.10 Let X be a topological space and zo € X. We call (X,z0) a
pointed space; zo is called the basepoint of (X, z,). A continuous function

f 1 (X,z0) = (Y, y0) is a pointed map if f preserves basepoints, i.e. f(zo) = yo.
Notice that if (X, zo) is a pointed space then X # @ since zo € X.

Definition 4.2.11 Let (X, zo) and (Y,yo) be pointed spaces, and let f, g : (X, zo) —
(Y.yo) be pointed maps. We write F : f ~ g rel {zo} if there is a continuous map
F:XxI—=Y withF:f~g and F(zo,t) =yo for all t € I. The homotopy F is

called a based (pointed) homotopy.

Since homotopy is an equivalence relation, it is logical to talk about homotopy

classes of functions (maps).

Notation 4.2.12 We will let [X,Y] denote the set of homotopy classes of maps
from X to Y, [f] denote the homotopy class of f and [X,Y]. denote the set of

pointed homotopy classes of pointed maps from pointed spaces (X, z,) and (Y, y,).

Using the same convention as Rotman [cf. [11], p.334] we will consider the n-
sphere, S® C R™*!, as the set {(ao,...,an) : % ,a? = 1}, and s, will denote the

point (1,0,...,0) € S™ as the basepoint of S™.

Definition 4.2.13 Let (X,zo) be a pointed space and let n > 0. We then define
(X, 20) = [(8%,50),(X,z0)] = [S", X]., and it is termed the nth-homotopy

group of (X, zo) (or simply of X).

The nth-homotopy group was first defined for » = 1 by Poincaré [10], and about
thirty years later for all n > 0 by Cech [3]. One calls 7,(X, zo) the nth homotopy
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group of X because of the following theorem, which we do not prove here (cf. [11],
p-334-335 Theorem 11.18, p.335 Theorem 11.21).

Theorem 4.2.14 For n > 1, m,(X,z0) is a group. For n > 2, m.(X,z¢) is an

abelian group.

Definition 4.2.15 A space X is path connected if for all z,y € X, there ez-
sts a continuous map f : I — X such that f(0) = z and f(1) = y. The path

components of a space X are its mazimal path connected subspaces.
We conclude this section with three examples.

Example 4.2.16 There is a 1-1 correspondence between w4(X,zo) and the set of
path components of X.

Informal Proof: By definition mo(X, zo) = [S°, X]. = [{+1,~1}, X].. The base-
point of S°, which is 1, must be mapped to the basepoint zo of X. But —1 can be
mapped to any element in X. A map taking —1 +— z € X is clearly homotopic to
a map taking -1 — y € X if and only if z and y can be joined by a path. So
the path components of X are in bijective correspondence with the homotopy classes

[S°, X]. = mo(X, zq).
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Example 4.2.17 If X = {z0}, then m,(X,zo) =0 for all n > 0.

Since the homotopy groups only depend on the homotopy type of X, it follows

that 7,(X,zo) = 0 for all n > 0 when X is contractible.

Example 4.2.18 1(5%,s,) ~ z.
No formal proof is supplied, but intuitively any map of S! to itself will wind the
circle around itself some integer number of times, and this winding number gives the

above isomorphism.

4.3 Connectivity and Two Famous Theorems

Definition 4.3.1 A pointed space (X, zq) is said to be n-connected (n > 0) if and
only if m(X,z0) =0, 0 < i < n. As a convention, if the space X is not even path

connected (0-connected), then we say it is (—1)-connected.

Notation 4.3.2 If X is n-connected but not (n+1)-connected, write conn (X) = n.
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Examples 4.3.3
1. A O-connected space is the same as a path connected space.

2. A l-connected space is frequently called simply connected. In analysis (and
calculus) these are thought of as spaces that are connected and in which any

closed curve can be shrunk to a point.

3. (Without proof) S™ is (n — 1)-connected cf.[12], p.129.

« » Y\ DD

(-1)-connected 0-connected 1-connected

We now state two famous theorems, although the first one is mainly famous to

homotopy theorists, and the second to graph theorists.

Theorem 4.3.4 (Hurewicz Theorem ([11] p.369)) For a simply connected space

X, andn > 1, the following two conditions are equivalent:
1. H(X)=0, 1<:<n,
2. mi(X,z0) =0, 1 <i<n.

Either (1) or (2) implies that there is an isomorphism 71 (X, Z0) = Hpy1(X), and

an epimorphism wny2(X, z0) — Hpp2(X).

Remark 4.3.5 The map giving this latter isomorphism (or epimorphism) is the
Hurewicz homomorphism h, : 7e(X,za) — Hy(X), for any ¢ > 0. In the above
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theorem Ho(X) and mo(X) were not mentioned, this is because Ho(X) =~ Z and

7o(X, Zo) = 0 are always true for any path connected space, as is the case here.

Before turning to the second theorem, due to Lovasz [7], one definition is needed.
We consider henceforth graphs with no isolated vertices, and will seldom mention

this rather trivial restriction again.

Definition 4.3.6 A topological space X is a polyhedron if there ezists a simplicial
complez K and a homeomorphism h : |K| — X. The ordered pair (K, h) is called a

triangulation of X.

Definition 4.3.7 Let G = (V, E) be a graph. The neighbourhood complex, of
G is N = Ng = (Vg,Xg) where Vg =V and Xg = {{vo,v1,...,vn} : v; € V, and

there ezists w € V where (w,v;) € E for all 0 < i < n}.
Notation 4.3.8 We let [Ng| denote the polyhedron of Ng and write Xg = |Ng]|.

The next few examples should help to give the reader a better intuitive grasp of

this concept.

Examples 4.3.9 Let G = K, = (V, E) be the graph where V = {v;,v;,v3,v4} and
E = {{v1,v2}, {v1,v3}, {v1, v4}, {v2, v3}, {v2,va}, {v3,v4}}. Thus the neighbours of
vy are vs,vs,vy,
v, are wvy,vs,Uy,
v3 are vy, Ug,Vs,
vy are vj,v2,Vs.
Therefore Ng = {{v2,v3,v4}, {v1,v3, vs}, {v1, 02,04}, {v1,V2,v3}}. (Here we have

listed just the maximal simplexes, recall Definition 2.3.4 and Remark 2.3.5).
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G vUg INGI = XG = 52

[%/] U3
v
m ‘ 3
V4 Vg

51

Without going through all the details, we illustrate four more examples below.

] '6
d
c
f

G XGI
a e a
c d
b f b
g h
G XGz
b
a e
c d
b f a

Notice that in Figure 4.1 there are still further identifications of vertices here (for

example the two {1,3} are the same vertex).
We can now state Lovasz’s Theorem (recall that we are always considering graphs

with no isolated vertices, and do not state this explicitly).

Theorem 4.3.10 (Lovasz ([7])) For any graph G, if Xg is n-connected, then x(G) >

n+ 3.

One can write this theorem as x(G) > conn (X¢g) + 3. It is now illustrated with

several examples.



{3,4}

q {2,4}
{1.3}

Figure 4.1: N(5,2,0), see Figure 3.6 for G(5,2,0)

{172} o o {374}
{1,3} e o {2,4}
{14} ¢ o {2,3}

Figure 4.2: N(4,2,0) (see Figure 3.4 for G(4,2,0))
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Example 4.3.11

G a Xc a
eQb dQc
d c b e

As illustrated by the different shaped vertices, one can easily see that the chro-
matic number of G is 3. Now considering X, we can see that X¢ ~ S* which implies

that X¢ is O-connected, from Examples 4.3.3. This implies that x(G) >0 + 3 = 3.

Example 4.3.12
G b c X c b d
a e f
f e

Here x(G') =2 and conn (X&) = —1, so again x(G') = conn (Xg') + 3.
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Example 4.3.13 A third example is the complete graph on n vertices, K,. It is
not hard to see (as in the first example of a neighbourhood complex, 4.3.11), that
Xk, = S5™72, which has connectivity n — 3 (cf. 4.3.3). Clearly x(K,) = n, so once

again x(K,) = conn (Xk,) + 3.

Example 4.3.14

Xu

5'98z ¢

i e
[Roeif 1IN

Clearly the chromatic number x(H) in this case is 100, since Kjq is part of the
graph. But Xz is only 0-connected due to a 1-dimensional hole {e, f}, {e, d}, {d, f},
resulting in the following lower bound for H: 100 = x(H) > 0+3 = 3. This example
shows that, in general, the lower bound furnished by Theorem 4.3.10 can be quite
weak.

We close this section with another famous theorem in topology, the Borsuk-
Ulam Theorem ([11], p.413). Although we do not directly use it in this thesis, it
is instrumental in the proofs of both the Lovdsz Theorem and the generalization

described in Section 4.4.
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Theorem 4.3.15 (Borsuk-Ulam Theorem) There does not ezist any continuous

map f : S* — S™! for n > 0 such that f(—z) = —f(z) for all z € S™.

An equivalent theorem to the Borsuk-Ulam Theorem is the following.

Theorem 4.3.16 If S™ = UXH A;, where each A; is an open (or closed) set of S™

=1

for all1 <i<n+1, then at least one of the sets A; contains two antipodal points.

4.4 Recent Developments

In this section we give a brief report of a few developments related to the 1978
paper of Lovdsz described in Section 4.3. The first is a paper of Alon, Frankel and
Lovdsz [1] in 1986. This work extends the original ideas of Lovasz to hypergraphs (a
generalization of a graph that we do not define here). Just as the Kneser Conjecture
was solved as an application of [7], the second paper [1] is applied to solve an Erdds
Conjecture that generalizes the Kneser Conjecture.

Another development is given by the work of Milgram and Zvengrowski in [8].
Using further techniques from homotopy theory, in particular the notions of a prin-
cipal Z,-bundle for a prime p and its classifying space, these authors give stronger
versions of the Lovdsz Theorem 4.3.10 and the corresponding theorem in [1]. We do
not give the details of their theorem here, but will mention that for Example 4.3.14
their theorem gives the correct lower bound x(G) > 100 (while the Lovész Theorem

gives only x(G) > 3).



Chapter 5

Applications to Generalized Kneser Graphs

5.1 Preliminaries
We start with a useful notation.

Notation 5.1.1 For any graph G = (V, E) and any vertez v € V, we will write
o(v)={a:a €V, (a,v) € E}. Thus o(v) is the set of all neighbours of v in G, and

at the same time s a mazimal simplex of the neighbourhood complez, Ng, of G.

Secondly, we mention some properties and notation for paths that will be needed
in Section 5.3.

By a path ) in a topological space X we mean a continuous map A : I — X.
The points A(0), A(1) are called respectively the initial and terminal points of the
path A. When A(0) = A(1) we call A a loop. When one speaks of homotopies of
paths, for example A ~ g, it is always understood that A, u have the same initial
and terminal points, and that these remain fixed during the homotopy. Let us give

a precise definition.

69
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Definition 5.1.2 Two paths A\,u : I — X are homotopic if there erists a contin-

uous map H : I x I — X with

H(s,0) = A(s),
H(s,1) = u(s),

H(0,2) = A(0) = u(0),
H(1,t) = A1) = z(1).

It should be noted that the terms “path” and “loop” are used in this chapter
with the above (topological) meaning. They are used in a slightly different way in
graph theory.

Now suppose X = |K]| is the polyhedron of some simplicial complex K.

Definition 5.1.3 A path A : I — X = |K| is simplicial if there ezist vertices

Vo, V1s-..Un of X such that

<s< ™l o<ci<n-1.

As) = (1 +17—ns)v; + (ns — ¢)vig, n

S|e

Intuitively, a simplicial path is a path that travels “linearly” from vo to v;, then
from v; to v,, etc. It is completely determined by the vertices vg, vy, ..., Vs, and we
usually denote it in exactly this way. Also note that a simplicial path is contained

in the 1-skeleton, X (1), of the polyhedron X.

Theorem 5.1.4 ([12] Section 3.6) Any path A : I — X, with initial and terminal

points which are vertices of X, is homotopic to a simplicial path.

It is a well known theorem (cf. [11], p.46 Theorem 3.6) that for a path connected

space X, m(X, zo) is independent of zg up to isomorphism. We therefore have the
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following corollary of Theorem 35.1.4, which will be of the utmost importance in

Section 5.3.

Corollary 5.1.5 For any connected polyhedron X = |K|, 71(X,zo) can be deter-
mined by taking zo to be any vertez of X, and considering only simplicial loops

Vg, V1, - . ..Un, Where g = Vg = V.

Finally, we return to the generalized Kneser graphs G(n,r, ¢) and mention some
of their basic properties.

Any Kneser graph G(n,r,q) has many symmetry properties. In particular, each
vertex of G(n,r,q) has k = (;) (’r‘:;) neighbours. In the language of graph theory,

G(n,r,q) is a k-regular graph. A further symmetry property is given by the next

lemma.

Lemma 5.1.6 Let A, B be any two vertices of G(n,r,q). Then there ezists a graph

automorphism, @, of G(n.,r,q) onto itself such that ¢(A) = B.

Proof: Let A = {a,,...,a.},B = {b,...,b,} where ] < a;,b; < nforalll <
t < r. There is clearly a permutation 7 of {1,...,n} such that 7(a;) = b;, for all
1 <2 < r (7 is in general not unique, since n > r). The vertex map ¢ : V — V
defined by é{cy,...¢;} = {r(c1),...,7(cr)} clearly induces the desired automorphism
of G(n,r,q). a

Combining Corollary 5.1.5 and Lemma 5.1.6, we see that the computation of
T1(Xe, o), where G = G(n,r,q), can be carried out with zo any vertex. In particular

we shall choose zo = {1,2,...,7} := A,.
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5.2 0-Connectivity

Theorem 5.2.1 Let G = G(n,r,q). Ifq>1 orifq=0and n > 2r + 1, then Xg

is path connected.

Proof: Let G = (V,E) = G(n,r,q). We need to show that between any two
vertices A, B in N = N(n,r,q) there exists a path. It suffices to show that {A, B}
is a 1-simplex in N whenever [AN B| = r — 1, for it is clear that one can obtain any
r-subset of n from any other r-subset in steps that only change one element at a time.
So let A = {a1,...,ar-1,a,} and B = {a;,...,8,-1,a"}. Clearly |[AU B| =r + 1.

Case ¢ > 1.

l2\(AUB)| = n—|AUB|

n—r—1

> r—q-—1, sincen+q>2r.
Therefore there exist by,...,0,_q—1 € AUB. Let C = {a,,al,a1,...a9-1,b1,- .., br_q1 }.
Thus [CNA|=|CNB|=gq. So, (A,C) and (B,C) € E and {A, B} C o(C) follows.
Therefore AB is a l-simplex in V.
Case ¢ = 0.

[R\(AUB)| = n—|AUB|

= n—(r+1)

= (n—-r)-1

> (r+1)—1, sincen>2r+1
> r.

Thus there exist by,...,b, € AU B. Let C = {b;,...,b.}. Notice that |[ANC| =
|IBNC|=0,s0(A4,C), (B,C) € E. It follows that {4, B} C o(C) and thus, AB is
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a l-simplex of V. a

Remark 5.2.2 1. In the case ¢ > 1 of the above proof, when r» = ¢ + 1, one has

simply C = {a,,a,,a1,...,a4-1}-

2. The main idea in the above proof was to use 1-simplexes {AB} in the neigh-
bourhood simplicial complex where {AN B| = r — 1. This idea leads to the

first definition in the following section.

5.3 Simple connectivity of the Kneser neighbourhood com-

plexes

Definition 5.3.1 Let Ag, A1, -.., An be a sequence of vertices in a neighbourhood
complex N(n,r,q) such that there is an edge between A; and Aiy;.
Ao A2 Am-l
A Az Am

We call this path a slow path if |[A;NAiq|l=r—1, for0<:<m—1.

Examples 5.3.2 For N(10,3,1), the path ABC is slow when A = {1,2,5}, B =
{1,2,7} and C = {2,3,7}. The path ACB is not slow.

Lemma 5.3.3 Any path in N(n,r,q) is homotopic to a slow path (with the endpoints

of the path always fized), for any generalized Kneser graph.

Proof: Let G(n,r,q) = (V,E) and N = N(n,r,q) = (V,Z). We can restrict

ourselves to the case where r > 2 since if r = 1, any path is a slow path.
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It clearly suffices to show that any edge in NV is homotopic to a slow path. so let
A,B € V such that AB isan edgein N, ie. {A,B} € Z. f|ANB|=r—1 then
we are done, since by definition AB is then a slow edge (path) in N. Thus we will
assume that [AN B} < r — 2. We now need to show that AB ~ AA;A,---A,B
where AA;A;--- A B is a slow path in N for some m > 1.

Since |n| = n and |V]| < oo, it suffices to prove that for any edge AB with
|AN B| < r —2, there exists A; € V such that |[AN A;] =r—1 > [AN B| and

|A;n Bl > |AN BJ.

Ay

For the edge AA; is now slow, and if [A, N B| < r — 2, then we can repeat this
procedure with the edge A;B to find another vertex A, such that |[A; N Ay =r—1
and |4, N B| > |A; N BY, until we have |A,, N B| =r — 1 for some m € N.

Keep in mind that from the above inequalities A, A;, Ao,..., Am, B are all dis-
tinct.

Let A = {a1,...,as,b1,...5:},B = {@1,...,85,¢1,...¢:}, where s + ¢ = r and
s=[|ANB| <r -2 (thus t > 2).

Since {A, B} € X, this implies that there exists a vertex C € V such that
(A,C),(B,C)e E,ie. |[ANC|=q=|BNC|. Thus {A,B} Co(C).

Now let u = |[ANBNC|and v = s —u, i.e. u+v =s. The following Venn

diagram illustrates the situation.



Therefore
(ANCN\B| = g—-u = [(BNC)\A|

|JA\(BUC)| = r—v—q = |B\(AUCQ)|.
Now we have two different cases to be concerned with, one where r —v — ¢ > 0

and the other when r — v — ¢ = 0.
Let us consider the first case when r —v— ¢ > 0, i.e. A\(BUC),B\(AUC) # 0.
Therefore there exists a € A\(BUC) and b € B\(AUC). Let A; = (A\{a})U{b}.
Then A1 NC = ANC since a,b & C. We now have

[A1NAl=r—1>r—2>r—t=s,
|[A1NB|=s+1>s, and
|ICN Al =gsince ANC =A;NC.

Hence A; € 0(C), since |C N A;| = g. It follows that {A, A;, B} C o(C).

Therefore the edge AB is homotopic to the path AA;B. Thus the lemma is

proved for this case.
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Now let us consider the case where r —v—¢ =0, i.e. A\(BUC), B\(AUC) = 0.
Thereforer —v=gqandg—u=r—v—u=r—v—(s—v)=r—s =t > 2. Therefore
there exists a € (AN C)\B and similarly there exists 5 € (BN C)\A4, i.e. a € B and
b & A. Also note that a # b. Let A, = (A\{a}) U {b}. We now have

ICNn Al = |Cn[(Aa\{a})uU {8}]|
= [[Cn(A\{eh]u(C N {8})]
= [Cn(A\{ahl+[C N {8} - |C 0 (A\{a}) N {b}]
= (¢—1)+[Cn{d} —|Cn(A\{a}) N {b}|, sincea € C
= (¢—1)+1-|Cn(A\{a}) N {b}], since b € C,
= (¢q—1)+1—-0, since b¢ A,
= q.
Therefore (41,C) € E. It follows, once again that {4, A;, B} C ¢(C), and hence
the edge AB is homotopic to the path AA;B. ]

Corollary 5.3.4 Any loop in N(n,r,q) is homotopic to a slow loop (with the base-

point of the loop always fized), for any generalized Kneser graph.

Proof: Let N = N(n,r,q) = (V,Z). Suppose that A = AgA;--- A Ao is a loop
in N, where A; € V for all 0 <7 < n. We know that by the definition, a loop is a
path which contains the same initial and terminal points. Therefore by Lemma 5.3.3,
A = X' where X’ is a slow path with the endpoints fixed. Therefore X’ is a slow loop,
since Ag is both the initial and terminal point. m]

Recall that G(n,r,r) is a graph with no edges, G(n,n,q) is a graph with only
one vertex and G(n,1,0) is the complete graph on n vertices. These are all rather

trivial cases, thus we only considern > r > ¢ > 0 and r > 1. In fact these cases will
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be ruled out in the remainder of the thesis with the assumption that n+¢q > 2r + 2,

r>2andr>gq.

Definition 5.3.5 For any path p = A,A,...A, in N(n,r,q), the support of u is

denoted supp(u) = min{m : A; Cm,1 <i<s}.

Notice that for N(n,r,q), r < supp(y) < n. Our main theorem for simple
connectivity is proved next as Theorem 5.3.6. This theorem handles all cases except

for G(n,2,1) and G(n,1,0). Theorem 5.3.7 completes the remaining cases.

Theorem 5.3.6 N(n,r,q) is 1-connected when n+q > 2r+2, andr > g+ 2 or

qg=>2.

Proof: Let N = N(n,r,q) = (V,£) and G = G(n,r,q) = (V,E). By Theo-
rem 35.2.1, Xg is path connected, so it remains to show that m;(Xg) = 0, i.e. any
loop is homotopic to the trivial loop. Due to the symmetric properties of the Kneser
graphs, and using Lemma 5.1.6, we can without loss of generality take the vertex
Ao = {1,2,...,7} € V as the basepoint of X and suppose that A = AgA;... A4
is a loop in V. In fact, by Corollary 5.3.4, we can suppose that A is a slow loop,
since we may replace it by any homotopic loop. Suppose supp(A\) = m. Em =r
then A; = Ao, 1 < ¢ < s, whence A is just the constant loop Ag and we are done.
Our plan is to suppose that m > r + 1, and then show that A is homotopic to a loop
p with supp(p) < m — 1. By applying this technique a finite number of times, we
will eventually get A ~ )\’ with supp(\') = r. But then, as in the case m =7, X’ is
just the constant loop Ag, which will complete the proof.

To carry out this reduction, we will use two procedures, called («) and (8). These

are as follows.
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(a) Given a slow edge in N, say AB, with m € AN B and supp(AB) = m, we

shall create a homotopic slow path AA’B with m ¢ A’ (thus any edges with
consecutive m’s are eliminated).

() A B
or d

§~ &

N C

(8) Given a slow path ABC in N with m € A,C and m € B and supp(ABC) = m,

():

(8):

we show ABC =~ AC (and thereby eliminate all remaining m’s).

From the hypotheses on A and B we may write A = {a1,...,ar—2,ar-1,m} and
B = {ai,...,ar-2,a,._,,m}, where ay,...a,_;,a._, < m and are all distinct.
Let A’ = {a1,...,8r-2,a-_1,a._;}. We need to show that {A, A", B} C ¢(C)

for some C € V. Notice that |[AU B| = r + 1. Therefore

n—|AUB| = n—(r+1)
= n—r-—1
> (r+2-¢q)—-1
= r—q+1,

i.e. there exist by,...,br—g+1 € AU B. Let C = {a1,...,a4,b1,b2,...,b,—4}.
Therefore |C N A| = |C N B| = |C N A’| = q, which implies that {A, B, A’} C
o(C). As a consequence, AB ~ ABA’, and procedure (o) is justified.

Having carried out (@), it remains to consider a slow path ABC in NV such that

m € B, m ¢ A,C and supp(ABC) = m. Then A = {a,,...,ar-1,a-},B =
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{a1,...,8,-1,m} and C = {ay,...,ar-1,a.}, with ay,...,a;,a. < m and all
distinct (the case a, = al can also occur but is trivial, the path ABA is

homotopic to the constant path A).

Clearly |[AU BUC| =r + 2. Therefore,

R\(AUBUC)| = n—|AUBUC|

= n—(r+2)

> (2r—q+2)—r-2
= r—gq

> 2, sincer > q+2.

This implies that there exist &y,...,br—y € AUBUC. Thus thereexists D € V
such that D = {a;,...,aq,b1,...,b-—}. Infact, [DNA| = [DNB|=|DNC| =
q. Therefore {A, B,C} C o(D), and the path ABC is homotopic to the path
AC,ie. ABC ~ AC. O

Let us now turn to the two cases not covered by this theorem. The first case is
N(n,1,0), with n > 4. This case is trivial since by Remark 3.3.2 G(n,1,0) = K,, so
Xk, = S™2 (cf. 4.3.13), and connS™"2 =n —3 > 1 (cf. 4.3.3 (3)). It remains to

consider the case where r =2, ¢g=1,and n 2 2r+2—-¢=>5.
Theorem 5.3.7 N(n,2,1) is I-connected when n > 5.

Proof: Let N = (V,X) = N(n,r,q),G = (V,E) = G(n,r,q). As in the proof of
Theorem 5.3.6, X¢ is path connected, therefore consider (without loss of generality)
aloop A = AgA;--- A;_1A¢ in Xg, with Ag = {1,2}. Again, due to Corollary 5.3.4,

we can assume ) is a slow loop. Let supp(A) = m. As before, we can assume that
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m > 3, if m = 2 then A is the constant loop. We would like to show that A ~ )’
where supp()\') < m — 1. Thus we consider the same reduction steps as the ones

found in the proof of Theorem 5.3.6.

(a): From the hypothesis on A and B we may write A = {a,m} and B = {b,m}

for some a,b € n where a # b. First assume that m > 4. Clearly |[AU B| = 3.

[2\[(AU B)U {m,...,n}]|

= n—|(AUB)U{m,...,n}]|

= n—|[AUB|—[{m,...,n}+[(AUB)N {m,...,n}|
= n—3—(n—m+1)+1, sinceme€ AUB

= m-—3

A%

1, from the assumption on m.

Therefore there exists m’ € AU B and m’ < m.
Let A’ = {a,m'} and B’ = {b,m'}. Let C = {a, b}. Clearly, [CNA| = |CNB| =
ICNA"Y=|CnN B'| =1. Hence, {A, B, A’, B’} C o(C). Therefore, AA'B’B is

a slow path in N and m ¢ A’, B'. Thus («) is implemented, for m > 4.

(B): Suppose we have a slow path ABC in N such that A = {a,a'}, B = {a,m},
and C = {a,c}. Once again, it is clear that |[AU BU C| = 4. Now let us

consider the complement of AUBUC.

IR\(AUBUC)| = n—|AUBUC|

n—4

> 1, sincen > 3.
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Therefore, there exists d € AUBUC. Let D = {a,d}. Clearly [DN A| =
|DN B|=|DnC|=1. Therefore, {A, B,C} C o(D). Thus ABC ~ AC, and

(B) is implemented.

Applying («) and (B) a finite number of times, with m > 4, leaves us with a
loop u >~ X where supp(p) < 3. It follows that u can only contain the three
vertices Ag = {1,2}, B = {1,3} and C = {2,3}. It is then clear that yx is
composed of sections such as AgBC Aq (or its reverse) and homotopically trivial
sections such as AqB Ao, etc. However, letting D = {1,4} the loop AgBC A, is
homotopic to the loop AgDAy, as shown by the following diagram, and hence
homotopic to the trivial loop. Note the identification of the two {1,2} vertices

in this diagram (and hence also the two edges from {1,2} to {1,4}).

{12}

o({1,5})

5.4 Computations of specific examples

Notation 5.4.1 In order to make this section a little easier to read, we will not
display the data in exactly the same format as it appears in the files which are
generated by the homology program. Instead of displaying the data “vertically” as

they appear in the files, we will display them horizontally. For example if the file
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contained the data as follows, i.e. with more than one integer per line

1 2 3
4 5 6
7 8 9
10 11 12

we will display it as

1 23/4 5 6
1 2 3{4 5 6|7 8 9{10 11 12|or 3 (5.1)
7 8 9110 11 12

If a file contains only one integer per line for example A below, then we will use

either B or C’s format.

A
1
2
3 B
C
4. 1 2 3 4 (3.2)
» 11]12(3(4|5]6|7|8
5 56 7 8
6
7
8
L

To show the reader some of the output as it is generated by the program, we have
adopted the notation of the program for this section only. Instead of displaying the
edges of the Kneser graph as a set of ordered pairs, i.e. {(v1,v2),(v3,v4)}, they will

be displayed as a list of lists, i.e. [[v1,v2],[vs,v4]]. Similarly for the neighbourhood
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maximal simplexes, instead of displaying them as a power set of sets, we will display
them as a list of lists. For example if {{v;,v2,vs}, {vs,vs,v6}} are the neighbour-
hood maximal simplexes of a simplicial complex, then they would be represented as
[[v1, v2, v3], [v4, vs, ve]] in the program. We will clearly state if we are referring to the

edges of the Kneser graph or the neighbourhood maximal simplexes.

5.4.1 Computation of the homology of N(5,2,0)

Here is an explicit example of the homology program.

We will compute the homology groups of the neighbourhood complex of the
Petersen graph G(5,2,0). For an illustration see Figure 3.6 on page 51. One of the
first things the computer will do is generate the vertices of the graph G(5,2,0) which

are represented below.
{1,2} {2,4}
{1,3} {2,5}
{1,4} {3,4}
{1,5} {3,5}
{2,3} {4,5}.
Then it relabels the vertices and determines the edges in the graph G(5,2,0).

The list of edges in the graph is contained in the file called kn520.

{1,2} &1 {2,4} =6
{13} =2 {25} =7
{1,4} =3 {3,4} =8
{1,5} =>4 {3,5} o9
2,3} &5 {4,5} « 10.



Thus we have the following graph.

<

4
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The edges in the Kneser graph G(5,2,0) are: {[7,8],[6,9], [5, 10], [4,5], [4, 6], [4, 8],

(3,3],(3,7], 3,9],(2.6],(2,7],[2,10],[1,8],[1,9], [1,10]]. Then o(v),the set of neigh-

bours of v, is computed for each v € V (recall that o(v) was defined in Nota-

tion 5.1.1).
v o(v) v o(v)
1/]8 9 10|62 4 9
216 10j712 3 8
3|5 7 9 (81 4 7T
415 6 8 |91 3 &6
53(3 4 10f10|1 2 5

Therefore the neighbourhood maximal simplexes are: [[6,7,10], [5,7,9], [3,4, 10],

[5,6,8], [1,3,6], [1,2,5], [8,9,10], {2,3,8], [1,4, 7], [2,4,9]]. This is printed into the

file kn520 for reference. Figure 5.1 on page 87 shows the relabeling of the neighbour-

hood simplicial complex in Figure 4.1 on page 65. The program now looks at the

corresponding chain complex.
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Since all the maximal simplexes have dimension 2, it follows that C;(V(5,2,0)) =
0 for all 2 > 3. The program proceeds to determine the basis elements of C, and
in doing so creates the files allci5202 and C152021, where both files contain the

following data.

1 2 5|89 10(2 3 8 |1 4 7(6 7 10

(5.3)

5 7 9({2 4913 4 10(5 6 8|1 3 6

The program proceeds, determining the basis of C; and the flag matrix associated
with it (as shown below). The flag matrix was created to speed up the compar-
isons between elements in the neighbourhood simplicial complex, which are done
when constructing the differential matrices. Using a one-to-one function (the hash
function) each basis element of C;(G(n,r,q)) has its own “hash value” for a fixed ¢
which represents that basis element. The flag matrix is a two-column matrix. The
first column represents the hash value of each basis element of C;(G(n,r,q)) for a
fixed 7. The second column represents the row in which they appear in the allcinrqi
file/matrix. The elements of the flag matrix are also arranged in increasing order
with respect to the first entry of each row.

For example, consider the entry 10, 5 in the flag array. The 10 represents the edge
{2,3} in the neighbourhood complex. It receives the ordinal 10 since it is the 10th
entry on the list of all 45 pairs {¢,7}, where 1 < ¢ < j < 10. The second coordinate,
5, denotes the fact that in the first display the basis element {2, 3} is the 5th entry.

Further examples are given in Appendix B.1.6 on page 148.
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A basis for C;.

3 7 (5 98 10{9 10/2 3|2 8 |3 8 {1 4 |2 5(8 9
13 |16|3 6 15 |5 8|68 (4 10{5 6 |7 9|3 4
3 10(4 9(1 7 |4 7 |6 7|6 10j1 2 |7 102 42 9

A flag for C;.

11 2912 9 (15 6

Q]
(S]]

1 27 11}13 8 (4 145 12{6 2310

16 30|18 2020 13|22 7 |24 21|27 24|29 22|30 17|31 18|32 1

33 15|34 2 |36 2537 16|39 26 (41 19|42 28|43 10|44 3 |45 4

Then the homology program determines a basis for C;(IN(5,2,0)). It writes out
the number of elements there are in the basis of C;(/N(5,2,0)) and lists all the basis
elements of the C;(N(5,2,0)), if there are less than 20 elements, in the file called
kn520. It also creates two other types files allci520z, which contains the entire list of
the basis elements for C;(N(5,2,0)), and Ci520Zq where ¢ is the ith cell, and ¢ is the
number of multiples of twenty elements in C;(V(3,2,0)) plus any remainders. The
first file is for the user’s records, if they wish to keep a record. The second file is for
the computer, to help with the derivation of the differential matrices. In fact, this
forces the computer to use more storage memory and less “active” memory.

Using the flag matrix for Cy, and the file Ci52021, the program determines the
differential matrix associated with d; and places the information into the file called
differential2. The first two entries in the following display tell us that d, is a 10 x 30
matrix. The first 30 entries following 10,30 (i.e. the first row of d;) express the
equation d»{1,2,5} = {1,2} — {1,5} + {2,5} = (27) — (14) + (9), as translated by




Figure 5.1: N(5,2,0)

87
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the flag for C; on p. 86. Similarly, the next 30 entries give d,{8,9,10}, etc.

10300 0000 0O0O0O1 0 ©0 O O -1 00©O0CO
6 00 00O0OOGC O1O0OO0O O O O -1 1 00O0O0
¢ 10 000CO0O OOO0OO0O O O O O O O0OOTO
0 o 60001 -1100 0 0 O 0 O 0O0O0OCO
0 0 6000 CO0OO0OCO0C O O O O O O0©O0O0T1
0 00 000O0O OOOOGC O O 0 -1 1 00O

0 00 0O0OO0COC OOOOC O O O O 0 O0OTO®

¢ 00 0001 -1010 0 1 -1 0 0 O0O0O00O0
0 00 0000 OOOL1 O O O O O OOOOO
6 00 00O0O0OC OOOCO O O O O O OOOCO
0o 00 1000 0O0OO0O1 -1 0 0 0 0 O0OOCTO
0O 00 00O0OO0C O1O0O0 1L -1 0 O O OOOO
6 600 0000 OOOCO O O O O O0-1101
6 00 0O0O0OOGCOC OOOOC O O O 0 O 0 0

0o 01 -1100 O0OO0OO0O0C O O O O O OOOTG®O
0 0

The abelian group Co(N(5,2,0)) is then calculated and the data below is stored in

both allci5200 and Ci52001. The associated flag matrix is also determined.

Co

9(5|4|316|7|2[10|8(1

flag for Cy

1 1012 7(3 414 3|5 2|6 5|7 6|8 9|9 1|10 8
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Now the program determines the differential matrix of d;, using the files Ci52011
and Ci52012 as well as the flag matrix for Cy, and writes it in the appropriate form

for Arne Storjohann’s ISmith program as shown below.

3 0 0-1 000 10 0 O O 1 -1 0 0 0 O
o 0 0 0 00O0C OO O O 1 -1 0-1 0 0 O
o 06 0 1 000 OO 1 O O0-1 0 0 O0 o0 O
o 6 0 60-101 00 O O0-1 0 0 o0 0 1 o
6 0 1 0 00O OO-1 0 1 0 O O O -1 o0
6 o0 1 0 00O OO O-1 0 O O O 1 0 O
6 0 0-1 000 O1 O O O O0-1 0 0 0 -1
1 0 0 0 0O0O0C 10 0 0 O 0 -1 0 -1
¢ o 0 0 001 00 O O O-1 0 0 0 1 o0
¢ 60-1r 0 000 10 O O-1 0 0 1 0 0 O
6o o 1 0 0006-1r0 0 O O O O 1 -1 0 O
6 o o0 0 000-10 0 0 1 O O 1 0 -1 0
¢ 0 o0 0 00O OO O O 1 O O O-1 0 o

-1 0 0 1 00O0O OO O O O-1 1 0 0 0 0O
¢ 0 0o 0~-100 10 0 O O O O O O 1 o
06-1 0 0 000 -10 1 O O 0 0 1 0 0 o0

-1 0 0 0 100 00 O0-1 0 0 0

We have now computed all the chains and differentials in the following sequence.
0303050 %0

We also know that from the above sequence, kerdy = Cj and imdp = 0. Using Arne
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Storjohann’s ISmith program, we can determine the kernel and image of d, and d;
shown below.

kerd, =0 kerd; =~zZ% kerd; =0
imd, = Z° imd; 2% imd;=0, forall : > 3.
Therefore,
Ho(N(5,2,0)) = kerdp/imd, =~ zZ9%z° =~ z
H,(N(5,2,0)) = kerd;/imd, =~ z%/zZ° =~ z!
H3(N(5,2,0)) = kerdy/imds; = 0/0 = 0
H;(N(5,2,0)) = kerd;/imdiy; = 0/0 = 0, forallz>3.
This completes the calculation of the homology of N(5,2,0). Without going through

these details again, we will merely state the homology groups of the given spaces

which appear after Section 5.4.2.

5.4.2 Computation of the Relative Homology of N(3,2,0)

Before we proceed with the computation of the relative homology of N(3,2,0), we

first give a definition and state two useful theorems.

Definition 5.4.2 Let K = (V,X) be a simplicial complez (abstract or geometric),
and let v € V be a vertez of K. The star of v, denoted star(v), is the smallest

subcomplez of K containing all simplezes T € £ for which v € 7 (i.e. v is a vertezx

of 7).

Remark 5.4.3 In many texts this would be called the “closed star” of v. One may

also define the “open star” of v, cf. [11], p.135, [12], p.114.
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Example 5.4.4 Let K = (V,X) be a simplicial complex with V = {a,b,¢,d, ¢, f, g}
and maximal simplexes {{a, b}, {a,c}, {b, f, g}, {b,c,d,e}}. The sketch below illus-

trates K.

Then we have the following results:

—

. star(a) = {{a}v {b}v {C}, {av b}’ {a’ c}}

star(b) = K \ {{a,c}, i.e. the star of b is the entire simplicial complex with

N
.

the interior of edge {a, ¢} removed.

3' Star(c) = {{a}’ {b}’ {c}’ {d}7 {e}’ {a’ C}’ {b7 c}’ {b’ d}’ {b7 6}7 {c’ d} ? {c7 e}’ {d’ e}’
{b,¢c,d}, {b,d,e},{c.d, e}, {b,c,e}, {b,c,d,e}}.

4. star(d) = {{b},{c}, {d}. {e}, {b,c}, {b.d}, {b,e},{c,d}, {c,e}, {d, e}, {b,c,d]},
{b,c,e} . {b,d,e}, {c,d, e}, {b,c,d,e}}.

3. star(e) = star(d).
6. star(f) = {{b}.{f}, {g}, {b, f}, {b, g}, {f> g} {b. f. 9}}.

. star(g) = star(f).

-~

The next theorem is simply stated here, cf. [11], p.153.

Theorem 5.4.5 For any vertez v of a simplicial complez K, |star(v)| is contractible.
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The final theorem stated here is an elementary consequence of the exact sequence
of a pair, and the fact that all homology groups H;(X) of a contractible space X

vanish for 7 > 0. We omit the proof.

Theorem 5.4.6 Let (Y, X) be a polyhedral pair of spaces with X contractible. Then,
foralln>0,H,(Y) =~ H,(Y, X).

Of course, we shall apply these two theorems in the case where Y is the neigh-
bourhood complex of a Kneser graph, and X is the star of a vertex of Y. To show
how this can reduce the calculations involved, we now repeat the calculations for
G(3,2,0) using the above techniques.

Specifically, in this section we will compute H.(L, M) where L = N(5,2,0) and
M = star({1,2}). The computation of the homology is the same as in Section 5.4.1
up to and including the neighbourhood maximal simplexes. Then the relative homol-
ogy program branches off from that point on. The M = star(1) is determined to be
([1,4.7].[1,3,6]. [1,2,5]]. We also know, since the maximal simplexes in the neigh-
bourhood complex contain three vertices, that C;(L) = 0 for all ; > 3. Therefore,

Ci(M) =0 for all 7 > 3. The basis elements of Co(M) are as follows:

A basis for Cy(M)

1 4 7/1 36|12 5} and

a flag for Co(M)

3 311 2|18 1}
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After the flag matrix for C2(M) has been determined, the basis elements of C2(L, M)

can now be determined, which are as follows.

3 4 10|56 8 |2 4 9|2 3 8

8 9 10(6 7 1015 7 9

Now the program will compute Cy(M), its flag matrix and using both of them, it
will determine the basis elements of C1(L, M) and the flag matrix associated with

it. These are shown below.

A basis for C1(M)

1 212 5|11 63 6{1 441 7|1 3|1

(J)}
S
~

a flag matrix for C;(M)

1 1(2 7|3 5|4 8|5 3(6 6|12 2,20 4|27 9

a basis for Cy(L, M)

4 10|13 10|13 4 |7 1012 3 |2 8|3 8

8 9 |8 10|9 10|/6 7 |6 10|5 8|6 8} and

4 9156 |59 (|5 7|79

o
W
N
e

a flag for C1(L, M)

10 5 (11 15{15 6 |16 16(18 3 |22 7 |24 2

29 17130 1 |31 18{32 20|33 13(34 19|36 11 }

37 14139 12|41 21{42 4 |43 8 (44 9 |45 10
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Then the differential matrix, D, is determined to be the following

721 1 -1 1 00O0O0OO OOGCOOOO O O

0O 0 0 0 0O0O0OOO0O OOOOOO 0 -1
1 0 0 0 1 O0O0O0OO0OCO OOOOOCO O O
o 0 0 0 1 -11000 O0O0O0OO0OCO0OTI -1 1
6 0 0 0 O OOOGCGOO OOOOOO O O
6 0 0 1 -1 10000 OOOGOOO O O
6 0 1 0 0 0O0O0CGOOI1 -1 0000O0C O o
0o 0 0 0 O O0OO0OO0GCGOO OOCOOOCO O0 O
0 0 -1 1 1

After D, has been determined, we have one more differential matrix for the computer
to compute, which is D,. In order to do this the program will first have to determine

Co(M), its flag matrix and then Co(L, M). These are

A basis for Co(M)

6[3{112(7|5]|4

a flag matrix for Co(M),

[S1]

1 3|12 4(3 2{4 7|5 66 1|7
a basis for Co(L, M)

1098

flag for Co(L, M)

8 3|9 2|10 1
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Then the differential matrix, D; is determined as follows.

22310010 00O O1 O0O0O0O0OO0OTO
0100101 -110-11-100001
6000100 100 0O 100100
0001000 O0OT1 o0

Piecing all of this together, we have the following chain complex:
05 Co(L, M) B Co(L, M) B Co(L, M) 2 0.

Using Arne Storjohann’s ISmith program, we find that

kerd, =0 kerd, = Z'® kerd; =0

for all z > 3.
imd, #Z° imd, ~2z® imd;=0
Therefore,
Ho(L,M) = kerdy/imd, = z3/z° = 0
Hy(L,M) = kerd,/imd, =~ z¥/z° ~ z!
Hy(L,M) = kerdsfimds = 0/0 = 0
H(L,M) = kerd:/imdiys = 0/0 = 0, foralli> 3.

These results agree with those of Section 5.4.1, but the work involved is considerably
reduced. This shows the advantage of using relative homology, and is important
since the size of the calculations involved grows rapidly with n (and quickly reaches

the limits of powerful computers).
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5.5 Summary of Results

N=N(4,1,0)=

kerdy, ~ z4
kerd; ~ 73
kerd, ~ Z

kerd; =0

N(4,3,2)

imdo =0 Ho(N) =kerdy/imd, =~ z*/23 =~ Z

imdy =~ 2z%® Hy(N)=kerd,;/imd, =~ 23/23=0

imd, = 2% Hy(N) =kerd;/imds = Z/0=2

imd; =0 HiN)=kerd;/imd;;; =0/0=0, forall i >3

N = N(4,2,0), which consists of six distinct points.

ker do =~ ZS

kerd; =0

N =N(4,2,1)

kerdo =~ z8

ker d1 =~ Zlo

ker d2 ~ Zs
kerd; =0
ker di =0

imdo =0 Hp(N) =kerdy/imd, ~ z8/0 = z°
imd; =0 H;(N)=kerd;/imd;;; =0/0 =0, forall>1

imdo =0 Ho(N)=kerds/imd; = z8/Z°=~ 2z

imd, = Z° Hy(N) =kerd,/imd; ~z1%/2°~ z

imd, = Z° H,(N) = kerd,/imds ~ 23/Z° =0

imds = Z® H3(N) = kerdsz/imds =0/0 =0

imd; =0 HiN)=kerd;/imd;;; =0/0=0for all : >4
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N = N(5,1,0) ~ N(5,4, 3)

kerdy =~ 25
kerd; ~ z8
kerd, ~ Z*
kerds =~ Z

ker d,' =0

imdy =0
imd; ~ z*
imd, = z°
imds =~ zZ*

imd,- =0

Ho(N) =kerdp/imd; =~ Z%/Z2* =~ Z
Hy(N)=kerd,/imd, = 25/2% = 0

Hy(N) = kerdp/imds ~ 24/Z* = 0

Hs(N) =kerds/imds ~ Z/0 ~ Z

H;(N) =kerd;/imd;y, =0/0=0, forall: > 4

N =N(5,2,1) =~ N(5,3,2)

kerdo = z'°
kerd, =~ 73
kerd, = z™
kerds; ~ z%!
kerd, ~ z°
kerds =0

kerd; =0

imdy =0

imd1 ~ Zg
imd, ~ z36
imd3 =~ 274
ima'4 ~ ZSO
imd5 =~ Zlo

imd; =0

Hy(N) =kerdy/imd; =~ z°/Z° =~ Z

H)(N) = kerd;/imd, =~ 2%/2% =0

H3(N) =kerd,/imdz ~ Z™/Z2™ =0

H3(N) = kerd;/imd, =~ 281 /2% ~ z!!

Hy(N) = kerdy/imds ~ z'°/Z° = 0

H3(N) =kerds/imds =0/0 =0

H;(N) =kerd;/imd;4; =0/0 =0, forallz > 6

N = N(86,1,0) ~ N(6,5,4)

kerdy =~ z¢

kerd; =~ z'°
kerd, ~ z'°
kerd; ~ z°

kerd, =~ Z

kerd; =0

im do =0
imd; ~ z°
imd, ~ z1°
imds; =~ zZ!°
im d3 ~ Zs

imd,- =0

Ho(N) =kerdy/imd, = 28/2° =~ Z

Hi(N) = kerd, /imds ~ 21°/2° = 0

Hy(N) = kerd/im ds ~ 21°/2° = 0

H3(N) = kerds/imdy =~ 2°/2° =0
Hy(N)=kerds/imdy; = Z/0=Z
H;(N)=kerd;/imd;4; =0/0 =0, foralli > 5



N =N(6,2,0) ~ N(6,4,2)

kerdo = Z'® imdy =0 Ho(N) =kerdo/imd; = z%/z = Z

kerd; 2% imd; =2z H;(N)=kerd,/imd, ~z°/Z' =0

kerdy ~ Z'%° imd, ~ 2% Hyp(N) = kerdz fim ds ~ 2169/7Z1%0 r 719

kerds ~ Z” imds; =2Z'° H3(N)=kerds/imds ~Z™/Z27 =0

kerds; = Z'° imds~Z™ Hy(N)=kerds/imds ~z'%/Z'% =0

kerd; =0  imds~2Z" Hs(N) = kerds/imde = 0/0 = 0

kerd; =0 imd; =0 H;(N) = kerd;/imd;1;, =0/0 =0, forall: >6

N =N(6,2,1) = N(6,4,3)

kerdo = Z»*® imdy =0 Ho(N) =kerdo/imd; = z2¥/zM =~ Z

kerd; = z%* imd; =2z* H;(N)=kerd,/imd, ~z%/z° =0

kerd, = 2%%° imd, =~ 2z% H,(N) =kerd,/imds ~ z32°/23%° = 0

kerds ~ Z imds ~Z%%° Hy(N) = kerds/im dy & 2616/25% = 2

kerd, = z3% imd, =~ 2% Hy(N) = kerd,/imds ~ z315/231% = (

kerds = 2'% imd; = z%° H3(N) = kerds/imds = z'95/Z1% = 0

kerds =~ Z'® imds = Z'% Hg(N) =kerds/imds =~ z'3/Z'° = 0

kerd; =0 imd; = 2'®* H;(N) =kerd;/imdg =0/0 =0

kerd; =0 imd; =0 H;(N) =kerd;/imd;+; =0/0 =0, forall i >8

N(6,3,0), which consists of twenty distinct points.

kel'do ~ Z20 lmdo =0 HO(N) = kerdo/imdl =~ 220/0 ~ Z2O

kerd; =0 imd; =0 H;(N)=kerd;/imd;y; =0/0=0, foralli>1
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N =1N(6,3,1) =~ N(6, 3, 2), is discussed in the next section.
Let M = N(6,3,1) and L = star({1,2,3}).

kerdo =~ Z imdyg =0 Ho(L,M) =kerdy/imdy, = Z/Z =0
kerd, = Z'7 imd; ~zZ Hy(L, M) = kerd, /imd, ~ Z'7/z" =0
kerd, =~ 233! imd, ~ z'7 Hy(L, M) = kerd,/imd; = 2%!/(z3° 0 2z) = z,

kerds =~ z°"! imd; = z3°@ 2Z H3(L, M) = kerds/imd, = z°11/27° ~ 7141

kerd, ~ z%'® imd, =~ z™° Hy(L,M) = kerdy/imds =~ z6'/z5'6 = 0

kerds ~ Z3%® imd; =~ 756 Hs(L, M) = kerds/imdg =~ z3%8/2%%¢ = 0

kerds =~ 7% imdg ~ 73%8 He(L, M) = kerds/imd; =~ 2%8/z%8 = 0

kerdr =~ Z'* imd; =~ 788 H:(L,M) = kerd;/imdg ~ Z'1/Z2'* = 0

kerds = 0 imdg ~ z11 Hg(L, M) = kerds/imdy =0/0 =0

kerd; =0 imd; =0 H(L,M) =kerd;/imd;y; =0/0=0, forall:>9

N =N(7,1,0) ~ N(7,6, 5)

kerdo = Z" imdy=0  Ho(N)=kerdy/imd, =~ Z7/25~Z

kerd; = zZ¥ imd, ~2z% Hy(N

el'dl/lmdz ~ 2215/215 =0

kerd; = Z*° imd, =~ Z'®* H,(N) = kerd,/imd3 ~ 2?°/z® =0

kerds;/imd; =~ z'3/2¥° =0

)
)
kerds = Z'® imd; =~z H;(N)
kerds =~ Z°® imdy =2z Hy(N) = kerdy/imds ~ z°/2° =0
kerds ~Z imds;~2Z® Hs(N)=kerds/imds~zZ/0xZ

kerd; =0 imd; =0 Hi(N) =kerd;/imd;y; =0/0 =0, forall:>6



N =N(7,2,0) ~ N(7, 5, 3)

kerdy = z**
kerd; =~ z1%
ker d, ~ 71935
kerdz ~ 72335
kerd, =~ 72?576
kerds ~ z17%4
kerdg =~ 2756
ker d; ~ z8°
kerds ~ z%
kerdg =0
kerd; =0

imdo =0
imd; =~ z%
imdg ~ 7190
im d3 s 71035
imdy =~ 722%
im ds ~ Z2576
imd, ~ z17
im d7 =~ 2756
im d1 ~ 2189
im dg ~ ZZI

imd; =0

100

Ho(N) =kerdy/imd; = 22}/2® =~z
H,(N) =kerd,/imd, = 219/7'%° =0
H,(N) = kerd;/im d; = Z193%/71035 = (
H3(N) = kerdz/im dy =~ 22335/722%6 ~ 7%
Hy(N) = kerd, /im ds ~ 2%57/22576 = (
Hs(N) = kerds/imdg ~ Z'"%/Z'™%* = 0
Hs(N) = kerds/imd; =~ Z275/Z27%¢ = 0
H7(N) = kerd;/imdg ~ 2'%9/28 = 0
Hg(N) = kerdg/imdy = Z%*/2% = 0
Hg(N) =kerdy/imdy;o =0/0=0

Hi(N) = kerd;/imdsy; = 0/0 =0, for all i > 10
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N =N(7,2,1) = N(7,5,4)
Let L = N(7,2,1) and M = star({1,2}).

kerdo=0  imdo=0  Ho(L, M) =kerd/imd; = 0/0 =0
kerd; =z imd, =0 H,(L,M) =kerd;/imd, = 2?°/z*° =0
kerd, = 2% imd, = Z?® H,(L,M) =kerd,/imds ~ z%8°/z2%0 = (
kerds = Z'% imd; ~ 2% Hy(L, M) = kerds/im dy & Z1545/71299 . 7246
kerd, = zZ13% imd, =~z H,(L,M) =kerd;/imds ~ z'3%/71386 ~ 77
kerds =z imds; ~ 23 H (L, M) =kerds/imds = 2%4/2%% = (
kerds ~ 7% imds ~ 2z Hy(L, M) = kerds/im d; ~ Z°%/2%% = @
kerds ~ 2% imd; ~ 2% Hy(L, M) = kerd;/imdg ~ 2%°/2% = 0
kerds = zZ'' imds ~Z%® Hg(L,M) =kerdg/imds =~ Z'/Z'' =0
kerds =0 imdg &~ Z' Hg(L,M) =kerdy/imdi;s =0/0=0

kerd; =0 imd; =0 H(N) =kerd;/imd;4; =0/0=0, for all : > 10

N = N(7.3,0) = N(7,4,1) (which is not 1-connected)

kerdo = zZ¥® imdy =0 Ho(N) =kerdy/imd; = 2%z~ 2z

kerd; =z imd; ~z* H,(N) =kerd,/imd; =~ z'"6/Z1% =z

kerd, = Z* imd, = 2z!%® H,(N) =kerd;/imds =~ 2%/2% =0

kerds; =0 imd; = Z% H3(N) =kerds/imds =0/0=20

kerd; =0 imd; =0 H;(N) =kerd;/imd;4; =0/0=0, forall: >4
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5.6 Comparison with Upper Bounds for Chromatic Num-

bers

With the graphs given in the examples in Section 5.5 as well as many others, it is
comparatively easy to find the upper bounds for the chromatic numbers. Without
much thought at all, an obvious upper bound for any graph would be the total
number of vertices in the graph. Yet, with a touch of thought, we can scale this
figure down considerably. The next example illustrates this. It will be seen that in
most of the cases in Section 5.5 the upper and lower bounds coincide, thus giving
us the exact chromatic number. In this section we will only consider the graphs
G(n,r,q) where ¢ > 0 since ¢ = 0 is dealt with in [7]. Lovdsz’s paper actually shows

that when ¢ = 0 the upper and lower bounds agree.

Example 5.6.1 In Section 5.5, N(4,2, 1) is 0-connected, which implies that x(G(4,2,1)) >

0 + 3 = 3. Here is an explicit 3-colouring for G(4,2,1).

Blue | Navy | Cyan
{1,2} | {1,3} | {1,4}
{3,4} | {2,4} | {2,3}

Therefore an upper bound for the the chromatic number of G(4,2,1) is 3, which

is the same as its calculated lower bound, implying that the chromatic number for

G(4,2,1) is precisely 3.

Example 5.6.2 From the data in Section 5.5 one concludes that N(5,2,1) is 2-
connected which implies that x(G(5,2,1)) > 2+ 3 = 5. Here is an explicit 5 -
colouring of G(5,2,1).



Green | Turquoise | Chartreuse | Avocado Green | Forest Green
{1,2} ] {1,3} {1,4} {1,5} {2,3}
{3.4} {2,5} {3,5} {2,4} {4,5}
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Thus in this case both the upper and lower bound are the same, implying that

the chromatic number of G(5, 2, 1) is in fact 3.

Example 5.6.3 Recall that in Section 5.5 it is shown (also using the Hurewicz

Theorem 4.3.4 and Theorem 5.3.7) that N(6,2,1) is 2-connected, which implies by

the Lovdsz Theorem, Theorem 4.3.10, that x(G(6,2,1)) > 2 + 3 = 5. In fact, here

is an explicit 5-colouring for G(6, 2, 1).

Maroon | Green | Gold | Silver | Blue
{1,2} | {1.3} | {1,4}{1,5}|{1.6}
{3,4} | {2,5} | {2,6} ] {2,4}|{2,3}
{5,6} | {4,6} |{3,5}|{3,6}|{4,5}

Example 5.6.4 Recall that from Section 5.5, N(7,2,1) is 2-connected. Therefore,

x(G(7,2,1)) > 2+ 3 = 5. In this particular case, the upper bound that we have

found is not 5. Here is an explicit 7-colouring of G(7,2,1).

Purple | Violet | Grape | Indigo | Plum | Lavender | Mauve
{1,2} | {1,3} | {1,4} | {1,5} | {1,6}| {1,7} {2,7}
{3,4} | {2,5} | {2,3} | {2,6} | {2,4}| {3,5} {3,6}
{5,6} | {4,7} | {6,7} | {3,7} | {5,7}| {4,6} {4,5}

Therefore 5 < x(G(7,2,1)) < 7.
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Example 5.6.5 Note that the neighbourhood simplicial complexes for both N (6, 3,1)
and N(6,3,2) are identical. In fact, the graphs G(6,3,1) and G(6,3,2) are isomor-
phic. This does not follow from duality or seem to follow from any other general
principle, but we will show it by exhibiting a specific isomorphism.

Let ¢ : V — V' where G(6,3,1) = (V,FE) and G(6,3,2) = (V',E"). We will

define ¢ as follows.

v

é(v)

v

é(v)

v

¢(v)

v

$(v)

{1.2,3}
{1.2,4}
{1,2,5}
{1,2,6}
{1.3,4}

{1,2,3}
{1,5,6}
{2,4,5}
{3,4,6}
{3,4,5}

{1,3,5}
{1,3,6}
{1,4,5}
{1,4,6}
{1,5,6}

{1,4,6}
{2,5,6}
{2.3,6}
{1,2,4}
{1,3,5}

{2,3,4}
{2,3,5}
{2,3,6}
{2,4,5}
{2,4,6}

{2,4,6}
{3,5,6}
{1,4,5}
{1,3,4}

{2,3,5}

{2,5,6}
{3.4,5}
{3,4,6}
{3,5,6}
{4,5,6}

{1,2,6}
{1,2,5}
{1,3.,6}
{2,3,4}
{4,5,6}

One can tediously check that ¢ is an isomorphism of graphs. Thus we will deal
with G(6,3,1) only and G(6,3,2) will reap the benefits directly from this calcula-

tion. From Section 5.5 we have discovered that N(6,3,1) is 1-connected. Therefore,

x(G(6,3,1)) 2 1 +3 = 4. Here is an explicit 6-colouring of the G(6,3,1).

Red

Pink

Marocon

Ruby

Magenta

Crimson

{1,2,3}
{1,2,4}

{1,3,4}
{1,3,5}
{1,3,6}

{1,4,5)
{1,4,6}
{1,5,6)

(2,3,4}
{2,3,5}
{2,3,6}

{2,4,5}
{2,4,6}
{2,5,6}

{3,4,5}
{3,4,6}
{3,5,6}
{4,5,6}

Therefore 4 < x(G(6,3,1)) < 6. Similarly for G(6, 3, 2).
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5.7 Checking Procedures

The program was written in Maple to create the differential matrices for a given
simplicial complex N(n,r,q). The data generated by the homology program was
checked by the running the relative homology program, comparing the resulting
data, and scrutinizing the output before the relative homology program was created.
In order to check the relative homology program a completely different algorithm was
used. The programming language C was chosen to generate files and compare them
to the ones generated by Maple. That way if there were any problems in the Maple
program it would have become clear with this new algorithm. First, the highest
nonempty n-chains generated for both K and M from the relative homology program
were checked by hand. A procedure was created to make sure that the dimension n
flag matrices did not share hash values, which would mean that they would either
have a basis element in common or the hash function was not working properly. After
establishing that the bases for C,(K) and C,(M) were disjoint a hash table file for
each (’r‘) case was created. This hash table did not use the hash function. Each row
in a hash table file would consist of the r-subset of n in a lexicographical order and
the last integer in the row would represent the row number. In fact this row number
is precisely the hash value for the r-subset. Using the dimension n flag matrices
the files representing both C,(K') and C,(M) were generated. Comparing these files
with the ones that Maple had created enabled us to see if the hash function and
flag matrix function were working properly. The data in each case should have been
identical, otherwise the hash function was not working properly. After successfully

passing these series of tests, it was obvious that the hash function was working
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properly, since we could create C,(K) and C,(M) from the flag matrices. Thus the
differential files were also created using both the pos.n and neg.n files to make sure
that £1 and 0’s were placed in the correct positions in the differential files. Some of
the smaller differential files were checked by recreating the differential files with the

C code and comparing them to the ones generated by the Maple program.



Appendix A
Homology Program

The homology program described in this appendix is written in MAPLE, and is
specifically geared to calculate the differential matrices of the neighbourhood com-
plex of the generalized Kneser graphs G(n,r,q). Each procedure in the program will

be described either in this appendix or in the following one.

change requires the input A which must be a matriz and a string of text which
is the filename the user wants the information to be stored under in their directory.
This procedure first opens up the file (which it is going to write to) and enters one
number per line. The first number is the number of rows in the matriz A. The second
number is the number of columns in A. Then for every line it enters an element of
the matriz, and it reads the matriz row by row. For ezample for the matriz:

1 2 3
a=[i 58]
typing change(A,first-try); in MAPLE will produce the file called first-try and in that
file the information will be displayed as:

[» NN Y O Y Y

The reason I have this procedure is to run Arne Storjohann’s Integral Smith pro-
gram, which can handle larger matrices and with more efficiency than MAPLE.

change := proc(A filename)
local i,j,m.n;
writeto(filename);
m := rowdim(A);
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n := coldim(A);
lprint(m);
lprint(n);

for i to m do
for j to n do lprint(Al[i,j]); od;
od;
writeto(terminal);
end;

See Appendiz B for a description.

binsearch := proc(value,A,top,bottom)
local compare,leftover,mid,i;
compare := bottom + top;
leftover := modp(compare,2);
mid := (compare + leftover)/2;
compare := A[mid,1];

if (A[1,1] = value) then
RETURN(eval(A[1,2]));
fi;
if compare < value then i := binsearch(value,A,mid,bottom); fi;
if compare > value then i := binsearch(value,A,top,mid); fi;

if (compare = value) then RETURN(eval(A[mid,2])); fi;

RETURN(eval(i));

end;

See Appendiz B for a description.

differential := proc(rows,cols,iplace)
local i,j,p,n,nump,numn,ncou,pcou,Pos,Neg;
interface(quiet = true);
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print(‘in differential, iplace is: reading pos and neg",iplace);

nump := readdata(pos.iplace,integer,2);
numn := readdata(neg.iplace,integer,2);

Pos := convert(nump,matrix);
Neg := convert(numn,matrix);

writeto(differential.iplace);
nump := rowdim(Pos);
numn := rowdim(Neg);
ncou := 1;

pcou := 1;

p := Pos[1,1];

n := Neg[1,1];

lprint(rows);
lprint(cols);

for i from 1 to rows do
for j from 1 to cols do
if (1 — 1) # cols +j) = p) then
Iprint(1,((i — 1) * cols) + j,pcou);
pcou := pcou + 1;
if pcou <= nump then p := Pos[pcou,1]; fi;
elif (((i — 1) * cols + j) = n) and (ncou <= numn) then
lprint(—1,((i — 1) * cols) + j,ncou);
ncou = ncou + 1;
if ncou <= numn then n := Neg[ncou,1]; fi;
else lprint(0);
fi;
od;
od;
end;

See Appendiz B for a description for both partition and qsort.

partition := proc(A,x,y,i)
local m,k,left,right, dummy,pivot;
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m:=y + x;
if modp(m,2) = 0 then k := m/2
else k := (m + 1)/2;

T

pivot := Alk,i];
A :=swaprow(A,x,k);

left := x;
right ==y + 1;
dummy := true;

while dummy do
while (1=1) do
right := right — 1;
if A[right,i] <= pivot then break fi;
if right = x then break fi;
od;

while (1=1) do
left := left + 1;
if Afleft,i] >= pivot then break fi;
if left = y then break fi;

od;

if left < right then A := swaprow(A,left,right);
else dummy := false;
A := swaprow(A x,right); fi;
od;

if left >= right then RETURN(eval(right)); fi;

end;

gsort := proc(A,x,y,i)
local q,temp,m;
m := rowdim(A);
q := partition(A,x,y,1);
if ¢ > x + 1 then gsort(A,x,q,i); fi;
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if ¢ <y — 1 then gsort(A.q + 1,y,1); fi;
end;

See Appendiz B for a description.

repetition := proc(A)
local B,C;
B := convert(A,listlist);
C := convert(B,set);

B := convert(C list);
C := convert(B,listlist);
B := convert(C,matrix);
RETURN(eval(B));

end;

See Appendiz B for a description.

hash := proc(rowl,length,num Vert)
local amount,sum,i,first,second,choosen,j;
amount := vectdim(rowl);
sum := 1;

if row1[l] > 1 then
for j to (rowl[l] — 1) do
choosen := numbcomb((numVert — j),(length — 1));
sum := sum + choosen;
od;
fi;

for i from 2 to amount do
first := rowl[i — 1] + 1;
second := rowl[i] — 1;

if second — first > —1 then
for j from first to second do
choosen := numbcomb((numVert — j),(length — i));
sum := sum + choosen;
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od;
fi;
od;

RETURN(eval(sum));
end;

See Appendiz B for a description.

createflag := proc(rowA,colA iplace,verticies,n,r,q)
local 1,j,A first,place,size,flag,leftover,counter,mult;
print(‘Verticies‘,verticies);
size := numbcomb(verticies,colA);
flag := array(l..rowA,l..2);
counter := 0;

leftover := modp(rowA,20);

if rowA >= 20 then mult := (rowA — leftover)/20
else mult := 0;
fi;

for j from 1 to mult do
A := readdata(Ci.n.r.q.iplace.j,integer,colA);

for i to 20 do
first := A[i];
size := convert(first,list);
first := convert(size,vector);
place := hash(first,col A, verticies);
flag[counter+i,1] := place;
flag[counter+i,2] := counter + i;
od;

counter := counter + 20;
od;

if 0 < leftover then
mult := mult + 1;
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A := readdata(Ci.n.r.q.iplace.mult,integer,colA );

for i from (counter + 1) to rowA do
first := A[i — counter];
] := convert(first,list);
first := convert(j,vector);
place := hash(first,colA,verticies);
flag[i,1] := place;
flag[i,2] :=i;

od;

fi;

if rowdim(flag) < 50 then
print(‘the flag for C_¢,iplace,'is‘ flag);
fi;

gsort(flag,1,rowA,1);
writedata(flag.iplace,flag,integer);
flag := ‘flag’;
A =A%

end;

See Appendiz B for a description.

P := proc(numEdges,num Verticies,edgeLength,ione,n,r,q,m)

local leftover,i,j,multiples,A,counter,k,B,edge,Edge,u,newedge,place,
spot,found,numNegrow,numPosrow,pos,neg,pcou,ncou,flag,
VertexLength,Pos,Neg,c;

interface(quiet = true);

leftover := modp(numEdges,20);

k := ione — 1;

VertexLength := edgeLength — I;

pcou := readdata(flag.k,integer,2);

flag := convert(pcou,matrix);

pcou = 1;

ncou := 1;

k := modp(edgeLength,2);

numNegrow := ((edgeLength — k)/2) * numEdges;

numPosrow := ((edgeLength + k)/2) * numEdges;



Pos := matrix(numPosrow,1);
Neg := matrix(numNegrow,1);

if numEdges >= 20 then multiples := (numEdges-leftover)/20;

else multiples := 0;
fi;

counter := 0;

for j from 1 to multiples do
A := readdata(Ci.n.r.q.ione.j,integer,edgeLength);

for k to 20 do
¢ := convert(A[k],list);
B := convert(c,vector);
edge := convert(B,matrix);

for u to edgeLength do
newedge := delrows(edge,u..u);
Edge := convert(newedge,vector);
place := hash(Edge,VertexLength,m);
spot := binsearch(place,flag,1,num Verticies);

if spot = 0 then
print(‘Hash is not working properly*);

found := false;
else
if modp(u,2)=1 then
Pos[pcou,1]
:= (((counter + k — 1) * (numVerticies)) + spot);
pcou := pcou + 1;
else
Neg[ncou,1]
:= (((counter 4+ k — 1) * (numVerticies)) + spot);
ncou := ncou + 1;
fi;
fi;
od;

od;
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counter := counter + 20;

od;

if 0 < leftover then
multiples := multiples + 1;
print(‘multiples = ‘,multiples);
print(‘ci.n.r.q.ione’,n,r,q,ione,multiples);
A := readdata(Ci.n.r.q.ione.multiples,integer,edgeLength);

for k from (counter + 1) to numEdges do
¢ := convert(A[k — counter],list);
B := convert(c,vector);
edge := convert(B,matrix);

for u to edgeLength do

od;
od;
ﬁ.

newedge := delrows(edge,u..u);

Edge := convert(newedge,vector);

place := hash(Edge,VertexLength,m);

spot := binsearch(place,flag,1,numVerticies);
print(‘row,place ,spot‘,Edge,place,spot);

if spot = 0 then
appendto(die.ione);
print(‘Hash is not working properly*);
found := false;
writeto(terminal);
else
if modp(u,2) = 1 then
Pos[pcou,1] := (((k — 1) * numVerticies) + spot);
pcou := pcou + 1;
else Neg[ncou,1] := (((k — 1) * numVerticies) + spot);
ncou := ncou + 1;
fi;
fi;

gsort(Pos,1,numPosrow,1);
gsort(Neg,1,numNegrow,1);
writedata(pos.ione,Pos,integer);
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writedata(neg.ione,Neg,integer);
print(‘Dimensions of d‘,ione, ‘are‘,numEdges,‘by‘,num Verticies);
end;

See Appendiz B for a description.

knClI := proc(maxsimps,i,n,r,q)

local amount, j, templ, isubset,B,A,columns;

amount := vectdim(maxsimps);

for j to amount do
templ := maxsimpsj];
isubset := choose(templ, i + 1);
templ := convert(isubset,listlist);
isubset := convert(templ,matrix);
templ := 0;

if j = 1 then A := copy(isubset);
else B := stack(A,isubset);

A := copy(B);

B :=0;
fi;

isubset := 0;
templ := 0;
od;

B := repetition(A);
writedata(allci.n.r.q.i,B,integer);

templ := rowdim(B);

columns := coldim(B); isubset := modp(templ,20);

if templ >= 20 then amount := (templ — isubset)/20;
else amount := 0;

fi;

for j from 1 to amount do
A := submatrix(B,(((j — 1) * 20) + 1)..(j * 20),1..columns);
writedata(Ci.n.r.q.i.j,A,integer);

od;
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if isubset > 0 then
A := submatrix(B,(templ — isubset + 1)..templ,1..columns);
amount := amount + 1;
writedata(Ci.n.r.q.i.amount, A, integer);

fi;

print(‘There are ¢, templ , ‘elements in C_*i);
A := [templ,columns];
RETURN(eval(A));

end;

See Appendiz B for a description.

knhomology := proc(Simplexes,total,r,inter)
local noMaxSimplexes, LargestSimplex, a,A,size,maxsimp,b,B,c,C,t,
Cil,q,D,i,j,Ci,flag,mi,counter,m,v,w,n,rowCi,colCi,numEdges,
lengthEdges,verticies;
verticies := numbcomb(totalr);
noMaxSimplexes := vectdim(Simplexes);
LargestSimplex := 1;

for a to noMaxSimplexes do

A := convert(Simplexes{a],list);

size := vectdim(A);

if LargestSimplex < size then LargestSimplex := size fi;
od;

for b from LargestSimplex by —1 to 2 do
appendto(kn.total.r.inter);
if b = LargestSimplex then
A := knCI(Simplexes,b-1,total,r,inter);
numEdges := A[l];
lengthEdges := A[2];
fi;

A := knCI(Simplexes,b — 2,total,r,inter);
rowCi := A[l];
colCi := A[2];



od;
end;

flag .= |;
createflag(rowCi,colCi,b — 2,verticies,total,r,inter);
po(numkEdges,rowCi,lengthEdges,b — 1,total,r,inter,verticies);
differential(numEdges,rowCi,b — 1);
if b > 2 then

numkEdges := rowCi;

lengthEdges := colCi

fi;

flag :=[ |;
q:=[ [
A=[]
ge();

See Appendiz B for a description.

knngbdsimplex := proc(MaximalSimplexes,n,r,q)
local amount, counter, t.i,j,u,v,verticies,temp,size,big,l,A,B,C,k,D;
amount := vectdim(MaximalSimplexes);

big

= 0;

for i to amount do

od;

u := MaximalSimplexes]i];
v := convert(u,list);

size := vectdim(v);

big := big + size;

temp := matrix(big,1,0);
counter := 0;
for i to amount do

u := MaximalSimplexes[i|;
v := convert(u,list);
size := vectdim(v);

for j to size do
temp(counter + j,1] := v{j};
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od;

counter := counter + size;
od;

verticies := repetition(temp);
counter := rowdim(verticies);
temp := array(l..counter);
for i to counter do

t := 0;

A := array(l..big);

for j to amount do
u := MaximalSimplexeslj];
v := convert(u,vector);
u := convert(v,matrix);
size := rowdim(u);

for k to size do
if verticies[i,1] = v[k] then
C := delrows(u,k..k);

for 1 to (size — 1) do A[l+t] := C[1,1]; od;

t:=t + size — 1;
break;
fi;
od;
od;
B := matrix(t,1);

for 1to t do B[L,1] := A[l] od;

A := repetition(B);
B := transpose(A);
C := convert(B,set);
D := convert(C,list);
templi] := D;

od;

appendto(kn.n.r.q);
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print(‘Neighbourhood Maximal Simplexes‘,temp);
RETURN(eval(temp));

end;

See Appendiz B for a description.

knngbdcomplex := proc(MaximalSimplexes,n,r,q)
local A,B,C;
A := copy(MaximalSimplexes);
B := knngbdsimplex(A,n,r,q);
A=[]
knhomology(B,n,r.q);
end;

See Appendiz B for a description.

kneser := proc(n,r.q)

local Points, temp, numberOfPoints,i,j,t,Edges,ipoint,jpoint,
common,size flag,A,B,C;

Points := choose(n,r);

numberOfPoints := nops(Points);

B := matrix(1,2,0);

Edges := matrix(1,2,0);

flag := 0;

writeto(vert.n.r.q);

print(‘knland7.ms: The verticies are: ‘,Points);

writeto(terminal);

for i to (numberOfPoints — 1) do
A := matrix(numberOfPoints — i, 2, 0);
t:=1;
ipoint := convert(Points[i],set);

for j from i + 1 to numberOfPoints do
jpoint := convert(Points[j],set);
common := ipoint intersect jpoint;
size := nops(common);

if size = q then



end;

od;
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Aft,l] :=1;
Alt,2] =j;
t:=t 4+ 1;
flag := flag + 1;
fi;
od;

if (1 < t) and (t < numberOfPoints — i + 1) then
C := delrows(A,t..numberOfPoints — i);
Edges := stack(C,B);

else
if lag > 0and t > 1 then
Edges := stack(A,B);
else Edges := B;
fi;
fi;

ift =1 and flag = 0 then
print(‘There are no edges from the vertex‘, ipoint,
‘to the other verticies in the graph*);
fi;

temp := rowdim(Edges);

if i =1) and (t <> 1) then
A := delrows(Edges,temp..temp);
Edges := copy(A);

fi;

B := copy(Edges);

temp := convert(Edges,listlist);
Edges := convert(temp,list);
RETURN(eval(Edges));
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See Appendiz B for a description.
NOEDGES := proc(n,r,q)

local Points, temp, numberOfPoints,i,j,t,ipoint,jpoint,common,size,Edges;
Points := choose(n,r);

numberOfPoints := nops(Points);

t:=1;

for i to (numberOfPoints — 1) do
ipoint := convert(Points(i],set);

for j from i + 1 to numberOfPoints do
jpoint := convert(Points[j],set);
common := ipoint intersect jpoint;
size := nops(common);

if size = q then
t = 2;
break;
fi;
od;
od;

RETURN(evalb(t = 1));
end;

See Appendiz B for a description.

knNgbdcomplex := proc(n,r,q)
local kn,p;

if NOEDGES(n,r,q) then
writeto(kn.n.r.q);
kn := kneser(n,r,q);
writeto(terminal);
else kn := kneser(n,r,q);
writeto(kn.n.r.q);
print(“The edges in the kneser graph G¢,n,r,q,‘are‘,kn);
writeto(terminal);
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knngbdcomplex(kn,n,r.q);
fi;
writeto(terminal);
end;



Appendix B
Maple Program of the Relative Homology

This program is different from the previous program (Appendix A) due to the fact
that it calculates a relative homology of the neighbourhood simplicial complex of
the Kneser graph, G(n,r,q). First it will calculate the star of a vertex, call this star
M, and then determine C.(L, M) where L is the neighbourhood complex. It is also
more dependent on the procedure pn to help create the differential matrices. The
reason for the change in the program, is that with the calculation of the relative
homology, the size of the differential matrices is smaller or the same size as the
differential matrices in the calculation of the neighbourhood complex itself. This
allows for quicker results.

Before we start the documentation of the relative homology program, we will

need a useful definition first.

Definition B.0.1 Let K = (V,X) be a sitmplicial complez. The star of a vertez
v € V is the subcomplez of all simplezes o C T, for some T € L such that v € T, and

ts denoted star(v) (also see Definition 5.4.2 on page 90).

Also notice that star(v) is contractible for any v € V, cf. 5.4.5 on page 91.

Notation B.0.2 L’ represents either the simplicial complex K or M. The comments
for each procedure are in italics. The variables for that particular procedure are in

bold face as well as the names of all the procedures which appear in the comments.
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The function binsearch is a search engine used to find entries in the flag matrices.
binsearch is a binary recursive search function. It assumes that the first column of
matriz A is in increasing order, that is the Af;,1] < Afi+1,1] forall 1 <i<m-—1
where m is the number of rows in A. If value is found then binsearch returns the
value in the second column of the corresponding row. That is, if A[f,1] = value,
then binsearch will return A[},2], for some 1 < j < m. Otherwise binsearch will
return —1.

A s an array that consists of at least two columns such that the first column is in
tncreasing order.

value is a number to be found in the first column of A.

top is an integer, which represents the row to start the binary search in matriz A.
Usually when calling the function top is assigned the value I.

bottom is an integer which represents the row to end the binary search in matriz
A.. Usually when calling the function bottom is assigned the number of rows in

A.

oldmid is an integer, which helps determine if value has been found. When calling
the function oldmid is assigned a non-positive value.

binsearch := proc(value,A,top,bottom,oldmid)
local compare,leftover,mid.i;
compare := bottom + top;
leftover := modp(compare,2);
mid := (compare + leftover)/2;
compare := A[mid,1];
if mid = oldmid then RETURN(-1) fi;
if bottom — top <= 0 then RETURN(-1) fi;
if (A[1,1] = value) then RETURN(eval(A[1,2])); fi;
if compare < value then i := binsearch(value,A,mid,bottom,mid); fi;
if compare > value then i := binsearch(value,A,top,mid,mid); fi;
if (compare = value) then RETURN (eval(A[mid,2])); fi;
RETURN(eval(i));
end;

The function repetition will remove any repeated rows in matriz A. That is
if A, k] = A[j,k] for some 1< i # j < mand forall 1 < k < n where m is



126

the number of rows of A and n is the number of columns, either the ith or jth row
will be deleted. The purpose of repetition is to remove redundant elements in the
calculations of C;(K) and C;(M) for some nonnegative integer 1.

A am X n matriz.

repetition := proc(A)
local B,C;

B := convert(A,listlist);
C := convert(B,set);

B := convert(C,list);

C := convert(B,listlist);
B := convert(C,matrix);
RETURN(eval(B));

end;

The procedure qsort takes a matriz A and arranges the rows in increasing order
with respect to the elements in the ith column. The purpose of gsort is to organize
lists of data. The procedure qsort is the standard recursive quick sort taught in
most introductory level computer programming courses. The function partition is
the main engine driving qsort to work. When calling these two procedures, one just
calls gsort.

A is an m x n matrizc where m > 1 and Afj, k] €R for all 1 < j < m and for all
1<k<

X is a natural number indicating the first row to start sorting.
Y is a natural number indicating the last row to end sorting. and x < y.

i is a natural number indicating the column of the matriz to sort with respect to.

partition := proc(A x,y,i)
local m,k,left.right, dummy,pivot;
m:=y -+ Xx;
if modp(m,2) = 0 then k := m/2
else k := (m + 1)/2;
ﬁ.

pivot := A[k,i];
A :=swaprow(A,x,k);
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left := x;
right := y + ;
dummy := true;
while dummy do
while (1=1) do
right := right — 1;
if Alright,i] <= pivot then break fi;
if right = x then break fi;
od;
while (1=1) do
left := left + 1;
if Afleft,i] >= pivot then break fi;
if left = y then break fi;
od;
if left < right then A := swaprow(A,left,right);
else dummy := false;
A := swaprow(A, x,right);
fi;
od;
if left >= right then RETURN(eval(right)); fi;

end;

gsort := proc(A,x,y,i)
local q,temp,m;
m := rowdim(A);
q := partition(A,x,y.i);
if ¢ > x + 1 then gsort(A,x,q,i); fi;
if ¢ <y — 1 then gsort(A,q+1,y,i); fi;
end;

The function star returns a list of all mazimal simpleres in the star of a given
vertez. The type returned is a list of lists. The purpose of star is to calculate the
star of a vertez. This will help reduce the time required to compute the Integral Smith
Normal Form of the differential matrices.

L is a list of lists representing all the mazimal simplezes in the complez.

vertex is an element of the elements of L, i.e. if | € L then vertex may be an
element in .
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no_maxsimps represents the number of mazimal simplezes L, that is the cardinality
of L.

star := proc(vertex,L,no_maxsimps)
local 1,M,counter,maximalsimplex,temp;
counter := 1;
M := array(l..no_maxsimps);
for i to no_maxsimps do
temp := L[i};
maximalsimplex := convert(temp,list);
if (member(vertex,maximalsimplex)) then
M[counter] := maximalsimplex;
counter := counter + 1;
fi;
od;
if (counter < no_maxsimps) then
temp := convert(M,set);
M := convert(temp,list);
fi;
print(‘in star and this is what the star of*,vertex,‘:*, M);
RETURN(eval(M));
end;

The hash function is a one-to-one map which takes rowl and determines its
position in a complete lezicographically ordered set containing sets with the same
cardinality, varying entries and natural ordering of the entries. The purpose of hash
ts to tmprove the efficiency of the program with respect to comparing two vectors/lists
or searching for one.

rowl is a vector or a list of natural numbers.
length is the number of entries in rowl.

numVert is a natural number representing the total number of vertices in the graph
or neighbourhood complez.

hash := proc(rowl,length,num Vert)
local amount,sum,i,first,second,chosen,j;
amount := vectdim(rowl);
sum := 1;
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if rowl[1] > 1 then
for j to (rowl[l] — 1) do
chosen := numbcomb((numVert — j),(length — 1));
sum := sum + chosen;
od;
fi;
for i from 2 to amount do
first := rowl[i — 1] + 1;
second := rowl[i] — I;
if second — first > —1 then
for j from first to second do
chosen := numbcomb((numVert — j),(length — 1));
sum := sum + chosen;
od;
fi;
od;
RETURN(eval(sum));

end;

The function createflag assumes there are certain files in the current directory
which start with name. These files can be created using knCi and write20 and
contain fragments of matriz A. The function creates a flag matriz for A. That is,
it will create a flag matriz for the elements of Ciplace(L). The first column of the
matriz represents the hash values for each row in A or for each element of Cipiace-
The second column represents the row they appear in A. The purpose of hash is to
increase the speed of both comparing and searching for elements of Cipiace-

rowA is a natural number which indicates the number of rows in matriz A.
iplace is a non-negative integer indicating the i-cell or Cipigee-

name s a string of characters indicating the partial name of the files to use in the
calculation of the flag matriz for A.

vertices is a natural number representing the number of vertices in the graph or
neighbourhood complez.

n, r are natural numbers which are represented in G(n,r, q).

q is a nonnegative integer which is represented in G(n,r, q).
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createflag := proc(rowA iplace,name,vertices,n,r,q)
local i.j,A, first,place,size,flag,flagsize,leftover,counter, mult,hashvalue,colA,
extra,top,bottom;
print(‘Vertices®, vertices);
print(‘Name is‘, name);
appendto(kn.n.r.q);
colA := iplace + 1;
size := rowA;
flag := matrix(size,2,0);
leftover := modp(rowA,20);
top :=1;
if rowA >= 20 then
mult := ((rowA — leftover)/20);
bottom := 20;
else mult := 0;
bottom := rowA;
fi;
if leftover > 0 then mult := mult + 1; fi;
for j from 1 to mult do
A := readdata(name.n.r.q.iplace.j,integer,colA);
extra := (j — 1) * 20;
for i from top to bottom do
first := A[i — extra;
size := convert(first,list);
first := convert(size,vector);
place := hash(first,colA,vertices);
if flag[i,1] = 0 then
flag[i,1] := place;
flag[i,2] := i;
else appendto(problem);
print(‘CRASH, ERROR IN createflag*);
print(‘Variable name is: ‘,name);
print(‘Variable iplace is: ‘iplace);
print(‘counter and i are: ‘,counter,i);
print(‘n,r,q are: ‘,n,r,q);
writeto(terminal);
fi;
od;
top := top + 20;
if j = (mult — 1) then bottom := rowA
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else bottom := bottom + 20;
fi;
od;
if rowdim(flag) > 1 then
if rowdim(flag) < 50 then print(‘the flag for ‘, name ,‘_ ‘.iplace,flag); fi;
gsort(flag,1,rowA. 1);
fi;
RETURN(eval(flag));

end;

The function matrixchoose returns a matriz with all the choosesize distinct
subsets of alist[elementnum].

alist s a list of lists/vectors of natural numbers.
elementnum is a natural number which represents an entry position in alist.

choosesize is a natural number which represents the size of subsets of
alist[elementnum] to calculate.

matrixchoose := proc(alist,elementnum,choosesize)
local temp,A;
temp := alist[elementnum];
A := choose(temp, choosesize);
temp := convert(A,listlist);
A := convert(temp,matrix);
RETURN(eval(A));

end;

The procedure write20 takes the matriz A and creates a series of files with
the filename: name.n.r.q.iplace.j. Let rows be the number of rows in A and
row20 = rows mod 20. Then 1 < j < (rows — row20)/20 + 1. Please note that the
‘” does not appear in the filename, it is used to separate the variables and make it
easier to read. Also note that the values of the variables appear in the filename. For
ezample, let name = ‘Mi', n=5,r =2, ¢ =0, iplace =1 and j = 1. Then the
filename create would be M:52011. The purpose of write20 is to speed things up
by using more storage memory and less “active” memory when calculating the flag
matrices.
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A s a matriz.

name is a string of characters representing the initial part of the name of the files
to be generated.

iplace is a nonnegative integer which represents the iplace cell, which A represents,
i.e. Ciplace(Ll) =A.

n, r are natural numbers which are represented in G(n,r,q).
q is a nonnegative number which is represented in G(n,r,q).

write20 := proc(A,name,iplace,n,r,q)

local rows,cols,leftover,amount,B.j;

rows := rowdim(A);

cols := coldim(A);

leftover:= modp(rows,20);

if rows >= 20 then amount := (rows — leftover)/20;

else amount := 0;

fi;

for j from 1 to amount do
B := submatrix(A,(((j — 1) * 20) + 1)..(j * 20),1..cols);
writedata(name.n.r.q.iplace.j,B,integer);

od;

if leftover > 0 then
amount := amount + 1;
B := submatrix(A,(rows — leftover + 1)..rows,1..cols);
writedata(name.n.r.q.iplace.amount,B,integer);

fi;

end;

The function knCI creates files all. Kin.r.q., Kin.r.q.ij or all. Mi.n.r.q.,
M:i.n.r.q.l.j depending on whether we are determining Ci(K) or Ciy(M). Note that
J depends on the procedure write20. The function also returns a two element list,
[m,n] where m is the number of rows in Ci(K) or Ci(M) and n is the number of
columns. The purpose of knClI is to create C;(K) and Ci(M) and their files.

maxsimps is a list of (numerical) lists/vectors which represents the mazimal sim-
plezes of a complexz.

1 is a non negative integer which represents the i value of Ci(K) or Ciy(M) to be
calculated.
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MiB is a boolean value; TRUE if we are to calculate C;(M), and FALSE if we are
to calculate Cy(K).

flaglength is a nonnegative integer value which is 0 if we are calculating Cy(M).
Otherwise flagLength is the number of rows in the Ciy(M) flag matriz.

vertices is a natural number which represents the number of vertices in the graph
or neighbourhood complez.

n, r are natural numbers which are represented in G(n,r,q).
q is a nonnegative number which is represented in G(n,r,q).

knCl := proc(maxsimps,i.MiB,Miflag,flagLength,vertices,n,r,q)
local amount,j,temp,ifaces,t,B,A,columns,emptyA, numfaces,numrows,Row,
hashvalue, face,found,name,leftover;
amount := vectdim(maxsimps);
ifaces := matrixchoose(maxsimps,1,i + 1);
emptyA := 1;
if MiB then MAIN if STATEMENT
A := copy(ifaces);
name := ‘Mi‘;
emptyA := 0;
for j from 2 to amount do
ifaces := matrixchoose(maxsimps,j,i + 1);
temp := stack(A,ifaces);
A := copy(temp);
od;
else
name := ‘Ki*;
numfaces := rowdim(ifaces);
for j from 2 to amount do
for t to numfaces do
face := row(ifaces,t);
hashvalue := hash(face,i + 1,vertices);
found := binsearch(hashvalue,Miflag,1,flagLength,0);
if found = —1 then  not in Mi
if emptyA =1 then
temp := convert(face,listlist);
A := convert(temp,array);
temp := convert(A,matrix);
A := transpose(temp);



emptyA = 0;

else
temp := stack(A,face);
A := copy(temp);

fi;

fi;
od;
ifaces := matrixchoose(maxsimps,j,i + 1);
od;
for t to numfaces do
face := row(ifaces,t);
hashvalue := hash(face,i + 1,vertices);
found := binsearch(hashvalue,Miflag,1,flagLength,0);
if found = —1 then not in Mi
if emptyA =1 then
A := convert(face,listlist);
temp := convert(A,array);
A := convert(temp,matrix);

else
temp := stack(A,face);
A := copy(temp);
fi;
fi;
od;
fi; MAIN if STATEMENT

if emptyA = 0 then
B := repetition(A);
print(‘The vars of n,r,q,i are:*,n,r,q,i);
writedata(all.name.n.r.q.i,B,integer);
t := rowdim(B);
columns := coldim(B);
write20(B,name,i,n,r,q);

else
writeto(all.name.n.r.q.i);
print(‘empty*);
writeto(terminal);
appendto(kn.n.r.q);
t:=0;
columns := 0;

134
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print(‘There are ‘,t. elements in ‘,name,i);
A := [t,columns];
RETURN(eval(A));

end;

The purpose of the differential procedure is to create a file in the proper format
compatible with Arne Storjohann’s program. This will speed up the calculation of the
Integral Smith normal form of the differential matrices. The procedure differential
assumes that the files pos.iplace and neg.iplace are in the current running direc-
tory. The procedure will create a file which represents the differential matriz in the
following format (which is compatible with Arne Storjohann’s program).

rows
cols
dia
dis

drows.cols

Please note that if there are other pos.i or neg.i files in the current directory,
for some i, this will affect the output of the differential matriz greatly. Since the
differential matriz does not require the non-negative integers n,r,q of the Kneser
graph G(n,r,q) as input variables to the procedure, it does not have that in the name
of the pos.t and neg.i filenames, which could lead to confusion.

rows is a natural number which represents the number of rows the differential matriz
is to have.

cols is a natural number which represents the number of columns the differential
matriz s to have.

iplace is a non negative integer which represented in diplace

differential := proc(rows,cols,iplace)
local 1,j,p,n,nump,numn,ncou,pcou,Pos,Neg extra;
interface(quiet=true);
print(‘in differential, iplace is: reading pos and neg‘,iplace);
nump := readdata(pos.iplace,integer,2);
numn := readdata(neg.iplace,integer,2);
Pos := convert(nump,matrix);
Neg := convert(numn,matrix);
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writeto(differential.iplace);
nump := rowdim(Pos);
numn := rowdim(Neg);
ncou = 1;
pcou = 1;
p := Pos[1,1];
n := Neg[l,1];
lprint(rows);
lprint(cols);
for i from 1 to rows do
extra := ((i —1)=cols);
for j from 1 to cols do
if ((extra + j) = p) then
lprint(1);
pcou := pcou + 1;
if pcou <= nump then p := Pos[pcou,1]; fi;
elif ((extra + j}) = n) and (ncou <= numn) then
lprint(—1);
ncou = ncou + 1;
if ncou <= numn then n := Neg[ncou,1]; fi;
else lprint(0);
fi;
od;
od;
writeto(terminal);
end;

The procedure pn creates two files (1) pos.ione and (2) neg.ione. The differ-
ential matriz d; assumes that the rows appear in the same order as the elements of
Ci(K) and its columns are in the same order as the elements of C;—1(K) in their
respective representative matrices. Assuming that the differential matriz is arranged
in the similar format as described in the comments of the differential procedure, on
page 135 ezcluding the first two entries (rows and cols), then pos.ione contains all
the positions of 1 in the differential matriz and neg.ione contains all the positions
of =1 in the differential matriz. The procedure also requires that Ki.n.r.q.ione.j
are in the current directory where j is dependent on the files generated by write20.
The purpose of pn is to save computation time and memory space for the computer.
Instead of creating a large zero matriz and then entering +1 in the appropriate entry,
which would use a lot of memory space, it just keeps track of all the positions and
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saves them into a file which is later accessed by the differential procedure and used.
ione s a non-negative integer.

numEdges is a natural number representing the number of rows in the differential
matriz Digpe.

numVertices is a natural number representing the number of columns in the dif-
ferential matriz Diope-

flag is a matriz with at least two columns which represents the flag matriz of Kiope—1 -
n, r are natural numbers which are represented in G(n,r, q).
q is a nonnegative number which is represented in G(n,r,q).

m s a natural number which represents the number of vertices in the graph or neigh-
bourhood complez.

pn := proc(numEdges,numVertices,flag,ione,n,r,q,m)
local leftover,i,j,multiples,A k,B,edge,Edge,u,newedge,place,
spot,found,numNegrow.numPosrow,pos,neg,pcou,ncou, VertexLength,
Pos,Neg,c,edgeLength,extra,top,bottom;
interface(quiet=true);
leftover := modp(numkEdges,20);
k := ione —1;
edgeLength := ione +1;
VertexLength := edgeLength —1;
if numEdges > 20 then
multiples := ((numEdges — leftover)/20) + 1;
bottom :== 20;
else multiples := 1;
bottom := numZEdges;

fi;

top := 1;
pcou = 1;
ncou = 1;

k := modp(edgeLength,2);

numNegrow := ((edgeLength — k)/2) * numEdges;
numPosrow := ((edgeLength + k)/2) * numEdges;
print(‘numNegrow,numPosrow*,numNegrow,numPosrow);
Pos := matrix(numPosrow,1);

Neg := matrix(numNegrow,1);



for j from 1 to multiples do
A := readdata(Ki.n.r.q.ione.j,integer.edgeLength);
extra := (j —1) = 20;
for k from top to bottom do
c := convert(Alk - extra],list);
B := convert(c,vector);
edge := convert(B,matrix);
for u to edgeLength do
newedge := delrows(edge,u..u);
Edge := convert(newedge,vector);
place := hash(Edge,VertexLength,m);
spot := binsearch(place,flag,l,num Vertices,0);
if spot = 0 then print(‘Hash is not working properly‘);
elif spot > 0 then
if modp(u,2) =1 then
Pos[pcou,l] := ((k —1)* numVertices) + spot;
pcou := pcou + 1;
else
Negfncou,1] := ((k —1)* numVertices) + spot;
ncou := ncou + 1;
fi;
fi;
od;
od;
top := top +20;
if j = (multiples —1) then bottom := numEdges
else bottom := bottom + 20;
fi;
od;
print(‘Pos is‘, Pos,*Neg is*,Neg);
pcou := pcou - 1;
temp := submatrix(Pos,l..(pcou),1..1);
Pos := copy(temp);
ncou := ncou —1;
temp := submatrix(Neg,l..ncou,l1..1);
Neg := copy(temp);
gsort(Pos,1,pcou,1);
gsort(Neg,1,ncou,l);
writedata(pos.ione,Pos,integer);
writedata(neg.ione,Neg,integer);
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print(‘Dimensions of d‘,ione, ‘are’,numEdges,‘by*,numVertices);
end;

The function kneser returns a list of all the edges in the Kneser graph, G(n,r,q).
The function returns a list of lists type.

n, r are natural numbers which are represented in G(n,r, q).

q is a nonnegative number which is represented in G(n,r,q).

kneser := proc(n,r,q)
local Points, temp, numberOfPoints,1,j,t,Edges,ipoint,jpoint,common,
size,flag,A.B,C;
Points := choose(n,r);
numberOfPoints := nops(Points);
B := matrix(1,2,0);
Edges := matrix(1,2,0);
flag := 0;
writeto(vert.n.r.q);
print(‘knland7.ms: The verticies are: ‘,Points);
writeto(terminal);
for i to (numberOfPoints —1) do
A := matrix(numberOfPoints — i, 2, 0);
t:=1;
ipoint := convert(Points[i],set);
for j from 1 +1 to numberOfPoints do
jpoint := convert(Points[j],set);
common := Ipoint intersect jpoint;
size := nops(common);
if size = q then
Alt,1] :=1;
Aft,2] :=j;
t = t+1;
flag := flag +1;
fi;
od; if (1 < t) and (t < numberOfPoints — i +1) then
C := delrows(A,t..numberOfPoints - i);
Edges := stack(C,B);

else
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if lag > 0 and t > 1 then
Edges := stack(A,B);
else Edges := B;
fi;
fi;
if t =1 and flag = 0 then
print(‘There are no edges from the vertex‘, ipoint,
‘to the other verticies in the graph‘);
fi;
temp := rowdim(Edges);
if (1=1)and (t <> 1) then
A := delrows(Edges,temp..temp);
Edges := copy(A);

fi;
B := copy(Edges);
od;
temp := convert(Edges,listlist);
Edges := convert(temp,list);
RETURN(eval(Edges));
end;

The purpose of NOEDGES is to help determine if the neighbourhood compler
will be empty or not empty. If it is empty then the computation of the homology is
trivial, otherwise it will take a “little” more work. The function NOEDGES returns

a boolean value.

TRUE if there are absolutely no edges between any of the vertices
FALSE if there is at least one edge in the graph.
n, r are natural numbers which are represented in G(n,r,q).

q s a nonnegative number which is represented in G(n,r,q).

NOEDGES := proc(n,r,q)
local Points, temp, numberOfPoints,i,j,t,ipoint,jpoint, common,size,Edges;
Points := choose(n,r);
numberOfPoints := nops(Points);
t:=1;
for 1 to (numberOfPoints —1) do
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ipoint := convert(Points(i],set);
for j from i +1 to numberOfPoints do
jpoint := convert(Points[j],set);
common := ipoint intersect jpoint;
size := nops(common);
if size = q then
t:=2;
break;
fi;
od;
od;
RETURN(evalb(t=1));
end;

The function knngbdsimplex returns a list of lists which is a list of all neigh-
bourhood marimal simplezes of the given graph.

MaximalSimplexes is a list of all the edges in the graph, its of type list of lists.
n, r are natural numbers which are represented in G(n,r,q).

q is a nonnegative number which is represented in G(n,r,q).

knngbdsimplex := proc(MaximalSimplexes,n.r,q)
local amount, counter, t,i,j,u,v,vertices,temp,size,big,1,A,B,C k, D;
amount := vectdim(MaximalSimplexes);
big := 0;
for 1 to amount do
u := MaximalSimplexes([i];
v := convert(u,list);
size := vectdim(v);
big := big + size;
od;
temp := matrix(big,1,0);
counter := 0;
for 1 to amount do
u := MaximalSimplexes]i};
v := convert(u,list);
size := vectdim(v);
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for j to size do temp[counter + j,1] := v[j]; od;
counter := counter + size;
od;
vertices := repetition(temp);
counter := rowdim(vertices);
gsort(vertices,1,counter,1);
temp := array(l..counter);
for i to counter do
t:=0;
A := array(l..big);
for j to amount do
u := MaximalSimplexesj];
v := convert(u,vector);
u := convert(v,matrix);
size := rowdim(u);
for k to size do
if vertices(i,1] = v[k] then
C := delrows(u,k..k);
for | to (size —1) do A[l+t] := C[L,1]; od;
t =1t + size — 1;
break;
fi;
od;
od;
B := matrix(t,1);
for 1to t do B[l,1] := A[l] od;

A := repetition(B);
B := transpose(A);
C := convert(B,set);
D := convert(C,list);
templi] := D;
od;
appendto(kn.n.r.q);
print(‘Neighbourhood Maximal Simplexes‘,temp);
RETURN(eval(temp));

end;

The procedure knhomology creates the differential files of the complez. It also



143

creates other files using knCI and write20 procedures. The purpose of this procedure
ts to calculate the differential files (“matrices”) and thus help determine the homology
of the complez.

Simplexes is of type array, and represents the elements which are the mazimal

simplezes of the complez to be calculated

n, r are natural numbers which are represented in G(n,r,inter).

inter is a nonnegative number which is represented in G(n,r, inter).

knhomology := proc(Simplexes,n,r,inter)

local noMaxSimplexes,LargestSimplex,a,A,size,maxsimp,b,B,c,C,t,q,
vertices,vertex,M,rowMi2,colMi2,rowKi2,colKi2,rowMil ,colMil,
rowKil,colKil,Mi2flag,Ki2flag,temp,K,Ksize,Msize,Milflag,Kilflag;
vertices := numbcomb(n,r);
noMaxSimplexes := vectdim(Simplexes);
LargestSimplex := 1;
for a to noMaxSimplexes do
A := convert(Simplexes[a],list);
size := vectdim(A);
if LargestSimplex < size then LargestSimplex := size fi;
od;
vertex := 1;
M := star(1,Simplexes,noMaxSimplexes);
writedata(M.n.r.inter,M,integer);
temp := LargestSimplex —1;
write20(M,Mi,temp,n,r,inter);
Msize := vectdim(M);
rowMi2 := Msize;
colMi2 := LargestSimplex;
Mi2flag := createflag(rowMi2,LargestSimplex—1,Mi,vertices,n,r,inter);
temp := knCI(Simplexes,LargestSimplex—1.false,Mi2flag,Msize,vertices,n,r,inter);
rowKi2:= temp(l];
colKi2:= temp[2];
b := LargestSimplex—1;
temp := readdata(all.Ki.n.r.inter.b,integer,LargestSimplex);
K := convert(temp,listlist);
writedata(K.n.r.inter,K ,integer);
temp := ‘temp*;
Ksize := vectdim(K);
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for b from LargestSimplex by —1 to 2 do

od;
end;

appendto(kn.n.r.inter);

temp := knCI(M,b—2,true,[],0,vertices,n,r,inter);

rowMil := templ[l1};

colMil := temp(2];

Milflag := createflag(rowMil,b—2,Mi,vertices,n,r,inter);

temp := knCI(K,b—2,false,Milflag,rowMil,vertices,n,r,inter);

rowKil := temp[1];

colKil := temp[2];

if rowKil > 0 then
Kilflag := createflag(rowKil,b—2,Ki,vertices,n,r,inter);
po(rowKi2,rowKil Kilflag,b—1,n,r,inter,vertices);
differential(rowKi2,rowKil ,b—1);

else
temp := b—1;
writeto(differential.temp);
lprint(0);
lprint(0);
writeto(terminal);
break;

fi;

appendto(kn.n.r.q);

rowMi2 := rowMil;
colMi2 := colMil;
rowKi2 := rowKil;
colKi2 := colKil;

Kilflag:= [];
Milflag:= [];
ge();

The purpose of knngbdcomplex is to organize some of the procedures. The pro-
cedure knngbdcomplex “acts” like a secondary politician or administrator. It just
organizes some of the procedures. First it will calculate the neighbourhood mazimal
simplezes by calling the procedure knngbdsimplez to do the work and then calculate
the differential matrices of the complez by calling the procedure knhomology.

edges is a list which represent the edges in the graph.
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n, r are natural numbers which are represented in G(n,r,q).

q is a nonnegative number which is represented in G(n,r,q).

knngbdcomplex := proc(edges,n,r,q)
local A,B,C;
A := copy(edges);
B := knngbdsimplex(A,n,r,q);
A=
knhomology(B,n,r,q);
end;

The purpose of rknh is just a safety precaution, to make sure there are edges
in the graph in question. The procedure rknh “acts” like a primary politician or
administrator, it will first check to make sure there are edges in the graph before
computing the neighbourhood simplezes. If there are then it proceeds to calculate the
differential files by calling knngbdcomplex. Note that if the neighbourhood complez
ts just a set of points the program may crash.

n, r are natural numbers which are represented in G(n,r,q).-

q s a nonnegative number which is represented in G(n,r,q).

rknh := proc(n,r,q)
local kn,p;
if NOEDGES(n,r,q) then
writeto(kn.n.r.q);
kn := kneser(n,r,q);
writeto(terminal);
else
kn := kneser(n,r,q);
writeto(kn.n.r.q);
print(‘The edges in the kneser graph G‘,n,r,q,‘are‘,kn);
writeto(terminal);
knngbdcomplex(kn,n,r,q);
fi;
writeto(terminal);
end;
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B.1 Examples for the procedures of the Relative Homology
program '

B.1.1 binsearch

Let A=

N = =
B Ot © N
00 ~1 W Oy t=

binsearch(15,A,1,5,-1) will return the value 7.
binsearch(7,A,1,5,0) will return the value —1.

binsearch(15,A.,1,3,-100) will only search through the first 3 rows and thus return
the value —1.

binsearch(13,A,1,5,3) will return the value —1.

B.1.2 repetition

446 3 8 9
Let Mi=| > 2 2| and Ny = Ilfé
55 4 3 8 9

Then the commands M, = repetition(M;) and N2 = repetition(V;) will produce
the following matrices:

L

1W2=163andN2= 715 1
- 1 4 6
2 5 4

Note that the order of the rows may vary.
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B.1.3 gsort
6 3 4
1 26
Let M = 48 3
2 59
gsort(M,1,4,1) M becomes
(12 6]
2 59
4 8 3
| 6 3 4 ]
gsort(M,2,3,1) M becomes
[6 3 4]
1 2 6
4 8 3
2 5 9]
gsort(M,1,4,2) M becomes
1 26
6 3 4
2 59
4 8 3

gsort(M,1,3,3) M becomes

N = Oy W
GL D LW o
O O W

gsort(M,2,2,2) M becomes

N =
Ot 00 Y W
WO WO W

gsort(M,1,1,1) you should obtain an error message
gsort(M,4,4,1) you should obtain an error message



148

B.1.4 star
Let L = [[1,2,4],[6,4,1],[2,3],[1,7],[b, c, d, €]].

star(1,L,5) will return [[1,2,4],[6,4,1],[1, 7]]-
star(6,L,5) will return [[6,4, 1]]
star(10,L,5) will return [].

star(4,L,5) will return [[1,2,4],[6,4, 1]].
star(1,L,3) will return [[1,2,4],[6,4, 1]].
star(a,L,5) will return [].

star(d,L,5) will return [[b, ¢, d,€]].

B.1.5 hash

Let A =[1,4,8].

hash(A,3,6) will return 9.

hash(A,3,7) will return 11.

hash(A,1,6) will return 1.

hash(A,3,4) will result in an error.
hash([1,2,3,4 ,1,3)] will return 1.

B.1.6 createflag

Examples B.1.1 createflag(3,2,Mi,10,5,2,0)
4 7

1 3 3
M,=1]1 3 6 |and Myflag=| 11 2
1 25
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createflag(12,11,M7,28.8,2,1)

_ M, A _ M, flag )
1 23 4 5 6 13 18 22 25 27 28 69340 1
1 23 5 6 7 10 15 19 23 24 25 120367 12
1 2 9 10 11 12 13 14 15 16 17 18 286171 6
1 3 8 10 11 12 13 14 19 20 21 22 769739 2
1 3 4 5 6 7 8 14 15 16 17 18 3324237 5
123 4 6 7 11 16 20 23 26 27 8304153 4
1 48 9 11 12 13 15 19 23 24 25 |° 2067896 9
1 78 9 10 11 12 18 22 25 27 28 5126980 3
1 24 5 6 7 9 14 19 20 21 22 10222430 7
1 38 9 10 12 13 16 20 23 26 27 11347606 10
1 6 8 9 10 11 13 17 21 24 26 28 11986616 11

|1 23 4 5 7 12 17 21 24 26 28 ] | 12336563 8 |

createflag(21,1,Ki,10,5,2,0)

[2 8] [ 10 17
6 10 11 14
6 7 15 1
7 10 16 15
7T 9 18 8
5 7 22 18
5 9 24 9
3 4 29 16
3 10 30 10
4 10 31 11

K]_ = 3 6 Klflag = 32 6
5 8 33 12
6 8 34 7
2 4 36 3
2 9 37 13
4 9 39 2
2 3 41 5
3 8 42 4
8 10 43 20
8 9 44 19

|9 10 _ | 45 21 |
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B.1.7 matrixchoose
B.1.8 write20

Examples B.1.2 Also note that the values for name,iplace,n,r,q are purely cos-
metic in this procedure. The only purpose they serve is to be consistent with the other
procedures. So for this ezample the values for name,iplace,n,r,q will be chosen ran-
domly. Let A = (a;;) where a;; = [i,i+ 2] and 1 < ¢ < 2. Let B = (b;;) where
bij =[2,1+20] and 1 <i < 20. Let C = (c;;) where ¢;j = [i,i+23] and 1 <i < 23.

write20(A ,first,1,2,3,4) will generate a file called first12341 which contains the
following data

First12341
1 3
2 4"

write20(B,second,10,20,30,40) will generate a file called second102030401 which
contains the following data

second102030401
[1 21]
2 22
3 23

| 20 40 |

write20(C,third,4,3,2,1) will generate the files third43211 and third43212 which
will contain the following data

third432 11 third43212

1 24

2 25 21 44

3 26 [22 45J

- 23 46
| 20 43 |
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B.1.9 knCI
The Petersen graph

(K2) knCI(K2,2,false,flag2,3,10,5,2,0)
where K2 = [[8,9,10],[6,7,10],(5,7,9],[5,6,8], [3,4,10], [2,4,9],[2,3, 8]],
and flag2 is the flag matriz in B.1.1. This will produce two files called
K1i5201 and K15202 using the procedure write20. The actual matriz of
K5 in the Kneser graph G(5,2,0) is

(3 4 10 ]
5 6 8
2 4 9
2 3 8
8 9 10
6 7 10
|5 7 9|

(M) knCI([[1, 4, 7], [1, 3, 6], [1, 2, 5]],1,true,[],10,5,2,0)

-

(el o T R N T L IV S S RS
O I O ~J W N
L ]

knCI(M1,1,false,flagl,3,10,5,2,0)
where M1 = [[8,9,10],[6,7,10],[5,7,9],[5,6,8],[3,4,10],[2,4,9], (2, 3, 8]],
and flagl is the flag matriz for My matriz in B.1.9 . This will produce
the files called Ki5211 and K15212 after the procedure write20 is called.
The entire matriz ts:
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oo
)

[a—
O WO O 00 WTWIWIWKL OO

WO WNPENNODIUDTU R WWUIUWLM SN

)

B.1.10 differential

Let us consier just one ezample, the differential matriz Dy of the Kneser graph
G(9,2,0). The matrices for the cells of K, and K, are found in Ezamples
B.1.9 and B.1.9 respectively. The files pos2 and neg2 are found in the ezample
B.1.11. For convenience and easier reading, I have arranged the entries of the
differential file into several columns. The end of the first row continues into
the beginning of the second row and so on.

differential(7,21,2)

72 00 0 000 01 -1100 0000 00O
0o 000 O O0O0OO OO O0OO0O0O11 -11 00 00
0 000 0 00O OO OO0O0O O0O0OO0T1 -11
0 000 O -100 0O OO0OOCO O0OO0O OO
0 110 0 000 0O 0OOOOC OOOO OO
6 000 -1 110-11 1000 0O0O0OO0 O00O0
6 000 O 0O0OO0O OO0 O0O0O0O11-1000 O00O
0 000 O O0O0O0 O
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B.1.11 pn

pn(7,21,flag,5,2,0,10) where flag is the flag matriz of K, in the Ezample
B.1.1 Considering the matrices in ezamples B.1.9 and B.1.9 which are
the K, and K, cells of the Kneser graph with star(1) removed, and deter-
mining the positive and negative locations of =1 we get the following files
pos2 and neg2 which contain the following data.

pos2
8
10
32
34 neg29
56 33
38 37
80 64
81 103
104 107
105 133
108
109
131
132
B.1.12 kneser
kneser(5,2,0) will return [[7,8],[6,9], (5, 10], [4, 5], [4,6], [4, 8], [3,5], [3,7], [3,9],
[2,6], [2,7], [2,10], [1,8], [1,9], [1, 10]
kneser(7,3,1) will return [[30,31], [30,32], [30, 33], [29,31], [29,33], [29, 35],
(28, 32], [28,33], [28,35], [27, 28], [27,31], [27,34], [27,35], [26, 29], 26,32,
[26,34], [26,35], [25,30], [25,33], [25,34], (25,35, [24, 26], [24,27], [24, 28],
[24,29], [24,31], [24,32], [24, 35], [23, 25], [23,27], [23, 28], [23,30], [23, 31],
[22,35],

[20, 23],

25], [20,27], [20, 28], [20, 30], [20, 32], [20, 34], [20,35], [19, 24], [19, 26],

27], [19, 28], [19,29], [19,33], [19,34], [19,35], [18,19], [18,21], [18, 23],

25], [18,27], [18,29], [18, 31], [18,33], [18, 34], [17,20], [17,21], [17, 24],
[ [

[23,33], [23,35], [22, 23], [22, 26], [22,29], [22,30], [22,32], [22, 33],
[ l’

0,

9, [

8, [

7,26, [17,27], [17,30], [17,31], [17,32], 17, 34], [16, 22], [16,23], [16, 24],
6, [

5,2

4,

22], [21, 25, [21,26], [21,29], [21,30], [21,31], [21, 34], [21,35],

28] [16,29], [16,30], [16,31], [16,32], [16,33], [15, 18], [15, 20], [15, 21],
2], [15, 23], [15,26], [15,27], [15,28], [15,29], [15, 31], [15, 32], [15, 35],

1
1
1
1
1
14,17], [14,19], [14,21], [14,22], [14,24], [14,25], 14, 27], [14, 28], [14, 30],

[2
[
[
[
[
[
[
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(14,31], [

[13,23], [ [
[12,19], [ [
[12,34], [12,35], |
[11,25], 11,27], [1
[10,17], [10, 20], 1
[10, 33] 4], (10,

14, 33], [14, 35], 13, 17], [13,18], [13,19], [
13,26], [13,29], [13,30], [13,32], [13,33],
12,20], [12, 23], [12,24], [12, 25], [12, 26], |
1 11,14], [11,16], [11,18], [11,19], [1
[11,34], [1
, [10, 26], [10,
9,13], [9, 16],

20}, [13, 23], [13,24],
35], [12,13], [12,16],
29], [12, 30], [12,31],
21], [11,22], [11,24],
35], (10, 15], (10, 16],
27], [10, 28], [10, 29],
0,34], [9, 171, 9, 18], [9,21],
24], [9, 23], 9, 26], [9, 28], [9,32], [9,33], [9,34], [8,12], [8. 14,
19], [8,20], [8,22], [8,25], [8,26], (8,28], [8,32], [8,33], [8,34],
Lo], [7 2], 7,14}, [7,16], [7,17], [7,20], [7,22], [7,24}, [7,25],
], ,1

13,

, 13,
12,
1,
1,28], [11,30], [11,32], 1,
0,21], [10,22], [10,23]

10, 33], 0,35], [9,10], [9, 11], |
9,23], [
15], {8
I, [7
7
9

[1
9

[ ,1
8, ,33
1. 1 ,2
) [6 22] [6 23], [6,26], [6,27], [6,30], [6,31], [6,32], [6.34], [5,8],
31, [5,14], [5,15], [5,17], [5,18], [5,19], [5,20], [5,21], [5,28], [5,29],

]
%
0], [5,31], 5,32, [5,33], [4,3], [4,6], [4, 7], [4,10], [4,11], [4,13], [4,16],
7]
]
I

8
,2
,1
1
3
17), [4,18], [4,19], [4,20], [4,22], [4,27), [4,29], [4,30], [4,32], [4,33],
34], [3,5], [3, 6], [3,8], [3,9], [3,10], [3,12], [3,14], [3,16], [3,17], [3,19],
21], [3,23], [3,26], [3,28], [3,30], [3,31], [3,33], [3.34], [2,5], [2,7],
1 2

[
[
[6
[5,
[5,
[4,
[4,
[3,
2,
[2,
1,
[1,

9], [2,11}, [2,12], [2,15], [2,16], [2,18], [2,20], [2,21], [2,24],
5], [2,28], [2,29], [2,31], [2,32], [2,34], [1,6], [1,7], [1,8], [1,9], [1,13],
4], [1,1

1], [1,3
B.1.13 NOEDGES
NOEDGES(5,2,0) will return false
NOEDGES(7,3,1) will return false

NOEDGES(5,3,0) will return true

5], [1,17], [1,18], [1,22], [1,23], [1,24], [1,25], [1,26], [1,27],

8
2
1
3 2], [1,33]]

B.1.14 knngbdsimplex
G(5,2,0)
G(7,3,1)

B.1.15 knhomology

knhomology([[8, 9, 10 , [6, 7, 10], [5, 7, 9], [5, 6, 8], [3, 4, 10], [2, 4, 9],
(2, 38, 8], [1, 4, 7], [1, 3, 6], [1, 2, 5]],5,2,0)] Without actually showing
you all the files and data collected I will merely list the information given
to a certain eztent. First it will determine the star of vertex 1, which
is actually found in Ezample B.1.1 . Second, it determines M, which is
star of vertez 1. Third, it calculates K, which is found in Ezample B.1.9.
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Fourth, it will determine My which is found in Ezample B.1.9. Fifth, it
will determine K,, which is found in Ezample B.1.9. Sizth, it will now
create the files pos2 and neg2 and then dif ferential2 which are found
in Eramples B.1.11 and B.1.10 respectively. Seventh, it will calculate
Mo and Ko appropriately and then calculate dif ferentiall file using the
posl and negl files. The procedure then stops here, and the calculation of
the Do matriz is left to the user. Please note that knhomology uses other
procedures to do the calculations and the ezamples of their use is found in
the appropriate sections.



Appendix C
Ismith Program

To compute integral Smith normal forms we used a new space efficient deterministic
algorithm provided by Storjohann [Sto97a]. The new algorithm combines ideas from
[Sto96b, Sto96a, StoI7b] and [Abd97] and is based on the black-boz model of com-
putation, that is, the input matrix is used only to compute matrix-vector products;
this is especially suited to the large sparse input matrices arising in our work. For
example, let A be an n X m rank r input matrix with small (one or two decimal
digit) entries. The cost of the black-box algorithm is O(r?) integer matrix-vector
products plus O(r) integer polynomial multiplications with degree r univariate poly-
nomials having integer coefficients bounded in length by O(r) bits. If we assume A
is sparse, with on the order of O(n logn) nonzero entries, and we perform intermedi-
ate integer operations in a residue number system, then the cost of the algorithm is
about O(nmr?) bit operations using standard (quadratic) integer arithmetic (ignor-
ing logarithmic terms). This complexity result matches that of the fastest algorithm
for dense matrices [Sto96b]. The crucial practical advantage of the black-box algo-
rithm is an improved space complexity; only O(r?) additional bits of storage space
are required as opposed to O(r®) for the previously fastest dense algorithm. The
improved space complexity makes the new algorithm practical for the large sparse
input matrices we have encountered in our work.

Giesbrecht [Gie96] has proposed a significantly faster algorithm for sparse ma-

trices, also based on the black-box model of computation, that requires only O(r)

156
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matrix-vector products. The drawback of Giesbrecht’s algorithm is that it requires
randomization and may return, with an exponentially small probability of error, an
incorrect integral Smith normal form. The algorithm we have used here, although
requiring a factor of O(r) more matrix-vector products, is deterministic and guar-
antees correctness of the output. A significant open problem is to find an algorithm
which requires only O(r) matrix-vector products and guarantees correctness of the

output.
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D¢ ¢ N

X » & C DO m
n

0

14

plus or minus
subset
proper subset
implies

if and only if
Q.E.D.
member of
intersection
union

direct sum

Appendix D

Notation

B is the integral Smith normal form of A

isomorphic
homologous
homotopic
homeomorphic
inclusion map
epic (onto) map
functor

a divides b
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M. (R)
S
S'n.

im f
ker f

[2]
(]
Al
K]
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the set of integers

the set of reals

the Euclidean space of dimension n
cyclic group of order m

m X m identity matrix

m X n zero matrix

set of all m x n matrices over R
r-skeleton of a simplicial complex S
n-sphere

empty set

image of the map f

kernel of the map f

projection map

inclusion map

the homology class of z i.e. [z] = z4 B,
equivalence class of f w.r.t. homotopy
the cardinality of A, where A is a set

polyhedron of a simplicial complex K



P(V)

Ho(X)

Zn(X)

Bn(X)
Ho(X,Y)
Ca(X)
G(n,r,q)
diag(z1....,Zn)

unit interval, I = [0, 1]

the identity function of an object X

the power set of V

the set of all abstract simplicial complexes
the set of all geometrical simplicial complexes
underlying abstract simplicial complex map
n-simplex with vertices vy,...,v,

nth differential map

nth differential matrix for d,

nth homology group of X

n-cycles of X

n-boundaries of X

nth relative homology pair

n-chains of an abstract simplicial complex K
generalized Kneser graph

is an n X n matrix with z1,...,z, along the

main diagonal and zero entries elsewhere.
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N

hollow
two-dimensionally filled
three-dimensionally filled
vertex

edge
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