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Abstract

Ray tracing is becoming popular as the best method of rendering high quality images from
three dimensional models. Unfortunately, the computational cost is high. Recently, a number of
authors have reported on ways to speed up this process by means of space subdivision which is
used to minimize the number of intersection calculations. We describe such an algorithm together
with an analysis of the factors which affect its performance. The critical operation of skipping an
empty space subdivision can be done very quickly, using only integer addition and comparison.
A theoretical analysis of the algorithm is developed. It shows how the space and time
requirements vary with the number of objects in the scene.

I Introduction

Ray tracing is a technique for rendering pictures from a three dimensional model by
following the paths of simulated light rays through the scene. Whitted (1980) reported that for
complex scenes, over 95% of the computer time for ray tracing was taken by the process of
finding intersections of rays with surfaces in the scene. The reason for this is that it is necessary
to test every ray against every object. Since then, a variety of schemes have been suggested for
bounding objects in some way to reduce this cost. If a ray is found to be outside a bound, then a
whole group of objects can be eliminated at once. Whitted himself (1980) used bounding spheres
for this purpose. Rubin and Whitted (1980) used parallelepipeds in a hierarchical structure of
bounding volumes, Kajiya (1983) used a hierarchy of bounds to render fractals efficiently, and
Roth (1982) used box enclosures around the components of a solid model. A comparison of
bounding volume algorithms can be found in Weghorst (1984). More recently, Glassner (1984),
Fujimoto (1985), Kunii and Wyvill (1985, 1986), and Cleary (1986) have independently
produced schemes whereby the whole space in which rays are traced is divided into cubical
regions called "voxels". Objects, intersecting or contained by a particular voxel, are accessed via
the data structure representing that voxel. Meanwhile, Kay and Kajiya (1986) have produced
another promising algorithm based on bounding hierarchies, which they have compared
favourably with Glassner's algorithm. Ohta (1987) has described a completely new approach.
He divides the space of viewing angles into subregions so that, given a ray origin and direction,
we can use an indexing operation to find a list of objects potentially intersected.

Comparison of the relative speeds of these algorithms is difficult, because the various ray
tracers have been written in different languages on different computers and demonstrated with
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different kinds of scene. However, it is becoming clear that the method of uniform space division
(Cleary 1986), (Fujimoto 1985) is faster than adaptive space division (Glassner 1984), (Wyvill
1985). Both methods rely on tracing a ray's path through a sequence of empty voxels until a
non-empty voxel is encountered. In the adaptive schemes, the voxels are of unequal size, which
makes the cost of traversing empty voxels relatively high. In the case of uniform division, the
cost of skipping empty voxels is very low, but there are more to be skipped. The advantage of
the uniform division is partly due to the fact that the optimum level of space division is
surprisingly small. It is usually sufficient to divide the world space into a few hundred voxels.
Even if a few voxels still contain a large number of objects, provided the majority are empty or
nearly empty, ray tracing is still efficient. Another advantage of uniform subdivision is that it
does not require knowledge of how to group objects efficiently. This often requires intervention
by the user to describe the scene appropriately.

In the next section, we present an algorithm for fast skipping of empty voxels in sufficient
detail that implementation should be straightforward. In the following section, we analyse this

algorithm. The analysis describes how the cost will vary with the complexity of the scenes being
rendered.

II The Algorithm

-- Imsert Figure 1 near here --

The most naive ray tracing algorithms check every ray against all objects in the scene. At
the other extreme, there is an irreducible number of intersection calculations to be done — those
where a ray actually intersects an object. Algorithms mentioned above, using bounding volumes
or space division, make an intermediate number of intersection calculations. The approach taken
here is to subdivide the space being traced into equally sized subvolumes or voxels. Each voxel
has a list of the objects which intersect with it, and when a ray passes through, only the objects
on this list need to be checked. Figure 1 shows the situation for a typical ray. As it passes
through the scene, it skips a succession of empty voxels, and intersection tests are necessary
only for objects near the path of the ray. The ray propagation can stop at the first voxel in which
an intersection is found (any intersections in later voxels will be further from the ray source).
This approach can greatly reduce the number of unsuccessful intersection calculations, because
only objects which lie close to the ray's path are ever checked. However, an additional burden
has been introduced: we must check each of the successive cells along the ray's path, to see
whether it contains any objects. In this paper, we show how the step from one cell to the next
can be made very quickly. The overall effect of this is to allow many small voxels and a
concomitantly small number of unsuccessful intersection calculations. Little attention will be
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paid here to the intersection calculations themselves, except to note that usually they are
expensive, involving tens of floating point operations. In contrast, it will be shown that the next
cell calculations can be done in two or three integer operations. Our formulation and derivation is
different from that of Fujimoto (1985) and our algorithm is faster.

There are different ways to implement this algorithm, particularly if a tradeoff must be
considered between space and speed. It is important, therefore, to explain the thinking behind the
algorithm as well. For this reason, we present the algorithm in a sequence of stages of
development. At each stage we introduce an additional refinement.

Figure 2 shows the geometry used in the next cell calculations. For simplicity, only the two
dimensional case is shown. The ray in Fig. 2 enters a new cell, either by passing left to right
through a vertical wall, or by passing from top to bottom through a horizontal wall. Considering
only the passage through vertical walls, the distance along the ray between such crossings is a
constant, labeled ox. There is a similar constant distance, dy, between successive crossings of
horizontal walls, and, in the three dimensional case, a third constant, 9z.

-- insert Figure 2 near here --

The problem is to determine which type of crossing will occur next. Will a horizontal or
vertical wall be encountered first? This can be done by keeping two variables, dx and dy, which
record the total distance along the ray (from some arbitrary origin) to the next crossing of a
vertical or horizontal wall respectively. If dx is less than dy, then the next crossing will be of a
vertical wall and the next cell will be a horizontal neighbour. Correspondingly, if dy is less than
dx, then a horizontal wall will be encountered first and the next cell will be a vertical neighbour.
dx and dy can be maintained easily: when a vertical wall is crossed, dx is incremented by 0x, and
when a horizontal wall is crossed, dy is incremented by dy. It is also necessary to know which
cell is being visited. For the moment this will be determined by two integer coordinates, i and j.
Depending on the direction of the ray, it will pass from left to right or right to left through a
vertical wall, incrementing i by +1 or -1 respectively. This direction flag will be stored in px
(and py and pz for the other two directions). The first simple version of the next cell algorithm in
two dimensions is:
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initialize values of px, py, 0x, dy, dx, dy, i and j for current ray;
repeat
if dx < dy then
begin
1:=14px;
dx:=dx+dx
end;
if dx 2 dy then
begin
J=14pY;
dy:=dy+dy
end;
“until an intersection is found in cell (i, j)

The most expensive calculation in each cycle of this algorithm is the indexing of the array
cell(i, j) or, in the three dimensional case, cell(i, j, k). Assuming cell is an nxnxn array, it is
usually stored as a linear array with n3 elements. To access cell(, j, k), an index, p, to the linear
array is calculated using:

p:=i*n*n + j*n + k;

This is expensive, as it introduces multiplications into the loop. However, p can be maintained
directly, without complicating the algorithm, by using px, py and pz appropriately. Each time i
is incremented, p should be incremented by 4n2 and each time j is incremented, p should be
incremented by *n. Apart from initializing p, the variables i, j and k can be dispensed with
completely. The algorithm (for three dimensions) is:

initialize values of px, py, pz, 0x, dy, 9z, dx, dy, dz, and p for current ray; repeat

if (dx < dy) and (dx < dz) then
begin
P:=ppx;
dx:=dx+0x
end;
if (dy < dx) and (dy < dz) then
begin
P:=p+py;
dy:=dy+dy

end;
if (dz £ dy) and (dz < dx) then
begin
pP:=p+pz;
dz:=dz+0z
end;
until an intersection is found in cell[p]
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Hashing

The cell array contains n3 entries. To avoid redundant intersection calculations, n should be
large enough that most of the entries are null. (Most cells have no objects intersecting them.)
This implies that most of the space in the cell array will be wasted. This situation can be
significantly improved by using a hash table to store the entries in cell. Then only non-null
entries need consume space. A simple way to do this is to use p mod M as the index in a table
of length M. A division is not necessary, as p can be checked at the end of each loop to see if it
exceeds M. Also, if M is chosen as a power of 2, a simple masking operation can be used
(although care must then be taken that n is odd).

This hashing can be speeded up for empty voxels by maintaining two arrays: a full-sized
array of one-bit entries to indicate whether or not each voxel is empty, and a smaller hash table.
The hash table is only consulted when the current voxel is not empty. At this stage, the cost is
small compared with performing intersection calculations. The choice, for best performance,
depends on the speed of certain machine operations as well as the value of n. If bit-indexing is
slow and space must be saved, then the use of just the simple hash table is preferable.

Termination

One important problem to be solved is when to terminate the propagation of a ray. The
simplest way to do this is to detect when it leaves the rectangular volume within which the scene
is assumed to lie. Suppose we compute the distances along the ray to the points where it
intersects the bounding faces of the containing rectangular volume. Call these distances sx, sy,
sz. Then on each cycle, when dx, dy or dz is incremented, it can be tested against its limit. This
adds no more than three comparisons per cycle.

If the bit table is being used, then an inexpensive way to handle termination is to increase
the size of cell by one layer of cells on all faces. The hash bit is turned on for each of these
surface cells, but there is no corresponding entry in the hash table. This can be detected when
the hash table is checked and the ray terminated. The main advantage of this is that it does not
slow down the usual case in the loop, and the only extra space required is for the bits.

The complete algorithm, including hashing and using sx, sy and sz for termination, is now:
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initialize values of px, py, pz, dx, dy, 0z, dx, dy, dz, sx, sy, sz and p for
current ray;
repeat
if(dx < dy) and (dx < dz) then
begin
if dx = sx then exit;
P:=p+px%;
dx:=dx+0x
end
else if(dy < dx) and (dy < dz) then
begin
if dy 2 sy then exit;
pP:=p+py;
dy:=dy+dy
end
else if(dz < dy) and (dz < dx) then
begin
if dz > sz then exit;
p=p+pz;
dz:=dz+0z
end;
if p > M then p:=p-M;
until an intersection is found in cell with hash key p

It is possible to further optimize this code for speed:

« Some of the tests are redundant.

« If a particular ray leaving the scene is detected by the test dx 2 sx, the tests dy = sy and
dz 2 sz do not need to be in the loop. It is worth keeping three copies of the code, each
with only one termination test. When each ray is set up, it can be decided which of the
three pieces of code to invoke for voxel skipping.

+ If dx is the largest of dx, dy, dz, then, after a cycle in which dx is updated, we know that
dx will not be updated in the next cycle. Extending such reasoning by assuming
dx>dy>0z and duplicating the code as often as necessary, allows some loops to be
completed without any comparisons.

If the algorithm is carefully coded in assembler using all the techniques above, then each
loop requires, at worst, 3 adds, 2 comparisons, a bit fetch from memory, a store and two
branches for a total of 8 instructions. At best, no comparison is required, and only 6 instructions
are needed. Further, because the values of dx, dy, and dz are bounded by the size of the
containing volume, it is easy to arrange that they be represented by integers rather than floating
point numbers. Note that no multiplication or division is needed.
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Initialization
--insert Figure 3 mear here --

For the sake of completeness, the initialization calculation is included here. It is assumed
that we start with an origin for the ray at coordinates x, y, z somewhere within the enclosing
volume for the ray tracing. This corresponds most directly to a situation where a ray has been
reflected from an object in the ray traced area. However, it is easily adapted to the situation
where the initial rays from the eye through the pixels are being generated from outside the ray
traced volume. Figure 3 shows the two dimensional case when computing the initial value of dx.
It is assumed that the coordinates have been scaled so that the voxels are 1x1x1 cubes. If, as is
the case in the diagram, the ray is heading towards the right, then dx is given by the formula (
LxJ+1 - x)ox. If it is heading towards the left, dx = (x- Lx)@x. (Lx]is the greatest integer less
than x.)

Figure 4 shows the two dimensional geometry when calculating sx — the distance until the
ray leaves the scene. The expression which results is sx = (n-x)ox.

The direction cosines are given by cx, cy and cz. Figure 5 shows the two dimensional
geometric situation when computing dx. The formula derived from this is 0x = V(cx2+cy2)/cx.
This is trivially extensible to the three dimensional case and values for dy and 0z.

In the algorithm above, the only way that the values of dx, dy, dz, sx, sy and sz are used is
to be compared with one another. Also, dx, dy and dz are only changed by being incremented
by 0x, dy and dz. As well, the initial values of dx, sx, dy, sy and dz and sz are proportional to
ox, dy and 0z respectively. Consequently, it is possible to scale 0x, dy and 9z by an arbitrary
factor. Thus, if they are divided by V(cx2+cy2+cz2 ) the scaled values are given by the
simplified expressions dx = 1/cx etc. For working in integers, we use 0x = g/cx where q is a
suitable scaling value to provide sufficient precision without causing overflow.

Combining these formulae the code for initializing these values for the x coordinate is given
below. The code for the y and z coordinates is essentially identical.
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mx:=nZ mod M;
if cx = 0 then
begin
dx = oo}
sx :=0;
end else
begin
ifcx > 0 then
begin
ox := glcx;
PX = mx;
dx := ([x]+1 - x)*9x;
sx = (n-x)*9x

end else

if cx < 0 then

begin
ox := -q/cx;
pX := M-mx;
dx := (x- LxJy*ox;
$x := x*ox

end

end;

Having completed these calculations for all three coordinates, the only remaining value to be
computed is p:
p:= (Lx*mx + Lymy + [z/*mz) mod M;

Intersection calculations
--insert Figure 6 near here --

So far, we have considered intersection calculations to be single indivisible operations
unaffected by how we decide when to apply them. But for many objects, such as polygons,
these calculations can be significantly accelerated by the space division. A naive way of
processing a polygon is first to find the intersection of the ray with the plane of the polygon.
Then this point is tested against each edge of the polygon to determine whether it lies inside or
outside. The time to do this is proportional to the number of edges the polygon has. If only part
of a polygon lies within a subvolume, then only those edges also intersecting the subvolume
need to be tested. Figure 6 shows an example of this for a concave polygon with four bounding
edges labeled A, B, C, and D. As a ray approaches the polygon, it encounters three subvolumes
each containing part of the polygon and one or more of the bounding lines. In the first
subvolume, an intersection point has to be tested against edge A only, in the second against edge
B, and finally, in the third, against edges A, B and C. Any particular ray intersects the polygon
plane at only one point, and we need to test against only those edges which intersect the current
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voxel. If there is a large polygon with many edges, a conventional ray tracer will have to check
all the edges for every intersection. But with space division, there will often be many whole
voxels which are intersected by the polygon plane but lie wholly inside its edges. In this case,
many rays which strike the polygon will not require any checking against the edges. This idea
can also be extended to other types of object. For example, a cylinder can be treated as an infinite
cylinder with two bounding planes at either end. Only subvolumes, including parts of the ends,
need do tests against them. This is very much the approach taken by the CSG system (Wyvill
1985) which handles a polygon as an infinite plane with pieces subtracted off by the bounding
edges. Presumably, more complex objects such as quadric surfaces or swept volumes can be
simplified in the same way.

Because some objects occupy many voxels, it is possible that a particular ray can be tested
more than once for intersection with a given object (Glassner 1984), (Wyvill 1985). The simplest
way to avoid this, is to associate a record with each object in the system to contain the results of
the last intersection calculation with that object. Each new ray can be given a unique integer
signature which is also written into this record at the time the calculation is done. The first
operation in any intersection calculation is to inspect this record to see if the signature is that of
the current ray. If it is, then the record contains either a flag saying that the ray does not intersect,
or it contains the intersection point and other relevant data. Because the signature is unique, these
records do not need to be initialized for each ray.

Let us see how this is applied in the case of Fig. 6.

+ In the first cell, the intersection of the ray and the plane is computed and the resulting
point is stored. The intersection is outside the current voxel, so nothing further is done.

 Inthe second cell, the plane is checked and found to have a precomputed result which is
not in the current voxel. Nothing further is done.

» In the third cell, the plane is checked and found to have an intersection in the current cell.
The edges A, B and C are then checked.

To summarize, then, the algorithm analyzed below assumes that: surfaces such as planes,
cylinders and spheres are checked only in voxels which they intersect; the intersection calculation
is done only once for each ray with such a surface; and checks against bounds on surfaces, such
as the edges of a polygon or the ends of a cylinder, are done only in the voxels which contain
these bounds.
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IIT Space and time requirements

The time required to process a given scene will depend on many factors, including n3, the
number of voxels, and the geometric properties of the picture itself. The crucial technical
problem to be solved in doing this analysis is how to compute the number of voxels which will
contain a reference to a particular object. The technique used to solve this problem is the
calculation of the augmented volume of an object. The first subsection below gives the basic
results using this idea, and the following subsections apply it to analyzing the algorithm. A
previous use of augmented volumes in analyzing algorithms can be found in (Cleary 1979). The
analysis and results here are similar to those for the analysis of a multiprocessor ray tracing
algorithm in (Cleary 1986).

Augmented Volume
-- insert Figure 7 mear here --

Figure 7 shows two examples of the number of voxels intersected by a line in two
dimensions where voxels become squares with sides of length x. The figure shows that the
number of squares intersecting the line depends on the position of the squares relative to the line,
as well as to the length and orientation of the line. However, it is possible to calculate the
number of squares averaged over all possible positions of the tiling relative to the line. As the
tiling is by identical squares, all such relative positions can be specified by two numbers ranging
from 0 to x, which denote displacement of the grid along the axes. The orientation of the squares
is assumed to remain constant. The position of a square can be determined uniquely by choosing
some point, say its midpoint, and specifying where it lies. For some such positions the square
will intersect the line and for others it will not. Consider the set of all points near the line whose
associated square intersects the line. This set constitutes the augmented line.

-- insert Figure 8 near here --

Figure 8 shows such an augmented line and how the calculation of its area, A(x), can be
carried out. The definition of the augmented area can be reversed and a square can be positioned
so that its centre lies on the line. Every point covered by that square will be a member of the
augmented line. Also, a point will be a member of the augmented line only if there is such a
square which covers it. So, the augmented line can be obtained by positioning the midpoint of a
square at one end and then sweeping it along the line. The area of the resulting figure can be split
into three components: a square of area x2 and two parallelograms with an area proportional to
Lx where L is the length of the line. Thus the total area can be expressed as

A(x) = 2gLx + x2 (1a)
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for some geometric constant, g. (The factor 2 is to preserve compatibility with equation (1b)
below.)

-- insert Figure 9 near here --

This result is a special case of that for a convex polygon which is shown in Fig. 9 where

A(x) = A + Cgx + x2 (1b)
given that A is the area of the polygon, C is the total length of its circumference and g is a
constant dependent only on the orientation and shape of the polygon. This result can be obtained
by slightly rearranging the augmented area so that it forms a parallelogram against each face, plus
a patch at each vertex. The area of each parallelogram is proportional to the length of its side,
and by symmetry will average to half the augmented area of the line. The patches at the vertices
sum to a single square.

These results can be extended to a convex two dimensional polygon embedded in three
dimensions. The tiling squares now become tiling cubes (voxels). However, similar reasoning
leads to the result that the augmented volume is

V(x) = Ag;x + Cgy x2 + x3 (2a)
where A is the area of the polygon, C is the sum of the lengths of the edges and g; and g, are
geometric constants determined by the shape and orientation of the polygon. The special case for
aline is given by

V(x) = 2Lgy x2 + x3 (2b)
where L is the length of the line.

The connection of the augmented volume to our analysis is obtained by noting that if the
augmented volume of an object is V(x) then the average number of voxels which intersect the
object is V(x)/x3-

Any convex object can be approximated in the limit by a sequence of polygons whose area
and circumference converge to the area and circumference of the object. So (1) and (2) hold for
any convex shape. For concave or disjoint objects, these results provide upper bounds to their
areas and volumes. The problem with a concave object is that the volumes swept out when
following different edges may overlap, causing the volume to be overestimated. It seems likely
that the qualitative results obtained for convex surfaces extend to concave objects.

It is possible to go one step further and to compute the actual values of the constants in
equations (1) and (2) above, by averaging over all possible orientations of the objects. g can be
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obtained by noting that the area of each of the parallelograms in Fig. 8 is LszinG where 0 is the

orientation with respect to the axes. Integrating with respect to 8 gives g= Land
T
A®X) = 4 xex2 (3a)
T

Applying this result to the general case gives:
AX)=A + —g—Cx +x2 (3b)
T

g1 in equation (2) can be calculated by considering the limit of large A. That is, an infinite
plane coplanar with the polygon. The mean number of voxels intersected by it will be inversely
proportional to the mean area of the intersection of the plane with an individual voxel. Let this be
M. In other words, g; = 1/M. M can be computed by sweeping the plane, parallel to its normal,
across a single voxel. Taking a unit sized voxel, the mean area is given by the integral of the
area of intersection at each point along the normal, divided by the total distance the plane is
moved. Thatis

D
M = J)‘area(x) dx/D

where D is the diameter of the cube along the normal. The top integral is just the volume of the
cube, soM = l/p and g; = D. D can be computed by noting that it is just the sum of the lengths

of three of the sides of the cube projected onto the normal. The mean length of a unit line

projected against another line in three dimensions is given by the integral
T

2
J21c sin® cosO dO

1
= — 4
- > )

7
Jzn sind do

So finally, g; = 3/,.

Calculation of g5 can be done by using (2b) and arguing in a similar way to that used for a
line in two dimensions (see Fig. 8). In this case, the volume will consist of three parallelepipeds
which are obtained by sweeping one face of the voxel parallel to the line. The volume of one of
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these parallelepipeds is given by the area of the face times the length of the line projected against
the normal to the face. So gy equals 3/2 times the mean projection of a unit line against another

line. Curiously, this is given by the integral in (4) giving the final result g, = 3/4. The result of
all this is:

V(x) = 3/5Ax + 3/,Cx2 + x3 (5a)
For the special case of a line in three dimensions, this gives:

V(x) = 3/,Lx2 + x3 (5b)
Time

The execution time per ray can be divided into three components. First, there is a constant
composed of the calculations in initiating the ray and doing any processing after a successful
intersection calculation (if any). The second component is doing intersection calculations
whether successful or unsuccessful. The third component is the time spent moving between
voxels. Estimating the times for the latter two requires use of the results for augmented volumes

presented above. In what follows, for simplicity, we treat the ray traced volume as a unit cube,
so that x = lln. (In the algorithm earlier, voxels were considered to be unit cubes.)

Next voxel

Consider one ray passing through the scene. The number of next voxel calculations will be
equal to the number of voxels which the ray intersects (less one allowing for the first voxel).
Using (5b) and x = 1/ this is given by

(3/,Lx2 + x3)/x3 - 1 =3/,Ln
Averaging over all rays and letting p be the mean length of a ray and t, be the time taken to do a

next voxel calculation, the average time taken for next voxel calculations per ray is

Intersections

An object needs to be checked for an intersection any time that a ray enters a voxel
containing a reference to the object, and any time that a ray starts inside such a voxel. Because
care is taken to do a full intersection calculation only when a ray encounters and object for the
first time, it is necessary to calculate both the total number of checks and the number of different
objects encountered by a ray. First we consider the total number of intersection checks.

If it is assumed that the flux of rays is uniform near the object, then the total number of rays
entering the voxels will be proportional to the surface area of the voxels which intersect the object
times the flux of rays. The number of voxels is given by the augmented volume of the object
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divided by the volume of an individual voxel. The mean flux of rays can be calculated by
considering a plane extending across the whole scene. If the rays are all projected onto the
normal of the plane, then the expected number of rays crossing the plane will be equal to the
number of rays which lie on any point along the normal. Using (4) the expected average length
of the rays after projection is P/y and allowing for the fact that only rays passing into the voxels

are of interest, the mean flux per unit area is P/4. Using this result, (5a) and x=1/n, the number
of repeated calculations per ray is given by:
6x2 P/4(31pAx +3/4Cx2 + x3)/x3 = 3/pp( 3/5A + 3/4Cn1 + n°2) (7a)

where 6x2 is the total surface area of a voxel.

On average the number of rays starting in a voxel is proportional to the volume of the
voxel. So the total number of new rays which require a repeated check is proportional to the

augmented volume of the object. Using (5a) the number of repeated checks from this source is
31,An1 +3/,Cn2 4 03 (7b)

Initial Intersections

It is also necessary to know the number of different objects encountered by a ray or,
conversely, the number of rays which do at least one check against an object. Consider the
volume formed by all voxels which intersect some object. The number of initial checks will be
proportional to the number of rays which enter this volume or which start within it. For this last
see (7b).

Arguing as above, the number of rays which enter the volume will be proportional to the
surface area of the volume times the flux of rays. Note that this is smaller than the sum of the
surface areas of the voxels because some faces will be shared by adjacent voxels. For a
particular set of voxels, this surface area can be obtained by projecting the surface and its voxels
along each of the three axes in turn. Such a projection reduces the problem to that of finding the
augmented area of the projected polygon. If the area of a polygon is A, then the mean area of its
projection along one of the axes is A/2. (Consider the surface area of a hemisphere projected
down onto the area of a circle giving the ratio 7/2x.) If the original circumference is C, then the

mean length of a line after projection is given by the integral
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3
Jzn sin® sin® do
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n 7
2

JZTC sin@ d6

Combining these results about projections, (3b), and the result for the flux F above, and
summing over all six possible projections (two directions along each of three axes) the number of

initial checks against a particular object by rays entering from outside is:
3/2p(A/2 + C12 'l +n2) 8

Let t; be the time to do an initial intersection calculation, t; be the time to do a repeated
intersection check, N be the total number of objects, o be the mean area of objects, and  be the

mean circumference of objects, then, the total time spent in doing intersection calculations is:

pa 2
3—2N{ti [+ E§—+a)n'1 + (p+-)%)n'2 + —3-n'3] + tr [pa +%n'1] } )

Note that here the time to do an initial intersection check is assumed constant. That is, the
process of optimizing checks against bounding edges is ignored. A rather more difficult analysis
shows that this does not significantly alter the forms of the equations above. They still contain
only terms in n-1, n-2 and n-3,

Total Time
After combining (6) and (9), letting ty be the constant overhead for initializing a ray and
rearranging, the total time per ray is:
t=ty+ %txpn +
3 t [ . tr 1 g+ X 2,2, 3
=N { @+ <P+ [px -5t o+ PX‘[] ™ +(p + S +3tn P Qo
For a fixed scene, all these values except n are fixed. Later, this equation will be used to
investigate changes with N, the number of objects. But to do this, the changes in ty, p, o and
with N need to be accounted for.

“Equation (10) is quite complex and it pays to remind ourselves of the meaning of the
various terms. The term 3/,typn is solely contributed by the next cell calculations. This
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increases linearly with n. As it is the only term which increases with n, it is critical in determining
such things as the optimum value of n.

The constant terms which are independent of n come from three sources. t; is the constant
overhead for each ray. It is an irreducible overhead in any ray tracing scheme and is composed
of the times to initialize a ray (either when it is projected through a pixel or after a reflection or
refraction) and the time to do any shading/lighting/background/texture calculations after the ray
terminates. This will obviously depend greatly on the sophistication and complexity of the
various techniques being used. 3/,Nt;P®/5 is the time for the irreducible number of intersection
checks which actually succeed. 3/;Ntypa is the time for repeated checks resulting from rays
which actually intersect a surface, but do so at an acute angle. As these rays approach the
surface, they encounter a number of voxels containing references to the surface before entering
the final voxel where the intersection occurs. Taking the ratio of these two terms, we see that, on
average, a ray that finally strikes an object encounters the object in three different voxels
(including the final one). Kay and Kajiya (1986) suggest that these repeated intersection checks
are a major drawback of space partitioning algorithms. This result confirms that the problem will
occur frequently, but the use of ray signatures avoids repeating the intersection calculation itself
and the cost is not too great.

The remaining terms in n"1, n"2 and n-3 are caused by rays which pass near objects but
which do not actually strike them. These can obviously be reduced by increasing n. The
optimum value of n, giving the smallest value of t, will be found when the linear increase in n
offsets the decrease in these terms. It turns out that, in practice, this minimum lies in the region
from n=50-1000. This implies, in turn, that the terms in n-2 and n-3 will be small compared to
n-l. Figure 10 shows a graph of t against n for some "reasonable" terms (the actual values used
will be discussed later). This shows that the term in n-3 is so small as to be invisible, while the
term in n"2 is about 5% of the total.

A rough estimate of where the minimum will lie can be obtained by considering the terms in

n and n" and taking the derivative. This gives the following expression for the minimum point:

pX (ti+=5) + oty
Npmip = N (11a)
2pty
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Substituting this value back into (9) and neglecting terms less than O(1/,) gives the following
expression for the total time:

t' 3 t- t.
tmin = t0+12N(tr+—%-)pa+\/ PNty (px %+ oti + px %) (11b)

One interesting exception to this approximation is a scene consisting of very small objects
whose area and circumference are effectively 0. This might be a scene consisting entirely of a
scattering of small dots. Letting o=0 and %=0 in (10) gives:

t=to+3/ptgpn + 3N {tipn2 + 2/3tjn-3 }

The term in n-1 disappears from this equation. However, the term in n-3 can still be neglected,
giving the following expressions for the optimum value of n and the resulting value of t.

Npnin = 3\ (2Nti/ty) (122)
tmin = to + 3P 3\/ 2Nty 24 (12b)

Space

The total space required for the algorithm is readily calculated. The major requirements for
space are the bit table, the hash table, the list of references to objects attached to each voxel and
the description of the objects themselves. Let the space required for each entry in the bit table be
sh, then the total space is spn3. Let R be the total number of references to objects in voxels. The
number of references for an object is given by its augmented volume divided by the volume of a
voxel, so, using (5a) and x=1/, R = 3N(/p0n? + 3/4¢n + 1). If it is assumed that the hash
table is sized so as to maintain a constant load factor A (fraction of non-null entries) as N is
varied, and sy, is the size of each entry in the hash table, then the hash table uses shR/x. Each
non-empty entry in the hash table will have a chain of references to the objects intersecting that
voxel. Probably the simplest and most economical form for these entries is that they contain a
unique identifier for the voxel they represent, a pointer to the object that they refer to and a

pointer to the next reference in the chain. The identifier is necessary because more than one voxel
may hash to the same location. If the space for each such reference is sy then the total space

required for all such references is s;R. The space required to describe all the objects is given by
soN where s, is the space used by each object. Combining these expressions, the total space

required per object is:
3
Spn ]
e i R AR E ®
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Example
-= imsert Figure 10 mnear here --

To give some further feel for the interpretation of these equations, Fig. 10 shows graphs
for time and space. The scene used contains 10, 000 randomly oriented squares. The times used
for the various operations are taken from an unoptimized implementation of the algorithm and
consequently should not be taken too seriously. They are given in milliseconds (on a VAX
11/780).

Figure 10a shows a graph of time against n built up from its components. The two
horizontal lines at the bottom show the time to check for rays which actually intersect a square.
The next line up shows the time needed to check for repeated intersections (that is, objects that
are encountered in more than one voxel). The next area shows the time to do next cell
calculations. These increase linearly with n. The next two areas show the contributions from
terms of order n-1 and n-2- The terms of order n-3 are so small as to be invisible.

Figure 10b shows a graph of space against n built up from its components. The space is
expressed as bytes per object and can be split into three components. The first (set at 100 bytes
per object) is the constant space required for storing the object itself. The next component which
has terms of order n? and n, is the space required for the references to objects from voxels efc. It
contributed most of the increase in space requirements. The third component is the space for the
bit table. It is small over the range of the example shown, but is increasing quickly. At the point
of minimum time, the extra space required is just a little less than 3 times that required for storing
the objects themselves.

IV Varying number of objects

It is of interest to know the behaviour of the algorithm as the number of objects N is varied.
This poses some additional problems, as it has been assumed until now that the scene being
examined is static and that other values such as the number of subdivisions, n, have been varied.
However, if N is to be changed the picture must be changed in some way. Another difficulty is
that many of the values which are constants in equations (10) and (13) for a fixed scene will now
vary with N. For simplicity, it is assumed that there is a fixed number of rays. That is, all rays
terminate at the first object they encounter and there is no transparency or specular reflection.

Two ways of changing the scene will be used. In the first, which we will refer to as
scaling, the average geometric properties of the scene are assumed to remain constant, except that
the size of the traced scene is scaled isometrically. This will be the case, for example, if the
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original scene is a small part of a much bigger scene, and a larger part is selected for rendering.
If the bounding box for the scene is arbitrarily assumed to be a unit cube, then the average areas
and circumferences of the polygons in the scene will change with N. It is easily seen that the
relationship is:
o= o N3 (14a)
x=xo N3 (14b)

The second way of varying N leaves the average area, a, and circumference, ¥,
unchanged. This effectively stuffs more objects into the same space, gradually filling the scene.
We will refer to this as the unscaled case. The paragraphs below will investigate the equations
for time, (10), and space, (13), term by term and express them as functions of N for each of the
two scaling techniques.

Time
Equation (10) gives the expression for the total time per ray. For convenience it is

reproduced below:
t=ty+ %txpn +

t; t; t;
N L e+ )pot [ px 5+ oty + py =] ol 450+ 2yn2 4+ 2403} (10)

The following paragraphs will take the terms of the equation one by one and express them as a
function of N.

)

This term is the constant overhead for every ray. It consists of two components: the time to
initialize and start a ray and the time to complete the ray. The initialization will take a constant
time, say t,, When a ray completes, two things can happen taking potentially quite different
times. The ray can exit from the scene without encountering any objects. This will result in the
intensity being computed from some background; for example: a uniform "sky" colour or some
background scene. Alternatively, the ray will encounter an object with a concomitant amount of
computing depending on the lighting model being used. As N is varied, the fraction of rays
which exit the scene or encounter an object will vary. The effect of this can be approximated as
follows.

Assume initially all rays in the scene are of equal length, say pg. The actual length of the

rays will decrease as N increases and more of the rays encounter objects. Consider a line along
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the direction of some ray. It will encounter the first (if any) object that the ray encounters and
then pass on through any remaining objects in that direction. The expected number of surfaces
which the line will pass through is given by the mean area of the objects in the scene projected

along the direction of the ray. This projected area is (%- and the expected number of

. : I . aN . .
intersections for an initial ray of length pg is & = —5-Po. This assumes that the scene being

rendered is a unit cube.

The fraction of rays that encounter no objects can be computed from the Poisson
distribution to be &9, So, if t; is the time to start a ray, t, the time to complete the execution of a
ray that exits from a scene, and t; the time to do the lighting calculations when an intersection
occurs, then

ty =ty +1te €O+t (1-e70) (15)

At small values of N, ty = t; + t, because all rays exit from the scene without encountering any
objects. For large values of N, tg = t¢ + t; and every ray encounters an object. In between, the
time will rise steadily from t; + t, to tg + t; in the usual sigmoid curve. This result assumes that
the initial rays are all of equal length. This would be true, for example, if the viewpoint were at
infinity when all initial rays would be parallel and of unit length. In general, however, some rays
will pass through longer or shorter parts of the scene. The effect of this is to smear out the
transition between the two times, but not to alter the qualitative form of the curve.

p

This is the length of an average ray and enters into the expression for time in a number of
places. Using the reasoning from above, it can be expressed in terms of some initial ray length
in an empty scene, po. If the line along the direction of a ray intersects i objects, then the mean

length of the ray will be % Using the Poisson distribution, the average length for a ray is
given by:
p =‘;_0(1 PN (16)

When N is large, this simplifies to p = LN_ and when N is small, to p = pg. That is, when N is
o

large, the rays very soon hit an object and the expected length is independent of the initial length,
and when N is small, most rays do not hit any object.
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The value for n needs to be chosen anew for each value of N. Making a best case
assumption, this can be done by finding the minimum time over n using (10). In general, this
involves solving a fourth order polynomial in n whose analytical solution is not very
enlightening. However, some feel for what is happening can be obtained by noting that, in most
cases, n lies between N"% and N™2. This is borne out both by the special cases which have

analytical solutions and by numerical solutions of the general case.

Example 1
== imsert Figure 11 mear here --
-= imser¢ Figure 12 mear here --
- imsert Table I mear here ==

To give some feel for the meaning of these results, three simple example systems will now
be examined. The first is a scene consisting of randomly placed squares with no reflections and
with the viewpoint at infinity. Figures 11 and 12 show the results of equations (10), (13), (14),
(15) and (16) applied to this scene. Table I shows the parameters used in the calculations. The
time and space constants were taken from an unoptimized implementation of the algorithm
written in C on a VAX 11/780. The time values are in milliseconds per ray and the space values
in bytes. Values for n were calculated by numerically minimizing (10). Figure 10 was calculated
using the same scene, with N held at 10,000.

Figure 11 shows time (t), space (s) and the optimum value of n plotted against the log of N
for both ways of varying the scene. The constants were chosen in such a way that the two ways
of varying the scene coincide at N = 10,000. For a scaled scene, the time increases steadily,
eventually reaching an asymptote for large N. For the unscaled scene, a peak in the execution
time occurs a little above N = 10,000 and thereafter, the execution time decreases. This appears
to happen because the scene becomes very crowded for large N and the rays penetrate only a
very short distance. In fact, the unscaled assumption is not very realistic for values of N much
above 10,000, as there will be a very crowded scene with many overlapping and interpenetrating
polygons.

For a scaled scene, the space required per object stays almost constant. This is because n
scales at almost exactly the same rate as the size of the polygons, so that each object is recorded
in the same number of voxels. This observation is verified below for some cases which have
analytic solutions. The space requirements for the unscaled scene explode exponentially for large
N. This is because many polygons will overlap and interpenetrate so that every polygon is
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recorded in many voxels. However, as noted above, this type of scene is unlikely to occur in
practice.

The graph for the optimum value of n shows both the scaled and unscaled scene as well as
two lines proportional to N3 and N2, The n value in the scaled scene is parallel to N'3, That
is,n=ngy N"3. In the range of reasonable values for the unscaled scene, n is initially parallel to
N'3 and later increases to N> As N increases further, n increases even more rapidly, but again
this is not likely to occur in practice.

Figure 12 gives a further breakdown of the time into that irreducible part which cannot be
avoided in any ray tracing scheme, and the part caused by checking rays against objects with
which no intersection actually occurs. The irreducible part consists of the time to initialize the ray
and to perform any terminal lighting or other calculations. It would be miraculous for a ray
tracing algorithm to reach this minimum, as it would have to avoid any checks against objects
other than the one which it finally hit. However, the ratio of the two times does give some idea
of how much can be gained by further improving space division or bounding. The answer
seems to be that not much improvement is possible. In almost all cases, the irreducible minimum
is more than half of the total execution time. The one exception is for small values of N in the
unscaled scene where there will be a small number of small objects scattered about the scene.
That is, only a small number of pixels will actually be coloured by an object. Most will just be
background sky colour. Here, the ray tracing times are small anyway, but an algorithm which
visited each object in turn and only drew rays through those pixels which would eventually be
coloured, would be a significant improvement on the current algorithm.,

One interesting special case can be derived from these results. Consider the case where N
is large and the scene is scaled. Using the expressions for p, o and  given above, assuming that
n=ng N3 and eliminating terms of O(N'l/?’) and less, the following simplified expression for
t is obtained:

i), 3ooti  3xoti | _ti
t=ts+t1+3(tr+—2-)+ 2n0+ 22 +
Mo Moy
That is, for large N and a scaled scene, the execution time will be a constant independent of N.
This is borne out by the result in Fig. 11.
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Example 2

The next two examples give analytic results and are in some sense a worst case for the
algorithm. The first examines a hypothetical scene which we call the "spider's web". This
contains many long thin lines. This means that very few actual intersections occur, although
many of the long thin objects have to be checked. This scene can be modeled by assuming that
the area of each polygon is 0 and the the circumference is finite. One consequence of this, is that
the average length of the rays remains constant, independent of the number of objects. This
gives the following simplified expression for the total time:

3 3 Gt X 2
t=tg+te+Stypon + SN { pox [ 5+ 10! +ti(pp+Z)n2 + 503}
2 2 2 4 2 3
It turns out that, in practice, the terms in n-2 and n-3 are small and can be neglected. This
further simplifies the equation to:
t=ts+t +ltpn +1pr i+t—r nl
s Tle ™ 3P0 2 0 2 4
Taking the derivative of this in n and computing the minimum gives
X i I
nmin='\/N _t;-(T+ T)

. . 1
Note that n is thus proportional to N 2

Substituting this back into the expression for t gives

L
t=ts+te + 3P\ N % tx(7+ —4-)

In an unscaled scene, 7 is a constant and t will be proportional to NI’ 2, unlike the first example

. . -1 .
where it eventually reached a constant maximum. In a scaled scene, § = N 3 50 t will be
proportional to N3,

Example 3

The third example is a hypothetical scene we call "stellar dots". It consists of dots scattered
at random throughout the scene. This can be modeled by setting both the area and circumference
to 0. This gives the following simplified expression for t:

t=tg+ts+ %txpn + Nt; n3

Solving for the optimum value of n gives:
WAL
txp
Substituting back into the expression for t gives
t=t, +t, + 42t p) 4N )

That is, t is proportional to N4 for both scaled and unscaled scenes.

Ny =
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Space
It is somewhat easier to provide a general analysis of the expression for space. Equation

(13) is reproduced here for reference.
spnd  /sp

0 (2h 3an2 42
s = N+[}L+sr)(—zan +-zxn+1)+so (13)
For a scaled scene, n is proportional to N' and after substituting the correct expressions for

area and circumference, s can be re-expressed as:

s
§ = sbn30 + (—;%+ sr)(%oconzo + %xono + 1)+ So

This is independent of N as shown in Figure 11.

For a scaled scene, the situation is somewhat more complex as n does not vary so simply
. . . . 1
with N. If N is small and n is proportional to N 3 then s becomes:

s
s:sbn30 + (.Ih+ sr)(%anzo N2y 3—4xn0N1’3 + 1)+s0

It is thus dominated by terms of order N3 and N*A.
Alternatively, if n is proportional to N2 then s becomes:

s
s=sbn30N1’2+ (Th+ Sr)(%anzo N + %xnoNl/2 + 1)+ So

In this instance, it is dominated by terms of the order of N and NY2

IV Conclusion

' The major accomplishment of this paper has been to show that it is possible to analyze a ray
tracing algorithm in some detail. The full value of this analysis will be realized when it is
possible to analyze other competitive techniques and compare them.

One very important point that does emerge is that, in many cases, the irreducible overhead
of any ray tracing algorithm (initializing the ray, doing lighting calculations etc.) is a large
fraction of the total execution time — usually more than 50%. This implies that dramatic gains
cannot be expected from incremental improvements to ray tracing itself. It may imply that other
techniques, such as beam casting, which exploit more of a scene's coherence, will be necessary
if further improvements are to be made in execution time.

In some cases, the storage requirements of the algorithm can increase dramatically with the
number of objects in the scene. It is not clear whether the cases where this occurs (unscaled
scenes with large number of objects) are likely in practice, but it does seem to be a possible
weakness of the algorithm. One possibility not explored here is to optimize the scene
subdivision for space rather than time, or to seek a compromise between the two.
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Figure 1. Passage of a ray through voxels and the resulting intersection checks.
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Figure 2. Next cell calculation.
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* Simplified 2D algorithm

px=+1
py=-1
initialize dx,dy,dx,dy,i,j
repeat
if dx < dy then
begin
i=i+px;
dx:=dx+0x;
end;
if dx > dy then
begin
J:=14pYs
dy:=dy+dy;
end;
until intersection in cell ij;

N
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Figure 3. Initial calculation of dx.
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Figure 4. Initial calculation of sx.
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Figure 5. Initial calculation of ox.
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Figure 6. Objects considered in successive cells as a ray approaches intersection.
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Figure 7. Intersecting voxels for two different positions of tiling squares.




Figure 8. Augmented area of a line.



Figure 9. Augmented area of convex polygon.
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Figure 10. Time and space plotted against n.
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Figure 12. Breakdown of time into overhead of ray-tracing and irreducible time.



