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Abstract 

Electromagnetics are the foundation for many of the prolific technologies in modern 

society and very important to many branches of engineering. The finite-difference 

time-domain (FDTD) method has been successfully and very widely applied to the 

modelling of electromagnetic phenomena. The algorithm is computationally inten-

sive, however, and simulations can run for hours to several days on multiprocessor 

supercomputers. Dramatically reducing the runtime of this method would greatly 

benefit FDTD users and open up new areas of research. 

The goal of this research is to prove the concept of accelerating FDTD by using 

programmable hardware, integer arithmetic, and fine-grained parallelism. The con-

cept is successfully proven using a pipelined bit-serial implementation of the FDTD 

algorithm on field-programmable gate-array (FPGA) hardware. The details of this 

implementation are described and the speed and accuracy are compared to soft-

ware FDTD implementations. Finally, a resource-sharing approach for an FDTD 

hardware accelerator is outlined. 
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Symbols 

The following list contains the common symbols, in order of appearance, used by 
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 time [s] 

electric field [V/rn] 
electric flux density [C/M2] 

magnetic field [A/rn] 

magnetic flux density [Wb/rn2] 

electric current conduction density [A/m2] 
volume charge density [C/m3] 
magnetic permeability [H/rn] 
electric permittivity [F/rn] 
electric conductance (loss) [5/rn] 
magnetic resistivity (loss) [a/rn] 

1x, Ay, Az spatial sampling interval(s) [rn] 
At temporal sampling interval [s] 
C speed of light [m/s] 

Sf actor stability factor (0.0 to 1.0) [dimensionless] 
C capacitance [F] 
L inductance [H] 
er relative electric permittivity (to free space) [dimensionless] 
Pr relative magnetic permeability (to free space) [dimensionless] 

Acronyms 

The following list contains the most frequently used acronyms, in order of appear-
ance, in this thesis. 

FDTD finite-difference time-domain 
A discrete (temporal and spatial) approximation to the integration of 
Maxwell's equations that is well suited to implementation on a computer. 
(See also Section 2.2.) 

FPGA field-programmable gate-array 
A fixed array of programmable digital hardware resources implemented as an 
integrated circuit. (See also Section 2.1.) 
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PML perfectly matched layer 
A type of absorbing boundary condition that is a very accurate approximation 
to a boundary at infinity. 

HDL hardware description language 
Similar to a programming language and used to specify the structure or be-
havior of a digital circuit. 

VHDL VHSIC Hardware Description Language 
An advanced form of a hardware description language. 

VHSIC Very High Speed Integrated Circuit 

PC personal computer 

SDRAM synchronous DRAM 

DRAM dynamic random access memory 
A type of semiconductor memory in which the information is stored in capac-
itors on a MOS integrated circuit. Typically each bit is stored as an amount 
of electrical charge in a storage cell consisting of a capacitor and a transistor. 
Due to leakage the capacitor discharges gradually and the memory cell loses 
the information. Therefore, to preserve the information, the memory has to 
be refreshed periodically. 

PCI Peripheral Connections Interface 
A standardized hardware interface, commonly found in personal computers, 
that is used to connect generic "peripherals" to the computers processor and 
main memory. 

AGP Accelerated Graphics Port 
A standardized hardware interface, commonly found in personal computers, 
that is optimized for high throughput of video data in a personal computer. 

LUT lookup table 
For the Xilinx Virtex technology, a lookup table is a 16x1 table of pro-
grammable values, with four inputs (addressing) and one output. Any four-
input, single output logic function can be implemented by appropriate choice 
of the table values. 

LE logic element 
A Xilinx Virtex logic element contains one D-type flip-flop, one lookup table 
and carry and control logic. 

xl' 



CLB configurable logic block 
A Xilinx Virtex CLB contains four logic elements, as described for the previous 
acronym. 

ASIC application-specific integrated-circuit 

RF radio-frequency 

VLSI very large scale integration 

LDI lossless discrete integrator 

ALU arithmetic logic unit 

LSB least-significant bit 

MSB most-significant bit 

SWL system wordlength 

PEG perfect electric conductor 
A boundary, used in an FDTD simulation, which 
tric field of zero. 

PMC perfect magnetic conductor 
A boundary, used in an FDTD simulation, which 
netic field of zero. 

BIB 0 bounded-input, bounded-output 

maintains a tangential elec-

maintains a tangential mag-



Glossary of Terms 

The following list defines several terms used, in order of appearance, in the thesis. 

cache 

dynamic range 

data bandwidth 

memory bandwidth 

bitstream 

interconnect 

A small fast memory holding recently accessed data, de-
signed to speed up subsequent access to the same data. 
When data is read from, or written to, main memory a 
copy is also saved in the cache, along with the associated 
main memory address. The cache monitors addresses of 
subsequent reads to see if the required data is already in 
the cache. If it is (a cache hit) then it is returned im-
mediately and the main memory read is aborted (or not 
started). If the data is not cached (a cache miss) then it 
is fetched from main memory and also saved in the cache. 
The cache is built from faster memory chips than main 
memory so a cache hit takes much less time to complete 
than a normal memory access. 

The ratio of the smallest to the largest number that can 
be represented. 

("data rate", "data transfer rate" or "transmission 
rate".) The amount of data transmitted per second by 
a communications channel or a computing or storage de-
vice. 

Data transfer rate for a memory channel. 

A stream of serial bits which contain digital information. 

A programmable mesh of routing "wires" which can con-
nect various internal input/output signals in a digital de-
sign together. 
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Virtex slice 

cache miss 

A Virtex slice is a unit of hardware resources in the Xilinx 
Virtex family of devices and contains two D-type flip-
flop's, two lookup tables, carry and control logic. 

(see also cache.) The data required by the processor is 
currently not stored in the cache so it must be fetched 
from main memory. Cache is typically much faster than 
main memory so it is desirable to have as many cache 
"hits" as possible, to improve performance. 

cache lines (Or cache block) The smallest unit of memory that can 
be transferred between the main memory and the cache. 

Totem Okoniewski's finite-difference time-domain (FDTD) re-
search code, written in FORTRAN-90. 

page fault In a paged virtual memory system, an access to a page 
(block) of memory that is not currently mapped to phys-
ical memory. When a page fault occurs the operating 
system either fetches the page in from secondary storage 
(usually disk) if the access was legitimate or otherwise 
reports the access as illegal. 

minor page fault (see also page fault.) By definition, minor page faults 
do not require physical I/O. For example, reclaiming the 
page from the free list would avoid I/O and generate 
a minor page fault. More commonly, minor page faults 
occur during process startup as references to pages which 
are already in memory. 

major page fault (see also page fault.) By definition, major page faults re-
quire physical I/O, usually with secondary storage like a 
hard drive. In this instance, the desired "page" in virtual 
memory cannot be found or reclaimed in main memory 
so a fresh page must be loaded. 

system wordlength Describes the number of bits used to represent data in 
the digital system. 
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Chapter 1 

Introduction 

"I can see the time when every city will have one." 

- American Mayor's reaction to the news of the invention of the telephone 

1.1 Motivation 

In today's technology-enabled society, electrical engineering and, specifically, electro-

magnetics play an increasingly important role. The continuing advances in areas such 

as cellular communications, fiber optics, smart antennas, mobile technologies and 

multi-gigahertz electronics have necessitated a computer-assisted design approach to 

model the complex electromagnetic interactions and problems that arise. The ability 

to understand and predict the behavior of complex electromagnetic structures is of 

great value to both academia and industry. 

The finite-difference time-domain (FDTD) method [1] has been successfully and 

very widely applied to the modelling of electromagnetic phenomena [2]. The algo-

rithm involves the computation of millions of three-dimensional (electric and mag-

netic) field components for thousands of discrete time steps. The time-domain results 

model the electromagnetic field behavior in a physical "volume of interest". The 

method is both flexible and accurate for a wide range of problems but is also com-

putationally intensive. The past decade has seen a large increase in computational 

power at declining costs, but FDTD simulations can still run for several days on 
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multiprocessor supercomputers. Dramatically reducing the runtime of this method 

would greatly benefit FDTD users and open up new areas of research. 

1.2 Thesis Objectives 

The long-term goal of this research is to develop a hardware accelerator, capable of 

accelerating existing FDTD software implementations by an order of magnitude or 

more. The short-term goal, covered in this thesis, is to "prove the concept" of acceler-

ating the FDTD algorithm using (i) programmable hardware, (ii) integer arithmetic, 

and (iii) fine-grained parallelism. The important performance metrics are: the com-

putation speed, the amount of hardware required, and the simulation accuracy. The 

chosen approach involves mapping the computationally-intensive FDTD algorithm 

from the traditional sequential and multiprocessing computer environments onto 

custom or programmable hardware. The combination of knowledge from the digital 

design and microwave engineering fields provides a novel solution for accelerating the 

FDTD algorithm and represents a significant contribution to the FDTD area. 

1.3 Accelerating FDTD 

1.3.1 State of the Art 

Traditionally, FDTD is accelerated by implementing parallel-processing techniques. 

Parallel-processing describes the act of performing a number of simultaneous com-

putations in 'parallel'. In the computer/software domains this typically involves a 

complex interconnection of many (computer) processors and memory. Most parallel-

processing implementations, in software, use the following two techniques: (i) shared 
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memory and (ii) distributed memory. 

Shared-Memory 

Shared memory implementations divide the computational "work" among multiple 

processors, which all access the same memory space. It is the responsibility of the 

programmer and compiler to ensure that calculations can be performed indepen-

dently on several processors; in some cases, the algorithm needs to be re-formulated. 

The FDTD formulation is well-suited to a shared-memory implementation and can 

be easily parallelized; the reasons for this are discussed in greater detail in Chapter 2. 

The shared memory method typically results in, at best, a linear speedup where 

acceleration is directly proportional to the number of processors used. Certain special 

cases may achieve greater acceleration but for most algorithms linear speedup is the 

theoretical limit. The achieved acceleration is usually lower than the theoretical 

maximum and tends to saturate because of the overhead needed for (i) coordination 

of a threaded or shared memory environment and (ii) maintaining consistency among 

cache memories for a large number of CPU's. While this approach is effective in 

reducing simulation runtime, shared memory computers with four processors or more 

can become prohibitively expensive. For example, near cutting edge UNIX-based, 

shared-memory computers may cost $50,000cdn or more [3]. 

Distributed Memory 

Distributed memory implementations, for example Beowulf clusters [4], also divide 

the computational work among several processors. For this discussion, a cluster 

is defined as a number of computers with their own distinct memory and proces-

sor(s), connected by a communications network. The FDTD algorithm and data 
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are partitioned so that many (nearly) self-contained pieces are distributed among 

the individual computers. Process coordination and control is achieved by passing 

messages between computers. FDTD boundaries between computers are also up-

dated using message-passing. This approach is more complicated, rendering it more 

difficult to implement than the shared memory approach. 

Theoretically this method also results in linear speedup, if sufficient communi-

cation bandwidth is available. However, the communications overhead in current 

implementations causes any achieved acceleration to quickly saturate. 

Performance of Parallel-Processing Implementations 

Parallel-processing implementations of FDTD are an area of ongoing research. Tatal-

ias and Bornholdt [5] report a speed gain of 80% of linear speedup using Taflove's 

FDTD code on the JPL Hypercube. However, they do not specify the number of 

processors. Okoniewski [3] reports nearly linear speed up for up to 12 processors, b-

fore saturating, using Silicon Graphics, Origin Class computers. Schiavone, et al [4], 

and Gillan and Fusco [6] describe distributed memory implementations of FDTD. 

Using a large FDTD mesh, Gillan and Fusco [7] report near linear speedup for ten 

processors before starting to saturate. 

1.3.2 Literature Review 

This work is a multi-disciplinary approach between digital/hardware design, mi-

crowave engineering and software; areas that might not typically be associated. 

While this overlpping of areas makes the research both interesting and novel, it 

also involves a larger domain of knowledge. 
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General References - FDTD 

Yee [1], Kunz and Luebbers [8] and Taflove [9] provide the theoretical background 

and description for the FDTD algorithm. Furthermore, Taflove's second book [2] 

presents a literature survey describing the research advances made in the FDTD 

area in the past decade. 

This research proposes two novel concepts in the FDTD area. A custom and/or 

programmable hardware implementation and integer arithmetic are introduced to 

provide the desired FDTD acceleration. The limited references that exist, for the 

preceding topics in the FDTD literature, are described in the following sections. 

Integer FDTD 

Because the FDTD algorithm is a numerical method, the numerical accuracy of the 

computations is very important and round-off errors are a concern. Some simulations 

also require a large dynamic range' (> 100dB), in order to accurately represent 

broad magnitude variations that co-exist in the simulation. To meet the criteria of 

numerical accuracy and dynamic range floating-point arithmetic is typically used. 

Although a very-wide integer representation (60-bits) could be used, most hardware 

platforms and compilers either do not support this or the computations would be 

slower. All existing academic and commercial FDTD codes use single- or double-

precision floating-point arithmetic. 

One paper describes an implementation of the FDTD algorithm using integer 

computations. Grinin created a 16-bit integer FDTD code in order to take advantage 

of an integer-only or integer-optimized microprocessor [10]. 

'dynamic range: the ratio of the smallest to the largest number that can be represented. 
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Hardware FDTD 

There are two hardware implementations of the FDTD algorithm described in the 

literature. In order to discuss the reported accelerations, two types of equations are 

introduced for the FDTD simulation: update and boundary equations. 

The FDTD update equations form the kernel of the algorithm. An FDTD simu-

lation, with simple boundaries, spends 95% or more of its runtime calculating these 

update equations (Section 3.3.2). Thus, accelerating the update equations by a cer-

tain amount will also reduce the total runtime by a very similar factor. 

Specialized equations are used at the boundaries of the finite simulation volume. 

These boundary equations can be used to make the finite simulation space appear 

to extend to infinity, perfectly matched layer (PML) boundary equations [2] are a 

recent advance in this area and are a very accurate approximation to a boundary at 

infinity. PML's can add as much as 70% to the required number of computations, 

extending the runtime by an equal amount; in some cases, a large portion of the 

simulation runtime is attributed to boundary computations. To achieve worthwhile 

acceleration, it is then desirable to accelerate the boundary computations as well. 

Marek, et al [11], describe a simulated hardware description language (HDL) de-

sign intended as a co-processor or accelerator for Sparc workstations. They predict 

a five-fold acceleration of the main FDTD update equations and a nine-fold acceler-

ation of the PML equations, but they never attempted the actual implementation. 

Placidi, et al [12], describe a simulated VHDL2 [13] design intended for the personal 

computer (PC) platform. This work was again limited to simulation of the hardware; 

2VHDL stands for VHSIC Hardware Description Language, where VHSIC stands for Very High 
Speed Integrated Circuit 
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they predict a four-fold acceleration for the FDTD update equations. 

No references were found in the literature where hardware has actually been 

constructed and the performance measured. 

General References - Digital Design 

Basic digital design techniques and knowledge are from three primary sources: Mano's 

text [14], Wakerly's text [15] and Andraka's website [16]. 

Information about the Xilinx Virtex family of field-programmable gate-arrays 

(described in Section 2.1) is from Xilinx [17] and the XESS product documenta-

tion [18]. 

Information about bit-serial, the specific arithmetic implementation technique, 

is from three main sources: a text by Hartley and Parhi [19], a text by Denyer and 

Renshaw [20], and a text by Oberman [21]. 

1.4 Thesis Outline 

Chapter 2 presents the relevant background and theory for this research. Three main 

concepts are discussed: field-programmable gate-arrays FPGA's, the theoretical basis 

of the FDTD algorithm and an alternative FDTD representation using inductors and 

capacitors. 

Chapters 3 to 5 investigate four avenues in order to achieve the thesis goals: 

• Chapter 3 presents two of the research avenues namely computer technology 

and software benchmarks. The first part of this chapter describes the ex-
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pected data bandwidth' of three main computer technologies: SDRAM mem-

ory, the Peripheral Connections Interface (PCI) hardware bus and the Acceler-

ated Graphics Port (AGP) hardware bus. This information is included mainly: 

(i) to provide an expected/maximum data performance for the FDTD algo-

rithm on the reference computer and (ii) to provide hardware bus information 

for the future hardware accelerator. The remainder of the chapter presents 

(i) the methodology used and (ii) the computation speed and memory band-

width4 benchmarks obtained for two software FDTD implementations on a 

reference computer. These benchmarks facilitate comparison of any achieved 

acceleration to a baseline computer/software implementation. Ultimately, this 

information is used to predict the computation speed and memory bandwidth 

required to achieve an order of magnitude acceleration. 

• Chapter 4 describes the first approach to a hardware FDTD implementa-

tion, namely an "FDTD Computational Engine". In this approach, the en-

tire simulation is implemented on programmable hardware. One- and two-

dimensional hardware FDTD implementations are verified using microwave 

cavity resonators. The acceleration and simulation accuracy achieved for both 

implementations are discussed. 

• Chapter 5 describes the proposed design for the future hardware accelerator 

as an "FDTD Co-Processor". It involves resource sharing, such that the same 

hardware resources are re-used for the FDTD algorithm. 

3Data bandwidth ("data rate", "data transfer rate", "transmission rate") is the amount of data 
transmitted per second by a communications channel or a computing or storage device [22]. 

'Data transfer rate for a memory channel. 
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Chapter 6 provides a summary of the results and conclusions for the thesis, 

concluding with a discussion of future work and direction for the research. 
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Chapter 2 

Background and Theory 

"God runs electromagnetics by wave theory on Monday, Wednesday, and 

Friday, and the Devil runs them by quantum theory on Tuesday, Thurs-

day, and Saturday. " - Sir William Bragg 

This chapter is intended to provide a foundation for the main concepts used 

in subsequent chapters. It provides background information on three things: field-

programmable gate-arrays, the theoretical basis of the FDTD algorithm and the 

theoretical basis of an inductor-capacitor FDTD representation. Subsequent chapters 

will make extensive use of the concepts described in the following sections. 

2.1 Field-Programmable Gate-Array (FPGA) Technology 

Field-programmable gate-arrays (FPGA's) offer an ideal platform for experimental 

digital designs, as they are easily configurable. Accordingly, the hardware platform 

chosen to achieve the thesis goals is an FPGA. Reasons for this choice are provided 

in Section 2.1.2. A specific definition of an FPGA is provided here to facilitate the 

discussion in subsequent sections and chapters. The definition's scope is confined 

to the particular product line used for this research, the Xilinx Virtex family of 

FPGA's. 

In essence, an FPGA is a fixed array of programmable digital hardware re-

sources implemented as an integrated circuit. How the resources are used and 
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the function that it performs is defined by a "bitstream" when the FPGA is pro-

grammed/configured. Similar to computer memory, an FPGA can be programmed 

with new bitstreams many times. 

The development of FPGA designs/configurations resembles software compila-

tion, in that a desired behavior or structure is described using a hardware description 

language (HDL) and then synthesized using the equivalent of a hardware compiler. 

This process produces a configuration bitstream (the "executable") for downloading 

to the FPGA. 

There are four important hardware resources for any synchronous digital design: 

1. Synchronous Signal Storage - Flip-flops provide clock-edge triggered storage 

for one logic signal. 

2. Combinational Logic - The Xilinx Virtex family uses 4-input look-up tables 

(LUT's) to implement combinational logic. For the Virtex technology, a lookup 

table is a 16x1 table of programmable values, with four inputs (addressing) 

and one output. Thus, any four-input, single output logic function can be 

implemented by appropriate choice of the table values. Logic functions with 

a larger number of inputs or outputs are implemented by combining multiple 

LUT's. 

3. Wires / Interconnect - This is the fundamental infrastructure through which 

the digital signals are transmitted throughout the digital circuit. 

4. Input / Output Pins - This is the means through which the digital device 

interacts with the environment. 

'Bitstream: A stream of serial bits which contain digital information. 
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Recently, FPGA manufacturers increased functionality by adding dedicated in-

teger multipliers and memory blocks to their devices. Multipliers and small internal 

memories are common elements in many digital designs. In the past, valuable FPGA 

resources were used to implement these elements. 

With the Virtex family, Xilinx also began to support "runtime reconfiguration". 

This concept allows parts of an FPGA design to be modified in situ, while the rest 

of the circuit is still running. Reconfiguration can be used to change logic functions, 

redirect data paths or add/change/remove functionality to a specific part of an FPGA 

configuration while the remaining hardware continues to operate. 

For the Xilinx Virtex products, hardware resources are grouped into common 

blocks called logic elements (LE's), configurable logic blocks (CLB's) or slices. Specif-

ically for the Virtex family, two LE's are one slice. Two slices are one configurable 

logic block (CLB). A given FPGA implements an array of CLB's connected by a large 

mesh of configurable routing resources. These routing resources connect the individ-

ual hardware resources to each other on both a micro and macro scale. Information 

contained in the configuration bitstream is used to program the CLB's (internal 

CLB routing, LUT's, multiplexers and flip-flops) and (global) routing resources of 

the FPGA. The resulting logic and interconnect' embody the digital design created 

by the user. 

'Interconnect: A programmable mesh of routing "wires" which can connect various internal 
input/output signals in a digital design together. 
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2.1.1 The Virtex Slice 

A Virtex slice is a unit of hardware resources in the Xilinx Virtex family of devices. 

It provides a useful metric for the size of a particular design and the minimum size 

of device that would be required. In Chapter 4 Virtex slices are used to evaluate the 

hardware cost for various FDTD implementations. 

A Virtex slice contains two D-type flip-flop's, two LUT's, carry and control logic. 

Figure 2.1 depicts a pair of Virtex slices [17]. 
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Figure 2.1: One Virtex CLB == Two Virtex Slices 

2.1.2 Benefits of FPGA's 

FPGA's are chosen for the hardware implementation for the following reasons: 

• Flexibility — Unlike a dedicated application-specific integrated-circuit (ASIC) 

the hardware design can be changed and recompiled easily. As mentioned ear-

lier, the FPGA configuration is produced using a process analogous to software 



14 

compilation. Many different designs can be explored using the same FPGA. 

The tradeoff is that FPGA designs, (i) generally do not represent the fastest 

speed or lowest number of transistors  for a given digital implementation and 

(ii) typically dissipate more power and are relatively expensive to distribute, 

compared to a mass-produced ASIC. 

• Rapid Prototyping - Similar to the point above, FPGA's facilitate rapid pro-

totyping. Designs can be implemented and verified within a matter of hours 

or days. Compiled designs are immediately available for testing on the FPGA. 

For custom integrated circuits, the design turnaround time can easily be on 

the order of months or longer. 

• Transferability - FPGA designs can be translated to non-optimized, custom 

silicon implementations by software tools. The translated FPGA designs will 

not perform (speed, hardware size) as well as silicon designs produced by an 

ASIC designer, but FPGA's can be used as an intermediate step before moving 

to a custom ASIC design. 

2.2 The Basic FDTD Algorithm 

The finite-difference time-domain (FDTD) algorithm is the primary focus of this 

research. In all of the following chapters, the performance of the FDTD algorithm 

on software and hardware is discussed. The most important information to gain 

from this section is the formulation of the six FDTD update equations, described in 

3The number of transistors will impact the power consumption/dissipation and silicon area 
required for a given digital design. 
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Section 2.2.2. 

FDTD is a discrete (temporal and spatial) approximation to the integration of 

Maxwell's equations that is well suited to implementation on a computer. Maxwell's 

equations are the classical physics equations used to mathematically describe dy-

namic electromagnetic behavior. Engineers in numerous fields, working with frequen-

cies ranging from transmitted power (50-60Hz) to radio-frequency (RF) to photonics 

(THz), use the FDTD algorithm to create computer simulation models of electro-

magnetic structures. After simulating, they can determine the structures' behaviors 

as a function of time, given some excitation. The FDTD method is both flexible 

and accurate for a wide range of problems, making the algorithm one of the most 

popular and successful in the area of electromagnetic modelling. 

Kane Yee invented the FDTD algorithm in 1966 [1] but it was not used because it 

was too computationally intensive for the technology of that time. The past decades 

have seen a rapid increase in computational resources at declining costs, which has 

catalyzed the success of this technique in recent years. 

In order to derive the FDTD algorithm, synonymous with Yee's Method, Maxwell's 

Equations are first described. 

2.2.1 Maxwell's Equations in Three Dimensions 

Most of the following material is adapted from Taflove [9]. A more detailed discussion 

of the following concepts is included in Appendix A. 

Maxwell's equations mathematically describe the dynamic behavior of electric 

and magnetic fields. In differential form they are stated as: 
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8B 

at 

Where t = time [s] 

= electric field [V/rn] 

= electric flux density [C/m2] 

H = magnetic field [A/rn] 

= magnetic flux density [Wb/rn2] 

= electric current conduction density [A/m2] 

p = volume charge density [C/ml] 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

Maxwell's equations can also be expressed in integral form, see [8] for an example. 

fi,ft and are simply related by the following constitutive equations: 

B=pH 

D=E 

Where P = magnetic permeability [H/rn] 

= electric permittivity [F/rn] 

o = electric conductance (loss) [5/m] 

(2.5) 

(2.6) 
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For linear, isotropic, and non-dispersive materials (whose properties are indepen-

dent of field-intensity, direction or frequency) s and /2 are scalar quantities. 

Substituting Equations 2.5 to 2.6 into Equations 2.1 to 2.2, under the assumptions 

of linear, isotropic and non-dispersive materials, yields: 

aH 1 (_V 

at ,j, 

aE I (VX 

For the lossless case, Equations 2.7 to 2.8 further simplify to: 

19H E) 
at /2 

(2.7) 

(2.8) 

(2.9) 

19E H 
5-T X -) 

(2.10) 
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5H - 1 (aE 5E  

at az ay 

OlIfl - 1 (aE DE, 

at ax az 
aH - 1 (aE 3E  

at [L \ay ax 

_P'H) (2.11a) 

- P'i) (2.11b) 

- P/liz) 

crEw) (2.12a) 

uE) (2.12b) 

aEz) (2.12c) 

It should be noted that Equation 2.8 is now generalized to include magnetic losses 

as well, which appear as p'H in the magnetic field expressions. 

This system of six coupled equations forms the foundation of the FDTD algorithm 

for modelling the interaction of electromagnetic waves with general three-dimensional 

objects. These equations are not suitable for computer implementation, because 

they contain continuous-time and continuous-space variables. Kane Yee's method 

provides an efficient way to transform this system of partial difference equations into 

a second-order accurate system of difference equations. 

2.2.2 Yee's Method 

Most of the following material in this section is adapted from Tafiove [9] and Yee's 

original paper [1]. 
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Yee used centered finite-difference operators to represent both the spatial and 

temporal partial derivatives in Equations 2.11a to 2.12c. These centered differences 

are easy to implement on a computer. Furthermore, they are second-order accurate. 

The FDTD Update Equations 

Yee's update equations are the discretized versions of Equations 2.11a to 2.12c. The 

notation used is: (i,j,k) represents a point in the lattice really (izx,jLy,kzz) in 

space, and n represents a time step or t = nLt. The FDTD update equations are: 

For the magnetic fields: 

Hx I n+1/2 = Da,Ho, li,j,k . H1 

H I n+1/2 
i,j,k = Da,Hv li,j,k • H 

H Z 17tl/2 = D 
?-)3;ka,Hz Ii,j,k 

n-1/2 
ij,k + Db,H Ii,j,k 

+ Db,H. i,j,k 

n-1/2 
i,j,k + Db,HZ Ii,j,k 

E 1!4j,k+1/2 - 

Th 

i,j,k-1/2 

Az 

n 
i,j+1/2,k - 

n 
i,j-1/2,k 

Ay 

(2.13a) 

E —E z I i-1/2,j,k 

El 

Lx 
n  
i,j,k+1/2 - 

n 
i,j,k-1/2 

Ex 

Az 

(2.13b) 

i,j —E I +1/2,k x i,j_112,k 

Ax 
i:;' 
Y fl i+1/2,j,k - E —1/2,j,k 

Lx 

(2.13c) 
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For the electric fields: 

ES I mim,j+1,k = Ca,E li,j,k Ex i,j,k + Cb,E2, Ii,j,k 

E . In+1 
i,j,k = Ca,E,, Ii,j,k E i,j,k + Cb,E Ii,j,k 

T1 Ifl+1 - i- I I E Cb,EZ IZ,3,k 
'Z i,j,k - L1a,Ez Ii,j,k E- I,k I _L  

fl Hi,j+1/2,k - 

n 
i,j-1/2,k 

Ay 

' - 

n 
i,j,k-1/2 

Az 

(2.14a) 

H. k —H5 ,j,_1/2 SO k+1/2 I i  

H5 

Az 

n T.T fl 
i+1/2,j,k - .L.L5 i-1/2,j,k 

Ax 

H -I-1/2,j,k 

(2.14b) 

n 
i-1/2J,k 

Hx 

Lx 

n —H5 1j— i,j+1/2,k i1/2,k 

Ay 

(2.14c) 

To simplify the notation further, the terms Ca, Ob, Da and Db were introduced 

to represent the field vector coefficients (and material properties) at each point in 

space (i,j,k). For stationary media, whose properties do not vary with time, these 

coefficients can be pre-computed. These terms are as follows: 

Ca Ii,j,k = 

1 
cT2 

26j,j,k 
Cb Ii,j,k = 

0 i,j,kt Oi,j,kL.t 

1 + / 1 + 2i,j,k 

i,j,k 
(2.15) 
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/ 

Da Iij,k = 

1 P,a,k/-t" 

2 i,j,k 
Db Ii,j,k = 

P,j,k 0 i,j,k/..t 
1+  1+  

J 2Ei,j,kJ 

To compute the new magnetic field value (IIi Ih/2) at a given point, in space 

and time, Equation 2.13a uses only the current fields (E In and E Th) and previous 

field (H n_1/2), all three of which are stored in computer memory. 

Equations 2.13a to 2.14c comprise the simplest form of the FDTD update equa-

tions which are implemented as the core engine of the FDTD algorithm. For each 

time step, At, all of the magnetic fields are calculated followed by all of the electric 

fields, for the entire three-dimensional volume of Yee cubes. 

/ At 

i,j,k (2.16) 

The Yee Cube 

The manner in which Equation 2.13a calculates the updated value of the field IJ is 

intuitively explained by the Yee cube, which is a graphical representation of Yee's 

discrete electric and magnetic fields in discrete space. The Yee cube is shown in 

Figure 2.2. 

In this case' , the new value of H, centered at (i,j,k), is determined by the 

weighted contour sum of the surrounding electric fields (E j+1/2,k' —E ISO k+1/2' 

—E Zj....1/2,k' E j,k_1/2)• For two of the fields, the negative signs are used to 

maintain sign convention. 
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Ez(i,j- I /2,k) 

Ey(ijk-l/2) 

Figure 2.2: The Yee Cube 

Y 
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Relationship Between Two- and Three-Dimensional Computations 

There is a relationship between the two- and three-dimensional implementations of 

the FDTD algorithm; the relationship is not immediately obvious but very useful for 

the purpose of this research. The three-dimensional field update equations are simply 

the computation of a series of two-dimensional planes. This is further illustrated by 

the Yee cube of Figure 2.2. All of the H field components will lie in the same 

plane for a given value of iL.x. The important observation is that once a hardware 

implementation of the two-dimensional FDTD update equation is solved, the three-

dimensional case is solved as well. In other words, the FDTD update equations only 

require the field information from two dimensions, even for the three-dimensional 

case. 

Summary of Yee's Method 

The use of centered-difference equations has a few important effects on Maxwell's 

equations: 

• The three-dimensional volume of interest is now divided into a mesh of dis-

crete Yee cubes. Each cube has dimensions Ax, ,y and Liz. The example in 

Figure 2.3 is simplified for visual understanding. A much finer grid is needed 

in order to generate accurate results and represent the model's materials (a 

complex cellphone and human head, in this case) with sufficient resolution. 

• The continuous electric and magnetic fields become discrete fields centered on 

the edges or faces of the Yee cubes, respectively. 

• The continuous function of time is discretized into time steps of At. 
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Figure 2.3: Model of a Three-Dimensional "Volume of Interest" 

• At each time step, all of the magnetic fields are updated, followed by all of the 

electric fields, using Equations 2.13a to 2.14c. Over an entire simulation, this 

models the time-domain behavior of the electromagnetic fields in the "region 

of interest". 

The preceding features are a result of the mathematics described in the previous 

sections, and in more detail in Appendix A and [1, 9]. The above effects/ properties 

make the algorithm very suitable for a software implementation. 

2.3 Properties of the FDTD Algorithm 

Several important properties of the FDTD algorithm are described in this section. 

The discussion includes: the Courant condition, the runtime of FDTD, and the 

properties that are exploited for acceleration. 
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2.3.1 Courant Condition 

The Courant condition [8] places an upper bound on the value of At in order for the 

FDTD simulation to remain stable. It ensures that fields do not propagate faster 

than the speed of light within the simulation. 

The Courant condition for three-dimensional FDTD is: 

S actor 
Lt< 

/ \ 2 / \ 2 / \ 2 

AX  )+ AY AZ -)+-
Where c = speed of light [m/s] 

Sf actor = stability factor, [0.0 to 1.0] 

.c 

(2.17) 

At is maximized when the left hand side of Equation 2.17 is equal to the right-

hand side and S actor = 1.0. This represents optimum FDTD performance (least 

numerical dispersion at higher frequencies) at the expense of operating at or close to 

instability. For practical applications, the "stability factor" is introduced to commu-

nicate the relationship between At and its maximum value. For this research, the 

stability factor is 0.95 unless otherwise noted. For one and two dimensions, which 

are also considered in this research, the denominator of the Courant condition is 

expressed with only a single dimension or two-dimensions respectively. 

Finite-Precision Consideration 

The sampling interval, /. t, and the corresponding stability factor are usually only 

considered or adjusted when they cause instability in the simulation. It will be shown 
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in Chapter 4 that finite-precision effects can contribute to an effective value of At, 

different than the calculated value, so the stability factor may need to be re-visited. 

2.3.2 Run-time of the FDTD Algorithm 

FDTD simulations can take a long time. In fact, simulations can run for several 

hours to several days on multi-processor supercomputers. In some cases, simulations 

are also run multiple times because of modelling difficulties or adjustments made to 

the model after previous runs. Reducing the runtime of this method would greatly 

increase the productivity of FDTD users in both academia and industry; this is the 

primary reason for research into hardware acceleration. 

There are three factors which directly contribute to the runtime of a given sim-

ulation model: 

1. To minimize numerical dispersion [9], the following rule of thumb is used: 

The mesh size is chosen such that the shortest wavelength of interest is over-

sampled 10 to 20 times. In other words the width of the cubes (Ax or Ay or 

Liz) is 1/10 or 1/20 of a wavelength. While satisfying the Courant condition, 

this also yields a sample interval At which provides enough resolution at the 

highest frequency of interest. In fact, this criterion usually yields a sampling 

interval much shorter than required for the Nyquist rate. Thus the simulation 

is also highly over-sampled in time. 

2. Some physical models may require extremely fine spatial resolution, because of 

small physical details, sharp edges or rapidly varying material properties. Two 

examples are a human body model and a photonic structure. The University 
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of Victoria has developed a model of the human body that represents material 

properties in 3mm cubes for the body and 1mm cubes for the head. Photonic 

structures may have very detailed structures with many edges and fins. Both 

of these examples produce simulation models with a very fine mesh and a 

correspondingly large number of cells. 

3. As another rule of thumb, the simulation is run for three or four periods at 

the lowest frequency of interest4. A sufficiently long simulation time allows 

the excitation to propagate throughout the structure and for the time domain 

observations to converge or reach steady-state. 

All of these factors lead to a large simulation model (large number of cells) or a 

simulation that needs to run for a large number of time steps or both. From results to 

be presented in Chapter 3, a simulation with 100x100x100 cells and 10,000 time steps 

will take just over one hour to run. This is considered to be a "medium-sized" simula-

tion. For comparison, simulations by Fear [23] for a microwave detection method for 

breast cancer take more than 24 hours on multi-processor supercomputers. These 

simulations, with 250x250x170 cells for 6,000 time steps, are roughly an order of 

magnitude larger than the 100x100x100 cell simulation described previously. 

2.3.3 Properties of the FDTD Algorithm that are Exploited 

for Acceleration 

There are a number of properties, which make this algorithm well-suited for a hard-

ware implementation. 

4Alternatively, minimum simulation time = 4 X where fiowest is the lowest frequency of 

interest in the simulation. 
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1. Nearest Neighbor Data Dependence - A field update uses fields from adjacent 

cells only. It is theoretically possible to implement every single cube in the sim-

ulation as a separate piece of computational hardware with local connectivity. 

This widespread, low-level parallelism would yield the desired speed increase. 

In terms of a three-dimensional FDTD hardware implementation, only adja-

cent cells would need to be connected to each other. Local connectivity would 

not exist at the routing level on an FPGA because a three-dimensional volume 

of computations is mapped to a two-dimensional hardware array. 

2. Leapfrog Time-Domain Calculations - Each magiletic field update is only de-

pendent on its previous value and the value of four stored electric fields. Like-

wise, the electric field update is only dependent on itself and four stored mag-

netic fields. The key benefit is that all the magnetic fields or all electric fields 

could be computed in parallel. In other words, the electric and magnetic field 

calculations are "alternately clocked", which means the electric/magnetic field 

is stored while the magnetic/electric field is calculated. 

3. Calculation In-Place - Each set of E or ifr field update values can be calculated 

in place and it is not necessary to store intermediate field values. Each update 

equation can also be implemented as a multiply and accumulate structure. 

4. Six Similar Update Equations - Each field calculation, electric or magnetic, 

in any dimension has the same structure. This is advantageous for very large 

scale integration (VLSI) and FPGA platforms because the repetitive structure 

is easy to duplicate or reuse. 
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5. Very Regular Macro-Structure - Except for the multiplier coefficients, which 

determine local material properties, the computational structure is identical 

from simulation to simulation for a given volume. Thus, it is possible to reuse 

pre-compiled FPGA cores. Any modifications to the hardware simulation pa-

rameters could also be performed during runtime, using runtime reconfigura-

tion. 

6. Constant Coefficients - Material properties (omitting non-stationary media) 

and the sample rate remain constant throughout a simulation. Complex (non-

linear, non-stationary or non-isotropic) materials require different update equa-

tions and are traditionally handled separately from the bulk of normal mate-

rials. Thus, for most typical simulations, coefficients remain fixed for a given 

field calculation for the entire simulation. This is also well-suited to an FPGA 

platform. Fixed coefficient multipliers can be configured during compile time 

or a fixed design reconfigured at run time. Custom fixed-coefficient multipliers 

also require less hardware than their generalized counterparts. 

2.4 Inductor-Capacitor (LC) Implementation of FDTD 

Gwarek [24, 25] observed that a two-dimensional FDTD structure can be represented 

as a network of inductors and capacitors (Figure 2.4). The capacitors represent elec-

tric field storage, the inductors represent the current and consequently the magnetic 

field storage. There are direct relationships between the inductor/capacitor values 

and the electromagnetic properties of the FDTD mesh. 

This relationship between FDTD and an inductor-capacitor network is a useful 
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Figure 2.4: FDTD Mesh (right) Represented as an Inductor-Capacitor Mesh (left) 

starting point for the hardware implementation. It provides an indirect path for 

implementing the FDTD algorithm. The LC network is very similar to an analog 

filter network, albeit somewhat unusual because of the two-dimensional nature. Fil-

ter designers have developed several techniques to both analyze and implement these 

networks in the digital domain. The following sections describe how the inductor-

capacitor relationship is used to create one-dimensional and two-dimensional FDTD 

computational cells. The cells are constructed in Chapter 4 and interconnected to 

form FDTD simulations in hardware. 

The one-dimensional case of FDTD is discussed and developed first, both for sim-

plicity and the ease of graphical representation. The two-dimensional case is easily 

extended from the one-dimensional developments. With the solution of the two-

dimensional computation, the following methodology can also be used to represent 

three-dimensional FDTD. 
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2.4.1 One Dimensional FDTD Cell 

The one-dimensional FDTD case is as a special case of Figure 2.4, and is further 

explained in Figure 2.5. 

(a) One-Dimensional Cells 

TIC 

'L2 

vc1 - Vc2 

IL 'Li 

capacitor inductor 

T/L 

(b) Voltage/Current Signal Flow Graph, Single 
Cell 

Figure 2.5: One Dimensional FDTD Cell: Alternate Representation 

To generate the signal flow graph representation of Figure 2.5(b), the capacitor 

is replaced by a current-integrator likewise the inductor is replaced by a voltage-

integrator. Voltages are represented by the signals along the top of the graph and 

currents by the signals along the bottom. 
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Adapting Bruton's work [26], the integrators are replaced by lossless discrete 

integrators (LDI's) of the form depicted in Figure 2.6. 

Figure 2.6: Lossless Discrete Integrator 

With manipulation of the delays, as for the LDI structure, the circuit in Figure 2.7 

is produced. 

TIL 

'LI 

capacitor inductor 

Figure 2.7: LDI Form of the One-Dimensional FDTD Computation 

It should be noted that the value of current, I, is really for time k + 1. The value 

of voltage is at k, where k is one-half of a simulation time step. This is the same as 

leapfrog lossless discrete integrator (LDI) ladder structure and the classical FDTD 

algorithm. 
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2.4.2 Two Dimensional FDTD Cell 

The two-dimensional FDTD mesh, using the LC representation, is just rows of the 

one-dimensional cells connected by inductors. The interpretation is that each induc-

tor couples the capacitor to its adjacent cells, now in two dimensions. Figure 2.8 

depicts this two-dimensional FDTD cell. In order to create a two-dimensional sim-

ulation mesh (M x N cells), this structure would be repeated in an M x N array. 

Figure 2.8: Two Dimensional FDTD Cell: Signal Flow Graph 

2.4.3 Determination of the Inductor-Capacitor Coefficients 

This section describes how the inductor and capacitor coefficient values are deter-

mined for each node in the FDTD hardware simulation. Following this, a method 

for scaling the coefficients with respect to each other is described and justified. Fi-

nally, the process for quantizing the infinite-precision coefficients into finite-precision 
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values is discussed. 

The coefficient values for the capacitors and inductors in a particular cell represent 

the local material properties. For two-dimensional FDTD there is a dimension d 

introduced, which is the thickness of the structure. The only affect that d has is 

to scale the instantaneous voltage and current magnitudes. The VII relationship, 

however, will remain the same. 

The value of the capacitance is given by: 

C=C5•a (2.18) 

E 

Cs= 

a=LxL.y 

Where C = capacitance per unit area [F/M2] 

a = area of the cell [m 2] 

d = thickness of the cell [rn] 

Lix, / y = dimensions of the cell [rn] 

The value of the inductance is given by: 

L = L, (2.19) 

L5 = ad 

Where L5 = inductance per unit length [H/rn] 

d = thickness of the cell [m] 
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Equations 2.18 and 2.19 can be extended for cell faces in any dimension (x,y,z). 

Given the mesh size (Ax, Ay, Az), s and /2 the inductor and capacitor values can be 

pre-determined for every cell in the FDTD mesh. 

The multiplier coefficients are then determined by: 

Xcapacitor 

Xinductor 

At 

C 

At 

L 

(2.20) 

(2.21) 

Impedance Scaling 

Impedance scaling describes the method of adjusting the inductor and capacitor 

coefficient values, with respect to each other. This is mathematically described as: 

Cnew 

Lnew 

Where Simpedance = scaling factor 

= C• Simpedance 

1 

Simpedance 

(2.22) 

(2.23) 

This in turn leads to new values for Xcapacitor and Xinductor. The net effect is that 

the voltages and currents in the structure will be oppositely scaled by 8impedance• 

However, the V/I relationship is maintained. This is similar to the effect of the 

dimension d in the previous section. 

This scaling is used to achieve the following: 
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1. The coefficients can be scaled to values within a given hardware multiplier's 

range. 

2. The voltage and current amplitudes in the network can be adjusted to have 

similar amplitude ranges. 

3. Coefficients can be scaled to a convenient finite-precision value. Generally, 

using fixed-precision integers, this will allow some coefficients to be represented 

exactly while others will have some quantization error. 

For this research, there is only one inductor coefficient and one capacitor coeffi-

cient, which represent free space material properties throughout the entire mesh. In 

this case, one coefficient is normalized to 0.5. This fixes the other coefficient at some 

impedance-scaled value. When the coefficients are quantized, the coefficient of 0.5 is 

represented exactly while some error is introduced for the other. 

For future designs and multiple coefficients, it would be possible to search the 

coefficient space and determine the optimum impedance scaling factor that would 

lead to the smallest quantization error. 

Coefficient Quantization 

For this work, the computations use fixed-precision arithmetic. Thus, the infinite-

precision coefficients are truncated into fixed-precision values for use in the hardware. 

The quantized coefficient value is determined by: 
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Xmuitiptier = round (Xideal * 2N) (2.24) 

Xquant = 
Xmuitipiier 

Where Xideal = infinite-precision multiplier coefficient 

N = fixed-precision coefficient width 

Xm'uttipiier = the integer coefficient applied to the hardware multiplier 

Xquant = the finite-precision multiplier coefficient 

(2.25) 

In this instance, the rounding function chooses the integer result which minimizes 

the difference between Xquant and Xidea. Thus, this function is entirely dependent 

on the coefficient value and the number of bits used. 

This has an important impact on the results of the FDTD simulation. The 

quantization of the coefficients produces some error either in the value of At, C or 

L in Equations 2.20 and 2.21. This error will produce changes in the simulation 

results, when compared to the infinite-precision case. It is important to ensure that 

the quantization errors do not impact the accuracy of the FDTD simulation results. 

This can be controlled by adjusting the bit-width of the coefficients. 

2.4.4 Useful Properties of the LC Representation 

The lossless discrete integrator (LDI) digital ladder filter is known to exhibit low-

valued transfer function sensitivity to the filter coefficient values [26]. This low 

sensitivity property allows high quality LDI lowpass digital filters to be constructed 

using very few bits to represent the filter coefficients and is also related to the very 
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desirable low noise characteristics of the filter [27]. As the structure of the LDI 

lowpass digital ladder filter and the one-dimensional FDTD cells can be the same, it 

is anticipated that this low sensitivity property can translate directly into hardware 

savings and low noise characteristics for the FDTD implementations. 

Linear stability (using ideal infinite-precision arithmetic) of the FDTD struc-

ture is easily guaranteed. Stability of the FDTD structure when implemented using 

non-linear finite precision arithmetic requires further study. Initial evidence from 

simulations and implementations using finite-precision arithmetic do not produce 

instability. As long as the Courant condition is maintained, even after coefficient 

quantization, the FDTD simulation should remain stable. In order to encourage 

stability, small amounts of loss could be added to the FDTD structure, using the co-

efficients Ca and Da of Equations 2.15 and 2.16. It should be noted that the primary 

concern might not be stability, rather, the insufficient quantization of field update 

coefficients may lead to unacceptable errors in the representation of the material 

properties and the simulation results. 
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Chapter 3 

Computer Technology and Software Benchmarks 

"Consistently separating words by spaces became a general custom about 

the tenth century A.D., and lasted until about 1957, when FORTRAN 

abandoned the practice." - Sun FORTRAN Reference Manual 

This chapter describes three things: (i) the reference computer, (ii) the com-

puter technology, that affects both the software FDTD implementation (s) and the 

envisioned hardware accelerator, and (iii) measurements (computation speed and 

memory bandwidth) of software FDTD implementations. Finally, this information 

is used to predict the memory bandwidth and computation speed that is required to 

achieve an order of magnitude acceleration. 

The first section describes the reference computer for all software simulations. 

The computer's specifications provide a baseline for any achieved acceleration. 

The second section describes the expected data bandwidth of three main com-

puter technologies: SDRAM memory, the PCI hardware bus and the AGP hardware 

bus. This information is used mainly for two things: to provide an expected/maximum 

memory performance for the FDTD algorithm on the reference computer and to pro-

vide hardware bus information for the future hardware accelerator. 

The third section presents the methodology used and benchmarks obtained (com-

putation speed and memory bandwidth) for two software FDTD implementations on 

the reference computer. These benchmarks are used to compare any achieved accel-
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eration to a baseline computer/software implementation. 

3.1 Reference Computer 

Although this work is primarily focused on a hardware implementation, in order 

to make valid comparisons between the hardware and software FDTD algorithms, 

software measurements are needed as well. 

The computer which runs all of the software simulations is a PC type machine 

with the following characteristics: 

AMD (Advanced Micro Devices) Athion 850MHz Processor 

• 64KB of Li data cache (64 bytes/line), 64KB of Li instruction cache (64 

bytes/line), 512KB of L2 cache(64 bytes/line) 

• 2 x 256MB PCi33 Crucial Micron (168-pin DIMM, CAS latency = 2) Memory 

• Red Hat Linux v7.3 Operating System 

• PCI (Peripheral Connection Interface) bus - 33MHz at 32-bits 

• AGP (Accelerated Graphics Port) - 1X,2X support 

The technologies for this computer were "cutting-edge" at the start of this project. 

When a hardware accelerator prototype is completed, it is suggested that the runtime 

of the FDTD software should be compared with and without acceleration enabled. 

Over time, computer processors will increase in speed, due to advances in manu-

facturing. Those same advancements should also improve the speed of both FPGA's 
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and custom ASIC's. In fact, the Xilinx FPGA device used in future sections is older 

technology. Thus, newer products will provide even better performance than what 

is reported in the text. 

Currently, the software benchmark collection is scripted, relying on very little 

intervention from the user. Measurements are typically collected and then averaged 

from one hundred instances (unless otherwise noted) of a particular FDTD simulation 

run. 

With respect to the "reference computer", it is assumed that the processor speed 

and memory bandwidth will have the most impact on the runtime of the software 

algorithm. As long as there is sufficient physical memory to store the entire FDTD 

simulation, any additional RAM should not have much impact on the runtime. If 

the computation speed is limiting the performance, the processor speed will have 

the most impact on runtime until the memory bandwidth is fully utilized. On the 

other hand, if the memory bandwidth is fully utilized, then moving to a higher 

bandwidth memory technology will have the most impact on performance until the 

CPU resources are fully utilized. 

3.1.1 Potential Interfaces for the Future Hardware Accelerator 

The last two items in the "reference computer" list, the PCI and AGP details, are not 

important to the performance of the software. Rather, these two hardware interfaces 

are considered for the future hardware accelerator card. Thus, these specifications 

are listed to illustrate the available technology in this personal computer for the 

hardware accelerator interface/connection. 

As a side note, initial research considered the memory bus as another hardware 
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interface for the accelerator. This avenue has not been fully pursued for two reasons: 

First, there appears to be only one hardware-coupled memory product available 

in the market. SmartDIMM [28] provides for a PC100 memory card coupled with a 

Xilinx FPGA. It is only compatible with an Intel 440BX motherboard chipset. These 

requirements seem too restrictive for an accelerator that would compete with current 

technology. Thus, this would require the design of a new memory module that is 

compliant with the chosen memory standard and coupled to some digital hardware. 

This option was not pursued due to the perceived development time and the lack of 

a verified hardware FDTD implementation. 

Second, the use of interleaved memory banks is an emerging trend in the PC 

industry. This means that a memory-based hardware accelerator would not be avail-

able on the memory bus all of the time and presumably this behavior would not 

be controlled by the user/programmer. This would increase the complexity of the 

acceleration solution. 

It should be noted that there is another technology called Computational RAM 

(CRAM). While not considered in this work, it may provide another option for FDTD 

acceleration. 

3.2 Data Bandwidth of Memory and Hardware Buses 

This section provides information about the data bandwidth that can be expected 

from various memory and hardware bus technologies. The performance of memory is 

discussed in the following section, followed by the performance of the PCI (Peripheral 

Connections Interface) and AGP (Accelerated Graphics Port) hardware buses. 
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3.2.1 Memory Bandwidth: Theoretical vs. Sustainable 

This section investigates the bandwidth of various memory technologies. This infor-

mation is useful for a discussion of the software runtime performance and for future 

acceleration work. From Chapter 5 it is highly probable that the future hardware 

accelerator will be coupled to several megabytes of dynamic RAM. Table 3.1 depicts 

the theoretical, peak data bandwidths for several current memory technologies. 

Table 3.1: Maximum (Read) Bandwidth for Various SDRAM Memory Technologies 

Memory Technology 
Peak Memory (Read) 
Bandwidth (MB/s)t 

PC100 (64-bits x 100MHz) 

PC133 (64-bits x 133MHz) 

PC2100 DDR (64-bits x 266MHz) 

PC2700 DDR (64-bits x 333MHz) 

762.9 

1014.7 

2029.4 

2540.6 

tM = 10242, B = bytes 

Double-Date Rate (DDR) 

In general, dynamic random access memory (DRAM) is optimized for faster read 

operations than write operations. FDTD requires far more memory reads than 

writes, so this DRAM optimization is beneficial. This is discussed in greater de-

tail in Section 3.3. 

All of the above memory technologies access the data in bursts. Following a cache 

miss, a burst from memory would fill one or more cache lines in the CPU. In newer 

technologies, these bursts can be programmed to be 1, 2, 4, 8 values and more at 
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once. For the burst mode of 4, rather than one memory value being returned after 

a read request, 4 values are returned. 

There are a number of factors which are not considered when the peak memory 

bandwidths are reported. There is a large latency for the first memory access, which 

is not accounted for in Table 3.1. The table value reports the rate at which the 

burst of the next three values (192-bits or 3 x 64-bits) is received, basically at one 

value per clock cycle (every 10 ns). For P0100, the first access latency is 50 ns [29]. 

This means that to read 4 values, it takes 80ns. The maximum read bandwidth, for 

P0100 memory with bursts of 4 values, is: 

256bits MB 

BWp0100 = 80 x 109s X 8bits x 10242 = 381.5MB/s (3.1) 

Because of the large latency for the first access, the sustainable memory band-

width is nearly half of the peak reported. From [30], the initial latency for P0133 

memory is 44 ns. Using a calculation similar to Equation 3.1 the sustainable memory 

bandwidth for P0133 with bursts of 4 values is 458.5 MB/s, once again less than 

half of the peak. 

Memory manufacturers do not willingly publish this information and make it very 

difficult to obtain, because of the large discrepancy between sustainable and peak 

memory bandwidths. No suitable timing specifications could be found for Double 

Data Rate SDRAM. However, it is expected that sustainable bandwidths will be 

significantly lower than the reported peak. 

In Section 3.3, these peak and sustained bandwidths are compared to the cal-

culated memory bandwidth used by a software implementation of the six FDTD 
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update equations. The goal is to evaluate whether the computer's CPU or memory 

is the limiting factor in the FDTD computations. 

3.2.2 PCI and AGP Bandwidth 

This section applies to the next generation hardware accelerator. The possible band-

widths for the available PCI and AGP technologies are described. One of these two 

hardware buses will be selected for connecting the future hardware accelerator to the 

host computer. 

For the current PCI standards, there are several different configurations sup-

ported by different motherboard chipsets and manufacturers. Traditionally, PCI has 

operated at 33MHz but can now operate at 66Mhz. In the same vein, traditionally, 

the PCI bus was 32-bits wide. Newer motherboards may also support a 64-bit PCI 

bus. Table 3.2 describes the bandwidths that the various configurations can achieve. 

Table 3.2: Maximum Data Bandwidth for Various PCI Standards 

Bus Speed 
Bus Width 

32-bits 64-bits 

33 MHz 

66 MHz 

125.9 MB/st 251.8 MB/st 

251.8 MB/st 503.5 MB/st 

tM = 10242, B = bytes 

Recently, manufacturers are also supporting a version of PCI called PCI-X. This 

is a 64-bit wide bus operating at 133 MHz. This results in a maximum bandwidth 

of 1014.7 MB/s. 

One of the key assumptions in the above data is that the PCI bus is monopolized 
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by a single peripheral. Otherwise, the reported maximum bandwidths must be shared 

between many peripherals. Another observation is that the same bus must be used 

to transact both address and data information. Unless some form of bursting is used, 

half of the data bandwidth will be used for addressing. 

AGP is designed specifically to provide higher data rates, between the CPU and 

a video card, than the PCI bus can achieve. Table 3.3 describes the bandwidths that 

the various AGP standards offer [31]. 

Table 3.3: Maximum Data Bandwidth for Various AGP Standards 

AGP Standard Peak Bandwidth (MB/s) 

1X 254.3 

2X 508.6 

4X 1017 

8X 2034 

tM = 10242, B = bytes 

The AGP specification also provides for an additional 8 data lines for sideband 

addressing. This is explained in greater detail by [31]. Unlike PCI, addresses can be 

specified using these 8 lines while data transactions are still taking place on the main 

bus. Thus, AGP performance is expected to further improve if this modification is 

used. 
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3.2.3 Impact of Memory and Hardware Bus Technology 

on the Next Generation Hardware Accelerator 

Table 3.1 provides-the peak memory bandwidths offered by various technologies. It is 

then shown that sustainable bandwidths are only half of the peak values. Tables 3.2 

and 3.3 provide a reference for the maximum data bandwidth that can be achieved 

between a PCI- or AGP-based hardware accelerator. Again, these rates will be 

limited by overhead and other factors. 

The choice of technology used to connect the hardware accelerator to the host 

computer will also fix the available data bandwidth between the two devices. This 

will ultimately limit the amount of data that can be exchanged between the accelera-

tor and the host computer. If the bandwidth is low or the amount of data exchanged 

is too high, the accelerator's performance will be limited. 

The envisioned hardware accelerator will use some form of DRAM memory. Thus, 

the chosen memory technology will also determine the maximum sustainable memory 

bandwidth. The goal is to operate the memory bank(s) at maximum throughput. 

Nevertheless, the choice of technology will ultimately limit the available input band-

width to the accelerator. 

The next section provides performance benchmarks (run-time, computation speed 

and memory bandwidth) for several software FDTD simulations. 

3.3 Benchmarks of FDTD Update Equations 

The goal of this investigation is two-fold: (i) to determine the computation speed for 

a single field update, given that the six update equations are identical in structure, as 
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discussed in Chapter 2. And (ii) to determine the memory bandwidth utilized by the 

algorithm. Ultimately, this information is used to predict the required computation 

speed and memory bandwidth to accelerate the FDTD algorithm by a factor of 10 

or more. 

Later, in Section 3.4, Okoniewski's research FDTD code [32] is analyzed on the 

reference computer. However, for Section 3.3 the code is a simple FDTD program 

written in C++. For this analysis, the simulation model or results are not considered. 

The approach of this investigation is from a purely algorithmic perspective. 

3.3.1 The Algorithmic Perspective 

The goal is to measure the aggregate of the memory and arithmetic operations to 

determine the performance of the host computer/CPU. 

For the purpose of this experiment, each update equation can be written as: 

Fnew Cl  Fold +02.[CS(F2  Fl) +C4(F4 F3)] 

Where Fld= field to be updated (to 

Ci, C2, C3, C4 = field and material property coefficients 

F1, F2, F3, F4 = adjacent, circulating fields 

(3.2) 

This equation format is common to all six FDTD update equations. Thus, the 

FDTD algorithm is really the computation of Equation 3.2 for a three-dimensional 

array of six field components iterated for a given number of time steps. 

Ignoring cache, the data requirements for Equation 3.2 is nine memory loads and 
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one memory store. This represents a somewhat pessimistic view of the implemen-

tation, because certain coefficients could be combined or even arranged as an array 

of constants. However, for the worst case scenario, the equation requires nine float-

ing point values and writes back one floating-point value. If the three-dimensional 

array of fields is sufficiently large, the CPU will experience cache misses. The host 

computer will fetch the data from memory to cache on a regular basis as the compu-

tations proceed. Thus, any timing or memory bandwidth measurements will be from 

memory to the CPU because there is too much data to contain in the cache. Obvi-

ously, the code is structured to make the most effective use of cache lines'. However, 

the cache lines are still refilled on a regular basis, incurring the cost of a memory 

fetch each time. 

An important observation can be made about the FDTD algorithm. The data 

transaction requirements are very asymmetrical. Only 10% of the data operations 

are writes, the rest are reads. This affects the approach to the future hardware 

accelerator. In order to compute an FDTD update equation, a great deal of input 

data is required. On the other hand, to return the completed calculation only requires 

about 10% of the total required bandwidth. In this way, it makes sense to push all 

of the simulation data as close to the hardware accelerator as possible, by using local 

memory (on the accelerator). Then, only updated fields are sent back to the host 

computer. These details are discussed further in Chapter 5. 

The next section discusses the methodology used to explore the computation 

'(Or cache block) The smallest unit of memory that can be transferred between the main memory 
and the cache. [22] This takes advantage of (i) the principle of locality of reference, which implies 
that nearby memory locations are likely to be referenced in the future, and (ii) hardware memories 
are optimized for consecutive accesses. 
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speed for an individual field update. This is followed by the results of these methods, 

run on the reference computer. 

3.3.2 Benchmark Methodology 

As stated earlier, the goal of the investigation is to determine the computation speed 

for a single field update. Based on this speed, it should be possible to predict the 

runtime of an FDTD simulation with a certain three-dimensional mesh size and 

simulation length (number of time steps). 

Experiments with the following characteristics are performed: 

• The FDTD C++ code is compiled, using g++ (the Linux C++ compiler), 

with aggressive optimization enabled. This is representative of the real world 

situation for most software programs, where it is desirable that runtimes are 

as short as possible. Several experiments determined the best setting for the 

compiler optimization flags. 

• A simulation model is chosen that is much larger than the cacheable memory. 

Later, for comparison, a simulation model is constructed that should fit entirely 

into cache. 

• The simulation is run for a number of time steps, usually 100 or more. 

• Each simulation is run 100 times and the measurements are collected for each 

iteration. Afterwards, the set of data is averaged to provide the typical perfor-

mance of the code rather than a particular instance. 
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Two approaches are taken to measure the time spent by the algorithm on the 

FDTD update equations. The first method is to compile the FDTD program with 

profiling enabled. Then profilers, such as gprof, are used to analyze the profiling data 

that is generated when the program is run. Using specific identifiers or code markers, 

the FDTD update equations are separated from any other code. For the C++ code, 

without any enhancements to the FDTD algorithm, the update equations comprise 

99% of the runtime. The second method uses the UNIX time function which provides 

CPU usage, page faults and runtime data for a program. Each method, (i) the time 

function applied to optimized, non-profiled code and (ii) the profiler data, reinforces 

the results of the other. Thus, either method can be used without a loss of accuracy. 

This yields the runtime of the program, and more importantly the runtime of 

the FDTD update code, for a certain total number of field computations using cal-

culations identical to Equation 3.2. The computation time for a single field update 

equation is given by: 

1 run 
tcomp = =  

fcornputat4or& 6 X NNN X Nteps 

Where teomp = computation time for a single field update [s] 

fcomp = computation speed for a single field update [Hz] 

trun = the (averaged) runtime reported by gprof or time [s] 

N, N, N the number of cells in each dimension 

N3t8 = the number of time steps in the simulation 

(3.3) 

The denominator of Equation 3.3 is really the total number of field updates 
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computed during the simulation. This number is also confirmed by a simple counter 

which is embedded within each update equation. For speed, it is only included in 

the code for verification, not during the benchmark runs. 

It should be noted that tcomp represents the average computation time, for all 

fields, which will differ from the instantaneous value for each field update. This is 

due to the fact that, first, the run time is an average over several simulation runs. 

Second, some calculations will execute faster than others depending on the load 

on the system, whether a cache miss occurs and the order/scheduling and type of 

instructions in the CPU's pipeline at that instant. 

Analysis of Equation 3.2 predicts that there are 10 values that are either loaded 

from or stored to memory in order to compute a field update. For this discussion, it 

is assumed that each (floating-point) value is 32-bits long. Thus, ten 32-bit values 

(40 bytes) of data are transacted per field update. Using the information from 

Equation 3.3 the average memory bandwidth (in MB/s) used during the FDTD 

computations is: 

40bytes MB 
BWFDTD = x   

tcomputa,ion 10242 bytes 
(3.4) 

With respect to Equation 3.2 it was originally stated that 10 values represented 

the worst case scenario for the number of values needed. For the case of the memory 

bandwidth, this number is in fact the most optimistic. Any reductions in the data 

requirements for a single update equation will further reduce the bandwidth used by 

the FDTD algorithm. 

There are a few underlying assumptions, for this entire section, which should be 
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discussed before the results are presented. It is assumed that if the simulation model 

is sufficiently large (ie: too large to be contained in the cache) then the mesh size 

(Ni, N, N4, the coefficient and field values, should not have an effect on the speed 

of the computation. Thus, it is assumed that the computation time for a single field 

update can be generalized and applied to all sufficiently large FDTD simulations. 

Initial research by the author indicates that this assumption is acceptable and that a 

calculated teomp for a given memory and CPU configuration is valid for a wide range 

of FDTD mesh sizes. 

3.3.3 Computation Speed and Memory Bandwidth 

for a Simple FDTD Code 

Table 3.4 summarizes the simulation configurations used to determine the bench-

marks for the FDTD update equations. 

Table 3.4: Various Simulation Models Used to Measure Software FDTD 
Simulation Number of Total Number 
Name Size Time Steps of Fields 

A lOOxlOOxlOO 100 6 x 108 

B 16x16x16 24,415 600, 023, 040 6 x 108 

C 3x3x3 4,146,042 671, 658, 804 6.7 x 108 

For each simulation A, B, and C (and later D, E, and F) the volume and sim-

ulation length are adjusted with respect to each other such that approximately 600 

million field updates are performed by each simulation. This allows for comparison 

(of runtime and computation speed) between simulations. The FDTD simulations 
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are computed using the simplified C++ code described earlier. 

Simulation A is designed so that the array of fields is much larger than the 

computer's cache. The goal is to force the CPU to fetch the data from physical 

memory. Simulation B is created after a large number of major and minor page 

faults are discovered (Table 3.5) in Simulation A. The hypothesis is that reducing 

the number of major page faults, which require the host computer to load a memory 

page from virtual memory (the hard drive), should greatly improve the speed. The 

last model, Simulation C, is designed to fit wholly inside the cache. The timing of 

this algorithm should reflect extremely high data rates from cache and the actual 

computation time of the arithmetic operations of Equation 3.2 in the CPU. 

Table 3.5 describes the results that are obtained using the previous methodology, 

for the simulations described in Table 3.4. 

Table 3.5: Computation Speed and Memory Bandwidth for FDTD Update Equations 
Total Number trun tteomp fcto,np BWFDTD Major, Minor 

Simulation of Fields (s) (ns) (MHz) (MB/s) Page Faults 

A 6 x 108 64.35 107.2 9.32 355.69 35853, 11839 

B 6 >< 108 38.60 64.32 15.55 593.10 295,64 

C 6.7 x 108 33.64 50.08 20.0 761.7 167,22 

fSingle Field Update 

A few statements are necessary before the results of Table 3.5 are discussed. The 

computation time tcomp for a single field update contains timing information for both 

the CPU's arithmetic logic unit (ALU) and the memory. These two impacts, the 

ALU calculation time and the memory fetch time, are inseparable without detailed 
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knowledge of how the CPU executes the assembly instructions produced for a single 

FDTD update equation. The other thing to note is that a low value of memory 

bandwidth does not necessarily indicate that the data performance of the implemen-

tation is poor or could be improved. This value is an average bandwidth over the 

entire runtime of the simulation. The average may be comprised of very short bursts 

of peak bandwidth fetches from memory, which means that increasing the available 

memory bandwidth would improve the computation speed. On the other hand, the 

FDTD computation speed could be limited by the ALU. In this instance, the mem-

ory bandwidth will be under-utilized. Until the speed of the ALU or the CPU clock 

speed is increased, the data will not be processed/required any faster. 

For now, without detailed knowledge of the CPU's execution, the ALU calculation 

time and the memory fetch time must be discussed together rather than separately. 

There are a few statements which can be made about the results summarized 

in Table 3.5. Simulation A does not appear to use all of the available bandwidth, 

calculated earlier (458.5 MB/s) for PC133 memory. However, there are a large 

number of page faults, which would require the computer to fetch a page from the 

hard drive, effectively slowing down the prograiri significantly. Simulation B reduces 

the number of page faults and the performance also increases. It is expected that 

much of this data might reside in cache, however. Finally, Simulation C reflects 

the computation rate where all data is assumed to be in cache. In this case, the 

performance is improved again. Based on the results of Simulation C, it is argued 

thatthe FDTD computation is not entirely limited by the ALU. When the data is 

provided at a faster rate from cache, the computation speed increases. This means 

that for at least part of the update computation, the CPU is waiting on the memory. 
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The most interesting observation is that the rate at which updated fields are 

produced is at most 20 MHz, even if it is an artificial case (Simulation C). At this rate 

however, the algorithm uses a lot of memory bandwidth which could be a problem 

in a system (the hardware accelerator) without cache. 

In the next section, a well-used FDTD research code is profiled. Runtime results 

from the research code are compared to those obtained in Table 3.5. Following this, 

the best numbers for the computation speed and memory bandwidth are extrapolated 

to requirements for the hardware accelerator. 

3.4 Profiling Totem 

Totem is a research FDTD code developed by Okoniewski [32]. This code is a 

fully-functional simulator that incorporates many advances in FDTD [2] (absorbing 

boundary conditions, complex materials, complex metal geometries and wires) that 

the simple C++ code of the previous section does not. Based on the long term goal 

of the project, this software is one of the existing FDTD software implementations 

for which acceleration would be desirable. 

The code is primarily FORTRAN-90 with a few routines written in C. The In-

tel High-Performance FORTRAN Compiler (for Linux) [33] is used to generate an 

executable for the reference computer. To ensure a valid comparison, the simplified 

C++ code is also compiled using the Intel High-Performance C++ compiler. This 

gives identical results to the code compiled using g++ with aggressive optimization 

enabled. It should be noted that, in general, it is not desirable to write the inner 

loops of the FDTD algorithm in assembler. First, the development of mature and in-
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telligent compilers mitigates the need to generate hand-optimized assembly code. In 

most cases, the compiler produces results that perform identically to the optimized-

assembler at a fraction of the effort. Second, custom assembler does not facilitate 

porting the software to multiple platforms easily. 

In addition to the core loops for the FDTD update equations, Totem contains a 

significant amount of initialization and data pre/post-processing code. The simula-

tion runtime is no longer just the core update equations; thus, the difference between 

two simulation runs of different length could be used to determine the actual com-

putation time in the core update equations. The assumption is that the prologue 

and epilogue time are constant for the simulation model and do not change with the 

number of time steps. Conveniently, Totem computes the time for the core FDTD 

update equations only, as part of its functionality. 

Identical simulation models as those in Table 3.4 are created and run using Totem. 

Simulation model D contains 100x100x100 cells. The runtime for 100 time steps, av-

eraged over 1,000 runs, is 42.47 s. Similarly, the runtime for 200 time steps is 84.88 

s. Subtracting the two values gives a runtime of 42.41 s for 100 time steps. Table 3.6 

presents the computation rate and memory bandwidth for the three simulation mod-

els in Totem. 

The performance of Simulation D is significantly better than the results of the 

simplified C++ code (Simulation A: trun = 64.35 S) teomp = 107.2 flS, BWFDTD = 

355.69 MB/s) presented in the previous section. The performance of Totem is 

actually in line with Simulation B (of the previous section), which was designed to 

reduce page faults. Simulation D has significantly less page faults than Simulation 

A, even so the mesh for both is 100x100x100 cells. Similarly, Simulation E performs 
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Table 3.6: Computation Speed and Memory Bandwidth for Totem 
Total Number t?'Ufl ttcomp florn BWFDTD Major, Minor 

Simulation of Fields (s) (ns) (MHz) (MB/s) Page Faults 

D 6 x 108 42.41 70.68 14.15 539.68 583, 21480 

E 6 x 108 27.67 46.11 21.68 827.22 583, 624 

F 6.7 x 108 210.1 312.8 3.20 121.95 584, 32717 

tSingle Field Update 

better than Simulation B. It would appear that the FORTRAN compiler produces 

faster code than the C++ compiler. 

There is one anomalous result. The computation of the 3x3x3 mesh in Simulation 

F takes the longest time measured for any of the simulations. The suggested cause 

is that due to the large number of time steps, there is a disproportionate amount 

of output (to the screen and hard drive) for the simulation. Thus, the computation 

time is very short as expected but other factors utilize the runtime. 

It is worth noting that the number of major page faults in the Totem runs are 

constant. Thus, it appears that these faults will occur regardless of the simulation 

size. This is unlike the simplified C++ code which has a large number of page 

faults for the larger simulation. Obviously, the memory allocation scheme used in 

the simplified C++ code could be improved. The C++ language does not provide 

for the dynamic declaration of three-dimensional arrays, without additional coding, 

so a less desirable implementation is used. This C++ implementation suffers from 

a large number of page faults while the FORTRAN code does not. 

For sufficiently large FDTD simulation models, Totem provides the most compet-
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itive computation speed and memory bandwidth results for the two codes measured. 

These best numbers are used to predict the speed and bandwidth requirements for 

the accelerator. 

3.5 Extrapolation of Previous Results 

In nearly all typical FDTD simulations, it is predicted that the model is larger than 

the computer's cache. Simulations smaller than this would generally have an in-

sufficient mesh size to produce useful results. For sufficiently large simulations, the 

Totem code produced the fastest computation speed and highest bandwidth utiliza-

tion. This means that the proposed hardware accelerator needs to have a computa-

tion speed and memory bandwidth (Table 3.7) which is an order of magnitude larger 

than the reported Totem results. 

Table 3.7: Computation Speed and Memory Bandwidth Requirements for the Pro-
posed Hardware Accelerator 

Simulation 
fcomp BWFDTD 

(MHz) (MB/s) 

Hardware Accelerator 150 5397 

The requirements of Table 3.7 can be satisfied in a number of ways. The available 

choices, for the hardware accelerator to meet these requirements, are described in 

greater detail in Chapter 5. Given the presented memory technologies and available 

custom and/or programmable hardware, these requirements are reasonable. 
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Chapter 4 

The FDTD Computational Engine 

"I think there's a world market for about 5 computers." 

- Thomas J. Watson, Chairman of the Board, IBM, 1948 

This chapter describes the first approach to a hardware FDTD implementation. 

For this approach, the entire simulation is implemented on programmable hardware. 

One- and two-dimensional hardware FDTD implementations are verified using mi-

crowave cavity resonators. The acceleration and simulation accuracy for both imple-

mentations are discussed. 

4.1 Description of the Approach 

The goal of the implementation approach described in this chapter is to build a self-

contained FDTD simulation on the hardware. Each and every electric and magnetic 

field in the simulation is stored and calculated simultaneously. This yields the max-

imum possible parallelism for the FDTD computations. To achieve this high level 

of parallelism and thus acceleration, a large amount of digital hardware is required. 

A different approach, which is more suited to practical application and based on 

resource sharing, will be described in Chapter 5. 
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4.2 The Hardware Implementation of FDTD 

In Chapter 2, a block diagram is derived (Figure 4.1) for the computation of volt-

ages and currents. A direct correspondence between this diagram and the FDTD 

algorithm is also demonstrated. 
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Figure 4.1: Block Diagram of an Inductor-Capacitor FDTD Computation 

The arithmetic operators for the block diagram of Figure 4.1 could be imple-

mented using a number of different digital implementation paradigms. The choice 

of paradigm recognizes the trade-offs between speed and hardware utilization (hard-

ware cost). The spectrum of choices (Figure 4.2) can be arranged into bit-parallel, 

digit-serial and bit-serial computations. 

At one end of the spectrum there is bit-parallel computation, where all the resul-

tant bits of an arithmetic operation are generated at the same time. At the other end 

of the spectrum is bit-serial, where the result of an arithmetic operation is generated 

one bit at a time. In between is N-digit-serial, representing a mix of bit-parallel and 

bit-serial,, where N-bits (2 ≤ N < Nparaei) of the result are computed at the same 
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Arithmetic 
Method 

Number of bits 
computed at once 

Hardware 
Utilization 

Computation 
Speed 

bit-serial N-digit-serial bit-parallel 

I I 

1-bit N-bits 

least hardware 

slowest speed 

SWL-bits 

most hardware 

fastest speed 

Figure 4.2: Hardware Utilization vs. Speed Trade-Offs for Different Arithmetic 
Implementation Methods 

time. Each paradigm reflects different speed vs. hardware cost trade-offs. 

Bit-parallel will typically result in the fastest computational speed, at the expense 

of using the most hardware. Moreover, the computation speed is ultimately limited 

by the carry-propagation path/delay between parallel elements. In an FPGA, the 

routing (resource) cost is also very high because of the parallel data path. 

Bit-serial will typically result in a slower computation speed, but use the least 

hardware. For an M-bit system wordlength' (SWL), bit-serial will use approximately 

1/M times the hardware (compared to bit-parallel) but it will take M times longer 

to compute the full SWL result. In essence, each bit-serial operator is re-used for 

each bit of the result. 

Typically, fully pipelining a bit-parallel design requires a large amount of hard-

ware; this is usually undesirable. On the other hand, bit-serial arithmetic is de-

liberately registered between each operator and, thus, fully pipelined. The short, 

serial propagation paths and short carry chains allow a bit-serial design to operate 

at higher clock frequencies than their bit-parallel counterparts. 

'System Wordlength: describes the number of bits used to represent data in the digital system. 
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Early analysis by the author indicated that dedicated hardware would provide 

more than enough acceleration. The results presented later in this chapter (Sec-

tion 4.5) reinforce this statement. It was predicted that data communication and 

hardware size, not computational speed, would become the limiting factors. With 

this in mind, emphasis is placed on minimal hardware utilization as opposed to com-

putational speed. It is more desirable to have many, slower FDTD cells instead of a 

few extremely fat ones. The size of individual FDTD cells and the available FPGA 

resources will place an upper bound on the size of the FDTD simulation that can be 

fully implemented. Thus, the main objective of the following sections is to reduce 

the hardware size of the FDTD implementation. In summary, two key choices are 

made regarding the final' implementation: 

• A pipelined bit-serial architecture is chosen. 

• Arithmetic operations are performed using fixed-point (integer) arithmetic. 

These choices are described in the following sections. 

4.2.1 Pipelined Bit-Serial Architecture 

An example of a generic, bit-serial operator is depicted in Figure 4.3. 

The inputs to this generic operator are: two data-inputs, a serial (bit) clock and 

a control signal. There is also one data output. For the purposes of this work, the 

data words are serial bitstreams arranged with their least-significant bit (LSB) first. 

There is the assumption that the serial bitstreams are aligned and the LSB's of the 

input data words arrive at the block at the same time. The control signal is used for 

LSB time framing, especially when multiple arithmetic operations are pipelined. 
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Figure 4.3: Generalized Bit-Serial Operator 

For a fully synchronous design, the input and output data bits should be syn-

chronous with the serial clock. This implies that the input data signals are regis-

tered/latched by the previous hardware (not shown), with respect to the serial clock. 

Likewise, the output data signal is registered/latched by the generic operator, again, 

with respect to the serial clock. This means that the result of the 1-bit arithmetic 

operation is not available until at least one serial clock cycle after the inputs have 

arrived. This single bit of delay (one serial clock) could be extended to an arbitrary 

amount of delay, depending on the arithmetic operation. 

Control signals are used for system wordlength framing, to identify the arrival of 

the LSB at the inputs. Or, in other words, the control signal marks the boundary 

between adjacent words in the serial bitstream. As the serial bitstreams pass through 

the operators, the data path is delayed and this also requires that the control path 

be delayed. 

Consider, for instance, two eight-bit words, 0111000012 and 0011110002, incident 

on a bit-serial adder. Figure 4.4 depicts the addition operation for this data. 

If the LSB's of each word arrive at T = 0 then the LSB of the result appears at 

T = 1. As time continues to T = 9, the two input words are added bit by bit. 
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Figure 4.4: Example of Bit-Serial Addition 

As explained previously, the generic bit-serial operator only operates on one bit 

from each of the input words per serial clock cycle. This implies, for the moment, 

that all the other bits of the input and output data words are just buffered or stored 

while the arithmetic operation is completed. This is inefficient, especially for long 

wordlengths. 

In order to increase the number of arithmetic operations that are performed 

simultaneously, the serial computation path is pipelined by placing a register at the 

output of each bit-serial operator. By chaining together several bit-serial operators, 

the computation of one operator is overlapped with other operators' computations. 

Each operator will be processing different bits of the serial bitstream, for a given serial 

clock cycle. In order to achieve this pipelining, the only requirement is that the serial 

bitstreams are aligned throughout the structure. In simpler terms, the LSB's of the 

input data words must arrive at an operator at the same time. This implies that 

pipelined bit-serial needs to be scheduled. As future sections will show, the bit-serial 

operators are relatively simple. It is the scheduling of a complex computation that 

becomes the most difficult part of an implementation. 

Consider the delay T in the block diagram for the one-dimensional FDTD com-

putation in Figure 4.1. For a bit-parallel implementation this delay is, infact, one 
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clock cycle. However for a bit-serial implementation, the delay T is in fact a number 

of serial clock cycles, equal to the system wordlength. To achieve proper alignment 

with the bit-serial operator following T, the LSB of the data word is delayed by 

SWL bits. This is very useful for the bit-serial implementation because the sys-

tem wordlength amount of delay can be distributed throughout the pipeline. Again, 

proper scheduling becomes very important. These concepts are demonstrated in 

Section 4.4.2. 

In summary, pip elined bit-serial arithmetic is chosen for the following reasons: 

• The hardware utilization (cost) of pipelined bit-serial arithmetic units is low. 

Adders, subtractors and delays are reused for each bit of the system wordlength. 

• The size of each computational unit is small, compared to parallel or digit-

serial, allowing the most computational units to be implemented in parallel for 

a fixed amount of hardware. 

• The bit-serial structure allows for very short routing lengths reducing hardware 

costs and simplifying routing. Low hardware costs should facilitate more FDTD 

cells on a given amount of hardware. Furthermore, short routing lengths equate 

to a faster operating frequency because the propagation/path delays are less. 

4.2.2 Integer Arithmetic 

Integer arithmetic is chosen over floating-point arithmetic to further reduce hardware 

costs, and additionally to increase the computational speed. This is offset by the 

need for larger integer registers in order to maintain the dynamic range provided by 

a floating-point representation. 
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The next section describes the bit-serial, 2's-complement integer arithmetic im-

plementation in greater detail. 

4.3 Pipelined Bit-Serial Arithmetic: Basic Building Blocks 

The pipelined bit-serial building blocks used to implement the FDTD algorithm 

are: bit-serial adders, bit-serial subtractors, arithmetic left/right shifters, arbitrary 

delays, and N-bit signed multipliers. Table 4.1 introduces these operators and their 

functions. 
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Table 4.1: Overview of the Bit-Serial Operators 

Block Bit-Serial 
Diagram Operator Function 

Output Delay 
(JV X Tserjaj) 

A+B 
A SUM 

B 

A ° 

II 

IN OUT 

MSHIF 

IN OUT 

DSHIFT 
-J 
0 

A°  

Adder 

Subtractor 

Arithmetic Left 
Shifter (MSHIFT) 

Adds the two input serial 
bitstreams, one bit at a time 
per serial clock cycle. 

Subtracts the two input se-
rial bitstreams (A-B), one 
bit at a time per serial clock 
cycle. 

Multiplies the input serial 
bit stream by 2, one bit at 
a time per serial clock cycle. 
It also inserts zeroes for the 
LSB. 

Divides the input serial bit 
tream by 2, one bit at Ii- S 

Arithmetic Right a time per serial clock cy-

cle. It also sign-extends the 
MSBI if necessary. 

AxB 
A PROD 

Bf11:O1 

A 0 

Delay 

N-Bit Coefficient 
Multiplier 

Delays the input serial bit-
stream, by one to system-
wordlength (SWL) bits. 

Multiplies the input serial 
bit stream by an N-bit, par-
allel coefficient. It also trun-
cates N-bits of the result. 

1 

1 

1 

1 

1 to SWL 

N 

tLSB: Least Significant Bit 
MSB: Most Significant Bit 
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The bit-serial operators (Table 4.1) and the required control structures are de-

scribed in the following sections. Designs for these building blocks are adapted from 

[19] and Denyer and Renshaw [20]. The hardware size of each unit is reported us-

ing 3 metrics, defined in Section 2.1: the number of (i) flip-flops, (ii) lookup tables 

(LUT's) and (iii) Virtex slices. 

4.3.1 Bit-Serial Adder 

Sum Generation 

A+B 
A SUM 

(a) Block Dia-
gram 

A 
B  
CIN 

XOM 

Mm 

ED 

CLK  

D 

Carry Generation 

(b) Logic Gate Implementation 

Figure 4.5: Bit-Serial Adder 

SUM4 

The bit-serial adder, depicted in Figure 4.5, is a 1-bit, carry-save adder. It does 

not generate the result of the addition of individual bits A and B until one clock 

cycle later. The carry is delayed by a clock cycle as well so that it can be applied 

to the following, next significant bit in the serial word. When the control/framing 

signal is Active High, identifying the arrival of a LSB, the carry is zeroed. 
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This adder occupies one Virtex slice, specifically two flip-flops and two four-input 

lookup tables (LUT's). 

4.3.2 Bit-Serial Subtractor 

Difference Generation 

A- B 

A DIFF 

B 

-J z 

A 0 

(a) Block Dia-
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GIN  

XIM 
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PD 
DO NU 

Dl 
SO 

]CONTROL 

(b) Logic Gate Implementation 

Figure 4.6: Bit-Serial Subtractor 

0 GIN 

The bit-serial subtractor is depicted in Figure 4.6. Again, the result is delayed by 

a clock cycle. For subtraction, the B-input is inverted (denoted NB) and the carry 

is set to be ' 1' when the LSB enters the block. This performs an 'invert and add 1' 

operation so that when addition takes place the B input is subtracted from the A 

input. 

This subtractor occupies one Virtex slice, in particular two flip-flops and two 

LUT's. 

It should be noted that for both the bit-serial adder and bit-serial subtractor 

designs the "carry" signal (CIN) is used as an internal signal only. Any carry is not 
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considered as an input or output in these blocks because the carry is zeroed at the 

arrival of the LSB and then stored internally for application to the next bit in the 

serial bitstream. 

4.3.3 Arithmetic Left Shifter 

The left-shift operator (MSHIFT [20]), depicted in Figure 4.7, performs a multiply 

by two on the signed serial bitstream. 

IN OUT 

MSHIFT 
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(a) Block Dia-
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D Q 
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AND2BI CLK 

FD 

D Q 
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(b) Logic Gate Implementation 

Figure 4.7: MSHIFT 

Externally, this operator is assigned a delay of one bit time. Internally, there 

are two bit times of delay in the data path. This has the effect of delaying the 

input bitstream by an additional clock cycle, effectively (shifting the word left and) 

multiplying by two. The control signal is used to insert zeroes at the output when 

the LSB is expected. 

This operator occupies 1 Virtex slice, using two flip-flops and one LUT respec-

tively. 
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4.3.4 Arithmetic Right Shifter 

The right-shift operator (DSHIFT [20]), depicted in Figure 4.8 performs a divide by 

two on the serial bitstream. 
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Figure 4.8: DSHIFT 
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Externally, this operator is assigned a delay of one bit time. Internally, there 

is no delay in the data path. The LSB arrives one clock cycle early, effectively 

dividing by two. For a truly synchronous design, this part should actually contain a 

single flip-flop in the primary data path and be assigned two delays externally. Our 

implementation requires less hardware, but does not latch/register the output. As 

long as the propagation delay through the part is negligible this should not affect its 

function; this component appears to be pipelined even so it is not. 

The control signal is used to sign-extend the data value if necessary. This operator 

occupies one half of a Virtex slice, using one flip-flop and one LUT respectively. 

It should be noted that it is possible to create MSHIFT and DSHIFT components 

that shift the input data value by more than one bit. This can be achieved by using 

two methods: (i) simply by chaining several MSHIFT or DSHIFT operators (as 
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described in the previous sections) to produce larger shifts or (ii) by combining the 

logic level circuits. The second option would allow some of the overlapping output 

registers and combinational logic to be absorbed between adjacent shifts. 

4.3.5 Delays: One Bit to System-Wordlength Bits 

In a complex bit-serial system, the data path lengths of different bitstreams will vary 

when measured relative to the inputs of a given operator. In order to ensure that 

the LSB's of different input bitstreams arrive at the same time, it is necessary to 

delay the data path. Delays from one bit time to system wordlength bits may be 

required. Delays larger than two to three bit times in length can be constructed 

efficiently using linear-feedback shift-registers (address generation) and LUT's (dual 

port RAM). The reader is referred to the Xilinx Application note [34] for more 

information. The designer has control over using only flip-flops or a combination of 

flip-flops and LUT's to implement delays, depending on resource availability. 

For this design, delays of 3 to 16 bit times occupy 2.5 Virtex slices. Delays of 17 

to 32 bit times occupy 3.5 Virtex slices. 

4.3.6 N-bit Multiplier 

AxB 
A PROD 

BL11 :O] ' 

12 

Figure 4.9: Bit-Serial Multiplier (with 12-bit Parallel Coefficient) 

This operator, adapted from [19], multiplies the serial bitstream by an N-bit 
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(parallel) coefficient. The multiplier is signed-number capable and the range of co-

efficients (X) is: 

- 2N-1 2N-1 - 1 

—0.5 = 2' 0.5 (4.1) 

In general, when two integers are multiplied, an M-bit word by an N-bit coeffi-

cient, this produces an M + N bit result. This multiplier truncates the lower N-bits 

of the result automatically, otherwise the system wordlength would increase after 

every multiply operator. 

The multiplier operator consists of three main parts, each end slice and the middle 

slice(s), as depicted in Figure 4.10. 

Serial 
in 

Parallel Coefficient 

First 
Slice 
(MSB) 

N-2 
Middle 
Slices 

End 
Slice 
(LSB) 

Figure 4.10: Construction of an N-bit Multiplier 

Serial 
Out 

The multiplicand, A, is slid past the N-bit coefficient for system wordlength clock 

cycles. When the LSB arrives at the input to the multiplier (and for N-i additional 

clock cycles after this) the output of the previous word is still being generated. From 

Figure 4.11 it can be seen that a sum of products (SOPO) is generated by a full 

adder (inputs: SI - sum in, CI - carry in, outputs: SO - sum out, CO - carry out). 

The sum of products is then passed to the next slice as an input. In fact, the sum of 
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products for the entire N-bit column is computed and the resultant bit output from 

the block. Once again, the carry is delayed by one time unit to affect the generation 

of the next sum of products, and the carry is zeroed when the LSB is in the slice. 

This path through the N-full adders is the longest path of the bit-serial imple-

mentation and will have the greatest impact on the final computation speed of the 

entire circuit. 

The slice associated with the most-significant bit of the coefficient, depicted in 

Figure 4.12, is very similar to the middle slices except that the sum of products input 

is zeroed. There is one bit time of delay for each coefficient bit. 

For the first N-i slices, the control signal is used to clear the carry bit between 

the MSB and LSB of two adjacent words travelling through the multiplier. 

The slice associated with the least-significant bit of the coefficient, depicted in 

Figure 4.13, is slightly different in structure compared to the other slices. When a" 

LSB is not incident on this part, and thus a control signal is not applied, its operation 

is identical to that of the middle slice. The operation of this block differs when the 

second control signal is applied, for the LSB. The second control signal (TPB) is used 

to. sign extend the MSB of the result, if necessary. As well, it restarts the carry chain 

for the next serial input. 

The cost of a 12-bit multiplier is 29.5 slices, with 35 flip-flop's and 37 LUT's. 

4.3.7 Control structure 

As indicated previously, a control signal is required when the LSB arrives at the 

input to an operator. Because of the delay associated with each operator and the 

pipelined nature, the LSB of a bitstream may arrive at different clock cycles for 
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Figure 4.11: The Bit-Serial Multiplier: Middle Slice 
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Figure 4.12: The Bit-Serial Multiplier: First (Most-Significant Bit) Slice 
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different operators in the circuit. 

It is necessary to generate a control structure, which can output a control signal 

in all possible bit periods of the system wordlength. The simplest solution is to use 

a "one-hot ring" counter with the number of states equal to the system wordlength. 

Such a control structure for a system wordlength of 32-bits costs 16 Virtex Slices. 

4.3.8 Summary 

Table 4.2 summarizes the cost, in terms of Xilinx Virtex-family slices, for the various 

units described in the previous sections. 

Table 4.2: Hardware Cost of Various Pipelined Bit-Serial Arithmetic Units 

Arithmetic Block 
Bit-Serial Adder 
Bit-Serial Subtractor 
Left Shift(MSHIFT) 
Right Shift (DSHIFT) 
Delay (3-16 bits) 
Delay (17-32 bits) 
12-bit Multiplier (per bit) 
32-bit Control Structure (per bit) 

Virtex Slices 
1 
1 
1 

0.5 
2.5 
3.5 

29.5(2.5) 
16(0.5) 

Flip-flops LUT's  
2 2 
2 2 
2 1 
1 1 
4 3 
5 4 

35(2.9) 37(3.1) 
32(1) 0 

4.4 Experimental Verification of Hardware FDTD 

The goal of this part of the project is to investigate the feasibility of implement-

ing FDTD cells in hardware and to determine the resulting speed and size of such 

cells. Two simulation models, representing one-dimensional and two-dimensional 

microwave resonators, are constructed for both hardware and software platforms. 
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For this discussion, a microwave resonator is a lossless cavity bounded by reflec-

tive walls. These walls are implemented using perfect electric conductors (PEC's), 

also known as electric walls (which maintain Etangentiat = 0), or perfect magnetic 

conductors (PMC's), also known as magnetic walls (which maintain Htangentiai = 0). 

Some initial disturbance or energy is excited inside the cavity. When an electro-

magnetic wave is incident upon one of the boundaries, all of the energy is reflected 

back into the cavity. Constructive and destructive interference occurs and the fields 

inside the cavity will resonate. The frequencies of resonation are determined by the 

material properties, physical dimensions of the cavity and the spectral components 

of the initial excitation. 

For each resonator, the hardware and software simulations use the same stimulus 

and observation points so that the results from either platform can be compared. 

Figure 4.14 shows the two resonators that are used. 

The primary measure for accuracy of the various simulations is the location of the 

resonant frequencies. These values can be analytically predicted as well as computed, 

using the Fourier Transform, from the FDTD simulation results. 

The results of the hardware and software simulations can also be compared 

against each other. This generates some useful insights, including the fact that 

results may need to be adjusted for the quantization of the coefficients. These are 

discussed fully in the results sections (4.4.4 and 4.4.7). 

4.4.1 The Hardware Platform 

The FPGA used to implement the hardware FDTD simulations is the Xilinx Virtex 

Family FPGA, XCV300, PQ240 package, speed grade 4, and it offers 3,072 slices. 
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Figure 4.14: Excitation and Observation Points for the Two Resonators 
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The FPGA is situated on an XESS Development board [18]. This board is used 

because it offered the latest available Virtex part, at the time, and is large enough 

to implement "proof of concept" designs. 

4.4.2 One-Dimensional Resonator 

One-Dimensional FDTD Cell Implementation 

The circuit in Figure 4.1 can be implemented using the pipelined bit-serial technology 

described in the previous sections. The resulting cell is given in Figure 4.15. 

The design in Figure 4.15 uses a system wordlength of 32-bits and 12-bit coef-

ficients. The boxed numbers at each operator output represent the delay through 

the block. Control signals are distributed around the circuit to mark the arrival of 

the LSB at each operator in the loop. Each delay from Figure 4.1 is 32-bits (system 

wordlength) long. The capacitor's delay is distributed between its adder and the rest 

of the inductor/capacitor loop, requiring 31-bits of delay in the feedback path. The 

inductor's delay represents the desired system wordlength delay before it is added 

back into the data path. The multipliers are followed by a multiply by four, which 

is used to change the range of coefficients (magnitude larger than one) that can be 

represented. 

It is worth noting that, due to the symmetrical nature of the design and calcu-

lation of the two 'fields', the inductor and capacitor structures are identical. It is 

expected that this will not always be the case. 

For more accuracy in the computations, the two left shift operators should actu-

ally be placed before the multiplier. It would be the hardware designer's and FDTD 

programmer's responsibility to ensure that no overflow would occur following this 
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Figure 4.15: One-Dimensional FDTD Cell Implementation 
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multiply by four. The current implementation is safer because the chance of an over-

flow is reduced by multiplying by a coefficient less than one and then multiplying by 

four. However, this is achieved at the expense of 2-bits of accuracy. In the current 

case, the multiplier discards 12-bits of the full result and then this truncated value 

is again shifted (up) left by 2-bits. Two of the originally discarded bits will now be 

substituted as zeroes by the left shift operators. 

Additional circuitry, not shown, is used to reset the fields in the cells to zero or 

initialize the fields values to an excitation value. In general, control structures are 

shared among a maximum of five one-dimensional, computational cells. After this, 

a new control structure is added. The intention is to localize the control signals and 

avoid the effects of clock skew. 

Resonator Description 

A one-dimensional resonator, terminated in perfect electric conductors (FEC's) is 

constructed. The resonator is depicted in Figure 4.16. The FEC causes the inbound 

wave to be reflected back into the resonant structure and can be represented using 

the one-dimensional cell without significant modification. 

Metal A 
0 

= Excitation 0= Observation 

Figure 4.16: One-Dimensional Resonator 

Metal 

A resonator represents a trivial example, nevertheless, it is very useful for yen-
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fication of the algorithmic implementation. Errors in the calculations quickly accu-

mulate and the output may become unbounded. The resonant frequency amplitudes 

are several orders of magnitude above the noise floor and narrowband. The coeffi-

cients directly relate to the location of the resonances, further verifying the multiplier 

structure. 

The excitation is a short, time-domain impulse to create a wideband excitation 

within the resonator. The impulse is realized by biasing one of the capacitors with a 

non-zero value at the start of the simulation. Due to the electromagnetic behavior, 

the spatial location of the impulse will also affect which resonant frequencies appear 

in the structure and their strength. 

Coefficients are chosen such that Ax = 1.0cm and e,. = p,= 1.0 (related to the 

inductor and capacitor values, respectively), which signifies free space. By experi-

ment, it was found that 8-bit coefficients did not result in bounded-input, bounded-

output (BIBO) stability. Increasing the coefficient accuracy to 12-bits provides sta-

bility. Further research is necessary to determine (and predict) the necessary register 

width (i.e. number of bits) for the coefficient and field values to achieve a desired sim-

ulation accuracy and computation speed. The necessary register widths to achieve 

a desired FDTD performance (accuracy and speed) is implenientation dependent so 

it is desirable to perform this research once a final implementation has been chosen. 

Furthermore, the stability of the finite-precision FDTD algorithm will need to be 

analyzed fully. 

Using 10 cells, this yields a resonator 10.0 cm in length. As mentioned before, 

the rule of thumb in FDTD is to use a minimum of 10-20 samples per wavelength. 

This means that the fundamental resonant frequency would be sampled accurately 
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but the second harmonic would be under-sampled. 

Choice of Coefficients 

The coefficient quantization has an important impact on the simulation's time-

domain results. This effect is discussed in Section 4.4.4. 

Given that 6 = . = 1.0 and / x = 1.0cm the value of the capacitance is 

C = 8.854 x 10'3F and the inductance is L = 1.257 x 10 9H. Finally, setting 

Ax = 1.0cm and using a stability factor of 95% in the Courant condition yields a 

sampling interval of At = 3.169 x 10"s. 

The values of the coefficients are calculated as /t/C = 35.79s/F and L.t/L = 

0.0252s/H. By performing impedance scaling (using 71.579)2 the capacitor coeffi-

cient, Lit/C, is normalized to 0.5 and the inductor coefficient,At/L, to 1.805. 

The capacitor coefficient (0.5) quantizes without error, but the inductor coeffi-

cient is represented as 

1848 x 4 = 1.8047 
212 

which includes a 12-bit multiply and the two left shift operators. 

(4.2) 

4.4.3 One-Dimensional FDTD Speed and Hardware Utilization 

The bit-serial design on the XCV300-4 FPGA runs with a maximum bit-clock of 

37.7 MHz, as reported by the Xilinx tools. A new result is available every system 

wordlength clock cycles or 849 ns (f0 = 1.18 MHz). Each one-dimensional com-

putational cell utilizes 86.5 Virtex slices. The resonator, 10 cells in length, uses 

917 (30%) of the available slices. 52 slices are used to gather the data from the 

2L.t/C is divided by 71.579 and Lt/L is multiplied by 71.579. 
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simulation, yielding 865 slices for the computation and control structure. 

As mentioned earlier, the pipelined bit-serial structure yields very short routing 

lengths. The average connection delay is 1.771 ns and average delay for the worst 

10 nets is 4.208 ns. 

Comparison of Hardware versus Software Runtime 

Of most interest is the comparison of the simulation runtime between the hardware 

and the software. After all, the goal of the hardware implementation is to achieve an 

acceleration of an order of magnitude or more compared to the software. Table 4.3 

compares the hardware and software runtime. The software runtime is measured 

using a modified version of the simple C++ code (for one-dimensional FDTD) that 

was previously described in Chapter 3. 

Table 4.3: Runtime for the One-Dimensional Resonator Simulations 

Simulation Method Runtimet (ms) Acceleration 
Software 71 
Hardware 8.49 

tl0,000 time steps 

8.4X 

These acceleration results are already quite exciting because they are inline with 

the thesis objectives. The results confirm the hypothesis that mapping the FDTD 

algorithm to hardware would produce the desired acceleration. 

It is worth noting that the Xilinx Virtex series part used in the experiments is 

not the latest technology. Using current FPGA technology, it is expected that the 

serial clock of 37.7 MHz could be increased to a few hundreds of MHz. Any serial 

clock increase translates directly into more acceleration. 
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While the hardware implementation is fast, it is also important that it is accurate. 

The next section discusses the simulation results for hardware FDTD. 

4.4.4 One-Dimensional FDTD Simulation Results 

Three different simulations are run for the one-dimensional resonator case: a hard-

ware simulation, a standard software simulation and then a software simulation with 

an adjusted time step. The reasons for the latter simulation are discussed in later 

sections. 

All three simulation methods provided nearly identical accuracy in determining 

the resonant frequencies. Figure 4.17 depicts the resonant frequencies calculated 

via simulation. The difference between the hardware and software simulations is 

so negligible that this plot could be attributed to either a hardware or software 

implementation. The first three resonant frequencies were analytically predicted to 

be 1.4990, 2.9980 and 2.4969 GHz. 
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15-
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Figure 4.17: Resonant Frequencies of the One-Dimensional Resonator 

The hardware-computed, one-dimensional resonator run successfully predicts the 
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first three resonant frequencies to within 0.024%, 0.164% and 0.396% of theoretical 

values. These results are very similar to the results produced using a traditional 

FDTD simulation programmed in C++, using 32-bit floating-point numbers, on an 

Intel-Linux computer. The accuracy of all three simulation methods are summarized 

in Table 4.4. 

Table 4.4: Accuracy of the One-Dimensional Resonator Frequencies 

Simulation Method 
Resonant Frequency 

Predicted (GHz) Calculated (GHz) % error 

Software 
1.4990 1.4985 -0.040 
2.9980 2.9932 -0.169 
4.4969 4.4796 -0.393 

Hardware 
1.4990 1.4986 -0.024 
2.9980 2.9930 -0.164 
4.4969 4.4791 -0.396 

Software (adjusted t) 
1.4990 1.4984 -0.040 
2.9980 2.9929 -0.168 
4.4969 4.4793 -0.393 

If one compares the time domain data from the hardware and software platforms, 

segments of which are shown in Figure 4.18, some interesting results emerge. 

Viewing the two curves after 5,000 time steps, two important observations are 

made. The behavior of the curves over time appear to be nearly identical, except 

that the hardware simulation curve leads the software simulation curve. By 10,000 

time steps, the two curves appear to be quite different in behavior. 

If one considers the difference between the two curves as a function of time, as in 

Figure 4.19, it is apparent that the error between the curves is very small at t = 0 

but increases with time. By qualitative analysis of the data in Figure 4.18 it appears 
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Figure 4.18: Comparison of Hardware vs. Software Simulation Data 

that the two simulations lose time synchronization with respect to each other. 

The loss of time synchronization between the hardware and software data points 

can be attributed to the quantization of the inductor and capacitor multiplier coef-

ficients. In this specific case, the capacitor coefficient was normalized to 0.5 whereas 

the ideal inductor coefficient was determined, using a priori floating point calcula-

tions, to be 1.805. With a 12-bit multiplier coefficient, the best representation of 

this value is 1.8047 as shown in Equation 4.2. If the inductance remains the same, 

then the quantized coefficient actually has a different At than what was originally 

calculated. In fact, the new value of At should be 

Xquant  
x At, 

Xideai 
(4.3) 

where X is the coefficient value. Although the difference between the ideal and 

quantized coefficients is relatively small, it is significant enough to represent two 
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Figure 4.19: Difference Between Hardware and Software Simulation Curves 

or more samples by the end of 10,000 time steps. This could be why the data in 

Figure 4.18 loses synchronization and the comparative error increases over time. 

For this case, the value of Xquant is smaller than Xideal, leading to a At that is 

smaller than what was originally calculated. This corresponds to the use of a larger 

stability margin (or smaller than maximum Lit). The only detrimental effect of such 

an approach is increased numerical dispersion at higher frequencies [9]. In some 

cases, however, the value of X qtoant could be larger than Xjdeal, resulting in a smaller 

stability margin. 

Experimentally, the adjusted or compensated value of / t is approximated to be 

L.tadj usted = 

Xideal - Xquant 
+ Xquant 

2 x/t1 
Xideal 

(4.4) 

which is the arithmetic average of At, and Lt2. Although the hardware simulation 

data is fixed for a given resonator model, At and quantization, the software simu-

lation is run with the value of A tadiwt,d. The results are depicted in Figure 4.20. 
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The new value of At is not that originally suggested in Equation 4.3 because it only 

considers one of the coefficients. In fact, because the capacitor coefficient is exact 

it still has the original calculated value of At,. For the simulation model, half the 

coefficients use At, and the other half use Lt2. 
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Figure 4.20: Comparison of Hardware vs. Compensated Software Simulation Data 

As can be seen from the plots, the hardware and software curves behave very 

similarly to each other. The difference between the curves for the uncompensated 

vs. compensated software runs is depicted in Figure 4.21. If the difference between 

the hardware and software platforms is now compared, the error magnitude no longer 

increases as a function of time. Some of the differences between the software and the 

hardware curves can now be attributed to the performance of the integer arithmetic 

and round-off error versus software floating-point. If more precise computations are 

performed by using larger integer registers and larger coefficient widths (or float-
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ing point arithmetic), it is predicted that the difference between the hardware and 

software simulations will diminish altogether. 

Comparison of Difference Between Software and Hardware Curves 
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Figure 4.21: Difference Between Hardware and Software Simulation Curves with 
Compensated and Uncompensated At 

The previous discussion illustrates two key points. 

1. For the one-dimensional case, so far, it is possible to create a hardware simu-

lation which is nearly identical to the software, floating-point simulation. 

2. Coefficient quantization does affect the simulation data. In fact, the coefficient 

quantization has an effect not only on the magnitude of the results but also 

on the sampling interval. For this implementation, the quantized coefficients 

created an effective At which was different than the calculated value. It should 

be noted that this discrepancy does not affect the accuracy of the results, as 

shown in Table 4.4, only the comparison between the hardware and software 

implementations. 

The simulation model represents a relatively simple case, with only two coeffi-
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cients implemented on the hardware, 0.5 and 1.8047 respectively. It is predicted that 

with the use of more than one dielectric (s ≥ 1.0) or other electromagnetic material 

there will be several differently quantized coefficients, that will result in several dif-

ferent values of At in the hardware structure. For this case there appears to be no 

obvious solution, at this time, to analytically determine the actual At for the entire 

hardware simulation. 

4.4.5 Two-Dimensional Resonator 

Two-Dimensional FDTD Cell 

For this case, an additional field is represented within the computational structure. 

A cell similar to the one-dimensional FDTD cell is constructed, with additional adder 

and subtractors circuits at the input of the capacitor (Figure 4.22(a)). Furthermore, 

an inductor is added to represent an additional magnetic field. With two magnetic 

fields (inductors) and an electric field (capacitor), this case represents the transverse-

electric (TE) mode of propagation. The block diagram for the new cell is shown 

in Figure 4.22(b). This cell can be repeated in an M x N array to form a two-

dimensional simulation space with N and M cells per side. 

Originally, there was only one subtractor acting as an input to the capacitor 

structure, which coupled an inductor current from the adjacent cell. The new cell 

has two subtraçtors followed by an addition as the input to the capacitor. This 

allows for the input of two additional inductor currents, with the subtraction for 

sign convention, to be included in the capacitor voltage calculation. This extends 

the cell to two dimensions. It should be noted that there is also a complementary 

two-dimensional cell which would have one inductor and two capacitors to represent 



95 

CONTROL 

4 CLK< 

t t 

Capacitor Input 

+ CONTROL 

CLK< 

Co. 
CL1  

Current 
Inputs 

c i.-. 
CLKØ 

CONTROL co 

CLI<< CL 

t t 

(a) Modifications to Capacitor Input Chain (b) Block Diagram 

Figure 4.22: Two-Dimensional, Bit-Serial FDTD Cell 



96 

the two-dimensional FDTD. This complementary cell would represent the transverse-

magnetic (TM) mode of propagation. 

The system wordlength had to be increased in order to accommodate the addi-

tional computation elements in the data path. Referring to Figure 4.15 there are no 

spare delay elements in the primary data path. Adding computational elements in 

the primary data path causes the loop to have a delay larger than 32 bit-clock delays. 

To maintain byte-wise boundaries, which are mostly important for data collection 

and later processing, the system wordlength is increased to 40 bits. 

Resonator Description 

A two-dimensional resonator is constructed and terminated on one side with a perfect 

electric conductor (FEC) and perfect magnetic conductors (PMC's), also known 

as magnetic walls, on the remaining three sides. Figure 4.23 depicts the resulting 

structure. 

Metal 
Magnetic 
Walls 

I 

= Excitation Q = Observation 

Figure 4.23: The Two-Dimensional Resonator 
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There was some concern about the amount of available hardware, so this structure 

is relatively small while still achieving useful results. The perfect magnetic conduc-

tor (PMC) (where Htangentjai 0) causes anti-symmetric behavior of the tangential 

magnetic fields adjacent to the boundary. Similarly, the PEC (where Etangentiai = 0) 

causes anti-symmetric behavior of the tangential electric fields adjacent to the bound-

ary. In order for the structure to appear longer, the magnetic wall (PMC) opposite 

the metal boundary (FEC) acts to reflect (copy) the entire structure. This provides 

more samples per wavelength, while retaining the compact size of the structure. 

Comparing it to the equivalent structure without the magnetic wall, this resonator 

can only support odd-order resonant frequencies. 

Again, the excitation is a short, time-domain impulse to create a wideband exci-

tation within the resonator. To discourage higher modes, the excitation is placed as 

a non-zero bias on a column of capacitors. This is designed to excite resonant energy 

only in the longer axis of the resonator. 

Using 4.5 cells and then reflecting them yields a resonator 9.0 cm in length. The 

resonator is also 2.0 cm wide. 

Choice of Coefficients 

Given that Er = ILr = 1.0 and Ax = Ay = 1.0cm the value of the capacitance is 

C = 8.854 x 10'3F and the inductance is L = 1.257 x 10 9H. Finally, setting 

Lx = 1y = 1.0cm and using a stability factor of 95% in the Courant condition 

yields a sampling interval of / t = 2.401 x 10"s. 

The values of the coefficients are calculated as st/C = 25.31s/F and Lt/L = 

0.0178s/H. By performing impedance scaling (50.6138) the capacitor coefficient, 
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At/C, is normalized to 0.5 and the inductor coefficient,At/L, to 0.9025. 

The capacitor coefficient (0.5) quantizes without error, but the inductor coeffi-

cient is represented as 

924 
12 x 4 = 0.90234375 

which includes a 12-bit multiply and the two left shift operators. 

(4.5) 

4.4.6 Two-Dimensional FDTD Speed and Hardware Utilization 

Each two-dimensional FDTD cell requires 120 Virtex slices. Operating at a serial 

clock of 32 MHz and 40-bit SWL, new results are available every 1.25 microseconds 

(f0 = 0.8 MHz, 10,000 iterations = 12.5 milliseconds). 

Comparison of Hardware versus Software Runtime 

Again the goal of the hardware implementation is to achieve useful acceleration 

compared to the software implementation. Table 4.5 compares the hardware and 

software runtime. The software runtime is measured using a modified version of 

the simple C++ code (for two-dimensional FDTD) that was previously described in 

Chapter 3. 

Table 4.5: Runtime for the Two-Dimensional Resonator Simulations 

Simulation Method Runtimet (ms) Acceleration 
Software 230 
Hardware 12.5 18.4X  

tl0,000 time steps 

In this case, the acceleration is larger than reported for the one-dimensional 

resonator despite the penalty for the increased system wordlength. This is due to 
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processing gain achieved by the computation of more field components in parallel. 

Meanwhile, the software deals with the additional field calculations in a sequential 

manner. 

As mentioned for the one-dimensional case, these results are exciting. Further-

more, using current FPGA technology the serial clock can be increased. In this case, 

the reported acceleration would be increased significantly as well. 

There is avery important point that should be made with respect to this method 

of computation. Unlike the software, the runtime for 10,000 time steps is fixed even 

for larger simulations. For a fixed system wordlength, the hardware runtime remains 

constant regardless of simulation size; larger simulations require more hardware. 

The achievable acceleration is actually directly proportional to the number of cells 

implemented in the hardware, which in turn is directly related to the amount of 

hardware required. 

4.4.7 Two-Dimensional FDTD Simulation Results 

As for the one-dimensional resonator, three different simulations are run for the two-

dimensional resonator case: a hardware simulation, a standard software simulation 

and then a software simulation with an adjusted time step. 

All three simulation methods provided nearly identical accuracy in determining 

the resonant frequencies. Figure 4.24 depicts the resonant frequencies calculated via 

simulation. Once again, the difference between the hardware and software simula-

tions is so negligible that this plot could be attributed to either a hardware or software 

implementation. The first two resonant frequencies were analytically predicted to be 

1.6655 GHz and 4.9966 GHz. 
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Figure 4.24: Resonant Frequencies of the Two-Dimensional Resonator 

The hardware-computed, two-dimensional resonator run successfully predicts the 

first two resonant frequencies to within 0.269% and 2.61% of theoretical values. 

These results are very similar to the results produced using a traditional FDTD 

simulation programmed in C++, using 32-bit floating-point numbers, on an Intel-

Linux computer. The accuracy of all three simulation methods are summarized in 

Table 4.6. 

Table 4.6: Accuracy of the Two-Dimensional Resonator Frequencies 

Simulation Method 
Software 

Resonant Frequency 
Predicted (GHz) Calculated (GHz) 

1.6655 1.6609 
4.9966 4.8659 

% error 
-0.278 
-2.615 

Hardware 1.6655 1.6610 -0.269 
4.9966 4.8660 -2.614 

Software (adjusted Lit) 1.6655 1.6609 -0.280 
4.9966 4.8660 -2.614 

If one compares the time domain data from the hardware and software platforms, 
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segments of which are shown in Figure 4.25, the sampling interval skew (discussed 

earlier) is evident once again. In this case, the magnitude of the inductor's coefficient 

quantization error is less, so the resulting time skew errors are also less. Even after 

10,000 time steps, the behavior of the curves is still quite similar. 
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Figure 4.25: Comparison of Hardware vs. Software (2D) Simulation Data 

Using the same formula, Equation 4.4 from the one-dimensional case, to calculate 

L\tadjted the software simulation is run again. Figure 4.26 depicts the new time 

domain data for the software and hardware methods. 

As can be seen from the plots, the hardware and software curves behave in a 

very similar manner. The difference between the curves for the uncompensated vs. 

compensated software runs is depicted in Figure 4.27. 

Once again, two observations can be made. First, this method is successful 

at implementing a two-dimensional, hardware-based FDTD cell, which produces 
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both accurate FDTD simulation results and results that are nearly identical to the 

software, floating-point implementation. Second, the adjusted time calculation is 

really only valid for this simplified structure with only two sets of coefficients. With 

varying materials and multiple coefficients, it is expected that the time skew will be 

difficult to predict in analytical manner. 

4.4.8 Three-Dimensional FDTD? 

The one-dimensional cell represents two-fields in 86.5 Virtex slices. A two-dimensional 

cell represents three fields in 120 Virtex slices. Finally, it is estimated that a three-

dimensional cell would cost 265 slices, representing 6 fields. 

Simple calculations quickly show that a 100x100x100 simulation (one million 

cells) is too large to fit on the largest FPGA currently available. The Virtex-2 10000 

series part offers 61,440 slices. It would take 4,313 of these parts to implement the 

entire simulation. From another perspective, the largest FPGA parts represent 10 

million logic gate equivalents. Thus, for one million cells there are only 10 logic gate 

equivalents available per FDTD cell, per FPGA. Clearly, the presented design is 

not economically or technologically feasible for a reasonably-sized three-dimensional 

simulation. 

In order to yield a useful acceleration of FDTD, in a shorter developmental time 

frame, other avenues are explored. The next chapter addresses a resource-sharing 

approach. 
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4.5 Summary of Results 

Table 4.7 provides the results obtained for the FDTD hardware implementation using 

three metrics: (i) hardware size/cost, (ii) computation speed (acceleration) and (iii) 

simulation accuracy. 

Table 4.7: Summary of Performance for the Bit-Serial Implementation of FDTD 

Type of Cell 
Cell Size Acceleration Simulation 

(Virtex Slices) over Software Prediction Error 

One-Dimensional 86.5 8.4X 0.024-0.39% 

Two-Dimensional 120 18.4X 0.27-2.61% 

Three-Dimensional 265k 

f Estimated 

There are a number of important results and observations from this phase of the 

research. These include: 

. The FDTD algorithm, in one and two dimensions, is successfully implemented 

in hardware. 

• The acceleration achieved for two-dimensional computations is very promising 

and well within the range of the thesis goals, despite the use of an older gen-

eration FPGA. It is anticipated that the reported accelerations can be easily 

improved by using newer technology. 

• The implementations for both one- and two-dimensional FDTD computations 



105 

yield accurate simulation results that are virtually identical to a software im-

plementation. 

• The runtime for a fixed system-wordlength and fixed number of time steps is 

constant; thus, the more hardware available, the higher the number of cells 

computed in parallel and the higher the acceleration achieved. 

4.6 Applications 

The results reported in this chapter are useful for accelerating current FDTD appli-

cations. A reasonably-sized three-dimensional FDTD simulation, implemented using 

the techniques discussed in this chapter, would be too large to fit on a practical num-

ber of FPGA's. However, the one-dimensional and two-dimensional implementations 

could support reasonably sized simulations. 

Given that the largest available Xilinx Virtex device offers 61,440 slices, this 

device could implement either 512 two-dimensional or 710 one-dimensional FDTD 

cells. Results from this chapter have already shown that the hardware FDTD pro-

vides significant acceleration compared to the software on the reference computer. 

Hundred of cells in parallel, compared to the previous experiments' 10 cells, would 

offer even greater acceleration. 

Ongoing research predicts that the hardware size of the one- and two-dimensional 

computational cells could be reduced further. As well, several of the largest FPGA's 

could be coupled together. In this instance, simulations with thousands of one- or 

two-dimensional cells could be computed. 

There are FDTD problems, currently solved using software implementations, 
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that could make use of this research. Certain three-dimensional models with ro-

tational symmetry can be represented as modified two-dimensional models. Further-

more, mode solvers typically seek eigenfunctions in a two-dimensional cross-section 

of waveguide structures. This is actually a two-dimensional problem. Applying the 

techniques described in this chapter would yield significant accelerations for these 

and other FDTD applications. 
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Chapter 5 

The Hardware Accelerator: An FDTD 

Co-Processor 

"One of the main causes of the fall of the Roman Empire was that, lack-

ing zero, they had no way to indicate successful termination of their C 

programs." - Robert Firth 

This chapter describes two concepts: (i) the concept of a resource-sharing ap-

proach for computing FDTD and (ii) the envisioned specification, design and imple-

mentation for an FDTD hardware accelerator. This phase of the research is in the 

preliminary stages. 

The first section describes the approach of both resource-sharing and the FDTD 

hardware accelerator. This is followed by a discussion of the technical challenges 

posed by this phase of the research. 

In the third section, the design space is explored and ideas are described for 

achieving the desired order of magnitude acceleration. Finally, a simple plan is 

presented for realizing the long term goal of the research, an FDTD hardware accel-

erator. 
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5.1 Description of the Approach 

The results for Chapter 4 are very promising for one- and two-dimensional hardware 

FDTD. Sadly, the hardware requirements for a reasonably-sized three-dimensional 

FDTD simulation are simply too large. The implementation in Chapter 4, however, 

approaches maximum possible parallelism' by implementing every computational 

cell in hardware. The approach proposed in this chapter is to reuse a smaller set 

of hardware resources to compute the field updates for an arbitrarily-sized three-

dimensional mesh. 

The results presented in Chapter 4 suggest that significant acceleration, as much 

as several orders of magnitude, can be achieved by computing a number of FDTD 

update equations (computational cells) in parallel. It is anticipated that these large 

accelerations can be traded for smaller hardware designs that fit on a practical num-

ber of FPGA's and still accelerate FDTD by more than an order of magnitude. 

Similar to the bit-parallel vs. bit-serial implementation paradigms, the resource-

sharing can take on many forms. At one end of the spectrum the computational 

hardware may contain only enough hardware resources to compute a single update 

equation at a time. In this case, a single set of input data values (field values and 

coefficients) are loaded; the field update is computed and then stored. This process 

is repeated for all of the required field updates. This is very similar to the way in 

which the FDTD software algorithm is computed on a single CPU. At the opposite 

end of the spectrum, no resources are shared at all. This is the implementation 

described in Chapter 4, but it requires too much hardware. In the middle of this 

'The design would further approach maximum possible parallelism using a bit-parallel instead 
of bit-serial paradigm. 
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spectrum, the computational hardware can compute a small sub-volume or plane of 

field updates. In this case, the sub-volume or plane is loaded with input data, the 

results are computed and then stored. The sub-volume/plane is reused until all field 

updates have been performed. The size of the sub-volume/plane is determined by 

the available hardware resources and the rate at which the input data can be loaded 

into the structure. 

The investigation of a resource-sharing implementation is combined with the 

development of the specifications for an FDTD hardware accelerator. The research 

presented in the previous chapters indicates that a successful FDTD accelerator will 

act as a "co-processor" in a host computer. 

5.2 Technical Challenges 

As noted, the size of a three-dimensional mesh of FDTD cells prohibits an entire 

simulation from being implemented on a practical amount of hardware. The shift 

to full reuse of the computational hardware creates different technical challenges 

and requirements than the "FDTD Computational Engine" of the previous chapter. 

Furthermore, in keeping with one of the goals of the research, the hardware acceler-

ator should be able to accelerate existing software implementations. Four important 

challenges for the proposed accelerator design are described below: 

1. External Memory - Field components and coefficients that are waiting to be 

processed must be stored until they are needed. This will require some form of 

external memory (accessible by the accelerator), for sufficiently large simulation 

models. 
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2. Memory Management - Field components and update equation coefficients 

must be loaded into the accelerator's computational resources. Then, the field 

updates must be computed and stored again. 

3. Accelerator and Host Computer Interaction - Simulation data must be ex-

changed on a regular basis between the host computer and the hardware ac-

celerator. 

4. Software Modifications - Performing the FDTD computations on the hardware 

accelerator and exchanging data back and forth will require changes to the 

existing software implementations. 

The first two challenges come from the resource sharing approach. The remain-

ing two challenges are due to the requirements of the hardware accelerator. It is 

assumed that the challenge of implementing the FDTD update equations using in-

teger arithmetic is already solved by the two-dimensional FDTD cell presented in 

Chapter 4. 

The following section describes the characteristics of the hardware accelerator to 

meet the four challenges. 

5.3 Overview of the Hardware Accelerator 

The FDTD accelerator is envisioned as one or more hardware cards that are inserted 

into the host PC. FDTD computations will be performed by the accelerator card(s) 

while interacting with the host computer's CPU and memory. For now, the chosen 

hardware interface is the PCI bus. Figure 5.1 depicts the potential application of 
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the hardware accelerator. 

Figure 5.1: Potential Application of the Hardware Accelerator Inside the Host Com-
puter 

PCI bus technology is chosen over AGP for several reasons. There is a large 

degree of support for PCI-based devices, both from operating systems and hardware 

board manufacturers. There are numerous products available with PCI interfaces 

and FPGA devices that could be used as a prototype hardware accelerator. On the 

other hand, AGP is very specific to video cards and therefore offers little support for 

other uses. Although not confirmed, it is believed that the AGP standard is highly 

optimized for one-way communication of data. While a tremendous amount of data 

is sent to the video processor from the host computer's memory and CPU, very little 

is sent back. That leaves the PCI bus as the only choice. 

The communications bus between the hardware accelerator and the CPU is 

viewed as a potential bottleneck. To reduce the communication on this bus, it is de-

cided that the hardware accelerator should have a large amount of onboard memory. 

Section 3.3.1 described the asymmetrical input/output requirements of the FDTD 

computations. While nine values are loaded for each calculation of the update equa-

tion, only one value is returned. Communicating the result of field updates requires 
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only about 10-11% of the input bandwidth. For constant material coefficients, it 

also makes sense to send this data only once to the hardware accelerator. Thus, the 

FDTD simulation data is pushed as close to the hardware accelerator as possible by 

using onboard memory. 

Another justification for the above decision arises when one compares the pre-

dicted bandwidth requirement for the hardware accelerator, that is presented in 

Chapter 3, to the available bandwidths of the PCI and AGP buses. The required 

bandwidth of 5397 MB/s between the host computer and the hardware accelerator is 

presently not possible. Thus, the data must be moved closer to the accelerator where 

larger bandwidth can be achieved. It is expected that the onboard memory will be 

connected to the hardware via several channels, in order to increase the available 

memory bandwidth. The design considerations for achieving the required memory 

bandwidth are discussed in Section 5.4.2. 

In summary, Figure 5.2 depicts the envisioned hardware accelerator card: 

The next section describes more details about the digital design that is envisioned 

in order to achieve an order of magnitude acceleration. 

5.4 Design Choices for the Hardware Accelerator 

Implementation 

This section describes the design space for implementing the hardware accelerator 

described in the previous section. At the end of Chapter 3 the required compu-

tation speed and memory bandwidth for an order of magnitude acceleration are 

presented. The hardware accelerator will need to compute field updates at approxi-
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mately = 140 - 150 MHz. Furthermore, it would require a memory bandwidth 

of 5397 MB/s. Finally, it is assumed that the hardware accelerator will use either 

64-bit PCI at 66MHz or the PCI-X standard. 

The potential design choices for achieving the desired computation speed and 

input memory bandwidth are described in the following sections. This is followed 

by the design choices available to minimize the data communication requirements 

between the accelerator and the host PC. 

5.4.1 Achieving the Desired Computation Speed 

A number of statements should be made about the preceding requirements for 

the hardware accelerator. The computation speed requirement, of fcomp 140 - 

150 MHz, could be satisfied through a few different (non-exclusive) approaches: 
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• A brute force approach could be used to implement a single update equation 

that generates new field updates at 150 MHz. 

• A pipelined approach could allow for the computations of several update equa-

tions to be overlapped. This would make more efficient use of some hardware 

resources if they were otherwise idle. The net benefit is that the parallelization 

of some of the equations could allow for a slower clock speed. 

• A parallel approach could use a number of slower computational units to 

achieve the same computation speed as a single, very fast unit. 

5.4.2 Achieving the Desired Memory Bandwidth 

Several design choices are also available to achieve the required memory bandwidth. 

It should be noted that this requirement contains the assumption of 32-bit numbers 

for all values in the update equation. Larger or smaller widths would change this 

value. Each coefficient and field value do not necessarily require the same precision. 

The desired memory bandwidth of 5397 MB/s could be achieved with a combi-

nation of the following choices: 

• Data values (fields, coefficients) could be compressed before being stored and 

uncompressed after being fetched. This would require additional computations 

but may be required if memory bandwidth limits the acceleration. 

• Data values can share a memory fetch. As an example, field components are 

fixed at 48-bits wide. These could be stored with their update coefficient of 

16-bits in the same 64-bit memory location. 
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• Multiple memory buses could be used to divide the bandwidth requirement 

across many slower memory banks. Given a memory technology for the refer-

ence computer, 10 memory banks would satisfy the corresponding bandwidth 

requirement. However, other factors like number of input/output pins, eco-

nomics and technical challenges may prevent this brute force solution. As well, 

the FDTD simulation data may not partition into ten memory banks in a useful 

way. 

• Caching on the hardware device could be used to either (i) reuse previously 

fetched data and (ii) ensure that the maximum possible memory bandwidth is 

achieved for a given technology. 

• Similar to the above point, field updates for. a cross-section or sub-volume of 

the FDTD mesh could be computed at the same time; thus, overlapping field 

values between adjacent cells could be reused. 

• The number of values required to complete a field update could be reduced. 

One radical proposal is to compute all of the field updates in the mesh for a 

fixed material or very small set of materials. In this case, none of the material 

coefficients would require loading. In order to accommodate other materials, 

the default update equations would be reversed (by the host computer) and 

re-computed with the proper coefficients. Depending on the ratio of ambient 

(common) material to other materials, this can yield a significant performance 

gain while reducing the required bandwidth. 
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5.4.3 Achieving the Desired Memory Bandwidth Between 

the Hardware Accelerator and the Host Computer 

As noted earlier, the communications bandwidth between the hardware accelerator 

and the host computer is perceived as a potential bottleneck. The optimal situation 

occurs when only the data that is specifically required by either the host computer 

or the hardware card is transmitted on the bus. Several techniques can be used to 

minimize the communications bandwidth required: 

• For simulations with constant material properties for the entire simulation, 

only the observation and excitation information is exchanged between the host 

computer and the hardware accelerator. 

• For more advanced simulations, where certain fields may need to be re-computed 

by the host computer, only the minimum number of fields (a sub-volume or 

plane) are exchanged. 

• The data could be compressed for transmission across the bus. 

5.4.4 Discussion of the Design Choices 

Ultimately, the selection of design choices will affect the performance of the hard-

ware accelerator and the resource-sharing approach. It is suggested that most of the 

preceding design choices are investigated as the next phase of the accelerator devel-

opment. It is worth noting that in order to investigate many of the design choices, 

new hardware platforms must be procured or designed. 

The following section describes the suggested hardware platforms for the contin-

uation of this phase of the research. 
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5.5 Future Generations of Hardware Accelerators 

This section is intended as a "plan" to describe the path from the current hard-

ware platform to the final hardware accelerator. It is anticipated that there will be 

three hardware platforms used for this research: (i) the current XESS development 

board, (ii) an incoming hardware board from the Dini Group and (iii) a fully custom 

hardware card. The application of each board, to the investigation of the technical 

challenges of an FDTD Co-processor and hardware accelerator, is discussed in the 

following sections. 

5.5.1 The XESS Board 

This hardware development board is the same one used to implement and verify the 

FDTD simulations in Chapter 4. This board does not support a PCI connection or 

any sufficiently fast hardware interface. Currently, data is exchanged between the 

host computer and the FPGA via the parallel port. 

The FPGA device is somewhat older than current technology and does not offer 

a large amount of hardware resources. Nevertheless, this platform is currently being 

used to develop and verify a resource-sharing approach for FDTD computations. 

There are four 8-bit by 512K static RAM memories on board. Thus, several key 

concepts can be investigated using this platform, including: 

1. A small-sized resource-sharing approach for a size-limited, three-dimensional 

FDTD simulation. This will provide a reference for the performance that could 

be achieved by moving to faster FPGA technology. 

2. The control structures required to coordinate the fetch, computation and stor-
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age sequence for the field update equations. It is desirable that these control 

structures are scalable to larger and smaller hardware implementations (for the 

resource-sharing structure). 

3. A memory addressing scheme for storing the three-dimensional FDTD mesh 

and related coefficients in linear memory. Preliminary research shows that the 

memory management and address generation represents a significant challenge. 

It is the goal that a scalable architecture is constructed that can later be applied 

and extended to the future hardware accelerators. 

5.5.2 The Dm1 Group Board 

In order to investigate solutions to the some of challenges in Section 5.2 a new hard-

ware platform is required. For now, this platform should have (i) external memory, 

(ii) a PCI-interface and (iii) a large FPGA device. 

The chosen board is the Dini Group and provides two Xilinx Virtex2 series 

FPGA's, a PC133 SDRAM memory bank and a PCl/PCI-X hardware interface. 

This development board will allow for the investigation/development of some 

very important concepts with respect to the final hardware accelerator design. 

The PCI support will allow for the development of a software interface between 

existing software implementations and the accelerator. At this point, it is anticipated 

that the hardware will not provide an order of magnitude acceleration due to memory 

bandwidth limitations. However, the accelerator hardware will be coupled to the 

FDTD software, which represents an important milestone. 

The onboard PC133 SDRAM will allow for (i) the development/improvement of 
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an SDRAM memory controller and (ii) investigation into the maximum achievable 

memory bandwidth. The memory controller will be an important component of any 

future designs. The scalable architecture and control logic, described in the previous 

section, may change to facilitate better memory performance. 

At this stage of the research, sufficient knowledge should be available to design 

and implement a full custom hardware accelerator board. 

5.5.3 Full-Custom Board 

This hardware platform is envisioned as a "product" available to FDTD users in 

academia and industry that would provide the order of magnitude acceleration to 

the existing FDTD software. It is anticipated that this design will make use of 

multiple memory banks and the latest hardware bus technology in order to succeed. 

It is also projected that the hardware board will involve a custom PCB design and 

(potentially) a custom silicon implementation. 

Achieving the desired level of acceleration and making it accessible to FDTD 

users will open up many new opportunities for research. 
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Chapter 6 

Conclusions 

"People on Jolt cola write the funniest things." 

- A-10 Obedience Guide, Kitty Hawk Studios 

This chapter summarizes the accomplishments of the thesis and relates them to 

the objectives defined in the first chapter. This discussion is followed by a description 

of the envisioned future work. 

6.1 Accomplishments of the Thesis 

The primary achievement of this thesis was to successfully confirm the potential for 

a custom hardware implementation to significantly accelerate the FDTD algorithm. 

This was achieved by using programmable hardware, integer arithmetic, and fine-

grained parallelism. 

The following accomplishments have been demonstrated: 

. Custom hardware accelerates the computation of the FDTD algorithm by as 

much as 18.4 times. 

• Hardware FDTD produces virtually identical time domain results and mod-

elling accuracy as floating-point, software implementations. 

• Pipelined bit-serial arithmetic successfully implements fixed-precision compu-

tations for the FDTD algorithm. 
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6.2 Future Work 

The goals achieved in the thesis provide a foundation for many areas of future work. 

This is a large project with many milestones and potential avenues for new research. 

Four main topics are discussed in relation to future work: improvements to the 

existing work, the next generation of hardware accelerators, research using hardware 

accelerators and possible extensions of the current research. 

6.2.1 Improvements to the Existing Work 

One of the primary improvements to the existing work would be to implement the 

presented designs in VHDL. Currently, all the digital designs provided are entered 

using schematic capture tools. Using VHDL would allow for parameterizable de-

signs for the multiplier coefficient widths, the system wordlengths and the control 

structures. It is envisioned that a higher level software program could automatically 

generate pipelined bit-serial implementations from a core VHDL library of (param-

eterizable) bit-serial operators. 

These parameterizable designs could be extended to an investigation of the stabil-

ity of the FDTD algorithm on hardware, accounting for finite-precision effects. The 

stability and accuracy of the current implementations need to be investigated and 

quantified from an analytical perspective. It is desirable to have a deterministic eval-

uation of quantized coefficients to ensure/predict the stability of a hardware-based 

FDTD simulation. 

Furthermore, an investigation of the necessary coefficient and field component 

precision (bit width) would be valuable. 
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6.2.2 Future Generations of the Hardware Accelerator 

Several FDTD hardware accelerator prototypes are described in the previous chapter. 

Some preliminary research into a resource-sharing approach has been completed. It 

is desirable that this work is continued to produce a scalable architecture that could 

be applied to future accelerator designs. 

6.2.3 Research Following a Successful Hardware Accelerator 

There are a few research problems that are of interest once significant acceleration 

is possible. 

First, it is desirable to compare the overall performance of the accelerated FDTD 

algorithm to two competitors: the traditional software, floating-point algorithms 

and other electromagnetic modelling methods. The numerical methods community 

has a number of standard electromagnetic problems which are used to evaluate the 

performance (speed, accuracy) of various computational methods. It is suggested 

that these standardized models be compared for accuracy and speed among the 

hardware FDTD algorithm, software FDTD and other computational methods. 

Second, accurate absorbing boundary conditions like PML's can account for a 

large portion of the runtime of advanced FDTD simulations. It is definitely a priority 

to accelerate these computations in the same manner as the update equations. 

Third, the idea of optimization-over-FDTD is seldom pursued because simula-

tions just take too long. With significant acceleration, optimization algorithms spe-

cific to FDTD could be investigated and implemented. 
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6.2.4 Extensions of the Current Research 

On the long term horizon, the hardware acceleration concept and the knowledge/experience 

gained from this research may be applicable to other numerical methods in both elec-

tromagnetics and other fields. 
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Appendix A 

Derivation of the Basic FDTD Algorithm 

The finite-difference time-domain (FDTD) algorithm is an approximation to Maxwell's 

equations that is well suited for implementation on a computer. Maxwell's equations 

are the classical physics equations used to mathematically describe dynamic electro-

magnetic behavior. 

A.1 Maxwell's Equations in Three Dimensions 

Maxwell's equations mathematically describe the dynamic behavior of electric and 

magnetic fields. In differential form they are stated as: 

Faraday's Law: 

OB - - 

VXEJm 

Ampere's Law: 

Gauss's Law for the electric field: 

(A.3) 

Gauss's Law for the magnetic field: 

Where t = time [s] 
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(A.4) 
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E = electric field [V/rn] 

13 = electric flux density [C/M2] 

= magnetic field [A/rn] 

magnetic flux density [Wb/rn2] 

= electric current conduction density [A/M2] 

= equivalent magnetic conduction current density in [V/m2] 

p = volume charge density [C/m3] 

Maxwell's equations can also be expressed in integral form, see [] for an example. 

.l and .Et are simply related by following constitutive equations: 

1i=Ii1t 

and 13 and E by: 

Where a = magnetic permeability [H/rn] 

= electric permittivity [F/rn] 

(A.5) 

(A.6) 

For linear, isotropic, and non-dispersive materials (whose properties are indepen-

dent of field-intensity, direction or frequency) e and jt are scalar quantities. 

Furthermore, im and f are expressed as magnetic and electric losses, which 

dissipate the electromagnetic field energy as heat. These losses are defined as: 
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(A.7) 

(A.8) 

Where p' = magnetic resistivity [f/m]. 

a = electric conductance [3/m] 

Substituting Equations A.5 to A.8 into Equations A.1 to A.2, under the assump-

tions of linear, isotropic and non-dispersive materials, yields: 

OH 

at ii, 
(—V X E — PIH 

aE_i ('V - - 

For the lossless case, Equations A.9 to A.1O further simplify to: 

at u 

Equation A.11 simply states that a circulating electric field creates a time-varying 

(perpendicular) magnetic field. Similarly from Equation A.12, a circulating magnetic 

field creates a time-varying (perpendicular) electric field. In terms of dynamic elec-

tromagnetic behavior the pair of equations are coupled together by the spacial and 

temporal expression of the electric and magnetic fields. 
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If one considers the three-dimensional Cartesian coordinate system (x,y,z), de-

composing the curl operator in Equations A.9 and A.1O yields: 

8II 1. (5Ev —a E,, — P'H) (A.13a) 
\az Dy 

OHy - 1 (aE - - p'Hy) (A.13b) 
at az 
DH 1 (aEx —aEy — (A.13c) 
I 19Y ax 

9E 1 (511 OHV 
crErc) 14 

4 19Y Oz 

OEV — 1 (OHs OH, o.E) (A.14b) 
-;- 

7 19X aE1 1 (5H aH, 
ay o z) (A.14c) - 

This system of six coupled equations form the foundation of the FDTD algo-

rithm for modelling the interaction of electromagnetic waves with general, three-

dimensional objects. These equations are not suitable for computer implementation, 

yet, because they contain continuous-time and continuous space variables. Kane 

Yee's method provides an efficient way to transform this system of partial difference 

equations into a second-order accurate system of difference equations. 

A.2 Yee's Method 

Most of the following material in this section is adapted from Taflove [9] and Yee's 

original paper [1]. 
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Yee used centered finite-difference operators to represent both the spatial and 

temporal partial derivatives in Equations A. 13a to A. 14c. These centered differences 

are easy to implement on a computer. Furthermore, they are second-order accurate. 

The following equation is Yee's centered-difference expression of the spatial deriva-

tive at a given point, in space and time: 

au (iAx,jAy,kAz,nAt) I n =  li+1/2,j,k -  U i_112,j,k + O[(Lx)2] 

Lx 
(A.15) 

In this case, the derivative of the function u at point (iz.x, j/..y, kz) in space 

is given by the slope of the line formed between the points ±Lx/2 on either side of 

(iLx, jy, kz) while nzt remains fixed. Likewise, Yee's description of the temporal 

derivative at a given point, in space and time, is: 

li,j,k n+1/2 In-1/2au - U  - U 

-..(iLx, j/.y, kZ.z, n/.t) - At + O[(zt)2] (A.16) 

Now, the centered difference function u is taken at the same point (ix, jy, kLz) 

in space but ±it/2 before and after the time nLt. 

Using Yee's centered-difference expressions (Equations A. 15 to A. 16), the partial 

derivatives of Equation A.13a can be expressed as: 



134 

li n+1/2 
i,j,k - .L.LX 

OH  

at 

n-1/2 
i,j,k 

At 

_1 PE aE , 

__PHxA ay  

centered differences 

I-1'i,j,k 

n EY i,j,k+1/2 - 

n 
i,j,k-1/2 

Az 

i,j+1/2,k - 

n 
i,j-1/2,k 

Ly 
P,,kHx i,j,k j 

(A.17) 

Rephrasing Equation A.17 yields the following "update equation": 

lix n+1/2 - In-1/2 /. t 
i,j,k - H. + 

/2i,j,k 

fE i,j,k+1/2 - V 

E 

Az 
n E . n 
i,j+1/2,k - -'z i,j-1/2,k 

Pi,j,k1'X Z)3)101Ly 

Notice that Equation A.18 also contains the term lix iij,k; this term is not actu-

ally stored or computed, so it must be approximated. If a semi-implicit approxima-

tion is used then H. Zj,k is represented as: 

lix 

n+1/2 - n.-1/2 
Aix i,j,k H . i,j,k 

H xIZj,k =  2 

Using the above expression (Equation A.19) in Equation A,18 yields: 

n+1/2 - H lij,k 
n-1/2 It 

i,j,k - x  +  
Pi,jk 

EPY i,j,k+1/2 - V 

Az 

(H  u/2 -  Hx 

2 

n 7;, 
i,3+1/2,k - 

(A.19) 

n 
i,j-1/2,k 

Ay 

(A.20) - 
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Regrouping like terms yields an explicit update equation for II: 

H n+1/2 - 

X i,j,k - 

1 / /t ERV 
- 

1 + 2 i,j,k / 

lax i,j,k +   

Pi,j,k 
1+  
\ 

i,j,k+1/2 - V 

El 

Az 

' i,j+1/2,k - EZ I Ii,j_hI2,c 
Ay -  

(A.21) 

Using a similar method, to that applied to Hz, the electric field update equation 

for Ex is: 

/ 

' n+1 - 

1-'a i,j,k - 

1 
i,j,k Lt 

+ °i,j,k 
1 

I 

E i,j,k + 
i,j,k 

0 i,j,k 

1+  
\ 

n  i,j+1/2,k - .L2 U  Z 
n 
i,j-1/2,k 

Ly 

J!' T.TIn 
Y - '' 

- Az 

(A.22) 

To simplify the notation, the terms Ca, Cb, Da and Db are introduced to represent 

the field vector coefficients and local material properties at each point in space (i,j,k). 

For stationary media, whose properties do not vary with time, these coefficients can 

be pre-computed. These terms are as follows: 

Ca Ii,j,ic = 

/ ,j,kLt / Lt L/ i)3 

26j,j,k 
Cb Ii,j,k = 

O,j,kLt Oi,j,kLt 

1+  1+  
/ 2Si,j,k J 

Si,j,k 
(A.23) 
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Da Ji,j,k Db Iij,k = 

/ Lt 

Si,j,k 

0 i,j,kt 

1+  
/ 

(A.24) 

Applying the above process to Equations A.13a to A.14c yields the six coupled, 

FDTD update equations: 

H 
n+1/2 - 

i,j,k - DaH Ii,j,k • H. 

H Y In+1/2 
= Da,Hy Ii,j,k • Hy 

n.-1/2 
i,j,k + D b,Hx i,j,k 

n-1/2 
i,j,k + Db,Hy i,j,k 

Hz I n+1/2 = Da,Hz Ii,j,k H In-1/2 
i,j,k + Db,HZ i,j,k 

Th —Ek 
i,j,k+1/2 V i,j,k-1/2 

EZ 

n 
i+1/2,j,k - 

n 
i,j-1/2,k 

(A.25a) 

n 
i-1/2,j,k 

E. 

Lx 

—E 1 i,j,k+1/2 

- Az 

EX 
Th 

i,j+1/2,k - 

(A.25b) 

n 
1/2,k 

EY 

Lx 

Th 1;' 
i+1/2,j,k - -'-'V 

n 
i-1/2,j,k 

Lx 

(A.25c) 
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E - Ca,Ex Ii,j,k E In 
X Ii,j,k El Ii,j,k + Cb,E Ii,j,k 

EU Iin+1,j,k = Ca,Ev Iij,k • E i,j,k + Cb,E Ii,j,k 

T1 ln+1,j 
•-'Z i,k = Ca,Ez IiJ,k El Ii,j,k + Cb,EZ Iid,k 

—H Z 
n 
i,j-1/2,k 

Hy 

Ay 

n 
i,j,k+1/2 - V 

n 
i,j,k-1/2 

- /≥.z - 

(A.26a) 

n Hi,j,k+1/2 - 

n 
i,j,k-1/2 

Az 

n T-T 
i+1/2J,k - 

n 
i-1/2,j,k 

- Lx 

Hy 

(A.26b) 

n — H' 
i+1/2,j,k U 

n 
ij-1/2,k 

AY - 

(A.26c) 

To compute the new magnetic field value (IIi n+1/2) at a given point, in space 

and time, Equation A.25a uses only the current fields (E In and E ) and previous 

field (H n_1/2), all three of which are stored in computer memory. 

Equations A.25a to A.26c comprise the simplest form of the FDTD update equa-

tions which are implemented as the core engine of the FDTD algorithm. For each 

time step, At, all of the magnetic fields, followed by all of the electric fields, are 

calculated for the entire three-dimensional volume of Yee cubes. 



Figure A.1: The Yee Cube 
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A.3 The Yee Cube 

The manner in which Equation A.25a calculates the updated value of the field Hx 

is intuitively explained by the Yee cube, which is a graphical representation of Yee's 

discrete electric and magnetic fields in discrete space. The Yee cube is shown in 

Figure A.1. 

Y 

In this case, the new value of Hx, centered at (i,j ,k), is determined by the 

weighted contour sum of the surrounding electric fields (E —Ei,j+1/2,k' 

-Eh -1/2,k) E ka,k-1/2). For two of the fields, the negative signs are introduced 

to maintain sign convention. 
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A.4 Summary of Yee's Method 

The use of centered-difference equations has a few important effects on Maxwell's 

equations: 

• The three-dimensional volume of interest is now divided into a mesh of dis-

crete Yee cubes. Each cube has dimensions Ax, Ay and /. z. The example in 

Figure A.2 is simplified for visual understanding. A much finer grid is needed 

in order to generate accurate results and represent the model's materials (a 

complex cellphone and human head, in this case) with sufficient resolution. 

Figure A.2: Model of a Three-Dimensional "Volume of Interest" 

• The continuous electric and magnetic fields become discrete fields centered on 

the edges or faces of the Yee cubes, respectively. 

• The continuous function of time is discretized into time steps of At. 

• At each time step, all of the magnetic fields are updated, followed by all of the 

electric fields, using Equations A.25a to A.26c. Over an entire simulation, this 
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models the time-domain behavior of the electromagnetic fields in the "region 

of interest". 

These effects are a result of the mathematics described in the previous sections. 

The above effects/properties make the algorithm very suitable for a software imple-

mentation. 


