Chapter 1

Introduction

Carhage collection i been seen o be useful in a number of C4 4 and € applicationn [BoWenH|
[CuplHR] [arh0] [Stro87h], but few garbage collections schemes have yet been proponed lor the
Inngnage o addition, it appears that the most widely used collectors for C-} | which enjoy el
uae are conservative collectors [Bar89b] [Det190] and reference counters [Knut'?ll]. While profoty pes
of conventional conperative collectors have been written for C4 4, the language does not HUppol
. g . N N aftun ¢ . - T'hie 1o ap . e o0 H

olther a by po snfo or areliable cooperative collector. This is unfortunate, sinee cooperative called Lo
reclalm somewhat more storage than do conservative collectors and may be faster as woll ''hin
report examines deign alternatives for adding support to the C 4 programming languape lin
cooporatlve garhage collection and discusses in detail alternatives which provide language suppont
for uner dotined coaperative collectors.

User dellned collectors have been suggested as an interim step in the evolution of 1 |
prowlde wupport for cooperative garbage collection with few changes to the language. 1 han heen

, o

argued that while it is doubtful that a user defined cooperative collector will perform an well an
collector based on more extensive changes to the C4-4 langnage, such systems could he conalideyod
an hithd step in the direction of a fully garbage collected C4 o Extensive and ponsibly fieom
patible Tanguage revisions intended to improve the peeformance of collected applications could e
utlertaken only when it is clear that the henelit of improved performance outweighs Lhe cont ol
Incompautibilition in the language extension,

Thin teport concludes that Language: recognized parameterized smart pointer Ly pes show promise
both for wupporting uwer defined collectors and for supporting persistent object, caches, distribitod
ohject wtores and other kinds of storage managers. However, further research in the arens of Lype
fngudry and the coordination ol multiple storage managers is necessary hefore any paramoeterized
st polater proposal can be completed. As this report implements no production quality g hnge
colloction wyntem, it leaves unresolved the question of which kind of collector performs hest: um|;
ornblve or conservalive.

The vemadnder of Whis chapter discusses garbage collection in general, and discussen g hage
colloction techniquen which have been or may be applied to C4 4. Chapter 2 presents o ranpe ol
dewlgn alternatives for cooperative collectors in C F4 and Chapter 3 presents a numher of ullu'| ni
thven for nnor delined storage managers. Chapter 4 discusses how to implement, a garbape colleciog
e compller whose target architecture is a € compiler, and Chapter 5 discusses the prototype
compaeting collector which was the basis of many of the conclusions in this report.

1.1 Garbage Collection

Garbage collection is automatic storage management. Manual storage managers allow programmers
to allocate and deallocate memory with explicit calls to storage manager primitives. An automatic
storage manager allows users to allocate storage explicitly, but frees them from the chore of deciding
when to deallocate the storage. An automatic storage manager automatically reclaims and reuses
regions of storage when there is reason to believe that these regions will never again be referenced
by the application.

Garbage collection systems can be loosely categorized into reference counting and graph traver-
sal algorithms [Cohe81]. Reference counting collectors [Knut73] maintain a count of pointers refer-
ring to each collected object, and reclaim the storage occupied by such an object when this count
reaches zero. These collectors cannot reclaim circularly linked objects and such cycles of objects
occur frequently in many C++ applications. For this reason, most of the discussion in this report
deals with graph traversal algorithms.

Graph traversal algorithms treat the garbage collected heap as a set of directed graphs [Cohe81].
Nodes in the graph are allocated regions of storage and the directed graph edges are pointers in the
nodes which refer to other nodes. The storage region managed by the garbage collector is called
the collected heap. Nodes in the heap may be referred to by pointers outside of the collected heap
called root pointers. The garbage collector is the portion of the automatic storage manager charged
with reclaiming storage and a traversal of the directed graph by the collector is usually called a
garbage collection. During a garbage collection, the storage manager traverses the subset of the
graphs in the heap which is reachable from the finite set of root pointers. All of the reachable
nodes are marked in some way as being in-use. Following a collection, all unmarked nodes are
assumed to be unused and can be re-used by the application when allocating new storage. Graph
traversing collectors carry out a number of common activities and rely on the existence of a number
of common facilities.

o There must be a way to identify root pointers - pointers outside of the heap which refer to
objects in the collected heap. Compacting collectors copy all in-use nodes to a contiguous
storage region during garbage collection. For compacting collectors, all pointers to each object
must be identified since all of these pointers must be adjusted when the object is moved. For
non-compacting collectors, at least one pointer to every in-use node in the heap must be
identified to the collector.

¢ There must be a way to identify pointers to the collected heap within objects allocated in the
heap. This facility is used by the collector when locating children of a particular in-use node
in the heap.

o Given a pointer to the interior of an object in the collected heap, there must be a way to find
the beginning of the referenced object.

The problems of identifying root pointers and pointers in the collected heap are the biggest problems
dealt with in this report. Techniques for finding the beginning of an object in a C+4 heap are
discussed in [Det190].

Graph traversing collectors fall into two broad categories: conservative collectors and cooper-
ative collectors. Conservative collectors assume that any word of memory outside of the collected
heap or in in-use nodes may be a pointer to a node in the collected heap. Cooperative collectors

rely on the cooperation of programmers or compilers to identify exactly those words of memory
which are pointers into the collected heap. Each of these kinds of collectors are discussed in the
following sections.

1.1.1 Conservative Collectors

A number of conservative collectors have been proposed for both the C and C++ programming
languages, all very recently [Bar89a] [Bar89b] [Det190] [BoWe88] [Capl88]. These collectors are all
capable of determining whether a word of memory can be interpreted as a reference to the beginning
of a collected object. Most of these collectors are also capable of determining when a word can be
interpreted as a reference to the interior of a collected object [Bar89a] [Detl90] [Capl88].

A garbage collection in a conservative collector tends to cost more in terms of processing time
than a comparable collection in a cooperative collector. This is because conservative collectors must
examine a larger root set and must examine every word in in-use nodes. Furthermore, there is a
cost associated with determining whether or not a word could be a reference to a collected object
and this cost is not incurred by cooperative collectors. Bartlett’s and Detlefs’s collectors both
attempt to minimize the number of words examined by the collector. They do this by associating
with each collected object enough type information to conclude that some or all of the words in an
object are in fact not pointers. Bartlett proposes that users provide this information in the form
of a user-written “pointer-finding” procedure, and Detlefs generates this information automatically
in the C++ compiler.

Compacting conservative collectors pose an additional problem. A compacting collector must
identify every pointer to a collected object. During a collection, all of these pointers must be
updated to refer to the new locations of the relocated objects. The problem with conservative
collectors is that they can only identify when a word might refer to a collected object. Bartlett and
Detlefs compact the collected heap by updating only those words in collected objects which are
known to be pointers. If any dubious pointer refers to an object, that object is not relocated and
no reference to it is adjusted. Kurihara et al. deal with this problem with an additional level of
indirection! [KID90]. A pointer in this scheme refers to an entry in an object table, which in turn
refers to the object. This way, only the object table refers directly to objects and all entries in this
table are known to be pointers. This means that collected objects may be compacted at any time,
and only the pointers in the object table need be updated to refer to the new object locations.

A last performance problem with conservative collectors is that they tend to reclaim less storage
than a comparable cooperative collector would. This is because there may be words in the root set
which are not pointers to objects, but which appear to contain such pointers. These words prevent
the objects to which they appear to refer from being reclaimed. To an extent, all garbage collectors
suffer from this effect because an object may never again be used by an application, even though
a root pointer still refers to it. This effect however, is greater in conservative collectors than in
cooperative collectors.

The discussion in this section suggests that conservative collectors always perform more poorly
than cooperative collectors, but this suggestion is misleading. Conservative collectors do cost more
than cooperative collectors in two areas.

!Note that this collector was not written for general purpose C programs, but for the C output of a SPiCE to
C translator. In C++, implementing a compacting collector as an additional level of indirection produces the same
kind of evaluation order problems as are described in Chapter 3.

o Conservative collectors examine more roots than do cooperative collectors, and the cost of
examining each root is higher for conservative collectors.

¢ Conservative collectors may not reclaim all of the unused storage, leading to more frequent
collections than would occur with a cooperative collector.

On the other hand, applications using cooperative collectors must cooperate with those collectors
and the cost of this cooperation may be significant. In addition, memory allocation algorithms used
by the two kinds of collectors differ and have differing costs.

The question of which kind of collector performs better is still open therefore. A comparison of
the performance of conservative and cooperative collectors for C++ is only possible when detailed
descriptions of these collectors and of application usage patterns are available. No such descriptions
are available for cooperative collectors for C++4 because the language does not currently support
type safe or reliable collectors.

1.1.2 Cooperative Collectors

Cooperative graph traversing collectors have been used widely for much longer than have conserva-
tive collectors. These collectors have been used most extensively in Lisp implementations and are
well understood in this context [Cohe81]. Traditionally garbage collected languages such as Lisp
use only a single storage class and these languages tend to provide no user accessible pointer types.
Pointers are used extensively in the implementation of the languages, but these pointers are hidden
from users. Optimizers for these implementations tend to have a deep knowledge of the garbage
collector and can take steps to transparently minimize the use of the collected heap [Chas87)], to
minimize the cost of cooperating with the collector, and to minimize the cost of garbage collections
when they occur [Unga84).

More recently, the Modula-3 language [CDGJ88] also supports garbage collection and Modula-3
is much more like the C++ programming language than are Lisp or similar languages. Modula-
3 supports many storage classes and supports cooperative garbage collection as well. Modula-3
supports garbage collection with two classes of pointers called traced and untraced pointers.
Traced pointers are registered with the garbage collector as roots of the directed graph, while
untraced pointers are not. Traced pointers tend to be easier to use than untraced pointers, since
storage allocated in the collected heap does not have to be explicitly reclaimed. Untraced pointers
are more compatible with foreign language libraries though, since few such libraries understand
garbage collection enough to deal safely with traced pointers.

The collectors most closely related to this report are the prototype C++ collectors in Edelson’s
and Wang’s Master’s theses [Edel90] (Wang89]. Edelson implemented a user defined, compacting
collector and Wang implemented a preprocessor whose output was C++ code which simplified the
use of smart pointers for a non-compacting collector. Both collectors are based on C++ support
for smart pointers [Stro87a]. A smart pointer is a class with pointer operators such as -> defined
for it. Both collectors use constructors and destructors for smart pointers to register these pointers
with the garbage collector. Ideally, these smart pointers, should be the only pointers referring to
an in-use node in the collected heap. Unfortunately, this constraint cannot be enforced by existing
implementations of C++ and neither Wang’s nor Edelson’s collector enforces it.

Chapter 2

Design Alternatives

This chapter presents a number of design alternatives for cooperative garbage collectors in C++.
It discusses the implications of some of the simpler alternatives, deferring discussion of user de-
fined storage managers and compiler implementation techniques to later chapters. The design
alternatives discussed in this report are:

1. Number of Storage Classes

(a) Traditionally garbage collected languages such as Lisp and Smalltalk support only a
single storage class: the garbage collected heap. C++ is compatible with C in that it
supports a number of storage classes. A garbage collected C++ could ignore existing C
and C++ storage class specifications and allocate static, automatic and dynamic objects
all in a garbage collected heap.

(b) Alternately, a cooperative collected C++ could add a garbage collected storage class to
the three already supported in the language.

2. Number of Pointer Classes

(a) If multiple storage classes are supported, it may be useful to distinguish pointers to the
collected heap from other pointers in the way the Modula-3 traced and untraced pointer
classes do.

(b) Alternately, a cooperative C++ could support only a single kind of pointer as C++ does
now. This would mean that all pointers in C++ applications would be registered with
the collector, no matter which storage class they refer to.

3. Compiler Implementation

(a) Existing compilers could be modified minimally to support a cooperative collector. In
this case, only those modifications necessary to allow users to add garbage collection to
the language as a class library would be allowed.

(b) C++ compilers could be required to understand garbage collection, but implementa-
tion of such compilers as preprocessors for an ANSI standard C compiler could still be
supported.

(c) C++ compilers could be required to understand garbage collection to such an extent
that the implementation of such compilers as preprocessors for C becomes impossible.

4. Compacting verses Non-Compacting Collectors

(a) A cooperative, compacting C++ would require that all pointers to the collected heap
be registered with the collector.

(b) A non-compacting collector would require that at least one pointer to every reachable
object be registered with the collector.

These alternatives and combinations of them are discussed in the following sections.

2.1 A Traditional Cooperative Collector

Garbage collection could be implemented for C++ in the way it has been implemented for tradi-
tionally garbage collected languages such as Lisp or Smalltalk. A C++ application written for such
a compiler would differ little from a similar application written for a non-collecting compiler. The
collected compiler would still recognize static, automatic and dynamic storage classes. The com-
piler would largely ignore the distinction between these classes though, since the only storage class
supported by traditionally collected languages is the collected heap. A statically declared object
for instance, could be implemented as an invisible pointer to the object allocated in the collected
heap. Such treatment simplifies the garbage collector, since all pointers are guaranteed to refer to
the collected heap. This treatment also eliminates a class of infrequently occurring programmer
errors where a procedure is coded to return the address of one of its automatic variables. Such
procedures would execute correctly, since the pointer returned would refer to the collected heap.

While the differences are small, this kind of collecting C++ would not be compatible with many
C programs. The C++ language was designed to be an extension to the C programming language
and was designed to be able to call existing C subroutines directly. Incompatibilities arise when C
programs which freely assign pointers to integers and vice-versa are ported to C++. If the only
reference to an object resides in an integer, the object can be incorrectly reclaimed by the garbage
collector. If an integer holds a reference to an object and a collection by a compacting collector
occurs, the integer may no longer hold the machine address of the object since the collector may
have relocated the object. Incompatibilities also arise when C++ programs call C subroutines
and pass pointers to them. C compilers are not required to register all pointers with a garbage
collector. If a collection occurs either when the C procedure tries to allocate memory, or when a C
subsystem has assigned a C++ pointer to an internal static variable, the collector may incorrectly
deallocate objects and a compacting collector may relocate the objects to which static C pointers
refer. It is unlikely therefore, that a traditional cooperative collector will meet with widespread
user acceptance since compatibility with C is one of the most attractive features of C++.

2.2 Number of Storage Classes

The way to avoid these compatibility problems is to support multiple storage classes in the collected
language. This way, users can safely pass pointers to static, automatic or manually managed
dynamic variables to C subroutine libraries, because the garbage collector has no interest in such

pointers. Furthermore, pointer manipulations, such as assigning pointers to integers and unions
containing pointer and non-pointer data types, are as safe as they are in C for pointers referring
to these storage classes. Since existing C programs use only these kinds of pointers, all existing C
programs will be compileable with a collected C++ supporting all C storage classes. Extending an
existing C or C++ application to use the collected heap for some data types, or adding an old C
or C++ library to a collected application may still pose some problems though. These problems
are discussed further in Section 2.3.

It is difficult however, for a C++ which supports more than one storage class to use a completely
cooperative garbage collector. A pure cooperative collector is one where all of the roots identified
to the collector refer to the collected heap. It is clear that if the compiler supports multiple
storage classes but only a single pointer type then all pointers must be registered with the collector,
regardless of the storage class to which they refer!. The collector must determine at runtime
whether individual root pointers actually refer to the collected heap. Such a collector is called a
mostly cooperative collector in the remainder of this discussion.

A mostly cooperative collector is needed even if C++ supports two pointer classes as does
Modula-3. The reason for this is that this pointers in member functions of classes which may
be allocated in the collected heap must be declared as either a traced or an untraced. Declaring
these pointers as untraced is not type safe, since they will contain a reference to the collected heap
when invoked on objects allocated in the collected heap. Declaring these this pointers as traced
pointers mandates a mostly cooperative collector, since the class may be allocated as an automatic
variable as well. When this is the case, the traced this pointer refers not to the collected heap,
but to the stack. One could argue that the caller of the function should be responsible for creating
and registering or not registering this. This argument however, does not take into account the
fact that this pointers may be assigned to other pointers inside of member functions. To do this
in a type safe manner, these this pointers must be traced and again, this may result in assigning
a reference to an object not in the collected heap to a traced pointer.

2.3 Number of Kinds of Pointer

Section 2.1 discusses the compatibility problems which arise when a collected C++ supports only
a single kind of pointer. These problems are not as pronounced when both traced and untraced
pointers are supported, but such support introduces new problems. In C++, support for both
traced and untraced pointers is complicated when using a compacting collector. The reason, again,
is that the C++ this pointer is implicitly declared in non-static member functions.

For example, consider Figure 2.1. The class member is never directly allocated in the collected
heap and so can be declared untraced. This declaration notifies the compiler that the class cannot
be allocated in the collected heap and that all this pointers in member functions in the class are
untraced. The class base is declared traced because it is allocated in the collected heap. When the
code fragment in main is executed, an instance of base is created in the collected heap. A member
function in member which is a member of base is then called. When this happens, the this pointer
in that function is made to refer to the interior of the collected base object. This means that the
untraced this pointer refers to an object in the collected heap!

'The exceptions to this rule are pointers identified by an optimizer as being guaranteed to refer to non-collected
storage.

class member * untraced X; /* An untraced pointer. */

untraced class member { /* Untraced classes have */
public: /* untraced ‘this’ pointers. */
void function () {
X = this;
}
};
traced class base { /* Traced classes have traced */
class member Y; /* ‘this’ pointers. */
};
main () {

class base * traced Z;
Z = new (class base); /# Allocate a collected object. */
(Z -> Y) .function (); /* Call a function in a member of that object. */

Figure 2.1: An Example of Nested Classes

A compacting garbage collection at this point would invalidate the pointer stored in the this
pointer. A non-compacting collection would cause no problems, but only because a reference to
the collected object is still stored in the traced Z pointer. If the member function however, stored
the untraced this pointer into another object or a static variable, that pointer could survive the
destruction of Z. If the untraced pointer becomes the only reference to the collected object, even a
non-compacting collector will cause the application to malfunction by prematurely reclaiming the
object.

A non-compacting C++ could deal with this problem by requiring that programmers ensure
that at least one traced pointer refer to every collected object to which any untraced pointer refers.
A compacting C++ could deal with this problem only by not defining the action of applications in
which any untraced pointer refers to a collected object. In either case, warnings should be emitted
whenever an untraced pointer to a collected object is created.

Finally, one should note that with traced and untraced pointers, classes which are to be allocated
on the collected heap must be declared by the user as traced. The compiler compiling the member
functions for a class must know whether this pointers are traced in these functions. The compiler
compiling the application which uses the class must know whether type safety is assured when
allocating an instance of the class in the collected heap.

Chapter 3

A User Defined Garbage Collector

This chapter examines designs which change the C++ language to better support the implementa-
tion of user defined storage managers, especially cooperative garbage collectors. These changes are
intended to improve the performance, portability, and type safety of these storage managers. While
the discussion in this report deals primarily with garbage collectors, much of the discussion in this
chapter applies to other kinds of storage managers as well. In particular, persistent object cache
managers [WBHG88] [ScEr88] and distributed object storage managers [Seli90], [Capl87] appear
as examples throughout this chapter.

The changes proposed in this chapter have been loosely categorized into support for smart point-
ers, support for type inquiry and support for overloading the new and delete memory management
operators. C++ contains few mechanisms for prohibiting the use of static or automatic storage
classes for particular classes. Because of the performance and compatibility reasons discussed in
the previous chapter, this chapter does not propose to modify the language to prohibit the use of
these storage classes in any circumstances. Any user defined garbage collector is assumed to exist
in a setting which supports at least these storage classes in addition to a collected heap. The re-
mainder of this discussion therefore, assumes that all user defined collectors are mostly cooperative
collectors.

3.1 Smart Pointers

The most difficult problem in implementing a cooperative user defined collector lies in reliably
identifying roots and other traced pointers for the collector. In general, it is not possible for the
programmer to create some sort of procedure or table which can identify all of these pointers. This
is because not all traced pointers are visible to the programmer. In many circumstances, compiler
temporaries contain references to the collected heap at the time of garbage collection. The only
reliable way for a user defined garbage collection system to identify these references to the garbage
collected heap is to have the references identify themselves.

This is possible to a limited extent in existing implementations of C++ by using smart point-
ers [Stro87a] with constructors. The constructors and destructors in these pointer classes can be
made to register and deregister respectively, instances of the class with the collector. Even compiler
temporaries which are instances of these classes will have constructors and destructors invoked on
them. However, existing support for smart pointers is not sufficient for a type safe user defined
collector. The following are problems with cooperative collectors implemented using smart pointers.

10

. Existing support for smart pointers is not sufficient to encode inheritance information in the
same way as in primitive pointer types. A true pointer X may be assigned to a true pointer
variable Y whose type is either identical to the type of X or whose type is an ancestor of X.
For programmers to explicitly encode similar relationships either as conversion operators or
overloaded assignment operators in smart pointers is time consuming and error prone.

. Too many C++ data types and expressions implicitly use true pointers and these point-
ers cannot be “smartened.” Specifically, this pointers in member functions are implicitly
declared as true pointers and reference variables are represented using machine addresses.
Neither of these true pointers can be identified to the garbage collector given existing support
for smart pointers.

If a mechanism is introduced which causes these true pointers to be replaced with smart point-
ers, this mechanism should be selectively applicable. Programmers may use smart pointers to
a collected class in most circumstances, but may need to revert to dumb pointers and dumb
reference variables in circumstances where performance or compatibility with existing code
is a consideration. In addition, there must be a mechanism to distinguish smart from dumb
pointers in function signatures.

. Given a class with a smart pointer defined for it, there is no way to require that code taking
the address of a member variable in the class make use of smart pointers. This is similar to
the problem in Section 2.3 of being able to create untraced pointers to components of traced
classes. This problem is exacerbated by smart pointers though, because there it is difficult to
determine when two smart pointers each register themselves with the same collector. A C++
compiler must be able to determine when this is the case in order to emit useful warning
messages when a pointer registered with one collector is converted to a pointer registered
with another collector. Again, this occurs most commonly when taking the address of a class
member variable and when invoking member functions of member variables of a collected
class.

. Ideally, only one set of smart pointer operators should need to be written for every different
user defined garbage collector in an application. Existing support for smart pointers requires
that a pointer type and associated operations be defined for every different collected class.
This is error prone and space inefficient.

. Ideally, a smart void * type should be defined for every user defined garbage collector. The
generic pointer type has proven very useful in existing C++ applications. For type safety,
such a type should be available for each set of smart pointers registered with a collector.
This would allow smart pointers registered with a collector to be converted to a generic type
without losing their registration status with the collector.

. C++ allows compiler temporaries to be destroyed too quickly to support a non-compacting
collector. For example, the expression bar () -> A = foo () where bar returns a smart
pointer can confuse a non-compacting collector. If the compiler first evaluates bar () and
then evaluates the -> operator on the smart pointer temporary that bar returns, it could
store the dumb pointer returned by the -> operator in another compiler temporary. The
compiler would then be justified in calling the destructor for the smart pointer returned
by bar since the smart pointer is not used in the remainder of the expression. The compiler

11

could then evaluate foo (), but foo could be a function which triggers one or more a garbage
collections. If foo triggers a collection, then no pointer to the object bar returned would be
registered with the collector because the compiler evaluated the destructor for the only such
smart pointer. The collector could therefore reclaim and reuse the storage occupied by the
object bar returned. When foo returns, its return value is assigned to the target of the dumb
pointer which refers to the object bar returned. However, this storage has been reclaimed
and possibly reused to hold some other object. The smart pointer temporary should not have
been destroyed until all dumb pointer temporaries derived from it are no longer needed.

7. C4++ does not define the order of evaluation of expressions and this is a problem for compact-
ing collectors. Pointer adjustment is a side effect of a compacting collection and applications
rely on this side effect taking place at least by the time the garbage collector returns. In
C++ however, side effects of expressions may take effect only after the expression has been
evaluated. For example, if X is a smart pointer, the result of the expression X -> A = foo ()
is undefined. This is because the C++ compiler may evaluate the left hand side of the as-
signment expression first, resulting in a C++ compiler temporary holding the address of A.
Note that this temporary is a true pointer to A, not a smart pointer. An evaluation of a
-> operator always results in a C++ primitive pointer value. If a garbage collection occurs
when the compiler then evaluates foo (), the collector will not see this pointer temporary
registered as a root and will not update this pointer when it moves the object containing A
during the compacting collection. When foo returns, its result will be assigned to the target
of the out-of-date temporary pointer.

These problems with smart pointers affect most applications of these pointers, not just garbage
collection. For example, a reference counting system suffers the same fate as a non-compacting
collector when the last smart pointer to an object is destroyed while a compiler temporary referring
to the object is still in use. In addition, object caches and distributed applications supporting ob ject
migration have the same kinds of problems as compacting collectors. When an object is flushed
from the cache or transmitted to another process, all pointers to the object must be flagged to
indicate that the object is no longer in memory. If a temporary is missed when these flags are set,
the expression using the temporary will no longer refer to the active copy of the object.

The last two problems in this list of problems are addressed in Chapter 4. The remaining
problems are discussed in the context of each of three alternatives for enhancing smart pointer
support. A summary of the extent to which each of the alternatives addresses these problems can
be found in Table 3.1.

3.1.1 Overloading Primitive Pointer Operations

One solution to the first five problems with existing support for smart pointers is to allow operations
on primitive pointer data types to be overloaded. In particular, the language can allow constructors
and destructors to be defined for primitive pointer types to allow pointers to be registered with
a collector. Note that such a proposal relaxes the restrictions which prohibit the overloading of
operations on primitive types.

This author knows of no study of the implementation difficulties inherent in overloading opera-
tors on primitive types and has carried out no such study as part of this report. It appears however,

12

that such overloading should be only slightly more complex to implement than the current imple-
mentation of operator overloading for ordinary classes. The operators can be implemented as
obscurely named functions and only the C++ compiler need be aware that these functions are
invoked wherever primitive operations were observed in the C++ source code. The compiler’s code
emitter, if there is one, need not be aware of the overloading at all, since it never sees the original
primitive type operator.

Allowing constructors to be specified for primitive pointer types solves only the problem of
allowing smart pointers to derived types to be assigned to smart pointers to base types. The
remaining problems can be addressed by creating new traced and untraced keywords, where the
traced keyword can be qualified by a garbage collector type in the same way that the existing
extern keyword can be qualified by a linkage type. These language modifications address the
problems with existing support for smart pointers in the following ways:

1. Since only the operators for smart pointers are redefined, the compiler can still apply existing
rules for when pointers can be safely assigned to one another. In particular, assigning a
pointer to a derived class to a pointer to a parent class of that derived class is still legal.

2. The definitions of classes whose this pointers are to be smart are prefixed with the traced
keyword. Similarly, reference and other variables using pointers internally can be prefixed
with the keyword when those internal pointers are to be smartened. This allows users to create
both dumb classes and smart classes, dumb and smart pointers and reference variables!. It
also allows dumb pointers and other variables to be distinguished from smart ones in function
signatures.

3. The traced keyword qualifier explicitly tells the language which collector a smart pointer is
registered with. This information can be used to emit error messages when pointers registered
with different collectors are assigned to one another. In this proposal untraced pointers are
still the default, so existing C++ code still compiles correctly.

4. A single set of operators can be defined for each collector if the language allows these operators
to be parameterized in the same way that functions may be parameterized [Stro88].

5. A smart void * pointer is just an instance of the parameterized operators.

An additional constraint on this proposal is that the C+4 compiler must consider operators on
traced pointers to be undefined unless explicitly defined by users. If a user inadvertently neglects to
#include the definition of one or more smart pointer operators in a file, this constraint ensures that
the compiler will complain about the missing operators. The alternative is to have the compiler
emit no error messages and proceed to use the possibly inappropriate primitive pointer operators
in place of the missing user defined operators.

3.1.2 Overloading Pointer Representations

Overloading pointer operators is sufficient to implement garbage collectors of all kinds, but may
not be sufficient to implement object caches and distributed object heaps. These applications tend

!Note that this implies that the language defines some aspects of the representation of some data types. In
particular, it must define which data types may be implemented using a pointer to an object allocated in a user-
managed collected heap. All such data types must support the traced keyword.

13

to associate much more control information with objects and pointers than do garbage collection
applications. One way to represent this information is with a second level of indirection. Pointers
to these complex objects could be made to point to a control block for the pointer, which in turn
points to the desired object. Alternately, one could argue that some of this control information
should be stored in the pointer.

This would require that the representation as well as the operators for pointer types be over-
loadable. A simple proposal to this effect can be found in [Mart90]. Extending this proposal to use
parameterized types and the traced keyword yields a syntax similar to the following:

template <TYPE>
traced "NAME"
class *TYPE { /% Define smart pointer to TYPE, */
/* registered with collector NAME. #/

traced "NAME" TYPE #varl; /* varl is a smart pointer to class
TYPE, registered with collector NAME. */
traced "NAME" TYPE &var2; /# var2 is a smart reference */

As with overloaded operators, the parameterized class is treated as a smart pointer to all types
supported by the named garbage collector.
This option addresses the problems with existing support for smart pointers as follows:

1.

Since the compiler understands that a particular class overloads a pointer representation, the
compiler knows to allow assignments of pointers to derived types to pointers to base types.
When such assignments are detected, the smart pointer assignment operator is invoked.

While the compiler can determine when it should be safe to carry out an assignment, the
mechanics of the assignment are complicated. Since the pointer classes involved are parame-
terized, the representations of the two pointers in the assignment may differ. In practice, the
only differences should be the types of true pointers used in the representation. When this is
the case, the assignment operator defined for the parent class can correctly and predictably
be applied. When there are other representational differences between the two parameterized
classes, no assignment is possible.

. The definitions of classes whose this pointers are to be smart are prefixed with the traced

keyword. Similarly, reference and other variables using pointers internally can be prefixed
with the keyword when those internal pointers are to be smartened. Just as in the previous
proposal, this support allows users to define smart and dumb classes, pointers, and reference
variables. It also allows dumb pointers and other variables to be distinguished from smart
ones in function signatures. As in the previous proposal, untraced pointers are still the
default, so existing C++ code still compiles correctly.

. The traced keyword qualifier explicitly tells the language the collector with which a smart

pointer is registered. This information can be used to emit error messages when pointers
registered with different collectors are assigned to one another.

. The parameterized, overloaded, pointer definition is the only definition necessary for all point-

ers referring to a particular collector’s heap.

. A smart void * pointer is just an instance of the parameterized, overloaded, pointer repre-

sentation.

14

3.1.3 Parameterized Types
A third alternative is to define smart pointers using parameterized types without using the traced
keyword. The proposed syntax for a template smart pointer in this proposal is:

template <TYPE>
class NAME *TYPE { /* Define template class NAME as a
smart pointer to TYPE. */

NAME<TYPE> #vari; /* varl is a smart pointer to TYPE,

using template NAME. #/
NAME<TYPE> &var?2; /* var2 is a smart reference */

The *TYPE information following the name of the parameterized class identifies the class as a smart
pointer to objects whose type is TYPE. The syntax for declaring pointers and references which
are instances of the parameterized class is somewhat misleading however. A conventional C++
interpretation of the declaration NAMEKTYPE> &vari; for instance, would conclude that vari is
declared as a reference to NAME<TYPE>. The modified smart pointer syntax would interpret this
declaration as a smart reference to TYPE. This confusion can be reduced somewhat by choosing
appropriate smart pointer class names. For example, a declaration like smartptrto<TYPE> &vari;
might make it more clear that the reference being declared refers to objects of type TYPE. The
declaration semantics allow a smart pointer template to serve as a definition for both smart pointers
and smart reference variables. Existing C++ declaration semantics would require two almost
identical smart pointer templates to be declared for these purposes:

template <TYPE> class NAME1 *TYPE {...} /% Smart pointer template */
template <TYPE> class NAME2 &TYPE {...} /* Smart reference template */

NAME1<TYPE> varti; /* Smart pointer to TYPE */
NAME2<TYPE> var2; /* Smart reference to TYPE */

This proposal addresses the problems with existing support for smart pointers in the following
ways:

1. The compiler knows when a template class is a smart pointer and can determine when it might
be safe to assign a pointer to a derived class to a pointer to one of its parents. The compiler
must assume though, that all instances of a template smart pointer class are registered with
the same collector.

As with the overloaded pointer representation proposal though, the representations of two
pointers in a legal assignment may differ. An assignment is allowed when the only difference
between the representations is the type of true pointers in the representations.

2. The definitions of classes whose this pointers are to be smart can be prefixed with a smart
pointer declaration as follows.

PTRNAME<CLASSNAME> *class CLASSNAME { ...

Reference and other variables using pointers internally can be declared similarly as was illus-
trated earlier. Existing syntax for pointers and reference variables can still be used to allow
users to create both dumb and smart classes, as well as dumb and smart pointers and refer-
ence variables. Since this declaration syntax differs from true pointer syntax, smart pointers
can be distinguished from dumb pointers and reference variables in function signatures.

15

3. The name of the parameterized class tells the language which collector a smart pointer is
registered with. This information can be used to emit error messages when pointers registered
with different collectors are assigned to one another. Since true pointer declarations are still
allowed, existing C++ code still compiles correctly.

4. By definition, a parameterized smart pointer class is a single set of smart pointer operators
which can be instantiated for any type managed by its user defined garbage collector.

5. A smart void * pointer is just an instance of the parameterized smart pointer type.

3.1.4 Coordinating Multiple Collectors

Each of the above proposals allows multiple user defined collectors to exist simultaneously in an
application. This is useful for at least two reasons.

¢ Different types may have different storage usage patterns and support for multiple collectors
allows collectors to be optimized for specific usage patterns.

¢ Different types may have different requirements of smart pointer operators. In a simple
compacting collector for instance, the -> operator simply returns a copy of the true pointer in
the pointer representation. In an object cache, the ~> operator loads the referenced ob ject into
the cache if it is not already present. Supporting both these storage managers simultaneously
requires that more than one kind of smart pointer be defined in the application.

Such support is not without its difficulties though. This report identifies two areas where further
work is necessary to develop strategies for cooperation among garbage collectors.

¢ Smart pointer member variables in types managed by collector A may refer to storage man-
aged by another collector B. When B collects its heap, it must chase all smart pointers in
all heaps, including A’s heap. Every garbage collector A must therefore provide information
about smart pointers in its heap to those collectors B that need this information. To en-
able third party libraries to use garbage collected heaps, some sort of standard interface for
accessing information about smart pointers in foreign heaps must be devised.

o When member variables of a type managed by a collector A are themselves a type managed
by another collector B, users will see a warning message every time a user of one of B’s
types invokes a member function in one of these member variables managed by A. Again,
the reason for this is that the this pointer will have been converted from a smart pointer
registered with A to one registered with B. At this time, it is not clear how frequently this
situation arises or how much of a problem it poses.

Further research is necessary to address these problems. Effective, portable and efficient interfaces
must be devised to address the first problem. Experimentation is needed to determine how serious
the second problem is. If it proves to be serious, a solution must be found. A possible solution is to
eliminate the separate pointer registries and to register all smart pointers with a central registry. A
garbage collection in one space could then examine all pointers in the registry to determine which
objects in the collected space are in use. An alternate solution is to provide a central registry of
garbage collectors and to query the collectors about pointers in their care which may refer to a

16

collected space. Both of these solutions would eliminate warning messages because it would mean
that all collectors have access, either directly or indirectly, to pointers registered with all other
collectors. Whether either of these solutions can be implemented efficiently remains to be seen.

3.1.5 Registering Roots Efficiently

An additional facility is necessary to ensure that constructors and destructors for primitive pointer
types can be implemented efficiently. Edelson’s root registration system involves two kinds of smart
pointers: one consisting of only the machine address and one consisting of both the true pointer
and a pointer to a registration record. The former are sufficient to register static and automatic
pointers because the C++ implementations Edelson worked with happened to invoke constructors
and destructors for automatic objects in a stack-like fashion. Pointers to registration records are
needed in compiler temporary pointers and pointers in objects allocated in a manually managed
heap. The registration pointers are necessary because these kinds of pointers can be created or
destroyed in any order. If the registration pointers were omitted, the smart pointer destructors
would be obliged to search for the pointer being destroyed in the pointer registry every time a
smart pointer was destroyed.

In a smart pointer implementation, pointers in dynamically allocated objects can be dealt with
by the type inquiry system described in Section 3.2. This leaves only static and automatic variables
and compiler temporaries. These can be dealt with efficiently if the language guarantees that their
constructors and destructors are invoked in a stack-like fashion. If registration records are organized
as a stack, no registration pointer is required for automatic variables and compiler temporaries. The
destructor for these pointers can simply remove the top registration record from the stack because
these constructors and destructors are required to be invoked in a stack-like fashion. Static pointers
can use a separate registration facility. These pointers need no registration pointer because their
destructor is called only just before the application terminates. Simply setting the static pointer to
NULL is sufficient to guarantee that the collector will not become confused if a collection is triggered
while the application is terminating.

This registration mechanism assumes that constructors and destructors can identify the storage
class of their smart pointer. Constructors for dynamically allocated smart pointers do not reg-
ister their pointers. Constructors for automatic variables and compiler temporaries use the stack
registration mechanism and constructors for static pointers use the static pointer registration mech-
anism. Currently, however, there is no portable way for a procedure to determine the storage class
of the target of a pointer. One way to accomplish this is to have the language define a number
of storage class interrogation functions which may be implemented either by the compiler or in a
class library. Garbage collection requires only a procedure such as:

enum storage_class {static_storage, automatic_storage, dynamic_storage};
storage_class storage_class_of (void *);

The portability of conservative collectors and mostly-cooperative collectors would also improve with
additional procedures to define the extent(s) of static, automatic and dynamic storage classes?.

An alternative to this storage class identification mechanism is to provide per-storage class
constructors and destructors. This would be faster than the alternative discussed above, but would
be less generally useful.

?Multi-tasking C++ implementations may define multiple automatic storage classes, one for each task. Dynami-
cally linked implementations may define multiple static classes.

17

Parameterized | Overloaded Overloaded

Problem Types Ptr Ops Traced Ptr Rep Traced
Assignment to pointer to base type Vv (1,2) Vv 4 Vv (1,2) Vv (1,2)
Smart and dumb pointers and refer-

X

ence variables v v v
Distinguish pointers registered with
different collectors v @) X v X v
One smart pointer definition per col-
lector v v v v 4
Smart void * type Vv Vv Vv vV Vv

Legend: / proposal solves problem
X proposal does not solve problem

1. The compiler invokes the overloaded assignment operator only when pointers to derived types are
assigned to pointers to parent types.

2. The compiler invokes the assignment operator when the only difference in pointer representations is
the types of true pointers.

3. The compiler assumes that all instances of a parameterized type register themselves with the same
collector.

Table 3.1: Summary of Smart Pointer Proposals

3.1.6 Smart Pointer Summary and Evaluation

This section has investigated a number of options for extending C++ support for smart pointers in
a manner which is sufficient to implement garbage collectors and a variety of other complex storage
managers. The degree to which these extensions address the problems posed by existing support
for smart pointers is summarized in Table 3.1. It is clear that the overloaded pointer operation
and overloaded pointer representation options are worth considering only with the addition of the
traced/untraced keywords. The parameterized smart pointer types proposal is arguably a smaller
change to the language since it involves no new keywords. The parameterized smart pointer types
proposal modifies the semantics of the language and adds a number of new and optional declaration
syntaxes.

3.2 Type Inquiry

The proposed cooperative garbage collector supports four storage classes. Identifying pointers in
static and automatic classes was dealt with in Section 3.1. This section proposes a type inquiry
system as a mechanism to jdentify pointers in manually managed and garbage collected heaps.

In contrast, Edelson’s and Bartlett’s collectors rely on users to identify pointers in collected
classes through a virtual function [Edel90] [Bar89b]. The function is charged with passing every
traced pointer in the class to the collector’s marking procedure. For a general purpose garbage
collection package, this is less than ideal. A user supplied procedure takes programmer time to
construct and suffers from potential coding and consistency errors. These errors are difficult to
diagnose since their only symptom is the premature or belated re-use of collected storage.

18

A primitive type inquiry system can be added to any C++ compiler by individual programmers.
Such a system is used in the implementation described in Chapter 5 and registers the name, size
and location of traced pointers in classes and structures in the application. This system relies on
programmers defining all classes and structures in include files. All these definitions are suffixed
with a preprocessor macro specifying the name of the class. In the type inquiry subsystem the macro
expands into code which allocates an instance of the class and intercepts pointer registrations in
the newly allocated structure. The offsets of the pointers in the structure are recorded in the type
information for that class. This system, while portable?, is error prone. Users must remember to
enter the macro for classes they define, and must remember to include the type definitions in the
type information registration source code.

A robust language supported type inquiry system would simplify the creation of cooperative
and conservative garbage collectors as well as applications such as object caches and distributed
object stores. Type inquiry systems for C++ have been discussed in conjunction with proposals
for parameterized types and in other circumstances [Stro88] [InLi90] [Gras90] [ScEr88]. Some of
these systems have assumed that type information would be evaluated only at compile time. This
report proposes the foundation of a comprehensive type inquiry facility intended to be evaluated
at runtime.

The proposed facility represents information both about types and about variables. In prac-
tice, the only additional information available for variables is storage class and scope information.
The type inquiry facility represents type information as a pointer to a class whose name, but not
representation, is specified by the language. Ideally, the C++ language will not specify the rep-
resentation of type information so that implementors are free to optimize this representation. For
garbage collection, only four standard access functions need be defined: sizeof, destroy, num_ptrs
and ptroffsets. The function of the sizeof operator is extended to determine the size of a data
type when passed a pointer to that type’s type information structure. The destroy procedure is
defined

void destroy (class typeinfo *, void #);

and invokes destructors on the second argument whose type is specified in the first argument. This
addresses the syntactic problem a garbage collector has when attempting to invoke destructors
on objects being reclaimed. The semantic problems garbage collectors have with destructors are
discussed in [Atki89]. The last two type inquiry procedures can be defined as follows.

int num_ptrs (class typeinfo *, char #*#);
ptroffsets (class typeinfo *, char **, int *);

These functions allow the collector to locate smart pointers in collected types. The first function
determines how many such pointers exist, and the second fills in an array of offsets indicating how
far each such pointer is from the beginning of the type. The second argument to each of these
procedures is an array of strings specifying the qualifiers or template class names of all of the smart
pointers which register themselves with the collector making the inquiry. In time, it is expected
that additional access functions will be defined for the type inquiry system to support other kinds
of applications.

3The primitive type inquiry system is guaranteed to work on any system where the pointer representations for
pointers to characters and pointers to classes and structures are identical.

19

While the representation for type information is not proposed to be defined by the language, it
is intended that the information be comprehensive. The type information should include all infor-
mation about the type available to the C++ compiler, including memory alignment and element
size information. It is clear that it is possible to gather this kind of comprehensive information for
any C++ compiler since such information must be maintained by all C++ compilers.

Unfortunately, while this kind of information can be compiled for C++ programs, implemen-
tations supporting type inquiry may produce substantially larger object files than do existing
implementations. This is because type information about class and structure definitions can be
large. Furthermore, class and structure definitions have a scope limited to the file in which they
appear. This means that the same name can be used for two different structures in two different
files. This flexibility is generally considered an asset, since it means that internal structures in dif-
ferent subsystems in an application can be freely named. This flexibility however, means that type
information about a type must be local to each compilation unit. One solution to this problem is to
ask the linker to coalesce identical type definitions. This solution however, reduces the portability
of C++ compilers by requiring that they use custom linkers.

3.3 Overloading operator new

Given a general purpose type inquiry system, users must be provided with another option for over-
loading operator new. Existing C++ implementations provide only the sizeof type inquiry prim-
itive and it is the result of this primitive which is the first argument to an overloaded operator new.
With a general purpose type inquiry system available, this operator should accept a type infor-
mation pointer as an optional argument. An operator new cooperating with a garbage collector
would associate this pointer with the block of memory being allocated so that the collector would
be able to find pointers in the block at collection time.

Furthermore, current support for overloading operator new is insufficient. Such overloading is
only possible in the context of a class definition and applies only to that class and to descendants
of the class. User defined collectors can circumvent this restriction in most circumstances. This is
accomplished by defining a base class whose sole purpose is to overload the memory management
operators. This base class can be made a virtual parent class of any class which should be allocated
in a collector’s heap. This mechanism does not work however, in situations where one would like to
allocate a primitive type such as an integer, character string, or an array of classes, in a collected
heap. In these circumstances, the language now specifies that the default : :operator new is the
only one which may be used. One way to address this problem is to modify the language so that the
class defined operator new is used when allocating an array of user defined objects. In addition,
user defined new operators should be explicitly callable for circumstances in which other primitive
types must be allocated in a collected heap.

An added convenience to storage manager designers would be the ability to declare operator
new to return a smart pointer to void.

While these features suffice to implement a garbage collector, additional features would simplify
the implementation of object caches and distributed object stores. These systems acquire objects
from a source outside the application task. After possibly converting the received object from a
machine independent form to the form expected by the host machine, these applications must turn
the image of the object into a real object. To do this, they must associate entities like virtual
functions, virtual members and static members with the object. In existing implementations, when

20

this sort of activity is necessary, it is bundled with operator new. Embedding this functionality in
a type inquiry system rather than bundling it with new would simplify and improve the portability
of these other applications of smart pointers.

3.4 Summary

A type safe, user defined, cooperative, general purpose garbage collector can be implemented in a
C++ language extended in the following ways:

¢ Modify the language to recognize some class definitions and especially template classes as
smart pointers. These pointers can be used to modify the declarations of other classes,
reference variables and any other C++ data type which may be implemented using a pointer.
To guarantee correct operation of a collector, the evaluation of expressions involving these
pointers must be constrained as described in Chapter 4.

o Add support for a type inquiry system capable of identifying smart pointers.

¢ Extend overloading of the new operator to use the type inquiry system and to allow primitive
types to be allocated by user defined collectors.

The most serious unresolved problems such a proposal are:
¢ a general purpose type inquiry system may unacceptably increase the size of object files, and

o issues of coordination between multiple user defined cooperative collectors have not been
adequately addressed.

21

Chapter 4

Compilers Targetted to C

A growing number of C++ compilers are derived from the AT&T cfront implementation, an im-
plementation whose target architecture is a C compiler. Any new features proposed for the C++
language which cannot be expressed in C will face opposition from venrdors committed to this C++
preprocessor technology. This chapter examines both the user defined and language defined garbage
collector proposals and shows how they might be implemented in a C++ to C translator.

4.1 Type Inquiry

The type inquiry system proposed in the previous chapter can be implemented in a C++ preproces-
sor. Each of the inquiry procedures can be implemented as a true procedure in a type inquiry class
library. In addition, for type inquiries involving constant type expressions, optimizing compilers
may choose to recognize the type inquiry procedures and evaluate them at compile time. The most
common such optimization is likely to be the sizeof operator which is already supported by all
C++ compilers.

The key to implementing a type inquiry class library is the representation chosen for type
information. One implementation compatible with a preprocessor is to represent type information
as initialized static integer arrays. A skeleton example is presented in Figure 4.1. The example
defines two mutually referential classes and defines an initialized integer array for each. The first
element in the array identifies the derived type as a class and the second element in each array is
the character string name of the class. Simple primitive types such as integers are represented by
a single entry in the array, while complex entries such as pointers or nested classes are represented
by multiple entries. The entry for z in class boo for instance, is represented as a POINTER_TYPE
to a CLASS_TYPE named "foo". The first two entries are constants and the last is a pointer to a
character string naming the class!.

!Note that representing z as a POINTER.TYPE to a CLASS.TYPE of foo_type is incorrect. While z is a pointer to
class foo, the representation of the target of the pointer may not be the representation of the class foo declared in
the same context as z. The pointer z could refer to a completely different class foo declared in some other context
or compilation unit.

22

/* Preprocessor Input (C++) */

class foo { class boo {

class boo *p; int x;

int q; class foo y;

}; class foo *z;

3

/* Preprocessor Type Information Output (C) */
#define INT_TYPE 0 static int boot_type [];
#define PTR_TYPE 1 static int foo_type [J;

#define CLASS_TYPE 2
#define END_OF_INFO -1

static int foo_type [1 = { static int boo_type [] = {

CLASS_TYPE, CLASS_TYPE,
(int) ("foo"), (int) ("boo"),
PTR_TYPE, INT_TYPE,
CLASS_TYPE, CLASS_TYPE,
(int) ("boo"), (int) foo_type,
INT_TYPE, PTR_TYPE,
END_OF_INFO}; CLASS_TYPE,

(int) ("foo"),
END_OF_INFO};

Figure 4.1: An Example Representation of Type Information

4.2 Smart Pointers

It is clear that overloaded pointer types and operations can be implemented in a preprocessor.
If the compiler supports only overloading operations on primitive types, those operations can be
represented to the target C compiler as function calls. The target C compiler need never know
that the function was represented by an operator in the original C++ source. If the C++ compiler
supports redefining the representation of primitive types as well as their operations, the new pointer
types can be represented to the target C compiler the same way that any other class is represented.
The target compiler need never know that these structures are representations of pointers.

It is equally clear that a C4++ to C translator can support changes to expression evaluations
to support a non-compacting collector. Emitting code to invoke destructors after the rest of a
statement has been emitted is not difficult, nor is emitting destructor calls in the reverse of the
order in which the variables were constructed. At worst, this entails flagging all temporaries in an
expression as to whether they were constructed or not and conditionally invoking destructors at
the end of the statement?.

The difficult question to answer is whether a preprocessor can translate overloaded pointer
types to C and guarantee that a compacting collector works. The C++ compiler must guarantee

2Note that any compiler supporting a compacting collector also supports a non-compacting collector. A compacting
collector must guarantee that all pointers referring to the collected heap are registered with the collector. A non-
compacting collector must only assure that for each object in the collected heap, at least one pointer referring to
the object is registered. A compiler supporting the evaluation ordering rules for a compacting collector need not defer
destructor invocation until the end of a statement.

23

that the C compiler generates no unexpected and unregistered pointer temporaries which might
persist across a function call. It is of course perfectly safe to have the C compiler generate pointer
temporaries which are derived from true pointers which appear in the C++ source code. It is the
responsibility of the programmer to ensure that either all of these pointers refer to a manually
managed heap, or that these true pointers are not used in a way which might confuse a garbage
collector. Guaranteeing that a target C compiler generates no unexpected, unregistered pointer
temporaries which persist across a function call is difficult because the C++ preprocessor has
little control over compiler temporaries and other internal information constructed by the target C
compiler.

Such a translation is possible if the C++ compiler can assume that no smart pointer construc-
tor can trigger a garbage collection in a heap in which the pointer might be allocated, and that
garbage collections in these heaps are possible only during function calls. The former restriction
is required because the prevention of unregistered temporaries may require registering temporary
pointer values. If such registration itself can trigger garbage collections, the effort to register tem-
porary pointer values is futile. The latter restriction is required because it is almost impossible
to prevent a C compiler from at least temporarily loading pointers into processor registers and
other unregistered locations. In a pre-emptive multi-tasking or parallel implementation, a garbage
collection could be triggered by any task at any time. If a collection occurs when one of these
unregistered pointers exists in some task, the collector may malfunction.

In spite of the best efforts of any C++ preprocessor, there will be times when the C compiler
manipulates unregistered pointer values outside of the context of a smart pointer operator. This
occurs in exactly two circumstances:

¢ Pointer operators which manipulate smart pointers may be defined either to take true pointers
as operands or to produce true pointers as results.

o Assignment operators take an lvalue as an operand and most C compilers implement such
values as address values or pointers.

The problem of pointer operators which take true pointers as operands is easily dealt with by
placing responsibility for such operators in the hands of the users designing them. When a smart
pointer is defined or overloaded, all of the pointer operations not specified by the user on that
smart pointer type become undefined. Furthermore, all pointer operations can be defined to take
smart pointers as inputs. Users who decide to use true pointers as inputs to these operators must
themselves ensure that such use is safe.

The threat posed by assignment operators and smart pointer operators producing true pointers
as outputs is not as easily dealt with. In a general purpose garbage collector, at least the -> operator
must produce a true pointer as output. This operator must produce a machine address which can
be used by the target machine to fetch data members from the memory occupied by a collected
object. Similarly, the default assignment operator must use a machine address in the instruction
storing a value into a data member of a collected object. User defined assignment operators can be
required to take smart pointers as arguments, but language defined assignment operators cannot.
Users of collected objects can be protected from these threats only with some difficulty. Collected
class designers could conceivably implement update and access procedures for each public data
member. Carefully designed access procedures will be incapable of confusing a collector, even if
a collection occurs during an update. This would be a substantial burden however, both on the
designers and the users of garbage collected classes.

24

Another way to deal with this problem is to constrain the order of evaluation of expressions
which may involve unregistered true pointers derived from smart pointers. In particular, for any
expression involving a smart pointer, C++ could require

o that all side effects of evaluating a component of the expression take effect before evaluating
the next component, and

o that the right hand side of assignment expressions be evaluated before the left hand side is.

Since any function or operator capable of triggering a collection is a component of an expression,
the first constraint guarantees that the side effects of any smart pointer manipulations occurring
before a collector is triggered take effect before the collector is triggered. All registered pointers will
therefore be up-to-date when the collector is triggered and no temporaries derived from registered
pointers may survive the collection since updating these temporaries is a side effect of the collection.
Furthermore, true pointer outputs of smart pointer operators are either passed to other smart
pointer operators, to expressions which explicitly involve true pointers, or to a primitive assignment
operator. In the first two cases, either the smart pointer designer or the application designer
explicitly use true pointers. It is these individuals’ responsibility to protect those pointers. In
the last case, the constraint on assignment expressions ensures that the pointer value which such
statements require is the last value calculated before the assignment takes place. Any garbage
collections which take place as a result of evaluating the assignment must therefore take place
before the true pointer value is calculated.

These restrictions are easily implemented in a C++ compiler which is a preprocessor for C.
The C comma operator is already used extensively in these preprocessors to enforce an order of
evaluation on inline function expansions appearing in expressions. C guarantees that all side effects
of a component of a comma-expression take effect before the next component is executed. When
the C++ compiler detects that an expression involves smart pointers, it can rewrite that expression
using the comma operator. Every component of the expression can be separately evaluated and
the value stored in a C++ compiler temporary. The original operator in the expression can then
be invoked on the temporaries. If the expression is a primitive assignment, the comma-expression
components can be re-ordered so that the true pointer resulting from the evaluation of the left
hand side of the expression is evaluated last.

Note that this kind of expression rewriting is necessary for all expressions involving smart
pointers because in principle, any smart pointer operation can trigger a garbage collection. For
instance, consider an object cache in which the -> operator loads an object into the cache if it
cannot already find it there. If the cache is full when this happens, the -> operator triggers a
collection of the cache. Once the object is loaded, the -> operator returns a true pointer to the
object. Since the return value is a true pointer, it is not registered with the cache manager. If
another collection occurs before this pointer is used, the object to which the pointer refers may
be flushed out of the cache to make room for some other object. If an expression involves two
unprotected pointers returned from this -> operator, the first one evaluated may be invalidated
when the second is evaluated. While such a scenario may seem unlikely, it will occur every time
the two argument objects are each larger than one half the memory assigned to the object cache.

In addition to informing users that such operators are dangerous, C++ compiler writers must
be aware of this problem. These individuals may be tempted for instance, to emit code for a bitwise
copy as a call to memcpy or some similar primitive taking two true pointer arguments which were

25

returned from smart pointer operators. This kind of code emission option is safe only if operator
-> is guaranteed not to trigger a garbage collection in the memcpy argument list.

4.3 Other Language Designs

Three other design options have been discussed in this report:
o multiple storage classes with only a single, language defined pointer type,
¢ multiple storage classes with both traced and untraced pointers, and
¢ a single collected storage class with a single pointer type.

The first two options, multiple storage classes with either one or two kinds of language defined
pointers, can be implemented in a preprocessor using the type inquiry and smart pointer mecha-
nisms described in the previous sections for user defined storage managers. The first two language
defined designs differ from a user defined scheme only in that they are more type safe than a user
defined design and that the language rather than the user defines constructors, destructors and
other smart pointer operators. In addition, supporting a garbage collector directly in the lan-
guage creates opportunities for optimization which are not available to a user defined collector. An
investigation of these opportunities, however, is outside of the scope of this report.

It is also straightforward to support a single storage class in a C++/C preprocessor. The
preprocessor translates all of the C++ variable declarations into C pointer declarations which refer
to objects whose type is the original C++ object type. The compiler also emits code to register
all of these pointers with the garbage collector and translates C++ expressions which use variables
into expressions which use an additional level of indirection.

All of the garbage collector designs disucssed in this report, therefore, can be implemented
in a C++ to C preprocessor. However, a language defined garbage collector can take advantage
of optimizations which are generally not available to a user defined collector. Furthermore, it
is likely that native compiler supporting a language defined collector would have access to even
more optimization opportunities. The user defined collector proposals can take advantage of these
optimizations only if one or more smart pointer types are standardized and reserved for use by
the language. This way users can still define additional smart pointer types and compilers can
recognize the standard types and can optimize their use. An investigation of these optimization
opportunities is also beyond the scope of this report.

26

Chapter 5

An Implementation With Existing
Technology

The conclusions presented in this report were derived in large part from experience with an attempt
to implement a user defined cooperative collector similar to the one in [Edel90] and [Wang89]. This
collector and both Wang’s and Edelson’s suffer from the flaws described in Section 3.1. These
implementations are based on existing support for smart pointers and so do not redefine operators
on this pointers or reference variables. In addition, since no existing C++ compiler takes pains
to avoid creating pointer temporaries in its emitted object code, these implementations may fail
unpredictably, especially when used with a highly optimizing C++ compiler or C++/C compiler
combination. Given a C++ compiler with the smart pointer support described in Section 4.2, this
implementation as well as Edelson’s and Wang’s will become both reliable and more type safe.

The implementation in this chapter consists of three large components, a garbage collector, a
smart pointer system and a primitive type inquiry system. Of the three, only the type inquiry
system differs significantly from Edelson’s and Wang’s proposals. The smart pointer system and
garbage collector are described only for the sake of completeness.

This implementation was tested by using it to implement a simple list processing package and
then using that package to implement the LISP symbolic differentiation benchmark in [Gabr85).
While little effort was made to optimize the C++ garbage collection or list processing implemen-
tation, it was still disconcerting to see that the C++ differentiation benchmark ran a factor of
10 slower than the same benchmark coded in Chez Scheme [Dybv87]. Both benchmark programs
were run on a Sun Sparcstation, running Sun OS 4.1.1. Further research is necessary to determine
whether support for user defined collectors can be optimized to the point where these collectors
are competitive with highly integrated language defined collectors, such as those used in Scheme
compilers.

5.1 The Smart Pointer System

The smart pointer base class is illustrated in Figure 5.1. When a user defines a class which may
be allocated in the collected heap, the class must be derived from the generic collected object base
class. The user must prefix the class definition with GCREF (name) where name is the name of the
class about to be defined. The GCREF macro expands into the definition of a smart pointer class

27

/* The smart pointer base class */
class gcref {

protected:
class co *it; /* reference to collected object */
class gcreg *registration; /* where this root is registered */
public:
geref O { /* constructor */
it = 0;
registration = new_root (this);
}
geref (const geref &rhs) { /* copy constructor */

it = rhs.it;
registration = new_root (this);
}

“geref () { /* destructor */
registration -> done ();
}

void operator = (const gcref &rhs) { /+ assignment operator */
it = rhs.it;
}

class co *operator -> () { /* dereference operator */
return (it);
}

};

/* The macro which creates a smart pointer for a class */
#define GCREF(CLASSNAME)
class CLASSNAME/**/_ref : public gcref {
public:
static class CLASSNAME/**/_ref new_/**/CLASSNAME ();
CLASSNAME/**/_ref (void *x, int type) : ((int) x) {
nev_object ((class co *) x, type);
}
class CLASSNAME *operator -> () {
return ((class CLASSNAME *) gcref::operator->());
}
CLASSNAME/#*#/_ref (int x) : (x) {;}
CLASSNAME/**/_ref () {;}
“CLASSNAME/*#/_ref () {;}

PP G G O O AV

};
extern unique_int CLASSNAME/#**/_id;

/* The macro which creates a customized ’new’ for the class */
#define NEW(CLASSNAME) \
static inline CLASSNAME/**/_ref CLASSNAME/#**/_ref::new_/#*%/CLASSNAME () { \
class CLASSNAME/#*/_ref object;
object = CLASSNAME/#*/_ref (new (CLASSNAME),);
((class gcref &) object) -> type = CLASSNAME/**/_id;
return (object);

}

T

Figure 5.1: The Smart Pointer Base Class and GCREF Macro

28

extern class typeinfo {

public:
char *name; /* name of the type (class name) #*/
int number; /* type number */
int length; /* length of the type (bytes) #/
int *refs; /* offsets of po refs in type */
} *typeinfo; /* type info - null name terminates */

Figure 5.2: The Type Information Class

called name_ref which is a pointer to the new class. The GCREF macro for a class must precede the
definition of any class containing a smart pointer to that class.

The NEW macro defines the static member function name_ref::newname (). This function is
necessary because C++ requires that operator new return a void *. The smart pointer imple-
mentation requires that the new operator return a class name_ref * smart pointer. In addition,
the GCREF macro defines a variable name_id. The constructor for this variable ensures that all
these variables are given unique integer values before main starts. These values are used by the
type inquiry system to identify garbage collected types. The new.name function defined by the NEW
macro sets the type field in the collected object base class (not shown).

5.2 The Type Inquiry System

The type inquiry subsystem is activated by static constructors before main executes and pro-
duces a table of information whose format is given in Figure 5.2. The subsystem is invoked once for
every collected class. An instance of each such class is allocated in a known location in the heap.
The new._root procedure in the gcref smart pointer base class checks a global flag to see if the
type inquiry system is active. If it is, it passes the this pointer to the inquiry system. The type
inquiry system uses the pointer to calculate the offset in the collected class of the pointer being
constructed. Since C++ calls all constructors in all members of the collected class, all of the smart
pointers in the class are registered.

The type inquiry system accomplishes all this by redefining the GCREF and NEW macros in the
file implementing the inquiry system and requiring the user to #include in the type inquiry source
code the definitions of all collected classes. The inquiry macros differ from the ones in Figure 5.1
in two respects. The inquiry GCREF macro instantiates the name_id variable instead of simply
declaring it, and the NEW macro appends a TYPEINFO_REGISTER macro invocation to the macro in
the figure. The TYPEINFO_REGISTER macro defines and instantiates a static class with a constructor
as illustrated in Figure 5.3.

The static constructor asks new for a character array long enough to hold the object about to be
constructed and stores this array in a global variable. The constructor then asks new for an instance
of the class in question and new, learning from global flags that the type inquiry system is active and
that the obj_start variable is non-null, returns obj_start as the new instance. As the constructors
of smart pointers in the new object are called, the root registration system communicates to the
type inquiry system the location of the pointers in obj_start.

This implementation has a number of drawbacks. Testing a global flag in the root registration
and new procedures is clumsy and time consuming. A more effective and more portable implemen-

29

/* Define a dummy class that can register a type */
#define TYPEINFO_REGISTER(CLASSNAME)
class typeinfo_register_/%%/CLASSNAME {
public:
void typeinfo_register_/+*/CLASSNAME ();
} typeinfo_register_/#*/CLASSNAME/#*/_dummy ;

P g

void typeinfo_register_/**/CLASSNAME: : typeinfo_register_/#*/CLASSNAME () { \
char *x;
obj_start = new (char [sizeof (CLASSNAME)]);
obj_end = obj_start + sizeof (CLASSNAME);
typeinfo_start_type (CLASSNAME/#++/_id, "CLASSNAME");
x = (char *) new (class CLASSNAME);
delete ((CLASSNAME *) x);
typeinfo_end_type ();
}

P i g

Figure 5.3: The TYPEINFO_REGISTER Macro

tation would simply allocate an object on the stack and would search the root registry after the
fact for registration records referring to the object. In addition, the system is inconvenient to use.
This is because users must remember to include collected class definitions in the type inquiry sub-
system source code. It is also inconvenient because users must remember to protect collected class
constructors from the type inquiry system. These constructors can test a global flag to determine
whether the system is active and can elect to omit large scale side effects such as window or file
creation when the inquiry system is active.

5.3 The Garbage Collector

The garbage collector is a straightforward implementation of Cheney’s two space copying algorithm.
The collector searches the root registry and eliminates roots located in objects in the collected heap!
This is necessary because the root registration procedure makes no effort to determine whether a
root is located in the collected heap. Smart pointers in the collected heap are not true roots of
the directed graph, they represent links in internal nodes in the graph. When chasing a smart
pointer, the collector also determines whether or not the pointer refers to the collected heap. This
is accomplished by comparing the pointer to the bounds of the heap.

The root registration system is used even for roots in the dynamically allocated heap. A superior
registration system would ignore roots in this heap and would overload the manual new operator
to store the type of the object in a word prefixing the allocated memory in much the same way the
collected new.name functions do now. This would require the user to register all classes which are
allocated in the manually managed heap with the type inquiry system. Since the manually managed
heap may be much larger than the collected heap in some applications, an added optimization would
be to maintain two manually managed heaps, one each for classes containing and not containing any

!This idea was inspired by Wang’s notion of including a dummy object at the bottom of collected objects whose
task it is to deregister all pointers in the object when the object is allocated in the collected heap [Wang90].

30

smart pointers. Only the heap containing objects with smart pointers would need to be searched
during a collection then.

The collector has a number of serious limitations. It does not attempt to invoke destructors on
objects whose storage it reclaims. In general, providing such support is not trivial [Atki89] and is
beyond the scope of this report. The collector does not support pointers to the middle of collected
objects. Such support can be added to the collector by employing the technique of [Det190].

5.4 Summary

This implementation of a smart pointer based cooperative garbage collector should work much more
reliably in a C++ which supports the changes proposed in Chapter 3. In its current form, a careful
programmer can implement some simple test programs. The one test implemented revealed that the
implementation is extremely slow. Edelson argues that this is not necessarily so and presents some
primitive benchmark results to the contrary for his compacting collector. Edelson’s benchmarks
however, do not account for the effects of the expression rewriting described in Section 4.2. This
rewriting is necessary for any user defined compacting collector.

31

Chapter 6

Conclusions

A number of conclusions can be drawn about garbage collection in C++:

¢ A C++ which supports multiple storage classes can cooperate with a garbage collector only
to the extent of being mostly-cooperative.

¢ A cooperative collected C++ which supports only a single pointer class can be implemented
as a preprocessor for C, but suffers from compatibility problems with existing C libraries.

¢ A cooperative collected C++ which supports both traced and untraced pointers can be im-
plemented as a preprocessor for C and suffers from few compatibility problems, but is not
sufficient to support applications such as persistent object caches and distributed object
stores.

¢ Parameterized smart pointer classes can be used to implement garbage collectors for C++.
Such classes require:

— changes to the C++ declaration syntax to identify a parameterized type as a smart
pointer type,

— changes to the C++ declaration syntax to allow a smart pointer type to modify the decla-
ration of classes, reference variables and all other data types which may be implemented
using a true pointer,

— a better defined order of evaluation for expressions involving smart pointers and smart
pointer destructors,

— a way to determine when a variable is allocated either on the stack or in a static store,
and

— a guarantee that automatic and temporary destructors are evaluated in a stack-like
manner.

¢ Multiple user defined storage managers in an application may require facilities for cooperation
in order to be effective.

e A general purpose type inquiry system would simplify the implementation of user defined
collectors, but may unacceptably increase the size of C++ objects.

32

o All these changes can be implemented in a C++ compiler whose output is ANSI C code.

Given that the type inquiry system in Chapter 5 is adequate to the needs of a garbage collector
and given that the system is not extremely inconvenient to use, this report concludes that further
research is needed to justify the cost of a built-in runtime type inquiry system. The cost of such
a system in terms of larger object files may be greater than the benefit in terms of programmer
convenience. This report contains no detailed syntax proposal for a smart pointer system for C++
because further research is needed to determine the kinds of facilities needed for cooperation among
user defined storage managers. If experimentation proves that extensive or complex support for
cooperation is needed, such support may need to be built into the language. If this is the case, any
syntax proposal in this report would be obsolete at the conclusion of the coordination research.

The question of whether a native C++ compiler supporting a mostly cooperative user defined
collector is superior to or faster than the best available conservative collector is still open. It is
clear though, that a mostly cooperative collector is more costly than a completely cooperative
collector. Mostly cooperative collectors must examine each root pointer and determine whether or
not it refers to the collected heap. C++ collectors must also find the beginning of collected objects
when given a pointer to the middle of one. Neither of these costs are incurred by most traditional
completely cooperative collectors.

33

Bibliography

[Atki89] Atkins, M. C.; and Nackman, L. R. The Active Deallocation of Objects in Object-Oriented
Systems Software Practice and Experience, V 18, N 11, Nov 1988, pp: 1073-1089.

(Bar89a] Bartlett, Joel F. Compacting Garbage Collection with Ambiguous Roots Technical Report
88/2, DEC Western Research Laboratory, October 1989.

[Bar89b] Bartlett, Joel F. Mostly-Copying collection Picks Up Generations and C++ Technical
Report TN-12, DEC Western Research Laboratory, October, 1989.

[Bar90] Bartlett, Joel F. A Generational, Compacting Garbage Collector for C++ Position Paper
for the Workshop on Garbage Collection in Object-Oriented Systems, OOPSLA ’90, Oct 1990.

[BoWe88] Boehm, Hans-Juergen; and Weiser, Mark Garbage Collection in an Uncooperative Envi-
ronment Software Practice and Experience, V 18, N 9, Sept 1988, pp: 807-820.

[Capl87] Caplinger, Michael An Information System Based on Distributed Objects Object-Oriented
Programming Systems, Languages and Applications Conference Proceedings, SIGPLAN Notices
V 22, N 12, December 1987, pp: 127-137.

[Capl88] Caplinger, Michael A Memory Allocator with Garbage Collection for C. USENIX Winter
Conference, 1988, pp: 322-777.

[CDGJ88] Cardelli, Luca; Donahue, James; Glassman, Lucille; Jordan, Mick; Kalsow, Bill; and
Nelson, Greg Modula-3 Report (revised) DEC Western Research Laboratory, 1988.

[Chas87] Chase, David R. Safety considerations for storage allocation optimizations Proceedings of
the SIGPLAN ’87 Symposium on Interpreters and Interpretive Techniques, SIGPLAN Notices,
Vol 22, No 7, Jul 1987.

[Cohe81] Cohen, Jaques, Garbage Collection of Linked Data Structures, ACM Computing Surveys,
Vol 13, No 3, Sep 1981, pp 341-367

[Detl90] Detlefs, David L. Concurrent Garbage Collection for C++ CMU-CS-90-119, Carnegie
Mellon University, Pittsburgh, May 1990.

[Dybv87] Dybvig, R. Kent The SCHEME Programming Language Prentice Hall, Englewood Cliffs,
N.J., 1987.

[Edel90] Edelson, Daniel Ross Dynamic Storage Reclamation in C++ Master’s Thesis, University
of California at Santa Cruz, UCSC-CRL-90-19, June 1990.

34

[Gabr85] Gabriel, Richard P. Performance and Evaluation of Lisp Systems The MIT Press, Cam-
bridge, Massachussets, 1985.

[Gras90] Grass, Judith E. The C++ Information Abstractor USENIX C++ Conference Proceed-
ings, 1990, pp: 265-274.

[InLi90] Interrante, John A.; and Linton, Mark A. Runtime Access to Type Information in C++
USENIX C++ Conference Proceedings, 1990, pp: 233-240.

(Knut73] Knuth, Donald E., The Art of Computer Programming, Volume 1, Fundamental Algo-
rithms, Addison - Wesley, Reading, Mass., 1973, pp: 412-413.

[KID90] Kurihara, Satoshi; Inari Mikio; and Doi Norihisa SPiCE Collector: The Run-Time
Garbage Collector for Smalitalk-80 Programs Translated into C Position Paper for the Workshop
on Garbage Collection in Object-Oriented Systems, OOPSLA ’90, Oct 1990.

[Mart90] Martin, Bob Smart Pointers — A Proposed Language Extension USENET comp.lang.c++,
Dec 28, 1990.

[ScEr88] Schulert, Andrew; and Erf, Kate Open Dialogue: Using an Extensible Retained Object
Workspace to Support a UIMS USENIX C++ Conference Proceedings, 1988, pp: 53-64.

[Seli90] Seliger, Robert Extending C++ to Support Remote Procedure Call, Concurrency, Ezception
Handling and Garbage Collection USENIX C++ Conference Proceedings, 1990, pp. 241-264.

[Stro87a] Stroustrup, Bjarne The evolution of C++ 1985 to 1987 USENIX C++ Workshop Pro-
ceedings, 1987, pp: 1-22.

[Stro87b] Stroustrup, Bjarne Possible Directions for C++ USENIX C++ Workshop Proceedings,
1987, pp: 399-416.

[Stro88] Stroustrup, Bjarne Parameterized Types for C++ USENIX C++ Conference Proceedings,
1988, pp: 1-18.

[Unga84] Ungar, David, Generation Scavenging: A Non-disruptive High Performance Storage
Reclamation Algorithm, ACM SIGSOFT/SIGPLAN Practical Programming Environments
Conference, Apr 1984, pp: 157-167

[Wang89] Wang, Thomas The “MM” Garbage Collector for C++ Master’s Thesis, California Poly-
technic State University, San Luis Obispo, California, 1989.

[Wang90] Wang, Thomas Private Communication, Dec 1990.

[WBHG88] Kim, Won; Ballou, Nat; Chou, Hong-Tai; Garza, Jorge F.; Woelk, Darrel; and Banerjee,
Jay Integrating an Object-Oriented Programming System with a Database System OOPSLA ’88
Proceedings, pp: 142-152

35

