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Abstract

This tutorial paper presents an overview of 3D computer animation with an emphasis
on motion control. A taxonomy of various motion control techniques is presented and
examples are given. Also presented is the use of implicit surfaces (known as Soft Objects),
for modelling and animation. The usefulness of this technique as applied to animation is
shown along with a number of examples.
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Figure 1: Graphicsland made from polygons, particles and fractal mountains
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Part I

Computer Animation —

1 Introduction

In the last ten years, computers have become sufficiently fast and inexpensive to allow a
computer animation industry to grow from almost zero to 150 million dollars in 1987. During
this time the technology has advanced to permit the making of landmark animated shorts,
from Peter Foldes’ “La Faim” (1974), with software by Nestor Burtnyk and Marcelli Wein
(Burtnyk et al 76], to John Lasseter’s “Luxo Junior” (1986) [Lasseter 87], with software by
Bill Reeves et al from Pixar. The skeleton techniques used in “La Faim” were essentially 2D.
The method employed extends the traditional animation concept of “key framing”. When
using this technique, an animator draws a character posed in two or more “key” positions, and
uses the computer to generate interpolated drawings in the frames spanning between them. By
contrast, “Luxo Junior” uses 3D computer animation, in which digital models of the characters
and backgrounds are described in three dimensional space and are moved using a variety of
techniques, such as by simulating the dynamics of each motion. The common thread binding
these two animated pieces is not that a computer was used to produce the pictures, but that
they both succeed as animated shorts because the artists who made them share the same skills
that have always distinguished good animators. The computer has allowed them to produce
their art in an exciting new form, and has opened the door to many other enthusiasts who may
have the ideas and the ability to breathe life into a character, but lack traditional draughting
skills. Although there are several commercially available animation systems, the best computer
animated films are generated by a team consisting of at least one animator and one computer
scientist. Regardless of how sophisticated and general-purpose the tools are that an animation
package provides, animators often want to go beyond the capabilities offered, and require a
programming solution. The technology is advancing extremely quickly: hardware becomes
faster and cheaper, and the volume of literature describing new software techniques grows
alarmingly each year. An animator buying a system today could be put out of business by his
competitor who has tomorrow’s system.

There are many applications of computer animation in industries other than entertainment
and advertising. Flight, and other, simulators have attained a fair degree of sophistication,
responding with real-time graphics to a user’s inputs. Scientific visualisation uses the tech-
niques of computer animation to present complex data in a more pleasing and intelligible form.
Such applications are intimately linked with simulation, and techniques from that discipline
are generally useful in others.

In this tutorial, the fundamentals of 3D animation are presented with particular emphasis
on motion control, or how to make models move. Of course, the work of an animator will
always be judged by the final result, but a working knowledge of existing tools is a means to
help him to convey the vision in his mind to the big (or little) screen, with less tedious effort.

1.1 The elements of 3D Computer Animation

In traditional animation, the end product is a series of cells which are overlaid and pho- é
tographed for each film frame, often with added optical effects, such as pans and zooms, added
at the camera stage. Reaching this final production requires many steps, including designing
characters and backgrounds, and prototyping movements with flip books or by filming rough
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sketches (known as “pencil tests”). Key frame drawings are made; the inbetween segments are
drawn and tested; this leaves a series of pencil drawings which must be inked and painted, each
character possibly being done in isolation on sheets of clear acetate; backgrounds are painted; =
and the results are composited and photographed.

Model animation involves the building of a miniature world. High-tech cameras with
periscope lenses are used to photograph the models, giving them a sense of scale. Every
movement of each character must be carefully calculated and the model changed with skill and
care. Like model animation, 3D animation also requires that the artist create a 3D world. Each
character and background object must be crafted using one of a variety of digital techniques.

As with model animation, specifying the motions of these computer models is the most
complex operation to be carried out, and the one for which the least amount of packaged
software is available. The computer animator has the advantage that the digital equivalent of
a camera is weightless, sizeless, and can be moved along any desired path. Each frame of the
3D scene must be rendered: a view is chosen and the 3D model is projected as a 2D shaded
image. This operation has been the subject of much research and there are many techniques
available for it. Usually, rendering algorithms present a trade-off between picture quality and
computation time. There are steps beyond rendering: transferring the finished images to film
or video, and subsequent editing. Since complex animation frames at high resolution cannot,
in general, be manufactured in real time, this last step requires some special hardware and a
talented film or video editor.

To manufacture the finished animation frames requires the following major steps:

e Modelling
¢ Motion Control
¢ Rendering

Figures 2, 3 and 5 summarise these three areas, showing a taxonomy of each. The following
sections present brief descriptions of trends in modelling and rendering, and a somewhat more
detailed review of motion control. In the second part of this tutorial, a modelling method
which uses implicit surfaces is described, and the way in which this technique is particularly
appropriate for certain kinds of animation is shown.

2 Modelling

Building models for computers to display is a natural application and was accomplished in
the 1950’s on vector displays and graph plotters. Any mathematical function which produces
points on a surface in 3-space could potentially form the basis of a modelling method. However,
with many such techniques it is difficult to achieve the desired shape and also difficult to render
the resultant surfaces. Since this tutorial is mainly concerned with motion control, only a brief
explanation has been given for the major areas of modelling. Figure 2 shows various different
classes of modelling techniques. There are three main categories:

o Surface Modelling
o Solid Modelling
¢ Generative Processes

2.1 Surface Modelling J

As the name implies, in surface modelling, information is stored about the surface of the model.
A point in space is either on the surface or it is not. A polygon mesh is an example of such a



Navigating the Animation Jungle 3 J

Modelling Techniques

Solid Models Surlace Modsls m =
Fraciais Particles
Solids of Transformation Consir Solld Geom

Aotalion Translation Scaling

Surfaces of Tnnsrom-llonj &olygon Modm) | Polygon Msshu)

Functional Surfaces

Rotation Transiation

Implicit Functions

Cubic Splines Palches

Bezier Splines Bela Splines Quadrics

Figure 2: A Taxonomy of Modelling Techniques

model. Some objects which have many curved surfaces are best modelled using curved spline
patches. Patches are based on parametric cubic curves. Some of the latest work done in this
area permits the user to have fine control over the shape of the patch; smooth curves, and
sharp changes in slope can be described using beta splines (see [Barsky 81]). This technique
allows the user to make a curved surface patch and then smoothly join it to others, forming a
solid object.

2.2 Solid Modelling

In solid modelling, models are described by the volume of space which they occupy. A solid
model has an inside and an outside. CSG or Constructive Solid Geometry is a solid modelling
technique where objects are built from primitives that are usually defined as quadrics. (Sphere,
cylinder, plane etc.) The primitives can be combined: for example, to make a hole through a
sphere, a cylinder is subtracted from the sphere. CSG systems are often implemented using
an octree data structure. Implicit surfaces, or SOFT objects, are different from parametric
surfaces because they have a different mathematical definition, discussed in part two of this
tutorial. Like patches they are defined by a set of keys, but unlike patches they have the
property that they can be blended merely by placing their “ keys” near each other. Part two
presents methods for modelling and animating these surfaces.

2.3 Generative Processes J

These can apply to either of the above categories: models can be generated by some algorithmic
process, as with fractals [Mandelbro 77], or particle systems [Reeves 83]. A recent example of
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Figure 3: A Taxonomy of Rendering Techniques

a generative process which has been used to produce 3D models is an extension of Conway’s
life game to 3D [Thalmann 86].

2.4 Composing Models

It may be appropriate to build one model from a variety of primitives. This is usually ac-
complished by structuring the model as a hierarchy, as the Graphicsland system does (see
[Wyvill et al 86a]). Figure 1 shows a tree built, using a recursive hierarchy, from polygons,
with particle systems as leaves. Fractal mountains appear in the background.

3 Rendering

During the 1970°s and 80’s, much research was put into the development of rendering algo-
rithms. The main obstacle is that if a scene consists of n objects, then a naive algorithm will
compare each object with every other object to check if it is occluded from a particular view-
point (O(n?)). If n is large, this is a time consuming task. The class of rendering algorithms
whose time complexity depends purely on n are known as object space algorithms. Another

class of rendering algorithms work in image space, where the screen resolution, or number of g

pixels, becomes the dominant factor (see [Sutherlan 74]).
One early algorithm simulates the paths of light rays: the ray tracing algorithm sends out
rays from the eye point through the scene, and finds the intersections between the ray and
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Figure 4: Ray Traced Rabbit

any object on its path. Ray tracing has the benefit that rays can be traced recursively, as
they are transmitted through transparent objects and reflected from shiny ones. Rays can
also be traced from an object intersection point towards the light source(s); if an object is on
the ray path then the intersection point is in shadow. (Figure 4 shows a ray traced rabbit
with shadows.) Early versions checked all m rays against all n objects in the scene. Since
m can be tens of thousands, or millions, for anti-aliased scenes, the algorithm is slow. One
way of speeding up ray tracing is to reduce the number of intersection calculations on a ray’s
path, either by surrounding each object, or hierarchy of objects, with a bounding volume, or
by subdividing the scene space. In the latter case, the volume of the scene is split into cubic
cells (vozels), and the objects are sorted into the voxels which contain them. (Some objects
will appear in more than one voxel.) Each ray is intersected with each voxel that it must
pass through and, if any objects are present in the voxel, only then is it necessary to check
for intersections of the ray with those objects. Since many objects may be clustered in a few
voxels, further subdivision may take place; in this case the voxel is often stored as an octree
data structure. {Glassner 84], [Kay et al 86), [Cleary et al 87].

To manufacture highly realistic scenes great attention must be paid to the lighting model
employed. An object may be partly illuminated by light reflected from other objects as well
as by primary light sources. Most lighting models account for reflected light by adding a
constant ambient light value into the illumination of every point. Recent work employs a
technique known as radiosity [Immel et al 86)], in which each surface is broken into patches,
and the illumination effect on each patch by every other patch in the scene is calculated. This
technique produces excellent results but requires large amounts of computer time.

Surface detail is often added during the rendering stage rather than by trying to model small
details. Early work on tezture mapping was done by [Catmull et al 80] and [Feibush et al 80,
in which 2D images were mapped onto 3D objects. Later work [Perlin 85], [Peachey 85], and
[Wyvill et al 87) uses 3D functions to specify the colour or direction of the reflection vector
(surface normal) at any point in space. Figure 12 shows conventional textures on the walls and
3D “wood” texture on the four posts of the bed. A combination of sine waves with amplitude,
frequency and phase modulation in z, y and 2z was used to create the 3D texture space in
which the wood exists. For a full treatment of rendering algorithms, see the bibliography at
the end of this paper.
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Figure 5: A Taxonomy of Motion Control Techniques
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4 Animation - Controlling the Motion

To animate, we wish to simulate the appearance of motion of real objects. This motion control
falls roughly into two classes:

o Simulation
o Illusion

To look natural, animation has to represent possible motion in the physical world. In this
sense, the best animation is based on detailed simulation which accounts for the dynamics of
the action. In such a simulation, a mathematical model representing the physical laws that
govern the motion would, as a consequence, produce the desired effect. In many applications
it is not necessary for an animation sequence to be an accurate dynamic model; unless the
animation is intended to visualise the results of a simulation, it is only required to make the
motion appear realistic to a human viewer. The technique of faring in hand animation can be
regarded as a crude attempt to use a few simple rules to do this. Faring creates the illusion
of acceleration that would be present in an accurate dynamic simulation of the same motion.
The taxonomy of motion control (see figure 5) portrays this distinction.

At the lowest level, 3D Computer animation is based on specifying the position and orienta-
tion of an object at some time. This kinematic description of animation can be manufactured
by a whole variety of techniques. At the highest level an animator may wish to give a command
such as “walk to the door”, it would then be up to the system to calculate how that walk is to
be achieved, and finally produce the kinematic description for the low level part of the system
(inverse kinematics). Such goal directed animation is the subject of much current research with
applications in robotics as well as the entertainment/advertising animation industry. At an
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Figure 6: Sample Motion Curves

intermediate level an animator may wish to show a falling human, a somewhat easier task to
calculate than walking, since this problem only has one solution if enough initial information
is specified. Given the constraints and initial condition, the system can then formulate a set
of differential equations that describe the fall. This dynamics approach should produce an
accurate simulation of the motion, provided the dynamic model is sufficiently detailed. To
illustrate the difference between a dynamic simulation and the kinematic approach (aided by
a script file or interactive system) consider a bouncing ball. The animator can define a ball
and move the position of the ball along a a damped sine curve as illustrated in figure 6. The
dynamic solution would calculate the position of the ball from the Newtonian equations:

v? = u? 4 2gss = ug + 0.5it g is 9.81m/sec?

Provided the initial conditions were known this very simple dynamic model can look quite
reasonable except the motion will not cease very accurately. In fact the physical model used
is incomplete. No term has been added for air resistance or to account for the material that
the ball is made from. These factors will cause the motion to damp out. An example of using
a dynamic solutions applied to human animation is given in section 5.
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Figure 7: Using linear interpolation for rotation doesn’t work

4.1 Key Frame Interpolation

In hand animation, an animator will draw a character in some position, make a second drawing
of the character in a new position and then manufacture the inbetween frames. The digital
equivalent to this is to interpolate between key positions of models. A simple approach would
be to use linear interpolation between key frames, but in real life objects don’t start and stop
suddenly. There is usually some kind of smooth acceleration depending on the situation. Nei-
ther should interpolation necessarily take place along a straight line in space. Particularly with
camera moves, a series of straight line segments would make the motion appear discontinuous
as the camera suddenly changes direction. A smooth curve would be far more natural.

Figure 7 shows another problem introduced by linear interpolation in space. To move the
rod from P1Q1 to P2Q)2, implies a rotation. Linear interpolation would make the rod change
length as it rotates. Smooth motion curves can be applied to any part of the animation in both
space and time. In space, as shown in figure 7, and in time also to make the rod ease in and
ease out of the motion (cubic curve) as it moves. Models, lights, cameras, fades, colours, and
so forth can all follow some interpolated path, according to a curve. The simplest method is to
use a function such as a cubic polyromial, from which is sampled the position at any instant
in time. Since the function is continuous, time between key frames can be scaled arbitrarily
by the animator before the final sampling is taken. Some examples are given in figure 6.

4.2 Parametric Interpolation

Parametric systems use keyframe interpolation at a slightly higher level than simple key frame
systems. Fach object is defined by a set of parameters, and the values of these parameters
are interpolated between the keys. If a model is defined by surface patches, for example, the
control points can be interpolated and the patches reshaped from the new data. Examples of
this type of system are BBOP or EM, both developed at the NYIT Graphics Lab and described
in [Sturman 84] and [Hanrahan et al 85]. More elaborate control of the motion is discussed
in [Steketee et al 85], in a system which guarantees continuous acceleration while still having
local control of keypoints, and the ability to join motions. Doris Kochanek points out that
splines can avoid the discontinuities in the direction and speed of motion produced by linear
interpolation. She introduces the use of three control parameters, bias, tension, and continuity,



Navigating the Animation Jungle 9 =3y

to provide the animator with more control over the motion [Kochanek 84].

As well as smooth motion through time, it is important that camera moves follow smooth
motion paths through space. Using Kochanek’s spline technique, the animator can place a
camera at a number of key frames, then interpolate smoothly between them through space
and time. Similar control can be applied to any other object. Sometimes a discontinuity in
time is required, as when bouncing a ball. One way of representing this motion is to apply a
damped sine wave: at any time the position of the ball can be found from the curve shown
in figure 6. Sometimes the animator will want more control than provided by a damped sine
wave. Kochanek’s curves allow the animator to smoothly change the “continuity” parameter
to produce the desired results.

Sometimes the animator will want to change one model into another as opposed to the
normal inbetween problem of interpolating between different positions of the same model. The
main problem with such a metamorphosis is that the source and destination models do not
precisely match. If the objects are polygonal they may contain different numbers of polygons or
the polygons may not have the same numbers of vertices. These problems are not found when
using the same model in different positions. A more detailed examination of metamorphosis is
given in part 2.

4.3 Scripting Systems

Keyframe animation has the advantage that an animator can interact with the motion and
specify movements by direct manipulation. However, much animation is algorithmic in nature,
and difficult to specify interactively. For this reason, many systems allow the user to specify
the animation in a script. There are many examples, [Chuang et al 83], [Thalmann et al 85),
[Reynolds 82], [Zeltzer 82]. The Ani system, [McPheeter et al 84] is typical. Ani (part of
the Graphicsland system) reads a script and produces a description of every frame in PG, a
modelling language. Ani is a multiple track system. Instead of describing each keyframe each
object pursues its own course of action, the animator creates tracks of animation and places
objects on their own track. The object is moved by interpolation as in a parametric system,
however the difference is that the tracks are independent, and a total description of each frame
does not exist explicitly. A track is effectively a list of known events in time. A good example
of such a system is Twizt [Gomez 85]. Scripts in this system are kept as a log of the animators
input which is purely interactive. An example of an animation script is given in section 5 .

A somewhat more powerful but less high-level approach than a scripting system is to extend
an existing general purpose programming language to provide an environment where it is easy
to specify algorithmic animation while also offering the full power of a programming language.
The MIRA animation system ([Thalmann et al 85]) is a good example of the language Pascal
extended to cope with animation.

Most animation systems store the models in some sort of hierarchy. A model is manufac-
tured from different parts, each containing sub-parts, and so on. Each node in the hierarchy
contains a geometric transformation matrix which defines how the part is translated, rotated
and scaled relative to its parent. For example, a train puffs smoke which moves along with
the train; after 1/2 a second the train continues leaving the smoke behind to disperse in the
wind. The whole animation is then repeated every 2 seconds. A script system allows such
algorithmic animation to be defined without the animator having to learn a full programming
language. The problem is algorithmic: in each cycle, the smoke, which has it’s own local mo-
tion associated with it, must be attached to the engine. The easiest way is to move the smoke
relative to the chimney until the smoke must be left behind. While the smoke is “owned” by

=
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the chimney (which in turn is “owned” by the train) everything that happens to the train (i.e.
geometric transformations) also happens to the chimney and in turn to the puff of smoke. As
soon as the chimney ceases to own the puff, the puff no longer moves with the train. However,
the global position of the smoke in the world is required to remain the same. To achieve this,
the puff must be attached to some object, in this case the land after 1/2 a second figure 8
shows the structure. One of the problems with altering the topology of an object in motion is
what happens to the orphaned part, in this case the smoke puff. It has velocity and possibly
some acceleration, since it is travelling with the train. In the example, the puff will come to
an abrupt halt unless the data structure carries sufficient information to allow the object to be
eased out of its motion. Many animation systems have separate data structures for the model
and for the animation. By using the modelling hierarchy to also store the motion control in-
formation, velocity and acceleration become information which is readily accessable when the
topology of the systemni is altered dynamically.

4.4 Rotoscoping

When human animation was first attempted, movement data was often retrieved via mo-
tion recording. Rotoscoping is one such method, where joint coordinates are hand digitized
by viewing at least two orthogonal views of a previously recorded scene (on film or video)
[Ridsdale et al 86]. Though such a technique is tedious, it began the trend toward analysing
human motion for computer animation. Later techniques included the use of goniometers and
(expensive) video scanning equipment to record 3-D motion. The results allowed some of the
first reasonable animation sequences of human figures, but the techniques used were ultimately
too specific to adequately address the human animation problem.

4.5 Inverse Kinematics

Direct kinematics seems to be used mostly in low level animation systems where movements

must be mostly described by the animator. To simplify the methods for specifying motion,

higher levels of description are needed. One such method is inverse kinematics. Rather than =
calculate the position of a distal segment based on given joint rotations (as in direct kinematics),

inverse kinematics calculates the joint rotations based on the position of the distal segment %7’
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[Wilhelms 87]. This allows for more natural movement specifications such as “move hand to
cup”.

Wilhelms [Wilhelms 87] notes that inverse kinematics provides a method of constraining
bodies within their world. A walking figure, for example, must have its feet constrained to
the ground (the tendency is for a swing motion where the foot drops below the ground level).
Reach goals, often used in robotics, are also solved with inverse kinematics by specifying the
location a robotic arm should reach for, and letting the joint calculations be automatically
generated. This leads us to a problem found in human animation, but not in robotics: how is
a movement made to appear human?

The manner in which a robot arm reaches its goal is not important (ignoring collisions for
now), however, when animating human forms the motions must appear real. In what order
and with what speed and extent do joints rotate to allow the distal segment to reach its goal?
What constitutes a natural human motion is not clear. The redundancy of the human figure
contributes to this problem. Even if one movement was determined, this solution would not
generalise to other movements, and certainly not to other limbs. To date, no adequate solution
for this problem has been offered.

4.6 Motion Dynamics for Animation

Dynamics analysis considers mass, force, and the effects of both combined. It is a simulation of
the world, and therefore offers a more automatic approach than kinematics. Dynamics analysis
also offers a more "complete” analysis of a scence as it considers effects of bodies on each other.
It is, however, computationally expensive and has therefore not been implemented in many
systems until recent years.

The simulation used in dynamics is based on Newton’s second law [Wilhelms 87]:

f = m*a

Dynamics equations are developed for each degree of freedom in a scene. A rigid, articulated
figure with 18 degrees of freedom which is free to move or rotate in its environment has a total of
24 dynamics equations associated with it. Various types of equations can be used, depending
on the application. Lagrangian, Gibbs-Appell and recursive dynamics equations are quite
common.

To define the forces and torques acting on a body, several methods can be employed. One
method is to provide automatic calculation of forces and torques which have known equations
associated with them (such as gravity). Another method is to model springs and dampers for
certain joints and segments. The final method relies on user input. Clearly, this input cannot
be too complex if the system is to be useful.

Wilhelms [Wilhelms 87] notes three problems associated with dynamics analysis:

o the cost of the analysis is high.
¢ a numerical instability exists when bodies are complex.
e motion control is restricted to high levels only.

Wilhelms has implemented a system called Deva which uses dynamics analysis to animate
rigid, articulated bodies [Wilhelms 85]. Armstrong and Green have also been using dynamics
analysis for motion control, and have published several interesting results [Armstrong et al 85).

[~

b
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5 The Chmilar/Herr experiment

To illustrate the difference between dynamics and kinematics I ran a somewhat ad hoc ex-
periment where two animator/programmers were asked to make a short piece of animation
showing a human figure falling from a diving board. The figure must make 3/4 of a somersault
before reaching a mattress on the ground. The figure should then bounce from the mattress.
Both animators assumed the figure is limp.

5.1 The Kinematic Solution

To produce the kinematic solution requires that the animator has a keen eye for detail and
is able to capture the essential parts of the motion to convey what is happening. Using the
Graphicsland System the motion is prototyped, alterations are made and a new cycle begun,
everything is done by trial and error. By observing a physical model it was seen that the man
would do half a twist and obviously accelerate under gravity. As the figure begins to fall he will
rotate about the heel position until he leaves the platform. The man will then spin about his
centre of mass. The major motions were blocked out and observed with a rigid stick figure. By
trial and error various motions of limbs were added. What followed was a critical adjustment
of the various parameters (joint angles etc.) which define the motion. It became apparent that
the hips should “lead” the motion with other body parts following. It was also noticed that a
pair of good flailing arms conveyed the idea that the figure was falling, more convincingly than
getting the acceleration of the figure precise. The final animation script in Ani is as follows:

# detailed body limb motions

spin upper_body x -15 1..6 smooth
spin upper_body x 30 9..15 smooth
spin upper_body x -15 20..21 steady
#

spin upper_body x -10 21..24 smooth
spin upper_body x 30 24..29 smooth
spin upper_body x -20 32..33 steady
#

spin upper_body x -5 33..35 smooth
spin upper_body x 17 35..38 smooth
spin upper_body x -12 38..39 steady

spin head x -14 1..9 smooth
spin head x 18 11..17 smooth
spin head x -4 20..21 steady

spin r_arm x 25 1..8 smooth
spin r_arm x -40 11..20 smooth
spin r_arm z -70 9..18 smooth
spin r_arm x 15 20..21 steady
#

spin r_arm z 40 21..24 smooth 22
spin r_arm x 40 21..23 smooth
spin r_arm x -80 23..32 smooth

%

Se—=
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40 32..33 steady

10 33..36 smooth 34
20 33..34 smooth
-40 34..38 smooth
20 38..39 steady

22 1..7 smooth

-34 11..20 smooth
50 14..20 smooth
12 20..21 steady

-30 21..24 smooth 22
38 21..23 smooth
-76 23..32 smooth
38 32..33 steady

-10 33..36 smooth 34
18 33..34 smooth
-36 34..38 smooth
18 38..39 steady

1_lower_arm x 30 9..18 smooth

1_lower_arm x

r_leg
r.leg
r_leg
r_leg
r_leg

1 leg
1l leg
1l.leg
1. leg
1l leg

1. 1leg
1.leg

1. leg
1 leg

3 1..5 smooth

7 11..16 smooth
=10 20..21 steady
-20 12..16 smooth
23 16..20 smooth

3 1..5 smooth

-10 11..15 smooth
7 19..20 steady
=25 12..15 smooth
20 16..20 smooth

-15 20..29 smooth 23
15 29..33 smooth 32

-6 32..37 smooth 34
6 37..39 smooth

1l_lower_leg x 3 1..6 smooth

1_lower_leg x -3 20..21 steady

30 10..18 smooth
-30 20..21 steady

=30 20..21 steady

13 &=
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spin 1_lower_leg x 7 21..26 smooth
spin 1_lower_leg x -7 32..33 smooth S

spin r_lower_leg x 2 1..5 smooth
spin r_lower_leg x -2 20..21 steady
#

spin r_lower_leg x 6 21..25 smooth
spin r_lower_leg x -6 32..33 steady

spin lower_body x -20 14..20 smooth
spin lower_body x 20 20..21 steady
#

spin lower_body x 10 21..24 smooth
spin lower_body x -30 24..29 smooth
spin lower_body x 20 32..33 steady
#

spin lower_body x 8 33..35 smooth
spin lower_body x -22 35..38 smooth
spin lower_body x 14 38..39 steady

# major body motions

# spin on heels

spin body y -180 1

spin body y -180 8..20 slowin 16

move body 0 3.3 0 1 #translate body up to rotate around heels
move body 0 0 0 10 #translate to rotate around hips

rotate body x 270 1..20 slowin 14

move body 0 24 -6 1

# fall after 90 degrees reached
move body 0 20.7 -2.7 10
move body 0 0 -2.7 10..20 steady #NOTE: not slowin!

# bounce one
move body
move body

-2.7 20..26 slowout
-2.7 27..32 slowin

O O
O W

# bounce two
move body 0 2 -2.7 33..35 slowout
move bedy 0 0 -2.7 36..38 slowin

5.2 The Dynamic Solution

To solve the problem of the falling man by the dynamics approach requires a different set of =
skills compared with the kinematic. The essence of dynamics is that motions are described by
differential equations. Two methods were considered:

ke

=
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o consider forces and torques involved and use F = ma and 7 = Ia &
¢ consider energy and use Lagrange’s equation

It turns out that the first approach requires a great deal of algebra to arrive at the required
set of differential equations compared with using Lagrange’s equation. Some of the reasons
why Lagrange’s equations are useful:

¢ physical intuition helps if you want to get the forces right

e dealing with energy (scalar) is somewhat easier than using vector quantities
o Lagrange’s equation allow the easy use of constraint equations

e allows us to introduce new coordinates that can make the problem easier

The major steps in deriving differential equations with Lagrange’s equation are:

. Pick suitable coordinates.

. Write constraint relations between coordinates.

. Write the kinetic and potential energy expressions.

. Use Lagrange’s equation to get the differential equations.

. Differentiate the constraint relations to get enough equations so that all the accelerations
can be solved for (accelerations are the crucial quantities to solve for in these problems).

6. Write expressions for the generalised forces; the limits on how far each limb can rotate,

damping, the mattress force.

Ut o O B

The first major difference between the dynamic and kinematic approach is that the problem is
too hard to solve dynamically without making some simplifying assumptions (at least in the
one week alloted for this experiment).

1. The man lies in a vertical plane (a full 3D version is being prepared).
2. The body has only 3 segments - body, arms, legs.
3. Initially leaning over the edge of the diving board.

Two systems of differential equations are used

System 1 Constraints included to bind feet to diving board.
System 2 No constraints to bind feet to diving board.

Initially system 1 is used, when the body is below the board, system 2 is used. The final
conditions for system 1 are the initial conditions for system 2. '

Figure 9 shows the body model used for the animation. Since left and right sides of the
body do not work independently, only five coordinates are needed to describe the position of
the body:

z, y position of centre of mass of the body (mass = m)
6 angle body makes with horizontal

6, angle legs make with horizontal

0, angle arms make with horizontal

Other coordinates are introduced for convenience:

T1, y1 position of centre of mass of the legs (mass = my)
T2, Y2 position of centre of mass of the arms (mass = m;)
Moments of inertia for arms, legs and body:

1 .2

1 1
I = Emlc Il = 1—2-m11012 I2 = I‘Q‘m2lc22
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foot foot,

Platform

Figure 9: Body model for dynamic animation

Constraint Equations

zy =z + 1l cosf+ 1, cosb

or
fiz = Ty -z —l.cosf -1, cosb,
fiy = yi—y—l.sin—I, sin6;
for = Zo— 2+ lhekc0sf ~ 1, cosb,

fay = Y2 =Y+ lnecksind - I, sinb,
While the foot is constrained to the platform:
ftoot, = footz —z1 — I, cos by
ftoot, = footy —y1 — I, siny

Kinetic Energy

1 1
T = —mv’+ =1

2 2
v = speed of centre of mass
w = angular velocity of body about centre of mass

v o= Jzl4y? (z, y are components of velocity vector)

w = 6

For our man:
Kinetic Energy

1 o . . . . . 1, . . .
T= 5 (m(:ﬂ + y2) + ml(l‘§ + yf) + mg(zg + y%)) + 5([0 + L6, + I202)

16 ==
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Potential Energy U = mgy g
where y is the height of centre of mass above some reference level.

For our man: =

U = g(my + my + mays)
Lagrangian
L=T-0U
Generating the differential equations

0L d 0L Ofr _ ‘
b;i"— d—t'a—qi-i-;/\k‘é;— -Qi

Where
L = Lagrangian
gi = i'th coordinate where ¢; = z, y, 6, =1, y1, 61, T2, ¥2, 02
fe = K'th constraint equation where fy = fiz, fiy, fozs f2us fiootss ftooty
At = Kk’th undetermined multiplier.
@Q; = force or torque applied to the i’th coordinate

Solving for At produces the value of the force that maintains the k’th constraint. The Q; values
allow us to account for damping, the bounce on the mattress and joint limiting torques. Using
Lagrange’s equation will produce a set of differential equations which have to be solved for the
various accelerations. Accelerations required are:

i‘a i]» év 5:19 1]1, éla 525 gZ, 52

Using the above results in a linear system of 9 equations for the 15 unknowns which are the
accelerations and:
/\11:, Alyy )‘257 A2yv )‘footza )‘footy

The additional 6 equations are defined by the constraint equations. The accelerations are
found by taking 2nd time derivative giving:

fl:ca fl'ya sz) nya ffootzy ffooty

We now have a system of differential equations which basically describe a triple pendulum.
(Three sticks joined together).

Restoring torque Each joint has an equilibrium position and negative and positive limits
as indicated in figure 10 which shows how the torque Tiestore increases away from the
equilibrium position.

Damping There are two types of damping forces:

Linear damping force Fyamping = —b% where b is the damping constant (6>0).
Rotational damping torque 7gamping = ~b6 is the force opposing the motion.

Mattress Force Spring force acting on the centre of mass in a vertical direction only: e

Fratiress = 0 if Y > Ymattress

—k(y - ymattress) if y<= Ymattress
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‘ T restore 9

posttive joint limit

» 0

negative joirt fimit

B = equlibrium angle

Figure 10: Joint Limits

Qi’s for our man The following expressions summarise the generalised forces for each degree

of freedom.
Q: = b2
_ ) 0 if Y > Ymattress
Qy = -byy+ { —ky(Y ~ Ymattress) Otherwise
Q9 = —beé
Q-’El = - brl il
~ ) 0 if Y1 > Ymattress
Qu = =byh+ { —ky, (Y1 = Ymattress) Otherwise
Q91 = _btheta1 él + Tmtomgl(ol - 0)
sz = —bniz
~ ) 0 if Y2 > Ymattress
Qyz - —be2 + { —kyz(yz — ymattress) otherwise
Qs = —bthetazéQ + Trestored, (02 — 0)

5.3 Making the animation

The symbolic arithmatic to produce the differential equations is fortunately handled by a
commercial package (Macsyma). Macsyma code has been written that will generate a program
to do the simulation including calls to a commercial differential equation solving package. The
values of the positions and angles are output at each display step. This constitutes a kinematic
description for the animation program which handles the graphics of the man.

5.4 Conclusions to be drawn from the Chmilar-Herr experiment =

The animation frames are shown in 11. To view the two animations please flip the pages of
this report. The top right hand corner contains the Chmilar-kinematic animation and the
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bottom right is the Herr-dynamic animation. Except in simple cases dynamic solutions take

considerable effort. Even if the programming is minimised, with better general purpose software ,J
to solve dynamics problems, complex systems require large numbers of equations to be solved S

and corresponding large amounts of compute time. Our man had only 5 degrees of freedom and
produced 9 differential equations. A more complete body model in 3D should have between 30
and 40 degrees of freedom, if further detail is required, such as finger joints, the number is more
than 200. In our experiment the dynamic solution modelled the acceleration and subsequent
bounce of the man more convincingly than the kinematic. However, the kinematic solution
was able to account for more detailed motion and in 3D, such as the half twist on the body as
it falls.

One problem with the dynamic approach is that it is difficult to achieve some particular
motion. If the objective is to find out what happens when certain forces are applied, such as
where a body might be flung in a car accident, then dynamic animation is effective.

Both the kinematics and dynamic solutions to such problems are very complex. What is
required is a hybrid of the two approaches, the dynamics to be sufficiently well integrated into
the animation system to be a first cut at the final animation. In the final analysis the animator
will use whatever tools that best suit his purpose. It is the quality of the software tools that
will distinguish the system he chooses.

Figure 28: Scene from The Great Train Rubbery
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Figure 11: Frames from the Chmilar-Herr experiment
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Figure 12: Creating the right impression

Part II
SOFT Objects

6 Introduction

SOFT Objects refers to a particular method of representing 3D models which change shape
as they move thus enabling animators to go beyond rigid polygonal models, such as rotating
logos, characteristic of computer generated animation. A technique suited to representing
such flexible surfaces was developed by Blinn to model constant energy surfaces in molecules
(Blobby Molecules, see [Blinn 82]). He uses an iso-surface in a scalar field defined by a number
of key points. Perhaps the best way to visualise this idea is by analogy. Each key can be
considered to be a hot star in space radiating heat. The iso-surface, or contour, connects all
the points which have the same temperature value. Each key can be associated with a shape
function, the simplest is a sphere so that the key radiates heat equally in all directions. The
temperature drops as the distance from the key increases. At some chosen temperature, the
iso-value, corresponding to some particular distance away from the key, the spherical surface
is found. As two keys approach each other, (see figure 13) the space between the keys heats
up changing the shape of the iso-surfaces.

It can be seen from the figure that the surfaces will bulge, then join. Eventually the keys
will be coincident and form a new sphere. This method of defining surfaces is extremely useful
in computer animation, since the keys can be moved independently to produce objects which
change shape over time. To model a more complex surface than a sphere, many keys are used.

¢

=
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Points at Decreasing Distances

Figure 13: Two SOFT keys approach to form a single sphere

It is relatively simple to check if a particular point in space is inside or outside the surface
(hot or cold) by summing the contributions from each key and comparing the field value to
the iso-value. The problem is to find out exactly where the surface should be.

6.1 Building a model

As far as the modeller is concerned, the keys form a skeleton of the object. The railway
engine in (see figure 14)is a good example. The left hand figure shows the keys which form the
skeleton, in this case each key is in the shape of an ellipsoid defined by a skeleton of 3 axes.
The right hand figure shows the effect of polygonising the surface. Effectively the keys are
covered in a polygon mesh which approximates the surface. Figure 15 is a rendered version of
the railway engine, a frame from the film “The Great Train Rubbery”. The engine is moving
through a region of abstract tezture space. As it enters the space any point in space is given
a colour defined by the 3D texture function. In this case the well known Mandril texture is
extruded along the direction of motion of the train producing an interesting visual effect. For
further details see [Wyvill et al 87).

6.2 Finding and Rendering the Surface

Various different researchers have produced algorithms for rendering these surfaces. At about
the same time new algorithms for finding implicit surfaces, along with field functions based
upon a cubic function, were developed in Japan (meta-balls) [Nishimura et al 85] and in
Canada (SOFT Objects) [Wyvill et al 86c]. In the latter work the surface is sampled by uni-
formly subdividing space into cubic regions. Each cube can then be replaced by polygons which
approximate the surface. This process has been referred to as clothing, but the more accurate
term is polygonising, polygonisation[Bloomenth 88b]. In contrast, Blinn renders the surface ==
directly from the function. Although it is possible to directly render implicit surfaces with tech-
niques such as ray tracing, prototype surfaces built from polygons are extremely useful. Many
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Figure 14: Skeleton of the train and polygon version of the train

Figure 15: Rendered version of the train in a scene from The Great Train Rubbery ﬂ
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Figure 16: Negative key subtracts the dent from the positive super ellipsoid

workstations, such as the Silicon Graphics Iris, are capable of producing perspective images of
large numbers of polygons per second. Keys can be moved interactively and if the surface can
be re-calculated quickly enough, interactive editing can take place. Also polygon renderers are
common, so there is a large incentive to search for fast polygonisation algorithms. The efficiency
of the earlier algorithm has been improved, [Bloomenth 88b][Herzen et al 87][Jevans et al 88b)].
Despite the abundance of names for these implicit surfaces in our research we refer to them as
SOFT Objects. Over the last few years, a system for modelling and animating these SOFT
Objects has been built at the University of Calgary. The system is called Graphicsland from
which many of the examples are taken.

6.3 Positive and Negative Keys

Each key contributes to the field. The contribution can be positive as in figure 13, or negative
as illustrated in figure 16. Figure 12 also illustrates the use of negative keys. The crude
human figure is made from positive keys. In fact in Graphicsland this becomes a hierarchy of
transformations of a single'SOFT key, a primitive sphere which can be stretched to form an
ellipsoid. It is relatively simple to replace the positive primitive by its negative counterpart, the
man now becomes invisible and subtracts from a positive surface, thus leaving a man shaped -
depression in the mattress.

6.4 Implicit Surfaces

Two methods of producing 3D curved surfaces are commonly used in computer graphics:

e Parametric
e Implicit

Parametric surfaces define a set of points P, such that:
P = (2(u,v), y(u,v), 2(u, )
Whereas implicit surfaces are simply formulated as:
f(P)=0 ==

Iso-surfaces or SOFT Objects, fall under the more general term: implicit surfaces. In ﬁ
computer graphics much attention has been paid to methods for modelling parameteric surfaces
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(such as spline patches), but until recently implicit surfaces have been largely disregarded.
The exception is some work done by Ricci, ([Ricci 73]), on a constructive geometry which
he used to build and modify shapes. Ricci defined the shapes as the boundary between the
half spaces f(P) < 1 and f(P) > 1, in other words those points satisfying f(P) = 1. The
Constructive Solid Geometry (CSG) that evolved has emphasized the operations performed
on primitives, generally limiting these to quadrics. Ricci points out that implicit surfaces offer
more succint definitions than parameteric surfaces. An example from a paper by Bloomenthal
[Bloomenth 88a] shows the following two definitions of a sphere:

o parametric: P = C + (rSin(8)Cos(¢),rSin(8)Sin(¢),rCos(8)),6 € (0,7),¢ € (0, 2r)
e implicit: f(P)=|P-C|~-r

The implicit formulation offers the designer freedom to arbitrarily constrain a surface, however
producing pictures of these generalised surfaces is far from straightforward.

6.5 Field Functions

The shape of the primitives depends on the function used to define the field, and is not restricted
by the renderer. To polygonise the surface all that is required is to know if a point is inside
or outside (Hot or Cold). To render the surface more precisely, for example with ray tracing,
the only additional information required is that the surface normal must be found at the point
of intersection with a ray (e.g, [Jevans et al 88a]). Thus many mathematical functions lead to
some interesting SOFT objects. In the original work done by Blinn, an exponential function
was used. In our previous work in this area we used a cubic, [Wyvill et al 86c] As the distance
I increases, the field value falls from a maximum of 1(r = 0) to 0(r = R). The value of R
is a characteristic of a particular SOFT primitive, the distance beyond which it has no effect
on its neighbours. Using the heat analogy; beyond R there is no radiated heat from the key.
We chose the cubic coefficients so that the field and its derivative (with respect to ) dropped
to zero. This enables fields to be combined efficiently and without approximation, using large
numbers of keys. The field at any point depends only on keys in that locality. The above
formulation only allows keys with a spherical field to be defined.

6.5.1 Creating Ellipsoid Primitives

In order to find the position of the iso-surface formed by a generalised version of the cubic
field function, a few concepts have to be defined. The primitive shape is defined by the shape
function (also referred to as the field function) around a key. The key is given by 3 vectors
normal to each other, which intersect at the origin of the key. These can be thought of as the
axes of the primitive. The shape function defines the surface due to the key. At the origin
of the key the field has a fixed value, due to that key, known as the force. In most of our
examples, this value is fixed at plus or minus one. The contribution to the field due to the
key decreases with distance from the origin, until the radius of influence is reached when the
contribution is deemed to be zero.

Figure 17 shows a 2D representation of the iso-surface (in bold) due to a single key and the
surface at which the force falls to zero (outer ellipse). Given a point P at distance 7 from the
origin O of the key the contribution of that key at some distance r is determined as follows:

Calculate the distance R where the field value turns to zero along the line OP due to the
key by solving the field function.

If r < R then the contribution is zero. See figure 17. Otherwise the field is found from r
and R. (Decay function).

gt
=
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r=0P
R =0Q

Figure 17: 2D iso-surface

The shape function must provide a continuous closed surface. A useful family of such
functions called super ellipsoids was made popular by the Danish scientist and poet, Piet Hein,
[Gardner 65]. Other functions that could be used are the family of super quadrics [Barr 81].
The super ellipsoids are found from the equation of the ellipsoid:

z2 y2 22
atpta=!

Where a,b and c are the axes of the ellipsoid. Piet Hein observed that some pleasing shapes
can be made by changing the power from 2 to some real power, n. The mattress in figure 12 is
a super ellipse with n = 4. To make this useful for building SOFT objects the shape function
must provide a means of calculating R (see step 1 above).

The following function is formed by replacing z,y,2 in (1) with Rcos(a), Rcos(f) and
R cos(7) where a, # and 1 are the angles made by the axes of the key and the vector OP. (see
figure 17)

n n n n n n
R™ cos™(a) . R™ cos™(B) + R" cos™(¥) -1 (1)
a™ bn cn

where n is a real value. Figure 18 shows four primitives with values of n at 2 (an ellipsoid)
2.5, 3 and 4. As n is increased the shape becomes more like a cube with rounded corners.
This form of the super ellipsoid provides a primitive defined by a key oriented at an arbitrary
angle. The axes a,b, ¢ can be used to alter the aspect ratio of the primitive. Since the axes are
orthogonal, ¥ can be found in terms of & and 8. Also since OP and the key axes’ vectors are
known, the cosine can be evaluated with a few multiplications. The value of the field can now
be found from the values of r and R. It has been found empirically that substituting r and
R into the cubic function given in [Wyvill et al 86c] provides good results. Reasonable results

can also be obtained with fewer floating point calculations using

F=1-— (2)

although the surface blending is more rapid as keys approach each other, compared to the
cubic. The contribution to the field F, of some key can be scaled by the force characteristic
of that key. The force can be positive or negative providing the user with further control on
the shape of the objects being modelled.

P
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Figure 18: Super Ellipsoids

7 Computing the Surface

The problem is to find the surface of an object given a set of keys and their field functions.
In [Wyvill et al 86c] an algorithm is described which finds the field value at successive points
along one axis (starting at a control key), each point is the corner of a cube. In fact it is part
of a grid of cubes sub-dividing the object space. Near the key the value will be greater than
the iso-value (hot). When the field falls below the iso-value the surface has been crossed (the
value becomes cold). It can then be determined which cube edges are cut by the surface, by
comparing the field value of each vertex to the iso-value. If the surface cuts a particular edge
the adjacent cube in the grid is manufactured and the process is repeated recursively until the
entire surface has been covered by containing cubes. The surface can then be approximated
by manufacturing a polygon (or set of polygons) in each cube. Details of this algorithm are
given in [Wyvill et al 86¢].

7.1 Improving the search

Finding the surface which clothes the keys requires the evaluation of the field function at many
different points in space. The field value at any point is the sum of the field values due to
each key. However the field function used falls to zero at some distance from the centre of
the key. To reduce the number of field evaluations for each point we use space subdivision or
cellular clothing in which the object space is divided into a 3D grid of cubic volumes or cells.
The method employed is similar to that of ray tracers and other graphics rendering processes
[Cleary et al 83]. Essentially, space is broken down into units that are more manageable.
Each cell (unit) contains only those objects that affect it, in this case a subset of the keys.
When finding the iso-surface, only keys whose influence extend into the current cell need to be
examined for their field contributions. In this way, checking every key point in the 3D space is
avoided [Wyvill 86]. Bloomenthal (see [Bloomenth 88b]) found that octree subdivision could
be faster than the original uniform subdivison. We have also experimented with this technique
[Jevans et al 88b)].

The octree subdivision has a minimum and a maximum limit of recursion. This effectively

=7



Navigating the Animation Jungle 28 ==

T T, gy
[ TS5
N
ST
S

Octree Subdivison Adaptive Octree Subdivison

Figure 19: Results of octree and adaptive octree subdivision

controls the resolution of the polygonal surface and how accurately it reflects the functionally
defined iso-surface. The minimum limit ensures that the octree subdivision will proceed a
minimum number of times, regardless of the state of each node’s vertices. This ensures that
surfaces that are smaller than a cell will be found. The maximum limit stops the octree
subdivision and effectively controls the resolution of the surface.

If all the cells are sub-divided equally then as many polygons are produced over relatively
flat areas as are used to represent extreme curvature. Since the polygons are subsequently
passed to a renderer when shading is requred it is desirable to reduce the number of polygons.
This can be done by having more octree subdivisions in areas of greater surface curvature. Von
Herzen developed such a technique using restricted quadtrees (see [Herzen et al 87]). Bloomen-
thal and independently Jevans have developed a method similar to this for use with SOFT
objects. [Jevans et al 88b][Bloomenth 88b] One problem is that when two adjacent octree
nodes have different levels of subdivision it is difficult to join the polygons in neighbouring
nodes, This is shown in figure 19. (Bloomenthal now has an elegant algorithm that solves this
problem). Although there are considerable savings to be had in the rendering process through
the use of irregularly subdivided surfaces, introducing this technique reduces the performance
of polygonising considerably.

One other advantage to the cellular subdivison is that frame coherance can be exploited.
The idea is that a cell will be flagged if any change has ocurred in that cell since the last frame.
Since each cell is independent of the other cells i.e. all the information necessary to describe
that region of space is contained in the cell, then only the field values at the vertices of the
flagged cells need be re-evaluated.

8 Polygonising

Choosing a polygon mesh which approximates the surface within a cell is responsible for 75% of
the time taken in clothing the surface. During the development of the new clothing algorithm
several new methods for building polygonal meshes from surface bounding boxes were explored.
One very simple approach is to simply use the cubes representing each node as the polygons
of the surface. This method is extremely fast but results in very crude approximations to the
surfaces. The effect is like constructing the polygon mesh of many small boxes on it’s surface.
This method can produce reasonable surfaces but only if the subdivision’s upper limit is set

=7
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unreasonably high.

To provide more accurate surfaces at lower subdivision levels an adaptation of the algorithm
given in [Wyvill et al 86c] has been found to give a fast and reasonably accurate response. Each
cube (octree leaf node) has vertices that are either hot (field value > iso-value) or cold (field
value < iso-value). Vertices on the surface are taken as hot. There are 8 vertices at each node
and thus 256 combinations of hot and cold. A table is constructed (once at initialisation time)
which indicates the appropriate polygons to construct for each case. The cube vertices are
numbered systematicaly, so that the bits set in a single 8 bit byte represent the hot vertices.
The byte is stored for each cube and is used to manufacture a pointer into the correct part
of the table. The polygons themselves are algorithmically constructed as in [Wyvill et al 86c]
and are then stored in a lookup table. Our empirical results so far indicate that the use of
the table increases the speed of this operation by more than one order of magnitude over the
previous algorithm.

9 Animating SOFT Objects

Traditional animators often criticise 3D computer generated animation for the stilted way
objects move. Computer generated objects or characters tend to lack the subtleties in motion
seen in traditional animation. Characters do not have to be humanoid, objects can be given
character such as the brooms in the Sorcerer’s apprentice sequence from Disney’s Fantasia.
In other words they are anthropomorphic. The motion of such objects is controlled to a fine
degree to characterise their movement. Characters tend to bend as they move. At times,
they must conform to their surroundings: A figure sitting in a chair is an example, or flowing
water. In computer animation, popular modelling techniques such as polygon meshes or spline
patches do not lend themselves to the manufacture of objects which can be given this type
of motion. SOFT Objects lend themselves to representing models that undergo some kind of
shape change. The intention is to let the animator design the skeleton of the character or
object and then automatically clothe this skeleton with a surface. If the skeleton moves then
the surface changes its shape smoothly to conform. If the skeleton undergoes metamorphosis
to a totally different skeleton or inbetweens to a skeleton in a new position then a new surface
is calculated at every frame. The surface is represented in such a way that it maintains nearly
constant volume as the skeleton moves, thus providing convincing character coherence. This
property of coherence is very important. Intuitively, it means that throughout metamorphosis,
the model remains recognisable as the same character. A model built from keys can be moved
without shape change by maintaining the relative spatial relationship between the keys, in the
absence of any influencing field. Achieving shape change without distorting the model beyond
recognition requires that certain constraints be placed on the animation system. The following
techniques can be used to animate a model built from a skeleton of SOFT keys to achieve
shape change:

o Geometric Transformation: motion of keys relative to each other.
¢ Altering the Field: influence of global or local field.
o Changing key characteristic: Altering parameter describing a key.

The following sections describe how these methods can be used by high level motion specifica-
tions to create the appropriate blended surfaces. It should be noted that this method does not
manufacture accurate human models. However it does provide a very fast way of producing
blended surfaces that can approximate to a humanoid character. The methods described here
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Figure 20: Bending an arm

are low level, they affect individual keys or groups of keys. It is intended that they can be
assimilated into a higher level animation system as described in part 1.

9.1 Geometric Motion

By simply altering the relative spatial relationship between keys a surface can be made to alter
its shape. Figure 20 shows the skeleton of arm with the position of the keys marked. By moving
the keys with the skeleton the surface blends smoothly and the arm appears to bend. There
are two ways the skeleton can be replaced by the keys: once, by the animator, specifying for
each skeleton part a key configuration or procedurally by the system. The latter method could
be applied once, to the model, or at every frame. If each limb is defined as a line, then soft
keys can be evenly spaced along the length of the limb by simple linear interpolation. However,
if the length of the limbs remain constant (as is normally the case) then it is quite adequate
and usually more effective for the animator to interactively specify the keys at the start of the
animation. The relationship between keys and skeleton remains constant throughout.

9.2 Path Deformation

Motion paths are extremely useful when applied to the keys of a SOFT object. A cartoon-
like character can be made to conform to its surroundings by using the shape of an object
to define the path which a group of keys must follow. This effect was demonstrated in the
movie SOFT (see [Wyvill 86}). The character in this case was a group of letters spelling the
word “SOFT”. Each letter was made from about 20 keys, the path was drawn up a flight of
stairs by marking various positions and passing a spline through these points using a spline
technique similar to that described in [Kochanek 84]. Each key in the character is moved to
the interpolated path position at each frame. Each point along the path represents a position
at a particular instance in time. Rather than define a separate path for each key, the keys
are grouped so that each group is moved together to the next point in the path. Normally a
group is chosen according to some spatial relationship, for example all keys within a specific
range of z values. To maintain “character coherence” the relative positions of the keys within
a group must be maintained within certain constraints. In this case the amount each group is
allowed to vary its position is constrained by the change along the path. Each key maintains its
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Figure 21: Global field deformation

position relative to the group. It is the origin of the group that follows the path. The positions
of the groups change relative to the other groups by an amount specified in the path. Thus
the model undergoes the desired deformation but maintains the overall shape and retains the
character coherence property which distinguishes shape distortion from metamorphosis. When
the letters are moved up the stairs in the movie SOFT the direction of motion was along the
(-)ve z axis so the groups were chosen as keys with same z value. As each group advances
along the path the y value of the group was altered according to the path specification (see
[Wyvill et al 86b] for frames from the film).

9.3 Altering the Field

SOFT objects may also be animated by altering the field in which the objects exist. Local
deformation can be achieved by moving other SOFT keys relative to these objects, or by placing
some global influence into the field. A good example of local deformation is shown in figure 12.
As the negative human figure lies on the mattress, his impression is left there. The mattress
is deformed by the motion of some external influence. Global deformation is more difficult to
specify in a completely general way. The field itself could have some external influence such as
a plane of constant value. Objects approaching that plane will deform according to the value
chosen. In figure 21 a ball is shown approaching a plane held at the iso value. The plane is
of course invisible but shown here as a grid of polygons in fact placed slightly higher than the

plane itself. The ball deforms as it approaches the plane and returns to its original shape as it
moves away.

9.4 Changing key charactersistic

Each key is defined by three axes and a “force”. The size and orientation of the axes may be
changed and also the force, which is a scale factor applied to the key’s contribution to the field.
The effect of negative force has already been shown. By increasing the force the effect on the
neighbouring keys will be altered, the effect is very similar to changing the size of the axes of
the key. Only making the force (-)ve produces animation effects that cannot be achieved by
other means. Since SOFT objects remain blended if they are in close proximity, scaling an
individual key can appear somewhat like a muscle bulging as an arm is bent. Figure 20 shows
the same arm bending only this time the keys representing the muscle area are made larger.
To achieve high level control the system would have to know that each time the arm is bent a
proportional scaling must be applied to certain keys. This can be achieved in a script system
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Figure 22: Inbetweening Polygons

by defining a method that is invoked each time the a level command is issued to bend the arm.
This kind of procedural animation is difficult to achieve in purely interactive systems.

9.5 Inbetweening and Metamorphosis

One area that SOFT objects are particularly useful for is metamorphosis, or inbetweening.
A method suitable for two-dimensional (cartoon) models, would have the character drawn
on a vector oriented display in two positions, and the inbetween frames interpolated by the
system. The simplest way to do this is to interpolate each point of the first (source) object to
a corresponding point on the second (destination) object. Difficulties arise if the number of
points is different on source and destination objects. New points have to be created or several
points have to collapse onto a single point. Even if the number of points is the same on the two
objects, if they are distributed in a different way the image will be scrambled as each point is
interpolated. SOFT objects always guarantee a closed surface, so this problem does not arise.
However, it is still easy to lose character coherence in the inbetween versions. Figures 22 and
23 illustrate these points.

Inbetweening is not only used to show motion of a character from one position to another,
it can also be used to show metamorphosis from one character to another. If the characters are
very different in shape and number of keys, then the scrambling problem is difficult to avoid.
Peter Foldes uses software by Burtnyk and Wein [Burtnyk et al 76] in the film, “La Faim”
and exploits this technique to good advantage. However to avoid scrambling is a difficult and
tedious task which requires very careful design of the keypoints for inbetweening,

Burtnyk and Wein developed a computer version of this technique using skeletons. These
skeletons defined a conformal mapping from one key frame to the next. The space itself was
distorted, thus any line within the space was similarly distorted according to the mapping func-
tion. In contrast, 3D computer generated characters are often moved by applying geometric
transforms to the different parts, which changes their relative positions but do not necessar-
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Figure 23: Inbetweening SOFT keys

ily give the character a smooth change of shape as can be achieved using the 2D techniques.
However the advantages of using 3D characters are considerable as the computer can be used
to render frames from any chosen camera position with the appropriate lighting all calculated
automatically. An effective way of producing shape change in 3D animation is to use the inbe-
tween technique. However extending the 2D technique to 3D introduces new problems. Reeves
points out in [Reeves 81] that it is difficult to identify corresponding points (and polygons) on
different characters. Even with functional representations, the parameters from which a surface
is manufactured must be chosen so that the source model matches the destination model. Each
of the parameters defining the source model must be changed to one of the parameters defining
the destination model. The matching process chooses the appropriate destination parameters
corresponding to the source parameters. At each intermediate stage during the inbetween, a
model will be manufactured from an interoplated set of parameters.

In the following paragraphs several different heuristics for matching the models are pre-
sented. The shape of the intermediate models vary according to the chosen method, based on
one or more of the heuristics.

9.6 Heuristics for Point Matching in Metamorphosis

In this section four approaches are described that we have found useful for defining the matching
process. Although the SOFT object modelling system has been used to illustrate how these
heuristics may be applied, the methods are general and can be extended to other modelling
techniques. In practice an animator will want to experiment with different combinations of
these techniques to arrive at the desired effect.

We start with two models; the source model and the destination model. The source model
must be made to change into the destination model. The models are defined as a set of SOFT
object keys as described above. Each key has the following properties:

Axes Vectors v1,v2,v3

]
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Figure 24: Hierarchical Matching

Postion X,¥,2
Force F

Each of these methods assumth that ice objects have been pre-processed so that there are
the same number of keys defining each object. This may involve creating zero weighted keys. A
key can be weighted using the force, F, which scales the contribution to the field, or by scaling
the axes. A zero weighted key has its axis vectors set to zero or F = 0. When a source key is
inbetweened to a destination key, at each frame a new key is chosen which has an interpolated
value for position, axes vectors and force. The start or finish position of the new keys is chosen
by the appropriate method.

9.7 Hand Matched

The simplest method of establishing which keys are to be interpolated is to to order the source
and destination keys by hand and to process each pair in turn. Since the number of keys is
small compared to the number of polygons in an equivalent model, this method is feasible
for some objects. However computer animation is generally moving towards higher levels of
control so this method is considered a last resort.

9.8 Hierarchical Matching

In this heuristic it is assumed that each model is represented by a hierarchy of keys. Each node
in the hierarchy has an arbitrary number of sibling nodes and one or zero child nodes. Nodes
are matched at the same level in the hierarchy. An example hierarchy is shown in figure 24.
The character with two bodies is matched to the character with three legs. It is assumed that
the hierarchies are designed that each level of the source object has an equivalent level in the
destination object. If a man is to change into a rabbit the heads will be matched, the arms of
the man can match the front legs of the rabbit and so on (see figure 27 ). The main problem
with this approach is that the hierarchies have to be constructed carefully. Not only do the
levels have to match but within a level the nodes must either be ordered or labelled to match.
Despite these drawbacks this method is still preferable to ordering all the keys by hand and
for small sets of keys, with suitable interactive tools quite acceptable.

3
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Figure 26: Surface Inbetweening

9.9 Cellular Inbetweening

In this technique the models are matched corresponding to the space they occupy. The world
is first divided into a 3D grid of cells. This is done by finding the extents of each model
and manufacturing the corresponding rectangular box. Each box is then divided along the
X,y,2 axes by some user defined amount. The two boxes may be different shapes but they are
divided into an equal number of cells. The keys are then sorted into the cellular grid and the
keys in each source grid cell are then interpolated to the keys in the corresponding grid cell of
the destination model. The objects can have different sizes but the method tries to maintain
some sort of position coherence between source and destination objects. Figure 25 shows a
2D version of how the keys are matched. Circles with similar shading patterns are matched
between source and destination. In the top diagram the points match exactly, for every key
in every cell in the destination object there is a corresponding key in the corresponding cell in
the source object. In the lower diagram there are some cells containing keys in the destination
object for which there are no keys in the corresponding cell in the source object In this case
a zero weighted key (indicated as a small circle) will be manufactured in the source object.
Similarly keys which exist in the source object are grown in the destination. An example of
the use of cellular inbetweening is shown in figure 27.
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Part R-Keys M-Keys matched keys number of cells cells used S

head 13 2 5 2° 7
torso 7 16 2 33 6
left leg 3 13 6 23 6
right leg 3 13 5 23 6
left arm 9 1 3 23 4
right arm 9 1 3 23 4

Table 1: Matching the man and the rabbit

9.10 Surface Inbetweening

In this method there is no matching necessary. All the keys from both source and destination
objects define each intermediate model. However the force property of each source key is
weighted. The weighting is gradually changed from one to zero as the inbetween progresses.
Also dependent on time is a second weighting applied to the force property of the destination
keys. This value changes from zero to one. The shape of the weight value vs. time curve
controls the shape of the intermediate model. This is shown in figure 26. A simple linear
interpolation means that both source and destination objects are reduced to half the weight
half way through the simulation. In practice this gives poor results as the SOFT surfaces
around each key no longer merge. If the source is weighted by a cosine function and the
destination weighted by a sine function each object is never weighted by less than 12. The
objects can still be matched by one of the sorting techniques (hand, hierarchy, cellular), but
the inbetweening process is different using surface inbetweening. An example is shown below.

Metamorphosis of rabbit to man Figure 27 shows some frames from a metamorphosis
in which a rabbit is changed to a man. The frames in the top row were produced using the
surface inbetweening method, with a sin/cos decay weighting function. The cellular method in
combination with the hierarchical technique were used to produce the frames on the bottom
row. The man and rabbit were first broken into two equivalent hierarchies and the cellular
method used within each pair of parts. Table 1 indicates how well the keys were matched, M
indicates man, R Rabbit. It can be seen from figure 27 that the hierarchical/cellular approach
succeeds somewhat better than the surface method. Clearly other heuristics are necessary to
stop the model from breaking apart. The actual inbetween is done along linear paths in space
(though not in time) and it is the relationship between the paths that govern the intermediate
shapes that are generated. The good point about this is that little effort is needed to get some
sort of metamorphosis and although the figure may break into separate parts, these parts will
individually maintain a closed surface.

Lessons learned from the heuristics The main lesson to be learned is that good results
cannot be obtained from the few heuristics described here. Other constraints have to be placed
on the keys before they can be made to form reasonable models in the inbetween stages. Further
constraint based heuristics may well prove a fruitful area of research. o
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10 Conclusion

Presented here is an attempt to impose some order on the many techniques in 3D computer %

animation. Particular attention has been paid to a relatively new area, the use of implicit
surfaces for animation. Although there are still many outstanding problems to solve, such
surfaces have an important role to play in the computer animators ammunition store of tech-
niques. Hopefully the reader will at least know where to look for further information and be
slightly less confused than before this journey through the jungle of animation.
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