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Modeling Patient Service Centers 

With Simulation and System Dynamics 

 

ABSTRACT 

 We report on the use of simulation modeling for redesigning phlebotomy and 

specimen collection centers (or patient service centers) at a medical diagnostic laboratory. 

Research was performed in an effort to improve patient service, in particular to reduce 

average waiting times as well as their variability. Discrete-event simulation modeling 

provided valuable input into new facility design decisions and showed the efficacy of 

pooling sources of variation, particularly patient demand and service times. Initial 

performance of the redesigned facilities was positive; however, dynamic feedback within 

the system of service centers eventually resulted in unanticipated performance problems. 

We show how a system dynamics model might have helped predict these implementation 

problems and suggest some ways to improve results. 
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1. Introduction 

 We report on a modeling study of outpatient phlebotomy and specimen collection 

centers (patient service centers, or PSCs). Initially, our research focused on the use of 

discrete-event simulation to assist in the process of developing a template design for new 

facilities.  However, problems encountered during the implementation phase led us to 

undertake additional modeling and analysis using system dynamics.  In this respect our 

experience differs from that described in many previous discrete-event simulation 

modeling studies. Below, we elaborate on the path taken and the lessons learned. 

Like many health service organizations, Calgary Laboratory Services (CLS) was 

faced with increasing demand for its services but had limited resources available to meet 

that demand. A discrete-event simulation modeling study was commissioned to help 

senior decision makers at CLS determine the design of a more effective and efficient set 

of facilities.   Previous researchers have found discrete-event simulation to be useful in 

assisting facility and process decisions in healthcare. Ashton et al. [1] used simulation to 

help a walk-in center identify problems and consider alternatives for waiting-room space 

and triage processes. Stahl et al. [2] used simulation to analyze alternative 

anesthesiologist staffing configurations to improve efficiency for surgery. Stafford and 

Aggarwal [3] set up a discrete-event simulation model of a university outpatient clinic; 

the model was used to explore the effects of different staffing levels and aggregation of 

two or more of the service units within the clinic. 

In their survey article on simulation in healthcare clinics, Jun et al. [4] provide a 

specific section on the effective allocation of resources, including the number and size of 

healthcare units. However, they note that simulation modeling to improve the operation 
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of multifacility networks is a neglected area of research. Swisher et al. [5] develop a 

discrete-event visual simulation model of an outpatient clinic that is planned to be part of 

a network of clinics, as they are interested in the effect of new facilities on existing ones, 

but their work so far has been based on a single facility. Indeed, to the best of our 

knowledge, no study has looked at the design or redesign of PSCs or similar healthcare 

facilities that form a network of locations within a large geographic area. 

 Within the CLS network, the new facility implementation based on the suggested 

redesign of PSCs from our simulation model showed that patient waiting times and 

employee satisfaction were improved for the first several months. However, after 

approximately 18 months the new facilities were reporting significant problems with 

overcrowding, long wait times, and staff dissatisfaction. In part, these implementation 

issues could have been predicted with some thoughtful a priori system dynamics 

modeling. The predictive performance results might have helped CLS improve its 

implementation at the new facilities or at least to be better prepared for the challenging 

circumstances it would encounter. 

 With the benefit of this hindsight, in this paper we emphasize the need for 

modelers to view studies dynamically, rather than as static projects. In particular, we see 

the need for modelers to have a complete toolset that evolves as studies unfold and helps 

organizations through all phases of design, implementation, and post-implementation. 

 The remaining sections of this paper are as follows: a description of Calgary 

Laboratory Services’ operations; a report of the process, methods, and results of the 

discrete-event simulation model; a discussion of the implementation issues and proposed 

system dynamics model; and the conclusions and implications for management practice. 
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2. Calgary Laboratory Services 

 Calgary Laboratory Services provides a variety of medical testing services to the 

population of Calgary, Alberta, Canada and surrounding areas. Services include standard 

tests on blood and urine, electrocardiogram (EKG), and a variety of specialized tests. 

Currently, CLS provides test results to approximately 2,200 physicians, who request over 

15 million tests annually for the patient base of more than one million people
1
. 

 CLS is a publicly operated organization. It serves the Calgary Health Region 

(CHR), which provides the majority of healthcare services in the Calgary area. The CHR 

determines the payment for tests performed by CLS and establishes performance 

standards such as patient waiting times and test turnaround times.  

 Currently, CLS operates 18 PSCs, 4 hospital laboratories with their outpatient 

PSCs, a mobile collection service, a specimen pickup service from physician offices, and 

a centralized testing laboratory. Physicians are supplied with standardized test requisition 

forms to give their patients so that they can go to any of the 18 PSCs for service. (Some 

physicians generate their own requisitions.) The PSCs are spread out around the city and 

surrounding communities and are staffed primarily by lab technicians (laboratory 

assistants, LAs) who draw blood, perform EKGs, and prepare samples to be delivered to 

the testing facility by couriers.  

Prior to the formation of CLS by the merger of several independent laboratories in 

1996, there were approximately 140 PSCs.  By the late 1990’s, a network of 25 PSCs was 

established using a variety of policies (acceptable travel time, population allocation per 

                                                           
1
 Information about  CLS can be obtained at 

http://www.calgarylabservices.com/AboutCLS/CompanyProfile/ (last accessed 9/30/2006) 

http://www.calgarylabservices.com/AboutCLS/CompanyProfile/
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site, etc.).  At that time substantial variability existed in the size of the PSCs. Some had as 

few as two staff members, while others had as many as 13 full-time and part-time 

employees. Patient waiting-time performance at these PSCs was as variable as their sizes. 

The standard performance target for waiting was that 80% of patients should be seen 

within 20 minutes of arriving at a PSC (“80/20”). At the time the present research started 

in the year 2000, some of the 25 sites were meeting this target while others were unable 

to achieve it for substantial periods of their operating hours. 

Much like other facilities in the health care systems of the U.S. and Canada, CLS 

was seeing increasing demand for their services due to a growing and aging population 

and the development of new testing technologies. Management at CLS thought that a new 

configuration of their network of PSCs might improve patient waiting times without 

significant commitment of new resources. In particular, they thought that operating fewer 

and larger PSCs might be beneficial. Such a pooling of resources is a well-known 

operations management technique to improve system performance in the face of variable 

demand across facilities.  For example, Pasin et al. [6] used simulation to demonstrate 

that pooling of equipment across community healthcare service centers would reduce unit 

costs while maintaining current service levels.  As the initial step in the research 

described here, faculty from the University of Calgary were invited to help evaluate 

designs for new facilities. 
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3. The Discrete-Event Simulation Model 

  

Rationale and scope 

After meeting with CLS management two of us (Author 1 and Author 2) quickly 

determined that the characteristics of the redesign problem required a descriptive and 

flexible modeling tool such as discrete-event simulation. For example, the PSCs faced 

random, non-stationary demand with significant peaks during the day, as shown in Figure 

1.  Such a demand pattern would be difficult to account for in analytic models, but 

incorporating this arrival stream into a simulation model as a non-stationary Poisson 

process is relatively straightforward (see, for example, Law and Kelton [7]). An 

additional modeling complication was the multi-stage nature of the process at a PSC. 

After patients arrived, they provided the test requisition from their doctor for data input 

and then waited for both a lab technician for service and a room to complete the testing. 

Not all patients followed the same path through the process, with some patients requiring 

an EKG in addition to giving blood and/or urine samples.  Given these aspects of the 

system as well as the scheduled changes in staffing levels for full-time and part-time staff 

over the course of the day, it became clear that simulation was necessary to provide an 

informative assessment of system performance.  

 

[INSERT FIGURE 1 ABOUT HERE] 

 

The scope of the research was established by settling on the following objectives: 
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 Provide an analysis of the current PSC configuration, including rough estimates of 

total resources required to meet the 80/20 waiting time service target for all 

facilities. 

 Develop a template design for new, larger PSCs with the intent that CLS would 

gradually close current facilities and open new facilities based on the template.  

 Provide other suggestions for improvements related to the operations and 

resources of the PSCs. 

Two specific issues that were intentionally excluded from the scope were developing 

optimized staff schedules (in part because CLS operated in a unionized environment) and 

identifying specific locations for new sites. It was recognized that both of these issues 

could significantly impact the design of PSCs. However, due to their political nature and 

their longer-term and strategic orientation they were omitted from the study. Further, the 

intent was not to identify an optimal configuration because practical constraints would 

not permit this. For instance, a single “mega” facility might have minimized the resources 

required to meet the waiting-time targets. However, this was not an acceptable solution to 

CLS due to issues with patient and employee travel and other factors. We chose to focus 

on how much improvement would be obtainable by moving to fewer, larger PSCs with a 

good design, recognizing that the design would continue to evolve, as would the domain 

of acceptable options. 

 

Data collection and analysis 

The modeling process began with meetings of staff members and site visits of the 

researchers to PSCs. CLS had excellent data on patient arrivals and the services required 
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by these patients. Data for the various activity processing times (e.g., drawing blood 

(phlebotomy), EKG, etc.) were more difficult to obtain since tracking of these was not 

built into CLS’s information systems. These data were hand timed by CLS supervisors, 

and for some activities supervisor and staff judgment were used to provide estimates. 

Where possible, input analysis was performed to transform the data into representative 

mathematical functions for the simulation model. Table 1 shows sample results for three 

hours of patient interarrival time data. Each hour had to be analyzed separately due to the 

non-stationary arrival rate (see Figure 1). Table 1 supports the use of the exponential 

distribution; however, it should be noted that the statistical fit tests are not in full 

agreement and so the process included some “art” along with the objective science 

provided by the statistics. This approach is further demonstrated for the choice of 

distributions for two of the service time inputs: phlebotomy and EKG. Table 2 shows the 

distribution and p-values for the statistical fit. Just as important, however, were graphical 

comparisons for several distribution choices that were “close” in a statistical sense. 

 

[INSERT TABLE 1 ABOUT HERE] 

 

[INSERT TABLE 2 ABOUT HERE] 

 

Verification and validation 

Verification of the simulation model was embedded in the modeling process as 

suggested by Kleijnen [8]. For example, to ensure the non-stationary arrival rate was 

modeled properly, patient input counts were compared hourly to ensure they matched the 
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expected inputs like those in Figure 1. Further, the “trace” function of the model-building 

environment was used to verify proper logic of patient flow. Finally, animation was 

viewed for multiple complete days of the terminating simulation to detect errors.  

PSCs were grouped into three different sizes that were considered representative 

of the 25 facilities that provided services at that time. Small sized PSCs were considered 

to be those facilities with patient volumes of fewer than 100 patients per day on average, 

medium sized PSCs saw an average of 100 to 200 patients per day, and large PSCs had 

an average patient demand of more than 200 patients per day. Simulation models were 

built for each size of PSC.  Because CLS was chiefly concerned with patient service, they 

tracked performance on several service-oriented measures, including the number of 

patients processed per day, average patient waiting time, and the percentage of patients 

with waiting times over 20 minutes. The 95% confidence intervals generated from the 

simulation models for the latter two of these measures are shown in Figures 2a and 2b 

along with the actual values from a typical week at a particular PSC of the given size. 

For the large and medium sized facilities, the simulation model generally 

predicted results that were in line with actual facility performance; for the smaller 

facility, the simulation model predicted better waiting-time performance than that 

reported at the actual PSC. These results suggest that the model did not capture certain 

inefficiencies at this smaller PSC. This discrepancy was discussed with CLS supervisors 

and was deemed sufficiently explainable to consider the model appropriately valid, as 

staff suggested several reasons for the better performance predicted by the smaller facility 

model, including absenteeism and the training of new technicians, both of which would 

have a more significant impact on a smaller facility with fewer staff. In addition, as data 
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had been collected at many PSCs to ensure sufficient sample sizes to build the simulation 

model, the small, medium and larger models were really representative of “typical” sites 

in the size ranges. Across all operating PSCs there were some in each of the size ranges 

that had performance comparable to that of the model. 

The model results for patients waiting over 20 minutes at large facilities were also 

analyzed because the model predicted somewhat poorer performance than what was 

actually observed. The hypothesized reason for this discrepancy was shift management 

arrangements by supervisors at those PSCs that were contrary to CLS usual practice. 

Technicians would be asked to alter their break times and shift completions when the site 

was congested. However, this increased the average waiting time in other periods. 

 

[INSERT FIGURES 2A AND 2B ABOUT HERE] 

 

In addition to comparing output performance measures in order to validate the 

model, we also demonstrated an animated version of the model to various PSC 

supervisors and staff. Figure 3 shows the simple animation that was developed using the 

Arena simulation package [9].  The animation focused on the patient flow through the 

facility – much of the detailed logic was omitted to improve clarity. CLS staff agreed that 

the model represented the general conditions at the PSCs, with daily activity peaks that 

were representative of actual experience. In particular, CLS staff compared the clock time 

with the length of the waiting line and agreed it was similar to what they experienced in 

the PSC.  Overall, we believed the model was sufficiently valid for our purposes of 

comparing different PSC designs. Also, because our objective was to evaluate the 
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potential of larger sites, the significant discrepancies with the small PSCs were of lesser 

concern. As Kleijnen [8] points out, a model will never be perfect, but should be “good 

enough” to attain its goal. 

 

[INSERT FIGURE 3 ABOUT HERE] 

 

Scenario analysis 

Once there was general comfort that the models represented actual operations to 

an acceptable degree, we ran several scenarios to explore the performance of alternative 

PSC template designs. We explored the idea of moving to networks of twelve or six 

facilities to take advantage of pooling demand and reducing individual PSC variability. A 

three percent patient demand growth rate was assumed since this was the approximate 

growth rate over the previous five years. We also assumed that demand could be spread 

evenly across the new set of facilities. We recognized this would be impossible to 

achieve in practice, but new facilities could be modified from the template to meet the 

specific demand requirements of a city region due to disparities in family growth, age, 

affluence, and other demographic factors. 

If no changes were made to the facility network, the projected performance of the 

CLS system in 2005 based on our discrete-event simulation model was a mean waiting 

time of over 52 minutes, with nearly half of patient waits exceeding the 20 minute target.  

Table 3 shows the results of simulations with the six and twelve PSC networks and the 

suggested resource configurations for each template facility.  The model predicted that by 

better balancing the demand across the set of PSCs and taking advantage of resource 
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pooling,  substantial performance improvement could be achieved. While in theory the 

six PSC scenario should take better advantage of the pooling effect than the twelve PSC 

scenario, the discrete nature of room and terminal resources led to better performance 

with twelve PSCs on some dimensions. In each case, no additional PSC staff was 

required and fewer overall resources were needed. For example, the 12 PSC design 

reduced front terminals by five units and EKG monitors by more than 30 across all 

facilities. 

 

[INSERT TABLE 3 ABOUT HERE] 

 

Recommendations 

Along with CLS management, we concluded that it would be wise to move 

toward a target of 12 to 15 PSCs.  We targeted this range as opposed to a fixed target of 

12 in recognition that the patient population and employees may have concerns with 

elimination of certain sites due to transportation and political issues. Reaching this range 

of facilities would require time since the leases on current sites had various expiration 

dates. We noted that site selection would be a key factor for success, but since this was 

not part of the project scope we made only very broad recommendations. In addition, we 

suggested several immediate resource changes (e.g., increasing the number of terminals) 

for some current facilities to help improve short-term performance. CLS carried forward 

with these recommendations, and a correspondence with a senior executive 

approximately six months after the completion of the initial study indicated that they 

were pleased with the results of implementing both the short and long term 
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recommendations. Performance at the newer, larger PSCs was very good with lower 

waiting times and improved staff morale. 

 

4. Delayed Implementation Issues – A Role for System Dynamics 

 While we recognized potential implementation problems with shifting to fewer, 

larger PSCs, we were encouraged by the initial positive feedback. However, 

approximately 18 months into the transition, stresses in the system were showing. CLS 

reported significant problems in meeting the waiting time targets at some of the new 

facilities. To add further to the confusion, they reported that some of the older, smaller 

facilities were performing better than the new PSCs. 

 To alleviate management concerns that the original discrete-event simulation 

model was not valid, it was rechecked with current data from a different PSC. The model 

was still accurate, but demand levels were significantly greater than originally predicted. 

For some sites, demand was more than 25% greater than original projections. Could this 

have been anticipated? 

 To help answer this question we developed a system dynamics model of the 

opening of a new facility. System dynamics was identified by Young [10] as an 

appropriate method for improving healthcare management and was used in healthcare 

environments to explore policies for ongoing operations such as emergency departments
 

[11-12]. Here, we describe a somewhat different use of system dynamics modeling. At 

the time of implementation of the new facility design there were no data on how the 

design would itself affect the network of PSCs. However, system dynamics can be used 

to forecast potential outcomes and as a qualitative learning tool. For example, Taylor and 
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Dangerfield [13] used two cases of a shift in the location of cardiac catheterization 

services to develop a system dynamics model to explore the potential effects of 

alternative policies on the demand for services. An advantage of system dynamics as 

pointed out by Sterman [14] is to help decision makers get out of the typical event-

oriented view of the world where a problem (inconsistent PSC waiting-time performance) 

is identified and decisions (to move to fewer, larger facilities) are made to try to achieve 

particular results (shorter waiting times) in a linear fashion without considering potential 

feedback effects caused by the decision. 

 

Developing the system dynamics model 

Many of the potential feedback effects and system time delays were known at the 

time of the original decision, although exact quantification of these factors would have 

been difficult. However, the behavioral consequences of opening new PSCs could have 

been explored and used to help understand implementation results or even to improve the 

implementation process. Figure 4 shows a system dynamics model that incorporates some 

of the key feedback mechanisms and time delays affecting PSC demand. The +s and –s in 

the diagram represent the polarity effects of the “cause” variable on the corresponding 

“effect” variable. As an example, as Waiting Time increases, Patient Satisfaction 

decreases (ceteris paribus).   In the figure, the “Bs” and looping arrows represent 

balancing feedback loops in the system. For instance, the Word of Mouth loop increases 

PSC use when waiting times are low due to satisfied patients telling their friends and 

family. As waiting time increases, the rate of PSC use from Word of Mouth will decline. 
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[INSERT FIGURE 4 ABOUT HERE] 

  

 As reported by Kaldenberg and Becker [15], word of mouth is very influential 

when patients make healthcare choices.  Further, the authors report that aspects of patient 

care that deal with access to service, such as length of waiting time, are typically given 

lower performance ratings by health care consumers than other service attributes and 

increasingly play a role in patients’ site selection. Since PSCs are relatively close 

together, it is not difficult for patients who hear that a new PSC has shorter waits to move 

to a different location from their nearest (or usual) site in an attempt to avoid waiting. 

The responsiveness of the system to word of mouth is affected by the Visit Lag Time 

parameter in the model. As opposed to customers visiting an overcrowded bank branch, 

most patients visit the PSCs relatively infrequently. To incorporate this effect in the 

system dynamics model, we assume an average time of 6 months between visits. Thus 

people will update their knowledge of performance at the PSC relatively slowly. 

 Patients start using the new PSC as Incoming PSC Users, and the submodel 

presented in Figure 5 shows how the flow of patients to a new PSC begins. The longer 

the PSC is open (shown by the stock: PSC Age), the more prospective users of the PSC 

become actual users due to increased knowledge of the facility. The PSC Knowledge 

Factor mathematically represents this process with the function 1 - e
-L/

, where L is the 

length of time the PSC has been open and  is a normalizing constant (1 month). This 

factor starts at zero and approaches 1 (full knowledge) asymptotically as L increases. For 

modeling purposes, the number of Base PSC Users was set at 1000 (the initial value for 

Possible PSC Users) and the Capacity of the new facility was set at 100 patients per 
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month, although any values can be used to represent a particular facility. The system 

dynamics model was therefore structured to provide insight into the expected demand and 

performance dynamics for a new “generic” site as opposed to modeling any one site 

specifically. We further assumed a 3% growth rate for the Possible PSC Users due to 

population growth and an aging demographic. For Figures 4 and 5, the boxes represent 

stocks where the flows from the double lined arrows accumulate (or decline). The 

“valve” represents the rates of inflow and outflow. Also, with the growth rate, a 

reinforcing loop (designated with the “R” in the full explicit model in the Appendix) is 

created that drives PSC demand upward. 

 

[INSERT FIGURE 5 ABOUT HERE] 

 

Evaluating the system dynamics model and results 

The submodels of Figures 4 and 5 were combined and run for 60 months using 

the Vensim system dynamics modeling software [16]. Model building was performed in 

an iterative manner with client involvement as suggested by Lane et al. [17]. Additional 

testing of the model was also performed as prescribed by Sterman [18]. Table 4 shows 

some of the tests performed and examples of results.  The model passed all of these tests, 

so we viewed it as valid for providing useful insights into system behavior. Therefore, we 

moved to running the model and exploring its outputs. 
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[INSERT TABLE 4 ABOUT HERE] 

 

Figure 6 shows the resulting behavior of the model for three key variables. PSC 

Visits grow quickly during the first several months as patients discover the new PSC and 

because low wait times lead to high satisfaction. This causes patients to encourage family 

and friends to go to the new PSC (at the rate indicated by the Friends and Family Visitors 

path). However, due to the time lags inherent in the system, demand significantly 

overshoots the capacity of 100 – leading to excessive waiting times.  Visitation to the 

new PSC does eventually go down, but again the rate of switching to another PSC (PSC 

Switchers) lags behind the peak demand period. With the base parameters selected it is 

interesting that the peak demand period coincides with the timing of PSC management’s 

return call to the research team (this includes about six months for the new larger PSC 

policy to be implemented).  

 

[INSERT FIGURE 6 ABOUT HERE] 

  

 The model helps explain the oscillating demand dynamics of the opening of a new 

PSC and the overall effects of a positive growth rate. A priori it would be difficult to 

quantify the exact results, but sensitivity analysis showed that the general behavior of the 

model remained nearly identical within a reasonable range of parameter values (e.g., 

three to nine months for Visit Lag Time). Therefore, the insights could be useful for 
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handling the implementation process. At a minimum, knowing that demand could be 

substantially greater than desired could help prepare the facility for the onslaught. 

The model can also be used to explore policy options to help alleviate the demand 

peak. While there are not many management levers in this process, perhaps the key one is 

advertising the availability of a new PSC.  By aggressively advertising the new facility, 

the PSC User Population would start at an initially larger level and perhaps mitigate the 

overshoot effect. Figure 7 compares the base case results with the model result when the 

new PSC is advertised and the initial PSC User Population starts at 50% of the total 

Possible User Population. The figure shows that if the majority of potential users are 

aware of the new facility the overshoot effect can be avoided, eliminating the resulting 

system imbalance. 

 

[INSERT FIGURE 7 ABOUT HERE] 

 

 Due to the lag time in visitation already discussed, it would be very difficult to 

inform all patients of the new facility. However, obvious choices of those to inform to 

effectively control demand would be frequent users and institutional users such as 

nursing homes. Such patients’ immediate impact on the PSC waiting times would help 

control the potential overshoot in demand.  

 While the intent of the system dynamics modeling was to demonstrate its 

potential use as a predictive tool and to improve insight into PSC system problems, 

Figure 8 shows PSC visitation data from an actual facility. This particular location was an 

enlargement of an existing site, so many users already knew of its existence (similar to 
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the case with advertising discussed above). Nonetheless, the pattern of visitation shows 

the overshoot and oscillating behavior similar to the dynamic model. The actual 

anecdotal evidence and these data seem to suggest a significant degree of model validity. 

Note also that since the original dynamic model was developed before these data were 

available, its availability did not bias model development. 

 

[INSERT FIGURE 8 ABOUT HERE] 

 

Conclusions 

 In this paper we discussed the role of discrete-event simulation and system 

dynamics modeling for redesigning and implementing patient service centers. Results 

from the discrete-event simulation model suggested that the organization involved, 

Calgary Laboratory Services, should move to larger and fewer facilities for its PSC 

network to take advantage of the “pooling” effect to reduce demand variability and 

improve resource utilization. Scenarios were run that considered reducing the number of 

sites by 50-75%. The discrete-event simulation model predicted that this move would 

allow CLS to meet its patient service target that required 80% of patients to have waiting 

times less than 20 minutes, whereas the current configuration would substantially miss 

that target. CLS has moved in this direction, going from 25 facilities in 2000 to the 

current 18 PSCs. This evolution has not been without its implementation challenges due 

to unexpected levels of demand caused, in part, by internal system feedback. Determining 

the effects of the feedback would have been difficult without the aid of a model due to 

time lags and the complex behaviors of patients. We showed how system dynamics could 
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have helped to predict some of the patterns in demand and perhaps suggest policies to 

reduce demand variability over time. 

 As an overall recommendation, we believe that when redesigned facilities or 

operations result from a detailed modeling exercise similar to the one described herein, 

system dynamics may be a useful tool for exploring the possible side effects of the new 

system. Even simply the creation of a causal loop diagram like that in Figure 4 may 

provide valuable insight. However, the development of a full dynamic model would be 

even better, since it may help in predicting and/or understanding unanticipated results. 

 As healthcare systems and organizations like CLS continue to deal with 

challenges in meeting increasing demand with limited resources, they will undoubtedly 

be asked to make significant changes in how they operate. Modeling tools like discrete- 

event simulation can be very valuable in helping make good decisions to improve 

performance.  As suggested by Harper and Pitt [19], carefully managing healthcare 

modeling projects such as this one is a key to success. We would further assert that 

modeling in health care really needs to be viewed as an ongoing process. Any change in 

the operations of the system will have side effects that over time can have significant 

impact on patient care and overall system performance. Additional tools like system 

dynamics can aid in understanding the effects of changes to these complex systems. As 

the changes progress, new data from the system can be used to further modify designs 

and smooth implementation. Going into a modeling effort with the view that it is a 

process rather than a discrete project will help all involved achieve the long-term results 

desired. 
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Appendix 

 

Explicit System Dynamics Model 
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Equation and Parameter Values (with Units) 

 

Aging Rate ~ Rate that new PSC ages: 1 (Month/Month). 

Base Possible Users ~  Initial number of potential patients for new PSC: 1000 (Patients). 

Capacity ~ Capacity of PSC: 100 (Patients/Month). 

Choose New PSC ~ Rate that potential patients choose to go to new PSC: (Possible PSC 

Users*PSC Knowledge Factor)/Visit Lag Time (Patients/Month). 

Conversation Delay ~ Delay time for communication between patients: 6 (Month). 

Emigration Rate ~ Rate at which patients depart region: 0.01 (Dmnl
2
/Month). 

Friends and Family Population ~ Population of friends and family available to PSC 

users: Possible PSC Users*Word of Mouth Factor (Patients). 

Growth per Month ~ Growth rate of patients: 0.03 (Dmnl/Month). 

Incoming Possible Users ~ Rate at which new potential patients arrive: Growth per 

Month*Potential Returning Demand (Patients/Month). 

Incoming PSC Users ~ Rate of patients joining new PSC User Population: Choose New 

PSC+Send Friends and Family (Patients/Month). 

                                                           
2
 Dmnl = Dimensionless 
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Natural Emigration ~ Rate of patients leaving the system: Emigration Rate*Potential 

Returning Demand (Patients/Month). 

Patient Satisfaction ~ Satisfaction level of patients based on waiting time: 

SMOOTH((Satisfaction Conversion Factor-Waiting Time)/Satisfaction 

Conversion Factor,Conversation Delay): (Dimensionless). 

Possible PSC Users ~ Population of potential patients: Incoming Possible Users-Choose 

New PSC (Patients). 

Potential Returning Demand ~ Based on overall system demand this stock is the potential 

return users: PSC Switchers-Natural Emigration (Patients). 

PSC Age ~ Age of new PSC: Aging Rate (Month). 

PSC Knowledge Factor ~ Factor representing possible user knowledge of new PSC: 1-

EXP(-PSC Age/Tau Factor) (Dimensionless). 

PSC Switchers ~ Rate at which dissatisfied patients stop using PSC: (PSC User 

Population*(1-Patient Satisfaction))/Visit Lag Time (Patients/Month). 

PSC User Population ~ Patients using the new PSC: Incoming PSC Users-PSC Switchers 

(Patients). 

PSC Visits ~ Patients visiting PSC each month: PSC User Population/Visit Lag Time 

(Patients/Month). 

Satisfaction Conversion Factor ~ This factor converts waiting time into patients 

satisfaction: 100 (Months/Patient). 

Send Friends and Family ~ Based on the rate of satisfaction, patients send friends and 

family to the new PSC: (Patient Satisfaction*Friends and Family 

Population)/Visit Lag Time (Patients/Month). 

Tau Factor ~ Normalizing constant: 1 (Month). 

Visit Lag Time ~ Time between patient visits to PSC: 6 (Months). 

Waiting Time ~ Based on patient demand and capacity, the estimated waiting time 

(bounded by a maximum of 100): IF THEN ELSE( Capacity > PSC Visits, 

Min((PSC Visits/Capacity)/(Capacity-PSC Visits)*100,100) , 100 )  

(Month/Patients). 

Word of Mouth Factor ~ Effectiveness of satisfied patients’ conversion of friends and 

family: 0.25 (Dimensionless). 
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Typical Daily Demand Pattern at a PSC
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Figure 1: Non-Stationary Demand at CLS 



 

 

Figure 2a:  95% confidence intervals and actual average waiting time for three 

PSCs 

 

 

 

 

 

Figure 2b:  95% confidence intervals and actual percentage of patients with greater 

than a 20 minute wait, for three PSCs 
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Figure 3: Animation of an Example PSC 
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Figure 4: Causal Loop Diagram of PSC User Population 



 

 

 

 

 

 

 

 

 

 

 

 

Incoming

PSC Users

PSC Age
Aging Rate

PSC
Knowledge

Factor
+

Base Possible

Users

Possible

PSC Users

+

Choose New PSC

+

Incoming Possible Users+

Growth per Month
+

PSC User

Population

Flow of Patients to a New PSC

Figure 5: Patient Inflow Submodel 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamics of New PSC Visitation
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Figure 6: Results of System Dynamics Model 



 

 

 

 

 

 

 

 

 

 

 

Figure 7: Comparison of Advertising New PSC vs. Base Case 
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Actual PSC Demand Data
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Figure 8: PSC Visits for a New Facility - Actual Data 

Due to seasonalities in PSC demand, the scaled demand was adjusted based on several years of overall system demand. 

 

 

 



 

 

 

Tables 
 

 

 

 

Table 1. Patient Inter-Arrival Time Data Fit Analysis with 

Exponential Distribution 
 

 

 

 

 

Table 2. Service Time Input Distribution Analysis 
 

 

 

 

 

Table 3: Configurations and Results for New Template PSC Designs 

Resource/Performance  6 PSCs 12 PSCs 

Staff 24 FTE’s * 12 FTE’s 

Front Terminals 5 3 

Phlebotomy Rooms 5 3 

EKG Rooms 2 1 

Performance 

Mean Waiting Time 

% > 20 Min. Wait 

 

4.1 Minutes 

4.7% 

 

2.1 Minutes 

1% 

(FTE = Full time equivalent) 

Time 

p-value (reject distributional choice for small values, e.g. < 0.05) 

Chi-squared Anderson-Darling Kolmogorov-Smirnov 

8 – 9 a.m. 0.2710 ≤ 0.05 > 0.25 

9 – 10 a.m. 0.1562 0.025 0.10 ≤ p ≤ 0.15 

10 – 11 a.m. ≤ 0.01 0.01 ≤ p ≤ 0.02 0.05 ≤  p ≤ 0.10 

Service Sample Size Distribution Choice Chi-squared p-value 

Phlebotomy 50 Gamma(2.01,1.5) + 0.85 0.0638 

EKG 30 Loglogistic(-0.36,4.72,4.61) 0.2692 



 

 

Table 4: Examples of Assessment Tests of the System Dynamics Model 
 

Test Example Result 

Extreme Condition Visit Lag Time = 0:  PSC Visits go to infinity (expected result) 

Visit Lag Time = 100:  PSC Visits drop to near zero (expected result) 

Structural Assessment If stock of Possible PSC Users drops to zero, there are zero users to 

Choose New PSC 

Dimensional Consistency Software automatic check = passed 

Equation inspection showed no anomalous dimensions  

Integration Error Test Shortening the time step by a factor of 10 has almost no effect on 

model results (test passed) 

 

 
 


