
THE UNIVERSITY OF CALGARY

Computational Complexity Applications in Machine Learning

by

Christino Theodore Tamon

A DISSERTATION

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

AUGUST, 1996

© Christino Theodore Tamon 1996

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a dissertation entitled "Computational Complex-

ity Applications in Machine Learning" submitted by Christino Theodore Tamon in

partial fulfillment of the requirements for the degr-e .f I.ctor . P. tso.hy.

N. H. Bshouty, Computer Science

University of Calgary
CI i')

W. Eberly, iomputer Scienc

Universityof Yalgary

B. A. MacDonald, Computer Science

University of Calgary

(j e fir

J. R. B. Cockett, Computer Science

Univ rsity of Calgary

iJi4j7
G W. Sands, Mathematics and Statistics

University of Calgary

Eyal Kushi1ez, d2mputer Science

Technion Institute of Technology

Date Ar-ft /c) fi

H

Abstract

This thesis presents some theoretical investigations on the learnability of Boolean

functions using techniques from computational complexity theory. Some of the main

findings are as follows.

• Monotone Boolean functions are learnable in the probably approximately cor-

rect (PAC) model in subexponential time under product distributions.

• Boolean functions computable by some classes of branching programs of width

less than five are efficiently learnable in the exact identification model using

equivalence and membership queries.

• Boolean functions computable by polynomial size circuits and by polynomial

size formulas in normal forms are efficiently learnable in the exact identification

model using equivalence queries by a probabilistic oracle Turing machine that

has access to an All' oracle.

The first result is obtained through a new analysis of the harmonic spectra of mono-

tone Boolean functions. The second result is in contrast to the cryptographically

impossible task of learning width five branching programs and is obtained through a

combination of techniques from harmonic analysis and automata theory. An implica-

tion of the third result is that if Boolean formulas in normal forms are not efficiently

exactly learnable from equivalence queries then P 0)VP.

111

Dedication

This thesis is dedicated

to memory of my aunt

Ria Halim-Dihardja

iv

Acknowledgments

First and foremost my deepest thanks to my supervisor Nader H. Bshouty. Nader

gave me a chance, believed in me, taught me many wonderful things about research,

and was extremely generous. This thesis would not have been possible without his

guidance and patience. Thank you, Nader!

My research has been strongly infiuen'ced by many people. Nader has had a hand

in all of my research, my way of thinking, and my understanding of learning the-

ory. He got me started on our first paper on learning with the Al? oracle. I was

overwhelmed with the ideas that he poured on me: the Monotone Theory (where

we discovered together lattice theory lurking behind it), trading equivalence for the

NP oracle (where I noticed self-reducibility), trading unlimited time for the NP Ora-

cle plus random bits (where my knowledge of probabilistic arguments is really being

stretched), and lower bounds (where Nader's instincts are unparalled). In our second

paper, once I saw Cauchy-Schwarz, Nader kept me on the right tracks for the rest

of the trip. The analysis that we worked out together in Section 4.3. was quite a

nail-biting experience for me. Nader was also very supportive when I got carried away

with cross correlation. Finally, in our third paper, my ramblings that the number

of sinks has something to do with rank triggered Nader's enthusiastic response that

resulted in our joint work on learning branching programs. I very much enjoyed our

ensuing collaboration where we pulled resources from the kitchen sink, e.g., Fourier,

multiplicity automata, lists and nested differences.

V

My thanks to Jeff Jackson, who graciously shared his broad knowledge on Fourier

transform. Jeff showed me another proof of Fact 3.7 that prompted me to look for

other neat Fourier things. The fact that I stumbled on Cauchy-Schwarz is minor

compared to the original enthusiasm that Jeff inflicted upon me. Jeff also helped

me when I was grappling with applying lower bound on influences to weak learning

monotone functions.

I would like to thank my coauthors from whom I have learned a lot. My thanks

to Richard Cleve, Ricard Gavaldt, and Sampath Kannan, for collaborating with me

on the oracle paper. Their broad knowledge in complexity theory, especially things

related to random generation, amplifiers, and oracles in general, was an inspiration to

me. My thanks to Francesco Bergadano and Stefano Varricchio for collaborating with

me on the branching program paper. I thank them, especially Stefano, for being very

patient when I was struggling to understand multiplicity automata and for correcting

my original mistakes.

My thanks also to numerous people who have kindly helped with suggestions,

comments, improvements, and extensions on research appearing in this thesis. Thanks

to David A. Mix Barrington for graciously sharing his knowledge on permutation

branching programs, to Dan Boneh for suggesting influence norm, to Eyal Kushilevitz

and Yishay Mansour for pointing out average sensitivity, to Sleiman Matar for asking

many good questions, to Osamu Watanabe for kindly us allowing to include in [BCG]

his beautiful observation, to the anonymous referees of [BCG+, BT95] for comments

that greatly improved the presentations of the papers, and to Atsuyoshi Nakamura

for discussions on learning branching programs.

My thanks to Professors Wayne Eberly, Bruce MacDonald, Bill Sands, Richard

Cleve, Robin Cockett, and Eyal Kushilevitz, for serving in of my supervisory and/or

examination committee. Their keen and sharp comments have greatly improve the

presentation of this thesis. My thanks especially to Wayne who tirelessly read and

corrected a manuscript of this thesis.

Vi

My thanks to some very nice people from computer science office: John Aycock,

Bev Frangos, Elsie Mason, Beverley Shevchenko, Lorraine Storey. Without them I

am sure some of my troubles will be quite nightmarish.

Many kind people have made life felt more than just academic work. Thanks to

Nadera and Vivian Bshouty for their hospitality, to Sleiman Matar who is always

a good friend. Thanks to my Botany connection, Roger and Val Mandel, Jin-Hao

Liu and family, Jacqui Purvis-Smith, and Simon Chuong, for their friendship and for

being there. Thanks to people from computer science, my ex-lunchmate Pete Vesely,

the theory crowd: Lynn Burroughs, Dave Wilson, Zhang Wei, Jola Warpechowska-

Gruca, and Natbaly Verwaal; my squash enemies, Robin Cockett, Camille Sinanan,

and Roberto Flores-Mendes; and also to Todd Reed, and the Gomes family.

My thanks once again to my mentor and friend, Hisao Tamaki, whose friendship,

encouragement, help, and advice were crucial in so many subtle ways. It was Hisao

who was responsible to point me back to Calgary ... where apparently many wonderful

things await me. Thanks to my Gaelic muse, Catherine (a.k.a. Baby Leo) Convery,

whose letters kept me close with an Ireland that I will someday visit.

My thanks goes also to my family in Calgary who made my long journey away from

home possibleand for their patience with this difficult relative; my uncle, Indraman,

my cousins, Andre', Manda, and Yuswan, and my adorable nieces, Elise and Celine.

I would like to thank my Mom Thea Lierungan, for her love and support, despite

the long distance and time away from home, and my lazyness in writing letters. We

made it, Mom! Finally to my partner in life, Siew Hwee, whose love, encouragement,

support, and entourage (BearBear,Teebo,Mooky,Odie), were essential in keeping me

insanely happy (mostly, not in that order), my big thanks. It requires more than

randomness and an All' oracle to find a life partner, but perhaps it was more than

an oracle that made it happen.

VII

Publication Notes

An extended abstract describing the results in Chapters 3 and 4 was published in Pro-

ceedings of the 27th Annual ACM Symposium on Theory of Computing 1995 [BT95},

a journal version of which will appear in Journal of the ACM, vol. 43, no. 4, July

1996. This research is joint work with Nader H. Bshouty. A small part of Chapter 3

also appeared in [T95].

The results of Chapters 5 were described in [BBTV96]. This research is joint work

with Francesco Bergadano, Nader H. Bshouty, and Stefano Varricchio, and is being

submitted for publication.

The research in Chapter 6 is joint work with Nader H. Bshouty, Richard Cleve,

Ricard Gavaldà, and Sampath Kannan. An extended abstract describing this research

appeared in Proceedings of the Seventh Annual ACM Workshop on Computational

Learning Theory 1994 [BCKT94], a journal version of which appeared in Journal of

Computer and System Sciences, vol. 52, no. 3, June 1996 [BCG+].

viii

Contents

Approval Sheet ii

Abstract iii

Dedication iv

Acknowledgments v

Publication Notes viii

Contents ix

List of Figures Xi

Glossary of Notation xii

Chapter 1. Introduction 1

Chapter 2. Preliminaries 7
2.1. Complexity Theory 7
2.2. Computational Learning Theory 10

2.2.1. Representation Classes 14
2.2.2. Probably Approximately Correct Learning Model 15
2.2.3. Exact Identification Learning Model 17

2.3. Specific Representation Classes for Boolean Functions 19
2.3.1. Boolean Circuits and Formulae 20
2.3.2. Decision Programs 21

2.4. Inequalities and Probabilities 24

Chapter 3. Harmonic Analysis of Boolean Functions 26
3.1. Basic Theory of Fourier Transform 28
3.2. Influence and Average Sensitivity 31
3.3. Relating Fourier Spectrum and Average Sensitivity 32

Chapter 4. Learning Monotone Functions in the PAC Model 39
4.1. The Linial-Mansour-Nisan Learning Algorithm 40
4.2. Subexponential Learning for All Monotone Boolean Functions 43

ix

4.3. Analysis of Learning under Any Product Distributions 44
4.4. Proving Near Optimal Performance 48

4.4.1. Error Rates 48
4.4.2. Bounds for the Low-degree Fourier Algorithm 50
4.4.3. Sample Complexity 51

4.5. Polynomial-time PAC Learning 52

Chapter 5. Learning Bounded Width Branching Programs 57
5.1. Characterizations of Width Two Branching Programs 58
5.2. Learning Monotone Width Two Branching Programs in the PAC Model 59

5.2.1. The Harmonic Sieve Learning Algorithm of Jackson 60
5.2.2. A Fourier Correlation Lemma 62

5.3. Exact Learning Width Two Branching Programs with 0(1) Sinks 65
5.4. Exact Learning Permutation Branching Programs 69

5.4.1. Multiplicity Automata 70
5.4.2. Transformation to Small-depth Circuits 73

Chapter 6. Learning Boolean Functions with the NP Oracle 78
6.1. Uniform Generation of Polynomial-time Structures 79
6.2. The Halving Algorithm Revisited 81
6.3. Exact Learning with the Equivalence and NP Oracles 87
6.4. Exact Learning with the Membership and NP Oracles 88

6.4.1. Trading Unlimited Time for the NP Oracle 89
6.4.2. Trading the Equivalence Oracle for the NP Oracle 91

Chapter 7. Conclusions and Open Problems 98
7.1. Summary 98
7.2. Minor Extensions 100
7.3. Open Questions 101

Bibliography 103

Closing Credits 110

x

List of Figures

1.1 Example of a DNF formula 2
1.2 Some classes of Boolean functions considered in the thesis 6

2.1 Probabilistic Oracle Turing Machine 8
2.2 Two-person Learning Game 11
2.3 The PAC Learning Model 16
2.4 Example of a Boolean Circuit 20
2.5 Example of a Decision List 22
2.6 Example of a Branching Program 23

4.1 The Linial-Mansour-Nisan algorithm 41

5.1 Example of a strict width 2 branching program 58
5.2 Example of a monotone width two branching program for DNF x1&2&3V

 59
5.3 Example of 83-PBP computing the identity permutation 69
5.4 Example of 1F2-automata for DNF x123 V fix2 71
5.5 Examples of modq-LT1 and modq-modz circuits 75
5.6 Barrington's circuit characterization of S3, A4-PBPs 76

6.1 Examples of amplifiers 85
6.2 The 8-Halving algorithm using amplifiers 86
6.3 Monotone of x 2&3 V x1x2 92

Glossary of Notation

Early lower case letters, such as a, b, c, ... , are normally used to denote absolute

constants. The end lower case letters, such as... , x, y, z, are used to denote variables,

strings, bit vectors, etc. Middle lower case letters, such as f, g, h,... are used to

denote functions. Other lower case letters are used in a first-come first-need fashion

for almost anything. Capital letters are reserved for sets, events in some probability

space, etc. Greek letters are used sparingly for special functions, but mainly in use

for asymptotic

al
[T]

a

notations.

set cardinality, string length, Hamming weight, or absolute value

1 if statement T is true, 0 otherwise

definition symbol

field of real numbers, ring of integers (resp.)

finite field of q elements

integer (or real) interval between a and b (inclusive)

{1,2,... ,n}

the real interval between a (excluded) and b (included)

set of Boolean n-bit vectors

ith bit of a E {0, I}n or ith element in a list

n-bit vector that is zero everywhere except for the ith bit which is 1

the all-zero, all-one n-bit vector in {0, 1}

bitwise exclusive OR between a, b E {0, 1}

Xli

a•b

a o b

a < b

f≤g

fg

PrD [A]

ED [X]

U.

1(a), f (a)

Xa,a

ins

log s

e, exp(x)

H(s)

inner product between a, b E {O, 1}n, i.e., ab(mod2)

concatenation of two bit strings

standard ordering on {O, 1}', i.e., a ≤ b, for all i E [ri] (0 < 1)

standard ordering on Boolean functions, i.e., f(s) ≤ g(x), for all x E {0, l}Th

f(s) = g(x), for all x

probability of event A under distribution D

expectation of random variable X with respect to distribution D

uniform distribution on {0, 1}'

Fourier coefficient of function f at a

basis function at a according to uniform or product distribution (resp.)

logarithm function to base e = 2.7182818...

logarithm function to some base (usually 2)

exponential function in x

binary entropy function, i.e., slog2(1IX) + (1 - s)1og2(1/(1 - s))

Some notation to describe asymptotics is described next.

f(n) E Q(g(n)) EIe> 0,n0Vn > no f(n) ≤ cg (n)

f(n) E f(g(n)) 2c> 0,n0Vn > no f(n) ≥ cg(n)

f(n) E e(g(n)) 3CI > 0,c2 > 0,noVn> no c1g(n) ≤ f(n) ≤ C29(n)
f(n) E o(g(n)) limn, f(n)/g(n) = 0

f(n) E w(g(n)) f(n)/g(n) = oo

f(n) E Ô(g(n)) f(n) E O(g(n) log g(n))

f(n) - g(n) lim f(n)/g(n) = c, for some constant c

fZg f(n)Eo(g(n))

f>>g f(n)Ew(g(n))

CHAPTER 1

Introduction

Consider a world containing robots and elephants. Suppose that one of the robots has discovered a

recognition algorithm for elephants that can be meaningfully expressed in k-conjunctive normal form. Our

Theorem A implies that this robot can communicate its algorithm to the rest of the robot population by

simply exclaiming "elephant" whenever one appears.

- L. G. Valiant, Comm. ACM, 1984.

The complexity of learning Boolean functions has been studied for more than a

decade. During this period the area of computational learning theory,, has matured

into a distinct field of research, has developed its own theories, and has provided a

clean theoretical model for studying learning problems. The area has borrowed results

from statistics, complexity theory, cryptography, automata theory, and others. New

techniques were developed to answer basic questions about learning Boolean functions

and fruitful interactions with practical problems have emerged slowly.

Despite these efforts and successes, we are still unable to answer one of the earliest

and basic learning questions posed by L. G. Valiant. Recall that a Boolean formula

in Disjunctive Normal Form (or DNF for short) is a disjunction (logical OR) of

conjunctions (logical ANDs) of literals (a variable or its negation). It is a fact that

any Boolean function can be represented as a DNF formula, i.e., this representation is

universal. In his seminal paper that founded computational learning theory, Valiant

[V84b] asked whether Boolean formulas in Disjunctive Normal Form can be efficiently

learned from random examples. The main emphasis here is on efficiency since learning

1

1. INTRODUCTION 2

is always possible with an exponential amount of resources. This question is very

interesting since DNF formulas are a very simple and yet universal representation for

Boolean functions.

Valiant also noted that the same question for polynomial size Boolean circuits is a

hopeless one if we make a certain cryptographic assumption. The existence of a family

of cryptographic functions called pseudorandom functions eliminates any possibility

of learning polynomial size Boolean circuits.

xl X2 X3 X4

FIGURE 1.1. Example of a DNF formula

Half a decade passed before Kearns and Valiant [KV89] (and subsequently An-

gluin and Kharitonov [AK95]) strengthened the grip of Valiant's negative observation.

They showed that, under reasonable and popular cryptographic assumptions, even a

simpler class of Boolean circuits, called NC' circuits, is not learnable under a very

generous learning model. NC' circuits are restricted to have logarithmic depth and

polynomial size in with respect to their input size.

On the brighter side, a decade passed until Jackson [J94] proved the surprising and

beautiful result that, under some additional relaxations of the learning model, the

class of DNF formulas is learnable. This result constitutes one of the recent strongest

positive answers to Valiant's question.

In this thesis Valiant's question and observation will be addressed from several

different angles. First it is shown that monotone Boolean circuits (even of exponential

size) are learnable from random uniform examples with a subexponential amount

1. INTRODUCTION 3

of resources. This result is derived by proving that the average sensitivity of any

monotone Boolean function is low. This implies that they have a simple harmonic

spectrum that can be then exploited for learning purposes. Although the result on

sensitivity is new, the connection between learning and harmonic spectrum is known

from the seminal work of Linial, Mansour, and Nisan [LMN93].

Secondly, Jackson's DNF learning result [J94] is strengthened in a natural way. It

is shown that the class of monotone width two branching programs is learnable under

the same assumptions made by Jackson. It is known [BDFP86] that the latter class

includes the class of DNF formulas as a strict subset. The proof of this result relies

on a non-trivial extension of a Fourier correlation lemma due to Jackson and is based

on a recent characterization of width two branching programs as parity decision lists

developed in [BTW96].

By switching the viewpoint from the Boolean circuit model (that includes DNF

formulas) to the branching program model, the boundaries between learnability and

non-learnability can be seen. Barrington [Bar89], in his seminal work, showed that

the class of Boolean functions computable by width five (permutation) branching

programs is equivalent to the class of Boolean functions computable by polynomial

size and logarithmic depth Boolean circuits. Thus the negative cryptographic results

of [KV89, AK95] eliminate any possibility for learning width five branching programs.

The investigation on learning branching programs is pursued to the case of widths

three and four. It is shown that certain permutation branching programs of widths

three and four are exactly learnable with equivalence and membership queries. The

learning results rely on a recent breakthrough on the learnability and applications of

multiplicity automata due to Bergadano, Catalano, and Varricchio [BCV96, BV94].

Thirdly in the thesis, it is shown that the class of polynomial size Boolean circuits

and the class of polynomial size DNF formulas are exactly learnable from equivalence

queries if the learning algorithm is equipped with an oracle that can solve any .AIP

problem. Allowing access to a computationally powerful oracle is a well-studied tech-

1. INTRODUCTION 4

nique in structural complexity theory called relativization. Relativization is a means

of studying how much help can an oracle provide in resolving typical hard questions

such as P 0 XP. The result can be read backwards: if Boolean circuits or DNF

formulas are not learnable then P Alp. The proof technique that is used relies

on a preliminary observation of Kannan [K93] combined with a classic algorithm

due to Jerrum, Valiant, and Vazirani [JVV86] for randomly generating combinato-

rial structures. Recently Watanabe observed that the learning result implies that if

each language in .Af P has a polynomial size circuit, i.e., Al? C P/poly, then the
polynomial-time hierarchy (see [P94], Chapter 17) collapses to ZPP'. This im-

proves a well-known theorem of Karp and Lipton [KL8O] who proved a collapsing

level of AIP' ([P94], page 431).

Those are three main lines from which Valiant's initial questions are approached in

this thesis. Elsewhere in the thesis more specific related results are pursued as well.

This thesis is organized as follows:

In Chapter 2, an overview of the relevant definitions, models of computation, and

models of learning from complexity theory and learning theory are described. After

defining some standard models of Turing machines, the two main learning models that

are considered in this thesis - namely the Probably Approximately Correct (PAC)

learning model of Valiant and the Exact Identification learning model of Angluin, are

given in detail. Finally several specific representation classes for Boolean functions

used in this thesis, such as Boolean circuits and formulas, decision trees and lists, and

branching programs, are described.

In Chapter 3, the main results on the Fourier transform of Boolean functions are

developed. First, some relevant definitions and standard facts in this area are given

and an overview of known results is provided. Then the following results are proved:

an upper bound on the average sensitivity for monotone Boolean functions and its

impact on their Fourier spectrums. These results can be regarded as providing al-

ternative (and perhaps simpler) proofs to a well-known result of Kahn, Kalai, and

1. INTRODUCTION 5

Linial [KKL88] as well as providing a useful connection between the older notion of

average sensitivity and PAC learning. The easy case of uniform distribution is stated

first and then subsequently it will be extended to the more general case of product

distributions.

In Chapter 4, main results from Chapter 3 are applied to derive results in learning.

First a subexponential time learning algorithm for monotone Boolean functions is

derived. This almost follows directly from the previous work by Linial, Mansour, and

Nisan except for one detail. Some careful analysis is required to handle the case of

product distributions which is slightly more problematic than the uniform distribution

case. In a separate section, a careful analysis of the learning algorithm for monotone

Boolean functions under product distributions is given. Next some evidence that the

subexponential learning result is nearly optimal with respect to some parameters is

shown. In the second part of this chapter, the attention is focused on efficient learning

of monotone Boolean functions. Some improvements on the learning results of Kearns

and Valiant [KV89] and of Sakai and Maruoka [SM94] are described.

In Chapter 5, ideas from Jackson's work on learning DNF formulas are applied to

address the problem of learning Boolean functions computable by monotone width

two branching programs (or MW2 functions for short). To prove that MI/V2 is learn-

able under the same learning assumptions a non-trivial extension of a key lemma due

to Jackson is proved and a new characterization of width branching programs as par-

ity decision lists given in [BTW96] is used. Subsequently in the chapter efforts are

focused on showing that the general model of width two branching program (not nec-

essarily monotone) is exactly learnable using equivalence queries assuming that there

is only a constant number of sinks. The proof relies on combinatorial arguments due

to Blum, Fleimbold, Sloan, and Warmuth [Bl92, IHSW9O] on decision lists. Further in

the chapter the learnabilities of bounded width permutation branching programs and

of small depth Boolean circuits with modular and threshold gates are studied. The

investigation is motivated by Barrington's work [Bar89] on the alternative character-

1. INTRODUCTION 6

ization of NC' circuits as bounded width permutation branching programs and by a

recent application of multiplicity automata in learning [BBBIKV9G].

In Chapter 6, a well-known algorithm of Jerrum, Valiant, and Vazirani [JVV86] for

randomly generating combinatorial structures is used to obtain an exact learning al-

gorithm for Boolean circuits. The learning algorithm that is obtained uses equivalence

queries and requires access to an AlP oracle. This result implies that: if P = AlP

then Boolean circuits are exactly learnable.

/

/
/

FIGURE 1.2. Some classes of Boolean functions considered in the thesis

Finally the thesis is summarized in Chapter 7, some minor extensions are men-

tioned, and some open questions raised by this work are stated.

CHAPTER 2

Preliminaries

In this chapter we describe relevant definitions and notions from computational com-

plexity theory and computational learning theory. We focus our attention on problems

related to the complexity and learnability of Boolean functions. To discuss the learn-

ability of Boolean functions we describe some specific representation classes that we

consider in this thesis, such as Boolean circuits and formulas, decision trees and lists,

and branching programs.

2.1. Complexity Theory

We use the Turing machine as our model of computation. We assume the reader's

familiarity with the basic models of deterministic and nondeterministic Turing ma-

chines (see, for example, [P94]). Recall that 2 and IV? are the classes of languages

accepted by polynomially time-bounded deterministic and nondeterministic Turing

machines, respectively. Throughout this thesis we shall assume a reasonable encod-

ing scheme, in the sense of Garey and Johnson [GJ79], when dealing with inputs or

problem instances to Turing machines.

In this thesis we will also consider probabilistic and oracle Turing machines. A prob-

abilistic Turing machine (PTM) is a standard deterministic Turing machine equipped

with the ability to make decisions based on the outcome of a random coin flip. More

formally, a PTM is a Turing machine which has a coin-tossing state and a special

tape called the random tape. When the computation enters this coin-tossing state,

7

2. PRELIMINARIES 8

the machine receives a bit on the random tape that depends on the outcome of an

unbiased coin flip.

An oracle Turing machine (OTM) is a deterministic Turing machine equipped with

a special tape, called the query tape, and three special states, called the query, YES,

and NO states, respectively. The computation of an Oracle Turing machine requires

that a set, called the oracle set, be fixed prior to the computation. If computation

enters the query state and leaves some string w on the query tape, then computation

switches to the YES state if w belongs to the oracle set or switches to the NO state

if w is not in the oracle set. All other computations proceed as in the deterministic

Turing machine case. If M is an oracle Turing machine and A is some oracle set then

we denote MA as the oracle Turing machine that has A fixed as its oracle set prior

to computation. A probabilistic oracle Turing machine (POTM) is a Turing machine

that is equipped with both the oracle and the random tapes.

work tape

4
TM

random tape

ORACLE
oracle tape

FIGURE 2.1. Probabilistic Oracle Turing Machine

A probabilistic Turing machine is said to run in bounded polynomial-time if there is

a fixed polynomial function p such that for all inputs of length n the Turing machine

2. PRELIMINARIES 9

on input w always enters some final state after at most p(n) computation steps. On

the other hand we say that a probabilistic Turing machine runs in worst case expected

polynomial-time if there is a fixed polynomial p such that the expected running time

of the machine is at most p(n), for every input of length n. The expected running

time is taken with respect to coin tosses performed by the machine.

There are several well-known complexity classes that are associated with probabilis-

tic polynomial-time Turing machines, but we will only mention one of them, namely

Z27'.

DEFINITION 2.1. A language L is said to be in Z7'7' if there is a probabilistic

Turing machine M running in bounded polynomial-time that satisfies the following.

For every input x:

• If X E L then Pr[M(x) = accepts] ≥ 3/4 or halts without output with

probability at most 1/4.

• If x L then Pr[M(x) = rejects] ≥ 3/4 or halts without output with proba-

bility at most 1/4.

We now define complexity classes related to oracle machines. The next informal

description is taken from Johnson's survey paper [J].

If C is a complexity class defined in some way, and A is a fixed ora-

cle set, then CA is the analogous class defined using the same resource

bounds but augmenting 'the machine model with a (perhaps additional)

oracle tape for asking questions about membership in A.

For instance, we say that a language L is in Z11 Ar'p if there is a probabilistic

polynomial-time oracle Turing machine M, equipped with an oracle A E Al2, such

that, for every input x:

• If x E L then Pr[MA(x) accepts] ≥ 3/4 or halts without output with proba-

bility at most 1/4.

2. PRELIMINARIES 10

• If x L then Pr[MA(x) rejects] ≥ 3/4 or halts without output with probability

at most 1/4.

When the meaning is clear from context we will say an HP oracle rather than an

oracle A E AlP.

Our discussion above is slightly incomplete since we only describe decision prob-

lems whereas our learning algorithms solve search problems, i.e., algorithms that

return outputs that are different from just yes or no. The notion of polynomial-time

computation, whether it is deterministic, probabilistic, or relativized (oracle), can be

extended in a natural way to search problems.

When describing algorithms in this thesis, we will in general use a very high-level

description and omit the technical details of implementing these algorithms in the

models described above. In some cases it might be helpful to consider random access

machines (RAM) instead of Turing machines. Thus, we will informally use the words

algorithm and/or program to mean a Turing machine or a RAM program.

2.2. Computational Learning Theory

The area that has become known as Computational Learning Theory was started in

1984 with the seminal paper of Valiant [V84b]. The chief contribution made by this

paper is a clean and simple theoretical and computational model for which questions

about learning can be posed and analyzed rigorously. Prior to Valiant's paper there

was already ongoing theoretical machine learning research but most of these efforts

tended to concentrate solely on computability issues rather than on computational

efficiency.

In the following we give an overview sketch, using Valiant's DNF question, that

is intended to motivate the learning models that we consider in this thesis. A more

formal treatment of these models is given towards the end of this chapter.

One of the earliest but still the hardest open questions in learning theory was posed

by Valiant. Recall that a DNF (disjunctive normal form) formula is a disjunction

2. PRELIMINARIES 11

(logical OR) of conjunctions (ANDs) of literals. Valiant asked whether DNF formulas

are learnable in his proposed model. In one of its alternative formulations, this

question can be stated as a two-person game between a teacher and a learner. The

teacher holds a DNF formula on n variables, say 0, of size s (i.e., the number of ANDs

is .$). The only prior knowledge that the learner has is that the mysterious function

is represented as a DNF formula, that it depends on n inputs, and that it has size

S.

concept class

pick f

Teacher

a in f?

representation class

what is 1?

Learner

try h _J

FIGURE 2.2. Two-person Learning Game

During the play of the game, the learner can ask two kinds of questions: it can

either ask the teacher to return the value of q on a specific assignment a of its choice

or ask if another formula 0 is equivalent to the mystery function 0. In the first kind of

question, the teacher replies simply with q(a) while in the second type of question the

teacher either responds with yes, signifying that b is equivalent to 0 (which implies

that the function has been learned), or with a no along with a counterexample b (such

2. PRELIMINARIES 12

that q(b) =A 0(b)). A question of the first type is called a membership query and a

question of the second type is called an equivalence query. The learner wins if it can

find a formula equivalent to 0 in time proportional to a polynomial function of n and

the size of q (a binary encoding of 4). This model is called the exact identification

model.

Notice that the learner can trivially succeed if allowed an exponential amount

of resources. For instance, asking 2' membership queries is sufficient to uncover

the truth table of the DNF formula to be learned. Alternatively, asking as many

equivalence queries as there are DNF formulas of size .s, of which there are at most

3ms,w ill surely discover the DNF formula to be learned. So the main thrust of Valiant's

question is efficiency, i.e., whether the learner succeed using a polynomial number of

queries and polynomial computation time.

Using combinatorial arguments, Angluin [Aug90] has proved that only using one

type of question is not enough, i.e., neither membership nor equivalence queries alone

are sufficient to learn DNF formulas. It is not known to date, whether both types of

queries are sufficient. In another interesting paper, Angluin and Kharitonov [AK95]

proved that under cryptographic assumptions the existence of membership queries in

learning DNF formulas is irrelevant. That is, they proved that either DNF formulas

are learnable without membership queries or DNF formulas are not learnable with

membership queries. These two results, one with a combinatorial flavour and another

with a cryptographic flavour, constitute the current knowledge about learning DNF

formulas in the exact identification model.

Judging from these results, we were tempted to ask what is the minimum com-

putational requirements sufficient to learn exactly DNF formulas. In Chapter 6, we

show that randomization and a helpful A11 oracle are sufficient to guarantee the

exact learning of polynomial size DNF formulas exactly. In fact our techniques im-

ply the learnability of polynomial size Boolean circuits as well. A consequence of

the statement of our result is that if DNF formulas are not exactly learnable then

2. PRELIMINARIES 13

pj\r17.
We note that the learning formulation given above requires that the learner finds

an equivalent function. There is another model that only requires the learner to find

an approximation to the target DNF formula q. More formally, the learner is asked

to find, with probability at least 1 - 8, a formula 0 that satisfies

Pr[q(x) çb(x)] ≤ e

where D is some probability distribution on the domains of q' and b. In this model,

the equivalence query is replaced with a statistical teacher who randomly draws points

x according to D and supplies the learner with (x, O(x)). This model is called the

probably approximately correct model or PAC model for short.

Intuitively, learning should be easier in the PAC model than in the exact model.

This intuition is supported by the two results of Angluin [Ang88] and Blum [Bl94].

Angluin proved that an exact learning algorithm can be used to learn in the PAC

model. Equivalence queries are replaced by a high probability sampling step; this

can be achieved by appealing to standard large deviation bounds such as Chernoff

bounds. Blum showed that, under a reasonable cryptographic assumption, there is a

class of functions that can be learned in the PAC model but that cannot be learned

in the exact model.

Kearns et al. [KLPV87] proved that if monotone DNF formulas are learnable

in the PAC model then DNF formulas are learnable in the PAC model. Thus the

monotonicity restriction does not make learning any easier. On the other hand, An-

glum [Ang88] showed that monotone DNF formulas are exactly learnable with both

equivalence and membership queries. In Chapter 4 we exhibit a subexponential time

PAC learning algorithm for the class of all monotone Boolean circuits and any mono-

tone DNF formula (including the ones that require exponential size). The algorithm

does not require the use of membership queries but it requires that the examples

are generated uniformly. In contrast, Chapter 5 provides a learning algorithm for

2. PRELIMINARIES 14

a superclass of DNF formulas in the PAC model with membership queries under a

uniform probability distribution in polynomial time.

For more information about computational learning theory, we refer the reader to

the survey paper of Angluin [Ang92].

2.2.1. Representation Classes. In the preceding section we have sketched an

outline of the learning game played between the learning algorithm and the teacher or

oracle. In those discussions we did not distinguish between a concept, i.e., a Boolean

function, and a representation of a concept, e.g., a DNF formula that represents a

Boolean function. In some cases this distinction need not be made but in most cases

it is important to distinguish them. For instance, it is known that Boolean functions

computed by DNF formulas with at most k terms (or ANDs) are not efficiently

learned from random examples using DNF formulas with at most Ic terms [PV88] but

are efficiently learnable using other representations, e.g., DNF formulas with at most

nh terms. Thus learning turns out to be a representation-sensitive phenomenon, and

hence the need to differentiate between concepts and representations.

In this section we give a standard and formal treatment of representation classes

for concepts or Boolean functions (see [Ang9O] for a more complete treatment).

Let E be an alphabet, usually {O, 1}. The set E* is the set of all strings over E and

the set E" is the set of all strings over E of length n. The length of a string x E E*

is denoted Ix.
A representation class C(E, L, R,) is a 4-tuple where E and A are finite alphabets,

R C and u is a mapping from R to subsets of . A concept is any subset of

The set > is called the example space or instance space. An example is a pair (x, b)

where x E E* and b E {O, 1}. The alphabet A is called the alphabet of representations.

The strings of R are called the valid representations in the class C. The function ,a

is a mapping from representations to concepts. The size of a representation r E R

is Irl. The size of a concept c is min{iri : (r) = c}. If a concept does not have a

representation in R then its size is infinity.

2. PRELIMINARIES 15

The concept class C defined by a representation class C is the set of concepts that

have representations in R. That is, C = J/-t(r) r E R}. For any natural number

n, we define the parametrized concept class Cn as {(r) : r E R, Irl ≤ n}. Thus,

C = U0 C.

Example: Consider the class of Boolean functions computable by conjunctions of

literals, also called the class of monomials. As an example, f(xi, x2, x3) = x1 A x2

is a monomial. We now describe a representation class 1.(E, z, R, t) for monomials.

Taking E = {0, 1}, the concept f defines the subset {100, 101} of {0, i}. We can use

some natural encoding of monomials as follows. The monomial x1 A f2 is represented

as the string 10* over the alphabet A = {0, 1,*}, where 1 means the variable appears

unnegated, 0 means it appears negated, and * means it does not appear. So the

mapping maps the string (10*) to the concept f = {100, 101}. It also maps the

string (*1*) to the concept g = {010, 011, 110, 111}, i.e., g = x2.

In most of the representation classes we consider there is a natural but implicit

choice for each of E, L, R and A. In most case considered in the thesis, E = {0, 1},

and the example or instance space is {0, l}Th, for some fixed n. A standard encoding

scheme (such as the ones in [GJ79]) can be assumed for the representations in R

We will use the word size of a concept to mean size of the concept with respect to

some natural representation class.

When dealing with a representation class C(E, L, R, we will occasionally abuse

the distinction between the concept class, i.e., C = {t(r) : r E R}, defined by a

representation class C with the representations R from C. That is, when the context

is clear, we will use r E R (a representation) in place of the more precise (r) (a

concept) when talking about concepts from C.

2.2.2. Probably Approximately Correct Learning Model. The Probably

Approximately Correct (PAC) model was introduced by Valiant [V84b]. In this model,

the learner receives from its environment a sequence of "random" classified or labeled

2. PRELIMINARIES 16

examples. The goal of the learner is to find a sufficiently good approximation or

hypothesis that can explain the sequence of random examples that it has seen. The

goodness measure of the hypothesis is the likelihood of a misclassification under the

same random process that generated the examples.

In the PAC model the environment is modeled by an example oracle for the target

concept, say f. Underlying the example space X (normally, {O, 1}) is a probability

distribution D from which the example oracle draws its examples. The example oracle

EX(f, D) works as follows: upon request from the learner, it draws a random input

x E X according to D and returns the classified example (x, f(x)). Unless otherwise

stated we will assume that our instance or example space is {O, i}Th, for some fixed n.

concept class

EX(f,D)

a

 17

random source

FIGURE 2.3. The PAC Learning Model

what is f?

Learner

DEFINITION 2.2. (PAC Learnable)

Let C be a concept class and let H be a representation class. Then C is PAC

learnable using H if there exists an algorithm A so that: for any concept f E C, for

any distribution D over X, for any 0 < e, S < 1, if A is given access to EX(f, D)

and inputs e, 8, then with probability at least 1 - 8, A outputs a hypothesis h E H

2. PRELIMINARIES 17

satisfying D(fLh) ≤ e, where fL≥h = {x E X I f(x) 0 h(x)}. The last probability

is taken over the possible internal randomization of A along with the randomization

in the calls to EX(f,D).

The last definition only stipulates that a "good" hypothesis can be found by the

learning algorithm. It did not require that this hypothesis be found in a reason-

able amount of time. The next definition of efficiently PAC learnable imposes this

additional requirement.

DEFINITION 2.3. (Efficiently PAC Learnable)

Let C be a concept class and let H be a representation class. Then C is efficiently

PAC learnable using H if C is PAC learnable using H and the learning algorithm

runs in time polynomial in n, , , and the size of the target function f.

Next we define the weak variation of the PAC learning model of Kearns and Valiant

[KV89]. In this variation the learner is only expected to be able to approximate the

target concept with an error that is slightly better than guessing.

DEFINITION 2.4. (Weakly PAC Learnable)

Let C be a concept class and let H be a representation class. Then C is weakly PAC

learnable using H if C is PAC learnable using H with where s is the size

of the target concept f and p is a fixed polynomial function. It is efficiently weakly

PAC learnable if the running time of the weak learning algorithm is polynomial in n,

.s, and .

2.2.3. Exact Identification Learning Model. The exact identification learn-

ing model, or also known simply as the exact learning model, was introduced by

Angluin in [Ang88]. This model differs from the PAC model in several ways. The

exact learning model, as the name suggested, requires the learner to find a hypoth-

esis that is logically equivalent or identical to the target concept. In this model,

the learning algorithm interacts with a teacher who answers questions asked by the

learner.

2. PRELIMINARIES 18

Let C be a concept class and H be a representation class over the same instance

or example space X (usually {O, 1}). We will define two different kinds of teachers

or oracles that can answer questions from the learner. Before the learning process

begins we fix a target concept f from C. The goal of the learner is to find h E H

that satisfies h f.

We define the two most common oracles used in the exact model, namely the equiva-

lence and membership oracles. An equivalence oracle EQf(h) can answer equivalence

queries, i.e., questions of the following form. The learner supplies the oracle with

an input function h E H and the equivalence oracle answers with either yes, signi-

fying that h f, or a counterexample b E X that is an assignment that satisfies

h(b) 0 1(b). A membership oracle MQf(b) answers black box queries about the

target concept f. That is, the input to this oracle is an assignment b E X and the

answer is 1(b).

DEFINITION 2.5. (Exactly Learnable)

Let C be a concept class and let H be a representation class. Then C is exactly

learnable using H if there exists an algorithm A so that: for any concept f E C, if A is

given access to some of the above oracles (EQf, MQf), A outputs a hypothesis h E H

satisfying f h. Learning must succeed against any valid choice of counterexamples

by the oracles.

The next definition specifies the conditions that must be satisfied for computation-

ally efficient learning.

DEFINITION 2.6. (Efficiently Exactly Learnable)

Let C be a concept class and let H be a representation class. Then C is efficiently

exactly learnable using H if it is exactly learnable using H and the learner halts in

time polynomial in n and the size of f.

There is a nice connection between the exact identification learning model and

the probably approximately correct learning model. This is the fact that any exact

2. PRELIMINARIES 19

learning algorithm using equivalence queries can be transformed into a PAC learning

algorithm for the same learning problem. The idea is to replace the equivalence oracle

with a sampling procedure that with high probability will behave like the equivalence

oracle. Since the PAC learning model allows for a certain failure probability, we can

appeal to standard large deviation bounds to allocate the failure probability to each

sampling simulation of the equivalence oracle. This gives us the following theorem

due to Angluin [Ang88].

THEOREM 2.1. [Ang88] Let C be a concept class and H be a representation class

of Boolean functions. If C is efficiently exactly learnable using H and H contains

only polynomial-time computable functions then C is efficiently PAC learnable using

H.

2.3. Specific Representation Classes for Boolean Functions

A Boolean function over n inputs is a function from {O, 1} to {O, 1}. By default

the variables will always be {x1, x2,... , x} unless stated otherwise. One can also

consider a family of Boolean functions F which is a countable set of Boolean functions

{ fn I n ≥ O}, where each fn is a Boolean function on n inputs.

We now describe some Boolean functions that we consider in this thesis. A Boolean

function is called a monomial or term if it is expressible as a conjunction of literals. A

Boolean function is called monotone if for all x, y E {O, 1}, x ≤ y implies f(x) ≤ f(y).

A Boolean function is called symmetric if its output is uniquely determined by x.

Some examples of symmetric functions are the parity function, the majority function,

and the threshold functions. The parity function over inputs x1, x2,... , Xn is the

Boolean function that returns x1 + x2 + ... + x, (mod 2). The threshold function

THkn on inputs x1, x2,... , Xn is defined as TH(x) = [> xi ≥ k]. The majority

function is defined as THp121 (x).

In the following we will discuss some of the more specific representation classes for

Boolean functions that we will need. These include Boolean circuits and formulas,

2. PRELIMINARIES 20

decision trees and lists, branching programs, and others.

2.3.1. Boolean Circuits and Formulae. A Boolean circuit on n input vari-

ables x1, x2,... , cc,,, is an acyclic digraph whose nodes are labeled with either variables,

logical operators (AND, OR, and NOT), or constants (TRUE = 1 and FALSE = 0).

There is a single output (sink) node whose output value is the output of the circuit.

The source nodes are labeled with variables or constants. A Boolean circuit is called

monotone if it does not contain any negation (NOT) gates. It is a standard fact that

a Boolean function is monotone if and only if it is computable by a monotone Boolean

circuit.

The size of a circuit is the number of gates or nodes in that circuit. The depth of

a circuit is the length of the longest root-to-leaf path in that circuit.

A Boolean circuit has bounded fan-in if the arity of the AND and OR gates are

bounded by a constant; otherwise we say that the circuit has unbounded fan-in. These

two different types of circuits define two well-studied circuit complexity classes. The

class AC' is defined to be the class of all Boolean functions computable by families of

unbounded fan-in Boolean circuits of dçpth O(log'' n) and size °('). The class NC'

is defined to be the class of all Boolean functions computable by families of bounded

fan-in Boolean circuits of depth O(log' n) and size °(').

X2 X3 X4 xl

FIGURE 2.4. Example of a Boolean Circuit

X5

2. PRELIMINARIES 21

We will be mostly interested in the classes AC' and NC'. It is known that AC° C

NC' and that the inclusion is strict. Let us define AC2 to be the subclass of AC' that

contains Boolean functions computable by families of unbounded fan-in polynomial

size Boolean circuits with depth exactly d, where d is some constant. The class AC,°

contains Boolean functions computable by unbounded fan-in AND and OR gates. An

AND of literals is also called a monomial or a term. An OR of literals is also called

a clause or a disjunction.

The class of depth two Boolean circuits with an OR gate at the top and AND gates

at the bottom level, is of a particular interest to us. This class is also known as the

class of Disjunctive Normal Form formulas. The size of a DNF formula is usually

taken to be the number of AND gates or terms. The "dual" of DNF, where the top

gate is an AND and the bottom gates are all OR, is known as the class of Conjunctive

Normal Form (CNF) formulas. The size of a CNF formulas is taken to be the number

of OR gates or clauses. In most cases we will focus our attention on DNF formulas

knowing that we can, in most cases, use duality to obtain a similar result for CNF

formulas. A DNF is called a k-term l-DNF if it has at most k terms (or ANDs) and

each term has at most 1 literals. It is called monotone if no literals are negated.

2.3.2. Decision Programs. In this section we review the definitions of decision

trees, decision lists, and branching programs. We provide a slightly more general

definition of decision trees and also define the related representation class of Boolean

branching programs.

Let jr and be two classes of Boolean functions over {O, l}n. An ('F, g)-decision

tree is a rooted binary tree whose internal nodes are labeled with functions from .T

and whose leaves are labeled with functions from g. Each internal node has precisely

two outgoing edges, one labeled with 0 and the other labeled with 1.

A (..T, c)-decision tree T computes a Boolean function from {0, 1} to {0, 1} in the

following natural way. Suppose that the root node of T is labeled with f E F. Given

an assignment a E {0, 1}", the computation starts at the root node, evaluating the

2. PRELIMINARIES 22

function f on a, and taking the path out using the edge that is labeled with f(a).

The computation proceeds in this manner until a leaf node is reached, say labeled

with g E 9, whereby the computation ends with output g(a)-

The size of a (T, g)-decision tree is the sum of the sizes of functions labeling the

internal nodes and the leaves. The depth of such a tree is the length of the longest

root-to-leaf path in the tree. In the simple case of Boolean decision tree, where jr is

the set of variables, i.e., T = {x1, x2,... , x} and 9 is the set of constant functions,

all-zero and all-one, then the size of the decision tree is defined instead to be the

number of leaves in the tree. In the latter case, we write ..T-decision tree where g is

understood to consist of the trivial constant functions.

An (SF, 9)- decision list is an (J, g)-decision tree whose internal nodes form a path.

We will write an (..T, g)-decision list as

[(fi,gi),(f2,g2),. . . ,(frn,grn)}

where fl, f2,... , fm E .F and g, , g E g. We implicitly assume that the last

function fm is always the constant one (true everywhere) function.

A Boolean decision tree (respectively, a Boolean decision list) is an (.T, g)-decision

tree (respectively, an (.F,!9)-decision list) where ..T is the set of literals and g is the

set of constant functions.

FIGURE 2.5. Example of a Decision List

A branching program M over X = {x1,... , x} is a directed acyclic graph whose

nodes are labeled with variables from X, and whose edges are labeled with the con-

stants {O, l}. It has a unique source (a node with no incoming edges) and at least

2. PRELIMINARIES 23

two sinks (nodes with no outgoing edges). The sinks are labeled with 0 (rejecting)

and 1 (accepting), and both labels must be present. An assignment a E {0, 11n to

the variables induces a selection on the edges of M; it keeps alive all edges that are

consistent with the assignment a. Then the branching program is said to accept a if

there is a directed path from the source to an accepting sink.

The size of a branching program is the number of nodes in the branching program.

A branching program is called leveled if there is an ordered partition II = (L1, L2,...)

of the nodes of the branching program such that all of the edges connect nodes of one

level to the next one in the partition. The width of a leveled branching program is

the maximum number of nodes in any level in the ordered partition.

In this thesis we will be interested in branching programs with bounded or 0(1)

width. More specifically, we will focus our attention on branching programs with

widths 2,3 or 4. Note that width one branching programs can be identified with

decision lists where the accepting and rejecting nodes are collapsed into two sinks.

We will not consider width 5 branching programs since the Boolean functions they

compute are known to be equivalent to the class NC' and are known to be not

learnable under some cryptographic assumptions.

source

reject accept

FIGURE 2.6. Example of a Branching Program

2. PRELIMINARIES 24

2.4. Inequalities and Probabilities

The purpose of this section is to describe some useful inequalities and facts from

probability theory. We start with two bounds on the sum of binomial coefficients.

FACT 2.2. For any integers n, k, (2= i') ≤ k+1

Proof Since () ≤ n, for all k < n, we get that the sum is bounded by (n''
1)/(n-1). 0

FACT 2.3. ([R92], Theorem 1.2.8, page 25)

For any integers n, k and a E (0,1/2), we have

an (n)

<2'(°)

where 11(x) = —x log x - (1 - x) 109(1 - x), for x € [0, 1].

The following inequality is well-known from mathematical analysis.

FACT 2.4. (Cauchy-Schwarz Inequality)

Let a1,... , a, and b1,... , b, be two sequences of non-negative numbers. Then

In \2 In \ (In b 2)
ajb) < (>I a) >I

i=1 i=1 i=1

Moreover, equality is attained precisely if, for some constant), ai = Abi, for all i E [m].

We now describe some inequalities from probability theory that we need, namely

Markov's inequality, Chernoif bounds, and also lloefFding bounds on the sum of in-

dependent random variables.

FACT 2.5. (Markov's Inequality)

For any non-negative random variable X and for any positive real number t,

Pr[X ≥ t] ≤ E[X]/t.

We state some standard large deviation bounds from probability theory, known as

Chernoff and Hoeffding bounds. We give several forms of these bounds.

2. PRELIMINARIES 25

FACT 2.6. (Chernoff bounds [R90])

Let X1,X2,... ,X be independent Bernoulli trials with Pr[X = 1] = pj,pj E (0, 1).

Let X= 1X and 1u= En, pi. Then for 6>0

Pr[X> (1+8)] < [(i+s] F,S).

Under the same hypothesis as above, for S E (0, 1],

Pr[X < (1 - S)u] <exp(—S2/2) = F(, 8).

The second version of the large deviation bounds is known as Hoeffdimg bounds.

FACT 2.7. (Hoeffding bounds [M94])

Let Xi,... , Xm be independent identically distributed random variables with E[X] =

p, IX ≤ B, and let Sm = X1+ ...+Xm. If m = m(,S,B)≥ çin, then

Pr[1MM _P > 6] <S.

Most of the probabilistic arguments or machinery that we use can be found in Alon

and Spencer's book [AS92], e.g., averaging arguments, linearity of expectations, and

also large deviation bounds, etc. As for notation, we use Pr ED[P(x)] or PrD[P(x)] to

indicate the probability that event P(x) happens when x is randomly chosen according

to distribution D. We usually omit specifying the underlying distribution whenever

it is clear from context or if it is the uniform distribution U. The same convention

applies for expectations and variances.

CHAPTER 3

Harmonic Analysis of Boolean Functions

All analysts spend half their time hunting through the literature

for inequalities which they want to use but cannot prove.

- Harald Bohr

The goal of a PAC learning algorithm is to infer a target function from a rather

small set of randomly chosen examples. The idea behind Fourier or harmonic analysis

is to recover a function from its frequency patterns or Fourier coefficients. Fortunately,

even a rather small randomly chosen set of examples can give a good approximation

to most of the frequency patterns of the function. One can then recover the function

approximately from these approximate frequency patterns.

The use of Fourier analysis in Boolean complexity theory was introduced by Chor

and Geréb-Graus [CG88] and by Kahn, Kalai, and Linial [KKL88] in their work that

studies the influence of variables on Boolean functions. The important connection

to learning theory was discovered only later by Linial, Mansour and Nisan [LMN93].

In the latter paper the authors proved that the class of AC° functions, i.e., Boolean

functions computable by families of unbounded fan-in constant depth and polynomial

size Boolean circuits, is learnable in the PAC model under the uniform distribution

in time Let us call their algorithm the LMN algorithm.

Further improvements to the LMN algorithm were given by Furst, Jackson, and

Smith [FJS91] and by Aiello and Mihail [AM91]. Furst et al. proved that the class of

AC' functions is learnable in the PAC model under constant-bounded product distri-

26

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 27

butions in time poly(logn) They obtained this result through a nontrivial extension

of the work of Linial et al. [LMN93]. Aiello and Mihail [AM91] proved that proba-

bilistic decision lists are learnable in the PAC model under the uniform distribution

in polynomial time.

The main reason for the successes of these results is the ability to isolate a small

region in the Boolean n-cube where a class of functions has most of its significant

Fourier coefficients. In other words this isolated region stores a lot of information

about the function in the form of frequency patterns. For example, in [LMN93] it

was shown that most of the power spectrum of AC° functions is located on the vectors

of Hamming weight poly (log n). The knowledge of where these "heavy" frequencies

lie in {O, 1}' is crucial to the LMN learning algorithm. Using this information, Linial,

Mansour, and Nisan devised their simple PAC learning algorithm for AC° functions

that runs in time P0l1(b0g n)

In this chapter we will show that the class of monotone Boolean functions has a

similar property to that of the class of AC' functions. We prove that most of the

power spectrum of monotone Boolean functions is located on the vectors of Hamming

weight Our proof relies on a simple connection between the Fourier spectrum

and a well known measure called average sensitivity. The notion of average sensitivity

was previously studied by Kahn, Kalai, and Linial [KKL88] and has been considered

in several other works. In the proof we will actually show that the average sensitivity

of monotone Boolean functions (regardless of their circuit complexities) is at most

\,/i. Then we will use this to show that the power spectrum of monotone Boolean

functions is concentrated in the vectors of Hamming weight at most O(/).

The results that we present in this chapter are slightly more general than the ones

considered in [KKL88, LMN93]. We will consider the Fourier spectrum and average

sensitivity under a more general class of probability distributions than the uniform

distribution. We obtained this by a natural generalization of the analysis and proofs

given in [KKL88].

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 28

For more information on Fourier analysis of Boolean functions, we refer the reader

to the survey paper [M94].

3.1. Basic Theory of Fourier Transform

We start by associating with a Boolean function f : {0, 1} —+ {0, 1} a correspond-

ing real-valued function F : {0, 1}' — {-1, +1} C R where f and F are related by

the following simple equations:

F=2f-1, fl+F

In most cases we will call both f and F Boolean functions and sometimes abusively

use f when we mean F when the context is clear.

The set F of all real-valued functions over {0, l}n forms a vector space of dimension

over IL We will associate with this vector space an inner product that is induced

by a probability distribution on {0, 1}. We will mainly focus on a specific class of

probability distributions called product distributions.

DEFINITION 3.1. (Product distribution)

A probability distribution D over {0, 11n is called a product distribution with param-

eters p = (j)L1, where each uj E (0, 1), if for all a E {0,1}

D(a)= fi pi [f (l—).
i:a=1 i:a=O

A product distribution D is called c-bounded if 1uj € [c, 1 — c], for all i E [n]. The

distribution D is called constant-bounded if there is a constant c E (0, 1) so that D

is c-bounded.

Given a product distribution D = (a',... , j) over {0, 1} and i E [ii], we de-

note Di to be the product distribution over {0, 1}'' obtained by removing the i-th

component of D, i.e.,

Di =

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 29

Note that the uniform distribution is a product distribution with yj = 0.5, for all

iE[n].

DEFINITION 3.2. (Inner product)

Given a probability distribution D on {0, 1}, the inner product (., .)j on F with

respect to D is defined as

(f,g) = D(x)f(x)g(x) = ED [fg].

A collection B of functions is called orthonormal if for any f,9 E B we have

(f,g) = [f = 9]. A collection of functions B = {gi,... ,gm} is a basis for F

if it is a spanning set, i.e., for any f E F, there exist constants a1,... , a,,, E JF

so that f(s) = aigi(s), and if it is a linearly independent set, i.e., whenever

ET ag(x) = 0, we have aj = 0, for all i E [m].

FACT 3.1. Suppose that D is a product distribution over {0, 1} with parameters

= (j). Define ai = /pj(1 - The set of functions {q(x) : a € {0, 1}'},

where
/()fl Iii_Xi

is an orthonormal basis.

These functions also satisfy an additional decomposability property, i.e., for all

x,y,a,bwith jxj = al and h'l = bl we have

aob(X 0 y) = 4a(x)qb(y),

which is easy to verify.

The Fourier coefficient off at a E {0, 1}n under distribution D is defined as

!D (a) (f,qa)D = ED[fq a].

Note that J(0) = ED [fl- When D is clear from context, we will write f(a) instead

of fD(a). By orthonormality of the functions q, each real-valued function f over

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 30

{ 0, i}n has a unique representation in terms of its Fourier coefficients. We state this
in the following fact.

FACT 3.2. For any function f: {0, 1} —* R we have

f(x) =

Moreover this representation is unique.

We will need the following correlation lemma to derive some future facts.

LEMMA 3.3. (Cross-Correlation identity)

For any functions f, g : {0, l} - R, for any y C {0, l}, and for any product

distribution D = (j) over {0, 1} we have

ED[f(x)g(x e y)] = J(a).(b)ED[qa(x)qb(x y)].
a,b

Proof Note that g(xey) = Eb g(b)qb(xy). We simply expand the similar expression

for f and then use linearity of expectation. 0

An important corollary to the lemma is Parseval's identity.

COROLLARY 3.4. (Parseval's identity)

For any real-valued function f: {0, 1 - 4 R we have ED [f = >a 12 (a). Moreover,

if is Boolean then this expression equals 1.

Proof Take g = f and y = 0 in Lemma 3.3 and then apply orthonormality of a'

to get the claim. 0

The expression & j(a)2 is also called the Fourier power spectrum of f under

product distribution D.

For the uniform distribution U there is an already established notation in the

literature. For the uniform distribution U, the basis function at a is denoted Xa(X) =

(-1)a.x and the Fourier coefficient of f at a is denoted J(a), i.e., Ju(a).

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 31

3.2. Influence and Average Sensitivity

The paper of Kahn, Kalai, and Linial [KKL88] gave a relationship between Fourier

transform and two complexity measures called the influence and the average sensitiv-

ity. Our main results will be based on their original ideas, although we will provide

some minor simplifications, extensions, and applications to machine learning. The

notion of influence has been used earlier in connection with learning DNF formulas

where each variable can only appear a constant number of times (see Hancock and

Mansour [HM91]).

We now define the notions of influence and average sensitivity for Boolean functions.

DEFINITION 3.3. (Influence)

Let f : {O, l}Th - {-1, +1} be a Boolean function over the variables {x1,... , x,}

and let D be a product distribution over {O, l}n. Then the influence of xi on f over

D is the probability that 1(x) differs from f(x e) when x is chosen according to

D, or,

ID,(f) = Pr [1(x) 4 f(x e
aED{O,1}

Remark. On occasion we use the restriction notation fo = f x+-° and f = f jj+4,

when the variable xi to be restricted is clear from the context.

FACT 3.5. For any Boolean function f : {O,1}' - {-1,+1} we have In,(f)

PrD[fo(y) fi(y)] = En[(fi - fo)2]. Moreover if f is monotone then Ij,(f) =
irt rJ

- Jo

DEFINITION 3.4. (Influence Norm)

Let D be a product distribution over {O, 1} with parameters = (ha... , Pn) and
let f: {O, 1} — f {-1, +1} be a Boolean function. Then the influence norm of f with

respect to D is defined as

>(2cTjID,j(f))2.

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 32

DEFINITION 3.5. (Average Sensitivity)

Let f {O, l}Th {-1, +1} be a Boolean function over the variables {x1,... , x}

and let D be a product distribution over {O, l}. The average sensitivity a(f) of f

at a point a E {O, l}n is the number of immediate neighbors of a whose values under

f differ from a. More formally,

3a(f) = {i C [n] : f(a) 54 f(a ED e)}I = [f (a) 54 f(a
i=1

The average sensitivity of f with respect to D is

SD(f) = EXED[s(f)].

It is easy to show that average sensitivity is equal to the sum of influences.

FACT 3.6. SD(f) = E tLi ID,i(f).

Examples: Consider the parity function on n inputs, i.e., xi (v). Under the uniform

distribution, the influence of each variable is one, and hence its average sensitivity

equals n. The influence of any variable on a constant function is zero and hence the

average sensitivity is also zero.

3.3. Relating Fourier Spectrum and Average Sensitivity

The authors of [KKL88] proved that the average sensitivity of a Boolean function

is a "weighted" sum of the Fourier spectrum under the uniform distribution, where

the sum is weighted according to the Hamming weight. We state for completeness

their claim along with a simple proof in the following fact.

FACT 3.7. [KKL88] For any Boolean function f: {O, 1} —* {-1, +1}

su(f) =IaLf(a)2.

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 33

Proof We use Lemma 3.3 (cross correlation identity) for the special case of the

uniform distribution with g = f and y = e (the unit vector at i):

Eu[f(x)f(x e)] = E J(a)J(b)Eu[Xa(x)Xb(s
a,b

But xb(x = xb(x)xb(ei) and Xb(ei) = (_i)bi. Hence the expectation on the

right-hand side simplifies to E[Xa(X)Xb(X)](_1)bi = [a = b](_1)1'. Thus

Eu[f(x)f(x ed)] = E J(b)2(-1) = 1-2 E J(b)2.
b b:b=1

Also we note that Iu,(f) = (1—Eu[f(x)f(xe)]) which yields Iu,(f) = b:b=1 j(b)2.

We complete the proof by summing up this last expression for all i E [n] and then

use Fact 3.6. E

Our goal is to show that the above fact holds also under product distributions. We

need the following identity in order to extend their result.

LEMMA 3.8. For any Boolean function f : {O, 1} - {-1, +1}, any product dis-

tribution D over {O,1}', and any i E [ri],

ED[f(x)f(x 1 ei)] = 1 - J(a).
ai a:a=1

Proof Let

= En[f(x)f(x e ed)] = F, J(a)J(b)Ejj[qa(x)qb(x
a,b

using Lemma 3.3. Set a = ZT o ai and b = where U, T E {O, 1}'' and a, bi E {O, 1}

(assume without loss of generality that i = n). Also let x = y o xi and recall that

Di is the distribution obtained by removing the i-th component from distribution D.

We see that the expression E[qa(x)b(x ed)] equals to

(1- (Lai pi a) I)ED[(y)(y)] - bi + ai bi o- I '\ 01 /

Define T = ED[cba(x)qb(x ed)]. We consider the cases based on the values of a, bi E

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 34

ED [q(y)q(y)]
(i)2 ED [q(y)q(y)]

Ui

0

-EDt [q(y)q¼(y)I
Hence by orthonormality of the basis functions

if ai = bi = 0

if ai = 0, bi = 1

if ai = 1, bi = 0

if ai = bi = 1

= > [o)o - f(i)j(i) + ii - (1— - 1 f(0)J(1)]
,bE{O,1}t2_l 0-i

ED [4(y)q(y)]

E{0,1}' 1 0.

Observing that

we obtain

f(0) = f(i) = oi(!O() — Ji()),

fL)() +

E{O,1} -1

= [t —(1— ,u.) 2] [(1— + (2j -

E{O,1}n-1

= (2i - 1)[(1 - 2i) + (2t - 1)

But note that E{0,1}`1 Jj()J1() = En[fo(y)fi(y)] = ED[f(x)f(x @ es)]. Thus

= 1 - 2 f(1)2 - (2 - 1)2 + (2 /,ti 1)2z,
E{O,1} 1

which finishes the claim. LI

DEFINITION 3.6. (Generalized Hamming weight)

Let D = (i) 1 be a product distribution over {0, 1}. The weight of a E {0, 1}

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 35

under D, denoted ha ID, is defined as

hlahlD= fl log2—.
i:a=1 °•

FACT 3.9. For any product distribution D, IlaliD ≥ jal, and equality holds if and

only if D is the uniform distribution.

We are now ready to prove the generalization of 3.7 for arbitrary product distribu-

tions.

THEOREM 3.10. For any Boolean function f {0,1}' —* {-1,+1} and for any

product distribution D over {0, 11n we have

3D(f) = hlalLDf(a)2.

Proof First note that ID,(f) = 1 (1 - ED{f(x)f(x ed)]). Thus, Lemma 3.8 gives

4oID,i(f) = Ea:aj=i j(a)2. We combine this with 3D(f) = E .tD,(f) to complete

the claim. EJ

Using the above theorem we may derive a Fourier spectrum bound on any Boolean

function over any product distributions. We will supply two bounds, one in terms of

the average sensitivity and one in terms of the influence norm.

THEOREM 3.11. Let f : {0,1} —* {-1,+1} be a Boolean function and let D be

a product distribution over {0, 1}. Given an c > 0, let A() c {0, 1 I be defined as

A() = {a: hail ≥ 8D(f)/}. Then we have a€A() f(a)2 ≤ e.

Proof We start with the identity

I llall?(a)2 =
a

which can be derived from the identity 4oID,(f) = a:a=1 f(a) 2 in the proof of

Theorem 3.10. Now we use the fact a < 1/2 and x1og ≤ 3/5 (not the best), for

x E [0, 1], to get E. hiallj(a)2 < since .sjj(f) = Ii Ir,i(f). Now we can

partition the sum according to whether 11all ≥ sD(f)/6 or not. 0

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 36

An alternative upper bound on the Fourier spectrum can be given using the influ-

ence norm. We consider the next theorem one of the main technical contributions in

this chapter.

THEOREM 3.12. If f: {0,1} —• {—1,+l}isaBoolean function and D is a product

distribution over {0, 1} then

f2() ≤ ID(f) \
IIaII≥k

ml

(jlog — CID (f),
i=1 0-il

for some absolute constant c (for example, the inequality is correct if c = 1.062).

Proof Using the Cauchy-Schwarz inequality, Fact 2.4, with ai = 2cTID,(f) and

bi = 20j log we get

4oID ,(f)2

4I,(f) log 2 by Cauchy-Schwarz

(oj log ')

1 2 (IIaIIj2a)2
(olog') a

> 1

— (ilogi') 2 IaII>k

f2(

I
This proves the first inequality. The second inequality can be seen using simple

calculus since (x log x')2 ≤ elog2e< 0.2817 for all x [0,1/2]. El

The following lemma will supply us with the crucial link that connects the Fourier

transform for monotone Boolean functions to influences — and hence to average sen-

sitivity.

LEMMA 3.13. If : {0, 1} —* {-1, +1} is a monotone Boolean function and D is

a product distribution over {0, 1}, then for all i E [n], f (e) = —2ciID,(f).

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 37

Proof Let Di be the induced distribution over all the variables except the i-th one,

i.e., x. Then

f(e) = ED [fçb} = EDj E (1)[LifO+1Lj 1il fl] - •
9i ai

which simplifies to oED[fo - fi]. Now recall that for monotone Boolean functions,

2ID,(f) = EDj V1 - fe]. 0

Using Lemma 3.13 we can derive an upper bound on the average sensitivity of any

monotone Boolean function with respect to product distributions.

THEOREM 3.14. For any monotone Boolean function f : {O, 1} —+ {-1, +1} and

any product distribution D over {O, l}Th, we have

SD(f)≤Vc

(f(ej)\\2

k 2o)

Moreover, for the uniform distribution, this bound becomes because aj = 1/2,

for all E [n].

Proof Using Fact 3.6 and the Cauchy-Schwarz inequality we get that

'2 n (n f(,

SD(f) 2 = (E'D,(f) ≤ (EID,i(f) 2)

\i=1 I

0

Summary. Our main findings in this chapter are the following relationships, stated

for the uniform distribution, that connect the Fourier spectrum, average sensitivity,

and influences, for arbitrary Boolean functions:

j(a) 2 ≤ 6, j(a)2 ≤

IaI≥s(f) IaI≥k

These equations have natural generalizations to the case of product distributions. For

monotone Boolean functions, we can further use the fact that I(f) = — J(e), for all

3. HARMONIC ANALYSIS OF BOOLEAN FUNCTIONS 38

i E [m], to obtain a simplification of the second equation:

J(a) 2 ≤
IaI≥k

which can also be derived from the first equation by noting that .s(f) ≤ for all

monotone Boolean functions.

CHAPTER 4

Learning Monotone Functions in the PAC Model

In this chapter we will describe some learning algorithms for classes of monotone

Boolean functions. We review some well known facts about using the Fourier spec-

trum for PAC learning. In particular we describe the learning algorithm of Linial,

Mansour, and Nisan [LMN93] and its randomized improvement due to Blum et al.

[BFJ94]. We will call this algorithm the LMN learning algorithm.

Then we will use facts that we developed from the previous chapter to prove that

the class of monotone Boolean functions is PAC learnable under product distributions

with a subexponential time and sample complexity with respect to the number of

inputs and the inverse of the accuracy parameter. The dependency of the learning

complexity on the confidence parameter is not as high, i.e., it is only logarithmic

in 118. Some other contributions of this result are as follows. First, the statement

holds regardless of the circuit complexity of the target monotone Boolean function.

That is, the learning complexity is independent of the circuit size measure of the

target monotone Boolean function. Second, the result handles the general class of

product distributions, whereas most other works require the product distribution to

be constant-bounded (see [FJS91, HM91, J94]).

We present the basic application of the LMN learning algorithm combined with the

Fourier results from the previous chapter. Next we provide a careful analysis of how

to learn monotone Boolean functions under an arbitrary product distribution. This

yields a subexponential time PAC learning algorithm for the class of all monotone

39

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 40

Boolean functions. Then we will consider some lower bounds questions in order

to determine how tight these results are in terms of the tolerable error rates, time

complexity, and sample complexity.

In the second part of this chapter we turn our attention to efficient (or polynomial-

time) PAC learning of monotone Boolean functions. We improve a weak PAC learning

algorithm for all monotone Boolean functions due to Kearns and Valiant [KV89] and a

PAC learning algorithm for O(log n)-term monotone DNF due to Sakai and Maruoka

[SM94]. The first result relies on a lower bound given by Kahn, Kalai, and Linial

[KKL88] while the second result uses a top-down decision tree learning algorithm.

4.1. The Linial-Mansour-Nisan Learning Algorithm

A key link between the learnability of a Boolean function and its Fourier power

spectrum under the uniform distribution is given by the following fact due to Linial,

Mansour, and Nisan [LMN93].

FACT 4.1. [LMN93] For any Boolean function f : {O,1}' —+ {-1,+1}, for any

real-valued function g: {0, 1} — R, and for any product distribution D over {0, 1},

we have

Pr .sgn(g(x))] ≤ ED[(f - g)2] = >(f(a) —
a

where .sgn(g)(x) = (_l)[()<0I is the sign function of g.

Proof The first inequality is true because [f (x) sgn(g(x))] < If (x) — g(x)I. The

second inequality is true by Parseval's identity. El

In fact one can do slightly better with randomization as shown in [BFJ94].

FACT 4.2. [BFJ94] For any Boolean function f : {0,1} - {-1,+1}, for any

real-valued function g: {0, 1} ­ 4 R, for any product distribution D over {0, 1}, and

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 41

for a hypothesis function h: {O, 1} —* {-1, +1} defined as follows:

with probability p(x)

with probability 1 — p(x)

where p(x) = (1`(x)))'2 we have
2(1+g2(a))'

Pr[f(x) h(x)] :5 —

x,rwhere r denotes the randomization required for h(x).

If a Boolean function has most of its power spectrum concentrated on the coef-

ficients of small Hamming weight, say at most k, then there is a simple statistical

(sampling-based) algorithm that can approximate that Boolean function rather well

under the uniform distribution. We will call this algorithm the LMN algorithm or

the low-degree or k-degree Fourier algorithm when we need to specify explicitly the

region {a e {O, 1} : jal k} from which the sampling is performed.

LMN algorithm

input: An integer k, a sample (xi,f(xi)),...

(1) Set A = {a E {O, 1}' : jal ≤ k}.
(2) For each a E 10, 11n with jal ≤ k do

j m
Ca =

(3) Output h(x) = EaEACaXa(r).

FIGURE 4.1. The Linial-Mansour-Nisan algorithm.

FACT 4.3. [LMN93] Let f: {O, 1}' — {-1, +1} be a Boolean function on n inputs

and suppose that A = {a E {O, 1}' : I al k} satisfies >aA f(a)2 ≤ e/2. Then there

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 42

is a PAC learning algorithm for f under the uniform distribution with error 6 and

confidence S running in time O(--- in !i.').

Proof The algorithm simply approximates each 1(a), for a E A, with ca that is within

\//(2IAl), i.e.,

with probability at least 1 — 61 JAI (using standard large deviation bounds). Then the

real-valued hypothesis h(x) = &EA hac/a() satisfies

Pr[f(x) h(x)] < ED[(f(x) - h(x))2]

= (1(a) —
a

≤ E (J(a)_i(a))2+
aER

≤ lAlJ+=6.

The probability that there is a c,, that failed to be a /fAi-aPproximation of 1(a) is

at most 6. Hence with probability at least 1 - 6, h(x) satisfies D(fL≥h) ≤ e.

Let us calculate the number of sample points m required by this algorithm. Since

lfXal ≤ 1 B, by the Hoeffding bounds (Fact 2.7), we need to take at least

m(V6/(21A1),S/IAl,B 1) = 4B21A1 Al 1n 7

sample points. In our case A is the set of all n-bit vectors with Hamming weight at

most k, so we get

lAl=() <flk+1

Thus m E O(k+1 k+1 i-- In ----). It can be seen that the running time s dominated by this

sample complexity. LI

We will need to distinguish two kinds of approximations: mean square and discrete.

DEFINITION 4.1. (Notions of approximations)

We say that h e-approximates f under D in the Mean Square Error (or MSE) sense if

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 43

E€D[(f(x) - h(x))2] ≤ c. On the other hand, we say that h is an c-approximation of

f under D in the discrete sense if PrXED[f(x) 54 h(x)] ≤ c. Unless otherwise stated,

when we say c-approximation we mean approximation in the discrete sense.

Note that Facts 4.1 and 4.2 show that if h is a good real-valued approximation

for a Boolean function in the mean square sense then it can be turned into a good

approximation in the discrete sense (simply by taking the sign function).

4.2. Subexponential Learning for All Monotone Boolean Functions

The following theorem will show that monotone Boolean functions are PAC learn-

able under product distributions in subexponential time with respect to the number

of inputs, n, and the inverse of the accuracy parameter, 1/c. The dependency of the

learning complexity on the confidence parameter 6 is only logarithmic, i.e., log(1/6).

For ease of analysis we will first assume that the learner knows the parameters of the

underlying product distribution, i.e., the means /,4i are exactly known, for all i E [n].

Later in the next section we will show why we can assume this without loss of general-

ity. More specifically, we show that we will only incur a log m blow up in the exponent

of the time complexity, i.e., the time complexity of the learning algorithm remains

unchanged except for some additional logarithmic factors inside the Ô() term.

THEOREM 4.4. For any c, 6> 0, any monotone Boolean function is PAC learnable

under any product distribution with error e+n, for some constant c, and confidence

1 - S in time

exp(O(C'\/ log (cv'))) in 6'.

Proof Fix a product distribution D. We will use the k-degree Fourier algorithm with

k = 1.0621D (f)
(e/2)

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 44

and with the hypothesis set to h = IIaII<k haca, where ha is an estimation of f(a).

By Theorem 3.12, h is an (6/2)-approximation of f. Since hail ≥ lal, we have that

fa: IIahl<k}C{a: jal<k}

and hence the k-degree Fourier algorithm only needs to collect (estimate) the Fourier

coefficients of Hamming weight at most k. From the definitions of hail and q5a, if

hail < k we get that

lqa (x)i = fl Pii
i:a=1 0-i

≤ 2I H (i — x)
i:a=1

≤ 2c,

since I ji —xj I ≤ 1. Now by the previous section and the above equation, the algorithm

outputs a hypothesis that is an approximation of f to within error 6 with sample size

and time complexity of exp(O(/I(f)c'ln)))ln8 1. By Lemma 3.13, we note

that ID(f) ≤ 1, for any monotone Boolean function f, because

ID (f)' = (2oID,(f))2 = f(e)2 <1

by Parseval's identity. Using simple calculus, we see that the function x log(1/x) is

bounded from above by 1 in the interval (0, 1). Thus we have ID(f) log yj-yy ≤ 1,

and therefore

ID(f) log = ID(f) log + ID(f) log(6) = O(log(6)).

This analysis proves the time complexity stated in the theorem. 0

We note that using the above algorithm with subexponential time, the best achiev-

able error rate is 6 = . In a later subsection we show that this is the best possible

error rate up to a O(log factor.

4.3. Analysis of Learning under Any Product Distributions

In this section we address the issue of PAC learning monotone Boolean functions

under a product distribution when the parameters of distribution are unknown, i.e.,

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 45

the learner is not told the precise values ofpi's. Schapire's thesis [S] also contains

some work done on learning under general product distributions but for a different

concept class.

We fix a product distribution D = (n', ft2, ,afl). First we argue that we may

ignore all /i's that are less than n 2 or greater than 1 - n 2 since this will contribute

only an additive factor of n 1 to the final error. We show this in the following. We

call an assignment a € {O, 1 I good if for all i € [n] we have:

ai = 0 whenever pj <n 2 and ai = 1 whenever ji> 1 -

The probability of obtaining a good assignment in sampling is at least 1 - n 1. Let

{0, 11n be the set of all good assignments. Suppose that h is an €-approximation

to the target function f on the set . Then

Pr[h(x) 0 f(x)] ≤ Pr[h(x) 0 f(x) I x E ci + gl 6 +

Thus we may assume that /.ti € (n 2, 1 - n 2), for all i E [n.].

We define the following parameters:

k M = 20(16).

We will estimate each pi to within an error of (b0g4)• Note that using Hoeffding

bounds (Fact 2.7) this requires approximately (Mb0)O(1) sample points. Suppose

that 9i, i E [n], are the estimated means and let i3 denote the product distribution

,ii). Also let cba denote the basis function at a according to 13.

We will consider three hypothesis quantities,

hA(x) = ED[fa]a(X), hB(x) = E[fa]a(), hc(x) = I E D[fa]a(X),

aES aES aER

where R and S are the sets of assignments for which the algorithm needs to estimate

the qa's and qa's, respectively. Notice that from the proof of Theorem 4.4 and from

the fact that ID(f) ≤ 1, for all monotone Boolean functions f, we have I q" (x) M.

Ideally we want to learn h, but because only approximations of the means jj can

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 46

be found we will try to learn hB. Now since the example oracle EX(f, D) gives the

examples according to the original product distribution D and not b we will instead

learn hA. Since the learning parameters (the number of coefficients) are computed

for i5 we have

Et,[(hB(x) - f(x))2] ≤ 6.

Suppose pi + Tj is the estimation for 1lij, where ftI <_(logn+4)• Notice that

r) i=1 -

2) n 17

ogn+4

E 1+o (M1Ofl+3) .

In the above we have used the following simple upper bounds

1 Iri ≤1+ lTd
l—fLj l—j

and the fact that pi, 1 - jtj ≥ 2 and (1 + '—i 1 + mx, for x significantly smaller

than 1, i.e., x << 1. We will also bound the expression D(x)/15(x) from above. First

note that

and that

1 T <1+ 1+ <1+ ITiI Ti lTd
ILi+Ti /Ji - IT , iI l-L-T l_iui_lril

ILi - ITil, 1 - [L - Til ≥ - _(b04) ≥ m_2 /2,

for sufficiently large n. Using these observations, we see that

D(x)
= fl 1 Ti (1 Ti

b(x) =i (+ Tj =o

2m2
≤ (i + M1ogm+4)

E 1+o (M1Ofl+3)

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 47

Now we can bound the performance of hB under the true distribution D as follows.

ED[(hB(x) - f(x))2] = E [(hB (x) - f(x))2]
D(x)

< E[(hB(x)—f(x))2]max D(x)
D(x)

E e (i + o (,,ogn+3))

= + ° (Mlogn+3

Therefore hB is also a good approximation of f with respect to the distribution D.

Now we show that hA is good enough. We have

IhA(x) - hB(V)l

because

<

E

-

aES aES

Ejj[fç(1 - (b/D))]3a(x)
aES

ISIM2max 1 b(x)
D(x)

5M2M_(b03)

(n

k (n Isi ≤ fl k+1 = 2(k+1) log n logn

i=O

Therefore

ED[(hA(x) - f(x))2] < 2ED[(hA(x) - hB (X))2 + (hB(x) - f(x))2]

= 2Ejj[(hA(x) - hB (X))2] + 2ED[(hB (x) - f(x))2]

E 2+O()

= 2+n,

for some constant c > 0. This completes the analysis for PAC learning monotone

Boolean functions when the product distribution is unknown. We restate the theorem

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 48

in the following.

THEOREM 4.5. For any e, S > 0, any monotone Boolean function over {0, 1} is

PAC learnable under an unknown product distribution with sample and time com-

plexity of exp(O(c' log(/)))1og 8' with an error of at most 6 + _C for some

constant c, and with confidence S.

4.4. Proving Near Optimal Performance

We will prove several statements showing that the monotone learning result in The-

orem 4.4 is nearly best possible or optimal in terms of the time complexity, achievable

error rate, and sample complexity.

4.4.1. Error Rates. First, we claim that the error rate achieved in the algorithm

is the best possible for a subexponential time algorithm.

THEOREM 4.6. Any PAC learning algorithm for monotone Boolean functions un-

der the uniform distribution running in time 2, for any c < 1, will output an

approximation with an error of at least

Proof There are at least m(n) 2G'2) ≥ 2d2'// monotone Boolean functions

over n variables, for some constant d < 1. We have used here the approximation

(n2) r- 2n//. Suppose A is the &approximation algorithm for any monotone

Boolean function. If A outputs a hypothesis h then h can &approximate at most

k(n) (2m) ≤ 22H(6)

i<62

Boolean functions, by Fact 2.3. Assuming A runs in time for some constant c < 1,

then A can output at most 2 211 possible hypotheses. Therefore we must have

22 k(n) ≥ m(n)

which implies 2 + 2ThH(6) ≥ So for sufficiently large n, we have H(e) >> n 112.

Note that H(x) = xlog(1/x) + (1— x) 109(1/(1 —x)) xlog(1/x), for x c'-' 0. This is

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 49

because lim,, o(l - x) log(l/(l - x)) = 0. Using this to simplify, we get dog(l/) >>

_i/2 The change of variable = 1/c yields the equation (log 6)/6 >> n•/ which

implies 6 <<i/2 log 6. Chasing the last equation further, we get 6 <<n1/2 log n. This

yields the inequality e >> (n u/2 log n)_1. 0

The next corollary gives a lower bound for the error rate of any learning algorithm

that runs in time bounded by 2°().

COROLLARY 4.7. Any learning algorithm for monotone Boolean functions under

the uniform distribution with a running time bounded by 2°() cannot achieve an

error smaller than f(i/(n'/4 log n)).

Proof Let A be an algorithm that runs in time for some constant a, and that

learns any monotone Boolean function over n variables within an error of (n), for any

n. We will construct another algorithm B that learns any monotone Boolean function

over n variables in time 2cn for some c < 1, and achieves an error of 2((cn)2). By

Theorem 4.6, we must have 26((cn)2) = (l/(\/flogn)), which implies the claim.

Let in = (on)2. The algorithm B with input EX(f, Un), where f = f(xi....) x,)

is a Boolean function on n variables and Un is the uniform distribution over {0, l}',

will use the algorithm A for functions over m variables. For this the algorithm B will

pad the examples (x, f(x)) from EX(f, U) into examples of the form (x o , f(x)),

where x = (x1,... , x,) and = , Xm) E Urn- n,-The error rate achievable

by algorithm A to learn monotone Boolean functions on m variables is c = 6(m). The

algorithm A outputs a hypothesis h with

o h(x o)J <.

Algorithm B proceeds by randomly and uniformly choosing values bn,+1,... , bm and

returning the hypothesis h(xi,... , Xn , bn,+1 ,... , bm). Note that

OJO 0 h(x o = E(E[f(x o h(x o i)]) < 6.

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 50

By using Markov's inequality, Fact 2.5, with probability at least 1/2, a random

bm gives a 26(m)-approximation to f. If necessary, the algorithm .8 may re-

peat this process often enough to increase the probability of obtaining a 26-approximation

to f. LI

4.4.2. Bounds for the Low-degree Fourier Algorithm. We now investigate

the best error rate of the low-degree Fourier algorithm. The first theorem shows

that there exists a monotone Boolean function f for which any 6-approximation (in

the Mean Square Error sense) that uses the low-degree Fourier coefficients f, for

6 = n_li2, must collect all coefficients of degree less or equal to cm, for some constant

c<1.

THEOREM 4.8. For any constant c < 1, there is a monotone Boolean function f

which satisfies

> /2() ≥ Q (1/(\/ log n)).
al≥cn

Proof Assume for contradiction that there is some constant c < 1 such that for any

monotone function f

an12 ≤

for some constant c. This implies that the low-degree algorithm which searches all co-

efficients of degree at most en will approximate f within an error of O(1/(,/log n)).

This contradicts Theorem 4.6 modulo constant factors. LI

The second theorem shows that to approximate the majority function with error

_h/2 we need to collect all of its Fourier coefficients of order O(

THEOREM 4.9. The majority function MAJ satisfies ia1>j i4J2(a) ≥ a/\/,

for some absolute constant a.

Proof Since the majority function MAJ(x) is a symmetric function, the influences of

all variables are equal. Thus we have > IaIMAJ (a) = En I I(MAJ) = nli(MAJ).

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 51

To get abound on I1(MAJ), note that .[1(MAJ) ≥ 2-n (n2) ≥ , for some constant

c. Now we have the following.

≤ E Ia[MAJ(a)2 E IaIMAY(a)2 +E IalMAJ(a)2
a IaI<&

0 Finally we obtain Ejaj>ms ,nM >cAf(a)2 -

4.4.3. Sample Complexity. So far we have considered the time complexity of

PAC learning monotone Boolean functions. As a final result, we mention a known

application of the Vapnik and Chernovenkis dimension (or VC dimension) to obtain a

bound for the sample complexity of PAC learning monotone Boolean functions under

an arbitrary distribution. Sample complexity refers to the number of random labelled

examples that a learning algorithm requires to find a good approximation.

In the following we briefly recall some definitions and facts about the Vapnik and

Chernovenkis dimension.

DEFINITION 4.2. (Vapnik-Chernovenkis dimension)

For a subset A C {O, 1}n and a Boolean function f: {O, 1}1 —+ {O, 1}, we denote f IA

to be the function f IA A - {O, 1} such that fIA(x) = f(x) if x € A and that is

undefined otherwise.

If C is a class of Boolean functions over {O, l} then C shatters A C to, 1} f

{f IA : f E C} = 2A ,

or, alternatively, if for every Boolean function g : A - {O, 1} there exists a Boolean

function f E C such that f IA = g, i.e., g equals f when the domain is restricted

to A. The Vapnik-Chernovenkis dimension of a concept class C, VCdim(C), is the

cardinality of the largest subset A that is shattered by C.

The following general lower bound result was proved by Ehrenfeucht et al. [EHKV88].

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 52

THEOREM 4.10. [EHKV88] Let C be a concept class. Then any PAC learning

algorithm for C with accuracy e and confidence S must use a sample size of

≤ (' In + VCdim(C))

We now note the following easy fact.

FACT 4.11. The Vapnik-Chernovenkis dimension of the class of monotone Boolean

functions on n variables is at least (n2) '

Proof It is easy to see that A = {a E {0, 1} : jal = [n/2]} is shattered by all
monotone Boolean functions on n inputs. U

COROLLARY 4.12. Any PAC learning algorithm for monotone Boolean functions

under an arbitrary distribution with error and confidence S (for sufficiently small

and 5) requires at least (5 + in) examples.
The above observation also has been made by Kearns and Valiant in [KV89, K].

Notice that the above gives a complexity bound that is nearly exponential, i.e., 2?t/\/,

which is larger than 2". This is because the bound above is for the distribution-free

case. But as mentioned in [KV89], the class of monotone Boolean functions is not

polynomially PAC learnable under the uniform distribution (thi claim was attributed

to Ehrenfeucht and Haussler).

4.5. Polynomial-time PAC Learning

In this section we shift our focus to efficient or polynomial-time PAC learning of

classes of monotone Boolean functions. We will consider both the weak and strong

variants of the PAC model and provide some new learning results in both models.

Kearns and Valiant [KV89] proved that all monotone Boolean functions are weakly

PAC learnable under the uniform distribution with error 1/2 - 1/(2n). We will

improve their result and simplify their proof. We show that there is a weak PAC

learning algorithm with error 1/2 - (log2 n/n) under the uniform distribution and

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 53

there is a weak PAC learning algorithm with error 1/2 - S(1/n) under any product

distribution.

We will need the following result due to Kahn, Kalai and Linial [KKL88].

LEMMA 4.13. [KKL88] Let f be a Boolean function with p = Pr[f(x) = 1] < 1/2.

Then
n

I(f)2 ≥ p2 (log n)2
i=1 n

THEOREM 4.14. There is a polynomial-time weak PAC learning algorithm with

error = 1 - ç (s) for any monotone Boolean function under the uniform distri-

bution.

Proof We will assume without loss of generality that p = Pr[f(x) = 1] ≤ 1/2, since

we can take -if(--ixj,... , -ix,) otherwise. This transformation does not affect the

influences.

If p < 1/4 (we can estimate this) then the trivial algorithm that outputs the

hypothesis h 0 is, a weak PAC learning algorithm. Otherwise, if p ≥ 1/4, since

j2(c) and using Lemma 4.13, 12(ei) ? p2 log2 n/(5n) ≥ log2 n/80n.

Combining this with Fact 4.2, we use the LMN algorithm to estimate all Fourier

coefficients of f on the set A = { e : i E [n] }. This yields a weak learning algorithm

for f with the claimed accuracy. D

THEOREM 4.15. For any constant k, there is a polynomial-time weak PAC learning

algorithm with error e = 1 - for any monotone Boolean function under any product

distribution.

Proof Given k, we set a = V'2.1241c (the constant 2.124 comes from the constant in

Theorem 3.12). If IIaII>a f2((2) < 1/2 then, by Fact 4.2, we immediately obtain a

weak PAC learning algorithm with error 1/4 by using the LMN algorithm to estimate

all Fourier coefficients of f on the set {a : lal ≤ a}.

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 54

On the other hand, if we have >111a 11>a 12(a) > 1/2, then by Theorem 3.12, this

implies that

l.O62ID (f) ≥
a 2

Hence Ei J(e) = k/n. So we can use the LMN algorithm to approximate

all Fourier coefficients of weight at most 1.

One detail left out in the arguments above is the fact that the learning algorithm

must first estimate the means /.ti, i e [n], of the underlying product distribution.

By an analysis similar to the ones given in Section 4.3, the above arguments can be

adapted accordingly. LI

We now switch to strong PAC learning and consider proper subclasses of monotone

Boolean functions. Sakai and Maruoka [SM94] proved that the class of monotone

0(log m)-term DNF formulas is PAC learnable under the uniform distribution. We

improve their result in two ways; first, we will learn a larger subclass of monotone

Boolean functions, and second, we will allow constant-bounded product distributions.

Recall that a product distribution D = , is called constant-bounded if there

is a constant c E [0, 1/2], independent of n, such that pi [c, 1 - c], for all i E [n].

DEFINITION 4.3. (Generalization of Monotone DNF and CNF)

Let MON(k) be the representation class of Boolean functions of the form f(T1,... , Ti),

where f is an arbitrary monotone Boolean function on 0(k) inputs and each T is a

monotone conjunction or a monotone disjunction over n variables.

THEOREM 4.16. The class MON(logn) is PAC learnable under constant-bounded

product distributions.

Proof Let f E MON(log n) be of the form f(x) = g(r(x),... , Tk(x)), where g is a

monotone function on k = c1 log n inputs, for some constant c1, and each Ti is either

a monotone disjunction or a monotone conjunction over the variables x1, x2,... , x.

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 55

Since the product distribution D is constant-bounded, say c-bounded, for some

constant c, there is a way of locating efficiently (via sampling) the variables that

appear in the target function f. From Lemma 3.8, the influence ID,(f) of variable

xi on f under distribution D is given by

ID, (f) = ED[f(x) 0 f(x ed)] = J(a).

a:a=1

The first expression shows that ID,(f) can be estimated via sampling. Since D is

constant-bounded, oj is a constant and therefore if the influence of variable xi on

i.e., .[D,(f), is small then we may assume that xi = 0. This will incur only a negligible

approximation error (in the MSE sense) by Fact 4.1. In fact this can be done also for

projections of f.

We call a variable xi relevant for a Boolean function f with respect to a distribution

D if there is a E {0, 1}' with D(a) > 0 so that f(a) 0 f(a ED ed), i.e., .ID,(f) > 0.

Our learning strategy is to collect relevant variables, i.e., variables with non-negligible

influences, in a small depth decision tree. Due to sampling, we might need to impose

a threshold at which we will deem an influence negligible or not (instead of nonzero

or not).

Since f depends on e1 log monotone disjunctions or conjunctions that feed into

some unknown monotone function g, a random assignment to a variable that appears

in a monotone disjunction or conjunction will turn the latter into a constant with

probability at least c. This is because Pr[x = 0], Pr[x = 1] ≥ c, for c-bounded

distributions.

We now build a Boolean decision tree of depth d based on the variables with

non-negligible influences, i.e., they appear in f. Using one of the Chernoff bounds

expressions

Pr[X < (1 - 8)] <exp(-82 /2),

we can force this to be bounded from above by C/flC1. To this end we select 6 = 1/2

4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 56

and

It ≥ cd ≥ in (f—)62

This implies that we need a depth of at least

d ≥ -2 in ncl (_) E O(log n + log (1/)).

Using this we can claim that the probability that a root to leaf will, with probability

at least 1 - /C1, set all monotone conjunctions or disjunctions in f to constant.
This is because if X denotes the number of kills (elimination of a conjunction or

disjunction), then

Pr[leaf 54 constant] = Pr[X <ci log n] Pr[X < (1—

with the choices of 6 and y as above. Hence with probability at least 1 - e, any root

to leaf path will set all conjunctions and disjunctions to constant.

We remark that each leaf in the tree must make a decision of whether the projected

function (induced by the unique path from the root to that leaf) is non-constant or

not. The leaf is not expanded if sampling shows that the projected function is already

constant.

So the hypothesis of this decision tree containing relevant variables from f has an

error probability of at most e (which is the event that some leaf is not constant).

The confidence parameter (for PAC learning) will get introduced in the high prob-

ability sampling steps. U

For an alternative proof of the above result see [B95].

CHAPTER 5

Learning Bounded Width Branching Programs

A lot of people are afraid of heights.

Not me. I'm afraid of widths.

- Steven Wright

The branching program is a well-studied model of computation in complexity the-

ory. These were used to study and prove non-trivial space lower bounds. In an early

work, Borodin, Dolev, Fich, and Paul [BDFP86] conjectured that the majority func-

tion is not computable by branching programs with constant width and polynomial

size. This was disproved by Barrington [Bar89] who proved that the Boolean func-

tions computable by width five permutation branching programs are equivalent to the

Boolean functions computable by families of bounded fan-in polynomial size and log-

arithmic depth Boolean circuits. This shows that the majority function is computable

by width five branching programs since it is computable by an NC' circuit family.

This result indicates the surprising power of bounded width branching programs.

In this chapter, we will use the branching program model as an alternative repre-

sentation class for studying the learnability of Boolean functions. Using Barrington's

result combined with the negative result of Angluin and Kharitonov [AK95], we have

a boundary for non-learnability: we cannot hope to learn width five branching pro-

grams if we make some natural cryptographic assumptions. On the other hand, by

using the alternative structure provided by branching programs, one can perhaps gain

more insight into the learnability of Boolean functions that lie below the class NC'.

57

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 58

We approach the learnability of branching programs using different techniques. In

the first part, we use Fourier techniques to show that the representation class of

monotone width two branching programs is efficiently PAC learnable with member-

ship queries under the uniform distribution. This can be regarded as an extension

of Jackson's DNF learning result [J94]. Next we show that the representation class

of width two branching programs with a constant number of sinks is efficiently ex-

actly learnable from equivalence queries alone. A previous result of Bshouty, Tamon,

and Wilson [BTW96] showed that width two branching programs with two sinks is

efficiently PAC learnable under any distribution.

In the last part of this chapter we apply the novel technique of learning multiplicity

automata due to l3ergadano and Varricchio [BV94] to prove the exact learnability of

several classes of bounded width permutation branching programs with equivalence

and membership queries.

5.1. Characterizations of Width Two Branching Programs

We recall some definitions of subclasses of width two branching programs as intro-

duced by Borodin, Dolev, Fich, and Paul [BDFP86].

DEFINITION 5.1. A width two branching program is strict if it has exactly one

accepting sink and one rejecting sink. A width two branching program is monotone

if it has exactly one rejecting sink.

xl X2 X3 X4

FIGURE 5.1. Example of a strict width 2 branching program

It is easy to see that any DNF formula can be converted into a width two monotone

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 59

branching program. Hence the representation class of DNF formulas is contained

in the representation class of monotone width two branching programs. Moreover

the inclusion is strict since the parity function is computable by a polynomial size

strict width two branching program while it is known that it is not computable by

polynomial size DNF formulas.

FIGURE 5.2. Example of a monotone width two branching program

for DNF X1X2X3 V &1x2

We mention an alternative characterization of strict width two branching programs

in terms of parity decision lists as shown by Bshouty, Tamon, and Wilson [BTW96].

First we define notation for describing classes of parity functions. The class of parity

functions that depend on at most k relevant inputs will be denoted h• In notation,

= {(a.a)eb I a E {O,1}',bE {O,1},IaI k}. Note that is the set of literals

(and including the constant functions) and is the set of all parity functions.

FACT 5.1. [BTW96] The class SW2 of strict width two branching programs is

equivalent to the class (2,)-DL. Moreover, any decision list in (2)-VL has

at most n2 nodes.

5.2. Learning Monotone Width Two Branching Programs in the PAC

Model

In this section we will prove that monotone width two branching programs are

efficiently PAC learnable with membership queries under the uniform distribution.

This result extends an earlier theorem of Jackson [J94] who proved that DNF formulas

are efficiently PAC learnable with membership queries under the uniform distribution.

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 60

Our proof relies on the Fourier transform method. To avoid confusion, in this section

we will adopt the following convention for stating Boolean functions. Recall that

we denote "normal" Boolean functions, i.e., ones with the range {0, 1}, with lower-

case letters, such as f : {0, l}n -• {0, 1}, and their corresponding {-1, +1}-range

counterparts with upper-case letters, e.g., F : {0, 1} -* {-1, +1}, and recall that

they are related by F = 2f - 1 and f = Whenever necessary we will remind

the reader of this convention.

5.2.1. The Harmonic Sieve Learning Algorithm of Jackson. As we have

seen from previous chapters, there is a simple PAC learning algorithm due to Linial,

Mansour, and Nisan [LMN93] that works by estimating all Fourier coefficients of the

target function on a specific isolated region in the Boolean cube. For the class of AC°

and monotone Boolean functions we know that this region is the set of all coefficients

with Hamming weight at most polylogarithmic in n and square root of ii, respectively.

Unfortunately there are classes of functions, such as polynomial-sized decision trees,

which have a small collection of "heavy" frequencies but whose locations are depen-

dent on the structure of the function. So one cannot use the algorithm in [LMN93]

since the algorithm does not know where the important frequencies are. In 1991,

Kushilevitz and Mansour [KM93] gave an important algorithmic procedure to search

for heavy frequencies using membership queries. Let us call their algorithm the KM

algorithm. Their method enables one to locate the significant Fourier coefficients

without a priori knowledge of where they lie in {0, l}n. So now any class of functions

which has a small collection of important Fourier coefficients is efficiently learnable

in the PAC model with membership queries under the uniform distribution. In par-

ticular this implies that the class of polynomial size decision trees are efficiently PAC

learnable with membership queries under the uniform distribution.

The next progress in the Fourier-based learning algorithms came when Jackson

applied the idea of boosting to the KM learning algorithm. He devised an algorithm

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 61

which he called the Harmonic Sieve algorithm that is capable of learning DNF for-

mulas in the PAC model with membership queries under the uniform distribution.

Intuitively, Jackson's idea is as follows. First one shows that a Boolean function has

a mild correlation with a parity function. In the Fourier language this translates to:

one of the frequencies is a good "weak" approximator to the function. Next, one

uses the KM algorithm to find this frequency pattern. At this point we have already

obtained a weak learning algorithm. To get a strong learning algorithm we apply a

hypothesis boosting algorithm that combines several weak learning algorithms into

a single strong learning algorithm. In his beautiful paper [J94] Jackson proved the

following theorem.

THEOREM 5.2. [J94] The class of DNF formulas is efficiently PAC learnable from

membership queries under the uniform distribution.

We outline the technical arguments used by Jackson and illustrate how we modify

them to prove the learnability of monotone width two branching programs. The first

key fact about DNF formulas is that each correlates well with some parity function

XA, A E {O, 1}, under any distribution. Recall that XA(x) = (—l)EA" defines a

parity test on the bits designated by A viewed as a subset of [n]. Thus, if f is a DNF

formula of size s (f has .s terms) and D is an arbitrary distribution, then there is

some A such that

IED[FxA]I≥ 2s+1

We remind the reader that F is the {-1, +1}-version of f. Using the above inequality,

since ED [FXA] = PFD [F = xAI - PrD [F 54 XA], we derive the following. Assume

without loss of generality that ED [FXA] is positive (the other case is symmetrically

similar). Then

1

1
ED[FXA] = 1 - 2Pr[F > r{J7x4j XA] - 2s+ 1 D 2 2(2s + 1)

1

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 62

This is good news since it means that the parity function XA is a potential hypothesis

for weak learning f. The problem is that we do not know the set A.

The second key fact is that there is an efficient algorithm due to Kushilevitz and

Mansour [KM93] to find parities that correlate well with certain Boolean functions

assuming that the underlying distribution is uniform. So weakly learning DNF under

the uniform distribution is possible by combining these two facts [BFJ94].

The third ingredient is a boosting algorithm, developed by Freund [F90], that can

turn any weak learning algorithm into a strong learning algorithm. This does not

solve the DNF learning problem immediately since the boosting algorithm assumes

that the weak learning algorithm works under arbitrary distributions (not just the

uniform distribution). This is because the boosting method works by running the

weak learning algorithm on a carefully chosen set of modified distributions.

Jackson then supplied the missing pieces: he proved that the boosting algorithm of

Freund combined with a modified version of Kushilevitz and Mansour's algorithm will

still work since the distribution is not being perturbed too much (he quantified pre-

cisely this intuition in [J94]). Also by the first fact, DNF formulas are still guaranteed

to correlate well with some parity when the distribution is slightly changed. In fact

the only property that is ever needed about DNF formulas to get the learning result

is the first fact. The resulting algorithm is the Harmonic Sieve learning algorithm.

To prove our PAC learning result we will show in the next section that the first

fact holds for monotone width two branching programs. Using this we can then claim

the following theorem.

THEOREM 5.3. The class M)/V2 of monotone width two branching programs is

efficiently PAC learnable with membership queries under the uniform distribution.

5.2.2. A Fourier Correlation Lemma. In this section we prove the following

lemma that states that any monotone width two branching program correlates well

with some parity function under any distribution. The fact that the lemma is true

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 63

for any distribution is critical for the boosting stage in Jackson's harmonic sieve

algorithm.

LEMMA 5.4. For any F E MW2 with s accepting sinks and for any distribution D

there is a parity Xc such that

IED[Fxc]l> 1
- 23n2+1

Proof Let f E M)/V2 be computed by a monotone width two branching program

with s sinks. Note that each accepting sink defines a subportion of the branching

program that is a strict width two branching program. Let ga,... , g3 be the functions

computed by the a subportions associated with the a strict width two branching

programs (see Figure 5.2). Note that

f= g1V V ... V g8.

Hence there is a subportion gj so that

Pr[g=1]>Pr[f=1].
s D

We fix our attention on this subportion gj and call it g.

Using Fact 5. 1, g E SW2 is equivalent to a decision list in (2, (D ,,)-DL. If g is

defined as

G {(Xai,Xb,), (Xa2,Xb2))... , (Xam,X&m)1

(recall that G is the {-1, +1}-version of g) then it can be rewritten as

M + Xa1 1 + Xb u1 1 - Xa3

i=1 2 2 j=1 2

Let

- 1 + Xa; 1 + Xb1 1 - Xaj

2 2 2

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 64

Then

= ED [F (t 1 + Xaj 1 + Xb ijj 1 - Xaj
2 2 2 j=i

?fl m
ED F E hil = ED[Fh]

i=i i=i

≤ EJED[Fhj]I ≤ m JED [Fh o]

where i0 E [m] is such that JED [Fhjjj is maximum. We now rewrite

jo—i -I
. " Xaj 11 ri iici 1

= cE{O,i}t0l Lv') XA J,
j=i

where Ac = The last summation operation is the addition operation over

1F' (bitwise exclusive OR). Thus we have

hio - 1 + Xa 10 1 + Xb 0 1 - Xaj
- 2 2 ri 2

1 + Xai0 1 + Xb 0
= 2 2 E{o,1}io—l[(-1) 1 1XAJ

=

where the probability space S is over c uniformly chosen from {O, l}io_1 and

uniformly chosen from {O, 1} and where B = f3a -yb 0. Combining this with

an earlier expression we get

ED [Fh 0] = ED[FE5[(_1)IaIXB]] = Es[(_1)11ED[FxB]] <Es[IED[FXB]l].

We may now claim that there is a choice a0, 18o, 'yo with C = A 0 3oa0 7ob so

that

IED[Fxc]l ≥ IED[FhiO]I

Since g implies f we have the following relation (we remind the reader that F has

range {-1, +1} and g has range {O, 1})

ED[F9] = ED [g] = 1r[g = 1] ≥ Pry = 1] = ED[F] +1
2s

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 65

Hence, we have

IED [FXC]I ≥ E[F]+1
2sm

So either IED [Fxc]l ≥ 1/(2sm + 1) or ED[F] = ED[Fxo] ≤ —1/(2sm + 1). Noting

that by Fact 5.1 m ≤ n2, we obtain the desired claim. U

5.3. Exact Learning Width Two Branching Programs with 0(1) Sinks

The study of the learnability of bounded width branching programs was initiated by

Ergün, Ravi Kumar, and Rubinfeld [ERR95]. They show that a restricted variant of

width two branching program is efficiently PAC learnable under any distribution and

is properly efficiently PAC learnable under the uniform distribution. These results

were refined by Bshouty, Tamon, and Wilson [BTW96] who proved that width two

branching programs with exactly two sinks, i.e., strict width two branching programs,

are properly efficiently FAG learnable in the distribution-free model. In this section

we show that the class of width two branching programs with a constant number of

sinks is efficiently exactly learnable using equivalence queries.

We will use the notation k-sink W2 to denote the class of width two branching

programs with at most k sinks.

THEOREM 5.5. The class k-sink W2 of width two branching programs with k sinks

is efficiently exactly learnable using equivalence queries.

We will prove this theorem by transforming a width two branching program into a

special type of decision list, and then prove that the latter type is efficiently exactly

learnable with equivalence queries. In our proof we will require the notion of rank of a

Boolean decision tree that was considered, among others, in the work of Ehrenfeucht

and Haussler [EH89].

DEFINITION 5.2. (Rank of a binary tree)

Let T be a binary tree. The rank of T is defined as the rank of its root node. The

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 66

rank of a node is defined inductively as follows. For a non-leaf node v, let vL and yR

be the left and right child, respectively, of v.

0

rank(v) = 1 + rank(vL)

max{rank(vL), rank(vR)}

if v is a leaf

if rank(vL) = rank(vR)

if rank(vL) rank(vR)

The notion of rank is meant to capture the bushiness of a binary tree. Note that a

list has rank 1 whereas a complete binary tree of depth d has rank d.

In the first lemma we prove that the set of Boolean functions computable by k-

sink width two branching programs is a subclass of Boolean functions computable by

rank-k decision trees with parity nodes.

LEMMA 5.6. For k ≥ 2, the class of .Boolean functions computable by k-sink width

two branching programs is a subclass of the class of Boolean functions computable

by rank-k decision trees with parity nodes, i.e., , -VT.

Proof We will prove the lemma by induction on k. For k = 2, the claim states that

strict width two branching program or SW2 is a subclass of rank-2 ED,, -VT. But

this is true by Fact 5.1, since SW2 is equivalent to (2,)-VL, and an element

f E (2, E),,,)-DL can be turned into an element of rank-2 -VT (by trivially

adding two new nodes for each leaf of f).

Assume that the claim is true for all width two branching programs with at most

k - 1 sinks, k ≥ 3. Consider a width two branching program B with k sinks. B can

be decomposed into k strict width two branching programs. Let L be the first strict

width two branching program and let b E {0, 1} be the label of its sink. By Fact

5.1 L1 can be converted into a decision list of type (2, E) ,,)-DL. By induction the

remaining portion of B can be written as a rank-(k - 1) decision tree T with parity

nodes. We attach T to each leaf node of L1 as follows. For each leaf node 1 of L1, we

create an outgoing edge labeled with —1 (or 0) going into T and an outgoing edge

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 67

labeled with +1 going into the constant function b. Note that the resulting decision

tree is of rank k, since the new rank of the leaves of L1 is now k (the rank of T) and

hence the new rank of the internal nodes of L1 is also k. This completes the inductive

argument and hence the lemma. 0

LEMMA 5.7. The class of Boolean functions computable by rank-k decision trees

with parity nodes is a subclass of Boolean functions computable by decision lists

whose nodes are parity of monomials, where each monomial is of size at most k. In

notation, rank-k -VT is a subclass of ED Ak -DL.

Proof The following proof is an adaptation of Blum's argument [B192]. Let T be a

rank-k decision trees with parity nodes. Because of its rank, T has a leaf node that

is of depth at most k (Lemma 1 in [B192]); call this leaf node x. Let p be the parent

of x and let T be the other subtree of p.

Create a node nx in the decision list that is labeled with a conjunction of at most

k parity questions (induced by the root to leaf path ending in x). This conjunction

of parities can be converted into a parity of conjunctions where each conjunction is

of size at most k.

The next crucial step is that we can remove from T the nodes p and x, and reattach

the parent of p directly to T. The resulting tree is still a rank-k' decision tree with

parity nodes, where k' ≤ k. If k' = k then we may repeat the same process until

the rank reduces to k - 1. At that point we appeal to an inductive hypothesis and

complete the lemma. 0

Finally we show in the following lemma that Ak -'DL, and hence k-sink width

two branching programs, are efficiently exactly learnable from equivalence queries.

The idea is to use the algorithm for learning nested differences of intersection-closed

concept classes due to llelmbold, Sloan, and Warmuth [HSW9O].

LEMMA 5.8. The class A -'DL of decision lists whose nodes are parities of mono-

mials of size at most k is efficiently exactly learnable using equivalence queries.

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 68

Proof By the transformation technique of Littlestone [L88], it suffices to prove the

claim for the concept class of decision list with parity nodes, i.e., ED,,, -DL. That is,

we can create new variables for each k-subset of the variables and learn the target

concept as a new function over at most n + n1 variables.

To exactly learn -DL we will show that we can express any element of EN -DL

as a nested difference of vector spaces over]F'. Since vector subspaces are closed under

intersection, we can appeal to an algorithm for exactly learning nested differences of

intersection-closed concept classes due to Helmbold, Sloan, and Warmuth [HSW9O].

Assume that the target concept f E -DL is given by

f = ,(Xak)bic)I,

where a1, a2,... , aj, E {O, 1}'n and b1, b2,... , bk E {O, l}. We compress consecutive

leaves that output the same value. This is permissible since consecutive parity tests

can be turned into a membership test for a subspace L that halts at the leaf if the

test failed and proceeds to the next node if the test is passed. When the compression

process is finished, we will end up with a decision list whose internal nodes are labeled

with membership tests for subspaces. So assume that we have

f = [(L1, ci), (L2, C2), . .. , (Li, Ct)],

where t ≤ k, the Li's denote subspaces, and c1,... , c E {O, 1} are alternating in

value. Again we remind the reader that the value c1 will be output if the example

does not belong to the subspace L1, the value c2 will be output if the example belonged

to L1 but not to L2, and so on. Assume without loss of generality that c1 = 0 (the

case when c1 = 1 can be treated as easily). Then we have the following form

This completes the proof. E

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 69

5.4. Exact Learning Permutation Branching Programs

In the next sections we study the problem of learning bounded-width permutation

branching programs. First we define the notion of a permutation branching program

introduced by Barrington {Bar89].

DEFINITION 5.3. (Permutation branching program)

Let P be a group of permutations on w elements. A permutation branching program

(PBP) of width w and length 1 is given by a sequence of instructions (j(i),gi, hi), for

o ≤ i < 1, where 1 < J* (i) n and gi, hi E P. A permutation branching program

has on each level i, w nodes v,1,... , v. On level i we realize cr(x) = gi if = 0

and u(x) = hi if Xj(i) = 1. The branching program computes

U(X) = ul_i(x)01_2(x) . . . o0 (x) E P

on input x E {0, l}n. The permutation branching program computes a Boolean

function f on n inputs via r if or(x) = id, for x E f'(0), and o(x) = r 0 id, for

x E f 1(1).

x11 X2=O X3=1

FIGURE 5.3. Example of S3-PBP computing the identity permutation

Barrington proved that any Boolean function computable by an NC' circuit, i.e.,

a Boolean circuit of polynomial size and logarithmic depth, is also computable by a

width five permutation branching program. In this section we will show that per-

mutation branching programs of width three and four are efficiently learnable in the

exact identification model with equivalence and membership queries. So in fact we

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 70

come quite close to the non-learnability barrier given by Angluin and Kharitonov

[AK95] for width five branching programs.

The technique that we will use comes from automata theory. In particular we

will use the representation class of multiplicity automata over finite fields. The novel

use of this representation class of automata was recently introduced by Bergadano,

Catalano, and Varricchio [BV94, BCV96]. For more information on the applications

and limitations of this method we refer the reader to [BBBKV96].

5.4.1. Multiplicity Automata. We describe relevant definitions from the the-

ory of multiplicity automata and state a recent result on the learnability of multiplicity

automata [BV94, BCV96, BBBKV96]. We will also prove a lemma that describes a

non-trivial closure operation on this class of automata.

DEFINITION 5.4. (Multiplicity automata)

Let IC be a field. A nondeterministic automaton M with multiplicity is a five-tuple

M(, Q, E, I, F) where E is a finite alphabet, Q is the finite set of states, I, F: Q — p IC

are two mappings associated with the initial and final states, respectively, and

E:QxExQ —>X

is a map that associates a multiplicity to each edge of M. We will sometimes call M

a AC-automaton for brevity. The size of M is the number of states, i.e., IQI.

Let x = (x1,... , x,) . A path for x is a sequence

p= (p1,xj,p2),(p2,x2)p3),... ,(pn)Xn,pn+i),

where pi E Q, for all 0 < i ≤ n + 1. Let PathM (x) denote the set of all paths

for x. The behavior of M is a mapping SM : —* AC defined as follows: for each

n

SM(X) = I(p1) (11=1 E(P,X,P +l)) F(p 1).
pEPathM(s)

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 71

For a Boolean function over - {O, 1}, we say that a multiplicity automaton

M computes f if for all x E we have SM(x) = f(x). Alternatively one may think

of f as a characteristic function of a language over E*.

OOO
0

0,1

FIGURE 5.4. Example of F2-automata for DNF x123 V f1X2

In the following we will describe several operations on multiplicity automata, namely

the Hadamard product, union, and scalar multiplication. In effect we will argue that

multiplicity automata are closed under these operations.

DEFINITION 5.5. (Closure operations)

Let K be a field. Let M1(,Qi,E1,I1,F1) and M2(E,Q2,E2,I2,F2) be two it-

automata.

(1) The Hadamard product of M1 and M2, denoted by M1 0M2, is a AC-automaton

M(E, Q, E, I, F) where Q = Qi X Q2, and I, F, E are defined as I(q1, q) =

Ii(qi)I2(q2), F(qi,q2) = Fi(qi)F2(q2), and

E ((q, p), a, (q', p')) = Ei(q,a,q')E2(p,a,p').

Note that M has IQ1IIQ2l states. Moreover M satisfies

SM(x) = SM1(x)SM2(x).

(2) Assume that 91 and Q2 are two disjoint sets of states. The union of M1 and

M2, denoted simply by M1 U M2, is a it-automaton where M(, Q, E, I, F)

where Q = Q1UQ2, and I,F,E are defined as 1(q) = Ii(q)[q E Qi]+I2(q)[q E

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 72

Q2], F(q) = Fi(q)[q E Qi] + F2(q)[q E Q211, and

E(q,a,p) = Ei(q,a,p)[q,p E Qi]+ E2(q,a,p)[q,p E Q2].

Note that M has IQiI + 1Q21 states. Moreover M satisfies

SM(x) = SM1(x) + SM2(x).

(3) For any A E AC, the automaton AM, is defined to be the AC-automaton M(E, Q, E, I, F)

where Q = Q, I = Al1, F = F1, and E = B1. Note that IQI = IQI and that
M satisfies

SM(x) =

Next we prove a result that yields another closure operation, namely constant

Boolean combinations of multiplicity automata.

LEMMA 5.9. Let p be a fixed prime. Let ,gj be Boolean functions that

can be computed by]F'-automata of size at most .s. Then for any Boolean function f

on k inputs, f(gi,g2,... ,g.) can be computed by a 11!-automaton with at most

states.

Proof The function f(gi,g2,... ,gj) can be written as

k

i Ac, flg,
aEV i=1

for some Ac, E]F. Since 91,92, . • , gk take values {O, 1}, we may assume that

a1,... , aj E {O, 1}. Therefore we can write

k

Apflg,
i=1

for some Ap E JF',. By the properties of Hadamard product {J yf' has a multiplicity
]F'-automaton of size at most s. The multiplication with Ap admits another Li,-

automaton of size Then summing 2k of such]?-automata gives an automaton

with size at most 2s1c. 0

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 73

A multiplicity oracle MULM () for a K;-automaton M is an oracle that receives as

input a string x € EK and returns SM(x). For some concept classes, the multiplicity

oracle reduces to the membership oracle. The following result was established in

[BV94] and was further studied in [BBBKV96].

THEOREM 5.10. [BV94] For any field K;, the class of behavior mappings SM

- IC, for any IC-automaton M(, Q, E, I, F), is efficiently exactly learnable from

equivalence and multiplicity queries. The learning complexity is polynomial in

IQ 1, the size of the longest counterexample seen, and the size of the field K.

5.4.2. Transformation to Small-depth Circuits. In this section we will show

that small-width permutation branching programs are efficiently exactly learnable

from equivalence and membership queries. Our technique for proving learnability is

to use known connections between bounded-width permutation branching programs

and small-depth Boolean circuits with modular and threshold gates and to prove that

the latter classes are efficiently exactly learnable.

We introduce some notation for describing small depth Boolean circuits with mod-

ular and threshold gates. A rrtod gate over n Boolean inputs x1,... , xn is defined as

follows:

mod(xi,... ,x) = 1 if 0 (mod)
0 otherwise

A weighted threshold gate with integer weights ä = (a1, a2,... , a4 E ZTh and a thresh-

old b E Z over n Boolean inputs, denoted by TH b, is defined as follows:

11
TH b(x) =

10

if a1x1 + a2x2 + ... + ax ≥ b

otherwise

That is, THb(x) = aixi ≥ b]. Note that THkn = THjn n,k. The class of Boolean
functions computable by a threshold gate with integer weights is denoted by LT1. We

define the weight or size w(TH$b) of a threshold function TH to be Ibi + >I jail.
The representation size of a threshold function f is w(f).

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 74

The class modz is the class of modq functions, for all integers q e Z. For notational

simplicity, we will adopt the following convention. For two classes of gates or functions

A and B, we denote A-B circuits to be the class of Boolean functions computable by

a depth two Boolean circuit with a gate from A at the top and gates from B at the

bottom level. For example, a mod-modz circuit is a depth two Boolean circuit that

has a mod gate at the top and arbitrary modq gates, q E Z, at the bottom level.

Note that we allow modq gates with possibly different q's at the bottom level.

THEOREM 5.11. For any fixed prime p, the class of modp-modz circuits is efficiently

exactly learnable using equivalence and membership queries.

Proof It suffices to exhibit a multiplicity automaton for the target mod-modz circuit.

Let IC = 1,. We construct for each modq gate, q E Z, a IC-automaton that accepts

it. Next we combine these automata into a single IC-automaton by taking the union

of all the automata for the modq gates. By Fermat's Little theorem, the Hadamard

product of M with itself p - 1 times computes the target mod,,-modz circuit. 0

Next we will show that Boolean functions computable by threshold gates with

integer weights can be represented by a multiplicity automaton.

LEMMA 5.12. The class LT1 admits a representation as an 1F'-automaton, for any

prime p.

Proof Suppose that f(x) [t 1 ax b] where E ZTh and b E Z. Let A =

jail + Ia2l + ... + lani + 1. We construct the automaton M with state set Q = {qj,j:

i E [—A, A], j E [rt + 1] }. The edge set contains only the following edges (assigned a

multiplicity of 1, while other edges are assigned 0 multiplicity):

(qj,j, 0) qi,j+i), (qi,j) 1, qi+a,j+i) E E

for all i E [A] and j E [n]. Set I = {qo,o} and F = I i ≥ b}. 0

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 75

Using the above lemma we can claim (as before) that the class of Boolean functions

computable by mod or a constant Boolean combination of threshold functions is

efficiently exactly learnable.

COROLLARY 5.13. For any fixed prime p, the class mod-LTi is efficiently exactly

learnable using equivalence and membership queries.

We remark that proving the learnability of the class of Boolean functions com-

putable by i2Ti-mod circuits will prove the learnability of DNF formulas. This is

because Krause and Pudlák [KP94] (see also [J94]) have proved that any DNF formula

can be expressed as a majority of parities.

Xl X2 X3X4... Xn Xl X2 X3 X4.. Xn

FIGURE 5.5. Examples of modq-LT, and modq-modz circuits

Let 83 be the symmetric group on [3] and A4 be the alternating group on [4]. We

will exploit some known circuit characterizations of permutation branching programs

to prove the learnability of 83 and A4 permutation branching programs. The following

fact about 83 permutation branching programs was proved by Barrington in his thesis

[B86].

FACT 5.14. The class of Boolean functions computable by S3 permutation branch-

ing programs is equivalent to the class of Boolean functions computable by mod3-mod2

circuits.

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 76

THEOREM 5.15. The class of Boolean functions computable by 83 permutation

branching programs is efficiently exactly learnable using equivalence and membership

queries.

Proof Follows from Theorem 5.11. El

In [B], it is mentioned that A4-PBP is equivalent to a (mod2, mod2)-mod3 circuit,

i.e., a depth "two" circuit consisting of mod3 gates at the bottom level coming into

two mod2 gates at the second level. The outputs of the two mod2 gates are then

combined using an AND gate.

FACT 5.16. The class of Boolean functions computable by A4 permutation branch-

ing programs is equivalent to the class of Boolean functions computable byA-(mod2, mod2)-

mod3 circuits.

To prove that A4 permutation branching programs are efficiently exactly learnable

using equivalence and membership queries, we prove the following general result.

FIGURE 5.6. Barrington's circuit characterization of 8, A4-PBPs

THEOREM 5.17. Let g1,g2,... ,g,. be Boolean functions that can be computed by

a multiplicity Fr-automata of size at most .s. Then for any Boolean function f on k

inputs, f(gi, g)... ,g) is exactly learnable using equivalence and membership queries

in time s 0(1c)• Thus, learning is efficient if C 0(1).

5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 77

Proof Follows from Lemma 5.9 and Theorem 5.10. E

CHAPTER 6

Learning Boolean Functions with the A/P Oracle

In the PAC learning model, it is a known result that if P = A2 then there is an

efficient learning algorithm for the class of DNF formulas as well as for the class of

Boolean circuits. This is because in the PAC model to guarantee learnability, among

others, it suffices to be consistent, i.e., that the following problem can be solved

efficiently.

Consistency Problem for Class C

Input: A list {(ai,bi),... ,(am,bm)} SO that aj E 10, I}n and bi E

{O, 1}, for each i E [in].

Output: A representation f E C so that for all pairs (ad, b), f(a) = b.
If no such f exists then output No.

Informally, a consistent f E C is an approximation with accuracy e and confidence S

for a sample of size In 9. So, if in CI °(') then this yields a polynomial-time

PAC learning algorithm for C, assuming that the consistency problem can be solved

in polynomial-time in the input size.

Unless otherwise specified we will assume that the concept class C is polynomial-

time evaluatable, i.e., for any concept f in C and any assignment a, there is a

polynomial-time algorithm for computing f(a). Note that the above consistency

problem is solvable by a nondeterministic polynomial time Turing machine since af-

ter guessing a representation f E C, it is easy to verify that the representation is

consistent with the input list.

78

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 79

This result is not that obvious in the exact learning model because of the adversarial

nature of the counterexamples as well as the exact identification criterion, i.e., being

consistent is not always a good strategy in the exact learning model.

The main question asked in this chapter is how helpful can an JVP oracle be to

exactly learn polynomial size Boolean circuits and DNF formulas. The answer turns

out to be positive: we can learn exactly Boolean circuits and DNF formulas with the

help of an J7 oracle and equivalence queries. Moreover any Boolean function that

is exactly learnable with polynomially many membership queries (with no bounds

on the time complexity) is exactly learnable with the help of an .1\f P oracle and

membership queries in polynomial time.

The idea used to show these results is a combination of a standard majority-vote

algorithm called the Halving algorithm and a method of randomly generating combi-

natorial structures due to Jerrum, Valiant, and Vazirani [JVV86].

A consequence of the first result is that if the class of polynomial size DNF formulas

is not exactly learnable then P is not equal to JV7. The same statement holds for

polynomial size Boolean circuits. More surprising is the consequence observed by

Watanabe: if each language in .Au7' is solvable using a family of polynomial size

Boolean circuits then the polynomial-time hierarchy collapses to ZP'P'.

6.1. Uniform Generation of Polynomial-time Structures

In this section we motivate the problem of uniformly generating eleinents from

some combinatorial structure. Let R be a polynomial-time computable relation, i.e.,

suppose there is a polynomial-time algorithm that decides if xRy, for any given x and

y. There are two natural questions that have been asked in complexity theory:

• Existence: Given x, does there exist a y so that xRy?

• Counting: Given x, how many y's are there so that xRy?

A famous example of the existence-type question is the Boolean formulas satisfiability

question. Given a Boolean formula in conjunctive normal form q, does there exist a

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 80

satisfying assignment for q? The famous example for the counting-type question is

the problem of counting the number of satisfying assignments for a Boolean formula.

Jerrum, Valiant, and Vazirani [JVV86] introduced the following intermediate prob-

lem:

• Uniform generation: Given x, pick a y uniformly at random so that wRy.

An example of this is, given a Boolean formulas 4, to find a random satisfying as-

signment for q. The authors of [JVV86] came up with a beautiful method for ap-

proximately uniformly sampling combinatorial structures using a probabilistic oracle

Turing machine that has access to an AlP-oracle.

DEFINITION 6.1. (Approximately Uniform Distribution)

Let D be a probability distribution on a discrete probability space fl and S

Then D is uniform on S if, for all x E :

liiisi ifxES

10 otherwise

Also, for e e (0, 1], D is approximately uniform on S with tolerance e if, for all x E fl:

c where(1+e) 1j ≤c(1+e)*ifxES

0 otherwise

The main result from [JVV86] that we need is the following theorem, which we

have stated in an alternative form.

THEOREM 6.1. Let {C1}1 be an indexed family of sets. Suppose that there is

an algorithm that, on input f and I, determines whether or not f E Ci in time

polynomial in 111.

Then there exists a probabilistic oracle algorithm that uses an Al'? oracle and, on

input I and e, runs in time polynomial in 111, log , and outputs f according to a

distribution that is approximately uniform on C1 with tolerance e.

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 81

We remark that technical arguments must be made regarding the randomness re-

quired by the probabilistic Turing machine in Theorem 6. 1, i.e.,, assuming only the

presence of fair random coins, is sometimes not enough. Whenever necessary we will

assume an extended model for randomized algorithms as described by Sinclair in his

thesis [Si].

In one particular application of Theorem 6.1 we need to generate a random DNF

formula f on n inputs that is consistent with a set I of labeled examples, where

I C {O, 1} x {O, 1}. It is easy to see that there is a polynomial-time algorithm

that can decide if f is consistent with I; simply scan the list I and check that f

agrees with all labeled examples. This is true also for the case when f is a Boolean

circuit. So Theorem 6.1 provides a method of sampling consistent concepts (DNF or

Boolean circuits) according to a distribution that is almost uniform. We will then

show that this combined with a method due to Kannan [K93] is enough to yield an

exact learning algorithm using equivalence queries. But the key algorithmic idea will

rest on a generalization of the Halving algorithm which we discuss in the following

section.

6.2. The Halving Algorithm Revisited

The Halving algorithm [Ang88, L88] is an exact learning algorithm using equiva-

lence queries that can be applied to learn any concept class C by asking at most log IC I
equivalence queries. The idea of this algorithm is simple: it maintains at each step

the collection of concepts in C that are consistent with the counterexamples received

so far. It then asks an equivalence query that is the majority of all these remaining

concepts. Any counterexample to this equivalence query will eliminate at least half

of the consistent concepts. In the end there will be only one concept remaining and

it will be consistent with all the counterexamples.

Following Littlestone [L88] we introduce some necessary notation to describe the

Halving algorithm that will also be useful in later sections.

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 82

DEFINITION 6.2. (Consistent concepts C1)

For a concept class C over {O,1In, x e {O,1}, and b e {O,1} define C(7,b) = {f E

CIf(x) = b}. For a set of labeled examples I C {O, 1 Ix {O, 1}, define

Ci = {f E C: f(x) = b, for all (x,b) E I}.

Given a concept class C, the majority of all concepts in C, in notation MAJ(C)

is defined to be the following function.

MAJ(C)(x) =
1 if I{f G C : f(x) = 1}I ≥ ICJ/2
0 otherwise

Although the Halving algorithm is a general-purpose exact learning algorithm, it

has several undesirable features. First, it is not guaranteed to be a proper learning

algorithm, i.e., the concept class may not be closed under taking majorities. Second,

the size of its hypothesis to the equivalence query can be quite large, e.g., initially it

is the majority of all concepts in the target class.

In a very nice paper Kannan [K93] proposed a randomized version of the Halving

algorithm. His algorithm extends the Halving algorithm in two ways.

• Instead of discarding at least half of the concepts at every step, it discards

some, perhaps, smaller fraction S> 0.

• Instead of using the majority vote on all remaining concepts, it uses a majority

vote of a small random subcollection of the concepts.

Kannan proved that at each step, there is a small subcollection of the consistent

concepts whose majority vote behaves almost as well as the majority vote on all

concepts. In the following we will formally elaborate details of Kannan's algorithm

along with some extensions.

DEFINITION 6.3. (A 8-good hypothesis)

Let C be a concept class and let S E [0,]. A hypothesis h is 8-good for C if any
counterexample to an equivalence query of h eliminates at least a 8 fraction of elements

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 83

from C. Note that the majority hypothesis is 0.5-good for any concept class.

DEFINITION 6.4. Let C be a concept class, let x be an assignment from {0, 1}',

and let b E {0, 1} be a bit value. Then we define

- a - a a
- -

Thus C1 is the set of concepts in C that properly classify all examples in the labeled

example set I and is the fraction of C that classifies example x with label b.

We can define the 8-Halving algorithm to be a variant of the Halving algorithm

that repeatedly asks an equivalence query that is a 8-good hypothesis for the set

of concepts not discarded before. Starting with concept class C, after i queries the

number of concepts left is at most (1 - S)ICI. So at most

1
lnCl/ln 1 < In Cl

equivalence queries are required to isolate the target concept.

The next improvement introduced by Kannan, and further generalized in [BCKT94,

BCG+], is to use the notion of amplifiers in obtaining a 6-good hypothesis. The con-

cept of amplification was studied by Valiant and Boppana [V84a, Bop89]. Amplifica-

tion was also used in learning by Goldman, Kearns, and Schapire (see [S]).

DEFINITION 6.5. (Amplifier)

Let 0 < p' <p < q < q' ≤ 1. A (Boolean) function G(yi,... , y,,) is a (p, q) -+ (i1 q')

amplifier if:

(1) When Yi,•.. , Ym are each independently set to 1 with probability at least q,

Pr[G(yi,... ,Ym) = 1] ≥ q';

(2) When Yi,... , Ym are each independently set to 1 with probability at most p,

Pr[G(yi,... ,Ym) = 11 ≤p'.

The following lemma is an improvement on Kannan's observations on the connec-

tion between amplification and equivalence queries.

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 84

LEMMA 6.2. Let G(yi,... , Ym) be a (8, 1-8) -+ (2_2Th , 1_2_2n) amplifier. Let C be

a concept class over {O, l}n and fi,... , fm be functions selected from C independently

and uniformly at random. Then, with probability at least 1 - 2, G(f1,... , fm) is
8-good for C.

Proof Note that, if 6 ≤ 1-6 then, if x is returned as a counterexample to any

equivalence query, a 8-fraction of the elements of C are guaranteed to be eliminated.

Now, let x be any value for which <6. Then, if x is returned as a counterex-

ample to some fi for which f(x) = 1, less than a 6-fraction of the elements of C will be

eliminated; otherwise, more than a 6-fraction. For a fi E C chosen uniformly at ran-

dom, Pr[f1(x) = 1] < 8. Therefore, since G(yi,... , ym) is a (6, 1-6) —+ (2_2 , 1_2_2Th)

amplifier,

Pr[G(fi,... ,fm)() = 1] <2'.

Thus, the probability that less than a 8-fraction of the elements of C are eliminated

when x is returned as a counterexample is < 22n•

A similar argument applies for any x such that > 1 — 8.

Therefore, the probability that there exists an x E {O, 11n which, when returned

as a counterexample to the equivalence query G(fi,... , fm) eliminates less than a

6-fraction of the elements of C, for uniformly and independently chosen

is less than 2' 2 —2n = 2. E

The next lemma describes two potential amplifiers that are useful in conjunction

with the 8-Halving algorithm.

LEMMA 6.3. [K93, BCG]

(1) The majority function MAJ(yi,. . . , ys,) is a (,) (2_2, 1 - 2_2) ampli-

fier.

(2) Define A(yi,... , ym) as a (2n/log n)-ary A of (2n/log n)-ary Vs of distinct

variables. (Thus, the number of inputs to the formula is m = 10g2 n Then

Ym) is a (;'r, 1 -) - (2_2n, 1 - 2_2) amplifier.

48n

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 85

Proof We will use Chernoff bounds, Fact 2.6, to prove the above lemma.

To prove the first statement note that if each of 48n random variables are chosen

with each pi = 1/4, then the probability that the sum of the random variables exceeds

24n is F+(12n, 1) = (e/4)'2 < Similarly, if 48n random variables are chosen

each with pi = 3/4, then the probability that the sum of the random variables falls

below 24n is given by F(36n, 1/3) = <

To prove the second statement note that if p ≤ then the probability that any

particular V-gate will compute a 1 is at most (1/n2) (2n/ log n) = 2/n log n. The

probability that all of the V-gates will compute a 1 (and hence the circuit will compute

a 1) is at most (2/n log)2f/b0gTh which is at most If p ≥ 1 - the probability

that a particular V-gate will not compute a 1 is at most (1/n 2)2f1b0Th = and the

probability that some V-gate will not compute a 1. is at most (2n/ log n)2 - 4n which

is no more than 2_2m• J

2nhlogn

2nhlogn 2nhlogn 2n/Iogn

FIGURE 6.1. Examples of amplifiers

Next we state the well-known fact that the majority function on n inputs can be

computed by a Boolean circuit of size O(n log n).

FACT 6.4. The majority function MAJ(xi, x2,...

circuit of size O(n log n).

X') is computable by a Boolean

Proof The idea is to successively add the bits x1, x2,... , Xn using adders for numbers

that are 0(log n) bits long. It is known that there are addition circuits of linear size

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 86

and constant depth [W87]. Once we obtain the clog n-bit number y = x1+x2+. . .+x,,

the majority function of x1,... , x,, is the OR of the top half highest order bits of y.

0

By noting that MAJ(yi,. . . , yi) is computable by a Boolean circuit of size O(n log n),

and A(f1,... , fm) is a depth-3 A-V-A formula when fi,... , fm are DNF formulas,

we obtain the following result.

COROLLARY 6.5. The following learning tasks can be accomplished with polyno-

mially many equivalence queries:

(1) Learning DNF formulas of size s using equivalence queries that are depth-3

A-V-A formulas of size O(sn2/ log 2n).

(2) Learning Boolean circuits of size .s using equivalence queries that are Boolean

circuits of size Q(.sri + n log n).

6-Halving algorithm

let G5 be a (8, 1 - 8) -+ (2_2n, 1 - 2 —2n) amplifier.

input: concept class C.

(1) pick a small uniform sample A from C.

(2) ask equivalence query with Go(A).

(3) if the answer is yes then halt.

(4) otherwise let (x, b) be the counterexample.

(5) update C = C(,b) and go to step M.

FIGURE 6.2. The 8-Halving algorithm using amplifiers.

The computational difficulty in implementing the above learning algorithm is in

uniformly selecting the formulas from C, which is, in general, an exponentially large

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 87

set. This is the point where we called upon the uniform generation result of Jerrum,

Valiant, and Vazirani.

6.3. Exact Learning with the Equivalence and All' Oracles

In this section we show that there exists a randomized algorithm that learns Boolean

circuits and DNF formulas from equivalence queries and an A/P oracle. We cannot

apply Theorem 6.1 directly to select ft,... , f for Lemma 6.2, because the sampling

provided by Theorem 6.1 is not exactly uniform. The following lemmas imply that

approximately uniform sampling suffices.

LEMMA 6.6. Let C be a concept class over {O, 1}, and let U be an approximately

uniform generator for C with tolerance e. Let f be the random function output by

U. If x E {O, 1}' with 'f(0w,b) ≤ 6 then the probability that f(x) = b is at most 6(1 +)

for any 6≥ 0 and b 10, 11.

Proof Suppose x E {0, 1}' such that b) ≤ 6 for some S and for some b. Then if a

function f is chosen uniformly at random from C, Pr[f(x) = b] ≤ 6. Since U can at

most oversample the functions f such that f(x) = b by a factor of (1 +), if f is the

output of U, Pr[f(x) = b] is bounded by 6(1 +). El

LEMMA 6.7. Let C(yi,... , ym) be a (8, 1 - 8) -+ (2_2n, 1 - 2_2Th) amplifier. Let C

be a concept class and U an approximately uniform generator for C with tolerance

e. If fl,... ,fm are selected independently using U then, with probability at least

1 - 2, G(f1,... , fm) is 8/(1 +)-good for C.

Proof The proof is immediate from Lemma 6.6. For any x E {0, 11n that has

-/(x 0) <8/(1 +), Pr[f(x) - 0] <8. Thus the probability that G(f1,... , frn)(X) = 0
is at most A similar analysis holds when the '0' is replaced by a '1'. Thus

applying the argument used to prove Lemma 6.2 the result follows. 0

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 88

THEOREM 6.8. The following learning tasks can be accomplished with high prob-

ability by probabilistic polynomial-time algorithms that have access to an All' oracle

and that make polynomially many queries:

(1) Learning DNF formulas of size s using equivalence queries that are depth-3

A-V-A formulas of size Q(sn2/ log n).

(2) Learning Boolean circuits of size .s using equivalence queries that are Boolean

circuits of size O(sn + n log n).

Proof We use the amplifiers provided by Lemma 6.3 and apply them to the output of

the generator of Theorem 6.1, with (say) c = 1. By Lemma 6.7, an equivalence query

that is -good (for the first part) and i-good (for the second part) is generated

with probability 1 - 2. We note that the probability that every equivalence query

asked by the algorithm is good is at least 1 - n°(')/2'. So with the same probability,

the learning algorithm discovers the target concept within polynomially many steps.

0

We remark that Angluin [Ang9O] has shown that DNF formulas are not properly

exactly learnable using only equivalence queries regardless of the computational power

of the learning algorithm. Thus the use of the above hypothesis that is a depth three

formula is, in some sense, the best we can do.

6.4. Exact Learning with the Membership and Alp Oracles

In this section we consider scenarios where the learner can only use membership

queries and has an access to an All' oracle. Exact learning with only membership

queries is also known as black box interpolation in some papers. We present the

following two main results.

• If a concept class is exactly learnable with polynomially many membership

queries then it is exactly learnable with high probability in expected polyno-

mial time by an algorithm that uses membership queries and has access to an

All' oracle.

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 89

• If a concept class is exactly learnable with equivalence and membership queries

then it is exactly learnable with membership queries and access to an AlP

oracle.

The first result implies that unlimited computing time for an exact learning algorithm

using only membership queries can be replaced with an efficient relativized computing

time using an J\17) oracle and random bits. The second result allows one to trade the

equivalence oracle for an Al? oracle.

6.4.1. Trading Unlimited Time for the Al? Oracle. We will show that a

membership-query learner with unlimited computational power can be replaced with

a membership-query learner with an access to an Al? oracle and a random source.

First we will define a parametrization of concept classes that are exactly learnable

from membership queries only.

DEFINITION 6.6. Let £MQ be the set of concept classes C over {O, 1} which are

exactly learnable using at most nk membership queries (with unlimited computational

power) and such that for any given a set of labeled examples I C {O, I}n x {O, l},
there is an algorithm that, on input f and I, decides whether or not f E C and this

decision algorithm runs in time polynomial in 111.

Note that we impose the same conditions on £MQ as we did with concept classes

that are samplable with the uniform generation algorithm of Jerrum, Valiant, and

Vazirani. An easy fact about the class £MQ is that it is closed under taking subsets.

FACT 6.9. If C E LMQk then for any C' c C we have C' E £MQ.

DEFINITION 6.7. An assignment or point a E {O, 1}" is k-good for C E £MQ if

The second fact we need is that there is always a k-good point for any C E £MQ.

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 90

FACT 6.10. Let C € £MQ. Then for any C' C C with IC'I ≥ 2 thereis a E {0, 1}'

which is k-good for C'.

Proof Assume there is C' C C so that for all a E {0, 11n a is not k-good for

C', i.e. y0' < n_k(ICFI - 1)/C'I. We will show that C' £MQ which (by the

fact above) will imply C £MQ. Let A be an arbitrary learning algorithm for

C' which uses at most n1 membership queries. Consider the following adversarial

strategy for answering queries by A: given the query MQ(a), answer b E {0, 1}

so that < n k(C - 1)/IC'. This strategy allows A to eliminate less than

a m(jC' - 1)/IC' fraction of C' each time. After nk steps A can eliminate less

than IC'I - 1 elements of C' implying there are at least two concepts remaining

uneliminated. Since A is arbitrarily chosen, C')CMQk as required. 0

As a corollary to the second fact we get that any subset C' C C, with IC'I ≥ 2, has

an assignment a E {0, 1}n which satisfies

'f

The following is the main theorem in this section, which states that there is a ran-

domized expected polynomial time exact learning algorithm for any concept class

C £MQ.

THEOREM 6.11. There is a probabilistic expected polynomial time algorithm with

access to an AID oracle that learns any C E CMQk using at most n21 membership

queries.

Proof Let C E £MQ. Set N = m', a 1/16N and m N2.

We say a membership point a is a c-splitter for C if 'y° ≥ e. Recall that the r-th

threshold function on n variables THn is defined as

1 if. 1x≥r

0 otherwise

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 91

Let U be an approximately uniform distribution on C with tolerance 6 = 1. By a

similar argument as in Lemma 6.6, we claim that U can undersample by a factor of

at most (1 + E) 2, i.e., if Y(,b) ≥ S then Pru[f(x) = b] ≥ 8(1 +)_2 . We sample

independently m functions from C according to U, say F = {f}1 Eu Ctm.

Define T1 = TH m (F) and T2 = TH_a)m (F). We prove that with high probability

the event T1 # T2 occurs. Since C has a k-good a E {0, 1}', i.e. -rZ ≥ (2N)-', the

event T1 T2 implies Ti(a) = T2(a). By Chernoff bounds, Fact 2.6, we get

Pr[Tj(a) = T2(a)] = Pr[Ti(a) = 0] + Pr[T2(a) = 1]

< 2F(m/8N, 1/2)

≤

Thus with probability 1 - e(") we have T1 # 2'2. Next we show that conditioning

on T1 # T2, the event that for all a E T1iT2, 7F ≥ (32N)', occurs with high

probability. Calling the latter event A, by the union bound and Chernoff bounds

again, we have

Pr[4 ITiT2] ≤ E Pr [Ti(a) 0 T2(a), 'y < (32N)1 I T1 # T2]
aET11T2

≤ 2F(m/32N, 1) ≤ 2The(Ir).

The probability that we failed (at some step) to locate a (32N)'-splitter is at most

Pr[Ti 2'2] + Pr[7 I T1 # T2] ≤ e(')

We use the Alp oracle, for the second time, to find a (32N) 1-splitter a E {0, 1},

which allows progress to be made in learning. We run the above for N2 times. The

probability that at every step we succeed in locating a (32N)'-splitter (for different

invocations of C) is at least 1—N2e' ≥ i—e('). Thus with probability i —e()

we will finish (i.e. reduce C to one element) within N2 = n 2k steps. U

6.4.2. Trading the Equivalence Oracle for the Al? Oracle. We will show

a result that allows us to replace or trade an equivalence query oracle with an Al?

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 92

oracle. But for this we need to describe a method called the Monotone theory due to

Bshouty [1393].

DEFINITION 6.8. (Monotone of a Boolean function)

Let f be a Boolean function over {O, i}n. The monotone of f, denoted M(f), is

defined as M(f)(x) = V< f(y). It can be shown that M(f) is the unique smallest

monotone function that contains f.

000

FIGURE 6.3. Monotone of x±2±3 V ±jx2

For the next definition we will assume some familiarity with terminology from order

theory.

DEFINITION 6.9. (The partial order ≤a)

Let {O, 1} be the Boolean n-cube. For an assignment a E {O, I)n the partial ordering

on {O, I}n is defined as follows: for all x, y E {O, 1}

X a Y < >(x$a)(yff3a).

The a-monotone Ma(f) of f is defined as Ma(f)(X) = M(f(x a))(x a). A

main characterization theorem of the monotone theory is that any Boolean function

f is expressible as a conjunction of its monotone components Ma(f), for all a's.

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 93

FACT 6.12. [B93] For any Boolean function f: {0, 1}' - {0, 1} we have

Ax) = A Ma(f)().
aE{O,1}

This leads naturally to a definition of the monotone dimension of a concept class.

DEFINITION 6.10. (Monotone dimension)

The monotone dimension Mdim(f) of f is the size of the smallest subset A c {o, 1}
so that f(x) = AaEA Ma(f)(). The monotone dimension of a concept class C,

denoted by Mdim(C), is the size of the smallest subset A C {0, 1}Th so that for all

f E C

f = A Ma(f)().
aEA

Duality is a very powerful tool in order theory. Using duality we can define dual

notions for the above definitions.

DEFINITION 6.11. Let f be a Boolean function over {0, 1}". The dual monotone

of f, denoted M 8(f), is defined as M 8(f)(x) = A> f(y). It can be shown that

Ma(f) is the unique largest monotone function that is contained in f.

It is true that for any Boolean function f: {0, 1} —+ {0, 1} we have

f = V M a, (f)(x).
aE{O,1}n

The dual monotone dimension M 0dim(f) of f is the size of the smallest subset

A c {0, 1} so that f(x) = VaA M(f)(x). The dual monotone dimension of a

concept class C, denoted by M&dim (C), is the size of the smallest subset AC {0, 1}

so that for all f E C

1(x) = V M(f)(x).
aEA

The main algorithmic result in [1393] is stated in the following.

FACT 6.13. Let C be any concept class and let f E C be a target concept from C.

Then there is an exact learning algorithm that runs in time polynomial in sizeDNF(f)

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 94

and Mdim(C) and uses

S .sizeDNF(f)Mdim(C)

equivalence queries and S n2 membership queries. Moreover any hypothesis h issued

by this algorithm satisfies h ≤ f.

There is also a dual algorithm that runs in time polynomial in size CNF(f) and

Mdim(C) and uses

size CNF(f)M5dim(C)

equivalence queries and g5 -n 2 membership queries. Moreover any hypothesis h issued

by this dual algorithm satisfies f ≤ h.

The following lemma describes a technique to combine two exact learning algo-

rithms that use equivalence and membership queries into one exact learning algorithm

that uses only membership queries with an access to an Al? oracle. This technique

eliminates the need for the equivalence oracle at the expense of introducing the Al?'

oracle.

LEMMA 6.14. Let C be a concept class over {O, l}n. Let L1 and L2 be two exact

learning algorithms which use equivalence and membership queries to learn C. Sup-

pose that any hypotheses h1 and h2 issued by both are known to satisfy h1 h2

(except on the last step). Then there is an algorithm that uses membership queries

and the Al? oracle to learn C.

Proof The idea is to run L1 and £2 in parallel until the first equivalence query is

issued by each, say h1 and h2, respectively. Since we know h1 h2, we can use the

IV? oracle to find an assignment c E {O, 1} such that hi(c) h2(c). This can be

done as follows. We can find out the first bit of c by asking which of the following is

true:

h110 $ h21.0, hil1.i

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 95

The bit that keeps the non-equivalence is the first bit of c. So after n such questions,

i.e., ii AlP queries, we will discover c completely. This technique is also known as

self-reduction in complexity theory. A membership query at c will establish which

algorithm may continue its execution (we suspend the other). We then repeat the

process again until the continued algorithm issues its next equivalence query. By

assumption, the suspended equivalence query and the new one are still not equal.

Again we use the AlP oracle to find a counterexample for one of them, and so on. In

this way we never ask any equivalence queries but we incur the expense of spending

n Alp queries and one membership query every time we need to ask an equivalence

query. 0

We observe that if we run both algorithms from Fact 6.13 in the manner as described

in the previous lemma, then the hypotheses issued by both algorithms will never be

equal except when they are equal to the target function. Hence we can conclude the

following.

THEOREM 6.15. Let C be a concept class over {O, 11n and let f E C be a target

concept from C. Then there is an algorithm that learns C using at most

n(n + 1)(sizejjpi(f)Mdim(C) + size CNF(f)Madim(C))

membership queries and

n(sizeDNF(f)Mdim(C) + sizeCNF(f)M'9dim(C))

AlP queries.

Proof The factor of (n + 1) in the number of calls to the AlP oracle is to account for

one call to check if the two hypotheses are equal and n calls to find a counterexample

if they are not equal. 0

COROLLARY 6.16. The following classes are exactly learnable with membership

queries and an Alp oracle in time polynomial in n and in the maximum of the DNF

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 96

and CNF sizes of the target concept.

(1) Monotone Boolean functions.

(2) O(log n)-CNFfl O(log n)-DNF.

Proof We use the fact that the class C of monotone Boolean functions satisfies

Mdim(C) = Madim(C) = 1, which proves the first claim. For the second claim,

we have the fact that the class O(log n)-CNF is known to have polynomial (in n)

monotone dimension while the class O(log n)-DNF is known to have polynomial (in

n) dual monotone dimension [B93]. LII

In the next lemma we provide a lower bound on the number of membership queries

required to learn Boolean concept classes. We show that a certain class of mono-

tone read-twice DNF formulas, i.e., where each variable can appear at most twice,

is not polynomial-time exactly learnable from only membership queries. The latter

class is known to be exactly learnable from equivalence and membership queries (see

Aizenstein and Pitt [AP91], Hancock [H91], and Pillaipakkamnatt and Raghavan

[PR95]). This is also in contrast to the fact that the class of monotone read-once

Boolean formulas is exactly learnable in polynomial-time from membership queries

alone [AHK93].

LEMMA 6.17. Let f be a Boolean function over {O, 1}". Any learning algorithm

that exactly identifies f using only membership queries requires at least

(max{sizeDNF(f), size CNF(f)})

membership queries.

Proof We use an adversarial argument on the following class of monotone read-twice

DNF formulas
k

C_— {flf=VTvT}.

For each i, 1 ≤ i ≤ k, let T be the conjunction of all variables in the ith block

where each block contains n/k variables. Let V denote this ith block of variables,

6. LEARNING BOOLEAN FUNCTIONS WITH THE NP ORACLE 97

i.e., V, = {x(._1)(/k)+1,... , x(,/)}. The last term T consists of all variables except

that it is missing exactly one variable from each T. So ICI = (n/k)'.

For the lower bound argument we give away to the learner the information about

all the terms T, 1 ≤ i ≤ lc, but not any information about the term T, i.e., where the

missing variables are. Suppose the learner asks a membership query with a E {O, l}Th.

Note that a cannot be all one in any T since then f is satisfied and the learner

knows this already. If a contains more than one zero in some V then the adversary

says 0 if and only if a falsifies all T, 1 < i < k, and 1 otherwise. This conveys

no information about T since a falsifies T. Hence the learner must ask membership

queries where there is precisely one zero in each V. There are (n/k)lc such questions

and the adversary may answer 0 except for the last one.

Recall that an assignment ,8 E {0, l}Th is called a maxterm of a Boolean function

f if f(t3) = 0 and /3 contains a minimal number of zeroes, i.e., there is no a < /3

that satisfies f(a) = 0. It is also known that the CNF size of a monotone Boolean

function is characterized by the number of maxterms. We note that the maxterms of

any f E C are exactly those assignments a E {0, l}n which have precisely one zero in

each V2. Hence .szzeCNF(f) = (n/1c)'' and .sizeDNF(f) = k + 1, which completes the

claim. EJ

CHAPTER 7

Conclusions and Open Problems

Beware of bugs in the above code; I have only proved it correct, not tried it.

- Donald Knuth

7.1. Summary

In this thesis we have considered the following main question in computational

learning theory:

Are Boolean functions represented as Disjunctive Normal Form formu-

las or as Boolean circuits efficiently learnable?

The original question of Valiant is whether DNF formulas are PAC learnable under

any distribution [V84bJ. This question is still open to this date. The closest answer

to this question was given by Jackson [J94]. Jackson proved that DNF formulas are

efficiently PAC learnable if the underlying distribution is the uniform distribution

and if the learning algorithm is given access to a membership oracle.

• In the first part of the thesis we have shown that monotone DNF formulas are

PAC learnable under product distributions in subexponential time. Thus the

price that we pay for allowing a more general distribution and for not allowing

the learning algorithm to ask membership questions is efficiency.

• In the second part of this thesis we show that Jackson's result can be ex-

tended to a representation class that includes DNF formulas as a strict sub-

class. More specifically we prove that the representation class of monotone

98

7. CONCLUSIONS AND OPEN PROBLEMS 99

width two branching programs is efficiently PAC learnable under the uniform

distribution with membership queries.

• In the third part of this thesis we prove that DNF formulas are exactly learnable

using only equivalence queries assuming the learning algorithm has access to

an AlP oracle. This implies that if P = AlP then DNF formulas are exactly

learnable using only equivalence queries and if DNF formulas are not exactly

learnable using equivalence queries then P JV'P.

Recently, Bshouty [1396] proved that DNF formulas are exactly learnable from equiv-

alence queries in subexponential time, i.e., 20(\/), without the AlP oracle.

In his original paper, Valiant [V84b] also mentioned that the existence of a cryp-

tographic object called pseudorandom functions implies that the class of polynomial-

sized Boolean circuits is not efficiently PAC learnable under any distribution. Since

then Valiant's observation has been improved to show that the class of polynomial-

sized Boolean circuits with logarithmic depth, or NC', is not FAG learnable under

any distribution even if we allow the learning algorithm access to a membership oracle

[AK95].

• In the first part of the thesis we prove that any monotone Boolean circuit

(without any size and depth constraints) is FAG learnable under product dis-

tributions in subexponential time. This is similar to the result of Linial, Man-

sour, and Nisan [LMN93] that gave an 011(b0gn) time PAC learning algorithm

for AC' functions.

• In the second part of the thesis we study the learnability of classes that are

below NC' or width five branching programs. Using some characterization

results developed by Barrington, we investigate the problem of learning per-

mutation branching programs with widths strictly less than five.

• In the third part of the thesis we prove that the class of Boolean circuits is ex-

actly learnable using only equivalence queries assuming the learning algorithm

7. CONCLUSIONS AND OPEN PROBLEMS 100

has access to an AlP oracle. This again showed that if the class of Boolean

circuits is not exactly learnable using only equivalence queries then P =A J'/P.

From the perspective of complexity theory, we have developed a new Fourier spec-

trum characterization of monotone Boolean functions by proving that their average

sensitivity is at most we have established a connection between exact learning

and the difficult question P Al?, and have provided some new applications of

branching program characterizations to learning theory.

7.2. Minor Extensions

We mention in this section some extensions to results in this thesis.

Noise tolerance and Group learning. It is known that the LMN algorithm fall in

the category of a statistical query algorithm (see Kearns [K93]). Hence any learning

result that we obtain using this algorithm will be noise tolerant in Kearns's statistical

query model. Kearns [K] also introduced the notion of group learning and proved

that it is equivalent to the notion of weak learning. Informally, in group learning we

require that the learning algorithm to find a hypothesis that is accurate in classifying a

polynomial-sized group of examples that are either all positive or all negative, instead

of being accurate on only one example. Using results from Chapter 4 we can claim

that the class of all monotone Boolean functions is group learnable under product

distributions in polynomial-time.

Locally monotone and Total orders. Some of the results in Chapters 3 and 4 can

be extended to unate (or locally monotone) Boolean functions. A Boolean function f

is unate if there is an assignment a E {0, l}n so that f(x a) is a monotone function.

Notice that a monotone Boolean function is a unate Boolean function with a = O.

Some of the results in Chapter 4 can also be extended to non-Boolean monotone

functions over a total order. A monotone Boolean function is a monotone function

over the total order 0 < 1.

7. CONCLUSIONS AND OPEN PROBLEMS 101

Nested differences. The algorithm that we use to learn width two branching pro-

grams with 0(1) sinks is the algorithm for learning nested differences of intersection-

closed concept classes. Recently, Auer [A95] has shown that this algorithm can be

made robust against malicious noise. In this noise model, the counterexample pro-

vided by the equivalence oracle is not always correct, i.e., this oracle may lie once in

a while. Usually learning is parametrized by the number of lies that the equivalence

oracle can make. We believe that the results from Chapter 5 can be made to work in

the malicious noise model.

7.3. Open Questions

In the following we describe some natural open questions raised by this thesis.

Fourier spectrum vs. Circuit complexity. Can we prove a Fourier spectrum result

on monotone Boolean functions that takes into account circuit complexity? Linial,

Mansour and Nisan [LMN93] proved a remarkable connection between the Fourier

spectrum and circuit complexity of AC' functions. They proved that any Boolean

function f from ACd° of size rn must satisfy

I J(a) <2mexp(.1ch/d/20).
IaI≥k

It is not clear how to prove a similar result for monotone Boolean functions.

Learning monotone Boolean functions. In view of Jackson's DNF learning result

[J94], are monotone DNF formulas PAC learnable under the uniform distribution

without membership queries? The key reason for membership queries in Jackson's

result is that we don't know where the relevant Fourier coefficients are and thus

the need to invoke Kushilevitz and Mansour's KM algorithm. If the DNF formula is

monotone then we know a bit more about the location of the relevant coefficients with

respect to the uniform distribution, i.e., they are at the unit vectors. Unfortunately,

we don't know what happens to them once the boosting stages take place.

7. CONCLUSIONS AND OPEN PROBLEMS 102

Learning bounded width branching programs. The results of [BTW96] showed

that the class of strict width two branching programs is properly learnable in the

distribution-free PAC model. We do not know, at the time of writing, if this can be

extended to the exact identification model. Recently, Nakamura [N96] has solved this

open question and proved that Si/V2 is efficiently properly exactly learnable. The

results from Chapter 5 showed that the class of width two branching programs with

0(1) sinks is learnable in the exact identification model but not properly. We do not

know if this can be extended to proper learning.

Collapse consequences. Are Boolean circuits exactly learnable in deterministic

polynomial-time with the aid of an AlP oracle? Note that an affirmative answer to

this question would yield a collapse of the polynomial-time hierarchy to Prn'. Köbler

and Watanabe [KW95] have recently extended Watanabe's result on the collapse

consequences of All' C P/poly.

Monotone duality. It was shown in Chapter 6 that monotone Boolean functions

are exactly learnable using only membership queries provided that the learning al-

gorithm has access to an All' oracle. The learning complexity depended on the sum

of the DNF and CNF sizes of the target Boolean function. Can we obtain the same

result without using the Jf2 oracle? Recently, Fredman and Khachiyan [FK94] have

proved that a related problem, called monotone duality, can be solved in slightly

superpolynomial time. The problem of monotone duality requires an algorithm to

decide if two monotone Boolean functions, one given in DNF and the other given

in CNF, are equivalent. Their result directly implies an algorithm running in time

0(b0gm) for the problem of learning monotone Boolean functions from membership

queries. Whether this result can be improved to mO(1) is still open.

Bibliography

[Ang88] Dana Angluin. Queries and Concept Learning. Machine Learning, 2:319-342,

1988.

[Ang90] Dana Angluin. Negative Results for Equivalence Queries. Machine Learning,

5:121-150,1990.

[Ang92] Dana Angluin. Computational Learning Theory: Survey and Selected Bibliog-

raphy. In Proceedings of the 24th Annual ACM Symposium on Theory of Com-

puting, 351-369, 1992.

[A95] Peter Auer. Learning Nested Differences in the Presence of Malicious Noise. In

Proceedings of the 6th International Workshop on Algorithmic Learning Theory,

Lecture Notes in Artificial Intelligence No. 997, Springer, 123-137, 1995.

[AHK93] Dana Angluin, Lisa Hellerstein, and Marek Karpinski. Learning Read-Once For-

mulas with Queries. In Journal of ACM, 40(l):185-210,1993.

[AK95] Dana Angluin and Michael Kharitonov. When Won't Membership Queries Help?

In Journal of Computer and System Sciences, 50:336-355, 1995.

[AM91] William Aiello and Milena Mihail. Learning the Fourier spectrum of Probabilistic

Lists and Trees. In Proceedings of the 2nd Annual ACM-SIAM Symposium on

Discrete Algorithms, 291-299, 1991.

[AP91] Howard Aizenstein and Leonard Pitt. Exact Learning of Read-Twice DNF For-

mulas. In Proceedings of the 32nd Annual Symposium on Foundations of Com-

puter Science, 170-179, 1991.

[A592] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley and Sons,

1992.

103

BIBLIOGRAPHY 104

[B86] David A. Barrington. Bounded-Width Branching Programs. PhD thesis, Mas-

sachusetts Institute of Technology, 1986.

[Bar89] David A. Barrington. Bounded-Width Polynomial-Size Branching Programs

Recognize Exactly Those Languages in NC'. In Journal of Computer and Sys-

tem Sciences, 38:150-164, 1989.

[B] David A. Mix Barrington. Personal communication, 1996.

[B96] Nader H. Bshouty. Towards the Learnability of DNF Formulae. In Proceedings

of the 28th Annual ACM Symposium on Theory of Computing, 131-140, 1996.

[Bop89] Ravi Boppana. Amplification of Probabilistic Boolean Formulas. In Advances in

Computing Research, Silvio Micali (ed.), 5(4):27-45, 1989.

[B194] Avrim Blum. Separating Distribution-Free and Mistake-Bound Learning Models

over the Boolean Domain. In SIAM Journal on Computing, 23(5):990-1000,

1994.

[B192] Avrim Blum. Rank-r Decision Trees are a Subclass of r-Decision Lists. In In-

formation Processing Letters, 42:183-185, 1992.

[B93] Nader H. Bshouty. Exact Learning via the Monotone Theory. In Proceedings of

the 34th IEEE Symposium on the Foundations of Computer Science, 302-311,

1993.

[B95] Nader H. Bshouty. Simple Learning Algorithms using Divide and Conquer. In

Proceedings of the 8th Annual ACM Workshop on Computational Learning The-

ory, 447-453, 1995.

[BBBKV96] Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, Ste-

fano Varricchio. On the Applications of Multiplicity Automata in Learning. To

appear in Proceedings of the 87th IEEE Symposium on the Foundations of Com-

puter Science, 1996.

[BBTV96] Francesco Bergadano, Nader H. Bshouty, Christino Tamon, and Stefano Varric-

chio. On Learning Branching Programs and Small Depth Circuits. In Electronic

Colloquium on Computational Complexity, TR96-09, 1996.

[BCG+] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and

Christino Tamon. Oracles and Queries that are Sufficient for Exact Learning. In

BIBLIOGRAPHY 105

a special issue for COLT94 Journal of Computer System and Sciences, 52(3):421-

433, 1996.

[BCKT94] Nader H. Bshouty, Richard Cleve, Sampath Kannan, and Christino Tamon.

Oracles and Queries that are Sufficient for Exact Learning. In Proceedings of the

7th Annual ACM Workshop on Computational Learning Theory, 130-139, 1994.

[BCV96] Francesco Bergadano, D. Catalano, and Stefano Varricchio. Learning Sat-k-DNF

Formulas from Membership Queries. In Proceedings of the 28th Annual ACM

Symposium on Theory of Computing, 126-130, 1996.

[BDFP86] Allan Borodin, Danny Dolev, Faith Fich, and Wolfgang Paul. Bounds for Width

Two Branching Programs. In SIAM Journal on Computing, 15(2):549-560,1986.

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred Warmuth.

Learnability and the Vapnik-Chernovenkis Dimension. In Journal of the Asso-

ciation for Computing Machinery, 36(4):929-965, 1989.

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour,

and Steven Rudich. Weakly Learning DNF and Characterizing Statistical Query

Learning using Fourier Analysis. In Proceedings of the 26th Annual ACM Sym-

posium on Theory of Computing, 253-262, 1994.

[BT95] Nader H. Bshouty and Christino Tamon. On the Fourier Spectrum of Monotone

Functions. In Proceedings of the 27th Annual ACM Symposium on Theory of

Computing, 219-228, 1995. Final version to appear in Journal of the ACM,

43:4, July 1996.

[BTW96] Nader H. Bshouty, Christino Tamon, and David K. Wilson. On Learning Width

Two Branching Programs. In Proceedings of the 9th Annual ACM Conference

on Computational Learning Theory, 224-227, 1996.

[BV94] Francesco Bergadano and Stefano Varricchio. Learning Behaviors of Automata

from Multiplicity and Equivalence Queries. In Proceedings of the 2nd Italian

Conference on Algorithms and Complexity (Cl' AC 9), Lecture Notes in Com-

puter Science No. 778, Springer-Verlag, 1994.

[CG88] Benny Chor and Mihaly Geréb-Graus. On the Influence of Single Participant in

Coin Flipping Schemes. In SIAM Journal on Discrete Mathematics, 1, 1988.

BIBLIOGRAPHY 106

[E1189] Andrzej Ehrenfeucht and David Haussler. Learning Decision Trees from Random

Examples. In Information and Computation, 82(3):231-246, 1989.

[EHKV88] Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant. A

General Lower Bound on the Number of Examples Needed for Learning. In

Proceedings of the 1st Workshop on Computational Learning Theory, 139-154,

1988.

[ERR95] Funda Ergun, S. Ravi Kumar, and Ronitt Rubinfeld. On Learning Bounded-

Width Branching Programs. In Proceedings of the 8th Annual ACM Conference

on Computational Learning Theory, 361-368, 1995.

[F90] Yoav Freund. Boosting a Weak Learning Algorithm by Majority. In Proceedings

of the 3rd Annual Workshop on Computational Learning Theory, 202-216, 1990.

{FJS91] Merrick Furst, Jeffrey Jackson, and Sean Smith. Improved Learning of AC°

Functions. In Proceedings of the 4th Annual Workshop on Computational Learn-

ing Theory, 317-325, 1991.

[FK94] Michael Fredman and Leonid Khachiyan. On the Complexity of Dualization of

Monotone Disjunctive Normal Forms. Technical Report LSCR-TR-225, Depart-

ment of Computer Science, Rutgers University, 1994.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of JV'P-completeness. W.H. Freeman, 1979.

[1191] Thomas Hancock. Learning 2,aDNF Formulas and kt Decision Trees. In Proceed-

ings of the 4th Annual Workshop on Computational Learning Theory, 199-209,

1991.

[HM91] Thomas Hancock and Yishay Mansour. Learning Monotone k-DNF Formu-

las on Product, Distributions. In Proceedings of the 4th Annual Workshop on

Computational Learning Theory, 179-183, 1991.

[HSW9O] David Heimbold, Robert Sloan, and Manfred Warmuth. Learning Nested Differ-

ences of Intersection-Closed Concept Classes. In Machine Learning, 5:165-196,

1990.

BIBLIOGRAPHY 107

[J] David S. Johnson. A Catalog of Complexity Classes. In Handbook of Theoretical

Computer Science, Volume A: Algorithms and Complexity, J. van Leeuwen (ed.),

pages 67-161, MIT Press/Elsevier, 1990.

[J94] Jeffrey Jackson. An Efficient Membership-Query Algorithm for Learning DNF

with Respect to the Uniform Distribution. In Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, 42-53, 1994.

[JVV86] Mark Jerrum, Leslie Valiant, and Vijay Vazirani. Random Generation of Com-

binatorial Structures from a Uniform Distribution. In Theoretical Computer Sci-

ence, 43:169-188, 1986.

[K93] Sampath Kannan. On the Query Complexity of Learning. In Proceedings of the

6th Annual ACM Conference on Computational Learning Theory, 58-66, 1993.

[KL8O] Richard M. Karp and Richard J. Lipton. Some Connections Between Nonuni-

form and Uniform Complexity Classes. In Proceedings of the 12th Annual ACM

Symposium on Theory of Computing, 302-309, 1980.

[KLPV87] Michael Kearns, Ming Li, Leonard Pitt, and Leslie Valiant. On the Learnability

of Boolean Formulae. In Proceedings of the 19th Annual ACM Symposium on

Theory of Computing, 1987.

[KM93] Eyal Kushilevitz and Yishay Mansour. Learning Decision Trees using the Fourier

Spectrum. In SIAM Journal on Computing, 22(6):1331-1348, 1993.

[K] Michael Kearns. The Computational Complexity of Machine Learning. MIT

Press, 1990.

[K93] Michael Kearns. Efficient Noise Tolerant Learning from Statistical Queries. In

Proceedings of the 25th Annual ACM Symposium on the Theory of Computing,

392-401,1993.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The Influence of Variables on Boolean

Functions. In Proceedings of the 29th Annual Symposium on Foundations of

Computer Science, 68-80, 1988.

[KP94] Matthias Krause and Pavel Pudlák. On the Computational Power of Depth 2

Circuits with Threshold and Modulo gates. In Proceedings of the 26th Annual

ACM Symposium on the Theory of Computing, 48-57, 1994.

BIBLIOGRAPHY 108

[KV89] Michael Kearns and Leslie Valiant. Cryptographic Limitations on Learning

Boolean Formulae and Finite Automata. In Proceedings of the 21st Annual ACM

Symposium on Theory of Computing, 433-444, 1989.

[KW95] Johannes Köbler and Osamu Watanabe. New Collapse Consequences of AlP

Having Small Circuits. In Proceedings of 22nd International Colloquium on Au-

tomata, Languages and Programming, Lecture Notes in Computer Science, No.

944, Springer-Verlag, 196-207,1995.

[L88] Nick Littlestone. Learning Quickly When Irrelevant Attributes Abound: A New

Linear-Threshold Algorithm. Machine Learning, 2:285-318, 1988.

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant Depth Circuit,

Fourier Transform and Learnability. Journal of ACM, 40(3):607-620,1993.

[M94] Yishay Mansour. Learning Boolean Functions via the Fourier Transform. Tuto-

rial Notes for the Workshop on Computational Learning Theory, 1994.

[N96] Atsuyoshi Nakamura. Query Learning of Bounded-Width OBDDs. To appear in

Algorithmic Learning Theory (ALT), 1996.

[P94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[PR95] Khrisnan Pillaipakkamnatt and Vijay Raghavan. Read-Twice DNF Formulas are

Properly Learnable. In Information and Computation, 122(2):236-267,1995.

[PV88] Leonard Pitt and Leslie Valiant. Computational Limitations on Learning from

Examples. In Journal of the ACM, 35(4):965-984,1988.

[R90] Prabhakar Raghavan. Lecture Notes on Randomized Algorithms. Research Re-

port, IBM Research Division, RC15340 (#68237), 1/9/90.

[R87] Ronald Rivest. Learning Decision Lists. In Machine Learning, 2:229-246, 1987.

[R92] Steven Roman. Coding and Information Theory. Springer- Verlag, 1992.

[Si] Alistair Sinclair. Algorithms for Random Generation and Counting. Birkhäuser,

1993.

[5] Robert E. Schapire. The Design and Analysis of Efficient Learning Algorithms.

MIT Press, 1992.

BIBLIOGRAPHY 109

[SM94] Yoshifumi Sakai and Akira Maruoka. Learning Monotone Log-Term DNF For-

mulas. In Proceedings of the 7th Annual ACM Conference on Computational

Learning Theory, 165-172, 1994.

[T95] Christino Tamon. A Short Proof of a Fourier Theorem. Research Report No.

95/576/28, Dept. Computer Science, Univ. Calgary, November 1995.

[V84a] Leslie Valiant. Short Monotone Formulae for the Majority Function. In Journal

of Algorithms, 5:363-366, 1984.

[V84b] Leslie Valiant. A Theory of the Learnable. In Communications of the ACM,

27(11):1134-1142, 1984.

[W87] Ingo Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.

Closing Credits

The purpose of this epilogue is to explain my personal involvement in the research that is

presented in this thesis. My thanks to Professor Bruce MacDonald for pointing out the

ambiguity surrounding this issue.

The research presented in Chapter 3 started when Jeff Jackson explained to me a proof

outline for the expression I(f) = >i3.a1 j(a)2. I noticed that this proof could be extended

to product distributions. This extension was originally used to provide an alternative proof

of Theorem 3.10 (not presented in the thesis)'.

In an attempt to improve some results in [iCV89], I proposed the use of Cauchy-Schwarz

inequality to simplify some expressions that I was struggling with. This led to the proof of

Theorem 3.12 which I developed together with Nader. Shortly after, Yishay Mansour and

Eyal Kushilevitz suggested another formulation of Theorem 3.12 using average sensitivity.

This led to the fact that the average sensitivity of any monotone Boolean function is at

most \/. At the same time Dan Boneh suggested to us stating things in terms of influence

norm.

I came across a well-known identity in Fourier analysis, called the cross correlation iden-

tity, that could be used to derive most other identities, such as Parseval, auto-correlation,

and convolution. In fact by brute force I used it in the proof of Theorem 3.10 (a folklore the-

orem of Kahn, Kalai, and LiniaJ); in the uniform distribution case, this provides a simpler

and more direct proof.

In Chapter 4, following standard lines from Linial, Mansour, and Nisan's paper [LMN93],

we traced the details to for the PAC learning of monotone Boolean functions under arbitrary

product distributions. We did the analysis presented in Section 4.3 after a watchful comment

110

CLOSING CREDITS 111

from a JACM referee. I made a premature conjecture that the Fourier spectrum bound of

for monotone Boolean function might be tight. I tried looking at the case when Cauchy-

Schwarz attains equality, but this did not help and the conjecture remained unsolved. This

led to the statement on the majority function. We then looked at other lower bounds. With

Jeff Jackson's help, I noticed an application of Kahn et al's lower bound result on influences

for improving Kearns and Valiant's weak learning result for all monotone Boolean functions.

It also provided an alternative proof to the one presented in [KV89].

My research involvement in studying the learnability of branching programs started with

a project on learning strict width two branching programs done in collaboration with Nader

and David Wilson. I noticed that, in the width two case, the number of sinks had something

to do with the rank of certain decision trees. I thought of applying Bluni's famous argument

for transforming the decision tree into a decision list. Together with my coauthors, we found

the right argument that constitutes the proof for learning constant sink width two branching

programs. I supplied some of the technical details that constitute the proof of Lemma 5.4

(that is an extension of Jeff Jackson's observation [J94]).

I thought about looking at branching programs of widths bigger than two, i.e., three and

four, but realized that, since it will be as hard as solving the learnability of DNF formulas,

perhaps only permutation branching programs could give something. I got in email contact

with David Mix Barrington where he mentioned and explained to me some alternative forms

of width three and four permutation branching programs. Nader then put me in touch with

the recent results using multiplicity automata based on the work of my other coauthors,

Francesco Bergadano and Stefano Varricchio. Using the alternate forms of widths three and

four permutation branching programs, together we solved the details of their learnability.

My involvement in research on learning with the AlP oracle started when Nader sug-

gested on looking at learning Boolean functions with the membership and the NP oracle.

I noted the application of self-reducibility arguments for our purpose, e.g., Lemma 6.14, in

reducing search to decision. At that time, we were working on an extension to the Monotone

Theory (based on lattice theory) that subsequently appeared elsewhere. I proposed some

simplifications to the probabilistic analysis used in Theorem 6.11. I also contributed to the

technical expositions on learning with the equivalence and AlP oracle.

