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Abstract 

This thesis presents some theoretical investigations on the learnability of Boolean 

functions using techniques from computational complexity theory. Some of the main 

findings are as follows. 

• Monotone Boolean functions are learnable in the probably approximately cor-

rect (PAC) model in subexponential time under product distributions. 

• Boolean functions computable by some classes of branching programs of width 

less than five are efficiently learnable in the exact identification model using 

equivalence and membership queries. 

• Boolean functions computable by polynomial size circuits and by polynomial 

size formulas in normal forms are efficiently learnable in the exact identification 

model using equivalence queries by a probabilistic oracle Turing machine that 

has access to an All' oracle. 

The first result is obtained through a new analysis of the harmonic spectra of mono-

tone Boolean functions. The second result is in contrast to the cryptographically 

impossible task of learning width five branching programs and is obtained through a 

combination of techniques from harmonic analysis and automata theory. An implica-

tion of the third result is that if Boolean formulas in normal forms are not efficiently 

exactly learnable from equivalence queries then P 0 )VP. 
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Glossary of Notation 

Early lower case letters, such as a, b, c, ... , are normally used to denote absolute 

constants. The end lower case letters, such as... , x, y, z, are used to denote variables, 

strings, bit vectors, etc. Middle lower case letters, such as f, g, h,... are used to 

denote functions. Other lower case letters are used in a first-come first-need fashion 

for almost anything. Capital letters are reserved for sets, events in some probability 

space, etc. Greek letters are used sparingly for special functions, but mainly in use 

for asymptotic 

al 
[T] 

a 

notations. 

set cardinality, string length, Hamming weight, or absolute value 

1 if statement T is true, 0 otherwise 

definition symbol 

field of real numbers, ring of integers (resp.) 

finite field of q elements 

integer (or real) interval between a and b (inclusive) 

{1,2,... ,n} 

the real interval between a (excluded) and b (included) 

set of Boolean n-bit vectors 

ith bit of a E {0, I}n or ith element in a list 

n-bit vector that is zero everywhere except for the ith bit which is 1 

the all-zero, all-one n-bit vector in {0, 1} 

bitwise exclusive OR between a, b E {0, 1} 

Xli 



a•b 

a o b 

a < b 

f≤g 

fg 

PrD [A] 

ED [X] 

U. 

1(a), f (a) 

Xa,a 

ins 

log s 

e, exp(x) 

H(s) 

inner product between a, b E {O, 1}n, i.e., ab(mod2) 

concatenation of two bit strings 

standard ordering on {O, 1}', i.e., a ≤ b, for all i E [ri] (0 < 1) 

standard ordering on Boolean functions, i.e., f(s) ≤ g(x), for all x E {0, l}Th 

f(s) = g(x), for all x 

probability of event A under distribution D 

expectation of random variable X with respect to distribution D 

uniform distribution on {0, 1}' 

Fourier coefficient of function f at a 

basis function at a according to uniform or product distribution (resp.) 

logarithm function to base e = 2.7182818... 

logarithm function to some base (usually 2) 

exponential function in x 

binary entropy function, i.e., slog2(1IX) + (1 - s)1og2(1/(1 - s)) 

Some notation to describe asymptotics is described next. 

f(n) E Q(g(n)) EIe> 0,n0Vn > no f(n) ≤ cg (n) 

f(n) E f(g(n)) 2c> 0,n0Vn > no f(n) ≥ cg(n) 

f(n) E e(g(n)) 3CI > 0,c2 > 0,noVn> no c1g(n) ≤ f(n) ≤ C29(n) 
f(n) E o(g(n)) limn, f(n)/g(n) = 0 

f(n) E w(g(n)) f(n)/g(n) = oo 

f(n) E Ô(g(n)) f(n) E O(g(n) log g(n)) 

f(n) - g(n) lim f(n)/g(n) = c, for some constant c 

fZg f(n)Eo(g(n)) 

f>>g f(n)Ew(g(n)) 



CHAPTER 1 

Introduction 

Consider a world containing robots and elephants. Suppose that one of the robots has discovered a 

recognition algorithm for elephants that can be meaningfully expressed in k-conjunctive normal form. Our 

Theorem A implies that this robot can communicate its algorithm to the rest of the robot population by 

simply exclaiming "elephant" whenever one appears. 

- L. G. Valiant, Comm. ACM, 1984. 

The complexity of learning Boolean functions has been studied for more than a 

decade. During this period the area of computational learning theory,, has matured 

into a distinct field of research, has developed its own theories, and has provided a 

clean theoretical model for studying learning problems. The area has borrowed results 

from statistics, complexity theory, cryptography, automata theory, and others. New 

techniques were developed to answer basic questions about learning Boolean functions 

and fruitful interactions with practical problems have emerged slowly. 

Despite these efforts and successes, we are still unable to answer one of the earliest 

and basic learning questions posed by L. G. Valiant. Recall that a Boolean formula 

in Disjunctive Normal Form (or DNF for short) is a disjunction (logical OR) of 

conjunctions (logical ANDs) of literals (a variable or its negation). It is a fact that 

any Boolean function can be represented as a DNF formula, i.e., this representation is 

universal. In his seminal paper that founded computational learning theory, Valiant 

[V84b] asked whether Boolean formulas in Disjunctive Normal Form can be efficiently 

learned from random examples. The main emphasis here is on efficiency since learning 

1 



1. INTRODUCTION 2 

is always possible with an exponential amount of resources. This question is very 

interesting since DNF formulas are a very simple and yet universal representation for 

Boolean functions. 

Valiant also noted that the same question for polynomial size Boolean circuits is a 

hopeless one if we make a certain cryptographic assumption. The existence of a family 

of cryptographic functions called pseudorandom functions eliminates any possibility 

of learning polynomial size Boolean circuits. 

xl X2 X3 X4 

FIGURE 1.1. Example of a DNF formula 

Half a decade passed before Kearns and Valiant [KV89] (and subsequently An-

gluin and Kharitonov [AK95]) strengthened the grip of Valiant's negative observation. 

They showed that, under reasonable and popular cryptographic assumptions, even a 

simpler class of Boolean circuits, called NC' circuits, is not learnable under a very 

generous learning model. NC' circuits are restricted to have logarithmic depth and 

polynomial size in with respect to their input size. 

On the brighter side, a decade passed until Jackson [J94] proved the surprising and 

beautiful result that, under some additional relaxations of the learning model, the 

class of DNF formulas is learnable. This result constitutes one of the recent strongest 

positive answers to Valiant's question. 

In this thesis Valiant's question and observation will be addressed from several 

different angles. First it is shown that monotone Boolean circuits (even of exponential 

size) are learnable from random uniform examples with a subexponential amount 
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of resources. This result is derived by proving that the average sensitivity of any 

monotone Boolean function is low. This implies that they have a simple harmonic 

spectrum that can be then exploited for learning purposes. Although the result on 

sensitivity is new, the connection between learning and harmonic spectrum is known 

from the seminal work of Linial, Mansour, and Nisan [LMN93]. 

Secondly, Jackson's DNF learning result [J94] is strengthened in a natural way. It 

is shown that the class of monotone width two branching programs is learnable under 

the same assumptions made by Jackson. It is known [BDFP86] that the latter class 

includes the class of DNF formulas as a strict subset. The proof of this result relies 

on a non-trivial extension of a Fourier correlation lemma due to Jackson and is based 

on a recent characterization of width two branching programs as parity decision lists 

developed in [BTW96]. 

By switching the viewpoint from the Boolean circuit model (that includes DNF 

formulas) to the branching program model, the boundaries between learnability and 

non-learnability can be seen. Barrington [Bar89], in his seminal work, showed that 

the class of Boolean functions computable by width five (permutation) branching 

programs is equivalent to the class of Boolean functions computable by polynomial 

size and logarithmic depth Boolean circuits. Thus the negative cryptographic results 

of [KV89, AK95] eliminate any possibility for learning width five branching programs. 

The investigation on learning branching programs is pursued to the case of widths 

three and four. It is shown that certain permutation branching programs of widths 

three and four are exactly learnable with equivalence and membership queries. The 

learning results rely on a recent breakthrough on the learnability and applications of 

multiplicity automata due to Bergadano, Catalano, and Varricchio [BCV96, BV94]. 

Thirdly in the thesis, it is shown that the class of polynomial size Boolean circuits 

and the class of polynomial size DNF formulas are exactly learnable from equivalence 

queries if the learning algorithm is equipped with an oracle that can solve any .AIP 

problem. Allowing access to a computationally powerful oracle is a well-studied tech-
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nique in structural complexity theory called relativization. Relativization is a means 

of studying how much help can an oracle provide in resolving typical hard questions 

such as P 0 XP. The result can be read backwards: if Boolean circuits or DNF 

formulas are not learnable then P Alp. The proof technique that is used relies 

on a preliminary observation of Kannan [K93] combined with a classic algorithm 

due to Jerrum, Valiant, and Vazirani [JVV86] for randomly generating combinato-

rial structures. Recently Watanabe observed that the learning result implies that if 

each language in .Af P has a polynomial size circuit, i.e., Al? C P/poly, then the 
polynomial-time hierarchy (see [P94], Chapter 17) collapses to ZPP'. This im-

proves a well-known theorem of Karp and Lipton [KL8O] who proved a collapsing 

level of AIP' ([P94], page 431). 

Those are three main lines from which Valiant's initial questions are approached in 

this thesis. Elsewhere in the thesis more specific related results are pursued as well. 

This thesis is organized as follows: 

In Chapter 2, an overview of the relevant definitions, models of computation, and 

models of learning from complexity theory and learning theory are described. After 

defining some standard models of Turing machines, the two main learning models that 

are considered in this thesis - namely the Probably Approximately Correct (PAC) 

learning model of Valiant and the Exact Identification learning model of Angluin, are 

given in detail. Finally several specific representation classes for Boolean functions 

used in this thesis, such as Boolean circuits and formulas, decision trees and lists, and 

branching programs, are described. 

In Chapter 3, the main results on the Fourier transform of Boolean functions are 

developed. First, some relevant definitions and standard facts in this area are given 

and an overview of known results is provided. Then the following results are proved: 

an upper bound on the average sensitivity for monotone Boolean functions and its 

impact on their Fourier spectrums. These results can be regarded as providing al-

ternative (and perhaps simpler) proofs to a well-known result of Kahn, Kalai, and 
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Linial [KKL88] as well as providing a useful connection between the older notion of 

average sensitivity and PAC learning. The easy case of uniform distribution is stated 

first and then subsequently it will be extended to the more general case of product 

distributions. 

In Chapter 4, main results from Chapter 3 are applied to derive results in learning. 

First a subexponential time learning algorithm for monotone Boolean functions is 

derived. This almost follows directly from the previous work by Linial, Mansour, and 

Nisan except for one detail. Some careful analysis is required to handle the case of 

product distributions which is slightly more problematic than the uniform distribution 

case. In a separate section, a careful analysis of the learning algorithm for monotone 

Boolean functions under product distributions is given. Next some evidence that the 

subexponential learning result is nearly optimal with respect to some parameters is 

shown. In the second part of this chapter, the attention is focused on efficient learning 

of monotone Boolean functions. Some improvements on the learning results of Kearns 

and Valiant [KV89] and of Sakai and Maruoka [SM94] are described. 

In Chapter 5, ideas from Jackson's work on learning DNF formulas are applied to 

address the problem of learning Boolean functions computable by monotone width 

two branching programs (or MW2 functions for short). To prove that MI/V2 is learn-

able under the same learning assumptions a non-trivial extension of a key lemma due 

to Jackson is proved and a new characterization of width branching programs as par-

ity decision lists given in [BTW96] is used. Subsequently in the chapter efforts are 

focused on showing that the general model of width two branching program (not nec-

essarily monotone) is exactly learnable using equivalence queries assuming that there 

is only a constant number of sinks. The proof relies on combinatorial arguments due 

to Blum, Fleimbold, Sloan, and Warmuth [Bl92, IHSW9O] on decision lists. Further in 

the chapter the learnabilities of bounded width permutation branching programs and 

of small depth Boolean circuits with modular and threshold gates are studied. The 

investigation is motivated by Barrington's work [Bar89] on the alternative character-
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ization of NC' circuits as bounded width permutation branching programs and by a 

recent application of multiplicity automata in learning [BBBIKV9G]. 

In Chapter 6, a well-known algorithm of Jerrum, Valiant, and Vazirani [JVV86] for 

randomly generating combinatorial structures is used to obtain an exact learning al-

gorithm for Boolean circuits. The learning algorithm that is obtained uses equivalence 

queries and requires access to an AlP oracle. This result implies that: if P = AlP 

then Boolean circuits are exactly learnable. 

/ 

/ 
/ 

FIGURE 1.2. Some classes of Boolean functions considered in the thesis 

Finally the thesis is summarized in Chapter 7, some minor extensions are men-

tioned, and some open questions raised by this work are stated. 



CHAPTER 2 

Preliminaries 

In this chapter we describe relevant definitions and notions from computational com-

plexity theory and computational learning theory. We focus our attention on problems 

related to the complexity and learnability of Boolean functions. To discuss the learn-

ability of Boolean functions we describe some specific representation classes that we 

consider in this thesis, such as Boolean circuits and formulas, decision trees and lists, 

and branching programs. 

2.1. Complexity Theory 

We use the Turing machine as our model of computation. We assume the reader's 

familiarity with the basic models of deterministic and nondeterministic Turing ma-

chines (see, for example, [P94]). Recall that 2 and IV? are the classes of languages 

accepted by polynomially time-bounded deterministic and nondeterministic Turing 

machines, respectively. Throughout this thesis we shall assume a reasonable encod-

ing scheme, in the sense of Garey and Johnson [GJ79], when dealing with inputs or 

problem instances to Turing machines. 

In this thesis we will also consider probabilistic and oracle Turing machines. A prob-

abilistic Turing machine (PTM) is a standard deterministic Turing machine equipped 

with the ability to make decisions based on the outcome of a random coin flip. More 

formally, a PTM is a Turing machine which has a coin-tossing state and a special 

tape called the random tape. When the computation enters this coin-tossing state, 

7 



2. PRELIMINARIES 8 

the machine receives a bit on the random tape that depends on the outcome of an 

unbiased coin flip. 

An oracle Turing machine (OTM) is a deterministic Turing machine equipped with 

a special tape, called the query tape, and three special states, called the query, YES, 

and NO states, respectively. The computation of an Oracle Turing machine requires 

that a set, called the oracle set, be fixed prior to the computation. If computation 

enters the query state and leaves some string w on the query tape, then computation 

switches to the YES state if w belongs to the oracle set or switches to the NO state 

if w is not in the oracle set. All other computations proceed as in the deterministic 

Turing machine case. If M is an oracle Turing machine and A is some oracle set then 

we denote MA as the oracle Turing machine that has A fixed as its oracle set prior 

to computation. A probabilistic oracle Turing machine (POTM) is a Turing machine 

that is equipped with both the oracle and the random tapes. 

work tape 

4  
TM 

random tape 

ORACLE 
oracle tape 

FIGURE 2.1. Probabilistic Oracle Turing Machine 

A probabilistic Turing machine is said to run in bounded polynomial-time if there is 

a fixed polynomial function p such that for all inputs of length n the Turing machine 
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on input w always enters some final state after at most p(n) computation steps. On 

the other hand we say that a probabilistic Turing machine runs in worst case expected 

polynomial-time if there is a fixed polynomial p such that the expected running time 

of the machine is at most p(n), for every input of length n. The expected running 

time is taken with respect to coin tosses performed by the machine. 

There are several well-known complexity classes that are associated with probabilis-

tic polynomial-time Turing machines, but we will only mention one of them, namely 

Z27'. 

DEFINITION 2.1. A language L is said to be in Z7'7' if there is a probabilistic 

Turing machine M running in bounded polynomial-time that satisfies the following. 

For every input x: 

• If X E L then Pr[M(x) = accepts] ≥ 3/4 or halts without output with 

probability at most 1/4. 

• If x L then Pr[M(x) = rejects] ≥ 3/4 or halts without output with proba-

bility at most 1/4. 

We now define complexity classes related to oracle machines. The next informal 

description is taken from Johnson's survey paper [J]. 

If C is a complexity class defined in some way, and A is a fixed ora-

cle set, then CA is the analogous class defined using the same resource 

bounds but augmenting 'the machine model with a (perhaps additional) 

oracle tape for asking questions about membership in A. 

For instance, we say that a language L is in Z11 Ar'p if there is a probabilistic 

polynomial-time oracle Turing machine M, equipped with an oracle A E Al2, such 

that, for every input x: 

• If x E L then Pr[MA(x) accepts] ≥ 3/4 or halts without output with proba-

bility at most 1/4. 
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• If x L then Pr[MA(x) rejects] ≥ 3/4 or halts without output with probability 

at most 1/4. 

When the meaning is clear from context we will say an HP oracle rather than an 

oracle A E AlP. 

Our discussion above is slightly incomplete since we only describe decision prob-

lems whereas our learning algorithms solve search problems, i.e., algorithms that 

return outputs that are different from just yes or no. The notion of polynomial-time 

computation, whether it is deterministic, probabilistic, or relativized (oracle), can be 

extended in a natural way to search problems. 

When describing algorithms in this thesis, we will in general use a very high-level 

description and omit the technical details of implementing these algorithms in the 

models described above. In some cases it might be helpful to consider random access 

machines (RAM) instead of Turing machines. Thus, we will informally use the words 

algorithm and/or program to mean a Turing machine or a RAM program. 

2.2. Computational Learning Theory 

The area that has become known as Computational Learning Theory was started in 

1984 with the seminal paper of Valiant [V84b]. The chief contribution made by this 

paper is a clean and simple theoretical and computational model for which questions 

about learning can be posed and analyzed rigorously. Prior to Valiant's paper there 

was already ongoing theoretical machine learning research but most of these efforts 

tended to concentrate solely on computability issues rather than on computational 

efficiency. 

In the following we give an overview sketch, using Valiant's DNF question, that 

is intended to motivate the learning models that we consider in this thesis. A more 

formal treatment of these models is given towards the end of this chapter. 

One of the earliest but still the hardest open questions in learning theory was posed 

by Valiant. Recall that a DNF (disjunctive normal form) formula is a disjunction 
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(logical OR) of conjunctions (ANDs) of literals. Valiant asked whether DNF formulas 

are learnable in his proposed model. In one of its alternative formulations, this 

question can be stated as a two-person game between a teacher and a learner. The 

teacher holds a DNF formula on n variables, say 0, of size s (i.e., the number of ANDs 

is .$). The only prior knowledge that the learner has is that the mysterious function 

is represented as a DNF formula, that it depends on n inputs, and that it has size 

S. 

concept class 

pick f 

Teacher 

a in f? 

representation class 

what is 1? 

Learner 

try h _J 

FIGURE 2.2. Two-person Learning Game 

During the play of the game, the learner can ask two kinds of questions: it can 

either ask the teacher to return the value of q on a specific assignment a of its choice 

or ask if another formula 0 is equivalent to the mystery function 0. In the first kind of 

question, the teacher replies simply with q(a) while in the second type of question the 

teacher either responds with yes, signifying that b is equivalent to 0 (which implies 

that the function has been learned), or with a no along with a counterexample b (such 
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that q(b) =A 0(b)). A question of the first type is called a membership query and a 

question of the second type is called an equivalence query. The learner wins if it can 

find a formula equivalent to 0 in time proportional to a polynomial function of n and 

the size of q (a binary encoding of 4). This model is called the exact identification 

model. 

Notice that the learner can trivially succeed if allowed an exponential amount 

of resources. For instance, asking 2' membership queries is sufficient to uncover 

the truth table of the DNF formula to be learned. Alternatively, asking as many 

equivalence queries as there are DNF formulas of size .s, of which there are at most 

3ms,w ill surely discover the DNF formula to be learned. So the main thrust of Valiant's 

question is efficiency, i.e., whether the learner succeed using a polynomial number of 

queries and polynomial computation time. 

Using combinatorial arguments, Angluin [Aug90] has proved that only using one 

type of question is not enough, i.e., neither membership nor equivalence queries alone 

are sufficient to learn DNF formulas. It is not known to date, whether both types of 

queries are sufficient. In another interesting paper, Angluin and Kharitonov [AK95] 

proved that under cryptographic assumptions the existence of membership queries in 

learning DNF formulas is irrelevant. That is, they proved that either DNF formulas 

are learnable without membership queries or DNF formulas are not learnable with 

membership queries. These two results, one with a combinatorial flavour and another 

with a cryptographic flavour, constitute the current knowledge about learning DNF 

formulas in the exact identification model. 

Judging from these results, we were tempted to ask what is the minimum com-

putational requirements sufficient to learn exactly DNF formulas. In Chapter 6, we 

show that randomization and a helpful A11 oracle are sufficient to guarantee the 

exact learning of polynomial size DNF formulas exactly. In fact our techniques im-

ply the learnability of polynomial size Boolean circuits as well. A consequence of 

the statement of our result is that if DNF formulas are not exactly learnable then 
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pj\r17. 
We note that the learning formulation given above requires that the learner finds 

an equivalent function. There is another model that only requires the learner to find 

an approximation to the target DNF formula q. More formally, the learner is asked 

to find, with probability at least 1 - 8, a formula 0 that satisfies 

Pr[q(x) çb(x)] ≤ e 

where D is some probability distribution on the domains of q' and b. In this model, 

the equivalence query is replaced with a statistical teacher who randomly draws points 

x according to D and supplies the learner with (x, O(x)). This model is called the 

probably approximately correct model or PAC model for short. 

Intuitively, learning should be easier in the PAC model than in the exact model. 

This intuition is supported by the two results of Angluin [Ang88] and Blum [Bl94]. 

Angluin proved that an exact learning algorithm can be used to learn in the PAC 

model. Equivalence queries are replaced by a high probability sampling step; this 

can be achieved by appealing to standard large deviation bounds such as Chernoff 

bounds. Blum showed that, under a reasonable cryptographic assumption, there is a 

class of functions that can be learned in the PAC model but that cannot be learned 

in the exact model. 

Kearns et al. [KLPV87] proved that if monotone DNF formulas are learnable 

in the PAC model then DNF formulas are learnable in the PAC model. Thus the 

monotonicity restriction does not make learning any easier. On the other hand, An-

glum [Ang88] showed that monotone DNF formulas are exactly learnable with both 

equivalence and membership queries. In Chapter 4 we exhibit a subexponential time 

PAC learning algorithm for the class of all monotone Boolean circuits and any mono-

tone DNF formula (including the ones that require exponential size). The algorithm 

does not require the use of membership queries but it requires that the examples 

are generated uniformly. In contrast, Chapter 5 provides a learning algorithm for 
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a superclass of DNF formulas in the PAC model with membership queries under a 

uniform probability distribution in polynomial time. 

For more information about computational learning theory, we refer the reader to 

the survey paper of Angluin [Ang92]. 

2.2.1. Representation Classes. In the preceding section we have sketched an 

outline of the learning game played between the learning algorithm and the teacher or 

oracle. In those discussions we did not distinguish between a concept, i.e., a Boolean 

function, and a representation of a concept, e.g., a DNF formula that represents a 

Boolean function. In some cases this distinction need not be made but in most cases 

it is important to distinguish them. For instance, it is known that Boolean functions 

computed by DNF formulas with at most k terms (or ANDs) are not efficiently 

learned from random examples using DNF formulas with at most Ic terms [PV88] but 

are efficiently learnable using other representations, e.g., DNF formulas with at most 

nh terms. Thus learning turns out to be a representation-sensitive phenomenon, and 

hence the need to differentiate between concepts and representations. 

In this section we give a standard and formal treatment of representation classes 

for concepts or Boolean functions (see [Ang9O] for a more complete treatment). 

Let E be an alphabet, usually {O, 1}. The set E* is the set of all strings over E and 

the set E" is the set of all strings over E of length n. The length of a string x E E* 

is denoted Ix. 
A representation class C(E, L, R, ) is a 4-tuple where E and A are finite alphabets, 

R C and u is a mapping from R to subsets of . A concept is any subset of 

The set > is called the example space or instance space. An example is a pair (x, b) 

where x E E* and b E {O, 1}. The alphabet A is called the alphabet of representations. 

The strings of R are called the valid representations in the class C. The function ,a 

is a mapping from representations to concepts. The size of a representation r E R 

is Irl. The size of a concept c is min{iri : (r) = c}. If a concept does not have a 

representation in R then its size is infinity. 
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The concept class C defined by a representation class C is the set of concepts that 

have representations in R. That is, C = J/-t(r) r E R}. For any natural number 

n, we define the parametrized concept class Cn as {(r) : r E R, Irl ≤ n}. Thus, 

C = U0 C. 

Example: Consider the class of Boolean functions computable by conjunctions of 

literals, also called the class of monomials. As an example, f(xi, x2, x3) = x1 A x2 

is a monomial. We now describe a representation class 1.(E, z, R, t) for monomials. 

Taking E = {0, 1}, the concept f defines the subset {100, 101} of {0, i}. We can use 

some natural encoding of monomials as follows. The monomial x1 A f2 is represented 

as the string 10* over the alphabet A = {0, 1,*}, where 1 means the variable appears 

unnegated, 0 means it appears negated, and * means it does not appear. So the 

mapping maps the string (10*) to the concept f = {100, 101}. It also maps the 

string (*1*) to the concept g = {010, 011, 110, 111}, i.e., g = x2. 

In most of the representation classes we consider there is a natural but implicit 

choice for each of E, L, R and A. In most case considered in the thesis, E = {0, 1}, 

and the example or instance space is {0, l}Th, for some fixed n. A standard encoding 

scheme (such as the ones in [GJ79]) can be assumed for the representations in R 

We will use the word size of a concept to mean size of the concept with respect to 

some natural representation class. 

When dealing with a representation class C(E, L, R, we will occasionally abuse 

the distinction between the concept class, i.e., C = {t(r) : r E R}, defined by a 

representation class C with the representations R from C. That is, when the context 

is clear, we will use r E R (a representation) in place of the more precise (r) (a 

concept) when talking about concepts from C. 

2.2.2. Probably Approximately Correct Learning Model. The Probably 

Approximately Correct (PAC) model was introduced by Valiant [V84b]. In this model, 

the learner receives from its environment a sequence of "random" classified or labeled 
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examples. The goal of the learner is to find a sufficiently good approximation or 

hypothesis that can explain the sequence of random examples that it has seen. The 

goodness measure of the hypothesis is the likelihood of a misclassification under the 

same random process that generated the examples. 

In the PAC model the environment is modeled by an example oracle for the target 

concept, say f. Underlying the example space X (normally, {O, 1}) is a probability 

distribution D from which the example oracle draws its examples. The example oracle 

EX(f, D) works as follows: upon request from the learner, it draws a random input 

x E X according to D and returns the classified example (x, f(x)). Unless otherwise 

stated we will assume that our instance or example space is {O, i}Th, for some fixed n. 

concept class 

EX(f,D) 

a 

 17 

random source 

FIGURE 2.3. The PAC Learning Model 

what is f? 

Learner 

DEFINITION 2.2. (PAC Learnable) 

Let C be a concept class and let H be a representation class. Then C is PAC 

learnable using H if there exists an algorithm A so that: for any concept f E C, for 

any distribution D over X, for any 0 < e, S < 1, if A is given access to EX(f, D) 

and inputs e, 8, then with probability at least 1 - 8, A outputs a hypothesis h E H 
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satisfying D(fLh) ≤ e, where fL≥h = {x E X I f(x) 0 h(x)}. The last probability 

is taken over the possible internal randomization of A along with the randomization 

in the calls to EX(f,D). 

The last definition only stipulates that a "good" hypothesis can be found by the 

learning algorithm. It did not require that this hypothesis be found in a reason-

able amount of time. The next definition of efficiently PAC learnable imposes this 

additional requirement. 

DEFINITION 2.3. (Efficiently PAC Learnable) 

Let C be a concept class and let H be a representation class. Then C is efficiently 

PAC learnable using H if C is PAC learnable using H and the learning algorithm 

runs in time polynomial in n, , , and the size of the target function f. 

Next we define the weak variation of the PAC learning model of Kearns and Valiant 

[KV89]. In this variation the learner is only expected to be able to approximate the 

target concept with an error that is slightly better than guessing. 

DEFINITION 2.4. (Weakly PAC Learnable) 

Let C be a concept class and let H be a representation class. Then C is weakly PAC 

learnable using H if C is PAC learnable using H with where s is the size 

of the target concept f and p is a fixed polynomial function. It is efficiently weakly 

PAC learnable if the running time of the weak learning algorithm is polynomial in n, 

.s, and . 

2.2.3. Exact Identification Learning Model. The exact identification learn-

ing model, or also known simply as the exact learning model, was introduced by 

Angluin in [Ang88]. This model differs from the PAC model in several ways. The 

exact learning model, as the name suggested, requires the learner to find a hypoth-

esis that is logically equivalent or identical to the target concept. In this model, 

the learning algorithm interacts with a teacher who answers questions asked by the 

learner. 
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Let C be a concept class and H be a representation class over the same instance 

or example space X (usually {O, 1}). We will define two different kinds of teachers 

or oracles that can answer questions from the learner. Before the learning process 

begins we fix a target concept f from C. The goal of the learner is to find h E H 

that satisfies h f. 

We define the two most common oracles used in the exact model, namely the equiva-

lence and membership oracles. An equivalence oracle EQf(h) can answer equivalence 

queries, i.e., questions of the following form. The learner supplies the oracle with 

an input function h E H and the equivalence oracle answers with either yes, signi-

fying that h f, or a counterexample b E X that is an assignment that satisfies 

h(b) 0 1(b). A membership oracle MQf(b) answers black box queries about the 

target concept f. That is, the input to this oracle is an assignment b E X and the 

answer is 1(b). 

DEFINITION 2.5. (Exactly Learnable) 

Let C be a concept class and let H be a representation class. Then C is exactly 

learnable using H if there exists an algorithm A so that: for any concept f E C, if A is 

given access to some of the above oracles (EQf, MQf), A outputs a hypothesis h E H 

satisfying f h. Learning must succeed against any valid choice of counterexamples 

by the oracles. 

The next definition specifies the conditions that must be satisfied for computation-

ally efficient learning. 

DEFINITION 2.6. (Efficiently Exactly Learnable) 

Let C be a concept class and let H be a representation class. Then C is efficiently 

exactly learnable using H if it is exactly learnable using H and the learner halts in 

time polynomial in n and the size of f. 

There is a nice connection between the exact identification learning model and 

the probably approximately correct learning model. This is the fact that any exact 
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learning algorithm using equivalence queries can be transformed into a PAC learning 

algorithm for the same learning problem. The idea is to replace the equivalence oracle 

with a sampling procedure that with high probability will behave like the equivalence 

oracle. Since the PAC learning model allows for a certain failure probability, we can 

appeal to standard large deviation bounds to allocate the failure probability to each 

sampling simulation of the equivalence oracle. This gives us the following theorem 

due to Angluin [Ang88]. 

THEOREM 2.1. [Ang88] Let C be a concept class and H be a representation class 

of Boolean functions. If C is efficiently exactly learnable using H and H contains 

only polynomial-time computable functions then C is efficiently PAC learnable using 

H. 

2.3. Specific Representation Classes for Boolean Functions 

A Boolean function over n inputs is a function from {O, 1} to {O, 1}. By default 

the variables will always be {x1, x2,... , x} unless stated otherwise. One can also 

consider a family of Boolean functions F which is a countable set of Boolean functions 

{ fn I n ≥ O}, where each fn is a Boolean function on n inputs. 

We now describe some Boolean functions that we consider in this thesis. A Boolean 

function is called a monomial or term if it is expressible as a conjunction of literals. A 

Boolean function is called monotone if for all x, y E {O, 1}, x ≤ y implies f(x) ≤ f(y). 

A Boolean function is called symmetric if its output is uniquely determined by x. 

Some examples of symmetric functions are the parity function, the majority function, 

and the threshold functions. The parity function over inputs x1, x2,... , Xn is the 

Boolean function that returns x1 + x2 + ... + x, (mod 2). The threshold function 

THkn on inputs x1, x2,... , Xn is defined as TH(x) = [> xi ≥ k]. The majority 

function is defined as THp121 (x). 

In the following we will discuss some of the more specific representation classes for 

Boolean functions that we will need. These include Boolean circuits and formulas, 
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decision trees and lists, branching programs, and others. 

2.3.1. Boolean Circuits and Formulae. A Boolean circuit on n input vari-

ables x1, x2,... , cc,,, is an acyclic digraph whose nodes are labeled with either variables, 

logical operators (AND, OR, and NOT), or constants (TRUE = 1 and FALSE = 0). 

There is a single output (sink) node whose output value is the output of the circuit. 

The source nodes are labeled with variables or constants. A Boolean circuit is called 

monotone if it does not contain any negation (NOT) gates. It is a standard fact that 

a Boolean function is monotone if and only if it is computable by a monotone Boolean 

circuit. 

The size of a circuit is the number of gates or nodes in that circuit. The depth of 

a circuit is the length of the longest root-to-leaf path in that circuit. 

A Boolean circuit has bounded fan-in if the arity of the AND and OR gates are 

bounded by a constant; otherwise we say that the circuit has unbounded fan-in. These 

two different types of circuits define two well-studied circuit complexity classes. The 

class AC' is defined to be the class of all Boolean functions computable by families of 

unbounded fan-in Boolean circuits of dçpth O(log'' n) and size °('). The class NC' 

is defined to be the class of all Boolean functions computable by families of bounded 

fan-in Boolean circuits of depth O(log' n) and size °('). 

X2 X3 X4 xl 

FIGURE 2.4. Example of a Boolean Circuit 

X5 
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We will be mostly interested in the classes AC' and NC'. It is known that AC° C 

NC' and that the inclusion is strict. Let us define AC2 to be the subclass of AC' that 

contains Boolean functions computable by families of unbounded fan-in polynomial 

size Boolean circuits with depth exactly d, where d is some constant. The class AC,° 

contains Boolean functions computable by unbounded fan-in AND and OR gates. An 

AND of literals is also called a monomial or a term. An OR of literals is also called 

a clause or a disjunction. 

The class of depth two Boolean circuits with an OR gate at the top and AND gates 

at the bottom level, is of a particular interest to us. This class is also known as the 

class of Disjunctive Normal Form formulas. The size of a DNF formula is usually 

taken to be the number of AND gates or terms. The "dual" of DNF, where the top 

gate is an AND and the bottom gates are all OR, is known as the class of Conjunctive 

Normal Form (CNF) formulas. The size of a CNF formulas is taken to be the number 

of OR gates or clauses. In most cases we will focus our attention on DNF formulas 

knowing that we can, in most cases, use duality to obtain a similar result for CNF 

formulas. A DNF is called a k-term l-DNF if it has at most k terms (or ANDs) and 

each term has at most 1 literals. It is called monotone if no literals are negated. 

2.3.2. Decision Programs. In this section we review the definitions of decision 

trees, decision lists, and branching programs. We provide a slightly more general 

definition of decision trees and also define the related representation class of Boolean 

branching programs. 

Let jr and be two classes of Boolean functions over {O, l}n. An ('F, g)-decision 

tree is a rooted binary tree whose internal nodes are labeled with functions from .T 

and whose leaves are labeled with functions from g. Each internal node has precisely 

two outgoing edges, one labeled with 0 and the other labeled with 1. 

A (..T, c)-decision tree T computes a Boolean function from {0, 1} to {0, 1} in the 

following natural way. Suppose that the root node of T is labeled with f E F. Given 

an assignment a E {0, 1}", the computation starts at the root node, evaluating the 
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function f on a, and taking the path out using the edge that is labeled with f(a). 

The computation proceeds in this manner until a leaf node is reached, say labeled 

with g E 9, whereby the computation ends with output g(a)-

The size of a (T, g)-decision tree is the sum of the sizes of functions labeling the 

internal nodes and the leaves. The depth of such a tree is the length of the longest 

root-to-leaf path in the tree. In the simple case of Boolean decision tree, where jr is 

the set of variables, i.e., T = {x1, x2,... , x} and 9 is the set of constant functions, 

all-zero and all-one, then the size of the decision tree is defined instead to be the 

number of leaves in the tree. In the latter case, we write ..T-decision tree where g is 

understood to consist of the trivial constant functions. 

An (SF, 9)- decision list is an (J, g)-decision tree whose internal nodes form a path. 

We will write an (..T, g)-decision list as 

[(fi,gi),(f2,g2),. . . ,(frn,grn)} 

where fl, f2,... , fm E .F and g, , g E g. We implicitly assume that the last 

function fm is always the constant one (true everywhere) function. 

A Boolean decision tree (respectively, a Boolean decision list) is an (.T, g)-decision 

tree (respectively, an (.F,!9)-decision list) where ..T is the set of literals and g is the 

set of constant functions. 

FIGURE 2.5. Example of a Decision List 

A branching program M over X = {x1,... , x} is a directed acyclic graph whose 

nodes are labeled with variables from X, and whose edges are labeled with the con-

stants {O, l}. It has a unique source (a node with no incoming edges) and at least 
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two sinks (nodes with no outgoing edges). The sinks are labeled with 0 (rejecting) 

and 1 (accepting), and both labels must be present. An assignment a E {0, 11n to 

the variables induces a selection on the edges of M; it keeps alive all edges that are 

consistent with the assignment a. Then the branching program is said to accept a if 

there is a directed path from the source to an accepting sink. 

The size of a branching program is the number of nodes in the branching program. 

A branching program is called leveled if there is an ordered partition II = (L1, L2,...) 

of the nodes of the branching program such that all of the edges connect nodes of one 

level to the next one in the partition. The width of a leveled branching program is 

the maximum number of nodes in any level in the ordered partition. 

In this thesis we will be interested in branching programs with bounded or 0(1) 

width. More specifically, we will focus our attention on branching programs with 

widths 2,3 or 4. Note that width one branching programs can be identified with 

decision lists where the accepting and rejecting nodes are collapsed into two sinks. 

We will not consider width 5 branching programs since the Boolean functions they 

compute are known to be equivalent to the class NC' and are known to be not 

learnable under some cryptographic assumptions. 

source 

reject accept 

FIGURE 2.6. Example of a Branching Program 
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2.4. Inequalities and Probabilities 

The purpose of this section is to describe some useful inequalities and facts from 

probability theory. We start with two bounds on the sum of binomial coefficients. 

FACT 2.2. For any integers n, k, (2= i') ≤ k+1 

Proof Since () ≤ n, for all k < n, we get that the sum is bounded by (n'' 
1)/(n-1). 0 

FACT 2.3. ([R92], Theorem 1.2.8, page 25) 

For any integers n, k and a E (0,1/2), we have 

an (n) 

<2'(°) 

where 11(x) = —x log x - (1 - x) 109(1 - x), for x € [0, 1]. 

The following inequality is well-known from mathematical analysis. 

FACT 2.4. (Cauchy-Schwarz Inequality) 

Let a1,... , a, and b1,... , b, be two sequences of non-negative numbers. Then 

In \2 In \ ( In b 2) 
ajb ) < (>I a ) >I 

i=1 i=1 i=1 

Moreover, equality is attained precisely if, for some constant ), ai = Abi, for all i E [m]. 

We now describe some inequalities from probability theory that we need, namely 

Markov's inequality, Chernoif bounds, and also lloefFding bounds on the sum of in-

dependent random variables. 

FACT 2.5. (Markov's Inequality) 

For any non-negative random variable X and for any positive real number t, 

Pr[X ≥ t] ≤ E[X]/t. 

We state some standard large deviation bounds from probability theory, known as 

Chernoff and Hoeffding bounds. We give several forms of these bounds. 
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FACT 2.6. (Chernoff bounds [R90]) 

Let X1,X2,... ,X be independent Bernoulli trials with Pr[X = 1] = pj,pj E (0, 1). 

Let X= 1X and 1u= En, pi. Then for 6>0 

Pr[X> (1+8)] < [(i+s] F,S). 

Under the same hypothesis as above, for S E (0, 1], 

Pr[X < (1 - S)u] <exp(—S2/2) = F(, 8). 

The second version of the large deviation bounds is known as Hoeffdimg bounds. 

FACT 2.7. (Hoeffding bounds [M94]) 

Let Xi,... , Xm be independent identically distributed random variables with E[X] = 

p, IX ≤ B, and let Sm = X1+ ...+Xm. If m = m(,S,B)≥ çin, then 

Pr[1MM _P > 6] <S. 

Most of the probabilistic arguments or machinery that we use can be found in Alon 

and Spencer's book [AS92], e.g., averaging arguments, linearity of expectations, and 

also large deviation bounds, etc. As for notation, we use Pr ED[P(x)] or PrD[P(x)] to 

indicate the probability that event P(x) happens when x is randomly chosen according 

to distribution D. We usually omit specifying the underlying distribution whenever 

it is clear from context or if it is the uniform distribution U. The same convention 

applies for expectations and variances. 



CHAPTER 3 

Harmonic Analysis of Boolean Functions 

All analysts spend half their time hunting through the literature 

for inequalities which they want to use but cannot prove. 

- Harald Bohr 

The goal of a PAC learning algorithm is to infer a target function from a rather 

small set of randomly chosen examples. The idea behind Fourier or harmonic analysis 

is to recover a function from its frequency patterns or Fourier coefficients. Fortunately, 

even a rather small randomly chosen set of examples can give a good approximation 

to most of the frequency patterns of the function. One can then recover the function 

approximately from these approximate frequency patterns. 

The use of Fourier analysis in Boolean complexity theory was introduced by Chor 

and Geréb-Graus [CG88] and by Kahn, Kalai, and Linial [KKL88] in their work that 

studies the influence of variables on Boolean functions. The important connection 

to learning theory was discovered only later by Linial, Mansour and Nisan [LMN93]. 

In the latter paper the authors proved that the class of AC° functions, i.e., Boolean 

functions computable by families of unbounded fan-in constant depth and polynomial 

size Boolean circuits, is learnable in the PAC model under the uniform distribution 

in time Let us call their algorithm the LMN algorithm. 

Further improvements to the LMN algorithm were given by Furst, Jackson, and 

Smith [FJS91] and by Aiello and Mihail [AM91]. Furst et al. proved that the class of 

AC' functions is learnable in the PAC model under constant-bounded product distri-

26 
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butions in time poly(logn) They obtained this result through a nontrivial extension 

of the work of Linial et al. [LMN93]. Aiello and Mihail [AM91] proved that proba-

bilistic decision lists are learnable in the PAC model under the uniform distribution 

in polynomial time. 

The main reason for the successes of these results is the ability to isolate a small 

region in the Boolean n-cube where a class of functions has most of its significant 

Fourier coefficients. In other words this isolated region stores a lot of information 

about the function in the form of frequency patterns. For example, in [LMN93] it 

was shown that most of the power spectrum of AC° functions is located on the vectors 

of Hamming weight poly (log n). The knowledge of where these "heavy" frequencies 

lie in {O, 1}' is crucial to the LMN learning algorithm. Using this information, Linial, 

Mansour, and Nisan devised their simple PAC learning algorithm for AC° functions 

that runs in time P0l1(b0g n) 

In this chapter we will show that the class of monotone Boolean functions has a 

similar property to that of the class of AC' functions. We prove that most of the 

power spectrum of monotone Boolean functions is located on the vectors of Hamming 

weight Our proof relies on a simple connection between the Fourier spectrum 

and a well known measure called average sensitivity. The notion of average sensitivity 

was previously studied by Kahn, Kalai, and Linial [KKL88] and has been considered 

in several other works. In the proof we will actually show that the average sensitivity 

of monotone Boolean functions (regardless of their circuit complexities) is at most 

\,/i. Then we will use this to show that the power spectrum of monotone Boolean 

functions is concentrated in the vectors of Hamming weight at most O(/). 

The results that we present in this chapter are slightly more general than the ones 

considered in [KKL88, LMN93]. We will consider the Fourier spectrum and average 

sensitivity under a more general class of probability distributions than the uniform 

distribution. We obtained this by a natural generalization of the analysis and proofs 

given in [KKL88]. 
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For more information on Fourier analysis of Boolean functions, we refer the reader 

to the survey paper [M94]. 

3.1. Basic Theory of Fourier Transform 

We start by associating with a Boolean function f : {0, 1} —+ {0, 1} a correspond-

ing real-valued function F : {0, 1}' —  {-1, +1} C R where f and F are related by 

the following simple equations: 

F=2f-1, fl+F  

In most cases we will call both f and F Boolean functions and sometimes abusively 

use f when we mean F when the context is clear. 

The set F of all real-valued functions over {0, l}n forms a vector space of dimension 

over IL We will associate with this vector space an inner product that is induced 

by a probability distribution on {0, 1}. We will mainly focus on a specific class of 

probability distributions called product distributions. 

DEFINITION 3.1. (Product distribution) 

A probability distribution D over {0, 11n is called a product distribution with param-

eters p = (j)L1, where each uj E (0, 1), if for all a E {0,1} 

D(a)= fi pi [f (l—). 
i:a=1 i:a=O 

A product distribution D is called c-bounded if 1uj € [c, 1 — c], for all i E [n]. The 

distribution D is called constant-bounded if there is a constant c E (0, 1) so that D 

is c-bounded. 

Given a product distribution D = (a',... , j) over {0, 1} and i E [ii], we de-

note Di to be the product distribution over {0, 1}'' obtained by removing the i-th 

component of D, i.e., 

Di = 
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Note that the uniform distribution is a product distribution with yj = 0.5, for all 

iE[n]. 

DEFINITION 3.2. (Inner product) 

Given a probability distribution D on {0, 1}, the inner product (., .)j on F with 

respect to D is defined as 

(f,g) = D(x)f(x)g(x) = ED [fg]. 

A collection B of functions is called orthonormal if for any f,9 E B we have 

(f,g) = [f = 9]. A collection of functions B = {gi,... ,gm} is a basis for F 

if it is a spanning set, i.e., for any f E F, there exist constants a1,... , a,,, E JF 

so that f(s) = aigi(s), and if it is a linearly independent set, i.e., whenever 

ET ag(x) = 0, we have aj = 0, for all i E [m]. 

FACT 3.1. Suppose that D is a product distribution over {0, 1} with parameters 

= (j). Define ai = /pj(1 - The set of functions {q(x) : a € {0, 1}'}, 

where 
/()fl Iii_Xi 

is an orthonormal basis. 

These functions also satisfy an additional decomposability property, i.e., for all 

x,y,a,bwith jxj = al and h'l = bl we have 

aob(X 0 y) = 4a(x)qb(y), 

which is easy to verify. 

The Fourier coefficient off at a E {0, 1}n under distribution D is defined as 

!D (a) (f,qa)D = ED[fq a]. 

Note that J(0) = ED [fl- When D is clear from context, we will write f(a) instead 

of fD(a). By orthonormality of the functions q, each real-valued function f over 
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{ 0, i}n has a unique representation in terms of its Fourier coefficients. We state this 
in the following fact. 

FACT 3.2. For any function f: {0, 1} —* R we have 

f(x) = 

Moreover this representation is unique. 

We will need the following correlation lemma to derive some future facts. 

LEMMA 3.3. (Cross-Correlation identity) 

For any functions f, g : {0, l} - R, for any y C {0, l}, and for any product 

distribution D = (j) over {0, 1} we have 

ED[f(x)g(x e y)] = J(a).(b)ED[qa(x)qb(x y)]. 
a,b 

Proof Note that g(xey) = Eb g(b)qb(xy). We simply expand the similar expression 

for f and then use linearity of expectation. 0 

An important corollary to the lemma is Parseval's identity. 

COROLLARY 3.4. (Parseval's identity) 

For any real-valued function f: {0, 1 - 4 R we have ED [f = >a 12 (a). Moreover, 

if  is Boolean then this expression equals 1. 

Proof Take g = f and y = 0 in Lemma 3.3 and then apply orthonormality of a' 

to get the claim. 0 

The expression & j(a)2 is also called the Fourier power spectrum of f under 

product distribution D. 

For the uniform distribution U there is an already established notation in the 

literature. For the uniform distribution U, the basis function at a is denoted Xa(X) = 

(-1)a.x and the Fourier coefficient of f at a is denoted J(a), i.e., Ju(a). 
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3.2. Influence and Average Sensitivity 

The paper of Kahn, Kalai, and Linial [KKL88] gave a relationship between Fourier 

transform and two complexity measures called the influence and the average sensitiv-

ity. Our main results will be based on their original ideas, although we will provide 

some minor simplifications, extensions, and applications to machine learning. The 

notion of influence has been used earlier in connection with learning DNF formulas 

where each variable can only appear a constant number of times (see Hancock and 

Mansour [HM91]). 

We now define the notions of influence and average sensitivity for Boolean functions. 

DEFINITION 3.3. (Influence) 

Let f : {O, l}Th - {-1, +1} be a Boolean function over the variables {x1,... , x,} 

and let D be a product distribution over {O, l}n. Then the influence of xi on f over 

D is the probability that 1(x) differs from f(x e) when x is chosen according to 

D, or, 

ID,(f) = Pr [1(x) 4 f(x e 
aED{O,1} 

Remark. On occasion we use the restriction notation fo = f x+-° and f = f jj+4, 

when the variable xi to be restricted is clear from the context. 

FACT 3.5. For any Boolean function f : {O,1}' -  {-1,+1} we have In,(f) 

PrD[fo(y) fi(y)] = En[(fi - fo)2]. Moreover if f is monotone then Ij,(f) = 
irt rJ 

- Jo 

DEFINITION 3.4. (Influence Norm) 

Let D be a product distribution over {O, 1} with parameters = (ha... , Pn) and 
let f: {O, 1} — f {-1, +1} be a Boolean function. Then the influence norm of f with 

respect to D is defined as 

>(2cTjID,j(f))2. 
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DEFINITION 3.5. (Average Sensitivity) 

Let f {O, l}Th {-1, +1} be a Boolean function over the variables {x1,... , x} 

and let D be a product distribution over {O, l}. The average sensitivity a(f) of f 

at a point a E {O, l}n is the number of immediate neighbors of a whose values under 

f differ from a. More formally, 

3a(f) = {i C [n] : f(a) 54 f(a ED e)}I = [f (a) 54 f(a 
i=1 

The average sensitivity of f with respect to D is 

SD(f) = EXED[s(f)]. 

It is easy to show that average sensitivity is equal to the sum of influences. 

FACT 3.6. SD(f) = E tLi ID,i(f). 

Examples: Consider the parity function on n inputs, i.e., xi  (v). Under the uniform 

distribution, the influence of each variable is one, and hence its average sensitivity 

equals n. The influence of any variable on a constant function is zero and hence the 

average sensitivity is also zero. 

3.3. Relating Fourier Spectrum and Average Sensitivity 

The authors of [KKL88] proved that the average sensitivity of a Boolean function 

is a "weighted" sum of the Fourier spectrum under the uniform distribution, where 

the sum is weighted according to the Hamming weight. We state for completeness 

their claim along with a simple proof in the following fact. 

FACT 3.7. [KKL88] For any Boolean function f: {O, 1} —* {-1, +1} 

su(f) =IaLf(a)2. 
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Proof We use Lemma 3.3 (cross correlation identity) for the special case of the 

uniform distribution with g = f and y = e (the unit vector at i): 

Eu[f(x)f(x e)] = E J(a)J(b)Eu[Xa(x)Xb(s 
a,b 

But xb(x = xb(x)xb(ei) and Xb(ei) = (_i)bi. Hence the expectation on the 

right-hand side simplifies to E[Xa(X)Xb(X)](_1)bi = [a = b](_1)1'. Thus 

Eu[f(x)f(x ed)] = E J(b)2(-1) = 1-2 E J(b)2. 
b b:b=1 

Also we note that Iu,(f) = (1—Eu[f(x)f(xe)]) which yields Iu,(f) = b:b=1 j(b)2. 

We complete the proof by summing up this last expression for all i E [n] and then 

use Fact 3.6. E 

Our goal is to show that the above fact holds also under product distributions. We 

need the following identity in order to extend their result. 

LEMMA 3.8. For any Boolean function f : {O, 1} - {-1, +1}, any product dis-

tribution D over {O,1}', and any i E [ri], 

ED[f(x)f(x 1 ei)] = 1 - J(a). 
ai a:a=1 

Proof Let 

= En[f(x)f(x e ed)] = F, J(a)J(b)Ejj[qa(x)qb(x 
a,b 

using Lemma 3.3. Set a = ZT o ai and b = where U, T E {O, 1}'' and a, bi E {O, 1} 

(assume without loss of generality that i = n). Also let x = y o xi and recall that 

Di is the distribution obtained by removing the i-th component from distribution D. 

We see that the expression E[qa(x)b(x ed)] equals to 

(1- (Lai pi  a ) I)ED[(y)(y)] -  bi + ai bi o- I '\ 01 / 

Define T = ED[cba(x)qb(x ed)]. We consider the cases based on the values of a, bi E 
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ED [q(y)q(y)] 
_(i_)2 ED [q(y)q(y)] 

Ui 

0 

-EDt [q(y)q¼(y)I 
Hence by orthonormality of the basis functions 

if ai = bi = 0 

if ai = 0, bi = 1 

if ai = 1, bi = 0 

if ai = bi = 1 

= > [ o)o - f(i)j(i) + ii - (1— - 1  f(0 )J(1 )] 
,bE{O,1}t2_l 0-i 

ED [4(y)q(y)] 

E{0,1}' 1 0. 

Observing that 

we obtain 

f(0) = f(i) = oi(!O() — Ji()), 

fL)() +  

E{O,1} -1 

= [t —(1— ,u.) 2] [(1— + (2j - 

E{O,1}n-1 

= (2i - 1)[(1 - 2i) + (2t - 1) 

But note that E{0,1}`1 Jj()J1() = En[fo(y)fi(y)] = ED[f(x)f(x @ es)]. Thus 

= 1 - 2 f(1)2 - (2 - 1)2 + (2 /,ti  1)2z, 
E{O,1} 1 

which finishes the claim. LI 

DEFINITION 3.6. (Generalized Hamming weight) 

Let D = (i) 1 be a product distribution over {0, 1}. The weight of a E {0, 1} 
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under D, denoted ha ID, is defined as 

hlahlD= fl log2—. 
i:a=1 °• 

FACT 3.9. For any product distribution D, IlaliD ≥ jal, and equality holds if and 

only if D is the uniform distribution. 

We are now ready to prove the generalization of 3.7 for arbitrary product distribu-

tions. 

THEOREM 3.10. For any Boolean function f {0,1}' —* {-1,+1} and for any 

product distribution D over {0, 11n we have 

3D(f) = hlalLDf(a)2. 

Proof First note that ID,(f) = 1 (1 - ED{f(x)f(x ed)]). Thus, Lemma 3.8 gives 

4oID,i(f) = Ea:aj=i j(a)2. We combine this with 3D(f) = E .tD,(f) to complete 

the claim. EJ 

Using the above theorem we may derive a Fourier spectrum bound on any Boolean 

function over any product distributions. We will supply two bounds, one in terms of 

the average sensitivity and one in terms of the influence norm. 

THEOREM 3.11. Let f : {0,1} —* {-1,+1} be a Boolean function and let D be 

a product distribution over {0, 1}. Given an c > 0, let A() c {0, 1 I be defined as 

A() = {a: hail ≥ 8D(f)/}. Then we have a€A() f(a)2 ≤ e. 

Proof We start with the identity 

I llall?(a)2 = 
a 

which can be derived from the identity 4oID,(f) = a:a=1 f(a) 2 in the proof of 

Theorem 3.10. Now we use the fact a < 1/2 and x1og ≤ 3/5 (not the best), for 

x E [0, 1], to get E. hiallj(a)2 < since .sjj(f) = Ii Ir,i(f). Now we can 

partition the sum according to whether 11all ≥ sD(f)/6 or not. 0 
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An alternative upper bound on the Fourier spectrum can be given using the influ-

ence norm. We consider the next theorem one of the main technical contributions in 

this chapter. 

THEOREM 3.12. If f: {0,1} —• {—1,+l}isaBoolean function and D is a product 

distribution over {0, 1} then 

f2() ≤ ID(f) \ 
IIaII≥k 

ml 

(jlog — CID (f), 
i=1 0-il 

for some absolute constant c (for example, the inequality is correct if c = 1.062). 

Proof Using the Cauchy-Schwarz inequality, Fact 2.4, with ai = 2cTID,(f) and 

bi = 20j log we get 

4oID ,(f)2 

4I,(f) log 2 by Cauchy-Schwarz 

(oj log ') 

1 2 (IIaIIj2a)2 
(olog') a 

>  1 

— (ilogi') 2 IaII>k 

f2( 

I 
This proves the first inequality. The second inequality can be seen using simple 

calculus since (x log x')2 ≤ elog2e< 0.2817 for all x  [0,1/2]. El 

The following lemma will supply us with the crucial link that connects the Fourier 

transform for monotone Boolean functions to influences — and hence to average sen-

sitivity. 

LEMMA 3.13. If  : {0, 1} —* {-1, +1} is a monotone Boolean function and D is 

a product distribution over {0, 1}, then for all i E [n], f (e) = —2ciID,(f). 
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Proof Let Di be the induced distribution over all the variables except the i-th one, 

i.e., x. Then 

f(e) = ED [fçb} = EDj E (1 )[LifO+1Lj 1il fl] - •  
9i ai 

which simplifies to oED[fo - fi]. Now recall that for monotone Boolean functions, 

2ID,(f) = EDj V1 - fe]. 0 

Using Lemma 3.13 we can derive an upper bound on the average sensitivity of any 

monotone Boolean function with respect to product distributions. 

THEOREM 3.14. For any monotone Boolean function f : {O, 1} —+ {-1, +1} and 

any product distribution D over {O, l}Th, we have 

SD(f)≤Vc 

(f( ej)\\2 

k 2o ) 

Moreover, for the uniform distribution, this bound becomes because aj = 1/2, 

for all  E [n]. 

Proof Using Fact 3.6 and the Cauchy-Schwarz inequality we get that 

'2 n ( n f(, 

SD(f) 2 = (E'D,(f) ≤ (EID,i(f) 2) 

\i=1 I 

0 

Summary. Our main findings in this chapter are the following relationships, stated 

for the uniform distribution, that connect the Fourier spectrum, average sensitivity, 

and influences, for arbitrary Boolean functions: 

j(a) 2 ≤ 6, j(a)2 ≤ 

IaI≥s(f) IaI≥k 

These equations have natural generalizations to the case of product distributions. For 

monotone Boolean functions, we can further use the fact that I(f) = — J(e), for all 
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i E [m], to obtain a simplification of the second equation: 

J(a) 2 ≤ 
IaI≥k 

which can also be derived from the first equation by noting that .s(f) ≤ for all 

monotone Boolean functions. 



CHAPTER 4 

Learning Monotone Functions in the PAC Model 

In this chapter we will describe some learning algorithms for classes of monotone 

Boolean functions. We review some well known facts about using the Fourier spec-

trum for PAC learning. In particular we describe the learning algorithm of Linial, 

Mansour, and Nisan [LMN93] and its randomized improvement due to Blum et al. 

[BFJ94]. We will call this algorithm the LMN learning algorithm. 

Then we will use facts that we developed from the previous chapter to prove that 

the class of monotone Boolean functions is PAC learnable under product distributions 

with a subexponential time and sample complexity with respect to the number of 

inputs and the inverse of the accuracy parameter. The dependency of the learning 

complexity on the confidence parameter is not as high, i.e., it is only logarithmic 

in 118. Some other contributions of this result are as follows. First, the statement 

holds regardless of the circuit complexity of the target monotone Boolean function. 

That is, the learning complexity is independent of the circuit size measure of the 

target monotone Boolean function. Second, the result handles the general class of 

product distributions, whereas most other works require the product distribution to 

be constant-bounded (see [FJS91, HM91, J94]). 

We present the basic application of the LMN learning algorithm combined with the 

Fourier results from the previous chapter. Next we provide a careful analysis of how 

to learn monotone Boolean functions under an arbitrary product distribution. This 

yields a subexponential time PAC learning algorithm for the class of all monotone 

39 
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Boolean functions. Then we will consider some lower bounds questions in order 

to determine how tight these results are in terms of the tolerable error rates, time 

complexity, and sample complexity. 

In the second part of this chapter we turn our attention to efficient (or polynomial-

time) PAC learning of monotone Boolean functions. We improve a weak PAC learning 

algorithm for all monotone Boolean functions due to Kearns and Valiant [KV89] and a 

PAC learning algorithm for O(log n)-term monotone DNF due to Sakai and Maruoka 

[SM94]. The first result relies on a lower bound given by Kahn, Kalai, and Linial 

[KKL88] while the second result uses a top-down decision tree learning algorithm. 

4.1. The Linial-Mansour-Nisan Learning Algorithm 

A key link between the learnability of a Boolean function and its Fourier power 

spectrum under the uniform distribution is given by the following fact due to Linial, 

Mansour, and Nisan [LMN93]. 

FACT 4.1. [LMN93] For any Boolean function f : {O,1}' —+ {-1,+1}, for any 

real-valued function g: {0, 1} — R, and for any product distribution D over {0, 1}, 

we have 

Pr .sgn(g(x))] ≤ ED[(f - g)2] = >(f(a) — 
a 

where .sgn(g)(x) = (_l)[()<0I is the sign function of g. 

Proof The first inequality is true because [f (x) sgn(g(x))] < If (x) — g(x)I. The 

second inequality is true by Parseval's identity. El 

In fact one can do slightly better with randomization as shown in [BFJ94]. 

FACT 4.2. [BFJ94] For any Boolean function f : {0,1} - {-1,+1}, for any 

real-valued function g: {0, 1} ­ 4 R, for any product distribution D over {0, 1}, and 
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for a hypothesis function h: {O, 1} —* {-1, +1} defined as follows: 

with probability p(x) 

with probability 1 — p(x) 

where p(x) = (1`(x)))'2 we have 
2(1+g2(a))' 

Pr[f(x) h(x)] :5 — 

x,rwhere r denotes the randomization required for h(x). 

If a Boolean function has most of its power spectrum concentrated on the coef-

ficients of small Hamming weight, say at most k, then there is a simple statistical 

(sampling-based) algorithm that can approximate that Boolean function rather well 

under the uniform distribution. We will call this algorithm the LMN algorithm or 

the low-degree or k-degree Fourier algorithm when we need to specify explicitly the 

region {a e {O, 1} : jal k} from which the sampling is performed. 

LMN algorithm 

input: An integer k, a sample (xi,f(xi)),... 

(1) Set A = {a E {O, 1}' : jal ≤ k}. 
(2) For each a E 10, 11n with jal ≤ k do 

j m 
Ca =  

(3) Output h(x) = EaEACaXa(r). 

FIGURE 4.1. The Linial-Mansour-Nisan algorithm. 

FACT 4.3. [LMN93] Let f: {O, 1}' — {-1, +1} be a Boolean function on n inputs 

and suppose that A = {a E {O, 1}' : I al k} satisfies >aA f(a)2 ≤ e/2. Then there 
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is a PAC learning algorithm for f under the uniform distribution with error 6 and 

confidence S running in time O(--- in !i.'). 

Proof The algorithm simply approximates each 1(a), for a E A, with ca that is within 

\//(2IAl), i.e., 

with probability at least 1 — 61 JAI (using standard large deviation bounds). Then the 

real-valued hypothesis h(x) = &EA hac/a() satisfies 

Pr[f(x) h(x)] < ED[(f(x) - h(x))2] 

= (1(a) — 
a 

≤ E (J(a)_i(a))2+ 
aER 

≤ lAlJ+=6. 

The probability that there is a c,, that failed to be a /fAi-aPproximation of 1(a) is 

at most 6. Hence with probability at least 1 - 6, h(x) satisfies D(fL≥h) ≤ e. 

Let us calculate the number of sample points m required by this algorithm. Since 

lfXal ≤ 1 B, by the Hoeffding bounds (Fact 2.7), we need to take at least 

m(V6/(21A1),S/IAl,B 1) = 4B21A1 Al 1n 7  

sample points. In our case A is the set of all n-bit vectors with Hamming weight at 

most k, so we get 

lAl=() <flk+1 

Thus m E O( k+1 k+1 i-- In ----). It can be seen that the running time s dominated by this 

sample complexity. LI 

We will need to distinguish two kinds of approximations: mean square and discrete. 

DEFINITION 4.1. (Notions of approximations) 

We say that h e-approximates f under D in the Mean Square Error (or MSE) sense if 
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E€D[(f(x) - h(x))2] ≤ c. On the other hand, we say that h is an c-approximation of 

f under D in the discrete sense if PrXED[f(x) 54 h(x)] ≤ c. Unless otherwise stated, 

when we say c-approximation we mean approximation in the discrete sense. 

Note that Facts 4.1 and 4.2 show that if h is a good real-valued approximation 

for a Boolean function in the mean square sense then it can be turned into a good 

approximation in the discrete sense (simply by taking the sign function). 

4.2. Subexponential Learning for All Monotone Boolean Functions 

The following theorem will show that monotone Boolean functions are PAC learn-

able under product distributions in subexponential time with respect to the number 

of inputs, n, and the inverse of the accuracy parameter, 1/c. The dependency of the 

learning complexity on the confidence parameter 6 is only logarithmic, i.e., log(1/6). 

For ease of analysis we will first assume that the learner knows the parameters of the 

underlying product distribution, i.e., the means /,4i are exactly known, for all i E [n]. 

Later in the next section we will show why we can assume this without loss of general-

ity. More specifically, we show that we will only incur a log m blow up in the exponent 

of the time complexity, i.e., the time complexity of the learning algorithm remains 

unchanged except for some additional logarithmic factors inside the Ô() term. 

THEOREM 4.4. For any c, 6> 0, any monotone Boolean function is PAC learnable 

under any product distribution with error e+n, for some constant c, and confidence 

1 - S in time 

exp(O(C'\/ log (cv'))) in 6'. 

Proof Fix a product distribution D. We will use the k-degree Fourier algorithm with 

k = 1.0621D (f)  
(e/2) 



4. LEARNING MONOTONE FUNCTIONS IN THE PAC MODEL 44 

and with the hypothesis set to h = IIaII<k haca, where ha is an estimation of f(a). 

By Theorem 3.12, h is an (6/2)-approximation of f. Since hail ≥ lal, we have that 

fa: IIahl<k}C{a: jal<k} 

and hence the k-degree Fourier algorithm only needs to collect (estimate) the Fourier 

coefficients of Hamming weight at most k. From the definitions of hail and q5a, if 

hail < k we get that 

lqa (x)i = fl Pii  
i:a=1 0-i 

≤ 2I H (i — x) 
i:a=1 

≤ 2c, 

since I ji —xj I ≤ 1. Now by the previous section and the above equation, the algorithm 

outputs a hypothesis that is an approximation of f to within error 6 with sample size 

and time complexity of exp(O(/I(f)c'ln )))ln8 1. By Lemma 3.13, we note 

that ID(f) ≤ 1, for any monotone Boolean function f, because 

ID (f)' = (2oID,(f))2 = f(e)2 <1 

by Parseval's identity. Using simple calculus, we see that the function x log(1/x) is 

bounded from above by 1 in the interval (0, 1). Thus we have ID(f) log yj-yy ≤ 1, 

and therefore 

ID(f) log = ID(f) log + ID(f) log(6) = O(log(6)). 

This analysis proves the time complexity stated in the theorem. 0 

We note that using the above algorithm with subexponential time, the best achiev-

able error rate is 6 = . In a later subsection we show that this is the best possible 

error rate up to a O(log factor. 

4.3. Analysis of Learning under Any Product Distributions 

In this section we address the issue of PAC learning monotone Boolean functions 

under a product distribution when the parameters of distribution are unknown, i.e., 
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the learner is not told the precise values ofpi's. Schapire's thesis [S] also contains 

some work done on learning under general product distributions but for a different 

concept class. 

We fix a product distribution D = (n', ft2, ,afl ). First we argue that we may 

ignore all /i's that are less than n 2 or greater than 1 - n 2 since this will contribute 

only an additive factor of n 1 to the final error. We show this in the following. We 

call an assignment a € {O, 1 I good if for all i € [n] we have: 

ai = 0 whenever pj <n 2 and ai = 1 whenever ji> 1 - 

The probability of obtaining a good assignment in sampling is at least 1 - n 1. Let 

{0, 11n be the set of all good assignments. Suppose that h is an €-approximation 

to the target function f on the set . Then 

Pr[h(x) 0 f(x)] ≤ Pr[h(x) 0 f(x) I x E ci + gl 6 + 

Thus we may assume that /.ti € (n 2, 1 - n 2), for all i E [n.]. 

We define the following parameters: 

k M = 20(16). 

We will estimate each pi to within an error of (b0g4)• Note that using Hoeffding 

bounds (Fact 2.7) this requires approximately (Mb0)O(1) sample points. Suppose 

that 9i, i E [n], are the estimated means and let i3 denote the product distribution 

,ii). Also let cba denote the basis function at a according to 13. 

We will consider three hypothesis quantities, 

hA(x) = ED[fa]a(X), hB(x) = E[fa]a(), hc(x) = I E D[fa]a(X ), 

aES aES aER 

where R and S are the sets of assignments for which the algorithm needs to estimate 

the qa's and qa's, respectively. Notice that from the proof of Theorem 4.4 and from 

the fact that ID(f) ≤ 1, for all monotone Boolean functions f, we have I q" (x) M. 

Ideally we want to learn h, but because only approximations of the means jj can 
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be found we will try to learn hB. Now since the example oracle EX(f, D) gives the 

examples according to the original product distribution D and not b we will instead 

learn hA. Since the learning parameters (the number of coefficients) are computed 

for i5 we have 

Et,[(hB(x) - f(x))2] ≤ 6. 

Suppose pi + Tj is the estimation for 1lij, where ftI <_(logn+4)• Notice that 

r) i=1 - 

2 ) n 17 

ogn+4 

E 1+o (M1Ofl+3) . 

In the above we have used the following simple upper bounds 

1 Iri  ≤1+ lTd  
l—fLj l—j 

and the fact that pi, 1 - jtj ≥ 2 and (1 + '—i 1 + mx, for x significantly smaller 

than 1, i.e., x << 1. We will also bound the expression D(x)/15(x) from above. First 

note that 

and that 

1 T <1+ 1+ <1+ ITiI Ti lTd  
ILi+Ti /Ji - IT , iI l-L-T l_iui_lril 

ILi - ITil, 1 - [L - Til ≥ - _(b04) ≥ m_2 /2, 

for sufficiently large n. Using these observations, we see that 

D(x)  
= fl 1 Ti (1 Ti  

b(x) =i ( + Tj =o  

2m2  
≤ (i + M1ogm+4) 

E 1+o (M1Ofl+3) 
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Now we can bound the performance of hB under the true distribution D as follows. 

ED[(hB(x) - f(x))2] = E [ (hB (x) - f(x))2] 
D(x) 

< E[(hB(x)—f(x))2]max D(x)  
D(x) 

E e (i + o (,,ogn+3)) 

= + ° ( Mlogn+3 

Therefore hB is also a good approximation of f with respect to the distribution D. 

Now we show that hA is good enough. We have 

IhA(x) - hB(V)l 

because 

< 

E 

- 

aES aES 

Ejj[fç(1 - (b/D))]3a(x) 
aES 

ISIM2max 1 b(x) 
D(x) 

5M2M_(b03) 

(n 

k (n Isi ≤ fl k+1 = 2(k+1) log n logn 

i=O 

Therefore 

ED[(hA(x) - f(x))2] < 2ED[(hA(x) - hB (X))2 + (hB(x) - f(x))2] 

= 2Ejj[(hA(x) - hB (X))2] + 2ED[(hB (x) - f(x))2] 

E 2+O() 

= 2+n, 

for some constant c > 0. This completes the analysis for PAC learning monotone 

Boolean functions when the product distribution is unknown. We restate the theorem 
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in the following. 

THEOREM 4.5. For any e, S > 0, any monotone Boolean function over {0, 1} is 

PAC learnable under an unknown product distribution with sample and time com-

plexity of exp(O(c' log(/)))1og 8' with an error of at most 6 + _C for some 

constant c, and with confidence S. 

4.4. Proving Near Optimal Performance 

We will prove several statements showing that the monotone learning result in The-

orem 4.4 is nearly best possible or optimal in terms of the time complexity, achievable 

error rate, and sample complexity. 

4.4.1. Error Rates. First, we claim that the error rate achieved in the algorithm 

is the best possible for a subexponential time algorithm. 

THEOREM 4.6. Any PAC learning algorithm for monotone Boolean functions un-

der the uniform distribution running in time 2, for any c < 1, will output an 

approximation with an error of at least 

Proof There are at least m(n) 2G'2) ≥ 2d2'// monotone Boolean functions 

over n variables, for some constant d < 1. We have used here the approximation 

(n2) r- 2n//. Suppose A is the &approximation algorithm for any monotone 

Boolean function. If A outputs a hypothesis h then h can &approximate at most 

k(n) (2m) ≤ 22H(6) 

i<62 

Boolean functions, by Fact 2.3. Assuming A runs in time for some constant c < 1, 

then A can output at most 2 211 possible hypotheses. Therefore we must have 

22 k(n) ≥ m(n) 

which implies 2 + 2ThH(6) ≥ So for sufficiently large n, we have H(e) >> n 112. 

Note that H(x) = xlog(1/x) + (1— x) 109(1/(1 —x)) xlog(1/x), for x c'-' 0. This is 
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because lim,, o(l - x) log(l/(l - x)) = 0. Using this to simplify, we get dog(l/) >> 

_i/2 The change of variable = 1/c yields the equation (log 6)/6 >> n•/ which 

implies 6 <<i/2 log 6. Chasing the last equation further, we get 6 <<n1/2 log n. This 

yields the inequality e >> (n u/2 log n)_1. 0 

The next corollary gives a lower bound for the error rate of any learning algorithm 

that runs in time bounded by 2°(). 

COROLLARY 4.7. Any learning algorithm for monotone Boolean functions under 

the uniform distribution with a running time bounded by 2°() cannot achieve an 

error smaller than f(i/(n'/4 log n)). 

Proof Let A be an algorithm that runs in time for some constant a, and that 

learns any monotone Boolean function over n variables within an error of (n), for any 

n. We will construct another algorithm B that learns any monotone Boolean function 

over n variables in time 2cn  for some c < 1, and achieves an error of 2((cn)2). By 

Theorem 4.6, we must have 26((cn)2) = (l/(\/flogn)), which implies the claim. 

Let in = (on)2. The algorithm B with input EX(f, Un), where f = f(xi.... ) x,) 

is a Boolean function on n variables and Un is the uniform distribution over {0, l}', 

will use the algorithm A for functions over m variables. For this the algorithm B will 

pad the examples (x, f(x)) from EX(f, U) into examples of the form (x o , f(x)), 

where x = (x1,... , x,) and = , Xm) E Urn- n,-The error rate achievable 

by algorithm A to learn monotone Boolean functions on m variables is c = 6(m). The 

algorithm A outputs a hypothesis h with 

o h(x o )J <. 

Algorithm B proceeds by randomly and uniformly choosing values bn,+1,... , bm and 

returning the hypothesis h(xi,... , Xn , bn,+1 ,... , bm ). Note that 

OJO 0 h(x o = E(E[f(x o h(x o i)]) < 6. 
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By using Markov's inequality, Fact 2.5, with probability at least 1/2, a random 

bm gives a 26(m)-approximation to f. If necessary, the algorithm .8 may re-

peat this process often enough to increase the probability of obtaining a 26-approximation 

to f. LI 

4.4.2. Bounds for the Low-degree Fourier Algorithm. We now investigate 

the best error rate of the low-degree Fourier algorithm. The first theorem shows 

that there exists a monotone Boolean function f for which any 6-approximation (in 

the Mean Square Error sense) that uses the low-degree Fourier coefficients f, for 

6 = n_li2, must collect all coefficients of degree less or equal to cm, for some constant 

c<1. 

THEOREM 4.8. For any constant c < 1, there is a monotone Boolean function f 

which satisfies 

> /2() ≥ Q (1/(\/ log n)). 
al≥cn 

Proof Assume for contradiction that there is some constant c < 1 such that for any 

monotone function f 

an12 ≤   

for some constant c. This implies that the low-degree algorithm which searches all co-

efficients of degree at most en will approximate f within an error of O(1/(,/log n)). 

This contradicts Theorem 4.6 modulo constant factors. LI 

The second theorem shows that to approximate the majority function with error 

_h/2 we need to collect all of its Fourier coefficients of order O( 

THEOREM 4.9. The majority function MAJ satisfies ia1>j i4J2(a) ≥ a/\/, 

for some absolute constant a. 

Proof Since the majority function MAJ(x) is a symmetric function, the influences of 

all variables are equal. Thus we have > IaIMAJ (a) = En I I(MAJ) = nli(MAJ). 
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To get abound on I1(MAJ), note that .[1(MAJ) ≥ 2-n (n2) ≥ , for some constant 

c. Now we have the following. 

≤ E Ia[MAJ(a)2 E IaIMAY(a)2 +E IalMAJ(a)2 
a IaI<& 

0 Finally we obtain Ejaj>ms ,nM >cAf(a)2 - 

4.4.3. Sample Complexity. So far we have considered the time complexity of 

PAC learning monotone Boolean functions. As a final result, we mention a known 

application of the Vapnik and Chernovenkis dimension (or VC dimension) to obtain a 

bound for the sample complexity of PAC learning monotone Boolean functions under 

an arbitrary distribution. Sample complexity refers to the number of random labelled 

examples that a learning algorithm requires to find a good approximation. 

In the following we briefly recall some definitions and facts about the Vapnik and 

Chernovenkis dimension. 

DEFINITION 4.2. (Vapnik-Chernovenkis dimension) 

For a subset A C {O, 1}n and a Boolean function f: {O, 1}1 —+ {O, 1}, we denote f IA 

to be the function f IA A - {O, 1} such that fIA(x) = f(x) if x € A and that is 

undefined otherwise. 

If C is a class of Boolean functions over {O, l} then C shatters A C to, 1} f 

{f IA : f E C} = 2A , 

or, alternatively, if for every Boolean function g : A - {O, 1} there exists a Boolean 

function f E C such that f IA = g, i.e., g equals f when the domain is restricted 

to A. The Vapnik-Chernovenkis dimension of a concept class C, VCdim(C), is the 

cardinality of the largest subset A that is shattered by C. 

The following general lower bound result was proved by Ehrenfeucht et al. [EHKV88]. 
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THEOREM 4.10. [EHKV88] Let C be a concept class. Then any PAC learning 

algorithm for C with accuracy e and confidence S must use a sample size of 

≤ (' In  + VCdim(C)) 

We now note the following easy fact. 

FACT 4.11. The Vapnik-Chernovenkis dimension of the class of monotone Boolean 

functions on n variables is at least (n2) ' 

Proof It is easy to see that A = {a E {0, 1} : jal = [n/2]} is shattered by all 
monotone Boolean functions on n inputs. U 

COROLLARY 4.12. Any PAC learning algorithm for monotone Boolean functions 

under an arbitrary distribution with error and confidence S (for sufficiently small 

and 5) requires at least (5 + in ) examples. 
The above observation also has been made by Kearns and Valiant in [KV89, K]. 

Notice that the above gives a complexity bound that is nearly exponential, i.e., 2?t/\/, 

which is larger than 2". This is because the bound above is for the distribution-free 

case. But as mentioned in [KV89], the class of monotone Boolean functions is not 

polynomially PAC learnable under the uniform distribution (thi claim was attributed 

to Ehrenfeucht and Haussler). 

4.5. Polynomial-time PAC Learning 

In this section we shift our focus to efficient or polynomial-time PAC learning of 

classes of monotone Boolean functions. We will consider both the weak and strong 

variants of the PAC model and provide some new learning results in both models. 

Kearns and Valiant [KV89] proved that all monotone Boolean functions are weakly 

PAC learnable under the uniform distribution with error 1/2 - 1/(2n). We will 

improve their result and simplify their proof. We show that there is a weak PAC 

learning algorithm with error 1/2 - (log2 n/n) under the uniform distribution and 
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there is a weak PAC learning algorithm with error 1/2 - S(1/n) under any product 

distribution. 

We will need the following result due to Kahn, Kalai and Linial [KKL88]. 

LEMMA 4.13. [KKL88] Let f be a Boolean function with p = Pr[f(x) = 1] < 1/2. 

Then 
n 

I(f)2 ≥ p2 (log n)2 
i=1 n 

THEOREM 4.14. There is a polynomial-time weak PAC learning algorithm with 

error = 1 - ç (s) for any monotone Boolean function under the uniform distri-

bution. 

Proof We will assume without loss of generality that p = Pr[f(x) = 1] ≤ 1/2, since 

we can take -if(--ixj,... , -ix,) otherwise. This transformation does not affect the 

influences. 

If p < 1/4 (we can estimate this) then the trivial algorithm that outputs the 

hypothesis h 0 is, a weak PAC learning algorithm. Otherwise, if p ≥ 1/4, since 

j2(c) and using Lemma 4.13, 12(ei) ? p2 log2 n/(5n) ≥ log2 n/80n. 

Combining this with Fact 4.2, we use the LMN algorithm to estimate all Fourier 

coefficients of f on the set A = { e : i E [n] }. This yields a weak learning algorithm 

for f with the claimed accuracy. D 

THEOREM 4.15. For any constant k, there is a polynomial-time weak PAC learning 

algorithm with error e = 1 - for any monotone Boolean function under any product 

distribution. 

Proof Given k, we set a = V'2.1241c (the constant 2.124 comes from the constant in 

Theorem 3.12). If IIaII>a f2((2) < 1/2 then, by Fact 4.2, we immediately obtain a 

weak PAC learning algorithm with error 1/4 by using the LMN algorithm to estimate 

all Fourier coefficients of f on the set {a : lal ≤ a}. 
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On the other hand, if we have >111a 11>a 12(a) > 1/2, then by Theorem 3.12, this 

implies that 

l.O62ID (f) ≥ 
a 2 

Hence Ei J(e)   = k/n. So we can use the LMN algorithm to approximate 

all Fourier coefficients of weight at most 1. 

One detail left out in the arguments above is the fact that the learning algorithm 

must first estimate the means /.ti, i e [n], of the underlying product distribution. 

By an analysis similar to the ones given in Section 4.3, the above arguments can be 

adapted accordingly. LI 

We now switch to strong PAC learning and consider proper subclasses of monotone 

Boolean functions. Sakai and Maruoka [SM94] proved that the class of monotone 

0(log m)-term DNF formulas is PAC learnable under the uniform distribution. We 

improve their result in two ways; first, we will learn a larger subclass of monotone 

Boolean functions, and second, we will allow constant-bounded product distributions. 

Recall that a product distribution D = , is called constant-bounded if there 

is a constant c E [0, 1/2], independent of n, such that pi [c, 1 - c], for all i E [n]. 

DEFINITION 4.3. (Generalization of Monotone DNF and CNF) 

Let MON(k) be the representation class of Boolean functions of the form f(T1,... , Ti), 

where f is an arbitrary monotone Boolean function on 0(k) inputs and each T is a 

monotone conjunction or a monotone disjunction over n variables. 

THEOREM 4.16. The class MON(logn) is PAC learnable under constant-bounded 

product distributions. 

Proof Let f E MON(log n) be of the form f(x) = g(r(x),... , Tk(x)), where g is a 

monotone function on k = c1 log n inputs, for some constant c1, and each Ti is either 

a monotone disjunction or a monotone conjunction over the variables x1, x2,... , x. 
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Since the product distribution D is constant-bounded, say c-bounded, for some 

constant c, there is a way of locating efficiently (via sampling) the variables that 

appear in the target function f. From Lemma 3.8, the influence ID,(f) of variable 

xi on f under distribution D is given by 

ID,  (f) = ED[f(x) 0 f(x ed)] = J(a). 

a:a=1 

The first expression shows that ID,(f) can be estimated via sampling. Since D is 

constant-bounded, oj is a constant and therefore if the influence of variable xi on 

i.e., .[D,(f), is small then we may assume that xi = 0. This will incur only a negligible 

approximation error (in the MSE sense) by Fact 4.1. In fact this can be done also for 

projections of f. 

We call a variable xi relevant for a Boolean function f with respect to a distribution 

D if there is a E {0, 1}' with D(a) > 0 so that f(a) 0 f(a ED ed), i.e., .ID,(f) > 0. 

Our learning strategy is to collect relevant variables, i.e., variables with non-negligible 

influences, in a small depth decision tree. Due to sampling, we might need to impose 

a threshold at which we will deem an influence negligible or not (instead of nonzero 

or not). 

Since f depends on e1 log  monotone disjunctions or conjunctions that feed into 

some unknown monotone function g, a random assignment to a variable that appears 

in a monotone disjunction or conjunction will turn the latter into a constant with 

probability at least c. This is because Pr[x = 0], Pr[x = 1] ≥ c, for c-bounded 

distributions. 

We now build a Boolean decision tree of depth d based on the variables with 

non-negligible influences, i.e., they appear in f. Using one of the Chernoff bounds 

expressions 

Pr[X < (1 - 8)] <exp(-82 /2), 

we can force this to be bounded from above by C/flC1. To this end we select 6 = 1/2 
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and 

It ≥ cd ≥ in (f—)62  

This implies that we need a depth of at least 

d ≥ -2 in ncl (_) E O(log n + log (1/)). 

Using this we can claim that the probability that a root to leaf will, with probability 

at least 1 - /C1, set all monotone conjunctions or disjunctions in f to constant. 
This is because if X denotes the number of kills (elimination of a conjunction or 

disjunction), then 

Pr[leaf 54 constant] = Pr[X <ci log n] Pr[X < (1— 

with the choices of 6 and y as above. Hence with probability at least 1 - e, any root 

to leaf path will set all conjunctions and disjunctions to constant. 

We remark that each leaf in the tree must make a decision of whether the projected 

function (induced by the unique path from the root to that leaf) is non-constant or 

not. The leaf is not expanded if sampling shows that the projected function is already 

constant. 

So the hypothesis of this decision tree containing relevant variables from f has an 

error probability of at most e (which is the event that some leaf is not constant). 

The confidence parameter (for PAC learning) will get introduced in the high prob-

ability sampling steps. U 

For an alternative proof of the above result see [B95]. 



CHAPTER 5 

Learning Bounded Width Branching Programs 

A lot of people are afraid of heights. 

Not me. I'm afraid of widths. 

- Steven Wright 

The branching program is a well-studied model of computation in complexity the-

ory. These were used to study and prove non-trivial space lower bounds. In an early 

work, Borodin, Dolev, Fich, and Paul [BDFP86] conjectured that the majority func-

tion is not computable by branching programs with constant width and polynomial 

size. This was disproved by Barrington [Bar89] who proved that the Boolean func-

tions computable by width five permutation branching programs are equivalent to the 

Boolean functions computable by families of bounded fan-in polynomial size and log-

arithmic depth Boolean circuits. This shows that the majority function is computable 

by width five branching programs since it is computable by an NC' circuit family. 

This result indicates the surprising power of bounded width branching programs. 

In this chapter, we will use the branching program model as an alternative repre-

sentation class for studying the learnability of Boolean functions. Using Barrington's 

result combined with the negative result of Angluin and Kharitonov [AK95], we have 

a boundary for non-learnability: we cannot hope to learn width five branching pro-

grams if we make some natural cryptographic assumptions. On the other hand, by 

using the alternative structure provided by branching programs, one can perhaps gain 

more insight into the learnability of Boolean functions that lie below the class NC'. 

57 
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We approach the learnability of branching programs using different techniques. In 

the first part, we use Fourier techniques to show that the representation class of 

monotone width two branching programs is efficiently PAC learnable with member-

ship queries under the uniform distribution. This can be regarded as an extension 

of Jackson's DNF learning result [J94]. Next we show that the representation class 

of width two branching programs with a constant number of sinks is efficiently ex-

actly learnable from equivalence queries alone. A previous result of Bshouty, Tamon, 

and Wilson [BTW96] showed that width two branching programs with two sinks is 

efficiently PAC learnable under any distribution. 

In the last part of this chapter we apply the novel technique of learning multiplicity 

automata due to l3ergadano and Varricchio [BV94] to prove the exact learnability of 

several classes of bounded width permutation branching programs with equivalence 

and membership queries. 

5.1. Characterizations of Width Two Branching Programs 

We recall some definitions of subclasses of width two branching programs as intro-

duced by Borodin, Dolev, Fich, and Paul [BDFP86]. 

DEFINITION 5.1. A width two branching program is strict if it has exactly one 

accepting sink and one rejecting sink. A width two branching program is monotone 

if it has exactly one rejecting sink. 

xl X2 X3 X4 

FIGURE 5.1. Example of a strict width 2 branching program 

It is easy to see that any DNF formula can be converted into a width two monotone 



5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 59 

branching program. Hence the representation class of DNF formulas is contained 

in the representation class of monotone width two branching programs. Moreover 

the inclusion is strict since the parity function is computable by a polynomial size 

strict width two branching program while it is known that it is not computable by 

polynomial size DNF formulas. 

FIGURE 5.2. Example of a monotone width two branching program 

for DNF X1X2X3 V &1x2 

We mention an alternative characterization of strict width two branching programs 

in terms of parity decision lists as shown by Bshouty, Tamon, and Wilson [BTW96]. 

First we define notation for describing classes of parity functions. The class of parity 

functions that depend on at most k relevant inputs will be denoted h• In notation, 

= {(a.a)eb I a E {O,1}',bE {O,1},IaI k}. Note that is the set of literals 

(and including the constant functions) and is the set of all parity functions. 

FACT 5.1. [BTW96] The class SW2 of strict width two branching programs is 

equivalent to the class (2, )-DL. Moreover, any decision list in (2 )-VL has 

at most n2 nodes. 

5.2. Learning Monotone Width Two Branching Programs in the PAC 

Model 

In this section we will prove that monotone width two branching programs are 

efficiently PAC learnable with membership queries under the uniform distribution. 

This result extends an earlier theorem of Jackson [J94] who proved that DNF formulas 

are efficiently PAC learnable with membership queries under the uniform distribution. 
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Our proof relies on the Fourier transform method. To avoid confusion, in this section 

we will adopt the following convention for stating Boolean functions. Recall that 

we denote "normal" Boolean functions, i.e., ones with the range {0, 1}, with lower-

case letters, such as f : {0, l}n -• {0, 1}, and their corresponding {-1, +1}-range 

counterparts with upper-case letters, e.g., F : {0, 1} -* {-1, +1}, and recall that 

they are related by F = 2f - 1 and f = Whenever necessary we will remind 

the reader of this convention. 

5.2.1. The Harmonic Sieve Learning Algorithm of Jackson. As we have 

seen from previous chapters, there is a simple PAC learning algorithm due to Linial, 

Mansour, and Nisan [LMN93] that works by estimating all Fourier coefficients of the 

target function on a specific isolated region in the Boolean cube. For the class of AC° 

and monotone Boolean functions we know that this region is the set of all coefficients 

with Hamming weight at most polylogarithmic in n and square root of ii, respectively. 

Unfortunately there are classes of functions, such as polynomial-sized decision trees, 

which have a small collection of "heavy" frequencies but whose locations are depen-

dent on the structure of the function. So one cannot use the algorithm in [LMN93] 

since the algorithm does not know where the important frequencies are. In 1991, 

Kushilevitz and Mansour [KM93] gave an important algorithmic procedure to search 

for heavy frequencies using membership queries. Let us call their algorithm the KM 

algorithm. Their method enables one to locate the significant Fourier coefficients 

without a priori knowledge of where they lie in {0, l}n. So now any class of functions 

which has a small collection of important Fourier coefficients is efficiently learnable 

in the PAC model with membership queries under the uniform distribution. In par-

ticular this implies that the class of polynomial size decision trees are efficiently PAC 

learnable with membership queries under the uniform distribution. 

The next progress in the Fourier-based learning algorithms came when Jackson 

applied the idea of boosting to the KM learning algorithm. He devised an algorithm 
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which he called the Harmonic Sieve algorithm that is capable of learning DNF for-

mulas in the PAC model with membership queries under the uniform distribution. 

Intuitively, Jackson's idea is as follows. First one shows that a Boolean function has 

a mild correlation with a parity function. In the Fourier language this translates to: 

one of the frequencies is a good "weak" approximator to the function. Next, one 

uses the KM algorithm to find this frequency pattern. At this point we have already 

obtained a weak learning algorithm. To get a strong learning algorithm we apply a 

hypothesis boosting algorithm that combines several weak learning algorithms into 

a single strong learning algorithm. In his beautiful paper [J94] Jackson proved the 

following theorem. 

THEOREM 5.2. [J94] The class of DNF formulas is efficiently PAC learnable from 

membership queries under the uniform distribution. 

We outline the technical arguments used by Jackson and illustrate how we modify 

them to prove the learnability of monotone width two branching programs. The first 

key fact about DNF formulas is that each correlates well with some parity function 

XA, A E {O, 1}, under any distribution. Recall that XA(x) = (—l)EA" defines a 

parity test on the bits designated by A viewed as a subset of [n]. Thus, if f is a DNF 

formula of size s (f has .s terms) and D is an arbitrary distribution, then there is 

some A such that 

IED[FxA]I≥ 2s+1 

We remind the reader that F is the {-1, +1}-version of f. Using the above inequality, 

since ED [FXA] = PFD [F = xAI - PrD [F 54 XA], we derive the following. Assume 

without loss of generality that ED [FXA] is positive (the other case is symmetrically 

similar). Then 

1 

1 
ED[FXA] = 1 - 2Pr[F >   r{J7x4j XA] - 2s+ 1 D 2 2(2s + 1) 

1 
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This is good news since it means that the parity function XA is a potential hypothesis 

for weak learning f. The problem is that we do not know the set A. 

The second key fact is that there is an efficient algorithm due to Kushilevitz and 

Mansour [KM93] to find parities that correlate well with certain Boolean functions 

assuming that the underlying distribution is uniform. So weakly learning DNF under 

the uniform distribution is possible by combining these two facts [BFJ94]. 

The third ingredient is a boosting algorithm, developed by Freund [F90], that can 

turn any weak learning algorithm into a strong learning algorithm. This does not 

solve the DNF learning problem immediately since the boosting algorithm assumes 

that the weak learning algorithm works under arbitrary distributions (not just the 

uniform distribution). This is because the boosting method works by running the 

weak learning algorithm on a carefully chosen set of modified distributions. 

Jackson then supplied the missing pieces: he proved that the boosting algorithm of 

Freund combined with a modified version of Kushilevitz and Mansour's algorithm will 

still work since the distribution is not being perturbed too much (he quantified pre-

cisely this intuition in [J94]). Also by the first fact, DNF formulas are still guaranteed 

to correlate well with some parity when the distribution is slightly changed. In fact 

the only property that is ever needed about DNF formulas to get the learning result 

is the first fact. The resulting algorithm is the Harmonic Sieve learning algorithm. 

To prove our PAC learning result we will show in the next section that the first 

fact holds for monotone width two branching programs. Using this we can then claim 

the following theorem. 

THEOREM 5.3. The class M)/V2 of monotone width two branching programs is 

efficiently PAC learnable with membership queries under the uniform distribution. 

5.2.2. A Fourier Correlation Lemma. In this section we prove the following 

lemma that states that any monotone width two branching program correlates well 

with some parity function under any distribution. The fact that the lemma is true 



5. LEARNING BOUNDED WIDTH BRANCHING PROGRAMS 63 

for any distribution is critical for the boosting stage in Jackson's harmonic sieve 

algorithm. 

LEMMA 5.4. For any F E MW2 with s accepting sinks and for any distribution D 

there is a parity Xc such that 

IED[Fxc]l>  1 
- 23n2+1 

Proof Let f E M)/V2 be computed by a monotone width two branching program 

with s sinks. Note that each accepting sink defines a subportion of the branching 

program that is a strict width two branching program. Let ga,... , g3 be the functions 

computed by the a subportions associated with the a strict width two branching 

programs (see Figure 5.2). Note that 

f=  g1V V ... V g8. 

Hence there is a subportion gj so that 

Pr[g=1]>Pr[f=1]. 
s D 

We fix our attention on this subportion gj and call it g. 

Using Fact 5. 1, g E SW2 is equivalent to a decision list in (2, (D ,,)-DL. If g is 

defined as 

G {(Xai,Xb,), (Xa2,Xb2))... , (Xam,X&m)1 

(recall that G is the {-1, +1}-version of g) then it can be rewritten as 

M + Xa1 1 + Xb  u1 1 - Xa3  

i=1 2 2 j=1 2 

Let 

- 1 + Xa; 1 + Xb1 1 - Xaj  

2 2 2 
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Then 

= ED [F (t 1 + Xaj 1 + Xb ijj 1 - Xaj  
2 2 2 j=i 

?fl m 
ED F E hil = ED[Fh] 

i=i i=i 

≤ EJED[Fhj]I ≤ m JED [Fh o] 

where i0 E [m] is such that JED [Fhjjj is maximum. We now rewrite 

jo—i -I 
. " Xaj  11  ri iici 1 

= cE{O,i}t0l Lv') XA J, 
j=i 

where Ac = The last summation operation is the addition operation over 

1F' (bitwise exclusive OR). Thus we have 

hio - 1 + Xa 10  1 + Xb 0 1 - Xaj 
- 2 2 ri 2 

1 + Xai0  1 + Xb 0  
= 2 2 E{o,1}io—l[(-1) 1 1XAJ 

= 

where the probability space S is over c uniformly chosen from {O, l}io_1 and 

uniformly chosen from {O, 1} and where B = f3a -yb 0. Combining this with 

an earlier expression we get 

ED [Fh 0] = ED[FE5[(_1)IaIXB ]] = Es[(_1)11ED[FxB]] <Es[IED[FXB]l]. 

We may now claim that there is a choice a0, 18o, 'yo with C = A 0 3oa0 7ob so 

that 

IED[Fxc]l ≥ IED[FhiO]I 

Since g implies f we have the following relation (we remind the reader that F has 

range {-1, +1} and g has range {O, 1}) 

ED[F9] = ED [g] = 1r[g = 1] ≥ Pry = 1] = ED[F] +1  
2s 
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Hence, we have 

IED [FXC]I ≥ E[F]+1  
2sm 

So either IED [Fxc]l ≥ 1/(2sm + 1) or ED[F] = ED[Fxo] ≤ —1/(2sm + 1). Noting 

that by Fact 5.1 m ≤ n2, we obtain the desired claim. U 

5.3. Exact Learning Width Two Branching Programs with 0(1) Sinks 

The study of the learnability of bounded width branching programs was initiated by 

Ergün, Ravi Kumar, and Rubinfeld [ERR95]. They show that a restricted variant of 

width two branching program is efficiently PAC learnable under any distribution and 

is properly efficiently PAC learnable under the uniform distribution. These results 

were refined by Bshouty, Tamon, and Wilson [BTW96] who proved that width two 

branching programs with exactly two sinks, i.e., strict width two branching programs, 

are properly efficiently FAG learnable in the distribution-free model. In this section 

we show that the class of width two branching programs with a constant number of 

sinks is efficiently exactly learnable using equivalence queries. 

We will use the notation k-sink W2 to denote the class of width two branching 

programs with at most k sinks. 

THEOREM 5.5. The class k-sink W2 of width two branching programs with k sinks 

is efficiently exactly learnable using equivalence queries. 

We will prove this theorem by transforming a width two branching program into a 

special type of decision list, and then prove that the latter type is efficiently exactly 

learnable with equivalence queries. In our proof we will require the notion of rank of a 

Boolean decision tree that was considered, among others, in the work of Ehrenfeucht 

and Haussler [EH89]. 

DEFINITION 5.2. (Rank of a binary tree) 

Let T be a binary tree. The rank of T is defined as the rank of its root node. The 
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rank of a node is defined inductively as follows. For a non-leaf node v, let vL and yR 

be the left and right child, respectively, of v. 

0 

rank(v) = 1 + rank(vL) 

max{rank(vL), rank(vR)} 

if v is a leaf 

if rank(vL) = rank(vR) 

if rank(vL) rank(vR) 

The notion of rank is meant to capture the bushiness of a binary tree. Note that a 

list has rank 1 whereas a complete binary tree of depth d has rank d. 

In the first lemma we prove that the set of Boolean functions computable by k-

sink width two branching programs is a subclass of Boolean functions computable by 

rank-k decision trees with parity nodes. 

LEMMA 5.6. For k ≥ 2, the class of .Boolean functions computable by k-sink width 

two branching programs is a subclass of the class of Boolean functions computable 

by rank-k decision trees with parity nodes, i.e., , -VT. 

Proof We will prove the lemma by induction on k. For k = 2, the claim states that 

strict width two branching program or SW2 is a subclass of rank-2 ED,, -VT. But 

this is true by Fact 5.1, since SW2 is equivalent to (2, )-VL, and an element 

f E (2, E),,,)-DL can be turned into an element of rank-2 -VT (by trivially 

adding two new nodes for each leaf of f). 

Assume that the claim is true for all width two branching programs with at most 

k - 1 sinks, k ≥ 3. Consider a width two branching program B with k sinks. B can 

be decomposed into k strict width two branching programs. Let L be the first strict 

width two branching program and let b E {0, 1} be the label of its sink. By Fact 

5.1 L1 can be converted into a decision list of type (2, E) ,,)-DL. By induction the 

remaining portion of B can be written as a rank-(k - 1) decision tree T with parity 

nodes. We attach T to each leaf node of L1 as follows. For each leaf node 1 of L1, we 

create an outgoing edge labeled with —1 (or 0) going into T and an outgoing edge 
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labeled with +1 going into the constant function b. Note that the resulting decision 

tree is of rank k, since the new rank of the leaves of L1 is now k (the rank of T) and 

hence the new rank of the internal nodes of L1 is also k. This completes the inductive 

argument and hence the lemma. 0 

LEMMA 5.7. The class of Boolean functions computable by rank-k decision trees 

with parity nodes is a subclass of Boolean functions computable by decision lists 

whose nodes are parity of monomials, where each monomial is of size at most k. In 

notation, rank-k -VT is a subclass of ED Ak -DL. 

Proof The following proof is an adaptation of Blum's argument [B192]. Let T be a 

rank-k decision trees with parity nodes. Because of its rank, T has a leaf node that 

is of depth at most k (Lemma 1 in [B192]); call this leaf node x. Let p be the parent 

of x and let T be the other subtree of p. 

Create a node nx in the decision list that is labeled with a conjunction of at most 

k parity questions (induced by the root to leaf path ending in x). This conjunction 

of parities can be converted into a parity of conjunctions where each conjunction is 

of size at most k. 

The next crucial step is that we can remove from T the nodes p and x, and reattach 

the parent of p directly to T. The resulting tree is still a rank-k' decision tree with 

parity nodes, where k' ≤ k. If k' = k then we may repeat the same process until 

the rank reduces to k - 1. At that point we appeal to an inductive hypothesis and 

complete the lemma. 0 

Finally we show in the following lemma that Ak -'DL, and hence k-sink width 

two branching programs, are efficiently exactly learnable from equivalence queries. 

The idea is to use the algorithm for learning nested differences of intersection-closed 

concept classes due to llelmbold, Sloan, and Warmuth [HSW9O]. 

LEMMA 5.8. The class A -'DL of decision lists whose nodes are parities of mono-

mials of size at most k is efficiently exactly learnable using equivalence queries. 
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Proof By the transformation technique of Littlestone [L88], it suffices to prove the 

claim for the concept class of decision list with parity nodes, i.e., ED,,, -DL. That is, 

we can create new variables for each k-subset of the variables and learn the target 

concept as a new function over at most n + n1 variables. 

To exactly learn -DL we will show that we can express any element of EN -DL 

as a nested difference of vector spaces over ]F'. Since vector subspaces are closed under 

intersection, we can appeal to an algorithm for exactly learning nested differences of 

intersection-closed concept classes due to Helmbold, Sloan, and Warmuth [HSW9O]. 

Assume that the target concept f E -DL is given by 

f = ,(Xak)bic)I, 

where a1, a2,... , aj, E {O, 1}'n and b1, b2,... , bk E {O, l}. We compress consecutive 

leaves that output the same value. This is permissible since consecutive parity tests 

can be turned into a membership test for a subspace L that halts at the leaf if the 

test failed and proceeds to the next node if the test is passed. When the compression 

process is finished, we will end up with a decision list whose internal nodes are labeled 

with membership tests for subspaces. So assume that we have 

f = [(L1, ci), (L2, C2), . .. , (Li, Ct)], 

where t ≤ k, the Li's denote subspaces, and c1,... , c E {O, 1} are alternating in 

value. Again we remind the reader that the value c1 will be output if the example 

does not belong to the subspace L1, the value c2 will be output if the example belonged 

to L1 but not to L2, and so on. Assume without loss of generality that c1 = 0 (the 

case when c1 = 1 can be treated as easily). Then we have the following form 

This completes the proof. E 
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5.4. Exact Learning Permutation Branching Programs 

In the next sections we study the problem of learning bounded-width permutation 

branching programs. First we define the notion of a permutation branching program 

introduced by Barrington {Bar89]. 

DEFINITION 5.3. (Permutation branching program) 

Let P be a group of permutations on w elements. A permutation branching program 

(PBP) of width w and length 1 is given by a sequence of instructions (j(i),gi, hi), for 

o ≤ i < 1, where 1 < J* (i) n and gi, hi E P. A permutation branching program 

has on each level i, w nodes v,1,... , v. On level i we realize cr(x) = gi if = 0 

and u(x) = hi if Xj(i) = 1. The branching program computes 

U(X) = ul_i(x)01_2(x) . . . o0 (x) E P 

on input x E {0, l}n. The permutation branching program computes a Boolean 

function f on n inputs via r if or(x) = id, for x E f'(0), and o(x) = r 0 id, for 

x E f 1(1). 

x11 X2=O X3=1 

FIGURE 5.3. Example of S3-PBP computing the identity permutation 

Barrington proved that any Boolean function computable by an NC' circuit, i.e., 

a Boolean circuit of polynomial size and logarithmic depth, is also computable by a 

width five permutation branching program. In this section we will show that per-

mutation branching programs of width three and four are efficiently learnable in the 

exact identification model with equivalence and membership queries. So in fact we 
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come quite close to the non-learnability barrier given by Angluin and Kharitonov 

[AK95] for width five branching programs. 

The technique that we will use comes from automata theory. In particular we 

will use the representation class of multiplicity automata over finite fields. The novel 

use of this representation class of automata was recently introduced by Bergadano, 

Catalano, and Varricchio [BV94, BCV96]. For more information on the applications 

and limitations of this method we refer the reader to [BBBKV96]. 

5.4.1. Multiplicity Automata. We describe relevant definitions from the the-

ory of multiplicity automata and state a recent result on the learnability of multiplicity 

automata [BV94, BCV96, BBBKV96]. We will also prove a lemma that describes a 

non-trivial closure operation on this class of automata. 

DEFINITION 5.4. (Multiplicity automata) 

Let IC be a field. A nondeterministic automaton M with multiplicity is a five-tuple 

M(, Q, E, I, F) where E is a finite alphabet, Q is the finite set of states, I, F: Q — p IC 

are two mappings associated with the initial and final states, respectively, and 

E:QxExQ —>X 

is a map that associates a multiplicity to each edge of M. We will sometimes call M 

a AC-automaton for brevity. The size of M is the number of states, i.e., IQI. 

Let x = (x1,... , x,) . A path for x is a sequence 

p= (p1,xj,p2),(p2,x2)p3),... ,(pn)Xn,pn+i), 

where pi E Q, for all 0 < i ≤ n + 1. Let PathM (x) denote the set of all paths 

for x. The behavior of M is a mapping SM : —* AC defined as follows: for each 

n 

SM(X) = I(p1) (11=1 E(P,X,P +l )) F(p 1). 
pEPathM(s)  
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For a Boolean function over - {O, 1}, we say that a multiplicity automaton 

M computes f if for all x E we have SM(x) = f(x). Alternatively one may think 

of f as a characteristic function of a language over E*. 

OOO 
0 

0,1 

FIGURE 5.4. Example of F2-automata for DNF x123 V f1X2 

In the following we will describe several operations on multiplicity automata, namely 

the Hadamard product, union, and scalar multiplication. In effect we will argue that 

multiplicity automata are closed under these operations. 

DEFINITION 5.5. (Closure operations) 

Let K be a field. Let M1(,Qi,E1,I1,F1) and M2(E,Q2,E2,I2,F2) be two it-

automata. 

(1) The Hadamard product of M1 and M2, denoted by M1 0M2, is a AC-automaton 

M(E, Q, E, I, F) where Q = Qi X Q2, and I, F, E are defined as I(q1, q) = 

Ii(qi)I2(q2), F(qi,q2) = Fi(qi)F2(q2), and 

E ((q, p), a, (q', p')) = Ei(q,a,q')E2(p,a,p'). 

Note that M has IQ1IIQ2l states. Moreover M satisfies 

SM(x) = SM1(x)SM2(x). 

(2) Assume that 91 and Q2 are two disjoint sets of states. The union of M1 and 

M2, denoted simply by M1 U M2, is a it-automaton where M(, Q, E, I, F) 

where Q = Q1UQ2, and I,F,E are defined as 1(q) = Ii(q)[q E Qi]+I2(q)[q E 
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Q2], F(q) = Fi(q)[q E Qi] + F2(q)[q E Q211, and 

E(q,a,p) = Ei(q,a,p)[q,p E Qi]+ E2(q,a,p)[q,p E Q2]. 

Note that M has IQiI + 1Q21 states. Moreover M satisfies 

SM(x) = SM1(x) + SM2(x). 

(3) For any A E AC, the automaton AM, is defined to be the AC-automaton M(E, Q, E, I, F) 

where Q = Q, I = Al1, F = F1, and E = B1. Note that IQI = IQI and that 
M satisfies 

SM(x) = 

Next we prove a result that yields another closure operation, namely constant 

Boolean combinations of multiplicity automata. 

LEMMA 5.9. Let p be a fixed prime. Let ,gj be Boolean functions that 

can be computed by ]F'-automata of size at most .s. Then for any Boolean function f 

on k inputs, f(gi,g2,... ,g.) can be computed by a 11!-automaton with at most 

states. 

Proof The function f(gi,g2,... ,gj) can be written as 

k 

i Ac, flg, 
aEV i=1 

for some Ac, E ]F. Since 91,92, . • , gk take values {O, 1}, we may assume that 

a1,... , aj E {O, 1}. Therefore we can write 

k 

Apflg, 
i=1 

for some Ap E JF',. By the properties of Hadamard product {J yf' has a multiplicity 
]F'-automaton of size at most s. The multiplication with Ap admits another Li,-

automaton of size Then summing 2k of such ]?-automata gives an automaton 

with size at most 2s1c. 0 
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A multiplicity oracle MULM () for a K;-automaton M is an oracle that receives as 

input a string x € EK and returns SM(x). For some concept classes, the multiplicity 

oracle reduces to the membership oracle. The following result was established in 

[BV94] and was further studied in [BBBKV96]. 

THEOREM 5.10. [BV94] For any field K;, the class of behavior mappings SM 

- IC, for any IC-automaton M(, Q, E, I, F), is efficiently exactly learnable from 

equivalence and multiplicity queries. The learning complexity is polynomial in 

IQ 1,  the size of the longest counterexample seen, and the size of the field K. 

5.4.2. Transformation to Small-depth Circuits. In this section we will show 

that small-width permutation branching programs are efficiently exactly learnable 

from equivalence and membership queries. Our technique for proving learnability is 

to use known connections between bounded-width permutation branching programs 

and small-depth Boolean circuits with modular and threshold gates and to prove that 

the latter classes are efficiently exactly learnable. 

We introduce some notation for describing small depth Boolean circuits with mod-

ular and threshold gates. A rrtod gate over n Boolean inputs x1,... , xn is defined as 

follows: 

mod(xi,... ,x) = 1 if 0 (mod ) 
0 otherwise 

A weighted threshold gate with integer weights ä = (a1, a2,... , a4 E ZTh and a thresh-

old b E Z over n Boolean inputs, denoted by TH b, is defined as follows: 

11 
TH b(x) = 

10 

if a1x1 + a2x2 + ... + ax ≥ b 

otherwise 

That is, THb(x) = aixi ≥ b]. Note that THkn = THjn n,k. The class of Boolean 
functions computable by a threshold gate with integer weights is denoted by LT1. We 

define the weight or size w(TH$b) of a threshold function TH to be Ibi + >I jail. 
The representation size of a threshold function f is w(f). 
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The class modz is the class of modq functions, for all integers q e Z. For notational 

simplicity, we will adopt the following convention. For two classes of gates or functions 

A and B, we denote A-B circuits to be the class of Boolean functions computable by 

a depth two Boolean circuit with a gate from A at the top and gates from B at the 

bottom level. For example, a mod-modz circuit is a depth two Boolean circuit that 

has a mod gate at the top and arbitrary modq gates, q E Z, at the bottom level. 

Note that we allow modq gates with possibly different q's at the bottom level. 

THEOREM 5.11. For any fixed prime p, the class of modp-modz circuits is efficiently 

exactly learnable using equivalence and membership queries. 

Proof It suffices to exhibit a multiplicity automaton for the target mod-modz circuit. 

Let IC = 1,. We construct for each modq gate, q E Z, a IC-automaton that accepts 

it. Next we combine these automata into a single IC-automaton by taking the union 

of all the automata for the modq gates. By Fermat's Little theorem, the Hadamard 

product of M with itself p - 1 times computes the target mod,,-modz circuit. 0 

Next we will show that Boolean functions computable by threshold gates with 

integer weights can be represented by a multiplicity automaton. 

LEMMA 5.12. The class LT1 admits a representation as an 1F'-automaton, for any 

prime p. 

Proof Suppose that f(x) [t 1 ax b] where E ZTh and b E Z. Let A = 

jail + Ia2l + ... + lani + 1. We construct the automaton M with state set Q = {qj,j: 

i E [—A, A], j E [rt + 1] }. The edge set contains only the following edges (assigned a 

multiplicity of 1, while other edges are assigned 0 multiplicity): 

(qj,j, 0) qi,j+i), (qi,j) 1, qi+a,j+i) E E 

for all i E [A] and j E [n]. Set I = {qo,o} and F = I i ≥ b}. 0 
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Using the above lemma we can claim (as before) that the class of Boolean functions 

computable by mod or a constant Boolean combination of threshold functions is 

efficiently exactly learnable. 

COROLLARY 5.13. For any fixed prime p, the class mod-LTi is efficiently exactly 

learnable using equivalence and membership queries. 

We remark that proving the learnability of the class of Boolean functions com-

putable by i2Ti-mod circuits will prove the learnability of DNF formulas. This is 

because Krause and Pudlák [KP94] (see also [J94]) have proved that any DNF formula 

can be expressed as a majority of parities. 

Xl X2 X3X4... Xn Xl X2 X3 X4.. Xn 

FIGURE 5.5. Examples of modq-LT, and modq-modz circuits 

Let 83 be the symmetric group on [3] and A4 be the alternating group on [4]. We 

will exploit some known circuit characterizations of permutation branching programs 

to prove the learnability of 83 and A4 permutation branching programs. The following 

fact about 83 permutation branching programs was proved by Barrington in his thesis 

[B86]. 

FACT 5.14. The class of Boolean functions computable by S3 permutation branch-

ing programs is equivalent to the class of Boolean functions computable by mod3-mod2 

circuits. 
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THEOREM 5.15. The class of Boolean functions computable by 83 permutation 

branching programs is efficiently exactly learnable using equivalence and membership 

queries. 

Proof Follows from Theorem 5.11. El 

In [B], it is mentioned that A4-PBP is equivalent to a (mod2, mod2)-mod3 circuit, 

i.e., a depth "two" circuit consisting of mod3 gates at the bottom level coming into 

two mod2 gates at the second level. The outputs of the two mod2 gates are then 

combined using an AND gate. 

FACT 5.16. The class of Boolean functions computable by A4 permutation branch-

ing programs is equivalent to the class of Boolean functions computable byA-(mod2, mod2)-

mod3 circuits. 

To prove that A4 permutation branching programs are efficiently exactly learnable 

using equivalence and membership queries, we prove the following general result. 

FIGURE 5.6. Barrington's circuit characterization of 8, A4-PBPs 

THEOREM 5.17. Let g1,g2,... ,g,. be Boolean functions that can be computed by 

a multiplicity Fr-automata of size at most .s. Then for any Boolean function f on k 

inputs, f(gi, g)... ,g) is exactly learnable using equivalence and membership queries 

in time s 0(1c)• Thus, learning is efficient if  C 0(1). 
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Proof Follows from Lemma 5.9 and Theorem 5.10. E 



CHAPTER 6 

Learning Boolean Functions with the A/P Oracle 

In the PAC learning model, it is a known result that if P = A2 then there is an 

efficient learning algorithm for the class of DNF formulas as well as for the class of 

Boolean circuits. This is because in the PAC model to guarantee learnability, among 

others, it suffices to be consistent, i.e., that the following problem can be solved 

efficiently. 

Consistency Problem for Class C 

Input: A list {(ai,bi),... ,(am,bm)} SO that aj E 10, I}n and bi E 

{O, 1}, for each i E [in]. 

Output: A representation f E C so that for all pairs (ad, b), f(a) = b. 
If no such f exists then output No. 

Informally, a consistent f E C is an approximation with accuracy e and confidence S 

for a sample of size In 9. So, if in CI °(') then this yields a polynomial-time 

PAC learning algorithm for C, assuming that the consistency problem can be solved 

in polynomial-time in the input size. 

Unless otherwise specified we will assume that the concept class C is polynomial-

time evaluatable, i.e., for any concept f in C and any assignment a, there is a 

polynomial-time algorithm for computing f(a). Note that the above consistency 

problem is solvable by a nondeterministic polynomial time Turing machine since af-

ter guessing a representation f E C, it is easy to verify that the representation is 

consistent with the input list. 

78 
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This result is not that obvious in the exact learning model because of the adversarial 

nature of the counterexamples as well as the exact identification criterion, i.e., being 

consistent is not always a good strategy in the exact learning model. 

The main question asked in this chapter is how helpful can an JVP oracle be to 

exactly learn polynomial size Boolean circuits and DNF formulas. The answer turns 

out to be positive: we can learn exactly Boolean circuits and DNF formulas with the 

help of an J7 oracle and equivalence queries. Moreover any Boolean function that 

is exactly learnable with polynomially many membership queries (with no bounds 

on the time complexity) is exactly learnable with the help of an .1\f P oracle and 

membership queries in polynomial time. 

The idea used to show these results is a combination of a standard majority-vote 

algorithm called the Halving algorithm and a method of randomly generating combi-

natorial structures due to Jerrum, Valiant, and Vazirani [JVV86]. 

A consequence of the first result is that if the class of polynomial size DNF formulas 

is not exactly learnable then P is not equal to JV7. The same statement holds for 

polynomial size Boolean circuits. More surprising is the consequence observed by 

Watanabe: if each language in .Au7' is solvable using a family of polynomial size 

Boolean circuits then the polynomial-time hierarchy collapses to ZP'P'. 

6.1. Uniform Generation of Polynomial-time Structures 

In this section we motivate the problem of uniformly generating eleinents from 

some combinatorial structure. Let R be a polynomial-time computable relation, i.e., 

suppose there is a polynomial-time algorithm that decides if xRy, for any given x and 

y. There are two natural questions that have been asked in complexity theory: 

• Existence: Given x, does there exist a y so that xRy? 

• Counting: Given x, how many y's are there so that xRy? 

A famous example of the existence-type question is the Boolean formulas satisfiability 

question. Given a Boolean formula in conjunctive normal form q, does there exist a 
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satisfying assignment for q? The famous example for the counting-type question is 

the problem of counting the number of satisfying assignments for a Boolean formula. 

Jerrum, Valiant, and Vazirani [JVV86] introduced the following intermediate prob-

lem: 

• Uniform generation: Given x, pick a y uniformly at random so that wRy. 

An example of this is, given a Boolean formulas 4, to find a random satisfying as-

signment for q. The authors of [JVV86] came up with a beautiful method for ap-

proximately uniformly sampling combinatorial structures using a probabilistic oracle 

Turing machine that has access to an AlP-oracle. 

DEFINITION 6.1. (Approximately Uniform Distribution) 

Let D be a probability distribution on a discrete probability space fl and S 

Then D is uniform on S if, for all x E : 

liiisi ifxES 

10 otherwise 

Also, for e e (0, 1], D is approximately uniform on S with tolerance e if, for all x E fl: 

c where(1+e) 1j ≤c(1+e)*ifxES 

0 otherwise 

The main result from [JVV86] that we need is the following theorem, which we 

have stated in an alternative form. 

THEOREM 6.1. Let {C1}1 be an indexed family of sets. Suppose that there is 

an algorithm that, on input f and I, determines whether or not f E Ci in time 

polynomial in 111. 

Then there exists a probabilistic oracle algorithm that uses an Al'? oracle and, on 

input I and e, runs in time polynomial in 111, log , and outputs f according to a 

distribution that is approximately uniform on C1 with tolerance e. 
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We remark that technical arguments must be made regarding the randomness re-

quired by the probabilistic Turing machine in Theorem 6. 1, i.e.,, assuming only the 

presence of fair random coins, is sometimes not enough. Whenever necessary we will 

assume an extended model for randomized algorithms as described by Sinclair in his 

thesis [Si]. 

In one particular application of Theorem 6.1 we need to generate a random DNF 

formula f on n inputs that is consistent with a set I of labeled examples, where 

I C {O, 1} x {O, 1}. It is easy to see that there is a polynomial-time algorithm 

that can decide if f is consistent with I; simply scan the list I and check that f 

agrees with all labeled examples. This is true also for the case when f is a Boolean 

circuit. So Theorem 6.1 provides a method of sampling consistent concepts (DNF or 

Boolean circuits) according to a distribution that is almost uniform. We will then 

show that this combined with a method due to Kannan [K93] is enough to yield an 

exact learning algorithm using equivalence queries. But the key algorithmic idea will 

rest on a generalization of the Halving algorithm which we discuss in the following 

section. 

6.2. The Halving Algorithm Revisited 

The Halving algorithm [Ang88, L88] is an exact learning algorithm using equiva-

lence queries that can be applied to learn any concept class C by asking at most log IC I 
equivalence queries. The idea of this algorithm is simple: it maintains at each step 

the collection of concepts in C that are consistent with the counterexamples received 

so far. It then asks an equivalence query that is the majority of all these remaining 

concepts. Any counterexample to this equivalence query will eliminate at least half 

of the consistent concepts. In the end there will be only one concept remaining and 

it will be consistent with all the counterexamples. 

Following Littlestone [L88] we introduce some necessary notation to describe the 

Halving algorithm that will also be useful in later sections. 
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DEFINITION 6.2. (Consistent concepts C1) 

For a concept class C over {O,1In, x e {O,1}, and b e {O,1} define C(7,b) = {f E 

CIf(x) = b}. For a set of labeled examples I C {O, 1 Ix {O, 1}, define 

Ci = {f E C: f(x) = b, for all (x,b) E I}. 

Given a concept class C, the majority of all concepts in C, in notation MAJ(C) 

is defined to be the following function. 

MAJ(C)(x) = 
1 if I{f G C : f(x) = 1}I ≥ ICJ/2 
0 otherwise 

Although the Halving algorithm is a general-purpose exact learning algorithm, it 

has several undesirable features. First, it is not guaranteed to be a proper learning 

algorithm, i.e., the concept class may not be closed under taking majorities. Second, 

the size of its hypothesis to the equivalence query can be quite large, e.g., initially it 

is the majority of all concepts in the target class. 

In a very nice paper Kannan [K93] proposed a randomized version of the Halving 

algorithm. His algorithm extends the Halving algorithm in two ways. 

• Instead of discarding at least half of the concepts at every step, it discards 

some, perhaps, smaller fraction S> 0. 

• Instead of using the majority vote on all remaining concepts, it uses a majority 

vote of a small random subcollection of the concepts. 

Kannan proved that at each step, there is a small subcollection of the consistent 

concepts whose majority vote behaves almost as well as the majority vote on all 

concepts. In the following we will formally elaborate details of Kannan's algorithm 

along with some extensions. 

DEFINITION 6.3. (A 8-good hypothesis) 

Let C be a concept class and let S E [0, ]. A hypothesis h is 8-good for C if any 
counterexample to an equivalence query of h eliminates at least a 8 fraction of elements 
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from C. Note that the majority hypothesis is 0.5-good for any concept class. 

DEFINITION 6.4. Let C be a concept class, let x be an assignment from {0, 1}', 

and let b E {0, 1} be a bit value. Then we define 

-   a - a a 
- - 

Thus C1 is the set of concepts in C that properly classify all examples in the labeled 

example set I and is the fraction of C that classifies example x with label b. 

We can define the 8-Halving algorithm to be a variant of the Halving algorithm 

that repeatedly asks an equivalence query that is a 8-good hypothesis for the set 

of concepts not discarded before. Starting with concept class C, after i queries the 

number of concepts left is at most (1 - S)ICI. So at most 

1 
lnCl/ln 1  < In Cl 

equivalence queries are required to isolate the target concept. 

The next improvement introduced by Kannan, and further generalized in [BCKT94, 

BCG+], is to use the notion of amplifiers in obtaining a 6-good hypothesis. The con-

cept of amplification was studied by Valiant and Boppana [V84a, Bop89]. Amplifica-

tion was also used in learning by Goldman, Kearns, and Schapire (see [S]). 

DEFINITION 6.5. (Amplifier) 

Let 0 < p' <p < q < q' ≤ 1. A (Boolean) function G(yi,... , y,,) is a (p, q) -+ (i1 q') 

amplifier if: 

(1) When Yi,•.. , Ym are each independently set to 1 with probability at least q, 

Pr[G(yi,... ,Ym) = 1] ≥ q'; 

(2) When Yi,... , Ym are each independently set to 1 with probability at most p, 

Pr[G(yi,... ,Ym) = 11 ≤p'. 

The following lemma is an improvement on Kannan's observations on the connec-

tion between amplification and equivalence queries. 
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LEMMA 6.2. Let G(yi,... , Ym) be a (8, 1-8) -+ (2_2Th , 1_2_2n) amplifier. Let C be 

a concept class over {O, l}n and fi,... , fm be functions selected from C independently 

and uniformly at random. Then, with probability at least 1 - 2, G(f1,... , fm) is 
8-good for C. 

Proof Note that, if 6 ≤ 1-6 then, if x is returned as a counterexample to any 

equivalence query, a 8-fraction of the elements of C are guaranteed to be eliminated. 

Now, let x be any value for which <6. Then, if x is returned as a counterex-

ample to some fi for which f(x) = 1, less than a 6-fraction of the elements of C will be 

eliminated; otherwise, more than a 6-fraction. For a fi E C chosen uniformly at ran-

dom, Pr[f1(x) = 1] < 8. Therefore, since G(yi,... , ym) is a (6, 1-6) —+ (2_2 , 1_2_2Th) 

amplifier, 

Pr[G(fi,... ,fm)() = 1] <2'. 

Thus, the probability that less than a 8-fraction of the elements of C are eliminated 

when x is returned as a counterexample is < 22n• 

A similar argument applies for any x such that > 1 — 8. 

Therefore, the probability that there exists an x E {O, 11n which, when returned 

as a counterexample to the equivalence query G(fi,... , fm) eliminates less than a 

6-fraction of the elements of C, for uniformly and independently chosen  

is less than 2' 2 —2n = 2. E 

The next lemma describes two potential amplifiers that are useful in conjunction 

with the 8-Halving algorithm. 

LEMMA 6.3. [K93, BCG] 

(1) The majority function MAJ(yi,. . . , ys,) is a (, ) (2_2, 1 - 2_2 ) ampli-

fier. 

(2) Define A(yi,... , ym) as a (2n/log n)-ary A of (2n/log n)-ary Vs of distinct 

variables. (Thus, the number of inputs to the formula is m = 10g2 n Then 

Ym) is a (;'r, 1 - ) - (2_2n, 1 - 2_2 ) amplifier. 
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Proof We will use Chernoff bounds, Fact 2.6, to prove the above lemma. 

To prove the first statement note that if each of 48n random variables are chosen 

with each pi = 1/4, then the probability that the sum of the random variables exceeds 

24n is F+(12n, 1) = (e/4)'2 < Similarly, if 48n random variables are chosen 

each with pi = 3/4, then the probability that the sum of the random variables falls 

below 24n is given by F(36n, 1/3) = < 

To prove the second statement note that if p ≤ then the probability that any 

particular V-gate will compute a 1 is at most (1/n2) (2n/ log n) = 2/n log n. The 

probability that all of the V-gates will compute a 1 (and hence the circuit will compute 

a 1) is at most (2/n log )2f/b0gTh which is at most If p ≥ 1 - the probability 

that a particular V-gate will not compute a 1 is at most (1/n 2)2f1b0Th = and the 

probability that some V-gate will not compute a 1. is at most (2n/ log n)2 - 4n which 

is no more than 2_2m• J 

2nhlogn 

2nhlogn 2nhlogn 2n/Iogn 

FIGURE 6.1. Examples of amplifiers 

Next we state the well-known fact that the majority function on n inputs can be 

computed by a Boolean circuit of size O(n log n). 

FACT 6.4. The majority function MAJ(xi, x2,... 

circuit of size O(n log n). 

X') is computable by a Boolean 

Proof The idea is to successively add the bits x1, x2,... , Xn using adders for numbers 

that are 0(log n) bits long. It is known that there are addition circuits of linear size 
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and constant depth [W87]. Once we obtain the clog n-bit number y = x1+x2+. . .+x,, 

the majority function of x1,... , x,, is the OR of the top half highest order bits of y. 

0 

By noting that MAJ(yi,. . . , yi) is computable by a Boolean circuit of size O(n log n), 

and A(f1,... , fm) is a depth-3 A-V-A formula when fi,... , fm are DNF formulas, 

we obtain the following result. 

COROLLARY 6.5. The following learning tasks can be accomplished with polyno-

mially many equivalence queries: 

(1) Learning DNF formulas of size s using equivalence queries that are depth-3 

A-V-A formulas of size O(sn2/ log 2n). 

(2) Learning Boolean circuits of size .s using equivalence queries that are Boolean 

circuits of size Q(.sri + n log n). 

6-Halving algorithm 

let G5 be a (8, 1 - 8) -+ (2_2n, 1 - 2 —2n )  amplifier. 

input: concept class C. 

(1) pick a small uniform sample A from C. 

(2) ask equivalence query with Go(A). 

(3) if the answer is yes then halt. 

(4) otherwise let (x, b) be the counterexample. 

(5) update C = C(,b) and go to step M. 

FIGURE 6.2. The 8-Halving algorithm using amplifiers. 

The computational difficulty in implementing the above learning algorithm is in 

uniformly selecting the formulas from C, which is, in general, an exponentially large 
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set. This is the point where we called upon the uniform generation result of Jerrum, 

Valiant, and Vazirani. 

6.3. Exact Learning with the Equivalence and All' Oracles 

In this section we show that there exists a randomized algorithm that learns Boolean 

circuits and DNF formulas from equivalence queries and an A/P oracle. We cannot 

apply Theorem 6.1 directly to select ft,... , f for Lemma 6.2, because the sampling 

provided by Theorem 6.1 is not exactly uniform. The following lemmas imply that 

approximately uniform sampling suffices. 

LEMMA 6.6. Let C be a concept class over {O, 1}, and let U be an approximately 

uniform generator for C with tolerance e. Let f be the random function output by 

U. If x E {O, 1}' with 'f(0w,b) ≤ 6 then the probability that f(x) = b is at most 6(1 + ) 

for any 6≥ 0 and b  10, 11. 

Proof Suppose x E {0, 1}' such that b) ≤ 6 for some S and for some b. Then if a 

function f is chosen uniformly at random from C, Pr[f(x) = b] ≤ 6. Since U can at 

most oversample the functions f such that f(x) = b by a factor of (1 + ), if f is the 

output of U, Pr[f(x) = b] is bounded by 6(1 + ). El 

LEMMA 6.7. Let C(yi,... , ym) be a (8, 1 - 8) -+ (2_2n, 1 - 2_2Th) amplifier. Let C 

be a concept class and U an approximately uniform generator for C with tolerance 

e. If fl,... ,fm are selected independently using U then, with probability at least 

1 - 2, G(f1,... , fm) is 8/(1 + )-good for C. 

Proof The proof is immediate from Lemma 6.6. For any x E {0, 11n that has 

-/(x 0) <8/(1 + ), Pr[f(x) - 0] <8. Thus the probability that G(f1,... , frn )(X) = 0 
is at most A similar analysis holds when the '0' is replaced by a '1'. Thus 

applying the argument used to prove Lemma 6.2 the result follows. 0 
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THEOREM 6.8. The following learning tasks can be accomplished with high prob-

ability by probabilistic polynomial-time algorithms that have access to an All' oracle 

and that make polynomially many queries: 

(1) Learning DNF formulas of size s using equivalence queries that are depth-3 

A-V-A formulas of size Q(sn2/ log  n). 

(2) Learning Boolean circuits of size .s using equivalence queries that are Boolean 

circuits of size O(sn + n log n). 

Proof We use the amplifiers provided by Lemma 6.3 and apply them to the output of 

the generator of Theorem 6.1, with (say) c = 1. By Lemma 6.7, an equivalence query 

that is -good (for the first part) and i-good (for the second part) is generated 

with probability 1 - 2. We note that the probability that every equivalence query 

asked by the algorithm is good is at least 1 - n°(')/2'. So with the same probability, 

the learning algorithm discovers the target concept within polynomially many steps. 

0 

We remark that Angluin [Ang9O] has shown that DNF formulas are not properly 

exactly learnable using only equivalence queries regardless of the computational power 

of the learning algorithm. Thus the use of the above hypothesis that is a depth three 

formula is, in some sense, the best we can do. 

6.4. Exact Learning with the Membership and Alp Oracles 

In this section we consider scenarios where the learner can only use membership 

queries and has an access to an All' oracle. Exact learning with only membership 

queries is also known as black box interpolation in some papers. We present the 

following two main results. 

• If a concept class is exactly learnable with polynomially many membership 

queries then it is exactly learnable with high probability in expected polyno-

mial time by an algorithm that uses membership queries and has access to an 

All' oracle. 
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• If a concept class is exactly learnable with equivalence and membership queries 

then it is exactly learnable with membership queries and access to an AlP 

oracle. 

The first result implies that unlimited computing time for an exact learning algorithm 

using only membership queries can be replaced with an efficient relativized computing 

time using an J\17) oracle and random bits. The second result allows one to trade the 

equivalence oracle for an Al? oracle. 

6.4.1. Trading Unlimited Time for the Al? Oracle. We will show that a 

membership-query learner with unlimited computational power can be replaced with 

a membership-query learner with an access to an Al? oracle and a random source. 

First we will define a parametrization of concept classes that are exactly learnable 

from membership queries only. 

DEFINITION 6.6. Let £MQ be the set of concept classes C over {O, 1} which are 

exactly learnable using at most nk membership queries (with unlimited computational 

power) and such that for any given a set of labeled examples I C {O, I}n x {O, l}, 
there is an algorithm that, on input f and I, decides whether or not f E C and this 

decision algorithm runs in time polynomial in 111. 

Note that we impose the same conditions on £MQ as we did with concept classes 

that are samplable with the uniform generation algorithm of Jerrum, Valiant, and 

Vazirani. An easy fact about the class £MQ is that it is closed under taking subsets. 

FACT 6.9. If C E LMQk then for any C' c C we have C' E £MQ. 

DEFINITION 6.7. An assignment or point a E {O, 1}" is k-good for C E £MQ if 

The second fact we need is that there is always a k-good point for any C E £MQ. 
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FACT 6.10. Let C € £MQ. Then for any C' C C with IC'I ≥ 2 thereis a E {0, 1}' 

which is k-good for C'. 

Proof Assume there is C' C C so that for all a E {0, 11n a is not k-good for 

C', i.e. y0' < n_k(ICFI - 1)/C'I. We will show that C' £MQ which (by the 

fact above) will imply C £MQ. Let A be an arbitrary learning algorithm for 

C' which uses at most n1 membership queries. Consider the following adversarial 

strategy for answering queries by A: given the query MQ(a), answer b E {0, 1} 

so that < n k(C - 1)/IC'. This strategy allows A to eliminate less than 

a m(jC' - 1)/IC' fraction of C' each time. After nk steps A can eliminate less 

than IC'I - 1 elements of C' implying there are at least two concepts remaining 

uneliminated. Since A is arbitrarily chosen, C' )CMQk as required. 0 

As a corollary to the second fact we get that any subset C' C C, with IC'I ≥ 2, has 

an assignment a E {0, 1}n which satisfies 

'f 

The following is the main theorem in this section, which states that there is a ran-

domized expected polynomial time exact learning algorithm for any concept class 

C £MQ. 

THEOREM 6.11. There is a probabilistic expected polynomial time algorithm with 

access to an AID oracle that learns any C E CMQk using at most n21 membership 

queries. 

Proof Let C E £MQ. Set N = m', a 1/16N and m N2. 

We say a membership point a is a c-splitter for C if 'y° ≥ e. Recall that the r-th 

threshold function on n variables THn is defined as 

1 if. 1x≥r 

0 otherwise 
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Let U be an approximately uniform distribution on C with tolerance 6 = 1. By a 

similar argument as in Lemma 6.6, we claim that U can undersample by a factor of 

at most (1 + E) 2, i.e., if Y(,b) ≥ S then Pru[f(x) = b] ≥ 8(1 + )_2 . We sample 

independently m functions from C according to U, say F = {f}1 Eu Ctm. 

Define T1 = TH m (F) and T2 = TH_a)m (F). We prove that with high probability 

the event T1 # T2 occurs. Since C has a k-good a E {0, 1}', i.e. -rZ ≥ (2N)-', the 

event T1 T2 implies Ti(a) = T2(a). By Chernoff bounds, Fact 2.6, we get 

Pr[Tj(a) = T2(a)] = Pr[Ti(a) = 0] + Pr[T2(a) = 1] 

< 2F(m/8N, 1/2) 

≤ 

Thus with probability 1 - e(") we have T1 # 2'2. Next we show that conditioning 

on T1 # T2, the event that for all a E T1iT2, 7F ≥ (32N)', occurs with high 

probability. Calling the latter event A, by the union bound and Chernoff bounds 

again, we have 

Pr[ 4 ITiT2] ≤ E Pr [Ti(a) 0 T2(a), 'y < (32N)1 I T1 # T2] 
aET11T2 

≤ 2F(m/32N, 1) ≤ 2The(Ir). 

The probability that we failed (at some step) to locate a (32N)'-splitter is at most 

Pr[Ti 2'2] + Pr[7 I T1 # T2] ≤ e(') 

We use the Alp oracle, for the second time, to find a (32N) 1-splitter a E {0, 1}, 

which allows progress to be made in learning. We run the above for N2 times. The 

probability that at every step we succeed in locating a (32N)'-splitter (for different 

invocations of C) is at least 1—N2e' ≥ i—e('). Thus with probability i —e() 

we will finish (i.e. reduce C to one element) within N2 = n 2k steps. U 

6.4.2. Trading the Equivalence Oracle for the Al? Oracle. We will show 

a result that allows us to replace or trade an equivalence query oracle with an Al? 
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oracle. But for this we need to describe a method called the Monotone theory due to 

Bshouty [1393]. 

DEFINITION 6.8. (Monotone of a Boolean function) 

Let f be a Boolean function over {O, i}n. The monotone of f, denoted M(f), is 

defined as M(f)(x) = V< f(y). It can be shown that M(f) is the unique smallest 

monotone function that contains f. 

000 

FIGURE 6.3. Monotone of x±2±3 V ±jx2 

For the next definition we will assume some familiarity with terminology from order 

theory. 

DEFINITION 6.9. (The partial order ≤a) 

Let {O, 1} be the Boolean n-cube. For an assignment a E {O, I)n the partial ordering 

on {O, I}n is defined as follows: for all x, y E {O, 1} 

X a Y < >(x$a)(yff3a). 

The a-monotone Ma(f) of f is defined as Ma(f)(X) = M(f(x a))(x a). A 

main characterization theorem of the monotone theory is that any Boolean function 

f is expressible as a conjunction of its monotone components Ma(f), for all a's. 
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FACT 6.12. [B93] For any Boolean function f: {0, 1}' -  {0, 1} we have 

Ax) = A Ma(f)(). 
aE{O,1} 

This leads naturally to a definition of the monotone dimension of a concept class. 

DEFINITION 6.10. (Monotone dimension) 

The monotone dimension Mdim(f) of f is the size of the smallest subset A c {o, 1} 
so that f(x) = AaEA Ma(f)(). The monotone dimension of a concept class C, 

denoted by Mdim(C), is the size of the smallest subset A C {0, 1}Th so that for all 

f E C 

f  = A Ma(f)(). 
aEA 

Duality is a very powerful tool in order theory. Using duality we can define dual 

notions for the above definitions. 

DEFINITION 6.11. Let f be a Boolean function over {0, 1}". The dual monotone 

of f, denoted M 8(f), is defined as M 8(f)(x) = A> f(y). It can be shown that 

Ma(f) is the unique largest monotone function that is contained in f. 

It is true that for any Boolean function f: {0, 1} —+ {0, 1} we have 

f  = V M a, (f)(x). 
aE{O,1}n 

The dual monotone dimension M 0dim(f) of f is the size of the smallest subset 

A c {0, 1} so that f(x) = VaA M(f)(x). The dual monotone dimension of a 

concept class C, denoted by M&dim (C), is the size of the smallest subset AC {0, 1} 

so that for all f E C 

1(x) = V M(f)(x). 
aEA 

The main algorithmic result in [1393] is stated in the following. 

FACT 6.13. Let C be any concept class and let f E C be a target concept from C. 

Then there is an exact learning algorithm that runs in time polynomial in sizeDNF(f) 
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and Mdim(C) and uses 

S .sizeDNF(f)Mdim(C) 

equivalence queries and S n2 membership queries. Moreover any hypothesis h issued 

by this algorithm satisfies h ≤ f. 

There is also a dual algorithm that runs in time polynomial in size CNF(f) and 

Mdim(C) and uses 

size CNF(f)M5dim(C) 

equivalence queries and g5 -n 2 membership queries. Moreover any hypothesis h issued 

by this dual algorithm satisfies f ≤ h. 

The following lemma describes a technique to combine two exact learning algo-

rithms that use equivalence and membership queries into one exact learning algorithm 

that uses only membership queries with an access to an Al? oracle. This technique 

eliminates the need for the equivalence oracle at the expense of introducing the Al?' 

oracle. 

LEMMA 6.14. Let C be a concept class over {O, l}n. Let L1 and L2 be two exact 

learning algorithms which use equivalence and membership queries to learn C. Sup-

pose that any hypotheses h1 and h2 issued by both are known to satisfy h1 h2 

(except on the last step). Then there is an algorithm that uses membership queries 

and the Al? oracle to learn C. 

Proof The idea is to run L1 and £2 in parallel until the first equivalence query is 

issued by each, say h1 and h2, respectively. Since we know h1 h2, we can use the 

IV? oracle to find an assignment c E {O, 1} such that hi(c) h2(c). This can be 

done as follows. We can find out the first bit of c by asking which of the following is 

true: 

h110 $ h21.0, hil1.i 
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The bit that keeps the non-equivalence is the first bit of c. So after n such questions, 

i.e., ii AlP queries, we will discover c completely. This technique is also known as 

self-reduction in complexity theory. A membership query at c will establish which 

algorithm may continue its execution (we suspend the other). We then repeat the 

process again until the continued algorithm issues its next equivalence query. By 

assumption, the suspended equivalence query and the new one are still not equal. 

Again we use the AlP oracle to find a counterexample for one of them, and so on. In 

this way we never ask any equivalence queries but we incur the expense of spending 

n Alp queries and one membership query every time we need to ask an equivalence 

query. 0 

We observe that if we run both algorithms from Fact 6.13 in the manner as described 

in the previous lemma, then the hypotheses issued by both algorithms will never be 

equal except when they are equal to the target function. Hence we can conclude the 

following. 

THEOREM 6.15. Let C be a concept class over {O, 11n and let f E C be a target 

concept from C. Then there is an algorithm that learns C using at most 

n(n + 1)(sizejjpi(f)Mdim(C) + size CNF(f)Madim(C)) 

membership queries and 

n(sizeDNF(f)Mdim(C) + sizeCNF(f)M'9dim(C)) 

AlP queries. 

Proof The factor of (n + 1) in the number of calls to the AlP oracle is to account for 

one call to check if the two hypotheses are equal and n calls to find a counterexample 

if they are not equal. 0 

COROLLARY 6.16. The following classes are exactly learnable with membership 

queries and an Alp oracle in time polynomial in n and in the maximum of the DNF 
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and CNF sizes of the target concept. 

(1) Monotone Boolean functions. 

(2) O(log n)-CNFfl O(log n)-DNF. 

Proof We use the fact that the class C of monotone Boolean functions satisfies 

Mdim(C) = Madim(C) = 1, which proves the first claim. For the second claim, 

we have the fact that the class O(log n)-CNF is known to have polynomial (in n) 

monotone dimension while the class O(log n)-DNF is known to have polynomial (in 

n) dual monotone dimension [B93]. LII 

In the next lemma we provide a lower bound on the number of membership queries 

required to learn Boolean concept classes. We show that a certain class of mono-

tone read-twice DNF formulas, i.e., where each variable can appear at most twice, 

is not polynomial-time exactly learnable from only membership queries. The latter 

class is known to be exactly learnable from equivalence and membership queries (see 

Aizenstein and Pitt [AP91], Hancock [H91], and Pillaipakkamnatt and Raghavan 

[PR95]). This is also in contrast to the fact that the class of monotone read-once 

Boolean formulas is exactly learnable in polynomial-time from membership queries 

alone [AHK93]. 

LEMMA 6.17. Let f be a Boolean function over {O, 1}". Any learning algorithm 

that exactly identifies f using only membership queries requires at least 

(max{sizeDNF(f), size CNF(f)}) 

membership queries. 

Proof We use an adversarial argument on the following class of monotone read-twice 

DNF formulas 
k 

C_— {flf=VTvT}. 

For each i, 1 ≤ i ≤ k, let T be the conjunction of all variables in the ith block 

where each block contains n/k variables. Let V denote this ith block of variables, 
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i.e., V, = {x(._1)(/k)+1,... , x(,/)}. The last term T consists of all variables except 

that it is missing exactly one variable from each T. So ICI = (n/k)'. 

For the lower bound argument we give away to the learner the information about 

all the terms T, 1 ≤ i ≤ lc, but not any information about the term T, i.e., where the 

missing variables are. Suppose the learner asks a membership query with a E {O, l}Th. 

Note that a cannot be all one in any T since then f is satisfied and the learner 

knows this already. If a contains more than one zero in some V then the adversary 

says 0 if and only if a falsifies all T, 1 < i < k, and 1 otherwise. This conveys 

no information about T since a falsifies T. Hence the learner must ask membership 

queries where there is precisely one zero in each V. There are (n/k)lc such questions 

and the adversary may answer 0 except for the last one. 

Recall that an assignment ,8 E {0, l}Th is called a maxterm of a Boolean function 

f if f(t3) = 0 and /3 contains a minimal number of zeroes, i.e., there is no a < /3 

that satisfies f(a) = 0. It is also known that the CNF size of a monotone Boolean 

function is characterized by the number of maxterms. We note that the maxterms of 

any f E C are exactly those assignments a E {0, l}n which have precisely one zero in 

each V2. Hence .szzeCNF(f) = (n/1c)'' and .sizeDNF(f) = k + 1, which completes the 

claim. EJ 



CHAPTER 7 

Conclusions and Open Problems 

Beware of bugs in the above code; I have only proved it correct, not tried it. 

- Donald Knuth 

7.1. Summary 

In this thesis we have considered the following main question in computational 

learning theory: 

Are Boolean functions represented as Disjunctive Normal Form formu-

las or as Boolean circuits efficiently learnable? 

The original question of Valiant is whether DNF formulas are PAC learnable under 

any distribution [V84bJ. This question is still open to this date. The closest answer 

to this question was given by Jackson [J94]. Jackson proved that DNF formulas are 

efficiently PAC learnable if the underlying distribution is the uniform distribution 

and if the learning algorithm is given access to a membership oracle. 

• In the first part of the thesis we have shown that monotone DNF formulas are 

PAC learnable under product distributions in subexponential time. Thus the 

price that we pay for allowing a more general distribution and for not allowing 

the learning algorithm to ask membership questions is efficiency. 

• In the second part of this thesis we show that Jackson's result can be ex-

tended to a representation class that includes DNF formulas as a strict sub-

class. More specifically we prove that the representation class of monotone 

98 
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width two branching programs is efficiently PAC learnable under the uniform 

distribution with membership queries. 

• In the third part of this thesis we prove that DNF formulas are exactly learnable 

using only equivalence queries assuming the learning algorithm has access to 

an AlP oracle. This implies that if P = AlP then DNF formulas are exactly 

learnable using only equivalence queries and if DNF formulas are not exactly 

learnable using equivalence queries then P JV'P. 

Recently, Bshouty [1396] proved that DNF formulas are exactly learnable from equiv-

alence queries in subexponential time, i.e., 20(\/), without the AlP oracle. 

In his original paper, Valiant [V84b] also mentioned that the existence of a cryp-

tographic object called pseudorandom functions implies that the class of polynomial-

sized Boolean circuits is not efficiently PAC learnable under any distribution. Since 

then Valiant's observation has been improved to show that the class of polynomial-

sized Boolean circuits with logarithmic depth, or NC', is not FAG learnable under 

any distribution even if we allow the learning algorithm access to a membership oracle 

[AK95]. 

• In the first part of the thesis we prove that any monotone Boolean circuit 

(without any size and depth constraints) is FAG learnable under product dis-

tributions in subexponential time. This is similar to the result of Linial, Man-

sour, and Nisan [LMN93] that gave an 011(b0gn) time PAC learning algorithm 

for AC' functions. 

• In the second part of the thesis we study the learnability of classes that are 

below NC' or width five branching programs. Using some characterization 

results developed by Barrington, we investigate the problem of learning per-

mutation branching programs with widths strictly less than five. 

• In the third part of the thesis we prove that the class of Boolean circuits is ex-

actly learnable using only equivalence queries assuming the learning algorithm 
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has access to an AlP oracle. This again showed that if the class of Boolean 

circuits is not exactly learnable using only equivalence queries then P =A J'/P. 

From the perspective of complexity theory, we have developed a new Fourier spec-

trum characterization of monotone Boolean functions by proving that their average 

sensitivity is at most we have established a connection between exact learning 

and the difficult question P Al?, and have provided some new applications of 

branching program characterizations to learning theory. 

7.2. Minor Extensions 

We mention in this section some extensions to results in this thesis. 

Noise tolerance and Group learning. It is known that the LMN algorithm fall in 

the category of a statistical query algorithm (see Kearns [K93]). Hence any learning 

result that we obtain using this algorithm will be noise tolerant in Kearns's statistical 

query model. Kearns [K] also introduced the notion of group learning and proved 

that it is equivalent to the notion of weak learning. Informally, in group learning we 

require that the learning algorithm to find a hypothesis that is accurate in classifying a 

polynomial-sized group of examples that are either all positive or all negative, instead 

of being accurate on only one example. Using results from Chapter 4 we can claim 

that the class of all monotone Boolean functions is group learnable under product 

distributions in polynomial-time. 

Locally monotone and Total orders. Some of the results in Chapters 3 and 4 can 

be extended to unate (or locally monotone) Boolean functions. A Boolean function f 

is unate if there is an assignment a E {0, l}n so that f(x a) is a monotone function. 

Notice that a monotone Boolean function is a unate Boolean function with a = O. 

Some of the results in Chapter 4 can also be extended to non-Boolean monotone 

functions over a total order. A monotone Boolean function is a monotone function 

over the total order 0 < 1. 
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Nested differences. The algorithm that we use to learn width two branching pro-

grams with 0(1) sinks is the algorithm for learning nested differences of intersection-

closed concept classes. Recently, Auer [A95] has shown that this algorithm can be 

made robust against malicious noise. In this noise model, the counterexample pro-

vided by the equivalence oracle is not always correct, i.e., this oracle may lie once in 

a while. Usually learning is parametrized by the number of lies that the equivalence 

oracle can make. We believe that the results from Chapter 5 can be made to work in 

the malicious noise model. 

7.3. Open Questions 

In the following we describe some natural open questions raised by this thesis. 

Fourier spectrum vs. Circuit complexity. Can we prove a Fourier spectrum result 

on monotone Boolean functions that takes into account circuit complexity? Linial, 

Mansour and Nisan [LMN93] proved a remarkable connection between the Fourier 

spectrum and circuit complexity of AC' functions. They proved that any Boolean 

function f from ACd° of size rn must satisfy 

I J(a) <2mexp(.1ch/d/20). 
IaI≥k 

It is not clear how to prove a similar result for monotone Boolean functions. 

Learning monotone Boolean functions. In view of Jackson's DNF learning result 

[J94], are monotone DNF formulas PAC learnable under the uniform distribution 

without membership queries? The key reason for membership queries in Jackson's 

result is that we don't know where the relevant Fourier coefficients are and thus 

the need to invoke Kushilevitz and Mansour's KM algorithm. If the DNF formula is 

monotone then we know a bit more about the location of the relevant coefficients with 

respect to the uniform distribution, i.e., they are at the unit vectors. Unfortunately, 

we don't know what happens to them once the boosting stages take place. 
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Learning bounded width branching programs. The results of [BTW96] showed 

that the class of strict width two branching programs is properly learnable in the 

distribution-free PAC model. We do not know, at the time of writing, if this can be 

extended to the exact identification model. Recently, Nakamura [N96] has solved this 

open question and proved that Si/V2 is efficiently properly exactly learnable. The 

results from Chapter 5 showed that the class of width two branching programs with 

0(1) sinks is learnable in the exact identification model but not properly. We do not 

know if this can be extended to proper learning. 

Collapse consequences. Are Boolean circuits exactly learnable in deterministic 

polynomial-time with the aid of an AlP oracle? Note that an affirmative answer to 

this question would yield a collapse of the polynomial-time hierarchy to Prn'. Köbler 

and Watanabe [KW95] have recently extended Watanabe's result on the collapse 

consequences of All' C P/poly. 

Monotone duality. It was shown in Chapter 6 that monotone Boolean functions 

are exactly learnable using only membership queries provided that the learning al-

gorithm has access to an All' oracle. The learning complexity depended on the sum 

of the DNF and CNF sizes of the target Boolean function. Can we obtain the same 

result without using the Jf2 oracle? Recently, Fredman and Khachiyan [FK94] have 

proved that a related problem, called monotone duality, can be solved in slightly 

superpolynomial time. The problem of monotone duality requires an algorithm to 

decide if two monotone Boolean functions, one given in DNF and the other given 

in CNF, are equivalent. Their result directly implies an algorithm running in time 

0(b0gm) for the problem of learning monotone Boolean functions from membership 

queries. Whether this result can be improved to mO(1) is still open. 
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Closing Credits 

The purpose of this epilogue is to explain my personal involvement in the research that is 

presented in this thesis. My thanks to Professor Bruce MacDonald for pointing out the 

ambiguity surrounding this issue. 

The research presented in Chapter 3 started when Jeff Jackson explained to me a proof 

outline for the expression I(f) = >i3.a1 j(a)2. I noticed that this proof could be extended 

to product distributions. This extension was originally used to provide an alternative proof 

of Theorem 3.10 (not presented in the thesis)'. 

In an attempt to improve some results in [iCV89], I proposed the use of Cauchy-Schwarz 

inequality to simplify some expressions that I was struggling with. This led to the proof of 

Theorem 3.12 which I developed together with Nader. Shortly after, Yishay Mansour and 

Eyal Kushilevitz suggested another formulation of Theorem 3.12 using average sensitivity. 

This led to the fact that the average sensitivity of any monotone Boolean function is at 

most \/. At the same time Dan Boneh suggested to us stating things in terms of influence 

norm. 

I came across a well-known identity in Fourier analysis, called the cross correlation iden-

tity, that could be used to derive most other identities, such as Parseval, auto-correlation, 

and convolution. In fact by brute force I used it in the proof of Theorem 3.10 (a folklore the-

orem of Kahn, Kalai, and LiniaJ); in the uniform distribution case, this provides a simpler 

and more direct proof. 

In Chapter 4, following standard lines from Linial, Mansour, and Nisan's paper [LMN93], 

we traced the details to for the PAC learning of monotone Boolean functions under arbitrary 

product distributions. We did the analysis presented in Section 4.3 after a watchful comment 
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from a JACM referee. I made a premature conjecture that the Fourier spectrum bound of 

for monotone Boolean function might be tight. I tried looking at the case when Cauchy-

Schwarz attains equality, but this did not help and the conjecture remained unsolved. This 

led to the statement on the majority function. We then looked at other lower bounds. With 

Jeff Jackson's help, I noticed an application of Kahn et al's lower bound result on influences 

for improving Kearns and Valiant's weak learning result for all monotone Boolean functions. 

It also provided an alternative proof to the one presented in [KV89]. 

My research involvement in studying the learnability of branching programs started with 

a project on learning strict width two branching programs done in collaboration with Nader 

and David Wilson. I noticed that, in the width two case, the number of sinks had something 

to do with the rank of certain decision trees. I thought of applying Bluni's famous argument 

for transforming the decision tree into a decision list. Together with my coauthors, we found 

the right argument that constitutes the proof for learning constant sink width two branching 

programs. I supplied some of the technical details that constitute the proof of Lemma 5.4 

(that is an extension of Jeff Jackson's observation [J94]). 

I thought about looking at branching programs of widths bigger than two, i.e., three and 

four, but realized that, since it will be as hard as solving the learnability of DNF formulas, 

perhaps only permutation branching programs could give something. I got in email contact 

with David Mix Barrington where he mentioned and explained to me some alternative forms 

of width three and four permutation branching programs. Nader then put me in touch with 

the recent results using multiplicity automata based on the work of my other coauthors, 

Francesco Bergadano and Stefano Varricchio. Using the alternate forms of widths three and 

four permutation branching programs, together we solved the details of their learnability. 

My involvement in research on learning with the AlP oracle started when Nader sug-

gested on looking at learning Boolean functions with the membership and the NP oracle. 

I noted the application of self-reducibility arguments for our purpose, e.g., Lemma 6.14, in 

reducing search to decision. At that time, we were working on an extension to the Monotone 

Theory (based on lattice theory) that subsequently appeared elsewhere. I proposed some 

simplifications to the probabilistic analysis used in Theorem 6.11. I also contributed to the 

technical expositions on learning with the equivalence and AlP oracle. 


