SPECIFICATION AND VLSI DESIGN

Graham Birtwistle, Jeff Joyce, Breen Liblong (+), Tom Melham (++), and Rick Schediwy,

Computer Science Department, University of Calgary,
Calgary, Alberta, Canada T2N 1N4.

(+) now at Silicart, Montreal, Canada.
(++) now at Cambridge University, U.K.

ABSTRACT

We describe research into specification-based VLSI design underway at the University of Cal-
gary. Our long term research goals are directed towards building a specification-based design
environment (EDICT) to support an iterative, hierarchic design methodology. Our current
research has three aspects: the SHIFT high level design capture format (completed); gaining
experience in verifying large designs (underway); and building a specification library. In this
paper we describe work in progress on two large proofs. The first is for the elimination unit
of a local area network device, for which the proof is well underway. The second project
concerns the specification driven design of Landin’s SECD machine and is just beginning. To
set the context for this work on verification, we start by giving partial descriptions of EDICT
and SHIFT to show how they use specifications.

INTRODUCTION

In EDICT [2] we picture a design under construction as a tree, every node of which has a
specified functional behaviour. If we compose together the behaviours of a node’s immediate
offspring, we can check at once to see whether or not their composition agrees with their
parent’s specification. If so we have a correct refinement of the design; if not we know at the
earliest possible stage that we are wrong. By deductive argument, we can show the correct-
ness or otherwise of a complete design (within the limits of the proof model - we work at the
register transfer level and do not include electrical effects). Specifications are expected to
play an increasingly important role in VLSI design, especially for military, industrial control
and medical applications where the guarantee of design soundness is crucial. They also assist
the process of splitting designs amongst teams in such a way that the function of the whole
chip need not be revealed in its entirety to any sub-contracted party.

The output from EDICT is in a high level VLSI design exchange format called SHIFT
{15, 16] which captures and retains the structure of the design as well as its low level detail.
The SHIFT description of a design follows the behavioural hierachy exactly. A SHIFT
description consists of several views (e.g. behaviour, constraints, electrical properties,
geometry, structure, ...). These views have been chosen to enable SHIFT to interface easily to
current (and future) lower level tools such as SPICE, MOSSIM, timing verifiers and plotters.
These special purpose tools can be used to fill out those views in a SHIFT definition that are

not derivable from the behaviour. For example, the electrical-properties view can be filled out
via SPICE for leaf cells, and higher level simulators can be used to check timing constraints
(e.g. port to port signal timings). Other standard packages will provide plots and foundry tapes
etc. SHIFT supplies composition tools for all views so that large designs can correctly con-
structed automatically from validated library elements. SHIFT is also used as the design data
base language for validated designs. Like EDIF (3, 4] to which it bears a very close resem-

blance, SHIFT may also be used to port designs between workstations, to different fabrication
lines, and to put designs in the public domain.

The latter sections of this paper outline progress on two substantial register transfer
level proofs of correctness. The first proof will demonstrate the correctness of a design for
the elimination unit of a local area network box. The second is concerned with an SECD
machine (9, 13]. Both proofs are being effected mechanically using proof assistants. We
worked with LCF_LSM [5] for the elimination unit proof which was started in 1983, but
swapped to HOL [6] for the SECD specification work.

sampler
shifter
bus shift(*4)
nor del inv
Dtype

Figure 1 Sampler hierarchy

OVERVIEW OF EDICT

The key elements in EDICT [2] are support for a design methodology, the use of proof tech-
niques to ensure that designs meet their specification, and SHIFT.

One method of controlling the complexity of VLSI designs is to reduce the design
space by imposing a design methodology. We have chosen to work with hierarchies where a
design is constructed as a sequence of levels each lower one a proven consistent refinement of
the one above. Because today’s design becomes tomorrow’s building block, we also arrange
to collect validated designs in a library from whence they can be offered, perhaps semi-
automatically, to future designers. In this way, we are accomodating and expanding the stan-
dard cell approach. Within the EDICT system we create large cells automatically by compo-
sition, and will be looking into the possibilities for system-polished designs (as with TOPO-
LOGIZER [12]).

Designs in progress are represented in EDICT by a tree of nodes. A simple example
presented in [8] considers the implementation of a sampler which inputs a serial bit stream
and outputs a 4-bit word. The output value at time t is #0000 if the sample line is low; if the
sample line is high, it is the concatenation of the input bits at times t-3 through t. We can
decompose the sampler first into a bus and a shifter, then the shifter into four slices, each
slice into a delay an inverter and a nor gate, and finally implement the delay unit by a D-type
flip-flop. This design decomposition is shown in figure 1.

If we design from the top down, the single node at level 1 represents the complete
design, its offspring at level 2 the floor plan elements, and so on. Initially, we will have the
specification of the design’s behaviour (which expresses output signals in terms of current and
previous values on its input lines), together with some performance expectations and area lim-
itations expressed as constraints. Our first task is to partition the design into a set of com-
ponents whose behaviour when connected together conforms to the specification of the design
at level 1, and will satisfy its constraints. We specify the behaviour of each floor plan ele-
ment in turn and write down its local constraints, if any. Then we compose the behaviours of
the floor plan elements together and deduce the behaviour of this first design refinement. If
the aggregate behaviour can be shown to be equivalent to that of the design at level 1, then
we have a valid implementation (subject to the constraints being satisfied) and can recursively
apply the same technique to each floor plan element in turn. If the specifications do not
match, then we know at the earliest possible moment that we are on the wrong track.

As a design develops, the nodes become simpler and simpler until they can be imple-
mented at once by a leaf cell editor or already exist as library elements. End nodes in the
design tree are called leaf cells (e.g. bus, not, nor, D-type above) and intermediate nodes are
called composition cells (e.g. shifter, slice, del above). Leaf cells are fully developed and, be-
sides their inherited behaviours and ports, will have synthesized attributes such as structure,
layout, schematics, and known power consumption, delay, and area.

New leaf cells will be hooked up to SPICE, MOSSIM, timing verifiers, design rule
checkers and layout tools etc for complete validation and to ensure that they satisfy their con-
straints. When templates for all classes of leaf cell instances are known in full, the dialog

with the user is suspended, and an automatic design composer takes over. The composer has
built in composition rules for all template attributes. It composes the structure and layout of
offspring and fills in the attributes of their parent. It will do the same for power requirements,
delay, and area. We now work our way back up the design tree applying composition rules to
fill out the composition cell templates and to check that they satisfy their constraints. A cell
whether it is a leaf cell or a composition cell is not complete until all its inherited and syn-
thesized attributes have been filled out and its local and imposed constraints satisfied. Once a

template is complete and verified, it is included in the SHIFT library and will be available to
future designers.

The automatic composer back end effects the compositions remaining (other than the
behaviours). If a design fails to meet its constraints, then EDICT can help at the next itera-
tion. Templates from the previous iteration should contain better estimates for critical values
than were available on the previous unsatisfactory design attempt. These can be taken into
account and may lead to global optimisations, and floor plan alternatives or architectural
choices being investigated early on in the next iteration.

Thus the overall structure of EDICT is an interactive design capture front end and and
automatic composer. The front end constructs the design tree by requesting specifications
from the designer, composes specifications and assists in the arduous task of checking whether
or not two specifications are the same. The front end fills in only the specification portion of

the design template. The composer extracts completed templates from the library and com-
poses them to complete the design.

THE SHIFT DESIGN CAPTURE LANGUAGE

SHIFT is described in [15, 16]. A prototype for flexible NMOS and CMOS cells was imple-
mented in 1984 and has been enhanced since. SHIFT will be used in EDICT to capture the
various descriptions of a circuit in a consistent manner, and support the development of the
design through incremental refinement. SHIFT retains the structure and hierarchy put into a
design, supports composition, and serves as a library format.

SHIFT bears a strong resemblance to EDIF [3, 4] (Electronic Design Interface Format)
which is being developed as a language for design exchange between designers and as a foun-
dry interface language, but not as a design data base language. SHIFT and EDIF were
developed quite independently.

SHIFT is embedded in LISP and the syntax retains the same flavour. A design is
specified by leaf cells and composition cells. All cells are rectangular with a boundary on
which ports are placed. Cells are composed by abutment in horizontal and vertical directions.
The composed cells are stretched to connect adjacent ports.

A leaf cell is specified by a name, a list of ports, geometry, structure, electrical proper-
ties, a minimum bounding box, behaviour, and a set of constraints.

(defcell cell_name

(POTS..cconireererreceerreeneens)
(geometry.......ooeerenrnenen)
(Structure.........covvveevene)
(electrical properties....)
(mbb....cvvrerrererrerennen)
(behaviour.........ccoeununne)
(constraints...............o.n.)

)

Ports are specified along the north, south, east and west walls of the cell, and it is only
through abutment of these external ports that instances of cells are connected in any of the
views. This view is derived from the behaviour and constraints fields, and is used in floor-
planning, placement, and routing stages.

The geometrical view is specified as a series of geometric patterns on distinct layers
corresponding to the fabrication masks. A range of operators is provided for specifying and
transforming polygons, boxes, wires, and contacts. Leaf cells are made stretchable by specify-
ing constraints between the ports. Any geometric coordinates specified relative to the ports
are determined when the cell is instantiated. The actual connection of layers through the abut-

ting ports of the components of a composition cell are checked separately by a geometric
design rule checker.

The structural view is specified as a collection of components and a netlist. Com-
ponents are named instances of transistors, resistors and capacitors. Connections are then
specified between the gate, source and drains of the transistors, the terminals of the resistors
and capacitors, and the ports. We will be investigating how to derive this view from the
behavioural view automatically.

The electrical properties field supplies additional information about the components,
such as relative strengths of the transistors, relative sizes of the capacitances specified as func-
tions dependent on the port values in order to facilitate performance simulation, pin to pin
timings and power estimates. SPICE is used for leaf cells. We will be using algorithms simi-
lar to those of Lin [17] and Trimberger [25] respectively to compose electrical properties and
optimise delays and power. We are also incorporating restoring logic checks following Mead
and Rem’s algorithms [24].

The minimum bounding box, mbb, is derived from the geometry view and is used in
floorplanning, placement and routing.

Constraints may be specified in the design of a composition cell for any view. For ex-
ample, the physical dimensions of the resulting identity cell could be specified through con-
straints on the composition cell’s ports that must be met in the instantiation of the component
cells. Similarly we could specify that the list of connections from the composition of the
three component cells must match some structural specification of the count cell. Finally a
behavioural constraint could be that some specified behaviour of the composition cell must
match the behaviour derived from the the component cells.

Composition cell definitions require two fields - the composition itself plus any addi-
tional constraints that may be made. For example, a 4 by 4 array of SHIFT register cells can
be constructed from a single SHIFT cell by

(defcomp SHIFTAROW (> (rep 4 SHIFT)) nil)
(defcomp SHIFT4by4 (* (rep 4 SHIFTAROW)) nil)

where > and " are the abut east and abut north operators and 4 the repetition factor. No extra
constraints are specified. If empty, other views are filled out automatically by composition If
not empty they may be considered as specifications to be met. The composition rule specifies
the patterns for the masks from the patterns of its constituents. It also specifies the structure as
two sub-graphs being joined together at adjacent ports. The behavioural description is given
by the composition of the behaviours of the components, where abutting ports are identified.
And so on. Nothing extra in the specification in any of the views is introduced by the com-
position rule that is not derivable from the component specifications.

The behavioural view will be specified in HOL [6]. One current research topic is to
find out just how much can be deduced from the specification alone. For example, it is quite
straightforward to generate hierarchical simulators automatically from typed specifications
(these will be used to give confidence in the correctness of specifications as design work
progresses) and it is also straightforward to produce first cuts at floorplans automatically from
the wiring (just using the typed ports) in the manner of Nixon [22].

TOWARDS THE VERIFICATION OF THE ELIMINATION UNIT

The flooding sink is a local area network proposed, designed, and analysed at the University
of Calgary by a team led by Brian Unger [23]. The design permits specially tailored nodes to
be linked together in an arbitrary fashion and is suitable for use as a real time local area net-
work requiring a very high bandwidth.

Attached to each node is a host through which users enter and receive messages. Each
node contains an arbitrary number of connections to other nodes numbered [0..n]. A connec-
tion between nodes consists of a full duplex link. One link (which we number O for textual
convenience) is reserved for communication with the host.

Messages circulating in the network contain a source address, a serial number, and a
destination address each of length 8 bits. The 16 bit field *source address + serial number’ is
taken as the message identifier. When a host sends a message, a copy is routed into its node
and from there broadcast along each of the output lines [1..n], but not back to the host. Mes-
sages received are buffered separately for each input port. In a broadcast system, the same
message may reach a particular node several times via different routes. Incoming messages
are thus first checked to see if they have been received before. If so, they are discarded. If
not, they are added to the list of messages received and will be rejected if received again
later. The analysis given in [23] shows that overall system performance depends heavily the
ability to accept new messages and reject repeats quickly. The elimination unit is a hardware
reponse to that problem and it is with its implementation that we are concerned.

The elimination unit polls each input buffer in turn, looking for a request from the
buffer to check an incoming 16-bit message ID. When a request is found, the elimination unit
checks the message ID against a list of the last 256 identifiers to reach this node by using the
message ID as an index into a 64K by one-bit memory, lookup. This memory returns true if
the identifier is one of the last 256 received or false if it is not. If true is returned, the mes-
sage is not to be broadcast via the output ports and the eliminator responds to the request with
keep=false. If false is returned by the memory, the eliminator responds keep=true so that the
message is kept for broadcasting to the other network nodes. In this case, the eliminator up-
dates lookup by setting the bit indexed by the incoming ID to true. In order to ensure that
lookup contains only 256 bits which are set, the elimination unit has a 256 long FIFO in
which the last 256 ID’s to arrive are stored in order. When lookup is updated, the bit indexed
by the oldest ID in the FIFO is set to false, so that lookup will contain only 256 set bits. The
FIFO is implemented using a 256 by 16 bit memory, lastids, and a pointer, oldest, which is
used to point to the oldest ID in the queue. By using two memories as outlined above, the el-
imination unit does not have to sequentially search a list of previously seen IDs and therefore

is able to respond very quickly to look up requests. Pseudo-code for the elimination algo-
rithm is given below:

ELIMINATION UNIT:

fork :=0tondo
if buffer(k] requests an ID look up then
if lookup[new ID] then signal keep=false else
{! set look up memory right,
lookup[new ID] := true;
lookupf[lastids[oldest]] := false;
! add new ID to FIFO;
lastids[oldest] := new_id;
oldest := oldest+1 mod 256;

keep := true;
}
wait until buffer[k] drops request;
repeat;

A prototype of the elimination unit was designed and breadboarded by Rick Schediwy and the
proof undertaken by Tom Melham at the University of Calgary. Implemented in bipolar, the
prototype consists of 37 SSI, MSI and LSI chips ranging in complexity from 4-input NAND
gates to AM2910’s. The proof has proceeded from the bottom-up. At the time of writing, full
proofs have been completed for all the floor plan elements and what remains is the matching
of their composition to that of the high level specification. Details of the proof of this device
are beyond the scope of this paper. Even in its present incomplete state it covers 9000 lines of
LCF-LSM. Instead of giving details of the proof at all levels, we will follow down one
branch of the full proof tree from the top level to the bottom.

At the top level we view the elimination unit as a device with three ports and six
states (see figure 2).

poll

dreq buffer

lookup keep
ids last256 —>
—> oldest

result

Figure 2 Top level view of the elimination unit

The ports are named dreq, ids, and keep. Requests to look up identifiers are received on the
8-bit bus, dreg, which is polled by the elimination unit. The input port, ids, is a list of 8 16-
bit busses from which the incoming message IDs are read. The output line, keep, is a one-bit

flag which indicates that an identifier has been seen previously (keep=false) or has not
{(keep=true).

The elimination unit has six state variables: poll, buffer, lookup, lastids, oldest, and
result. The variables, lookup and lastids, are the 64K by one-bit look up memory and the 256
by 16-bit FIFO, respectively and the state variable, oldest, is the 8-bit FIFO pointer. The
three-bit register buffer stores the number of the input buffer currently being polled. The
result of the ID look up is stored in the one-bit state, result. The flag, poll, indicates which of
two states that the device is in. When poll=true, the elimination unit is at the beginning of a
polling cycle, looking for a request from the input buffer whose number is given by buffer.
In this state, the keep output has the value true. When poli=false, the result of the ID look

up is on the output and the elimination unit is waiting for the requesting input buffer to drop
its look up request.

The specification of the elimination unit in LCF_LSM is:

ELIM(poll, buffer, lookup, 1ast256, oldest, result)
dev {dreq, ids, keep}.
{keep = (request and not poll -> not result | T)};
ELIM((request -> F | T),
(request -> buffer | INC3 buffer)
(request and poll and (not res) -> STORE16 id (#1) (STOREI16 oldid (#0) lookup) | lookup),
(request and poll and (not res) -> STORES oldest id 1ast256 | last256),
(request and poll and (not res) -> INC8 oldest | oldest)),
(request ->Mpoll -> res | result) | F))
)

where request is the input request from the current input buffer (formally an abbreviation for
REQUEST buffer dreq which returns the value of dreq[buffer], the 8-bit request bus indexed
by the current input buffer), ids returns the identifier belonging to the input buffer cumently
being polled from the list of input identifiers (formally EL (VAL3 buffer) ids), and res returns
the lookup memory indexed by the incoming identifier (formally this value is given by
BOOLI(FETCH16 lookup id).

This specification states that the device ELIM, with the six state variables mentioned
above, has the behaviour given by the ’dev’ expression on the right hand side of the equa-
tion. The first part of the dev expression is just a list of the device’s external ports: dreq, ids
and keep. The second part of the dev expression gives an equation for the output line, keep.
The output equation states that if the device is not in the polling state (i.e. not poll) and the
incoming request for ID look up is still active then the output will be given by the negation of
the stored result of the look up, result. Otherwise, the keep output will have the value true.

The third part of the dev expression gives the 'next state’ expression for each of the
state variables. The first of these gives the next state for poll. If there is a look up request
then the next state of poll will be false, otherwise poll will become true. Thus, whenever there
is no incoming look up request, the elimination unit goes into polling mode and, whenever the
incoming request is active, the elimination unit goes into output mode. The next state expres-
sion for buffer specifies that, when there is no request, buffer is incremented MOD 8 (by
INC3) so that the elimination unit will go on to poll the next input buffer. Otherwise, buffer
remains the same. The next states of lookup, ids and oldest all depend on the expression re-
quest and poll and (not res). When this expression is true, the device is in polling mode,
there is an identifier look up request and the incoming identifier has not been seen before. In
this case, the three states lookup, ids and oldest are all updated to reflect the fact that the new
identifier has now been seen. When there is no request, the next state of result is the value
false. Otherwise, the next state of result depends on the value of poll. When poll is true, the
next state of result is the result of the identifier look up, res. When the elimination unit is not
in polling mode (poll=false) the value stored in result stays constant.

The elimination unit is implemented using eight components START, IDBUS, RAMA,
RAMB, COUNTERS, RESULT, DRIVERS and UNCNTL wired together as shown in figure
3. The LCF_LSM specification of the implementation is:

ELIM_IMP(start,device,lookup,last256,count,lastinc,buffer,result,uinstr,reg,adder,stack,sp,ucode)
[| START start
| IDBUS rn[en=det]
| RAMA lookup]
| RAMB last256
| COUNTER(count, lastinc)
| RESULT (buffer, result)
| DRIVERS
| UCNTL (ucode, uinstr, adder, sp, stack, device)
1]
hide {adata,addr,ainit,awe,bsel,bwe,clear,drivers,init,nffl,nffh,rado,ramb,reply,req,run}

dreq

clear >
kelep inc —P
<4 rep]y—. <4—nffl anT
RESULTS <4—nffh
<4—req—
3 ks
MCRO |
rado > OCDE bwe—p RAMB | <
4— data— — bsel—>
RAM A
<— ave—
~ ainit~ DRIVERS
TSTART_mn_. - init— -
ids drivlers ramb

| ¥ v

ID BUS

Figure 3 Elimination unit floor plan

which lists the composing elements, how they are wired together including any wire renam-
ings, and also lists the internal (hidden) wires.

START is used for proof purposes to simulate initialization from power-up. When its
state goes from false to true, the initialization sequence will begin. When its state remains
constant at true, the device is in regular operating mode. At this time, we have not worked
on the correctness of the initialization cycle. IDBUS is the 16-bit bus for incoming identifiers
which serves two purposes. It is used 1) during the initialization cycle to address RAMA from
the counters, and 2) to address RAMA from the contents of RAMB when clearing the oldest
ID bit in lookup. RAMA is the 64K by one-bit look up memory (a 64K by one-bit RAM,
with state lookup. RAMB is the 256-item FIFO memory, with state lasr256. COUNTER is a
16 bit counter which serves two function. During the initialization sequence, it generates ad-
dresses for clearing RAMA and RAMB. Otherwise, the LOW 8 bits are used as the pointer
into RAMB, (the FIFO pointer oldes). COUNTER has two outputs, nffl and nffh which indi-
cate when the low and high bytes (respectively) have the value #11111111. This data is used
by the controller during initialization. RESULT stores the look up result and generates the
keep output. One bf its states, result, is the result state of the specification. DRIVERS is
used to control what is put onto the IDBUS from internal sources, and is discussed further

below. UCNTL is the controller for the whole device; it uses microcode and an AM2910 mi-
crocontroller to generate control signals.

The proof is quite large (several thousand lines) and even its specification is too large
to give in this paper. The specifications and proofs of all these top level components is now
complete. What remains is the final step of showing that they compose to the original
specification.

In what follows we trace the implementation of DRIVERS. DRIVERS controls what
is put onto the id bus from the counters. The line drivers goes to the bus, the line addr
comes from COUNTER. The specification of DRIVERS is:

DRIVERS
dev {ainit, init, addr, drivers}.
{drivers = (init -> FLOAT16 | (ainit -> MK _TRI16 addr
| MK_TRI16(MERGE_BYTES(#00000000, HIGH_BYTE(addr)))))};
DRIVERS

DRIVERS has three inputs ainit, init, addr and one output line drivers. When init is true,
DRIVERS is disabled and the value put onto the bus is a 16-bit floating value FLOATIG.
When init is false, DRIVERS is enabled and is being used to put addresses onto the bus in
order to address RAMA and RAMB for initialization. When ainit is true, we are addressing
RAMA and the address addr is put directly onto the bus. MK _TRI16 is an explicit type
conversion which changes the value of addr from a 16-bit type which only includes 16-bit in-
tegers to a type which also has the floating value. When ainit is false, we are addressing
RAMB using the high byte of the counter address, addr. The low byte output consists of a
padding of 0’s.

DRIVERS was implemented as the composition of seven primitive units.

(| ZERO4 rnfout=zero4] |
| SPLIT BYTE rnflow_nibble=low4; high_nibble=high4; bytein=low]
| SPLIT WORD rn[low_byte=low; high_byte=high; wordin=addr]

| TRI MUX rn[ina=zero4; inb=low4; select=ainit; enable=init; outtri=nibble1]
| TRI_ MUX rn[ina=zero4; inb=high4; select=ainit; enable=init; outtri=nibble2]
| DRIVERS rn[input=high; output=byte; enable=init)

| MERGE_TRI rn[word=drivers]

1

hide {zero4: word4, low4: word4, high4: word4, nibblel: tri_word4,
nibble2: tri_word4, byte: tri_word8, low: word8, high: word8}

ZERO4, SPLIT BYTE, SPLIT_WORD, TRI_MUX, DRIVERS, and MERGE TRI are given
basic building blocks, and have to be defined as axioms in LCF_ LSM. The implementation is
depicted in figure 4.

ainit

A ——
TRI_MUX B 4 | 1ows
drivers noolel < 7 SB,P,TELW— ¢
high4
0
16 Pn| 4=
4
a Al —|—|—
TRI_MUX B 4 ’8
M = 4 nibble2 ‘zero4 7 ZFRO4 A
ERGE ‘7‘;—8 <
Pyl low
DRVERS 8 SPUT_
< ~ WORD
byte high
f init 16
addr

Figure 4 DRIVERS implementation

ZERO4 always outputs the value #0000. Its specification is:
ZERO4 == dev {out}. {out = #0000}; ZERO4

This subterfuge represents a real device which is actually wired to ground. SPLIT BYTE
splits an 8-bit byte into 2 4-bit nibbles. This is achieved in the real device by wiring, but we
need to be careful because we have to do the type-conversion. Its specification is:

SPLIT BYTE

dev {bytein, high_nibble, low nibble}.

{high_nibble = HIGH_NIBBLE(bytein), low_nibble = LOW_NIBBLE(bytein)};
SPLIT BYTE

SPLIT_WORD splits a word into low and high bytes. Again we need explicit type conver-
sion. It is implemented as wiring in the real device.

SPLIT_WORD

dev {wordin, high byte, low_byte}.

{high_byte = HIGH_BYTE(wordin), low_byte = LOW_BYTE(wordin)};
SPLIT WORD

MERGE_TRI merges two 4-bit tri-state words and one tri-state byte into a 16-bit tri-state
word. It is only wiring in the real device.

MERGE_TRI

dev {nibblel, nibble2, byte, word}.

{word = (nibble1=FLOAT4 and nibble2=FLOAT4 and byte=FLOATS) -> FLOAT16
| MERGE4_4_8(nibblel, nibble2, byte)};

MERGE_TRI

TRI_MUX outputs 4-bit floating when disabled, otherwise selects one of two 4-bit tri-state in-
puts. It is implemented as a 74257 in the real device.

dev {ina, inb, select, enable, outtri}.
{outtri = (enable -> FLOAT4 | (select -> MK_TRI4 inb | MK_TRI4 ina))};
TRI_ MUX

DRIVERS is an 8-bit tri-state driver. When enabled, it outputs its input. Otherwise it outputs
FLOATS. It is a 74244 driver in the real device.

dev {enable, input, output}.
{output = (enable -> FLOAT8 | MK_TRI8 input)};
DRIVERS8

The DRIVERS statement of correctness is straightforward, but tedious because of type
conversion boxes. Because the circuit is purely combinational, it is easy to show that
DRIVERS == DRIVERS IMP. (DRIVERS has been since proven correct automatically using
a version of BARROW'’s VERIFY system [1].)

We stop here, having reached the level of TTL chips actually used in the design, a lev-
el that corresponds in EDICT to making use of validated library elements. We have verified
all the floor plan elements in similar fashion. Working with a bipolar implementation of the
design gave rise to a certain lack of elegance in the lowest level specifications, because the
8-bit functions we wanted were not available to us and we had to work with 4-bit chips. In

VLSI implementations, cells at this (and higher) levels can be parameterised [14] and the
resulting specifications are correspondingly clearer.

THE SECD MACHINE

The SECD machine is an architecture for executing programs written in a purely functional
dialect of Lisp. The SECD machine was originally described by Landin in 1963 [13]. A ver-
sion of this machine, described by Henderson [9], is the basis of our study [10].

We have designed a register-transfer level implementation of the abstract machine
described by Henderson. Our design includes an register-transfer level implementation of gar-
bage collection. We have also produced a formal specification of this implementation in the
LCF_LSM hardware specification language.

Our design work began with a hardware interpreter written in a high-level program-
ming language. This simulation software was used to investigate a possible SECD architecture
down to the micro-code level. The simulation gave us insight into Landin’s original SECD
proposal and a complete and detailed understanding of its intended mode of operation. The
simulation model of the architecture was refined precisely along the lines of the envisaged
hardware decomposition. Detailed timings and critical path highlightings which emerged from
simulation runs, were fed back into the next design iteration cycle. Most importantly, the
simulation gave us a much clearer understanding of what the top level and floor plan
specifications should contain and what they should look like.

This first-approximation freely employed high-level programming language constructs
such as complex data structures and recursion. For instance, a recursive tree traversal was
used in the implementation of garbage collection. The next step was to refine this high-level
simulation into a register-transfer level simulation of the SECD machine. This involved elim-
inating the rather liberal use of high-level programming constructs and using very simple con-
trol constructs in their place. For instance, the recursive tree traversal became a non-recursive
traversal. Similarly, complex data structures were replaced with a hardware oriented represen-
tation of data. In the process of refining the high-level simulation into a register-transfer level
simulation, the actual architecture of the implementation gradually evolved. This was really a
matter of realizing, for example, when an additional register was required in the course of
translating some high-level code in the simulation into register-transfer instructions.

The effort to produce a formal specification of the implementation in parallel with
development of the register-transfer level simulation was extremely worthwhile. The formal
specification was used to capture the current state of the register-transfer level design. Furth-
ermore, the formal specification was responsible for consistency in the design. For example,
the formal specification enforced assumptions that the designer had ’in the back of his head’
such as whether a particular signal was a 14-bit or a 32-bit value. Formal specification also
encourage the designer to observe functionality in the design, for example, avoiding using a
single register for two unrelated functions.

The last step was to translate the register-transfer level simulation into microcode

which was then assembled into a binary image. This binary image was then used to control
the lowest level simulation. This lowest level simulation actually read a microinstruction out
of a (simulated) ROM, decoded it, and interpreted the control signals. The purpose of this
simulation was simply to verify that the microcode has been accurately derived from the

register-transfer level simulation. The simulation also provided exact (simulated) execution
times.

We are currently working on a target-level specification of the SECD machine. The
target-level specification of the SECD machine will closely resemble the formal description
given by Henderson. Henderson describes the SECD machine in terms of a state-to-state tran-
sition for each one of the twenty-one SECD machine instructions where the state of the
machine is given by the contents of the four principle registers: s, e, ¢ and d. An sample of
one of these transitions is shown below.

(abs)e (ADD.c)d -> (b+as)ecd

This target-level specification will be used to formally state that the implementation correctly
implements the SECD machine. Proving this statement of correctness will formally verify the
implementation.

The specification and verification of the SECD will involve several different types of
abstractions including structural, temporal and data abstractions. We have had experience
with both structural and temporal abstraction in the specification and verification of a general-
purpose 16-bit microcoded computer [7, 11]. However, we expect that data abstraction will
be a difficult task requiring the use of fixed-points. The required data abstraction will relate
(potentially infinite) S-expressions in the target-level specification to linked lists implemented
in finite RAM. The final result will be be a substantial example of hardware specification and
verification.

REMARKS

Our long term aim is to build a specification based VLSI CAD system. In the short term,
work on verification at Calgary has concentrated on gaining experience with large proofs. For
this work, the register transfer level is the most appropriate abstraction level. More detailed
mathematical models can be found in [18, 20, 21], and [19] describes initial work on an
abstraction function relating timing level signals and register transfer level signals.

Implementing the elimination unit in off-the-shelf bipolar was awkward at the lowest
level where we had to work with the building blocks available. These were not always what
we wanted, e.g. we had to work in 4-bit nibbles when we really wanted 8-bit components.
The bottom level specifications were correspondingly cluttered. We feel that this problem is
due to the implementation medium, not the verification technique, for parameterised com-
ponents are easy to handle in VLSI. The elimination unit proof has also taught us to be wary
of attempting bottom up proofs - a major headache has been (and still is) devising a top level
specification to suit the floorplan. Finally, attempting the verification of a design after its im-
plementation was instructive. Our feelings are that implementation ad hocery begets untidy

proofs and that neat specifications beget clean hardware implementations. This confirms our
prejudice towards specification driven design.

ACKNOWLEDGEMENTS

The authors would like to thank Geoff Wyvill who painted the figures for us, JADE col-
leagues at Calgary for their help, encouragement, and general software support, and the other
members of the VLSI team at Calgary for providing an stimulating milieu. We would also
like to thank John Gray and Mike Gordon who have been particularly helpful not only in get-
ting us going in verification but in sustaining us thereafter. This work is partially supported
by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

(1] H.Barrow. Proving the correctness of digital hardware designs. VLSI Design, July 1984.

(2] G.Birtwistle et al EDICT an environment for the design of integrated circuits. University
of Calgary Research Report 84/155/13, 1984.

(3] J.D.Crawford. EDIF: a mechanism for the exchange of design information. CICC, 1984,
446-449.

[4] Electronic Design Interchange Format Specification. Version 1.0. 1985.

(5] M.Gordon. LCF_LSM. Technical Report 41, Computer Laboratory, University of Cam-
bridge, 1983.

(6] M.Gordon. HOL a machine oriented version of higher order logic. Draft Report, Com-
puting Laboratory, University of Cambridge, May 1985.

[7) M.Gordon. Proving a computer correct. Technical Report 42, Computer Laboratory,
University of Cambridge, 1983.

(8] M.Gordon. Formal methods for hardware verification. University of Cambridge Draft
Report, 1984.

[9] P.Henderson Functional programming. Prentice Hall 1985, pages 100-150.

[10] J.Joyce. The SECD machine. University of Calgary Research Report, 1985.

[11] J.Joyce, G.Birtwistle, and M.Gordon. Proving a Computer Correct in Higher Order Log-
ic. University of Calgary Research Report 85/208/21.

(12] P.W Kollaritsch and N.H.E.Weste. TOPOLOGIZER: an expert system translator of
transistor connectivity to symbolic cell layout. TEEE Journal of Solid State Circuits,
SC-20(3), 799-804, 1985.

[13] P.Landin. On the mechanical evaluation of expressions. Computer Journal 1963.

[14] Lattice Logic. Designing with gate arrays. Edinburgh. 1981.

[15] B.Liblong. SHIFT a Structured Hierarchic Intermediate Form for VLSI Design. Masters
Thesis, University of Calgary, 1984.

(16] B.Liblong and G.Birtwistle. A VLSI Design System Based Upon a High Level In-
terrmediate Form. Canadian Conference on VLSI, Waterloo, 1983, 150-153.

(17] T-M.Lin. A hierarchical timing simulation model for digital integrated circuits and sys-
tems. PhD Thesis, Caltech 1984. Available as 5133:TR:84.

(18] G.Milne. CIRCAL and the representation of communication, concurrency, and time. To-
plas, 7(2), April 1985, 270-298.

[19] T.Melham. A signal abstraction function. Draft memo, Computing Laboratory, Cam-
bridge University. 1985.

[20] B.Moszkowski. A temporal logic for multi-level reasoning about digital hardware.
IEEE Computer, February 1985, 10-19.

[21] B.Moszkowski. Executing temporal logic programs. Technical Report 55, Computing
Laboratory, Cambridge University. 1984.

[22] LMNixon [F an idiomatic floorplanner. University of Edinburgh Research Report
CSR-170-84, 1984.

(23] T.Patten, N.Hutchinson, and B.Unger. The flooding sink: a new approach to local area
networking. University of Calgary Research Report no. 83/124/13. May 1983.

[24] MRem, and C.Mead. A notation for designing restoring logic circuitry. Proc Second
Caltech Conference on VLSI. Pasadena 1981, 399-412.

[25] S.Trimberger. Automated performance optimisation for custom integrated circuits. PhD
Thesis. Caltech 1981.

