
THE UNIVERSITY OF CALGARY

Automatic Generation of Network Servers

by

Kelly Wilson

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

September, 2005

© Kelly Wilson 2005

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "Automatic Generation of Network

Servers" submitted by Kelly Wilson in partial fulfillment of the requirements for the

degree of MASTER OF SCIENCE.

E5

Date

11

SupervisF, Dr. John Aycok
Department of Computer Science

co)

Dr. Carey Williamson
Department of Computer Science

Dr. Wessam Hassanein
Department of Electrical and
Computer Engineering

Abstract

NEST, NEtwork Server Tool, is a tool for automatically generating code infrastruc-

ture for TCP-based network servers. It uses a specification language to describe

client-server interaction and state transitions within the server. This language has

some similarities to the compiler tools Lex and Yacc, and its design makes net-

work server specification straightforward. One of the main features of NEST is that

it can generate three different types of server from the same basic specification:

process-based, threaded, and event-driven. In addition, use of a server generation

tool can improve programming productivity, abstract away unnecessary details, and

help eliminate certain classes of error. We have tested the performance of our NEST

generated servers against many other open-source servers, with favorable results for

all three server models.

in

Acknowledgments

I would like to thank my supervisor, Dr. John Aycock, for his knowledge, insights

and patience. A special thanks to my wife Joanna and daughter Kylie for supporting

me in this endeavor. My twin brother, Kevin, for helping me where he could. My

parents and brothers, family members, as well as my friends, who explained that

there are some things you just can't get from book learning. I would also like to

thank the members of the Programming Languages Lab at the University of Calgary

for answering my questions and motivating me throughout this process.

iv

Table of Contents

Approval Page ii

Abstract iii

Acknowledgments iv

Table of Contents v

1 Introduction 1
1.1 Client-Server 3
1.2 Compilers and Tools 10
1.3 Motivation . 11

2 Related Work 15
2.1 Languages 15

2.1.1 MSPL 15
2.1.2 MAWL 17
2.1.3 Morpheus 18

2.2 Libraries 19
2.2.1 Serveez 19
2.2.2 BEA Tuxedo 21
2.2.3 Twisted 21
2.2.4 SEDA 22
2.2.5 ACE 23
2.2.6 Capriccio 24

2.3 Protocol Specification Languages 25
2.3.1 Promela++ 26
2.3.2 HIPPCO 26

2.4 Miscellaneous 27
2.4.1 FistOen 27
2.4.2 RPCGen 28

2.5 Summary 29

3 NEST and its Specification Language 30
3.1 Introduction 30
3.2 Specification 30
3.3 The Specification Language In Depth 32

v

3.3.1 Declaration Section 33
3.3.2 Rules Section 36
3.3.3 C code 42

3.4 Some Slightly Larger Examples 42
3.4.1 Simple HTTP Protocol 42
3.4.2 Simple SMTP Protocol 46

3.5 Summary 47

4 Implementation Details 48
4.1 Process-based Server 50
4.2 Threaded Server 56
4.3 Event-driven Server 59

4.3.1 Non-blocking I/O 61
4.3.2 File-globals 64

4.4 Common code 69
4.5 Summary 70

5 Evaluation 71
5.1 Development Effort 71
5.2 Performance 72

5.2.1 httperf 74
5.2.2 Performance Graphs 74

5.3 Error Rates 80
5.4 Summary 82

6 Conclusions and Future Work 83
6.1 Conclusions 83
6.2 Future Work 84

A The NEST grammar 85

References 87

vi

List of Tables

5.1 Process-based Server Error Rates 81
5.2 Event-driven Server Error Rates 81
5.3 Threaded Server Error Rates 82

vii

List of Figures

1.1 051 Model 4
1.2 Process-based Server 6
1.3 Threaded Server 8
1.4 Event-Driven Server 9

•3.1 Server Generation 31
3.2 Stand-alone vs. Inetd Server 32
3.3 Simple NEST specification 34
3.4 Sample of simple authentication and HTTP-like commands 43
3.5 Regular Expression Expansion 44
3.6 Sample code for an SMTP-like protocol 45

4.1 Protecting Memory Pages 68

5.1 Benchmark results for process-based servers 76
5.2 Benchmark results for event-driven servers 77
5.3 Benchmark results for threaded servers 79

viii

Chapter 1

Introduction

The Internet has revolutionized the way that people communicate with each other

in everyday life as well as dramatically increasing the interaction of computers and

devices over a network.

When most people think of the Internet, they envision clicking their mouse to

jump from one "web" page to another. Some people will also envision a less inter-

active experience, such as typing in an electronic mail (email) message to a friend

and sending it over the Internet. When these people interact with any portion of the

Internet, they may be unaware of the vast resources and complex technology that

make these seemingly simple interactions possible in today's digital world.

Sending email and transferring files between computers were two of the earliest

uses of the Internet. Surfing the "web", or the World Wide Web (WWW) as it is

properly called, is a more recent phenomenon.

These days, anyone wishing to view web pages will typically create a connection

from their computer, or host as it is called, to another host on the Internet using a

program called a web browser. These web browsers translate the content they receive

into a visually appealing format for the user. The user types in a URL or search

criteria into a web browser and they are magically taken to some informative or

trivial web page located "out there" somewhere. Netscape Navigator and Microsoft

Internet Explorer are just two examples of popular web browsers.

When two hosts communicate over a network in the fashion described in the

1

2

previous paragraph, we describe their communication as a client-server interaction.

One host acts like a "client", requesting information from another host, which serves

up the requested data. Above, the user's web browser is the client. This client-server

architecture is one of the mainstays of the Internet.

Throughout this thesis we will be concentrating on the automatic generation of

network server programs, the "server" part of the client-server architecture. More

precisely, we will concentrate on the generation of the programming language code

that makes up a server program, or daemon as they are called. These daemons are

mainly programs that run continuously, listening for an incoming connection from a

client, and then interacting with that client to service any of its requests.

The proliferation of the client-server paradigm throughout the Internet has led to

extensive research in this area over the past several years. While other architectures

are also prevalent on the Internet, such as peer-to-peer, they were not a point of

focus for us as they would expand this thesis beyond our research goals. Peer-to-

peer networks do not even have a concrete definition as yet[1], which would make

code generation for this type of architecture difficult.

While web servers are very popular on the Internet we will also expound upon

other types of common servers throughout the rest of this chapter. In the following

sub-section we will give a more detailed description of the client-server paradigm

that our tool focuses on.

3

1.1 Client-Server

The simplest form of client-server model has one computer called a server1, and

one or more "client" computers connected to this server. Servers are usually high

performance machines connected to the network via a high-bandwidth connection.

The server machine is used to "serve" out some sort of data in response to each

client machine that makes a request for the data. There are many ways to connect

a client and server, as well as many different ways to forward data over a physical

connection.

We have already mentioned that computers need one or more types of common

language to communicate with each other effectively. These languages are called

protocols. Protocols for communicating between clients and servers can be placed

into two categories: connectionless or connection-oriented. Connectionless protocols,

in general, send out a data request onto a network connection when it is ready. They

do not set up an explicit connection with the target machine, nor do they wait for, or

confirm, a response to their request. Some connectionless protocols include the User

Datagram Protocol(UDP) and the Internet Protocol(IP). Connection-oriented pro-

tocols, on the other hand, require a logical connection to be established between two

machines prior to data being transferred. Some connection-oriented protocols include

Transmission Control Protocol(TCP) and Asynchronous Transfer Mode(ATM).

The connection-oriented protocols we have mentioned usually have each end of

1 One potential cause of confusion in the client-server world is the use of the word "server" to
describe the physical machine that serves out data, as well as using "server" to describe a program
that runs on these machines to "service" client requests. We will continue to use both meanings for
"server"; but context will clarify whether we are talking about the machine or the "server" daemon.

4

1

2

3

4

5

6

7

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 1.1: OSI Model

the connection maintaining state information about their communications, while con-

nectionless protocols do not. One could think of a connectionless protocol as a pager;

we send a message but we don't necessarily know if it was received by the person we

intended. The connection-oriented relationship, in contrast, is analogous to a phone

conversation with a certain person you want to talk to. With this "connection" one

can confirm each statement prior to continuing the conversation, if desired.

We will be concentrating on the TCP/IP connection-oriented protocol in this

thesis, and some higher, Application[42] level protocols that have been layered on

top of TCP/IP. The OSI model in Figure 1.1 shows the different protocol levels.

One of the higher level communications protocols is the HyperText Transfer Proto-

col (HTTP), which is used as a protocol for easily transferring small units of text and

5

graphics on the Internet. HTTP is the main protocol used by Web browsers to com-

municate with servers. Other Application level protocols include the File Transfer

Protocol (FTP) for transferring files and the Simple Mail Transfer Protocol (SMTP)

for sending mail.

Internet servers using FTP are referred to as FTP servers, while servers that

communicate using SMTP are called mail servers, and HTTP servers are called Web

servers. Many server types can run on the same hardware, but sometimes each

type of server is hosted on a separate machine to minimize overloading. The server

hardware and operating system may be optimized for certain types of transfers, as

well. For instance, an FTP server tends to serve up large files so a very large cache

may be used (or no cache at all). A cache is a list of in-memory files that may be

queried by a server application so as to minimize slow disk accesses to send out a

regularly-requested file. Web servers, on the other hand, may be optimized to serve

out many small files quickly.

The implementation of many of these server programs operating at the Applica-

tion level are varied and complex, but most can be placed into one of three general

programming models. These are process-based (or forking), threaded and event-

driven server models.

Forking A forking server is a server that uses the Unix "forkQ" system call to

spawn a new process for each incoming client request. The new process is a

replica of the parent process. This process spawning can be seen in Figure 1.2

where one connection only spawns one process, but three connections force

the server to spawn three separate, but identical, processes. There is usually

6

1 Connection

V

Process

Ner,'ork

3 Connections

Process

Process

Process

Process Server Process Server Under Load

Figure 1.2: Process-based Server

some significant overhead involved in this process replication (depending on

the operating system), and thus forking servers are generally considered to be

slower than the other models. Pre-forking servers allocate some new replica

processes upon startup, then use these replicas for each client. Re-use of these

replicas helps to keep the process startup overhead down. We have not added

these optimizations to our process-based server model.

Threaded A threaded server works on the same principle as a forking server but it

services new client connections using a new thread, instead of a new process.

A thread is a "light-weight" process in that the thread contains some of its

own context information but it shares some information with the process that

7

created it as well. This information sharing is illustrated in Figure 1.3, where

one can see a single process with the threads for each client connection being

completely contained inside the process. The information that is shared by

the threads contained inside the process include things like file handles, global

variables and other resources. This shared information needs to be protected,

via synchronization, so that multiple threads do not attempt to modify the

shared information at the same time. This thread synchronization can be

difficult to keep track of and may lead to hard-to-find bugs in server code.

A thread pool is usually used in high-performance servers and we have incorpo-

rated one into our threaded server model. The idea of a thread pool is similar

to the pre-forking and process reuse in a process-based server.

Figure 1.3 is actually missing a work queue that is used by the threads inside

the main process. We have not shown this queue in Figure 1.3, as it is an

optimization that is not necessary for this type of server model to function

properly, and omitting it makes the distinction between our threaded model

and the event model more clear.

Event-driven Event-driven servers are different from the other models in that they

are usually single process/threaded servers that handle incoming or outgoing

events when needed. They do not spawn new processes or threads to handle

new incoming client connections. For each client connection, the server needs to

have a collection of information set aside that can be used to service subsequent

events related to that client's needs. This collection of information is called

an event structure, and it contains things like the client's socket handle, open

8

1 Connection

Thread Server

3 Connections

T:i

yvy

Threads

Process

Thread Server Under Load

Figure 1.3: Threaded Server

9

1 Connection 3 Connections

Event Server Event Server Under Load

Figure 1.4: Event-Driven Server

file handles and allocated memory structures. As can be seen in Figure 1.4,

there is a queue that is filled with pending events, until the server is ready to

service the incoming request or action. When an operating system signals the

main process or thread that an event has occurred, the main process/thread

loads the appropriate event structure and services the event. If other events

occur during this time, they are queued for future servicing. Pre-allocating

event structures and using non-blocking I/O are techniques that are used to

help event-driven servers perform better under heavy load.

There are advantages and disadvantages to these models, each with years of

research and/or practical application to support them. NEST: NEtwork Server 'Pool'

2 Previous work on NEST has been published as a Technical Report[48] at the University of

10

has been developed with the aim of being able to switch between these three models

quickly so that new Internet servers using any of these model types can be tested

with a minimum amount of time and effort. With user-supplied code, complete server

applications that run on the Linux operating system can be automatically generated

using NEST. NEST uses compiler technology to automate server code generation for

a given specification. We will give a brief overview of some compiler principles in

the next section.

1.2 Compilers and Tools

Compilers are complex pieces of software that can be simply thought of as translators

that take some kind of coded input and, according to a specific set of rules, output a

translation of that input. Many programming languages are compiled from the input

language to a low-level assembly language. This low-level assembly code is then

"assembled" into machine language, the zeros and ones that the machine operates

on.

There are certain tools that can be used by compiler developers when developing

new languages to help ease the compiler-building process. Two popular tools in this

development process include Lex[31] and Yacc (Yet Another Compiler Compiler) [24].

These tools, or their more recent incarnations, are usually used in combination.

Lex breaks up any input text into usable "chunks" called tokens. A programmer

supplies Lex with a number of patterns to match, and Lex will forward the longest

possible match of these patterns to Yacc for further processing.

Calgary, a poster presentation based on this technical report was given at IC 2005 in Las Vegas[49]
and a full paper submission at the forthcoming APCC 2005 Conference in Perth, Australia[50]

11

Yacc matches the stream of input coming from Lex against a specific grammar.

The function of this language grammar is similar to the English language grammar;

it is used to check for proper syntactic use of a language. If a program contains any

grammatical errors then a compiler builder can use Yacc to check for these errors

and terminate the compilation process with an appropriate error message. Yacc

also gives access to the underlying C language so that a compiler builder can take

advantage of all of the C language facilities.

The use of compilers and automation tools for network server development has not

been as prevalent as the use of libraries. Though some researchers have argued that

language design and library design are equivalent[27], others argue that "most useful

application specific languages perform domain-specific analysis at compile time" [28,

page 5] to differentiate themselves from libraries, and thus justify their construc-

tion and use in a particular domain. We agree with the second assertion and have

developed NEST with the belief that it will be useful when developing and testing

servers.

1.3 Motivation

The programming of network servers is both tedious and error prone. NEST is a new

tool for automatically generating most of the communications code infrastructure

that TCP/IP-based servers require. This offers several advantages, such as:

• Easy switching between different server models.

• Decreased development time/improved programmer productivity.

12

Easy prototyping of new protocols.

• Higher-level network protocol specification, abstracting away implementation

details.

• Reduction in the number of bugs and security problems.

Some of these advantages are a direct result of using a tool, while others need

more explanation.

Using our tool, a programmer can choose to generate code for event-driven,

threaded or process-based servers. Switching from one type of server to another

can be done by simply changing one line of code in the NEST specification. All

underlying code changes between server types are transparent to the programmer,

unless they desire to delve into the generated code for finer control of their server.

There is no consensus as to which server model is best, and one traditional argument

even states that threaded servers and event-driven (or message passing) servers are

essentially a "duality" [29]. We have given programmers the ability to choose between

different server types so that they can quickly test the different models if they so

choose. Some previous work suggests there are places where event-driven servers are

desirable [46]; other work suggests general difficulties with threaded code [35]. There

is also evidence that process-based servers can perform adequately (e.g., Apache) and

that programmers may prefer this model due to ease of programming.

Some common errors and poor programming practices in Internet applications

can be avoided or minimized when using a tool such as NEST. One example is the

ubiquitous buffer overfiow[4]. A buffer overflow occurs in a program when insufficient

bounds checking is performed on data to be placed in a buffer. These overflows may

13

occur, and thus be exploited, in statically allocated and dynamically allocated data.

In some cases, one single byte of overflow can lead to an exploitable server[26]. Our

tool offers some protection against buffer overflows because a portion of the buffer

handling code is automated. Buffer overflows accounted for around 60 percent[47]

of all vulnerabilities in 2003. With the prevalence of buffer overflows we feel that

any tool or process that may help minimize their number would be worthwhile to

consider.

Keeping buffer overflows and similar errors to a minimum via automatic code

generation, should lead to applications with fewer security holes and less program-

ming errors when compared to manually-written server code. On the other hand, the

prevalence of tool-generated code could also introduce a single commonly exploitable

error into hundreds of different servers. While this is possible, tool-generated code

need only be security audited once, instead of having to inspect hundreds of dif-

ferent server implementations. There are also new techniques, such as address

obfuscation[10], Position Independent Executables[18], failure-oblivious computing[39]

and microrebooting[13], being explored that could be used to help mitigate the ef-

fects of these common errors if they occurred in our automatically-generated code.

The trade-off between "time saved" versus "security problems" introduced by our

NEST tool is an area of research we have yet to explore.

One final advantage to using an automated coding process for servers is that there

will be fewer alignment problems. In other words, there will be fewer problems arising

from a change in the number or order of function arguments in a server without a

corresponding change in the client. Although we do not generate client software from

a NEST specification, it would be easy to do so, and thus closely couple the client and

14

server so as to eliminate the alignment problems altogether. Many other networking

suites mentioned in this thesis are actually libraries or frameworks that exhibit an

alignment problem to one degree or another. In a specification language approach

such as ours, these alignment problems can be fixed with a simple recompile, and

users of NEST wouldn't have to update a lot of code by hand.

The following structure will be used for the rest of this thesis. Chapter 2 will

discuss some related work. An in-depth presentation of the specification language,

with examples, can be found in Chapter 3. Next, implementation details of NEST

will be given in Chapter 4, followed by experimental results and evaluation in Chapter

5. Finally, some conclusions and future work are presented in Chapter 6.

Chapter 2

Related Work

There are several languages that can be used for rapid server implementation as well

as several frameworks and libraries that can be used to develop servers. Protocol

specification languages are also related to our work, though they tend to focus on

lower level protocols than NEST. Some miscellaneous projects share several design

decision commonalities with NEST, as well.

2.1 Languages

The languages described below share some attributes with NEST but differ greatly

in other aspects. We outline the only other language we have found that is very

similar to NEST, as well as one other language for a specific high-level protocol and

one for lower-level protocol development.

2.1.1 MSPL

A specification language approach to server code generation has been described and

implemented by Melvin ljouglas[16]. The language, called My Simple Protocol Lan-

guage (MSPL), can be used to easily describe an Internet protocol.

His compiler takes a specification and uses it to generate the communication and

protocol modules for both the client and server applications. An MSPL user must

also supply some extra code to be included as a user module to finish off the server

15

16

or client, as the case may be. One of the drawbacks of MSPL is that it gives no

immediate access to the underlying implementation language, Java. What we mean

by this is that the programmer cannot use Java in the actual protocol specification,

rather they must modify the generated code after the fact, or add code in a separate

user module outside the specification. Unlike our NEST tool, which is made for

server code generation, MSPL is geared more towards protocol specification and

testing.

MSPL seems to be somewhat limited in its flexibility and expressiveness. There

are no performance statistics shown for any of the example protocol implementations

described in the thesis. The author does admit that the MSPL language has sacrificed

speed for the portability available through the use of the Java language. There is,

also no technical information on the underlying structure of the communications

between the generated clients and servers. We can deduce some of the structure

from the generated code given in the thesis. From this structure we conclude that

the communications structure is rather naive, and not made for high concurrency

or high server load. Speed is not necessarily compromised by the use of Java, since

we know that some server implementations that use Java are still very fast [46], but

it would seem that the naive infrastructure design is the cause of any MSPL server

deficiencies.

Though MSPL has its limitations it does have one major benefit over our tool,

which is the automatic generation of a client for any given protocol description. This

leads to more rapid testing of the specified protocol and a tighter coupling between

clients and servers. It may also lead to easier debugging of a new protocol.

17

2.1.2 MAWL

MAWL[28] is a domain-specific language for use in developing interactive World

Wide Web (WWW) pages. Languages like MAWL are geared towards automation

of many of the tasks that HTTP servers perform. In the case of MAWL, it auto-

mates state management, synchronization and shared memory using its compiler and

an extension to the Hypertext Markup Language(HTML) called MHTML. Regular

HTML is a stateless language that is heavily used on the World Wide Web to serve

out different content to clients. HTML works very well when serving static content

but it falls short when dynamic content is requested by a client or when stateful

transactions are required.

MAWL gives access to the underlying host language, Standard ML, and only

introduces new constructs when this general-purpose language cannot be used to

solve a given problem. MAWL is similar to NEST in this regard and, like NEST,

makes some of its design decisions based on the successful aspects of Yacc.

One advantage of using the MAWL compiler is that it performs static checking

of its input to guard against common WWW programming errors. Error handling

in MAWL form submissions is implicit, which is another advantage of this language.

Users are returned to forms that have some type of incomplete or malformed data

input. Static checking in NEST is minimal due to the fact that NEST was designed

for maximum flexibility when developing networking applications.

New languages or language extensions have recently been developed to address

some of the same issues that MAWL was originally developed for, such as state

management. These languages or extensions include JavaServer Pages, Active Server

18

Pages and PHP.

2.1.3 Morpheus

Morpheus[2] is a theoretical programming language that can be used to describe

communications protocols. We have no knowledge of a Morpheus compiler in exis-

tence, and thus we apply the designation of "theoretical" to the Morpheus language.

The author of Morpheus does have some C language simulations of several protocols

in his paper. This gives him the ability "to report some preliminary performance

measurements based on hand optimizations of an implementation of the Morpheus

protocol architecture in C" [2, page 5].

Morpheus can be used to implement new low-level protocols as well as higher-level

protocols through composition of these lower-level protocols. Morpheus concentrates

on defining many simple protocols that can be combined to make a more complex

and functional protocol. One interesting feature of Morpheus is its optimization

mechanisms that can reduce per-layer overhead when combining these simple proto-

cols.

Morpheus also avoids message header alignment problems and byte-swapping

overhead, to a certain degree. There are no message header alignment problems

because a Morpheus compiler automatically pads any headers accordingly. Byte-

swapping overhead is kept to a minimum by in-lining any code for assignments that

may appear in the source program. Morpheus also has an internal byte ordering

keyword that is used to avoid machine-dependent inconsistencies (i.e., big endian

versus little endian) when representing data in a message header.

Some of the main contributions Morpheus makes are protocol abstractions and

19

optimization techniques. Protocol abstractions help support protocol development

through the building-block approach, which is a layering and reuse technique that

speeds development time. Morpheus also preserves modularity which makes the

building-block approach to protocol generation easier to maintain. Though this

building-block approach is not useful for making TCP/IP implementations, the au-

thor contends that it may be the next evolution of protocol design. Morpheus's

"procedure cloning" technique extends a compile-time inter-procedural optimization

to run-time without a performance penalty. There is evidence that exceptional per-

formance may be obtained using similar techniques[38].

Though Morpheus has some very good ideas for protocol generation, we believe

that a working compiler would make some of its main contributions more accessible.

2.2 Libraries

Libraries are frequently used for server development, due in part to the fact that

programmers are already familiar with the language used to develop and interface

with the library. This means that development of a server can start right away

rather than starting off with learning a new programming language. In the following

subsections we will describe several libraries written in, and accessible from, diverse

programming languages.

2.2.1 Serveez

Serveez[23] is a library written in C that provides much of the functionality necessary

for quickly writing event-driven Internet servers. One of its main goals is portabil-

20

ity so it can be used on many different platforms, though other tools mentioned

here suggest that portability is one of the main benefits of using other languages

such as Python and Java. Despite using the C language, Serveez can be used on

approximately 20 flavors of Unix and Windows.

Though this library is written in C, it can use another language called GUILE[20]

to specify the structure of a server. GUILE is actually a Scheme language interpreter

that can be used to easily write server implementations without having to modify the

Serveez internals. Users can simply write a GUILE program that uses the appropri-

ate library functions to build the server of their choice. We contend that this GUILE

"interface" to the Serveez library doesn't actually qualify Serveez as a specification

language approach to server generation like NEST, since there is no code genera-

tion. It is also possible to write "embedded" servers with Serveez. These servers

use dynamic library calls to define a server program and are "embedded" into a C

program. In this case, "embedded" means that the Serveez code is incorporated into

the server via shared library calls, which contain the server implementation.

There are some limitations in Serveez that arise due to the use of the poll/select(

system calls for network I/O in Serveez. Most libraries mentioned here, including

Serveez, use non-blocking asynchronous I/O for increased performance, but using

selectQ can lead to lower performance in some situations. There is also an open file

descriptor limit when using select() that peaks at around 1000 on an older Linux 2.2

kernel[23]. Serveez uses the poll() system function, if available, to get around this

limit but faster and more scalable mechanisms like epoll() or kqueue() are not used

in Serveez, as yet. Serveez is single-threaded, though the authors do mention that

multi-threading can also be used as an alternative to their event-driven model, to

21

serve many simultaneous clients.

2.2.2 BEA Tuxedo

BEA's Tuxedo[8] is. a commercial library that supports several different communica-

tion methods for software in a business environment. It is a very large and complex

middle-ware system for use in large business transaction processing. It is continually

being developed and several new versions have come out since starting our research

on this project.

J3EA describes Tuxedo as a middle-ware product that provides "distributed trans-

action processing and application messaging for applications that operate across

multiple hardware platforms, databases, and operating systems." [8] The underlying

technology of Tuxedo is a library with many functions available to programmers of

servers and clients. The functions in the Tuxedo library can be accessed from Java,

C, C++ and Cobol interfaces. The library supports event-driven and multi-threaded

applications on several platforms but the internals of the program are not easily de-

duced due to the fact that Tuxedo is not open source. Tuxedo is geared towards

transaction processing but it is also the basis for BEA's very fast, fault-tolerant We-

bLogic HTTP server. Due to the closed-source nature of this system we are not able

to examine any of the internals that. lead to its performance.

2.2.3 Twisted

Twisted[30] is an open-source asynchronous networking framework, written mostly

in Python. Twisted uses an event-driven model for communication and, unlike many

other tools mentioned here, it allows access to the underlying platform specific fea-

22

tures if a programmer wishes to exert more control over their system. The use

of Python as the development language for Twisted allows for easy sub-classing,

memory management and cuts down on some types of security problems like buffer

overflows. This language choice does have a major drawback however: it is slow

when compared to C or C++ frameworks. This is evidenced by the statement "High

performance is not a major goal of the Twisted framework." [30, page 2] We had

gathered some preliminary test results involving the Twisted web server, but we

have not continued with this testing due to its poor performance compared to the C

or C++ web servers.

Twisted is a very comprehensive and large framework that may be used for eas-

ily implementing most conceivable networking servers. The framework comes with

examples for many common Internet protocols, including HTTP, IMAP, and FTP.

It also supports several low-level transport protocols, such as TCP, UDP, SSL/TLS

and Unix sockets.

Twisted.spread[43] can be used to develop clients and servers in tandem. There

is no compiler used to generate code automatically: instead, a collection of Python

classes are used to easily construct clients and servers as well as the protocols for

communications between the two. There is a low-level marshaller for a limited set of

data types, a broker for copies of objects and a serializer of Python objects included

in Twisted.spread to ease the development process.

2.2.4 SEDA

The Staged Event Driven Architecture (SEDA) [46] is a framework for developing

event-driven network servers. Matt Welsh developed this architecture and provides

23

good empirical evidence to support the hypothesis that event-driven servers can

handle large concurrent loads better than either process-based or threaded servers.

The line between event-driven and threaded is a little blurred in SEDA due to the

fact that Stages use dynamic internal thread pools, but also use externally-exposed

event queues. The author does call SEDA an event-driven framework, however.

SEDA is an open-source project, with an implementation called Sandstorm that

has been written in Java. This framework also makes use of non-blocking network and

file I/O, which was not part of the Java language when SEDA was being constructed.

A major goal of SEDA is fairness to clients under heavy load, as well as high

performance. This is accomplished through load shedding, with client notification,

and self monitoring to manage resources optimally. If any given Stage is overloaded

then previous Stages can shed some load dynamically, or reconfigure to off-load work

to another stage when possible.

One drawback to this system has actually been touted as an advantage of us-

ing Java, namely memory management. Java uses automatic garbage collection,

thus alleviating the burden of task cleanup from the programmer, however there is

evidence[41] that general-purpose garbage collection techniques can be detrimental

when used in high-performance servers.

2.2.5 ACE

The Adaptive Communications Environment[40] is a large framework for writing

concurrent communications software. It is written in C++ to support object ori-

entation and design patterns, which are recurring solutions to a standard problem.

Patterns purportedly increase the flexibility, re-usability and modularity of the ACE

24

framework when writing communications software. There is also a recently developed

Java version of ACE available to the public.

At the lowest level, the operating system (OS) adapter layer sits on top of specific

application programming interfaces (API) to shield other layers from OS-specific

dependencies. The adapter layer includes multi-threading, multi-processing, event

demultiplexing, shared memory and filesystem accessing mechanisms'.

There are several other layers like C++ Wrapper, which acts like the OS Adapter

Layer, but is meant to be used from within C++ programs. There are also frame-

works that enhance the C++ wrappers with dynamic service configuration, hierar-

chically layered stream components and Object Request Broker (ORB) components.

Two main projects using the ACE framework are the TAO ORB and the JAWS web

server.

JAWS is touted as a high performance adaptive web server that is very rich in

features. It supports different concurrency models, I/O models and a filesystem

caching mechanism for improving performance. JAWS is a framework of frameworks

that is built by extending and combining other components in ACE.

2.2.6 Capriccio

Capriccio[45} is a very new and experimental development project from the Uni-

versity of California, Berkeley. This new user-level thread package or rather, this

optimized version of the old GNU Pth threading package, is used to dispute claims

that the event-driven model is the best for writing highly concurrent Internet servers

'ACE also includes support for low latency, high performance, high bandwidth and quality of
service requirements which makes it suitable for embedded and real-time servers [40].

25

or transaction processing applications.

The authors argue that threads provide "a more natural abstraction" [45] for

writing high-concurrency applications or servers. They also show that small changes

to compilers and threading libraries can lead to a more useful paradigm than the

traditional event-driven one. They point out that another group has already tried

to "just fix events" [3] which actually leads back to a threading model anyways.

An important part of the Capriccio package is the use of a tool to modify the

output of a compiler. This tool performs some optimizations that make use of the

new Capriccio threading model.

The Capriccio authors show some impressive results when comparing their new

web server, Knot, to a previous implementation of the SEDA-based web server called

Haboob. The new server can service up to 65,000 clients at around 700 IvIbits/sec.

Haboob's maximum throughput is around 500 Mbits/sec, with a maximum of ap-

proximately 16,500 clients able to connect before the server runs out of memory.

We believe that new systems like Capriccio could be incorporated into NEST as

yet another model type to choose from. This could lead to more rapid comparisons

between new server models, or performance enhanced versions of older server models.

2.3 Protocol Specification Languages

Protocol Specification Languages are similar to NEST, but they are geared towards

lower-level protocols and their verification or validation.

26

2.3.1 Promela++

Promela++[7] is an extension of the protocol validation language Promela. It can

be compiled into efficient C code. It also allows automatic protocol verification

against programmer-specified requirements via the Promela language. The C-like

Promela++ language takes advantage of many programmers' previous knowledge of

this popular language. Promela++ provides for layered specification of protocols,

composition of these layers into protocol stacks via an event-based mechanism and

encapsulation of states and message passing headers. The Promela++ execution

model is based on Horus[44].

Though Promela++ seems to be useful for lower level protocols, it is not targeted

at the application layer we are concerned with. It simply exposes a function call

interface to an application and hides the protocol internals. Promela++ does not

support an explicit memory allocation mechanism, which makes allocation somewhat

cumbersome. It also has no support for timeouts in real time, which are required for

a TCP implementation.

2.3.2 HIPPCO

HIPPCO is "A High Performance Protocol Code Optimizer" [14]. It builds on the

HIPPARCH compiler which is built around a synchronous language called Esterel[9].

HIPPCO optimizes a control automaton just below the application layer, and uses

an Application Level Framing (ALF) compiler as part of HIPPARCH. The Esterel

language offers a library of pre-defined modules, a parser and a front end that com-

piles the Esterel code into an automaton. HIPPCO optimizes the automaton and

produces efficient C code as its output. There are a great number of optimiza-

27

tions implemented by HIPPCO, including instruction count optimizations, input

rescheduling and branch pruning.

HIPPCO outputs client and server APIs, which are macros that differ according

to the input specification. The focus of HIPPCO is still on the lower level protocol

specification and its optimization. [14] compares the performance of the BSD TCP

implementation versus a HIPPCO-optimized implementation. HIPPCO's TCP per-

forms significantly better, in terms of instruction processing by the CPU to process

an incoming packet, but there is a penalty of increased code size when compared to

hand-coded TCP implementations. The authors of HIPPCO state that they "en-

visage integration of the application into the communication automaton" [14], which

would automate protocol and application production even more.

2.4 Miscellaneous

This section reviews some tools that are similar to NEST in design or function. The

tools are used in different ways, and one is not even used for networking software

development. Both of these tools have some aspects in common with NEST, and are

therefore deemed to be relevant, though they were developed much earlier.

2.4.1 FistGen

FistCen[51] is not a networking related tool, rather it is a tool for automatically gen-

erating code for stacking filesystems. From a single description, the FiST language

compiler can produce filesystem modules for multiple platforms. The generated code

handles many kernel details, freeing developers to concentrate on other major issues

28

that relate to their filesystems.

The reason that we mention FistOen here is because of some striking similarities

of design. Both FistOen and NEST are based on Yacc, and Lex to some degree,

with some similar syntax and compilation mechanisms. Though we only recently

discovered FistGen, and NEST has been completely independently-designed and

implemented, we felt that the similarities in design between our projects in some

way validated our implementation. FistOen is a well designed and usable system

that has continued in its development for years, thus proving that it has merit as a

good tool for generating stacking filesystems.

2.4.2 RPCGen

RPCGen[22] is a protocol compiler that is used with Sun Microsystems' Remote

Procedure Call (RPC) protocol. RPC has been around for a long time[11] and is

used in most operating systems today.

RPC sits at the presentation layer of the OSI Model in Figure 1.1. This means

that it operates at a slightly different level than NEST, but it is still relevant. The

RPCGen compiler produces stubs for both server and client code using RPCL, the

Remote Procedure Call Language. This language is similar to C, which leverages

many network programmers' prior knowledge of this language. The output code

produced by RPCGen is also C code, like NEST. A server skeleton is produced that

can be compiled and linked with when producing a full-blown server. There is also

an eXternal Data Representation (XDR) filter routine for parameters and results

being passed back and forth between client and server. The XDR routines convert

the parameters and results into network format, and back out of network format.

29

Many of the servers written using RPC are not secure; this is a common source

of problems [19]. This doesn't mean that RPC is not popular, quite the opposite.

The Network File System (NFS) uses RPC, and is a very popular remote filesystem

used on most operating systems. A language that produces a larger amount of code,

to safely wrap the procedure calls, may be useful in mitigating some of the more

common RPC server coding errors.

2.5 Summary

In this chapter we have reviewed many different languages and libraries that are

similar to NEST, or that have some bearing on our research. There are more libraries

available for server development than languages. Hopefully in the future there will be

more, and more useful, server languages that appear to help programmers avoid some

server implementation pitfalls. Work in the server performance arena is continuing

with a fervor and we believe that incorporating this work into a code generation tool

would be useful.

Chapter 3

NEST and its Specification Language

3.1 Introduction

A good portion of the research effort for this thesis was spent on the specification

language for NEST. Over the course of the language development we ran into several

interesting problems that were not expected. We will cover the specification language

in its final form, and explain some of the problems we ran into during its development.

3.2 Specification

The NEtwork Server Tool has a general structure like that found in Figure 3.1. A

user supplies a NEST specification to our compiler, which translates the input into

appropriate C code for any of our three server model types. The automatically

generated code is then compiled by a regular C compiler; in this case we use the gcc

compiler that is supplied with most versions of the Linux operating system. There

is also a secondary file containing extra C code to be compiled into the final server.

Once everything is compiled we link the generated code and extra code, as well as

any library code that a user would like to use, to produce the final server executable.

The extra code file is filled with many functions that do not change across server

model types. This file also contains some functions that may require conditional

compilation techniques to provide the appropriate functionality depending on the

30

31

NEST
Specification

NEST
rranslator

Figure 3.1: Server Generation

11- SERVER

model type chosen. Users of NEST may add code to this file if they prefer.

In the NEST specification file we have given the user the ability to choose be-

tween two different types of connection models: a stand-alone server or an inetd

server. A stand-alone server is one that runs continuously, listening for new incoming

connections. An inetd server is one that is run on demand by time Internet super-

server inetd. Switching between these two connection models can be accomplished

by changing one hue of code in the NEST specification.

In Figure 3.2 we illustrate the difference between the two server connection mod-

els. The stand-alone server has more resource usage, but a faster response time clue

to the continuously running server daemons. The stand-alone model should be used

for high volume servers. The inetd connection model uses less resources, on average,

and should be used for lower volume server machines.

32

Client

HTP FTP

SMTP SSH

vs.

Figure 3.2: Stand-alone vs. Inetd Server

3.3 The Specification Language In Depth

The specification language design was inspired by the design of Lex and Yacc{32j.

This decision was made due to the fact that Lex and Yacc are popular compiler tools

that have stood the test of time. It is true that newer tools have come into being

that are improvements on Lex and Yacc, but time basic design is still solid. There are

other advanced projects that use similar syntax and design, like FiST, which lends

support to our contention that this is a good design choice. See Appendix A for the

Yacc grammar we used to develop NEST.

33

In our specification language, as in Lex and Yacc, there are three sections, sepa-

rated by %%:

declarations

0/0/

/ /0

rules

C code

The last section is simply C code that is copied directly to the output file. Fig-

ure 3.3 gives a short sample specification, for a simple server that echoes user input

in encrypted form.

3.3.1 Declaration Section

The initial part of the declaration section is arbitrary C code, encapsulated between

%{ and %} delimiters. The user may include header files or define C preprocessor

macros in this part of the specification. The C code contained in this section is

copied verbatim into the output file of the NEST tool. This is the place where

users would place "global" variables. These variables are accessible from within the

entire specification file and, more specifically, from within the action code sections

of the specification. One could also access these variables from the "extra code"

file using C's extern keyword which is part of the C programming language. While

global variables are generally regarded as hazardous and can make code harder to

maintain[33, page 360], this functionality is available in NEST because it is available

in the C programming language.

34

#include "rotl3.h"
%}

%option threadServer 100

ANY [\n]*

NL \r?\n

char buff er[256];

START: {
}

DEFAULT: ANY NL -C
strlcpy(buffer, $1, sizeof(buffer));

rotl3(buffer);

$reply(buffer);

}

Figure 3.3: Simple NEST specification

35

The remainder of the declaration section is used for defining NEST options, states

and macro substitutions. The commands %option and %state are used to inform

the translator that a single server option or that one or more states will follow.

Some of the options in the declaration section in a NEST specification can be

overridden at run-time by using a special file whose default name is config . nest.

This file mechanism is supported to give network administrators the ability to tune

a server's properties without having to recompile the server. An example of some

options that can be changed include:

• serverName - set the server's name

• serverPort - port to run the server on

• inputBuffer - default size of the server's input buffer

• outputBuffer - default size of the server's output buffer

The standAlone option can't be modified at run-time as different code is gener-

ated depending on whether the user wants a stand-alone server or a server that is

run by inetd.

The format of the configuration file is the same as the syntax used for options

in our NEST specification file, without the %option qualifier. Each option name is

followed by a space and an appropriate value.

The %state command is used to declare server states used in the specification.

This means that the user has effectively added new keywords to the NEST tool so

that it can later check for proper usage of these state names.

36

As in Lex, macro substitutions defined in the declarations section may be used

to increase the readability of large or complex regular expressions and boolean state

expressions. There are no practical limitations to the complexity of these substitu-

tions in the NEST compiler. The syntax of substitutions is simply one collection of

characters followed by a space and then the collection of characters to be substituted,

ending with a carriage return. This feature helped keep specifications readable when

large and complex regular expressions were written for our test servers.

Our tool does not support the declaration of variables, in this section, as there is

no meaningful way to use these variables in the output code. Any variables declared

here cause our compiler tool to output a warning message about improper use, but

the compilation does not stop. If we wanted to support variable declarations in

this section we would need to implement a full C parser, which would be needed

to correctly recognize the declarations when compared to any macro substitutions.

For now, we recommend that users do not declare any variables in this section,

just °hoptions and %states, as the declared variables will not appear in the final

generated code. We will discuss this further in the Implementation Details chapter.

3.3.2 Rules Section

Following the declarations section is the rules section of our tool which starts and ends

with M. The user begins this section by declaring any per-connection variables that

may be needed. These variables have a different meaning depending which model

NEST is generating. For the process-based and threaded models these variables

are simply copied into the generated output code near the start of our monolithic

function. (This monolithic function contains most of the logic for state transitions

37

in a specified server, plus all of the code contained in the action code sections of

the supplied NEST specification.) Therefore, if a process-based or threaded model

has per-connection variables declared then these variables will have "function scope"

within our monolithic function. However, if an event-driven server is being generated

then any per-connection variables need to be protected in a specific way as they will

have a scope that encompasses the entire file. We explain the necessity for this

protection mechanism in Section 4.3.2. Figure 3.3 contains a per-connection variable

called "buffer" which is 256 bytes long.

In the rest of the rules section, qualifying expressions and patterns are specified

which NEST will try to match against the server's input. If an input pattern is

matched, and its qualifying expression is true, then that pattern's corresponding

action code is executed.

Network servers often have some notion of state in their transactions with a

client. For example, a client may initially be in an unprivileged state, and move to

a privileged state upon authentication. NEST specifications therefore have exten-

sive support for states. Each state can be thought of as either being true or false,

depending on whether the state has been "seen" yet or not.

Each state has a name, and state names are used in conjunction with each other

to construct boolean expressions. Patterns in the specification are qualified by these

boolean expressions; recall that a pattern only matches if its qualifying boolean

expression is true. Valid boolean operators in NEST include the logical and (&&),

or (11), and not (!) operators. The boolean predicate $LASTSEEN (STATENAME) may

also be applied to a state, returning true if and only if that STATENAME was the last

state to be set to true.

38

NEST has two predefined states called START and END that are reserved for startup

and cleanup code. The START state can be used to set up the server prior to accepting

any initial incoming data. (Some startup code can also be placed at the beginning

of the last C code section mentioned above, but a dedicated start state is useful as

well.) The END state can be used to send back error information before dropping a

connection if the user wishes, as this state will always be entered before a connection

is closed, in a well-behaved server (i.e., one that doesn't crash!).

With the exception of START and END, which are special cases, all the patterns

and qualifying expressions in the rules section take the form:

[qualifying-expression:] pattern {

action-code

}

The patterns that follow the qualifying expressions are actually regular expres-

sions, extended to permit extra whitespace for readability. A regular expression is a

string (a collection of characters) that describes another set of strings according to

certain syntax rules. What that means is that we can express patterns very easily

using regular expressions. For example:

mv *txt ./docs/

is a Linux command that uses a regular expression to easily move all files that end

with the extension "txt" to a "docs" subdirectory.

There are many different types of regular expression syntax rules, depending

on the programming language one is using. We have based our regular expression

39

syntax on the Perl Compatible Regular Expressions library, or libpere, syntax. This

means that we can simply pass through user defined regular expressions directly to

libpere. As the name implies, libpere's regular expression syntax rules are based on

the PERL programming language

NEST also allows syntactic sugar, so that one expression may qualify a number

of patterns:

qualifying-expression {

[qualifying-expression:] pattern {

action-code

}
[qualifying-expression,:] pattern {

action-code

}

}

We call this expression a multistate since one qualifying expression can be used

to qualify several subsequently defined expressions.

There is one state that is internally defined in NEST, the "DEFAULT" state. It

can be used for extremely simple servers to immediately transition from the START

state to a state where some input text will be matched. The DEFAULT state is

automatically $seen when leaving the start state so that any state whose qualifying-

expression is DEFAULT will be entered when leaving the START state. This means the

NEST programmer doesn't have to add a state and mark it as seen when leaving

40

the START state, because we have basically done this for them. The DEFAULT state

was also needed to maintain a consistent qualifying-expression: pattern { action code}

sequence in a NEST specification, as can be seen in Figure 3.6.

The example in Figure 3.3 goes from the START state and immediately transitions

to the DEFAULT state, where it matches any given input plus a new-line character.

The reason for this seemingly strange mechanism is that we needed a way (i.e., the

START state) in which the server could send outgoing data to the client before having

to match any incoming data. Figure 3.4 uses the START state to send a "Username:"

prompt to the client prior to matching any incoming data. Our tool automatically

generates a network read for each closing brace that ends an action-code sequence,

which means that the START state attempts to read from the network automatically.

The code NEST generates will attempt to match the server's input against all

patterns whose qualifying expression is true. If there is ambiguity as to which regular

expression can be matched, then the longest match is chosen or, if two or more

matching expressions are equally long, the pattern specified first in the specification

is used. Users should remain aware of the fact that ambiguities in this matching

mechanism are allowed and the possible consequences of this first-written-first-served

matching. This design decision will be expounded upon in Chapter 4.

In the action code, we allow a mixture of C code and special NEST directives.

The latter are preceded by a dollar sign, and include:

$seen Notes that a state has "been seen", setting the state to true. In our design,

we have left this for the user to do explicitly, to allow fine-grained control of

state transitions.

41

$clear "Forgets" that a state has been seen by setting it to false. The wild card *

refers to all states except the START state. $clear has no meaning for the END

state.

$reply Sends a reply from the server to the client.

$close Closes the network connection in a manner consistent with the chosen server

model.

$return Used for "returning" out of any action code in our tool. This construct

must be used rather than a bare return statement to guarantee a properly

functioning server for all models.

$fileReply Can be used for binary data file transfers.

$fileReceive Accept incoming file data.

This is not an exhaustive list of our built-in functions, and any number of other

functions could easily be added to help automate server infrastructure development.

Inside the action code we also have access to the matched regular expressions of

the pattern using a Yacc-like mechanism. In Figure 3.3, the specification contains

the pattern ANY NL. Each of the matched strings in the regular expression may be

accessed individually: $1 in the action code corresponds to the input text that ANY

matched, and $2 corresponds to the text matched by NL (which is actually the regular

expression \n, after macro substitution). We can use these references in the action

code anywhere that a character string can be used. A user should make a copy of

matched input if they want to use that matched input in other action code segments

42

of the NEST specification. This is an appropriate place to use the per-connection

variables, mentioned previously, to keep a copy of the matched input.

3.3.3 C code

The code that is placed after the last %% in the NEST specification is copied to the

NEST output file near the start of the "mainQ" function. This "mainQ" function

is the entry point for all C programs and therefore any code placed at the end of a

NEST specification file will be run at startup in a NEST server. See Chapter 4 for

further details.

3.4 Some Slightly Larger Examples

To further illustrate the specification language that NEST uses, we have provided

two slightly larger examples. The first performs a simple user authentication before

allowing HTTP-like commands; the second is a simple SMTP-like protocol.

3.4.1 Simple HTTP Protocol

In the start state of Figure 3.4, we reply to any incoming connection attempt with

a username prompt. We then indicate that we have seen the state EXPECT-USER.

This means that EXPECT-USER is the only active state when the next incoming data

is analyzed. The incoming data will be matched against the regular expression

[\r\n] * (everything except for line terminators) followed by a newline. When

the data is read in and matched, we enter the EXPECT-USER state where the input

matched by [\r\n] * is copied to the "user[]" character array. Other similar steps

43

#include <string. h>

#include "myExtraCode .h"

70}

%option processServer 150

%option serverName www. cpsc .ucalgary. ca

%state EXPECT-USER EXPECT-PASS VALID

WS [[:blank:]]+
NL \r?\n

ANY [\r\n]*

0/0/
/0/0

char user[256];
START: {

$reply("Username: \n11);

$seen (EXPECT_USER);

}
EXPECT-USER: ANY NL {

strlcpy(user, $1, sizeof(user));

$reply("Password \n");

$seen (EXPECT_PASS);

:i
EXPECT-PASS: ANY NL {

char *pass = $1;

if (validateUserPass(user, pass))

$seen(VALID);

else
$clear(*);

}
VALID {

"GET WS (http://)?{NOT_WS}* {WS}? (.*)? {
char *fjleName = $3;

char *version = $5;

confirmVersion(version);

$fileReply(fileNaine);

}
"PUT" WS ANY NL -C

$fileaeceive($3);

$reply("200 OK");

}
ANY NL {

$clear(*);

END: -C
$reply("Incorrect input connection terminating");

$closeO;

}
0/0/
(0/0

// C code

Figure 3.4: Sample of simple authentication and HTTP-like commands

44

"GET'." WS (http:/f)?{NOTWS}* {WS}?, ()?

Match the
bare word
'GET"

Match any whites pace
characters

A

Match any
characters at

the end

Match zero or one
whltespace character

Match a string of non-white space characters that possibly , but not necessariIy,
starts with "hup:/f'

Figure 3.5: Regular Expression Expansion

will eventually authenticate the user and put us in the VALID state, or all states will

be set to false via the $clear(*) statement.

Once in the VALID state, our HTTP-like GET and PUT commands are recognized.

The pattern for the GET command looks complex, even with some substitutions for

WS and NOT-WS. An interpretation of this pattern is shown in Figure 3.5. This concise,

simple pattern matching mechanism was one of our research goals when we started

developing NEST.

The last state of our Figure 3.4 example is the END state. This state will be

entered on incorrect input, which will then cause the server to inform the client that

something is wrong, and abruptly close the connection. Of course, in a larger and

more well-behaved server a more appropriate error recovery mechanism would be

used.

Looking at the declaration section, the processServer 150 option indicates that

45

#include <string. h>

#include "myExtraCode . h"
O/}

%option threadServer 200

%option serverNaine smtp. cpsc . ucalgary. ca

%option inetd

%state GOT_HELO GOT-MAIL GOT-RCPT

WS [[:blank:]]+

ML \r?\n

ANY [\r\n]*
BOTH GOT-MAIL && GOT-RCPT

char mailFrom[256], rcptTo [256];

START: {
$reply("220 mailServer Simple SMTP; °hs", date 0);

}
DEFAULT: "HELO" US ANY NL C

$reply("HELO ", $3, u'\fl?') .

$seen(GOT_HELO);

}
DEFAULT: "MAIL FROM:" WS ANY ML {

strlcpy(mailFrom, $3, sizeof(mailFroin));

$seen(GOT_MAIL);

}
DEFAULT: "RCPT TO:" WS ANY ML {

strlcpy(rcptTo, $3, sizeof(rcptTo));

$seen(GOT_RCPT);

GOT_HELO && BOTH {
"DATA" (.I\n)* NL "." NL {

mail(mailFrom, rcptTo, $2);

}

START II GOT-USER II GOT_HELO 11 GOT-RCPT: "QUIT" NL {
cleanup 0;
$close0;

}

/1 C code

Figure 3.6: Sample code for an SMTP-like protocol

46

a process-based server should be generated by NEST in this case, and that the

maximum number of simultaneous connections (and thus processes) is 150. We also

set the serverName option to a default value of www. cpsc . ucalgary. Ca. Of course

this default value can be over-ridden using the config.nest file.

3.4.2 Simple SMTP Protocol

The simple SMTP-like server in Figure 3.6 allows the HELO, MAIL, and RCPT com-

mands to be issued in any order, but requires them all to have been issued prior

to a DATA command. We feel that this explicit, and simple, state machine building

mechanism is an attractive part of NEST. With our NEST tool we can construct

relatively complex state machines in a readable format.

The threadServer 200 option indicates a threaded server with a maximum of

200 active threads. We also choose the inetd option in this example to select the

startup model for the resulting server.

This threaded server specification also shows macro substitution used as part of

a qualifying expression. The substitution of BOTH is performed which means that

we must match GOTHELO && GOT-RCPT && GOT-MAIL all together prior to

entering the final state. This is what we intended and the substitution of two state

names with one can increase readability of the specification.

This example also illustrates how the input "QUIT" can always be recognized,

because all states are being logically "OR" ed together at the end of the input file.

When we are specifying a catch-all statement like this we must keep some things in

mind. For instance, if we have two states that can match the input (e.g., "QUIT")

then only the first state will be entered, and this may not be the intended behaviour.

47

One must also be careful to write the correct qualifying expression, as catch-ails can ,

grow to be long and complex. Use of the substitution mechanism in these cases is

recommended.

3.5 Summary

In this chapter we have given an in-depth presentation of NEST and its specification

language. We showed some simple examples that highlighted the major syntax con-

ventions used in NEST. We also described some of the underlying design decisions

that were made during development of our NEtwork Server Tool.

Chapter 4

Implementation Details

The NEST compiler tool is written using the very tools it is based on: Lex and Yacc.

We primarily use C code in our compiler, though some C++ is used where it could

be used effectively to cut down on development time. The implementation of NEST

consists of approximately 12,000 lines of Lex/Yacc/C/C++ code. The output from

NEST is exclusively C code and currently runs on the Linux operating system and

under Cygwin/ Windows, as well. Our tool should compile on other versions of Unix,

with little modification, since we have used the autoconf/automake suite of tools for

the build process.

We have saved a significant amount of work, and coding, by using some library

code in our server. Two libraries are used: libevent[37] is used for event driven

servers, and libpere[21] is used to match regular expressions in all three server types.

Libevent The libevent library is a versatile collection of C functions that may be

called to take care of all kinds of events asynchronously. The library can be

used to intercept file descriptor events, timeouts and signals. The library also

supports several different types of polling mechanisms. Our implementation

of NEST running on Linux uses the epoll polling mechanism due to its good

performance characteristics and the fact that it is quite robust and scalable

under heavy load[37].

Libpere This library has been used to great advantage in NEST. The use of regular

48

49

expressions makes input matching easier, and the regular expressions are easier

to read when using our substitution mechanism. The fact that we use libpere

to compile the regular expressions upon server startup keeps the matching fast

when the server is under load. This library is also used internally to parse the

config.nest file.

We have also considered automatically generating a Lex specification to match

incoming patterns, instead of using libpere. This solution would have made the

compilation process more difficult and we didn't see a significant savings in matching

speed so we have left this solution as possible future work.

Output from the compiler contains only relevant code for the server model that

has been chosen in the NEST specification. Extra boiler-plate code, for all three

model types, is provided with our compiler. Any extraneous boiler-plate code is

conditionally compiled away during the final server build.

Most of the compiler generated code is contained in a single monolithic func-

tion. There are several reasons for this design decision, including execution speed,

simplicity of design and ease of code generation. When switching between the dif-

ferent server models we found it easier to contain most code in a single function. We

also assume that most users would not be viewing or modifying the generated code,

therefore readability in this large function was not a primary consideration for us.

A large "switch{}" statement is used inside the monolithic function to jump di-

rectly to the proper action code section depending on which states have been $seen

and which are $clear. The evaluation of the boolean qualifying expressions is ac-

complished at the end of this main "switch{}" statement, once the appropriate action

50

code has been executed and any state changes have taken place. This evaluation is

done sequentially and thus each qualifying expression is evaluated in turn. Since this

is inefficient for large numbers of qualifying expressions, we have spent some time

looking at Binary Decision Diagrams{5} and similar algorithms to speed this evalu-

ation process. We haven't spent a great deal of time or effort on this optimization,

however, as we haven't seen servers with prohibitively large numbers of qualifying

expressions in practice.

In th next several sections we will give annotated code examples of NEST input

and output, for each of the three model types.

4.1 Process-based Server

The process-based server code was the easiest to develop. We could basically have

the compiler output proper networking code that would work with one client, then

proceed to "forkQ" off new processes to accept more than one client. We didn't have

to worry about many complexities that can plague the other models. Very little op-

timization has been done for this model as we wanted a baseline server to compare

our other models against. We will review some input code, and its corresponding

output code for the simple rot13 server in Figure 3.3 over the next section. This

example produces a process-based server and its corresponding output code follows.

The portions of code in light gray are the NEST specification code input and the

dark gray code inside the boxes is the corresponding C code output. There are also

some comments to help explain what is being done. Some routine or repetitive por-

tions of the output code have been omitted for brevity.

51

%{
#inc].ude "rotl3 .h"
%}

#include <NEST.h>
#1nc1ud0 'rot13 .h"

We simply include our compiler's header file, as well as any user-supplied code.

%option processServer 100

#define NEST_MAX_CLIENTS 100

Here we use a "#define" statement to set the maximum number of clients that

the server will allow.

ANY [A\] *

NT.. \r?\n

const char *NESTfuncOpatterO =
pcz *NEST_func0atern0CRE;
consb char *NEST funcO?atfernl =
pare *STfuncOpattarn1pCRE;

These substitutions are equated with new libpere-compiled regular expressions

later in the server's "mainQ" function. In its current form, our tool takes any sub-

stitutions that are not used and throws them out, thus conserving space in the

executable. There is also less work done at startup, as the unused substitutions are

not compiled via libpere.

52

jut NEST_totaiClients;

typedef enum {DEFAULT, START, END} NEST_States;
const char *NESTerrorpCRE;
jut NEST_erroroffsetPCRE;

void NESTJainLoop (void *NESTac) {

This is some setup code and the start of our monolithic function called "NESTJV1ainLoop".

All libpere variables have "PORE" appended for clarity during development.

char buffer [256]

NEST_s6 = *((jnt *)NEST—ac),

boo]. NEST_START = true;
boo]. NEST_END = true;
jut NEST_ovectorPCRE [NEST_OVECMAX];
char *NEST_subj ectpCRE;
jut NEST_lastSeen = -
boo]. NESTEFAULT = 0;

//User Variables
char buffer [256]
//End User Variables

char *NESTfune0pattMatch0(
jut NEST_func0?att0LenCRE;
char *N55f1jc0attMatch1pCRE;

mt NEST_funcoPattlLenPcRE;
jut NEST_func0l'TumPatterns = 2;
jut NEST_func0ExecPCRE;
mt NEST_switch = 0;

Here we can see that the user-defined variables are declared near the start of our

monolithic function. These variables are just copied into the code verbatim so that

the user can reference them in their action code; we don't have to modify this code in

any way. The NESTiastSeen variable will be set to the last $seen variable's offset

in the enumeration NEST-states. Upon initialization it is set to -1, as no state has

been $seen yet.

53

START

NEST.JainLoopStart:

NEST_las tSeen = DEFAULT;
NEST— DEFAULT = 1;
(void) signal (SIGALRM, NEST_read_timeout);

The NEST.MainLoopStart label is used with goto statements so that we can jump

back into this START code without re-initializing any variables. Dijkstra famously

cautioned against the use of goto statements [15] in programming code, but there is

evidence that this option is very appropriate for state machine construction[25].

We set up our NEST-DEFAULT and NEST_lastSeen variables so that we can

transition to the next state correctly after we "NEST-Evaluate" the current state of

our machine.

//The end of the START state

for (;;) t
NEST_ok = NEST_dollarRead (NEST_sd, NEST_buffer);
if (NEST_ok == 0) {

close (NEST_sd);
NEST_totaiClients- -;
exit (0);

}
else if (NEST_ok < 0 && (errno == EINTR { errao = EACAIN))

continue;

elset
break;

(void) alarm (NEST_READ_TIMEOUT);

goto NEST_Evaluate;

NEST_FuncStart:

Here we have included the code for reading from the incoming socket, which is

54

connected to a client. This socket reading code could be moved out of our monolithic

function, thereby saving some code generation, but we would just ask the compiler

to "inline" this code anyways, so we decided to explicitly generate it here instead.

The NESTYuncStart label is used when we don't want to re-enter the START state

but would rather re-evaluate our qualifying expressions.

DEFAULT: ANY NL

strlcpy (buffer, $1, sizeof (buffer)
rotl3 (buffer)
rep1y(buffer);

switch (NEST--switch) {
//"DEFAULT" state is matched here
case 0:

str1cpy(buffer,NT_funo0PattMatchOPCRE,sizeof(buffer));
rotl3 (buffer);
NE$T_d11arWrite(NEST_sd, buffer);
break;

This is the output code for our qualifying expression "DEFAULT". This is guar-

anteed to evaluate to true upon exit from the START state, unless a user desires oth-

erwise and uses the $seen keyword to explicitly move to a different state. Our first

matched pattern ($1) is accessed via the variable NEST1uncOPattMatchOPCRE.

This character pointer holds the matched input corresponding to the "ANY" pat-

tern. One problem is that we cannot check the user-supplied code for possible buffer

overflows or other possible security concerns. Therefore, the NEST programmer still

needs to be vigilant when writing their own action code.

55

NEST_Evaluate
mt NEST_lougestMatchingFuuc = -1;

hit NEST.ffiatchedLength = -1;

if (NEST--DEFAULT) C
mt NEST_tota].Length
NEST_funcOEecPCRE = pere_exec (NEST_funcOPatternOPCRE,

NULL, NEST_):iuffer+NEST_totalLength,

(jut) strleri (NESTJfer+NEST_totalLength),
0, 0, NBST_ovectorPCRE, OVECMAX);

if (NEST_unc0ExecPcRE < 0) C
//Error

In this section of code we evaluate our state machine and match the patterns

associated with each state. If the NEST-DEFAULT boolean expression is true, then

we match the patterns associated with that state of the input specification. In a

larger specification this boolean expression may be very large, using several state

names plus the &&, I and I I operators.

There is some pattern matching code that has been omitted for brevity. Suffice

it to say that each pattern following a valid qualifying expression is matched against

the server input in sequence. We save the matched portions of input into the appro-

priate variables.

56

//This is the end of code for the input specification

i (NE$T_tota.Length > NEST_atchedLength)
NEST_longestMatchingFunc = 0;
NEST_jnatchedLength = NEST_totalLength;

if (NEST_longestMatchingFunc -IL) J
NEST—switch = NEST_longes tMatchingFunc;
go to NEST_FuncS tart;

goto EXIT;

If the NESTiongestMatchingFunc variable ends up being equal to -1 at the end

of the evaluation, then we fall through to the EXIT label. This EXIT label forces

entry into the END state so that error processing may take place. If, however, there is

a NESTiongestMatchingFunc, then the code jumps back to the NESTYuncStart la-

bel to actually run the code associated with the valid qualifying expression/patterns.

This gives us a basic overview of the output that NEST produces for an extremely

simple server. In the next two sections we will show some of the thread-specific and

event-specific code that is produced by NEST.

4.2 Threaded Server

The monolithic function code for the threaded server model is similar to our process-

based code. There are only a few changes including the "pthreadcleanuppopQ"

function, which is used to make sure that each thread exits properly if the user exits

from within their action code. This problem with returning properly from within

any action code led to the late addition of our NEST-specific $return statement for

each server model. This $return statement must be used within action code to have

57

NEST servers run properly. The "pthread_cleanup_pop" mechanism is also used if

there are errors or exceptions in the action code that are not caught properly by the

NEST programmer when a thread illegally exits. In some cases this mechanism can

keep the server from crashing if a thread behaves badly.

Much of the extra code needed for the threaded model is contained in a separate

file. This code includes some optimization code, including a thread pool. A thread

pool is a collection of preallocated threads that can be used without thread startup

overhead during heavy server load. These threads can be used repeatedly because

they are just grabbing work from a queue, running until that work is complete and

then checking the queue for more work. The maximum size of the thread pool is

adjusted inside the NEST specification by defining the maximum number of clients

that can connect to ihe server at any one time. We found that there is a relatively low

default threading limit of 256 under Linux-2.4.22 with the LinuxThreads implemen-

tation and the default 8MB thread stack size. Thus, our threaded implementation

has a thread pool size limit of 256.

We believe that NEST could be modified relatively easily to run with the Native

POSIX Threading Library (NPTL). This library can purportedly run upwards of

100,000 threads at any one time, which may be advantageous for use in some types of

servers[17]. The fact that we should be able to easily modify our tool to automatically

output new threading code is one of the large advantages of this tool (i.e., we modify

the tool, and programmers just recompile their servers without having to modify

every line of threading code themselves). There are some other good ideas for network

server optimization, like stack-ripping[3] or Capriccio[45], that may be incorporated

into NEST without too much trouble. These two modifications may be presented to

58

the user as new server model types, thus expanding our tool's abilities and usefulness.

One thread-specific portion of code that is generated is the code to update the

server's total client count.

//There is no code needed in the input specification to generate
//the following thread specific code

void NEST_cleanClients (void *arg)

NEST_].ockO;
NEST_totaiClients - -;

ESTunlockO;

J

Here we are using a mutex locking mechanism to gain exclusive access to the

NEST..totalClients variable (and other global variables). We decrement the variable,

unlock the mutex (in a separate function) and return from this function. This func-

tion is also used by the "pthread_cleanup_pushQ" function so that it can be used

to decrement the total number of connected clients by the "pthread_cleanup_popQ"

function. Our tool cannot guarantee proper global variable locking for user-defined

variables, unfortunately. It is still the NEST programmer's responsibility to lock

global variables properly when using the threaded model.

//This code is generated for each exit from an action code block
//for thread-specific code

bzro (&NEST_buffer, sizeof (NEST_buffer));
NEST_n = NEST_dollarEead (NEST_sd, NEST_buff e±);
if, (NEST_n == 0)

close (NEST_sd);
cleanclients (NEST_ac);
return;

}

In this code snippet we are performing a read on a client socket and checking for

59

a remote connection closure. If the socket is closed, we clean up and return out of

the thread so that the thread can return to the thread pool to wait for more work.

If the connection has not been closed remotely, then we have some information in

our buffer that can be used to match against any user-defined patterns.

There are many other differences in the boiler-plate code contained in our extra

code file but the code excerpts contained here (and comments at the start of this

section) are good examples of the differences in the automatically generated code.

4.3 Event-driven Server

The event-driven server code was the hardest to generate automatically. We use non-

blocking network input/output as an optimization mechanism in our event-driven

model. This choice was largely influenced by the design of Matt Welsh's Staged Event

Driven Architecture [46]. Though we don't have "Stages" in our model, as in SEDA,

we still thought that non-blocking I/O would be a viable and useful optimization for

our tool. Another small optimization is the preallocation of event structures, and the

reuse of these structures when clients disconnect from our servers, to avoid allocation

overhead. The number of structures is the same as the user-defined maximum number

of client connections allowed to the server. Much of the code for the event-driven

model optimizations is contained in our extra code file and is not generated, as it

doesn't change across event-driven NEST server implementations.

The next code snippet shows some differences, and similarities, between the

NEST_MainLoop function for an event-driven server and the previous code shown

for a process-based server.

60

NEST_Maintoop (mt NEST_dummy, short NEST_event,

NEST_sd = ((NEST_conn *) NEST_sxg) ->sfd;
NEST_conn *5ST_c = (NEST—corm *) NEST_àrg;

NEST_c_addr = (NEST_coim *) NEST_arg;

NEST_currentlnMem = NEST_sd;
NESP_c>NEST_START = true;

NESP_c->NESP_END = true;

#def±ne OVECMAX 9
lint NEST_ovectorPcRE [OVEcMAX];
char *NEST_subjectpcRE;

mt NEST_lastSeen = -.1;

bool NEST— DEFAULT = 0;

void *NESTarg). {

The main differences in this event-driven code are the arguments passed to the

NEST_MainLoop function and the event structure initialization code at the start of

this function. The arguments passed into this function include a dummy variable

called NEST-dummy that is needed by libevent, the NEST-event variable that is also

needed by libevent and our event structure that is pointed to by NEST.arg. Some

variables like NEST-START and NEST-END are still the same as in the process-

based model.

In this section of code we also make two copies of the pointer to our event struc-

ture for use later in our code. We also set the NEST_currentlnMem variable to the

socket descriptor associated with this event structure. This gives us a unique iden-

tifier that lets us keep track of the event structure that is currently in memory. We

use our NEST_currentlnMem variable in later sections of code to decide whether an

event structure needs to be swapped out, or not. After these initialization steps, our

code starts to look similar to that generated for a process-based server.

61

4.3.1 Non-blocking I/O

Since we are using non-blocking network I/O for our event-driven server we need

to have a way to jump out of our monolithic function, where code may block on

network I/O or user input, and then return directly to that same spot once execu-

tion resumes. This led to the need for us to keep extra information in our event

structures, and the need for some extra branching code to be generated inside the

monolithic function. There is also a lot of event-driven code contained in its own

separate file, not in the extra code file or the monolithic function. The code in the

event-driven specific file is not compiled into a process-based or threaded server.

NESTJathLoopS tart
switch (NEST_conn->s tarted)

case 1:
goto NEST_FuncStart._switchl;

case 2:

goto NST..JuncStart.Switch2;

NEST.FuncStart_Switch1:
NEST_c->atarted = 1;

NEST....dollarReact..

NET.JuncStarb_SwitCh2:
NEST_conn->etarted = 2;

goto NEST—Evaluate,

This code shows a new "switch{}" statement that facilitates the branching to the

appropriate spots in our NESTJvIainLoop function. One important thing to notice

here is that we have one label before our network read and one after. This means

that we can block on the read, jump out of this code to service a different event, and

62

then branch back into this code after we receive an event telling us that the network

read has finished. We have to branch back into this code after the network read

statement, and this is one solution we came up with to solve this non-blocking I/O

specific problem in our generated code.

Next we will present an example of some code for the event-driven write operation.

63

//There is no code needed in the input specification to generate
//the following event-specific code

NEST_c>started = 3;
NEST.junc5tart_Switch3:
NEST_outResult = NEST_fileReply (NEST_sd, NEST_trnp);
NRSP_c->write_bytes = NEST_c->write_size;
NEST_c->started = 4;
NEST_FuncStart_Switch4

if (NEST_outResult == -1) C
mt NEST_inResult;
for(;;)

NEST_inResult=write (NEST_c- sfd,
NEST_c - >wri te_curr, NEST_c ->writej,ytes);

if (NEST_inResult > 0) (
NEST_c- >wribe_curr += NEST_inResult;
NEST_c -)-wri te_bytes - NEST_inResult;
if (NEST_c->write_bytes > 0) C

break;

}
else C

NEST_tota3,Clients - -;
NEST_c->op = NEST_closing;
NEST_close (NEST_c);
return;

}

else if (NEST_inResult == 0) C
NEST_totaiclients - -;
NEST_c -)op = NEST_closing;
NEST_close (NEST_c);
return;

else if (NEST_inResult = -1
& (errno == EAGAIN 11 errno == EWOULDELOCK)) (

if (!update—event (NEST_c, EV_WRZTE Ev_PERSIST)) C
NEST_totaiClients- -;
NEST_o->op = NEST_closing;
return,

break;

I

This code shows our "fileReplyQ" function, which is a precursor function to the

socket write code we display here. In our "fileReplyQ" function we set some variables

in the appropriate event structure and copy the file we are going to write to the socket

64

into a buffer. We then start the write operation to the socket inside the "fileReplyQ"

function. If this write operation is going to block then we allow our event structure

to be swapped out, only to continue the write operation when this event structure

gets to the head of the event wait queue.

Once our write operation starts again, at NEST_FuncStart_Switch4 in this case,

our code goes into an infinite "for{}" loop. Inside this infinite loop we attempt to

write the remainder of the file to the specified socket. Several actions can get us out

of the infinite loop, including a client-side connection closure, an incomplete write

operation or a possible blocking operation. If this write operation is going to block

again then we simply "update_eventQ", which places our event at the end of the

event queue, and break out of the infinite loop. We may also break out of this loop if

we are indeed finished the write operation. After we break out of the infinite loop we

evaluate the status of our write operation and either continue on with the program

if the write is complete, or eventually re-enter our write code to finish the file write.

4.3.2 File-globals

A major dilemma we faced when automatically generating code for our event-driven

servers was NEST programmers using file-global variables. Any variables declared

after the first "%%" sign in the NEST specification, and before any qualifying ex-

pressions, are file-global and thus may be accessed from within any other part of the

remainder of the specification file, including the important action code sections.

The reason we had to come up with a solution to file-global variables being

accessed in the action code is illustrated with the following example:

. Client #1 accesses a file-global integer called "X" and sets it to seven (X = 7),

65

then client #1 blocks on I/O.

. The event structure for client #1 will be swapped out, making room for client

#2.

• Next, client #2 accesses the file-global variable "X" and changes it to the value

three (X = 3).

• Then client #2 gets swapped out, without any other changes to "X", and client

#1 is swapped back in because its I/O operation is complete.

• Client #1 prints out "X" only to find that it is now equal to three and not the

expected value of seven.

Since a NEST programmer can access "X" from anywhere in the action code we

would need to parse the action code and replace any instance of "X" with thd client's

own event structure specific variable (e.g., NEST_c->X = 3). We didn't want to write

a complete C parser to accommodate this, so we came up with another solution.

The next code excerpt will illustrate part of our solution to this file-global access

problem.

char buffer[2561;

char NEST_StartBuff [PAGESIZEi];
char NEST..bssl;
char NEST_dataSegl tit;

char buffer [2563

char NEST_bss2;

char NEST_dataSeg2 = tit;

char NESTndBuf [AGEStZE];

66

Here we surround the file-global variable "char buffer[256]" with two known

marker values, in this case NEST_bssl and NEST_bss2 for non-initialized variables.

The NEST_dataSeg variables are used for initialized variables, as Linux puts these

two variable types in different memory segments in the compiled executable server.

We do some distance calculations using these variables to determine how large our

event structure specific, file-global data holding area should be. Then we simply

copy the 256 raw bytes between the markers that represent "buffer" to our desig-

nated event structure data holding area, along with the rest of the event structure.

A copy happens in the other direction when we swap the event structure back into

memory. (The NESTStartBuff and NESTEndBuff variables will be explained be-

low.)

We have two versions of our file-global variable swapping solution. One is an eager

swapping solution and the other is a lazy solution. The eager solution will swap out

an event structure every time there is the possibility of blocking in our server (i.e.,

when the non-blocking I/O mechanism kicks in to save the day). This means the

entire structure is swapped, including the raw data bytes representing the file-global

variables. The lazy solution to our problem only swaps the event structure if there is

a section of action code that accesses one of the file-global variables. The way that

we determined that a file-global variable was being accessed in the action code is by

using Linux memory protection. This code snippet shows the protection mechanism.

67

char buffer[256];

#ifdef LAZY

struct sigact.ion sa;

sa. sa_sigaction = NEST_segv_handler;

sasa_f lags = SA_SIGINFO;

sigemptyset (&sa.sa_mask);
sigaction (sIGSEGV, &sa, NULL);

NEST_area = (unsigned long) ((unsigned long) .&bssl & OxffffOOO);
i ((rnprotect ((void *) NEST_area fr PAGESIZE * NESTpages, PROT...ffi0NE)))

perror ("mprotect");

exit (1);

#endif

In English, if we are using lazy evaluation we set up a new segmentation vi-

olation handler to replace the default supplied with Linux. We then protect an

area of memory using "mprotectQ" so that if it is accessed by user written ac-

tion code, a segmentation violation is triggered. The variables NESTStartBuff and

NESTEndBuff, shown in the previous code snippet, are used to calculate the size

of NESTarea (NESTAataStartBuff and NESTAataEndBuff are not shown for the

data segment calculations). In Linux the area being protected needs to fall on a

virtual memory page boundary, and it needs to be at least one page long. There

were some problems with these requirements that we will discuss below.

We ran into a problem when protecting the memory pages and we needed the

one-page long NESTStartBuff and NESTEndBuff variables to solve the problem.

What we discovered was that if a user was to define file-global variables that span,

for example, 1.2 pages of memory (approximately 4916 bytes), and their server's

bss area of memory starts four bytes before a page boundary, then we have a ma-

jor problem. This scenario, shown in Figure 4.1, would mean that our NEST-area

68

Page Boundaries

Memory 10

V

NESTStartBuff

User defined variables
>lPage

NEST_EndRuff

mprotect()
this section only

Three pages of memory
including our variables

Figure 4.1: Protecting Memory Pages

calculation would return two pages, because we round up, when we would actually

need to protect three pages from being accessed via "mprotectO". We need three

pages since the first page has four bytes that need protecting, the entire second page

needs protecting and the first 816 bytes (this is equal to 4916-4096-4) of the third

page would need protection. That is three total pages that need protecting. The

NEST-Start and End buffers reserve enough space so that we end up protecting the

memory pages that begin and end on the correct boundary.

We could have gotten the same effect as above by forcing the gcc compiler to

keep the file-global variables starting on a page boundary. We could accomplish this

69

by using the "—start-section .ourBssSection=PAGEJ3OUNDARY" option with the

GNU linker (and similarly for .our}JataSection). This would mean that we would

always have our first declared file-global variable on a page boundary. We would then

have to guarantee that our file-global variables took up exactly X pages that would

subsequently be "mprotectedQ" by our tool. This is largely the same thing we have

done with our solution above, but our solution was slightly easier to control in the

resulting executable. Manually placing sections of data, using the "—start-section"

method, can also lead to problems if done incorrectly when linking, which we don't

have to worry about in our solution.

As a small optimization, the eager and lazy solutions actually check to make sure

that the old event structure in memory is different from the new incoming structure

before any swap is made. In other words, if we swap out an event structure to avoid

blocking on I/O, and that same event structure is going to be swapped immediately

back in because it finished its blocking operation before any other event, then we

will not swap the new structure in. We will just use the event structure already

sitting in memory. This process could be optimized further by reordering the event

queue to maximize consecutive events for a connection, thus avoiding event structure

switches. We would need to do this optimization while preserving fairness to all

clients, if possible.

4.4 Common code

Each type of server has its own "mainO" function startup code. This startup code

just sets up the server according to the chosen model. For instance, the process-based

70

model sets up some signal handlers and gets ready to accept incoming connections.

When a client connection is made, the server forks off a new process to service the

client. The threaded model does the same sort of setup for incoming connections

but it also initializes the thread pool and it adds new work to the thread pool queue

when a client connects. The event server model runs in a single process and its

incoming connections are accepted after being taken off the event queue.

4.5 Summary

In this section we have presented some of the work that went into implementing

NEST. We have shown some pertinent example code that corresponds to the NEST

specification language, along with some explanations of the code. Each of the three

models is covered in detail.

Chapter 5

Evaluation

Evaluating tools like NEST may be broken into two parts: the development time

saved by using this kind of tool, and the resulting performance of the generated

servers.

5.1 Development Effort

The savings in development effort that can be shown with this tool are immediately

apparent. We can change one line in the NEST specification, recompile and test out

a new server model in seconds, literally, whereas manually rewriting the server code

would take days or weeks. This kind of savings in development effort is extreme and

self-explanatory.

One measure of the development effort is the number of lines of code (LOC)

written to produce any given server. Since we didn't implement full-featured servers

to compare our generated code against, we do not compare lines of code. Instead,

we consider some features of the specification language:

• The use of regular expressions to easily match input from a client cuts down

on development effort. Though this type of regular expression matching can

be done manually by a programmer, the substitution and automatic regular

expression compilation done by our tool will save time and effort, overall.

• NEST can be used to easily set up a state machine. The use of substitutions,

71

72

boolean expressions using these substitutions and an intuitive state naming

mechanism (with qualifying expressions) can be used to easily produce state

machines.

Development effort can also be reduced, when using a tool such as NEST, by

avoiding or reducing some common programming errors. Code generation tools will

produce correct code (assuming proper debugging of the tools output) according

to the input specification. Of course, if there is a logical or coding error in the

tools input specification then the tool will not produce correct output. The tool

may produce no output at all, until the errors are corrected; this depends on the

tool in use. NEST helps reduce programming errors by automatically generating

correct networking code for all three server models. Since many programmers have

a preferred model for their networking applications, NEST may save a great many

errors when a programmer attempts to switch models.

5.2 Performance

Though our original design goal with this project was to focus on saving programmer

effort by generating all of the networking code automatically, we realize that we

should also have server code that is moderately efficient so that the tool may be

shown to be practical.

In our experience, we have found that performance for network servers is primarily

compared using HTTP servers. This is because web servers can experience severe

spikes in demand for static as well as dynamic content. Other servers, like FTP

servers, may have high throughput demand for file downloads but they usually don't

73

have a lot of user interaction and a need to push out many small files for viewing by

users.

When comparing our example HTTP-like server to any other HTTP servers we

need to realize that most HTTP servers have been very highly optimized. Our

modest attempts at optimization are more general and are used to prove that many

different types of optimization can be incorporated into our tool. Our servers do

perform competitively well in our tests.

The setup for all test results in this section is as follows: four computers were used

for testing, with a single switch between them. The computers are Xeon 1.4GHz, with

512MB RAM, 100 Mb/s Ethernet cards, running the Linux 2.4.22 kernel. Though

these machines were not on a dedicated network, all tests were performed during

off hours and the machines were checked before each test to make sure that no one

else was using them. The number of processes running on the server and clients was

minimized as much as possible.

Network latency from each client, through a switch, to the server is always an

issue during the testing of servers. Some of the researchers cited in this thesis[45, 46]

avoid latency by removing the network altogether. The authors test their servers

using clients on the same machine. While this removes the network latency issues

from testing, it also produces contrived results that may be unrealistic when a server

is deployed in the networked environment. We have tested our servers over a network

with the belief that the results we get will reflect a real networked environment more

accurately. In Section 5.3 the threaded server model can be seen to service many

clients, even at very high connection rates, without any errors. This suggests that

the actual server processing is the bottleneck for other server models, and not the

74

network itself, though some small percentage of errors may arise from the network.

5.2.1 httperf

The tool that we have chosen for our tests is httperf-0.8{34}. This tool is a Hewlett-

Packard Research Laboratory tool developed by several authors. It is used with

HTTP 1.0 or 1.1 to test a number of performance metrics. It can be used with

several client machines to request a large amount of web pages from a server. Each

client keeps track of many statistics about the server's performance. The httperf

tool has many options to help tweak tests for differing server and networking envi-

ronments. There are many other testing tools available, but we decided to use this

simple command line tool for testing our servers, rather than larger distributed, or

commercial systems.

We use httperf to perform a large number of GET requests from three client

machines to our server machine. All tests had our client machines requesting 32,000

web pages per client, each consisting of 2KB of data. We have kept the file transfer

size small since our NEST servers do not use any file caching mechanisms for large

files, or similar optimizations.

5.2.2 Performance Graphs

Our HTTP server, for all three model types, is a simple server that can accept GET,

PUT and POST operations. It does not accept CGI requests, support SSL/TLS

connections, or serve any dynamic content. The aim here is to show acceptable

performance of our automatically-generated code sections. If we tested very complex

web server features, then we would be testing more and more hand coded actions

75

and less of our automatically-generated code.

The graphs in this section represent performance statistics for several different

server types. Each of the three server models that we generated were compared to

two other open-source servers that use the same model. All nine servers in our tests

used the following httperf command line:

httperf --hog --timeout=5 --client=O/1 --server=1ct618a

--port=8080 --uri=/www/1ex.11 --rate=??? --send-buff er=4096

--recv-buffer=16384 --ntun-conns=32000 --nuni-calls=1

The server rate option is the only variable. This variable changes from 200

connections per second to 400 and finally to 600 connections per second, for our

tests. These connection rates were rates per client, so that the servers were actually

being bombarded with 600, 1200 and 1800 connections per second (recall that we

used four machines, making three clients and one server). The lex.11 file that is being

requested is exactly 2KB long.

Our results in this section show the connection time for clients as well as the

transfer time. The connection time is the amount of time it takes for the client to

"connect", or receive an initial answer back from the server. The transfer time is the

amount of time that it takes the client to receive the entire file that was requested.

In Figure 5.1 the connection time and transfer time are sep crated by a line, with the

connection time under the line and the tranfer time over the line. Together these two

rates would appear to a web user as the time to view a complete web page download.

All of our results in this section are averages over the three clients connecting to the

76

200 400 600

Apache

EST Process

mini-httpd

Connections per sec (Total 32000)

Figure 5.1: Benchmark results for process-based servers (Lower is better)

server. These averaged results were then averaged a second time over three seperate

httperf runs per server.

Process-based Server Performance

The first tests that we performed were on our process-based server and two other

process-based open-source HTTP servers, all written in C. One of these open-source

servers is the Apache Web server, which is the de facto Internet standard for HTTP

servers. The Apache server is the most popular and widely used Web server on

the Internet[6]. For these tests we used Apache version 2.0.52. The other process-

based server we tested is the iniiii_littpd-1.19 server[36]. This is a simple "mini"

server, which means that it is not full-featured and according to the author it was

developed to see "just how slow an old-fashioned forking web server would be with

today's operating systems" [36]. The author claims that minLhttpd server runs at

about 90% the speed of Apache on FreeBSD 3.2. There is no evidence given to back

77

Co
nn

ec
ti

on
/
Tr
an
sf
er
 T
i
m
e
 (

in
s)

200 400 600

Mathopd

NEST Event

Haboob

Connections per sec (Total 32000)

Figure 5.2: Benchmark results event-driven servers (Lower is better)

up these performance claims, however.

Our results in Figure 5.1 are for our process-based NEST server, minLhttpd and

Apache. They show that the Apache Web server is quite a lot faster, especially at low

connection rates. We believe this difference is due to Apache optimizations, such as

pro-forking, and the fact that rninLhttpd and our NEST server are not optimized. We

can see, in fact, that our process-based server is quite comparable to the mini]ttpd

server on these simple test runs.

Event-Driven Server Performance

Our event-driven performance tests were done on the NEST-generated event server,

niathopd-1.5p4 which is a "very small, very fast HTTP server for UN*X systems" [12],

and the SEDA-based Haboob[46] Web server, release date 2002/07/12. Haboob and

mathopd are both open-source Web servers, with mathopd being written in C and

Haboob in Java. We have included the Haboob server in our tests, even though it is

78

written in Java, due to the fact that it has been touted as a "high-performance HTTP

server" [46], with previous results in the cited thesis showing increased throughput

when compared to Apache. The Haboob server is a full-featured Web server while

mathopd supports php and CCI scripting. We have used an unmodified version of

Haboob, which is to say that we did not change any optimization settings for the

Sandstorm service platform that Haboob is built on. We have not included Apache

in these tests as there is no event-driven version we are aware of.

Our results in Figure 5.2 show that Haboob appears to have some connection

overhead that is quite significant at the lower connection rates, though the actual

transfer rate at 600 cconnections per second is the best rate of the three servers.

Our NEST generated server performs well when compared to the hand-coded math-

opd server. Our server is only slightly slower at the lower connection rates, while

performing on par with the other two servers at the highest connection rate. The

connection overhead that is apparent with the Haboob server may be due to the

context switching related to its stages, and its large amount of queueing operations

as cited in the work done on Cappricio[45].

Threaded Server Performance

The threaded servers we tested were our NEST generated thread server, the threaded

version of Apache-2.0.52 and the Adaptive Communications Environment (ACE) [40]

based JAWS threaded server. The JAWS server is written in C++ and built on

frameworks supplied by ACE. It is also a full-featured server with complex internal

strategies and optimizations for dealing with severe server load conditions, including

a cached virtual filesystem. The JAWS server we tested was last changed Aug 26,

79

1000

H

JAWS

NESTThread

&paclieThread

200 400 600

Connections per sec (Total 32000)

Figure 5.3: Benchmark results for threaded servers (Lower is better)

2004.

The results in Figure 5.3 are more than a little surprising. We are not sure

why Apache performs so poorly at 600 connections per second compared to our

NEST generated server and time JAWS web server. Please notice that the Y axis of

these graphs is logarithmic, which means that Apache is significantly slower for this

model. However, these results for Apache closely resemble those for the process-based

model; they are only slightly faster. The results for the other two threaded servers are

exceptional compared to the other server models. For our server we suspect that this

is due to our thread pooling optimization and the Linux operating system efficiently

using these threads. Time JA\VS Web server has many optimizations that lead to

performance that almost doubles that of our server. Though we do not explicitly

cache files, as JAWS does, we are not traversing a directory structure or requesting

many files during our tests. We surmise that JAWS would perform much better than

80

our threaded server under these conditions.

The results for these servers were so surprising that we actually ran our tests

several dozen times to make sure we were not seeing some sort of anomalies in the

testing procedure, or the httperf tool. This includes testing Apache many times,

with similar results.

This type of result is one of the main reasons that NEST has been developed.

Under these testing conditions, with an HTTP server receiving many requests for

small files, a threaded model would appear to be the best server model choice. We had

previously assumed that an event-driven model would perform comparably, which

means that if we had only written a server using the event-driven model we may

have wasted some time rewriting the server, using a threaded model, to increase its

performance.

5.3 Error Rates

When we measured error rates with httperf, each of the servers acted in a similar

manner, which is to say that error rates increased rapidly when errors first started

to appear on the client side. There is also a correlation between error rates and

the server's performance. This is reasonable, since the servers would start to have

more client time-outs as server load increased past a threshold where the server

became overloaded and couldn't transfer the complete file prior to the time-out. All

of the clients received many client time-outs and "connection refused" errors when

the connection rates were extremely high, which led to the large number of errors at

the 600 client connections per second rate for each server model.

81

Server
Connections Per Second

200 400 600
Apache

NEST-Process
minLhttpd

0 0
30
55

165
1841

6054
5953
7073

Table 5.1: Process-based Server Error Rates

Server
Connections Per Second

200 400 600
Mathopd

NEST-Event
Haboob

0
0
0

0
0
55

3522
4093
4824

Table 5.2: Event-driven Server Error Rates

The process-based results in Table 5.1 show that the Apache server had no errors

until a threshold was reached between 400 and 600 connections per second, then

there were plenty of errors. The NEST-generated server and the minLhttpd server

are not optimized and showed errors even at the lower connection rates. Error rates

are similar at the highest rates because the servers simply become overloaded.

In Table 5.2 we can see similar behavior to the process-based servers, except at the

lower connection rates. These servers have no errors at the lowest connection rate,

which corresponds to the improved connection and transfer times seen in Figure 5.2.

As with the process-based servers, each event-driven server hits a threshold and then

error rates increase rapidly. The threshold for these event-driven servers appears to

be between 400 and 600 client connections per second, much like the process-based

Apache server.

The threaded server error rates represented in Table 5.3 have almost no errors,

which correspond to the exceptional performance times for these servers (except

Apache at 600 connections per second). These error rates for the NEST threaded

82

Server
Connections Per Second

200 400 600
JAWS

NEST Thread
Apache Thread

0 0 3
0 0 13
0 0 5494

Table 5.3: Threaded Server Error Rates

server and Jaws server indicate that we are primarily testing server performance and

network latency is not the primary reason for increasing error rates. We did run tests

at higher rates on our NEST threaded server and the JAWS server, just to see if

their error rates increased in line with all the other servers. This was the case as they

started showing error rates similar to all the other servers: only at a proportionally

higher connection rate of 800 connections per second.

5.4 Summary

In this chapter we concentrated on a performance evaluation of the Web server code

that NEST generates. We have shown that NEST performs comparably to several

industrial strength Web servers and outperforms some other servers. We have also

argued that NEST can save time and minimize some errors in server development.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we have presented a comprehensive overview of our network server tool,

NEST.

We have shown that our tool can be used to quickly generate C code that imple-

ments three different server models: process-based, threaded, or event-driven. NEST

has a simple input language that is similar to other domain-specific tools and gen-

eration of these three model types is accomplished by simply changing one line of

code in the NEST input specification.

We have also shown that NEST can be used to rapidly prototype high-level

protocols and test them using each model type. This can lead to improved server

performance since a programmer can choose the most appropriate model for the

protocol they are prototyping.

NEST can reduce bugs and security holes related to server communication code

due to the fact that much of the buffer handling is automated. Low-level networking

details are abstracted away by the use of our network server tool which means that

programmers can concentrate on the protocol specification and not have to "reinvent

the wheel" for each server model.

Our testing has shown that NEST-generated servers can perform competitively

when compared to hand-written servers of each model type. Optimizations contained

83

84

in the generated server output, including thread pools and asynchronous I/O, help

our NEST-generated servers perform on par with other optimized high-performance

servers.

Other areas, like compiler construction, make extensive use of software tools, and

the potential uses for tools in networking has only begun to be explored.

6.2 Future Work

We believe that NEST can be made more robust, as well as being able to produce code

that performs as well as many hand-written servers. The process-based code should

be optimized with pre-forking to be useful in a less restricted environment. More

optimizations should be investigated for all server models, especially file caching

mechanisms. New models similar to a Cappricio-like model and a stack-ripping

model could be added to quickly compare these newer model types to the already

established models that NEST supports.

Some work that may increase the speed of NEST would involve using Lex instead

of libpere for pattern matching. Subsequent code profiling of each solution would

indicate which method is faster.

The actual amount of time that is saved by using NEST to generate a server is

an area of some interest. It seems like a huge amount of effort and time are saved

by using NEST, but there may be subtle, time consuming, and as yet unforeseen,

problems that crop up with fully functional servers. Some programmers could find it

very difficult to fine tune and modify NEST output code to their exact specifications,

thus reducing the advantage of automated output, to some degree.

Appendix A

The NEST grammar

start INIT_TOOL def_section PERCENT-PERCENT rules PERCENT-PERCENT

def_section : def_section SUB NAME I

def_section PERCENT-STATE name-list I

def_section PERCENT-OPTION NAME VALUE I

epsilon

rules := rule rules I

epsilon

rule : LOCAL START-RULE action

END-RULES action I

condition ':' pattern action

condition ':' multistate

pattern action

multistate : BRACE rules C_BRACE

action BRACE code C_BRACE

pattern := S_NAME pattern I

RECEX pattern I

epsilon

condition boolean I

STR_LIT

boolean := and_bool I

or_bool I

not_bool

last_bool

85

86

PAREN boolean C_PAREN

S_NAME

and_bool := boolean AND-OP boolean

or_bool boolean OR-OP boolean

not_bool NOT-OP boolean

last_bool LAST-SEEN enclosed boolean

code code SEEN enclosed I

code CLEAR enclosed

code SUB-FOR-PATTERN

code ESCAPE-D

code REPLY OPTIONS I

code FILE-REPLY OPTIONS

code FILE_RECIEVE OPTIONS

code RETURN I

epsilon

enclosed : PAREN S_NAME C_PAREN

name-list name-list S_NAME I

epsilon

References

[1] Androutsellis-Theotokis, S. and D. Spinellis, A Survey of Peer-to-peer Content Distribution

Technologies. ACM Computing Surveys 36, 4, pp. 335-371 (2004)

[2] Abbott, M.B., and L.L. Peterson, A Language Based Approach to Protocol Implementation,

IEEE/ACM Transactions on Networking, pp. 4-19 (1993)

[3] Adya, A., J. Howell, M. Theimer, W. Bolosky and J. Douceur, Cooperative Task Manage-

ment without Manual Stack Management or, Event-driven Programming is Not the Opposite of

Threaded Programming, Microsoft Research, (2003)

[4] Aleph One, Smashing the Stack for Fun and Profit, Phrack 7(49), (1996)

[5] Andersen, H.R. An introduction to Binary Decision Diagrams, Course notes for C4330 E96,

Department of Computer Science, Technical University of Denmark, (1996)

[6] Apache, I-ITTP Server Project, http : //httpd. apache. org

[7] Basu, A., G. Morriset and T. Von Eicken, Promella++: A Language for Constructing Correct

and Efficient Protocols, IEEE Infocom The Conference On Computer Communications, pp.

455-462 (1998)

[8] BEA, Programming a Distributed Application: The BEA Tuxedo Approach, White Paper.

http://wwbi.bea.com

[9] Berry, 0., and G. Gonthier. The Esterel Synchronous Programming Language: Design, Seman-

tics; Implementation. Science of Computer Programming, 19, 2, pp. 87-152 (1992)

[10] Bhatkar, S., D. DuVarney and R. Sekar, Address Obfuscation: An Efficient Approach to

Combat a Broad Range of Memory Error Exploits, 12th USENIX Security Symposium, pp.

105-120 (2003)

[11] Birrel, A., and B. Nelson, "Implementing Remote Procedure Calls", XEROX CSL-83-7, (1983)

87

88

[12] Boland, M., Mathopd http://www.mathopd.org/

[13] Candea, G., S. Kawamoto, Y. Fujiki, G. Freidman, A. Fox, Microreboot - A Technique for

Cheap Recovery, 6th Symposium on Operating Systems Design and Implementation, pp. 31-44

(2004)

[14] Castelluccia, C., and W. Dabbous, HIPPCO: A High Performance Protocol Code Optimizer.

INRIA Research Report No. 2748, (1995)

[15] Dijkstra, E., Go To Statement Considered Harmful, Communications of the ACM, 11, 3, pp.

147-148 (1968)

[16] Douglas, M., MSPL: A Protocol Language for Generating Client-Server Software, MS Thesis,

Florida Tech (2000)

[17] Drepper U., [Announce] Native Posix Threading Library 0.1, Linux Kernel Mailing List,

http: IIwwi.ussg. iu.edu/hypermail/linux/kernel/0209 . 2/10T5.html (2002)

[18] Drepper, U., Security Enhancements in Red Hat Enterprise Linux (SELinux), (2004)

[19] Free2code, http: //www.free2code .net/plugins/articles/read.php?id336

[20] Gran, M., http://lonelycactus .com/guilebook/bookl .html

[21] Hazel, P., http://www.pere.org/

[22] IBM Corporation, http://publb.bouler.ibm.com/infocenter/pseries/index.jsp

[23] Jahn, S., Serveez: http: //www . gnu. org/sof tware/serveez/manual/ index . html

[24] Johnson, S., YACC: Yet Another Compiler Compiler, CS TR 32, Bell Labs (1975)

[25] Jones, D., How (Not) to Code a Finite State Machine, Association for Computing Machinery

Special Interest Group on Programming Languages Notices, 23, 8, pp. 19-22 (1988)

[26] Klog, The Frame Pointer Overwrite, Phrack 5(55), (1999)

89

[27] Koening, A., Language Design is Library Design, Journal of Object-Oriented Programming,

(1991)

[28] Ladd, D.A. and J.C. Ramming, Programming the Web: An Application-Oriented Language for

Hypermedia Service Programming, Fourth International WWW Conference, pp. 567-586 (1995)

[29] Lauer, H.C. and R.M. Needham, On the Duality of Operating System Structures, In the

Second International Symposium on Operating Systems, IRIA, (1978)

[30] Leflcowitz, G. and I. Schtull-auring, Network Programming for the Rest of Us, USENIX

2003 Annual Technical Conference, pp. 77-90 (2003)

[31] Lesk, M. and B. Schmidt, Lex - A Lexical Analyzer Generator, Computer Science Technical

Report No. 39, Bell Laboratories, (1975)

[32] Levine, J., T. Mason and D. Brown, Lex & Yacc, Second Edition, O'Reilly (1992)

[33] Lippman, S., and J. Lajoie, C++ Primer, 3rd edition, Addison-Wesley (1998)

[34] Mosberger, D. and T. Jin. httperf: A Tool for Measuring Web Server Performance, Proceedings

of the 1998 Internet Server Performance Workshop, pp. 59-67 (1998)

[35] Ousterhout, J., Why Threads are a Bad Idea (for most purposes), Powerpoint slide presenta-

tion,

http: //home. pacbell .net/ouster/threads. ppt (1995)

[36] Poskanzer, J., mini_httpd-small http server, http: //www . acme. com/software/miniJittpd/

[37] Provos, N., http://www.monkey.org/-provos/libevent/

[38] Pu, S., H. Massalin and J. loannidis, The Synthesis Kernel, Computing Systems, 1, 1, pp.

11-32 (1998)

[39] Rinard, M., C. Cadar, D. Dumitran, M. Roy, T. Leu and W.S. Beebee Jr., Enhancing Server

Availability and Security Through Failure-Oblivious Computing, 6th Symposium on Operating

Systems Design and Implementation, pp. 303-316 (2004)

90

[40] Schmidt, D., An Architectural Overview of the ACE Framework, A Case-study of Successful

Cross-platform Systems Software Reuse, USENIX login magazine, Tools special issue, (1998)

[41] Shah, M.A., S. Madden, M.J. Franklin and J.M. Hellerstein: Java support for data-intensive

systems: Experiences building the Telegraph datafiow system. SIGMOD Record, 30, 4, pp. 103-

114(2001)

[42] Tanenbaum, A., Computer Networks, 4th Edition, Prentice Hall (2003)

[43] Twisted Matrix Labs, Twisted:

http://www.twistedmatrix.com/index.html

[44] Van Renesse, R., K. Birman, and Silvano Maffeis, Horus, A Flexible Group Communication

System, Communications of the ACM, (1996)

[45] Von Behren, R., J. Condit, and E. Brewer, Why Events are a Bad Idea (for high-concurrency

servers), In Proceedings of the 10th Workshop on Hot Topics in Operating Systems (HotOS IX),

(2003)

[46] Welsh, M., An Architecture for Highly Concurrent, Well-Conditioned Internet Services, PhD

Thesis, University of Berkeley, (2002)

[47] Williams, R., Buffer-Overflow Attacks: Perimeter Defenses No Panacea,

http: //www. eweek. com/article2/0,1759,1563046, 00. asp (2003)

[48] Wilson, K. and J. Aycock, NEST: NEtwork Server Tool. Technical Report 2004-746-11, De-

partment of Computer Science, University of Calgary, (2004)

[49] Wilson, K. and J. Aycock, NEST: NEtwork Server Tool. 5th International Conference on

Internet Computing, poster, p. 700 (2004)

[50] Wilson, K. and J. Aycock, NEST: NEtwork Server Tool. 11th Asia-Pacific Conference on

Communications, to appear, (2005)

91

[51] Zadok, E., FiST: A System for Stackable File System Code Generation. PhD thesis, Columbia

University, (2001)

