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ABSTRACT

This study investigated the effect of problem text on
arithmetic word problem solving involving difference finding.
Data on correct solutions and strategies for three types of
such word problem, namel& COMPARE, EQUALIZE, and WON’T GET,
were collected f;om first-grade students and analyzed by
repeated~-measures analyses of variance. The correct
solutions for the EQUALIZE and WON’T GET problems were found
to be significantly higher than for the COMPARE problems.

The dependency of strategy use on the problem text was also
found, specifically, the EQUALIZE problems were most
frequently solved by using an ADD-ON. strategy, and the WON'T
GET problems by a MATCH strategy, which reflected the
construction of a coordination between two mental number
lines as the problem representation. There was no one
strategy used significantly more than others for the COMPARE
problems, suggesting that the problem text of COMPARE did not

facilitate the coordination.
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CHAPTER I

INTRODUCTION

The focus of this study 1s the effect of problem texts
on simple arithmetic word problem solving, specifically
problems with the same mathematical content and structure but
having different‘wording. Studies have found the change of
problem wording influences the relative difficulty of the
problem (Hudson, 198;; Carpenter, 1985; De Corte,
Verschaffel, & De Win, 1985;'Cummins, Kintsch, Reusser, &
Weimer, 1988; Cummins, 1991; Okamoto, 1992). However, the
explanation of how problem texts affect the performance of
‘problem solving remains unclear. Some authors suggested that
it could be attributed to the alteration of problem semantic
structuré (Riley, Greeno, & Heller, 1983; De Corte et al.,
1985) . Other authors focus on the mathematical knowledge
required to represent the semantic relations (Riley & Greeno,
1988; Resnick, 1989; ' Gelman & Greeno, 1989). Still others
oppose the mathematical viewpoint, and proclaim a linguiséic
development view emphasizing the effect of the problem text
comprehension (Cummins, 1991; Hudson, 1983).

Because of the different perspectives of the researchers
and the various types of problem covered by the studies, the
current situation in this field perfecﬁ}y fits what T. P.
Carpenter (1985) described: “It is clear that differenées in
wording contribute to a problem’s difficulty, but it is not
at all clear exactly how. ...beyond knowing that certain

wordings are more difficult, we have a much less precise



picture of how differences in wording influence children’s
solutions.” (p. 26)

The existing controversy, on the other hand, reflects
that word problem solving has become the common interest éf
researchers from different perspectives. It has become
relevant to such areas as problem-solving processes,
mathematical knowledge required for problem solving, text
processing, linguistic knowledge required for problem
solving, and cognitive development of problem solving.
Therefore, the joint effort of researchers from various
perspectives has provided the opportunity to study the
complexity of word problem solving.

The problems involved in research of this field are
simple one-step arithmetic addition and sgbtraction problems.
On the one hand, the simplicity provides a way to model the
problem solving processes, and to infer the knowledge
required to solve the problems; on the other hand, the
processes and knowledge involved in problem'solving show the
complexity of the research questions raised from these simple
problgms.

The interest of the present study was derived from an
issue with the difficulty in solving the word problems
involving comparison. Young children up to first gradeﬂfind
it difficult to solve problems stated this way: “Tom has 8
marbles; Joe has 5 marbles; How many more marbles does Tom
have than Joe?”. However, Hudson (1983) found that the
problem became much easier when the text was changed to

“There are 5 birds; There are 3 worms; Suppose the birds race
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over and each tries to get a worm; How many birds won’t get a
worm?”. What made this difference? What is the effect of
the problem texts? This phenonenon has been related to
almost every fundamental aspect of word problem solving, such
as the conceptual understanding of word problems, the
construction of problem representations, fhe required
linguistic knowledge, the required mathematical knowledge,
and the development of children’s word problem solving
ability. Research on this topic is extensive, but, as
mentioned above, conﬁroversy exists.

What is the effect of problem text? How does problem
text affect the problem solving process? The present study’s
research problem derives from the controversy. Also, from
the previous studies, the present study adopted a fundamental
framework for answeringrthe questions.

The theoretical framework regarding the word problem
| solving process adopted by the present study assumes that (1)
successful solution to a problem relies on the conceptual
understandingrof the problem, that is, building a coherent
mental conceptual representation of the problem (Riley et al,
1983; kintsch & Greeno, 1985); (2) the representation is a
dual one including a text base consisting of information
given in the problem text, and a problem model in wnich
information from the text base is reconstructed in terms of a
mathematical structure acquired by the problem solver through
development (kinﬁsch & Greeno, 1985); (3) the mapping between
text comprehension and mathematical reasoning occurs when

information from the text base is being.reconsfructed in the
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problem model (kintsch & Greeno, 1985); (4) the problem model
is represented as two mental number lines which are
coordinated to produce an answer to the problem (Okamoto,
1992); and (5) the problem solving strategy is determined by
the problem model, and the observed stratégy can be used as
an indicator of what kind of problem model is being
constructed (Riley et al, 1983; Carpenter, Hiebert, & Moser,
1981) . '

To study the effect of problem text, the present study
employed three types of arithmetic word problems, namely
COMPARE, EQUALIZE and WON’T GET. They shared the same
mathematical essence, that is, finding the numerical
difference between two disjoint sets, and the difference
among them is only in problem text. By observing and
analyzing the first-grade students’ problem solving processes
on these three types of problemé, this study attempted to
investigate the mapping between the liguistic comprehension
and mathematical reasoning, and to study this mapping process
in detail, in order to obtain data about the effect of the
problem texts on the construction of the problem
representations. This in turn would reveal the source of
difficulty in solving the problems involving comparison.

This study also attempted to investigate the effect of
using concrete materials on the problem representations.

This is partly because the presence or absence of concrete
materials in previous studies has not been considered as a
variable affecting probiem representation, but some

facilitating effect on performance has been



found (Riley et al., 1983). Also, knowing whether any
interaction between problem texts and concrete materials

exists would help clarify the effect of problem text.



CHAPTER 1II

LITERATURE REVIEW
Conceptual Understanding in Word Problem ‘Solving

Problem egorization

Studying word problem solving processes-starts from the
analyses of the problem themselves. The word problems '
involved in this study are simple arithmetic problems
presented in verbal forms. Simply one-step addition and
subtraction are involved in the problems, but the préblems
vary in terms of problem length, grammatical complexity, and
order of problem statements, etc. fhis has led to the issue
of word problem classification. Several approaches
concerning these variables have beenrtaken (see Riley et al.,
1983, for a review). Those claésifications deal more with
the syntax than semantics of word problems. In order to
study conceptual understanding in word problem solving
processes, word problems are cétegorized according to
analyses of their semantic structures.

A word problem identifies some quantities and describes
a relationghip among them. Based on the semantic relations
among quantities, three types of word problem, namely)
Change, Combine and Compare (see Table 1), were categorized
by Heller and Greeno (1978). In Change problems, the
relationship among quantities is the action that causes
increases or decreases iﬂ some quantity. The initial

quantity is referred to as the “start set”, the increased or



decreased quantity as the “changé set”, and the resulting
quantity as the “result set”. Both Combine and Compare
problems involve static relationships for which there is no
direct or implied action. Combine problems involve the
relationship about the union of two distinct quantities. The
union is frequently referred to as the “superset”, and the
other two quantities as the “subsets”. In Compare problems,
the relationship is the comparison between two distinct,
disjoint quantities. Since one quantity is compared to the
other, it 1s possible to label one quantity as the “referent
set” and the other as the “compared set”. The third quantity
is the “difference”, or the amount by which the larger
quantity exceeds the other.

In the study by Carpenter and Moser (1982), another
type, Equalize problems (see Table 1), was included. The
Equalize type is a hybrid of Compare and Change problems.
There is the same sort of action as found in Change problems,
but the action is based on the comparison between the two
disjoint quantities. “ “

In addition to the -various semantic relations, there are
other dimensions for which the word problems in Table 1
differ. One is the identity of the unknown quantity. Within
each type of problem, different problems can be formed by
varying the given quantity and the unknown quantity. 1In
Change problems, any of the “start éet”, the “change set” or
the “result set” can be unknown if the other two are given,
yielding three different cases. Furthermore, the direction

of change action can either be an. increase or a decrease, soO



Table 1
Types of Word Problems

Change

Result Unknown

1. Joe had 3 marbles.

Then Tom gave him 5 more marbles.

How many marbles does Joe have now,.
2. Joe had 8 marbles.

Then he gave 5 marbles to Tom.

How many maibles does Joe have now.
Change Unknown
3. Joe had 3 marbles.

Then Tom gave him some more marbles.

Now Joe has 8 .marbles.

How many marbles did Tom give him.
4, Joe héd 8 marbles.

Then he gave some marbles to Tom.

Now Joe has 3 mérbles.

How many marbles did he give to Tom.
Start Unknown
5. Joe had some marbles.

Then Tom gave him 5 more marbles.

Now Joe has 8 marbles.

How many marbles did Joe have in the beginning?
6. Joe had some marbles.

(Continued next

page)



Table 1 (Continued)

Then he gave 5 marbles to Tom.
Now Joe has 3 marbles.
How many marbles did Joe have in the beginning?

Combine
Snpﬁxaet_unkngﬂn
1. Joe has 3 marbles.
Tom has 5 marbles.

How many marbles do they have altogether?

Subset Unknown

2. Joe and Tom have 8 marbles altogether.
Joe has 3 marbles.
How many marbles does Tom have?
Compare
Difference Unknown
1. Joe has 8 marbles.
Tom has 5 marbles.
How many more marbles does Joe have than Tom?
2. Joe has 8 marbles. -
Tom has 5 marbles.
How many less marbles does Tom have than Joe?
Compared Ouantity Unknown
3. Joe has 3 marbles.
Tom has 5 more marbles than Joe.

How many marbles does Tom have?

(Continued next

page)
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Table 1 (Continued)

4. Joe has 8 marbles.
Tom has 5 fewer marbles than Joe.
How many marbles does Tom have?

Referent Unknown

5. Joe has 8 marbles.
He has 5 more marbles than Tom.
How many marbles does Tom have?

6. Joe has 3 marbles.
He has 5 fewer marbles than Tom.
How many marbles does Tom have?

Equalize

Increase

1. Joe has 3 marbles.
Tom ﬁas 8 marbles.
What could Joe do to have as many marbles as Tom?
(How many more marbles does Joe have to get to have as
many as Tom?)

Decrease

2. Joe has 8 marbles.
Tom has 3 marbles.
What could Joe do to have as many marbles as Tom?
(How many marbles does Joe have to lose to have as many

marbles as Tom?)
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that there are six kinds of Change pfoblems in total. 1In
Combine problems, either the “superset” or one “subset” can
be unknown, yielding two sorts of problems. In Compare
problems, the unknown quantity may be any of the “referent
set”, the “compared set”, or the “difference”, with thg
direction of difference may be “more” or “less”, totally
yielding six variations. Six different cases (two shown in
Table 1f can also be produced in Equalize problems by varying
the unknown among the three quantities analogous to those in
Compare problems, and by_indicating the different directions
of action as in Change problems. Classifying the word
problems based on both semantic relations and identity of

unknowns results in the problem types in Table 1.

Relative Difficultv

The word problems in Table 1 involve either addition or
subtraction as operations for solution. Hohever, problems
which require the same operation are not equally difficult.
There is a strong influence from semantic structures by which
the problems are described. This has been evident in many
empirical studies (Carpenter, Hiebert, & Mosgr, 1981; Riley,
1981; Tamburino, 1980). They found, separately, that
Compare-3 and Compafe—G problems are more difficult than
either Change-1 or Combine-1 problems, although all four
problem solutions involve a simple addition. Similarly,
problems involving subtraction can also vary in difficulty
across semantic structures. Combine-2 probiems and virtually

all Compare problems are, in general, more difficult than



12

Change-2 and Change-4 problems. These findings are
consistent with other studies. It has been found that
Compare-1 problems are more difficult than Change-2 problems
for first-graders (Gibb, 1956; Schell & Burns, 1962; Shores &
Underhill, 1976). It has been also found that Combine-2
problems are, in general, more difficult than Change-2 for
kindergartners and first-graders (Gibb, 1956; Ibarra &
Lindvall, 1979; - LeBlanc, 1968; Nesher & Katriel, 1978;
Vergnaud, 1982), but are slightly easier than Compare-l
probléms (Schell & Burns, 1962).

Attempting to partly explain the influence of a
problem’s semantic structure on children’s solutions to word
problems, Riley et al. (1983) suégested that the various
semantic structures may correspond to some specifi& concepts,
such as the concepts of quantitative change, edualization,
combination, and comparison. They also speculated that these
concepts -emerge at different times in cognitive development.
For example, at a certain age, a specific child might have
the concepts of change and combination, but not the concept
of comparison.

In addition, problems having the same semantic.structure
also vary in difficulty. This is the effect of identity of
the unknown quantity. Some studies (Carpenter, Hiebert, &
Moser, 1981l; Riley, 1981; Tamburino, 1980) found children
have no difficulty solving Change problems when the “start
set” and the “change set” are given and the “result set” is
unknown. Even preschool children can solve these problems

(Buckingham & MacLatchy, 1930; Hebbeler, 1977). However,
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many kindergartners and first-graders have difficulty if the
“start set” and “result set” are given and they are asked to
find “change set”. As for Change-5 and Change-6 problems,
when “result sef” and “change set” are given with “start set”
unknown, they become more difficult for even second- and
third-graders (Riley, 1981; Hiebert, 1981; Lindvall & Ibarra,'
1980a; Vergnaud, 1982), and even more difficult than Combine—
2 and Compare-l problems. Within Combine and Compare
problems, difficulty also varies depending on which quantity
in a problem is unknown. Combine-2 problems in which one of
the subset is unknown are significantly more difficult than
Combine-1 problems in which the two subsets are given with
“superset” unknown. Compare-5 and Compare—-6 problems in
which “referent set” is unknown are more difficult than any.
of the other Compare problems (Riley et al., 1983).
Evidently, word problems differ in the semantic
structures as well as in the identity of unknown quéntity.
The resulting problem types (Table 1) have been employed in
studies to reveal the fairly systematic differences in
Vchildren’s performance. Furthermore, the analyses of problem
semantic structgres'serve‘as the basis for studying the word
problem solving processes and children’s knowledge required

to solve the problems.

RGH M 1
Riley, Greeno, and Heller (1983) developed a computer-
implemented model, to be called the RGH model (De Corte &

Verschaffel, 1988), constituting an account of the internal
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processes and cognitive structures underlying children’s
performance on word problems. In this model, three main
kinds of knowledge during word problem solving are proposed:
(a) problem schemata for understanding various semantic
relations described in problem texts; (b) action schemata for
representing the model’s knowledge about actions involved in
problem solutions; and (c) strategic knowledge for planning
solutions to problems. When the model is given a word
problem to solve, it uses its knowledge of problem schemata
to represent the particular problem situation being
described. The model’s planning procedures then use action
schemata to generate a solution to the problem.

Among the three main components of knowledge‘needed for
successful performance, it is proposed that the main source
of children’s difficulty is not their lack of knowledge about
the actions required the solve certain problems. Instead,
the main locus of children’s improvement in problem solving
skill is in the acquisition of schemata for understanding a
problem in a way that relates it to already available action
schemata. This hypothesis appears to be supported in some
studies.ihvolving childrén's.performance on slightly reworded
Combine-2 problems compared with the performance on Combine
2's stereotype. Consider this as an example: “Joe and Tom
have 8 marbles altogether. Joe has 5 marbles. How many
marbles does Tom have?”. Although the solution procedure for
this problem involves three éimpleractions; namely “make-
set”, “take-out”, and “count-all”, which most children have

available since they can use it to -solve Change-2 problems,
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most first-graders still find it difficult. However, when
the problem wording is slightly changed, their performance is
changed. Carpenter et al. (1981) reported that thirty-three
out of forty-three first-graders solved it correctly when the
problem was changed to: “There are 6 children on the
playground. 4 are boys and the rest are girls. How many
girls are on the playground?”. Another variation, “Together,
Tom and Joe have 8 apples. Three of these apples belong to
Tom. How many of them belong to Joe?”, was found
significantly easier for kindergartne:s than the stereotype
by Lindvall and Ibarra (1980b). What is done by the above
rewording is that the variations make the relationship among
quantities more explicit. Therefore, Riley et al. (1983)
concluded that successful solution relies on children’s
ability to understand problems, that is, the ability to
represent the relationships among quantities described in
problem situations.

The RGH model emphasizes that the locus of improvement
in word problem solving skill lies in the acquisition and
Qevelopment of problem schemata. Based on the analyses of
problem semantic structures, three main types of problem
schemata are proposed for understanding Change, Combine, and
Compare problems. Understanding a ﬁroblem is defined as
building a schematized problem representation. The
representation has the form of semantié network structures
consisting‘of elements and relations between the elements.
Within each type of. schema, three levels of conceptual

development are hypothesized. The main differences between
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the levels relate to the ways in which information is
represented and the ways in which quantitative information is
manipulated. Those with more detailed representational
schemata and more sophisticated action schemata represent the
more advanced levels of problem solving skill. Consider
Change problems as an example: ﬁevel-l understands
quantitative relations by means of a simple schema that
limits the representations of Change problems to the external
display of objects.. This knowledge is sufficient to solve
Change-1, Change-2, and Change-4 problems. Level-2 has a
Change schema for maintaining an internal representation of
increases and decreases in the set of objects it manipulate;
the process of building this representation is still
relatively “bottom-up” in the sense that it still depends
upon the external display of objects. Because of the richer
understanding of relationships between quantities and a
richer set of action schemata, Level-2 can solve Change—3‘
problems. Level-3 also has a Change schema for representing
relations internally, but it can use its Change schema in a
more “top-down” fashion. It has an understanding of part-
whole relations, as well as a richer set of action schemata.
By transforming the more complicated Change relations into
part-whole relations, Level-3 can solve Change-5 and Change-6
problems. '

These three levels of development afe'paralleled in
solving Combine and Compare problems. That is, at the lowest
level, the child’s representations of problems are limited to

the external displays of objects; at an intermediate level
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there are schemata for representing, internally, additional
information about relationships among quantities; and at the
most advanced level, schemata are available that direct
problem representations and solutions in a more top-down

manner.

E rs in n 1 ndin

The RGH model (1983) was the first attempt to
systematically model children’s word problem solving
processes and their development in terms of conceptual
understanding. This model has become influential in studies
of word problem solving. First, its emphasis on conceptual
understanding is consistent with that in other analyses of
mathematical problem solving. Mayer (1985, 1986)
distinguished representation and solution as two components
of problem solving, and concluded that~the construction of an
appropriate concepéual probiem representation is the crucial
component. Second, the problem categorization on which its
analyses are based has been widely accepted in researches (De
Corte & Verschaffel, 1985, 1987; De Corte, Verschaffel, & De
Win, 1985; Carpenter, 1985; Kintsch & Greeno, 1985; Riley &
Greeno, 1988; Cummins, Kintsch, Reusser, & Weimer, 1988;
Cummins, 1991; Okamoto, 1992). Third, its use of semantic
structure analyses.as a basis of modelling problem solving
processes has been verified in other studies. De Corte &
Verschaffel (1985, 1987) have found a strong influence of
semantic structures on problem representations and on

solution strategies. Carpenter (1985) concluded that we have
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a reasonably clear picture of how semantic structure affects
‘children’s solution processes (p. 26). Finally, relating
problem relative difficulty to the development of children’s
conceptual understanding helps identify cognitive sfructures
or knowledge underlying problem solving skills. This
approach is also used in other analyses (Briars & Larkin,
1984; Okamoto, 1992).

The RGH model pioneers the systematic analysis of
conceptual understanding in word problem solvihg. However,
the model itself has some limitations in its characterization
of the “conceptual uﬁderstanding". The first involves the
role of problem schemata. When the RGH model is given a word
problem, it uses a problem schema, e.g. Change, Combine, or
Compare, to represent the particular situation being
described; with the schematic representation, appfopriate
éction schemata are associated by procedure attachments.
Also, the development of conceptual understanding is proposed
to' be within each of these problem categories. This model
doe§ not include Carpenter and Moser’s (1981) Equalize
problems, but these might be put in another category and thus
another problem schema must be proposed. The more problem
types that are involved, the more problem schemata must be
proposed. Therefore, understanding and its development are
problem type dependent, and the theory loses its generality
across problem types. Another model of word problem solving,
Briars and Larkin’s (1984) model CHIPS (Concrete Human-like
Inferential Problem Solver)% has no distinct schémata for

representing the different categofiés of problems and works
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well. Eventually, in Riley and Greeno’s (1988) revision of
the RGH model, the problem schemata are no longer essential
to the problem solving processes.

The second limitation is related to the nature of
hypothesized cognitive structures which underlie conceptual
understanding and its development. In the RGH model, the
improvement in representing and solving word problems relies
on the increasingly sophisticated structures representing set
relations. At Level 1, a single set can be represented but
without relations to other sets. At Level 2, a certain sort
of set relapion can be represented internally. Finally at
Level 3, all other kinds of relations are assimilatedlinto
part-whole relations. Despite the constraints by problem
types, all the proposed representing structures are
mathematical in nature. According to this model, children’s
difficulty with certain types of problems can be attributed
to the lack of such mathematical structures. This is the
hypothesis which has been widely opposed.

De Corte and Verschaffel (1985) suggested ehat, besides
mathematical schemata, word problem solving skill development
depends on a more general “word-problem schema” that
indicates the structure, role, and intent of word problems in
general. The main function of such a werd—problem schema is
to encode implicit rules, suppositions, and agreements
concerning typical word problems that will enable a problem
solver to interpret ambiguities correctly and to compensate
for insufficiencies in the problem text. In a word problem

solving process model developed by Reusser (1990), and
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Reusser, Kampfer, Sprenger, Staub, Stebler, and Stissi
(1990), a concrete, intermediary, non-mathematical “situation
model” is proposed to be established before the building of
mathematical representation. Mathematical structures alone
cannot be sufficient to constitute understanding of word
problems. More importéntly, since a word problem is a
mathematical problem presented in verbal form, language
comprehension also plays a crucial role in understanding.
With regard to language unde?standing, the RGH model
obviously shows some limitation and has been criticized by
many other researchers (Kintsch & Greeno, 1985; Cumﬁins et
al., 1988; Commins, 1991). As related to the present study,
when the RGH  model encounters Compare problems, the

limitation becomes more obvious.

The Issue With Compare Problems

H n’ u

Compare problems are usually identified as the most
difficult type of problems among those in Table 1. 1In
Carpenter et al.’s (1981f study, 81% of first-graders
correctly solved Compare—i problems. This proportion is lower
than the proportions for Change-1l, Change-2, Equalize-1,
Equalize-2, and Combine-1 problems. Furthermoré, there was
only 28% of first-graders who correctly solved Compare-3
problems. Riley (1981) reported that 17% of kindergartners,

28% of first-graders, and 85% of second-graders could solve
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Compare 1 problems correctly. Only third-graders could solve
the problems at 100%. Other Compare probléms were more
difficult for children at each grade level. Again, Compare
problems in general were more difficult than Change and
Combine problems at any grade level.

However, Hudson’s (1980, 1983) study on the word
proglems involving cbmparison showed an interesting result.
Hudson presented drawings with, for example, five birds and
four worms to the subjects, and asked two different
questions. One is the question identical to a Compare-l
question: “How many more birds are there than worms?”. .
Anotﬁer is called a “Won’t Get” question: “Suppose the birds
all race over and each one tries to get a worm. Will every
bird get a worm? How many birds won’t get a worm?”. He
devi;ed a set of eight quesﬁions for each type. Children who
correctly solve six or more were scored as giving correct
response. The result was that only 17% of nursery school
children, 25% of kindergartners, and 64% of first-graders
gave correct responses to the “how many more ... than ... ?2”
question. But to the “how many won’t get” question, 83% of
nursery school children, 96% of kindergartners, and‘100% of
first-graders gave correct responses.

Hudson’s intention wasgto study two alternative
explanations about children’s performance in determining
numerical difference between disjoint sets. Children’s poor
performance on the “how many more ... than ... ?” question
could be explained as hypothesized by Piaget (1965), namely

that the children may be unable to establish suitable one-to-
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one correspondences between the given sets. Having observed
children’s successful performance on the “Won’'t Get”
question, Hudson’s conclusion was that the children did
establish correspondence and were able to determine the
numerical difference, but they did not do so because they
misinterpreted the “how many more ... than ... ?” question.
In addition, Hudson (1983) found that children’s performance
was also poor when the term “more” in the question was
replaced by other comparative terms such as “taller”,
“longer”, and “older”. Thus, a linguistic factor, that is,
children’s limited comprehension of the comparative
construction “how many ... [comparative term] ... than ...?2”,
can account for young children’s failure in finding the
numerical difference between disjoint sets. This
interpretation is consistent with much evidence indicating
that the range of cognitive abilities elicited by cognitive-
assessment tasks can be significantly affected by the
language employed by those tasks (Donaldson, 1979; Gelman &
Gallistel, 1978; Siegel, 1978). Although Hudson’s original
purpose was not to study word problem solving, researchers in

this field have taken great interest in his findings.

Int . A} Difficulty With C Probl

Cummins (1991) took Hudson’s finding as an evidence
against the RGH model which shé labelled as a “logico-
‘mathematical development view”l The RGH model interprets
maﬁy word problem solution failures as a lack of knowledge

concerning set relations, particularly part-whole relations.



23

Cummins argued that the evidence suggests children often know
more about logical set relations than the RGH model supposes.
She éited Hudson’s (1983) finding about the solution
strategies children employed as an evidence of a tacit
understanding of logical set relafions. The most common
strategy the children used involved counting the number of
worms, counting out a subset of birds equal to the
cardinality of worms, and returning the cardinality of the
reﬁaining subset of birds as the answef. Cummins believed
this strategy implies a tacit understanding of one-to-one
correspondence and subset equivalence (see Briars & Larkin,
1984) of sets with identical cardinélities, as well as the
part-whole structure of the sets in question. Therefore,
Cummins (1991) proposed a “linguistic development view” which
suggests that a ﬁajor source of difficulty:children encounter
when solving word problems is properly interpreting certain.
words and phrases in terms of sets and loéical set relations.
Cummins’ view is supported by the fact that children
often transform comparative terms into simple possession
terms when retelling word problems (Cummins et al., 1988),
skip over comparative terms when reading phrases containing
| tnem (De Corte & Verschaffel, 1986), and perform better when
problems containing comparative terms are reworded to exclude
them (De Cor£e et al., 1985; Hudson, 1983). Besides
comparative tefms, Cummins’ view also applies- to other
ambiguous terms such as “altogether”, “each”, and “some”,
etc., in all kinds of word problems. |

Extending the work by Cummins et al. (1988), Cummins
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(1991) askéd éhildren to solve Compare-4, Compare—6, Combine-
5, and Change-6 problems and then to select pictures that
represented the problems’ structures. Her hypothesis in one
of the experiments was that solution accuracy could be
predicted from children’s selection of pictures with correct
problem representations, which shows successful understanding
of the problematic terms. The results generally support this
hypothesis. However, the variance in solution accuracy
accounted for by the picture selection £ask was 43%, 16%, and
22% for Compare-4, Compare-6, and Combine-5 problems,
respectively (Change 6 did not correlate with the pictqre
selection task). Although the linguistic view appears to
hold some explanatory power, more than half of the variance
in each of these problems is yet to be explained (Okamoto,
1992) .

Hudson’s findings indeed show the RGH model’s
limitation, especially when it is applied to Compare
problems. The model is quite successful in Change and
Combine problems. It roughly hypothesizes that the
development of conceptual understanding in solving Compare
problems parallels that in solving Change and Combine
problems. 'Riley et al. (1983) noticed that Compare-1
problems are usually quite difficult for kindergarten and
first-grade children. The explanation the model gives is
that the failure is associated with the lack of a schema for
understanding the problem situation in a way that makes
contact with the model’s available action schemata, in this

case the match action schema. This explanation attributes
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the failure to the lack of a specific problem schema --
Compare schema. Linguistic factors are excluded in the
model. Hudson’s (1980) finding is only taken as an example
supporting their general hypothesis that the lack of
conceptual understanding instead of solution actions is the
ﬁajor source of children’s difficulty in word problem
solving.

However, in a revision of the RGH model, Riley and
Greeno (1988) admitted the role of a linguistic factor. They
agreed that the failure of nearly all the kindergarten and
first-grade children to reach Level-1 performance on Compare
problems probably indicates that they lack the linguistic and
conceptual knowledge to understand the language involving in
“how“many more ... than ...?”. Young children are able to
solve problems involving comparisons of sets when there is
sufficient linguistic support for their understanding, but if
the phrases “more ... than ...” and “less ... than ...” lack
quantitative meanings for children, then their ability to
infer the differencés will not be used.

In the revision (Riley & Greeno, 1988), the model still
cannot satisfactorily predict performance on Compare
problems. They take the lingﬁistic view as one possibility,
indicating that children may need knowledge for understanding
specific patterns of information involved in quantitative
comparisons. However, they raise an alterna;ive possibility
which goes back to their mathematical interpretation, namely,
understanding of comparisons depends on acquiring knowledge

about differences as a relation between sets. In a part-
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whole schema, the union of two sets is still a set, but the
difference between two sets is not a set. This means that
the numbers involved inrset unions can be understood as the
cardinalities of individual sets, but the numbers involved in
set differences must be understood as a relation between sets
or between the cardinalities of two sets. What makes this
difficult for children is that the “difference” describes a
relation between quantities which is not a direct
quantification of objects in the real world the way all sets
are in Change and Combine problems (Resnick, 1989). When
children encounter a phrase like “5 more than ...”, they must
understand this number as the value of an operator instead of
the cardinality of a set. This understanding requires a more
advanced understanding of numbers.

Another word problem solving mddél, Briars and Larkin’s
CHIPS (1984) includes Hudson’s Won’t Get problem type and
deals with its difference from Compare problems, but takes a
different approach. CHIPS manipulates physical or mental
“chips” as the model’s basic action. It also draws key terms
and phrases as cues for its actions; According to CHIPS, the
difficulty with Compare problems is that, in their usual
wording, these problems describe no actions that the model or
a child can imitate. Hudson’s Won’t Get wording changes a
static comparison problem into an action-cued problem so that
CHIPS can solve it easily. CHIPS first builds sets of chips
representing the birds and worms separately. It then
interprets the phrase “how many birds won’t éet ...” as a cue

to match the birds one-by-one to the worms and to count the
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leftover birds. This is done by a production that makes a
“match” schema and a count schema. The match schema holds
the knowledge of what sets are to be matched. 1In this
analysis, Carpenter and Moser’s (1981) Equalize problems ére,
also categorized as action—cued comparison problems.

When CHIPS encounters a Compare-l problem, additional
language capability is reqﬁired. Based on the ability to.
make match schemata in response to action-cued comparison
- problems, a new production is needed to recognize the phrase
“how many more ... than ...” as a cue to build appropriate
match and count schemata. It i1s essential to know that the
phrase means to match the two given sets and count what is
left over. |

CHIPS constructs a display of counters directly derived
from certain terms in problem texts, rather than requiring
intermediate representations of sets and set relations of the
kind that are constructed in the RGH model. This is
consistent with Longford’s (1986) proposal about “thinking on
the table” versus “thinking in the head”, assuming that
instead of forming a structural mental representation of
problem information the child, at least in the easiest
problem types, simply takes each piece of information as it
comes in and represents it on the table with blocks.

However, solving the “action-cued” comparison problems
involves two action schemata “match” and “count” which are
cued by term “get” and “how many ... won’t”, separately.
What remains unexplained by the above proposal is how these

two schemata become associated in solving the problems if
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there is nothing‘coordinating‘the two.

There is an agreement émong researchers that Compare
problems are difficult, and that certain rewordings can méke
them easier. However, the explanation of why they are
difficult and what the effect of rewording is remains
controversiél. Each interpretation holds some explanatory'

power, but all of them have some aspects left unexplained.

Problems Involwving Difference Finding

The interest of the présent study is drawn from the
issue with Compare problems. The presgnt study includes
three types of word probleﬁs: Compare-1 problems (Riley et
al., 1983), Equalize—l problemns . (Carpenter & Moser, 1981),
and Won’t Get problems (Hudson, 1980, 1983) . They all
involve finding the difference between two disjoint sets.

The formal solution to all of them is “larger set, subtract
smaller set, equals difference”. In other words, they share
the same mathematical content and structure. What makes them
different to form three types is only the problem texts. The
three types of problems, named COMPARE, EQUALIZE, and WON'T
GET, respectively in this study, are listed in Table 2.

After presenting the two given sets, (1) COMPARE problems ask
héw many more objects are in the larger set than in the
smaller set; (2) EQUALIZE'problems ask what to do to make ﬁhe
smaller set héve as many objects as in the larger set; and
(3) WON'’T GET problems ask how many objects ffom the larger
set won’t get the objects of the“smaller set.

Are the three types of problems as difficult as one

(v
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Three Types gf Problems Involving Difference Finding
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COMPARF,
Joe has 8 marbles.
Tom has 5 marbles.

How many more marbles does Joe have than Tom?

(Riley, Greeno, & Heller, 1983)

EQUALIZE

Joan picked a flowers.

Bill picked ¢ flowers (a < c¢).

What could Joan do so she would have as many flowers as
Bill? How many more would she need to pick?

(Carpenter, Hiebert, & Moser, 1981)

WON’T_GET
There are 5 birds.
There are 3 worms.
Suppose the birds race over and each one tries to get a

worm. How many birds won’t get a worm?

(Hudson, 1983)
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another to children at a certain grade level? If not, what
makes one more difficult or easier than another? If it is
problem text that makes the difference, what does it affect,
and how does it have the effect? These questions are similar
to those which were at issue in the studies mentioned above.
None of the previous studies could answer the questions
satisfactorily. Mere mathematical reasoning ability or. ‘
language understanding capability alone cannot account for
the relatively complicated word problem solving processes.
More detailed analysis of the relationship between language
comprehension and mathematical reasoning is needed. Also, it
is plausible to propose an internal representation to mediate
problem text understanding and mathematical reasoning
followed by problem solution in this process. The question
remaining is how the representation is constructed, and how

it mediates the components in the process.

Problem Representation and Competence

Dual Representation

Integrating both text comprehension and problem solving
aspects of word problem solving, Kintsch and Greenoc (1985)
developed a model of unaerstanding and solving word problems.
Thié model inclﬁdes a more thorough analysis of processes of
text comprehension than the RGH model. Thé general theory of
text comprehension used in this model is developed by Kintsch

and van Dijk (1978), and van Dijk and Kintsch (1983). The
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problem solving theory used in this model includes Riley et
al.’”s (1983) assumptions about the semantic knowledge
required for representing the problems and the processes of
operating on the numbers to find the answers. The model is
implemented in two computer programs, namely WORDPRO
(Fletcher, 1985) and ARITHPRO (Dellarosa, 1986) .

According to van Dijk and Kintsch (1983), memory
representations of texts have two components, a propositional
structure of information that is in the text in a specific
sense, and a “situation model” that is derived from the text,
wholly or in part. The propositional structure, or “text
base,” 1is obtained by constfucting a coherent conceptual
representation of the text itself, called a microstructure,
and then deriving from the microstructure a hierarchical
macrostructure that corresponds to the essential ideas
expressed in the text. If the text is studied in its own
right, the text base is adequate for comprehension. However,
if the text is merely the medium by which information is
transmitted, in other words, the reader’s purpose is learning
from reading the text, another component is needed for
comprehension (Kintsch, 1986). This is called the situation
model, because it includes inferences made by using knowledée
about the domain of the text information. It is a
representation of the content of a text, independent of how
the text is formulated, but integrated with relevant
experiences in this domain. Its structure is adapted to the
demands of whatever tasks the reader expects to perform.

When children read a word problem and try to solve it, they



32

construct a representation including both components (Kintsch
& Greeno, 1985).

Kintsch and Greeno’s model includes a set of knowledge
structures and a set of strategies for using theserknowleage
structures in building a representation and in solving the
problem. The representation is a dual one: on one side, the
text base represents the textual input, and on the other
side, an abstract problem representation, called the “problem
model” (instead of “situation model” in van Di-jk and
Kintsch’s term), contains the problem-relevant information
from the text base in a form suitable for calculational
strategies to yield the problem solution.

P?oblem representations are built in several steps. The
verbal input 1s transformed into a conceptual representation
of its meaning, a list of propositions. The propositions are
organized into a task-specific macrostucture that highlights
the general concepts and relations mentioned in the text.
This organized set of propositions is referred to as the text
base. Coordinated with the representation of propositions is
the problem model, which reflects knowledge of the
information needed to solve the problem. In constructing the
problem model, the reader infers information that is needed
for solving the problem but is not included in the text base,
and excludes information in the text base that is not
required for solution of the problem.

The propositions in the text base hold four “slots”:
object, quantity, speciﬁication, and. role. The first three

can be filled directly by textual input, e.g. Tom owns 3
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marbles. The role slot cannot be filled in text base because
it can only inferred from mathematical knowledge. Then a set
of strategies orgahizes fhe propositions into a coherent,
task-specific text base, which takes the form of set and set
relation. However, because.the role slot is not filled yet;
the set relation is still in question. The set and the set
. relation in question, then, constitute the content of the
problem model. Now, mathematical knowledge or semantic
knowledge referred to as “higher order schemata” are employed
to f£fill the role slot in problem model. These schemata deal
with set relations which are critical for deciding how to
solve the problem. Five such schemata are proposed in the
model. A TRANSFER schema assigns a “start set”, “transfer
set”, or “result set” role to an appropriate set. Two
variations of this schema are TRANSFER-IN and TRANSFER-OUT.

A PART-WHOLE schema assigns “subset” role and “superset” role
to sets. There are also MORE-THAN and LESS-THAN sdhemata to
assign “largeset”, “smallset”, or “difference” to the empty
role slots in a problem model. Once the role slots are
'filled by inferring the higher order schemata, the goal of
the problem solution is determined. Then a set of
calculational strategies or actions such as COUNT-ALL, ADD-
ON, or SEPARATE-FROM are triggered to provide the answers to
the problem. -

This model proposes that the problem representation
constructed by a child during a solution éttempt is a joint
product of his or her language comprehension and mathematical

reasoning. The interaction between these two components is
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simulated by the processes of constructing the dual
representation: from text base to problem model. This model
is the first attémpt,to include both a linguistic factor and
a mathematical factor in the integrated process of word
problem solving. The dual nature of this model not only
indicates the necessity of both components in the process
but, more importantly, reveals the interdepéndency between
the two components. On the one hand, the problem model uses
information in text base as its content. fhus, the
prerequisite for building a problem model is that children
understand words such'as “*have”, “give”, “all”, “more”, and
“less” in a geqeral way, and also in a special, task—specific‘
way. This means they have to represent propositions
involving “having?, “giving”, and so on with arguments that
refer to sets of objects. This also includes extensions of
the ordinary use of terms such as “all” and “more” to more
-complicated constructions in&olving sets, denoted by
“altogéther” and “more than”. Furthermore, the inference to
mathematical schemata is cued by certain key propositions
such as HAVE-ALTOGETHER in text base:‘ The construction of
the problem model is initiated by the text base.

On the other hand, textual cues do not directly iead to
the solution operations. In the problem-solving process,
information from text base is reconstructed in problem model.
This is evident in a problem recall study reported by Kintsch
(1986) . Dellafosa, Weimer, and Kintsch (1985) presented word
problems in both easy versions and hard versions on the basis

of relative difficulty of the problems, and asked 30 second-
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graders to recall the problems in two conditions. One was to
recall the problems without solving them, the other was to
recall after solving the problems. When the subjects only
had to recall the problems but not solve them, there was no
significant difference between the recall of easy and hard
problems, confirming that the text base of these problems
were quilte comparable. Hdwever, after solving the problems,
the subjects recalled significantly more easy problems than
hard problems. In other words, although the hard problems
were not inherently less'regallable than the easy problems,
they were not recalled as well after a solution attempt had
been made. The complexity of the problem model required for
solving hard problems confused the subjects. There was a
tendency to misrecall the problems as if they were easier
ones. The subjects who misrecalled did ndt recall the text
directly, but rather they recalled the problem model they had
formed from thé text base. After the mistakes in recall were
analyzed (Kintsch, 1986), it was clear that the text bases of
the problems were not used as the basis for the recall;
rather, the texts were reconstructed from the problem model.
The distortion of the textual information in recall of
word problems supports the existence of the “problem model”
and the role of mathematical knowledge in the representation
construction. This means that the textual information must
be reconstructed in the problem model so that the information
can be used for problem solution. The problem model is
represented in a form of a mathematical structure which

consists of relations among sets. Any linguistic input, if
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needed for problem solution, must be understood in its
specific mathematical sense. . '

Kintsch and Greeno’s (1985) model is apparently more
sophisticated than prgvious word problem solving models. It
in turn has become the basis for further studies in this-area
(Riley & Greeno, 1988; Cummins et al., 1988; Okamoto, 1992).
Researchers from either the mathematical perspective or the
liguistié perspective use the same model to simulate the .

problem solving processes. Both of them have found support
| for their own view of the competence underlying the dual.

representation.

m n for Under nding Word Problems

In view of the dual répresentation asgumption, any
emphasis on one factor of understanding no longer means
excluding the role of another factor. The linguistic point
of view and the mathematical point of view both agree that
the competence for understanding word problems consists of
both linguistic and mathematical aspects. The argument now
concerns along what line thé competence is developed.

Cummins’ (1991) linguistic developmént view suggested
that the major source of children’s difficulty with certain
types of word problems is their misinterpretation of certain
words and phrases in problem texts. This misinterpretation
does not mean they do not understand the expressions at all,
but there has been a failure in mapping the expressions onto
appropriate mathematical structures. In other words,

children who fail do not understand the words and phrases in
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terms of mathematical set relations. This in turn, leads to
a failure to access the mathematical knowledge which has been
available. |

Cummins suggested that development of the competence
depends on the acquisition of new meanings of the terms and
phrases which are already understood in a general sense.
Through instruction or experience, children can learn the
mathematical meanings of the language and familiarize
themselves with the mapping onto mathematical relations.
This line of deve}opment starts from language with general
meaning towards language understood in mathematical sense.

On the contrary, there is another developmental line
proposed as starting from a more “pure” mathematical
competence to linguistically related competence. Gelman and
Greeno (1989) hypothesize three levels of understanding of
numerals. At the simplest level, the meanings of numerals
include reference only to individual objects and the results
or arguments of counting operations. Implicitly, numerals
are associated with sets in the process of counting, but this
does not imply that the representations of meaning include
explicit references to sets. At a second level, numerals
denote the cardinalities of sets, and reference to sets is
included in the meaning of propositions that have numerals
and other quantifiers, such as “some”. For example, when a
child hears or reads a phrase “three marbles,” he or she
understands that there is‘a set of marbles and that “three”
denotes the cardinality of the set. The competence for

understanding propositions including reference to sets is
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referred to as a “linguistic cardinality principle”. At a
third level; numerals also denote the numerical differences
between sets. At this level, the meaning of a sentence such
as “Tom has two more marbles than Joe” includes reference to
the set of Tom’s marbles, the set of Joe’é marbles, and a
third entity, the numerical difference between the.two sets.
In this usage, numbers are properties of a relation between
sets. This'concept of number therefore is more comélex than
that in which numbers are only cardinalities of individual
sets. This competence for understanding propositions that
include reference to set differences is called by Gelman and
Greeno the principle of “linguistic numerical difference”.

According to Gelman and Greeno (1989), the development
of competence for understanding numbers starts from a
nonlinguistic principle of cardinality and proceeds to the
two linguistic meanings. Young children have some counting-
specific competence at the beginning, then the learning of
linguistically related principles can be based on this
competénce. The process of learning such new principles
happens as part of their instruction in arithmetic, where
'they learn to add and subtract. Some data reported in Riley:
at al.(1983) is cited to support this point, specifically
that Compare-1 and -2 problems were solved correctly by 80%
of the children who were near the end of second grade, but by
only 25% of the children who were near the end of first
grade.

The linguistic development view proposes a developmental

sequence which gradually increases mathematical components in
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language understanding (Cummins, 1991). Gelman & Greeno
(1989) proposed a developmental sequence towards a
“linguistic numerical difference” pripciple whicﬁ includes
linguistic components in a mathematical structure. It is not
hard to find that these two lines of competence development
start from contrasting originss but come to the same end,
only expressed differently, either understanding language in
terms of mathematical relations or understanding mathematical
relations in linguistic forms. In other words, they both
point out the mapping between the two compohents. This,
‘indeed, is the key to the understanding of word problems.

Coming to this point does not mean they have answered
all the questions to be answeréd, nor does it mean the issue
with Compare problems or with difference-finding problems
ceases to exist. The first remaining question involves the
development of the competence. They both attribute it to
instructions and experience, supposing children can learn as
long as they are exposed to the problems. But, is there any
initiation device or constraint on such learning? Why have
second-graders iearned but first-graders not learned the
“numerical difference” concept? Is this only a matter of
time, exposure, or familiarization?

Another problem with both sides is that they each have
pointed out the mapping, but neither of them has described
the process of mapping. This process is implied as naturally
happening because children’s competence has achieved the
understanding of mathematical meaning in a language form.

But if all the compétence is term-specific or form-specific,
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how many different kinds of competence must be hypothesized
if children repeatedly encounter different types of
difference-finding problems?

Their failure in describing the mapping process,
especially in solving Compare problems, also reflects the
researchers’ uncertainty as to what mathematical structures
the linguistic input can map onto. Cummins (1991) proposed
only part-whole relations to be mapped onto. She interpreted
the matching strategy used by Hudson’s (1983) subjects as a
tacit understanding of part-whole relations. Cummins’
proposal is based on Riley et al.’s (1983) hypotheses.
However, Riley and Greeno (1988) have abandoned using part-
whole schema as the mathematical set relation inferred to
construct problem models for Compare problems, because the
difference between sets cannot be treated as a set as in
part-whole’relations. Gelman and Greeno’s (198%) hypotheses
about the “linguistic numerical difference” is an effort to
re~explain the process of solving Compare problems. In
addition, mapping from Compare problem texts to the part-
whole schema requires a much harder transformation from the
problem situation‘to the structure, and the processing demand
would be heavily increased if mapping to part-whole schema
were not automatized. However, they have not proposed any
other problem model construction to replace part-whole
.structure.

Further explanation abouf the underlying competence and
its development is needed, as is a basis for §imulating the

mapping processes.
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Central Numerical Structure in Word Problem Solving

The word problem solving models mentioned above cannot
go beyond their own limitations when they attempt to explain
young children’s difficulty with Compare problems and the
relétive difficulty of problems involving difference finding.
Their domain-specific perspectives prevent them from looking
at children’s more generalized potential and limitations in
the development of the competencies underlying word problem
understanding. In turn, they fail to find a‘cognitive
structure base on which,they can simulate the process of
mapping between linguistic input and mathematical reasoning.
This difficulty is overcome by a new word problem SOIVing
model developed by Okamoto (1992) who integrates a |
generalized developmental theory (Case, 1992) into the study
of word problem solving. The ﬂew model suggests that a set
of “central numerical structures” proposed by Case (1992)
underlies the understand@ng of word problems. This
conception provides a plausible base for simulgting the
mapping between problem text and mathematical reasoning.
Okamoto’s model is also to be seen as an application of
Case’s general theory of cognitive development in a new
domain. Although the issues regarding specificity and
generality in cognitive development are not the concern of
the present study, this developmental theory does produce a
framgwork for the present study that.is not possible from the

previous theories.
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o ‘s G 1 7] £ C it D ] I
In Case’s_xl985) theory of cognitive development, the
basic constructs are control structures, stages, and
substage. The control structures are what children‘construct
to cope with problems in their daily life, and contain three
components: a representation of the essential features of
some particular class of problem, a representation of the
goals that this problem class most frequently occasions, and
a representation of a sequence of operations that will bridge
the gap between the problem’é initial and terminal states.
According to this theory, much of children’s development
stems from a change in their control structures. This change
is hypothesized to be constrained and potentiated by a set of
changes that are system-wide and that have a strong
biological component. These changes influence the highest
level of intellectual operation that children can execute
successfully under optimal environmental conditions, as well
as their working memory for the products of such operations.
As these upper limits change, the control structures are
believed to érogress qualitatively- -through a universal
sequence of four stages that are labelled as the sensorimotor
stage, interrelational stage, dimensional stage, and
vectorial stage. Within each of the four stages, a recursive
sequence of structural changgs is proposed: at the first
substage, children assemble a new class of operations, by
coordinating two well—establisﬁed executive structures that

are already in their repertoire. As their working memory
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increases (as a function of maturation and practice), they
enter a second substage in which they are capable of ‘
executing two such operations in sequence. finally, with
further growth in working memory, they enter a third substage
in which they become capable of executing two or more
operations of the new sort in parallel, and integrating -the
products of these operations into a coherent system. Once
consolidated, these integrated systems then function as the
basic units from which the structures of the next stage are

assembled, and the process of integration repeats.

1 r r

In Case’s (1985) earlier work, a control structure is
defined as a tripartite entity consisting of three
representations regarding a particular class of problem.
Although the assembly of any given control structure and the
construction of any new control structure are constrained and
potentiated by some system-wide components, and the
development of control structures occurs through a universal
éequence of four stages, the control structures, by
definition, are task-specific. The formation of a control
structure is a function of the particular quéstidn which has
been posed to the child. Thus, the control structures within
any one phase of development are constructed in isolation of
each other, in an independent,  unrelated fashion.

More recently, a series of studies by Case and his
associates (Case, 1992) resulted in an extension of Case’s

general theory of cognitive development. It was found that
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“it is a mistake to see children as assembling executive
control structures for each separate task in complete
isolation from those for each other task, subject only to an
upper bound on their processing capacity. Rather, it seemed
more appropriate to view cpildren as assembling a central
conceptual structure that is applicable to a broad range of
tasks, £hen utilizing this central structure, more or less
successfully, as a guide for assembling the particular
executive control étructures that each new task may require”
(Case, 1992, p. 355).

By postulating a “central conceptual structure”, the
hypothesized locus of generality in children’s performance is
shifted from the emphasis on the size of their working memory
to including conceptual structure assembled under the
éonstraints of the working memory. This central structure
exists prior to a problem being posed, thus, the control
structures can no lénger be seen in an independent, unrelated
fashion. Rather, they must been seen as being part of a
network of related control structures, which are tied
together by a common conceptual core.

A central conceptual structure (éase & Griffiﬁ, 1990;
Case & Sandieson, 1992) is an internal netwo;k of concepts
and conceptual relations that plays a central role in
permitting children to think about a wide range of situations
‘at a new epistemic level and to develop a new set of control
structures for dealing with them. By a “structure,” the
notion means an internal mental entity that consists of a

number of nodes and the relations among them. By
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“conceptual” it means that the nodes and relations are
semantic rather than syntactic. And by “céntral,” it means
structures that (a) form the core of a widé ranée of more
specific concepts, and (b) play a pivotal role in enabling
the child to make the transition to a new type of thought,
where these concepts are of central importance,

Central conceptual structures are found in several
domains of child development, such as logico-mathematical
thought, social and emotional thought, and spatial thought,
and in motor development. It is also found that these central
conceptual structures bear a certain resemblance to each
other, both in their form and in the timing of their
emergence. -These commonalities suggest that all the
structures may be subject to a common set of constraints, in

speed of processing or in working memory (Case, 1992).

Central Numerical Structures

In its application to the demain of mathematics, the
general developmental theory identifies a set of central
conceptual structures regarding quantitative variables.
Specifically, children’s development of number concepts from
approximately four to ten years of age is explained in terms
‘of the acquisition of central numerical structures as shown
in Figure 1 (Case & Griffin, 1989). Based on the results of
‘Resnick’s (1983) and Fuson’s (1982) sfudies, Case and Sowder
1 (1990) proposed the “mental number line” by which the central
numerical structure is represented.

Children at the age of four are capable of counting
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Figure 1. Development of Central Numerical Structures (4 to

10 years of age) (From Case & Griffin, 1989)
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(structure for enumeration) or making judgment of relati&e
guantity (structure for quantity evaluation), but ére not
able to integrate these two strﬁctures. At the age of six,
there is a qualitative shift in thought as children enter the
first substage of the dimensional stage. They understand the
relation between the two structures and are able to integrate
them and, thus, think in terms of a single number line. At
the second substage, 8-year-olds are able to coordinate two
unit of operations; that is, to think in terms of two number
lines, at least in a sequential fashion. A full capacity to
coordinate the two number lines develops at the last substage
where 10-year-olds are able to think in ferms of two mental
numbér lines in an integrated or on-line fashion, and
appreciate the relationship between them. Finally, the
integrated structure will function as the initial single unit
to be reorganized into the structures of the next stage.
These central numerical structures represented as number
lines have been identified in children’s development of, for
example, computational estimation (Case & Sowder, 1990),
scientific reasoning (Marini, 1992), everyday mathematical
knowledge including time-telling and money-handling (Griffin,
Case, & Sandieson, 1992), and sight-reading of musical
notation (Capodilupo, 1992). These cross-task studies have
shown the existence of such central numerical structures and
their roles in the development in the domain of gquantity,
which Have verified Case’s general description of cognitive
development, as well as proved the applicability of the

construct to a broad range of tasks, also showing a potential
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to apply to the domain of word problem solving.

Okamoto (1992) applied-the notion of central numerical
structures to the development of children’s word problem
solving ability. By integrating the models of word problem
solving regarding numerical competence by Riley and Greeno
(1988) and by Gelman and Greeno (1989), models regarding text
processing by van Diﬁk and Kintsch (1983) and by Kintsch and
Greeno (1985), and the developmental theory by Case (1985,
1992) as it has beén apblied to the domain of number.(Case &
Griffin, 1989; Case & Sandieson, 1988; Case & Sowder, 1990),
Okamoto assumed that the word problem solving process
involves (a) the construction of semantic networks, as a
result of comprehending problem texts, and (b) the
construction of problem models using the various number lines
that are available at different levels of development.

Okamoto (1992) developed a set of computational models
to simulate children’s solutions of the set of word problems
categorized by Heller and Greeno (1978) (Table 1) at each of
three developmental levels of knowledge. Each computational
model performs three funcfions. First, it constructs
semantic networks representing propositions extracted from
the problem text, in Kintsch and Greeno’s (1985) terms,
forming the text bases. Second, it constructs problem models
which are simulated in a form of arrays which increase in
complexity from-a mental object line to two coordinated

mental number lines as a function of development. Prototypes
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of the problém models at different.levels of development are
shown in Figure 2. A choice for one form over the others
depends upon linguistic information represented in the text
base and the levels of central numerical structures assumed
to be available. Third, it generates answers. The specific
characteristics of the problem model are checked against a
set of production rules. When appropriate conditions are
met, manipulations of number on the mental arrays take place,
simulating children’s counting behaviér. Based on the three
functions, three levels of processes are simulated by
applying the three different cognitive models in Figure 2 to
each category of word problems. :

Level-1 processes are limited to the lowest level of
dimensional thought (unidimensional thought). At this level,
objects described in a problem can be represented and
manipulated mentally only on a single dimension.
Specifically, Level;l processes can line up objects
internally on a single mental object line, add to or take
away mental objects, count‘those objects that are present on
a mental object line, and cite as an answer the last mental
objects counted. Therefore, Change-1, Chaﬁge—Z, and Combine—
1 problems can be solved at this level. When solving a
Combine-1 problem (“Joe has 2 marbles. Tom has 6 marbles.
How many marbles do they have altogether?”); for example,
'Level—l processes construct a problem model representing 2
marbles possessed by Joe and 6 marbles owned by T&m
internally on one mental object line with the owner-

specification “Joe and Tom”. Then the answer is obtained by
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Level 3: Two mental number lines, well coordinated

Owner 1 1 <-> 2 <=> 3 <=> 4 <=> 5 <=> 6 <=> 7 <~> 8 <-> 9 <-> IQ

owner 2 1 <=> 2 <=> 3 <=> 4 <=> 5 <=> 6 <=> 7 <=> B <=> 9 <=> 10
Level 2: Two mental number lines

Owner 1 1 <-> 2 <=> 3 <=> 4 <~> 5 <=> ¢ <-> 7
Owner 2 1 <=> 2 <-> 3 <=> 4 <-> 5 <=> 6 <-> 17

. OR

owner 1 <=> 2 <=> 3 <=> 4 <=> 5 <=> 6 <=> 7 <~=> 8 <-> 9 <-> 10

I |

Counter 0 <=> 1 <=> 2 <=> 3 <> 4
Level ]1: Single mental object line
1 2 3 4 5 6 7 8 9 10

0 <=> 0 <=> 0,<~> 0 <=> 0 <=> 0 <=> 0 <=> 0 <-> 0 <=> ©

a little o a lot

Notes. <-> indicates a “next-to” relation.

<«———» can point to any number.

Figure 2. Prototypical Problem Models at Three Levels of

Development (From Okamoto, 1992)
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counting all eight objects on this mental object line.

Level-2 processes include a simple coordination of two
mental number lines (bidimensional thought). That is, the
unknown quantity 1is represented by coordinating two known
quantities (each of which is represented on a mental number
line).L The relational information concerning the known and
unknown quantities can be used to specify how one mental
number line is to be manipulated with regard to the second.
One of the simplest of such operations is “reflection”, in
which the quantity derived on one line is marked off or
“reflected” on the other. Thus, Level-2 processes are able
to solve Combine-2, Change-2 to Change-6, Compare-1 and
Compare-2 problems. For example, a Combine-2 problem (“Joe
has 2 marbles. Tom has some marbles. They have 6 marbles
altogether. How many marbles does Tom have?”) is solved in
the following manner. A problem model is constructed
consisting of two mental number lines, one representing Joe’s
2 marbles, another representing the 6 marbles with the owner-
specification “Joe and Tom”. To answer “how many marbles
does Tom have?”, these two mental number lines are
coordinated, that is, Joe’s number line is reflected on the
second line (whole) to indicated the part owned by Joe, and
therefore the rest is inferred as the part owned by Tom,.
Finally, a counting procedure is carried out mentally to
produce the answer.

Level-3 processes can fully coordinate two mental number

lines (integrated bidimensional thought), that is, reverse



52

the reflective operations executed at Level-2. Level-3
processes understand that (1) a numerical difference can
represent the amount above (more) or below (less) a
criterion, and (2) a positive difference on one line can be
compensated for by a negative difference on the other line.
Compare-5 and Compare-6 problems can be successfully solved
at this level. A Compare-5 problem (“Joe has 6 marbles. Tom
has some marbles. Joe has 2 more marbles than Tom. How many
marbles does Tom have?”) can be used as an illustration. The
problem model is constructed containiné one mental number
line representing Joe’s 6 marbles, another line representing
“some” marbles owned by Tom. The way to coordinate the two
lines is that “2 more” on Joe’s line is reflected in reverse
as “2 more to reach the number of marbles Joe has” on Tom’s
line, by which Tom’s line has “2 fewer than Joe’s 6”. Then
the answer is produced by counting mentally.

Okamoto’s model was examined through a series of
empirical studies involving word problem solving by school
children at ages from six to ten. The results showed that
there was a reasonable fit of the data to the computational
model. That is, the difficulty levels of the problems
identified by the children’s actual performance were quite
similar to those predicted by the model regarding the central
numerical structures children possess at different
development levels. This model consists of same semantic
networks for building text base as in Riley and Greeno’s
(1988) and Kintsch and Greeno’s (1985) models. What makes

Okamoto’s model different from the previoué models is its
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assumﬁtion of problem modelAconstfuction by applying Case’s
central numerical structures to this domain, so that her
model can accurately simulate the entire solution process,
especially the process of problem model constfuction.
Furthermore, Okamoto’s model successfully predicted the
difficulty levels for Compare problems which was not

explained by Riley and Greeno’s (1988) model.

N r Lin rdination din vi m;

The most important contribution of Okamoto’s (1992)
model to the analyses of problem solving processes for
. Compare problems is that it describes the problem modél as
represented by two number lines, and in solving a problem,
the number lines are coordinated by a reflective operation.
This is the most plausible assumption because of the nature
of the problem itself. A.Compare problem involves the
difference between two disjoint sets. To find the
difference, the most plausible way is to act on one set while
constraining the action by referring to the criterion
represented.by the other set. It is less plausible to use a
part-whole schema as the mathematical set relation inferred
to construct problem-models for Compare problems, because the
difference between sets cannot be treated as a set as in
part-whole relations. In addition, mapping between Compare
problem texts to a part-whole schema requires a much harder
transformation from the problem situation to the structure,
and the processing demand would be heavily increased if

mapping to part-whole schema were not automatized. Okamoto’s
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model accurately describes the éonstruction of the problem
model as represented by number lines and the operations
leading to the solution to the problem.

As an illustration, consider a Compare-l problem: “Joe
has 2 marbles. Tom has 6 marbles. How many more marbles
does Tom have than Joe?”. This problem can bg solved by
Level 2 processes, which means the solver must be around
eight years old, at the level of bidimensional thought in
development. According to Okamoto’s model (Figure 3),
initially, one number line represents Joe’s 2 marbles; the
second number line represents Tom’s 6 marbles. Then, Joe’s 2
marbles are reflected onto Tom’s number line to indicate the
difference between " Joe’s 2 marbles and Tom’s 6 marbles. The
difference is inferred as the amount that Tom has in excess
of Joe’s., Finally, one number line acts as a counter to
count the difference marked off on the other number line to
produce an answer.

This model is based on children’s capability of
representing two mental number lines. Coordination of fhe
two number lines by a reflective operation is the key to
solving the problem. Although, at Okamoto’s Level-2
processes, the coordination is more or less sequential,
rather than performed in an on-line, integrated fashion, it
i§ adequate for solving this particular type of problem.

This combination of plausibility and accuracy have never been
achieved by any of the previous models. Furthermore,
Okamoto’s empirical studies (1992) showed that children’s

performance on this problem is well predicted by her model.
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Array (Joe) 1 <=> 2 <

|

Array (Tom) 1 <=> 2 <-> 3 <=> 4 <~-> 5 <-> 6

|

P2

Compare-1
Joe has 2 marbles.

Tom has 6 marbles.

How many more marbles does Tom have than Joe?

Notes. Pl: Proposition 1 [Owner-specification = Joe, quantity

= 2, objects = marbles]. P2: Proposition 2 [Owner-

specification = Tom, quantity = 6, objects = marbles]

Figure 3. Problem Model for a Compare-l Problem (from

Okamoto, 1992)
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In the RGH model (1983) and Riley and Greeno’s (1988)
model, Compare-1 problems are supposed to be solved at Level-
1, where children are able to make individual sets by
manipulating external display of objects. No-description of
the solution process is expiicitly given. It seems that the
model suggests children make the two given sets externally,
then if they have a “compare schema” available, children will
be able to understand “how many more ... than ...?” question
and relate it the an “action schema” called “match”.

However, Riley and Greeno (1988) finq that the data pattern
in their study “casts considerable suspicion on the models’
characterization of knowledge for Compare problems. Although
the kinds of knowledge assumed in Level-1 and Level-2 for
Compare problems are similar to the kinds of knowledge for
those levels for Combine and Change problems, many more
kindergarten and first-grade children were at Level-1l or . .
Level-2 for Combine and Change problems than for Compare
problems. The scalability analyses and ordinal analysis were
less successful for Compare problems than they were for
Combine and Change problems. In the proportions of children
matching model performance, statistical agreement was good
for kindergar£neré and first-graders, but only because most
children solved none of the probiems. ... These different
levels of knowledge distinguish among kindergarten and first-
grade children’s performance on the Combine and Change
problems, but few of those children had response patterns on
Compare problems that were consistent with any of the models

except the null model that predicts no success.” (p. 84)
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In Briars and Larkin’s CHIPS (1984) model, no
intermediate internal representations are hypothesized for-
soiving Comparg.l problems as well as Won’t Get and Equalize
problems. Linguistic inputs are‘directly mapped to two
solution actions, “match”.and “count”. This pattern is
probably a result of children’s having well established the
coordination between two number lines and having beeﬂ
extensively exposed to these kinds of problems. Otherwise it
is hard to explain why the two actions can be ﬁsed together
for one of these problems. This can be done only when the
problem solver uses one of the two given sets as the
criterion for matching and counting the rest of the objects
after matching, which requires the coordination proposed by
Okamoto’s model.

In terms of the present study, Okamoto’s‘ﬁodel not only
successfully describes the entire process for solving Compare
1l problems, but also can be applied to all the problems
involving difference finding between disjoint sets. 1It'’s
assumption about number line coordination as the key to the
problem solution also provides a basis for simulating the
mapping between problem texts and mathematical operations in

the processes.

The Effect of Concrete Materials

In previous studies, it is hard to find any discussion

about the effect of concrete materials on the solution
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processes of Compare problems. It is assumed that at lower
levels or young ages children are limited to direct modeling
of problem situations and to solutions using concrete objects
(Carpenter, 1985; Riley et al., 1983; Briars & Larkin,rl984).
As a result, researchers consisténtly use certain kinds of
concrete materials when they present Compare-1 problems to
young children. Riley (1981) presented blocks with Compare-1
problems to kindergartners and first-graders and found 17% of
the former and 28% of the latter correctly solved the
problems. Carpenter, Hiebert, and Moser (1981) maae a set of
red and white Unifix cubes available to their subjects and
told them to use the cubes to help them solve the problem if
they needed the cubes or not sure of their answers. Their
resulté showed 29 out of 43 first-grade students correctly
solved Compare-1 problems. Hudson (1983) used a set of
drawings of the objects described in his Compare-1 and Won't
Get problems. The proportions of correct Compare-l1 responses
were 17% for nursery school children, 25% for kindergartners,
and:64% for first-graders. The concrete materials Qe;e
included in these studies simpl& because they Qere believed
to be needed by the young children and would have né effect
on the problem difficulty. Hudson (1983) mentioned that
children responded incorrectly to "how many more ... than
...?" questions even when the gi?en sets were block rows
placed side by side so that app;opriate one-to-one
correspondence were visually understood, suggesting that the
difficulty from the problem text could not be overcome just

by using blocks.
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However, there is some evidence for a facilitation
effect of concrete materials on word problem solving other
than Compare problems. Riley (1981) found there wasra
general improvement in kindergartners' performance when they
used objects to solve all types of Change problems éxcept
Change 5 and 6. Steff and Johnson (1971) obtained a similar
result for four types of Change problems and Combine-1 and -2
problems. In addition, Carpenter et al. (1981) observed that
first-graders preferred to use blocks if they had the choice.
| The concrete materials used for word problem solving can
be included in the concept of "task environment" defined as
comprising all the elements of a task that are available and
perceived by the problem solver (i.e., the "givens” of a
problem) (Resnick & Ford, 198l1). Generally, task environment
provides the raw materials out of which the information-
processing system builds a representation of the problem.
This in turn determines which solution strategy is selected.
Information about how concrete materials facilitate solution
correctness does not show their effect on the problem
representation. This effect is assumed to be reflected in
the strategies the childien use under different conditions.

Carpenter. et al. (1981) found an effect for the
availability of Unifix cubes on some strategies used by
first-graders in solving arithmetic addition and sﬁbtraction
‘word problems. 1In addition problems, children were able to
use a counting-on strategy, but the availability of cubes
influenced children to use a counting-all rather than a

counting-on strategy. In subtraction problems, a matching
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strategy was only feasible when objects were available.
These findings support the position that the availability of
concrete materials és a part of the task environment
influences the construction of problem representations.

. In previous étudies, considerable attention has been
given to determining how problem semantic structures
influence representations, how linguistic factors influence
repreéentations, even how children use concrete materials to
model the problem structures. However, there has seldom been
research on how concrete materials inflﬁence representations,
especially with Compare problems. Thus some guestions
remain: do children use a matching strategy in solving
Compare problems? Do they use it only when concrete
materials are available? Is there any influence of concrete
materials on their Compare problem representation

construction?
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CHAPTER TIII

RATIONALE AND HYPOTHESES
Rationale

The purpose of the present study was to'investigate the
mapping between text comprehension and mathematical reasoning
in the processes of solviﬂg difference-finding word problems
by first-graders. The theoretical framework regarding word
problem solving process adopted by the present study includes
these assumptions: (1) successful solution to a problem
relies on the conceptual understanding of the problem, that
is, building a coherent mental conceptual representation of
the problem; (2) the representation is a dual one including a
text base consisting of information given in the problem
text, and a problem model in which information from the text
base is reconstructed in terms of a mathématical structure
acquired by the problem solver through development; (3) the
mapping between text comprehension and mathematical reasoning
occurs when information from the text base is being
reconstructed in the problem model; (4) the problem model is
represented as two mental number lines which are coordinated
to produce an answer to the problem; and (5) the problem
solving strategy is determined by the problem model, and the
observed strategy can be used as an indicator of what kind of
problem model is being constructed. Based on this framework,
several inferences on the proceéses of solving difference-

finding problems and on the mapping between text
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comprehension and mathematical reasoning in the processes can

be made.

M . onto the C 1ipat i . Numl L3
First, to solve the three types of difference-finding
problems, namély COMPARE, EQUALIZE, and WON'T GET (Table 2)
requires the same mathematical reasoning competence, that is,
the coordination of two number lines. The purpose of all the
three types is to find the numerical difference between two
disjoint sets. The two sets are given. They are represented
in each problem model as two number lines. Then in the case
of COMPARE, the question is “how many more objects are in the
larger set than in the smaller set”. According to Okamoto
(1992), two sets of objects cannot be lined up on a single
mental object line to capture the comparative nature of the
problem. Coordinating two number lines is a prerequisite of
comparing two disjoint sets. 1In the case of EQUALIZE, the
question is “what can be done to make the smaller set have as
many objects as in the larger set”. It does not matﬁer which
number line the problem solver works on, either to make the
smaller set larger or to make the larger set smaller, but it
is necessary to refer to the criterion about how far to go
indicated by the other line. In the case of WON'T GET, the
question is “how many objects from the larger set won’t get
the objects of the smaller set”. A matching strategy is
proposed in almost all previous studies to solve the problem.
~Matching actuaily means making correspondence between the two

number lines. - Furthermore, in order to reach a solution,
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matching must be followed by a counting-the-~rest action.

This action is constrained by the criterion about where to
start the counting. This starting point is marked by the’
smaller set line when it is matched onto the larger set line.
Therefore,_coordiﬁation between the two number lines, as in
the cases of COMPARE and EQUALIZE, is required in the case of
WON'’T GET.

Second, successful solution for any of the three types
of problems depends upon if the problem texts can be mapped
onto the coordination of the two number lines. This is the
reason for any difference in difficulty among the three
types. 1In the EQUALIZE problem text, the question sentence
contains the phrase “as many ... as ...”. It cues the
problem solver to take both sets into consideration, and to
use one set as criterion to constrain the action on the other
set. If the problem solver possesses the competence to
coordinate two number lines, the EQUALIZE problem text can be
easily mapped onto this structure to build an.appropriate
problem model, and then the coordinating operation can be
applied to produce an answer. In the WON’T GET problem text,
the phrase “each one tries to get a ...” cues the problem
solver to build the one-to-one correspondence between the two
sets, in other words, to project one number line on the other
in the problem model. Then the phrase “won’t get” cues the
counting of the unmatched objects. However, this counting
action is not independent of the coordination of the two
number lines. It uses the mark made by the end of the

smaller set line as the criterion to start counting.
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Although the whole process may occur in sequence, that is,
taking the result of projection as a “given”, and then
counting the unmatched, instead of in a “on-line” fashion,
the problem text is clearly mapped onto the coordination of
the two number lines. In the COMPARE problem text, however,
no cues are available. The phrase “how many more ... than

..” does not cue to build any operational relationship
between the two number lines. Even 1f the problem solver
possesses the competence of coordination of two number lines,
he or she may not be able to apply the structure in this
COMPARE problem context. In summary, unlike EQUALIZE and
WON’T GET problem texts, the COMPARE problem text does not
facilitate the mapping onto the coordination of two numbek
lines. |

Third, whether the problem text is mapped onto a

mathematical structure to build a problem model can be
reflected by the strategy the problem solver uses to solve
the prbblem. For the difference-finding problems, three
strategies are proposed, namely PART-WHOLE (Riley et al.,
1983; Cummins, 1991), ADD-ON (Carpenter et al., 1981), and
MATCH (Hudson, 1983; Carpenter et al., 1981; Briars & Larkin,
1984). The PART-WHOLE strategy treats the larger set as
whole, the smaller set as one part, and the difference as the
other part.’ The interrelationship in this structure is
Nwhole = part + part”. The strategy then takes away the
given part from the whole and counts the objects in part left
aé the difference. As mentioned in a previous section (see

Chapter 2), mapping onto a PART-WHOLE structure from the
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difference-finding situation requires a harder
transformation, so that the competence qf simple coordination
of two number lines does not easily produces a PART-WHOLE
strategy. The ADD-ON strategy adds more objects to the
smaller sef to make it equal to the lafger set, then takes
the added objects as the difference. This strategy is
clearly based on the coordination between two number lines.
It acts on the smaller set line by adding more objects on the
line, but constrains the action by referring to the criterion
marked by the larger set line, that is,:continuing to add
until the smaller set line reaches the end of the larger set
line. The MATCH strategy matches up the objects of the two
given sets and find the unmatched objects as the difference.
This strategy also reflects the coordination between the two
giyen sets. The matching action reflects the projection of
one number line onto the other, and the counting-the-left
action uses the mark made by the end of the smaller set line
as the starting point to count. Thus, if either the ADD-ON
6r'MATCH strategy is observed, it can be inferred that the
problem model is being represented as the coordination
between the two number lines. As for the PART-WHOLE
strategy, it does not reflect a simple coordination between
two sets, it shows that a more demanding transformation is
being used and a more sophisticated representation is being
.built.,

In summary, all the three types of difference-finding
problems require the ability to coordinat -two number lines;

certain types, like EQUALIZE and WON’'T GET facilitate the

o
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mapping from their problem texts onto the coordination of two
number lines, but certain types, like COMPARE, do not. If
the mapping i1s successful, the problem model represented as
the coordination of two number lines can be constructed, and,
the successful problem model construction can be inferred by
the presence of certain problem solving strategies, like ADD-

ON and MATCH.

Developmental Tevel

The COMPARE problems are reported to be difficult for
young children up to first-grade students (Riley, 1981;
Hudson, 1980, 1983). This 1is well explained by Okamoto’s
(1992) model which is based on Case’s (1992) theory of the
development of central numerical structures (see Chapter 2).
Across a wide range of tasks, children show a similar pattern
of development. At the age of four, prior to the dimensional
reasoning, children count and make judgments of relative
quantity, but are not able to integrate the two structures.
At about six years of age, children cén understand the
relation between enumeration and quantity evaluation. This
relation allow them to think in terms of a single mental
object line or along one dimension. This structure still
does not allow children to deal with the word problems
involving comparison between two disjoint sets. It is at
about age eigh; that children enter the bidimensional
substage and are able to construct two number lines to
coordinate them. Not until this level do children possess

the competence to solve the problems involving comparison.
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Children at age of seven would be the best candidates to
reveal the differences of the three types of difference-
finding word problems in mapping onto the coordination of two
number lines. .Generallyrspeaking, seven-year-o0ld children’s
processing capacity has allowed them to begin to build two
number lines and to coordinate the two lines, but ¢his newly
developed structure has not yet consolidated. Their ability
to construct sﬁch a structure in a problem solving situatibn
is task-dependent, that is, to represent the problem in terms
of such a structure heavily depends on the factors such as
problem formation, familiarity, and task envifonment. In the
context of solving difference-finding word problems, this
task~-dependency would be mainly reflected by the fact that
the problem model construction in terms of the coordination
of two number lines relies on the problem text. It is
reasonable to assume that if the text cues the coordination,
the newly developed structure can be applied to the problem;

if not, the structure is not accessible.

Using Blocks

Based on Resnick and Ford’s (1981) argument that‘the
fask environmgnt influenées problem representafions, and
Carpenter et al.’s (1981) findings that the availability of
concrete materials influences strategy use by first-graders
in solving word problems, it can be inferred that the
preéence of certain concrete materials affects the
consfruction of representations of difference-finding

problems. Specificaliy, if the COMPARE problem texts do not
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cue the mapping between the two number lines representing the
two given sets, the availability of certain objects like
blocks may provide a perceptual cue for the coordination.
That is, when children have two piles of blocks to represent
the two given sets, and they arrange the two sets of blocks"
in two rows side by side, they may see that the row of blocks
representing the larger set exceeds the row of blocks
representing the smaller set. Then when they hear the
question “how many more ... thén ...?", the removability of
the blocks may cue them to try to manipulate the two block
lines to build a one-to-one correspondence between them, and
then they see the unmatched blocks, and count them to produce
the difference. Thus, it can be assumed that the perceptual
cues may compensate for the lack of textual cues in building
a appfopriate problem model.

According to this assumption, the availability of blocks
would reduce the difficulty of COMPARE problems. However, an
alternative is also plausible. The above manipuiation and
arrangement with the blocks may be merely an external
represehtgtion of the problem solver’s mental number lines.
This reduces the problem solver’s prbcessing load and this
then increases correct solutions. This means the
availability of blocks does not influence the construction of
fhe problem model, only re-represents the problem model by
means of the concrete materials.

The hypotheses of the present study were derived from
the main theoretical framework provided by the previous

studies, and from the inferences made on the mapping of texts
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onto the coordination of two number lines, the development‘

level, and the effect of using blocks.
Hypotheses

The general hypothesis of the present study was that,
among the three types of simple arithmetic word problems
involving finding the numerical difference between two
disjoint sets, the EQUALIZE and WON‘T GET problem texts
facilitate their mapping onto the problem models represented
as the coordination of two mental number lines, whereas the
COMPARE problem texts do not facilitate the mapping. This
general hypothesis yields the following specific predictions.

l. First-grade students will perform better in terms of
correct solutions in solving EQUALIZE and WON’T GET problems
than in solving COMPARE problems. |

2. First-grade students are more likely to use ADD-ON
and MATCH strategies to solve EQUALIZE and WON’T GET problems
and they are less likely to use the two strategies to solve
COMPARE problems.

3. First-grade students will perform better in terms of
correct solutions in solving all the three types of problems
when the problems are presénted with blocks than without
blocks.

4. When the COMPARE problems are presented with blocks,
first-grade students are more likely to use ADD-ON and/or

MATCH strategies to solve the problems.
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. CHAPTER 1IV
METHOD

Sample

Twenty-nine first-grade students were recruited with
parental consent from two Catholic schools in northwest
Calgary, Canada. Both schools were locatéd in middle-class
neighborhoods. One student withdrew'during the experiment,
so that the final data were collected from twenty-eight
subjects, including 16 boys and 12 girls, with a mean age of
7.01 (standard deviation =.40). None of the subjects had
received any previous formal instructions on the problem

types involved in the experiment.

Materials

Problems

Thirty. simple arithmetic word problems were created
based on previous studies (Riley et al., 1983; Carpenter et
al., 1981; Hudson, 1983; De Corte, Verschaffel, & De Win,
1985) . The thirty problems shared the same mathematical
structure, specifically finding the numerical difference
between two disjoint sets. The text of these problems
distinguished three types of problems: COMPARE, EQUALIZE, and
WON'T GET (see Table 2). Each type consiéted of ten
problems.

The COMPARE problems involved a static comparison
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between two disjoint sets. The two sets were presented and
the question was "how many more objects of the larger set are
there than those of the smaller set". For example: “John has
9 apples. Ann has 4 apples. How many more apples does John
have than Ann?”

The EQUALIZE problems involved actions reqired to make
two disjoint sets numerically equal. The two sets were
presented and the question was posed as "what could be done
to the smaller set to make it equal to the larger set". For
example: “Fred has 9 buckets. Betty has 5 buckets. How many
more buckets does Betty have to get to have as many buckets
as Fred?”

The WON'T GET problems involved finding element
correspondence between two disjoint sets. The two sets were
presented, then the question was “how many objects of the
larger set won’t get the objects of the smaller set”. For
example: “8 children went to a store to buy hats. There were;
only 5 hats in the store. How many children would not get a
hat?”

Among all the problems, the objects of the sets and the
owners of the objects varied. The numbers used to present
the larger set were not greater than 9. The number triples
invoived in the problems had ten variations: 9-5-4, 9-4-5, 9-
-3, 9-3-6, 8-5-3, 8-3-5, 7-4-3, 7-3-4, 7-5-2, and 6-4-2.

(For all the problems, see Appendix A)

Blocks

A set of 20x20x5mm wooden square blocks (Activity
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Resources Company Inc., 1973) were used. The blocks were
presented with half of the problems of each type. The
presence and absence of the blocks produced two problem
solving conditions, némely “without blocks” and “with

blocks”.
Tasks

The subjects were required to solve the three types of
problems without blocks and then with blocks. Five problems
of each type would be solved without blocks. Another five
problems of each type would be solved with blocks. The tasks
included (1) giving an answer to the question of each
problem, then (2) identifying the strategy he/she tried to
use to solve the problem. Based on previous studies of
solving problems involving difference finding between
disjoint sets, three kinds of strategies were expected,
namely PART-WHOLE, MATCH, and ADD-ON.

The PART-WHOLE strategy treats the larger set as whole,
the smaller set as one part, and the difference as the other
part.

The MATCH strategy matches up the objects of the two
sets and finds the objects left in the larger set as the
difference,

The ADD-ON strategy adds more objects to the smaller set
to make it equal to the larger set, then takes the added

objects as the difference.
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Procedures

-The testing was conducted in May of 1992, when none of
the subjects had yet received any formal lessons on the types
" of problems involved in the experimen£. Each subject was’
tested in an individual intérview situation in his/her
school. Each subject was tested in three sessions (20
minutes each), with a one week interval between seséions.

The subjects from one school started solving the 15
problems (5 from each type) presented without blocks, and
then solved the other 15 problems (5 from each type)
presented with blocks. The subjects from the other school
started with the problems with blocks, and then the problems
without blocks. Every subject solved exactly the same
problems. However, the sequence of presentation of the
problems was randomly arranged for each subject.

At the time of testing, each problem was read to the
subject. A problem might be read twice, if required by the
subject. First the subject gave an answer for each problem.
Under the without-blocks condition, using fingers was
prohibited. "Under the with-blocks condition, the researcher
would make two piles of blocks (without any particular
pattern of arrangement) on a table to represent the two given
sets as reading the problem. The subﬁect's numerical
solution to the problem was recorded.

After solving a problem, the subject was asked to
identify the strategy he/she used to get the solution, no

matter whether he/she got a correct or incorrect numericail
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solution. For this purpose, the researcher would ask two
questions "how did you get the answer?" and "why?", and only
these two questions. The questions were asked in a neutral
manner, no guidance or directions were provided. Under the
without-blocks condition, the subject was asked to verbally
explain the strategy. Under the with-blocks condition, the
subject was allowed to rearrange the blocks to show how
he/she got the answer.

The numerical solution to each problem and the strategy
presented by the subject were recorded on a sheet on which
the question itself, "right” and "wrong" marks, and the

categories of the strategies had been prihted.
Scoring

Correct Solutions

A score of "1" was awarded to each correct numerical
solution to the problem, and a "O" to each incorrect
solution. Because there were five problems for each type of
problem under each condition, the score for each subject
ranged from 0 to 5 for each type of problem under each

condition.

Strategies
The strategy a subject used to solve a problem would

fall into one of the following four categories: (1) PART-

WHOLE, when the subject presented "larger set - smaller set

difference"” or "smaller set + difference = larger set"; (2)
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‘MATCH, when theysubject matched the objects of the smaller
set to those of larger set, then counted the objects left in
the larger set as difference; or took away the objects from
larger set until the two sets matched up, then counted the
objects taken away as the difference; (3) ADD-ON, when the
subject added more objects to the smaller set until it
equalled to the larger set, then counted the added obijects as
the difference; (4) OTHER, when the subject'stated "I have
no idea", "I can not remember", "I don't know", and "I
guessed"”, etc., or when the strategy presented by the subject
did not fit any of the above known strategies.

A score of "1" was awarded to one of the four categories
according to the subject's presentaéion for each problem, no
matter he/she got a correct numerical answer to the problem
or not. Because each subject solved five problems of each-
type under each condition, his/her possible score for each

category would range from O to 5.
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CHAPTER V
RESULTS

A set of repeated-measures analyses of variance were
performed to analyze (1) the correct solutions of the

problems, and (2) the strategies for solving the problems.
The analyses were conducted by SPSS/PCT through SPSS MANOVA

(Norusis/SPSS Inc., 1990). The F values and their
significance were calculafed by the averaged test of
significance, which is equivalent to a mixed-model univariate
analysis of variance (Winexr, 1971). The Mauchly Sphericity
Test was used to check the violation of the assumption that

. the variance of all the transformed variables for an effect
be equal and that their covariance be zero. When the
assumption was violated, the degrees of freedom for fhe E
test were adjusted by the Huynh-Feldt Epsilon (Huynh & Feldt,
1967). Only the final, adjusted results will be reported in
the following section. Focused analyses for significant main
effects were performed by pairwise contrast analyses
(Rosenthal & Rosnow, 1985),. and the corresponding parameter

estimates will be reported.

Correct Solutions

The means and standard deviétions of the correct

solutions of the three types of problems under two conditions
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of availability of blocks are shown in Table 3. A 3 x 2
(Type x Condition) repeated-measures analysis of variance was
conducted to reveal the difference in correct solutions among
the three problem types under different conditions.
Significant differences were found in the main effect of
Type, E(1,37) = 10.45, p < .001, and Condition, F(1,27) =
19.68, p < .001. There was no significant interaction between
Type and Condition, F(2,54) < 1.

For the Type effect, three pairwise contrast analyses
were performed (Table 4), and showed that the mean solutions
of COMPARE problems was significantly lower than those of
both EQUALIZE and WON’'T GET problems, £ = 3.04, p < .01, and
£t = 3.70, p < .01, respectively, while there was no
difference between EQUALIZE and WON'T GET problems, t = 1.20,
p > .05.

The results showed that (1) no matter whether the
problems were presented with or without blocks, COMPARE
problems were the most difficult problem type compared to
EQUALIZE and WON'T GET problems, and (2) across the three
types, the problems presented with blocks were easier than

those presented without blocks.

Strategies

Without Blocks
Table 5 shows the means and standard deviations of the

strategies for solving each type of problems pfesented
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without blocks. A significant interaction between Type and
Strategy was found through a 4 x 3 (Strategy x Type)
repeated-measures analysis of variance, E(3,94) = 53.63, p <
.0001. This analysis indicated that the  frequencies of using
different strategies depend upon the types of problems.
Therefore, a set of one-way repeated-measures analyses of
variance on the strategies for each Type were performed to
reveal the differences of usage frequency among the
strategies. Alpha was set at .Ql7 (.05/3) to control the Type
I error rate.

For COMPARE problems, no significant difference was
found among the strategies, E(3,81) = 1.79, p > .05. This
indicates that the first-graders were not clear how to solve
COMPARE problems, because they did not use any strategy more
often than any other, and especially becausezthere was no
difference between OTHER, the unclassifiable strategies, and
the strategies suitable for difference finding problems.

When solving EQUALIZE and WON'T GET problems, the
tendency to use one strategy over the others was sigqificant.
For EQUALIZE problems, the Strategy main effect was
significant, £(2,54) = 31.09, p < .0001. The contrast
analyses furthér revealed the use of the ADD-ON strategy
overwhelmingly more than any other strategiés (Table 6),
indicating that the first-graders mainly tried to use the
ADD-ON strategy to solve EQUALIZE problems.

For WON'T GET problems, the Strategy main effect was
also significant, E(2,56) = 38.81, p < .0001. The pairwise

contrast analyses showed that among the strategies, MATCH was
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most frequently used (Table 7), which suggested that WON'T
GET problems were usually solved by using MATCH strategy.

To summarize, when the thfee types of problems were
presented without blocks, using a particular strategy to
solve each of the problems depended on the problem type which
determined by the problem text. The kind of strategy that
was used for COMPARE problem was not clear. However, it was
clear that the firsf—graders mostly used the ADD-ON strategy
to solve the EQUALIZE problems, and the MATCH strategy to

solve the WON'T GET problems.

With Blocks ‘

When solving the problems presented with blocks,‘the
first-graders' strategy use showed a similar pattern to that -
for solving the problems presented without blocks. The means
and standard deviations of the strategy scores for each type
of problem presented with blocks are shown in Table 8. A
significant interaction between Type and Strategy was found
through another 4 x 3 (Strategy x Type) repeated-measures
analysis of variance, F(4,104) = 31.55, p < .0001.
Furthermore, a set of one-way repeated-measures anaiyses of
variance on the strategies for each Type were performed to
reveal the differences of usage frequency among the
strategies. Alpha was set at .017 (.05/3) to control the
‘Type ‘I error rate.

For EQUALIZE problems, a significant Strategy main
effect was found, E(2,57) = 17.00, p < .0001. Through the

pairwise contrast analyses (Table 9), the ADD-ON strategy was
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found as the most frequently used strategy.

For WON'T GET problems, a significant Strategy main
effect was found, E(1, 39) = 154.36, p < .0001. A set of
pairwise contrast analyses (Table 10) showed that the MATCH
strategy was used more than other strategies.

The presence or absence of blocks did not seem to
influence the use of strategies to solve the EQUALIZE or
WON'T GET problems. No matter whether the problems were
presented with blocks or not, the first-graders tended to use
the ADD-ON strategy to solve the EQUALIZE problems; and the
MATCH strategy to solve the WON'T GET problems. -

However, presenting the problems with blocks did make a
minor difference in strategy use for solving COMPARE
problems. Under this condition the Strategy main effect for
COMPARE problems was significant, E(3,81) = 3.75, p = <.017.
The only two significant results by the contrast analyses on
strategies for COMPARE problems (Table 9) were between the
MATCH and PART-WHOLE strategies, and between MATCH and ADD-ON
strategies. fhese showed that when solving COMPARE problems
presented with blocks, the MATCH strategy was used more than
the PART-WHOLE and the ADD-ON strategies. The comparison
between MATCH and OTHER, however, was not significant.

These results from the analyses on the COMPARE problems
presented with blocks suggested that, when the blocks were
‘available, the first-graders tended to use the MATCH strategy
to solve the COMPARE problems rather than use the PART-WHOLE
or the ADD—ON‘strategies. However, the MATCH strategy was

used only more often than the PART-WHOLE and the ADD-ON
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strategies. It was this difference that produced the
significant main effect. Another important piece of
information from the analyses was that the MATCH strategy was
not used significantlyrmore often than the OTHER strategy.
The rather high value for unspecified or random strategies
does not give a clear picture of exactly what strategies they
coﬁld use to solve the COMPARE problems.

The results from the analyses on the strategies clearly
showed the dependency of strategy use on the problem type |
which is determined by the problem text, across the two
copditions of block availability. The EQUALIZE problems were
mostly solved by using the ADD-ON strategy, and thewWON’T GET
problems were mostly solved by using the MATCH strategy.
Under both conditions, the first-graders tried to use some
unclassifiable or random strategies as well as the strtegies
suitable for difference-finding problems to solve the COMPARE
problems. There was no significant difference between the
use of unclassif;able strategies and the use of the suitable
strategies, indicating that the first-graders were not clear
what they could use to solve the COMPARE problems.

The effect of the blocks on strategy use showed on the
COMPARE problems. When the blocks were not available, no one
strategy was used significantly more often than any others.
When the blocks were available, the MATCH strategy was used

more often than the ADD-ON and the PART-WHOLE strategies.
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Table 3
Type and angj;jgn

Type of problem

Condition COMPARE EQUALIZE WON'T GET

Without blocks 3.04 3.82 3.89
(1.90) (1.28) (1.20)

With blocks . ' 3.68 4.68 4,93
(1.93) (0.61) (0.26)

Note. Maximum score = 5.



Table 4
Contrast Analyses for Type Main Effect

83

Comparison | ol
COMPARE vs. EQUALIZE 3.04%%*
-COMPARE vs. WON'T GET ; o 3.70%*
EQUALIZE vs. WON'T GET 1.20

**p<,01.



Table 5

84

M { standard Deviati ¥ | ) of S .
Used for Fach Type (Without Blocks) '

Strategy
Type PART-WHOLE MATCH ADD-ON OTHER
COMPARE 1.18 0.61 1.64 1.57
(1.68) (0.92) (1.62) (2.08)
EQUALIZE 0.68 0.25 3.43 0.64
(1.49) (0.52) (1.50) (1.03)
WON'T GET 0.71 3.68 0.25 0.36
(1.41) (1.56) (0.65) {0.95)
Note. Maximum score = 5,
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Table 6
cont t Anal St rat , £ EQUALIZE (Wit}
Blocks)

Comparison t
ADD-ON vs. PART-WHOLE 5.18*%*
ADD~-ON vs. MATCH 10.44*%*
ADD-ON vs. OTHER , 7.09%=*

**p<, 01,
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Comparison t
MATCH vs. PART-WHOLE 5.67*%*
MATCH vs. ADD-ON ' 9.89%*
MATCH vs. OTHER B.26%%

**p<,01.
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Table 8
. v l ' ' '
U | £ Each T (With Blocks)

Strategy

Type ' PART-WHOLE MATCH ADD-ON OTHER
COMPARE 0.68 2.28 ~0.75 1.29
(1.52) - (2.14) (1.30) (1.94)

EQUALIZE 0.71 1.11 . 2.96 0.21
(1.27) (1.40) (1.77) (0.63)

WON'T GET 0.32 4.54 0.04 0.11
\ (0.95) (1.17) (0.19) (0.57)

r i
Note. Maximum score = 5,
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Table 9
_ ;

Comparison o)
ADD-ON vs. PART-WHOLE 4.40%*
ADD-ON vs. MATCH 3.37%*
ADD-ON vs. OTHER 14.89%*

**p<,01.
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Table 10

Comparison ol
MATCH vs. PART-WHOLE 10.91**
MATCH vs. ADD-ON 19.81*%*
MATCH vs. OTHER 14.89*~*

**p<,01.



Table 11

Contrast Analyses on Strategies for COMPARE (With Blocks)
Comparison L

MATCH vs. PART-WHOLE 2.79%

MATCH vs. ADD-ON | 2.85%%

MATCH vs. OTHER 1.45

*p<.05. **p<.01.
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CHAPTER VI

DISCUSSION
A New Interpretation of Text Effect

Among the three types of word problems invélving finding
the numerical diffefence between two disjoint sets, COMPARE;
EQUALIZE, and WON’T GET, the COMPARE problems wére found- to
be the most difficult type in this study. This is consiétent
with the findings of Hudson (1980, 1983) and the prediction
of Briars and Larkin’s (1984) word problem solving model. It
is also consistent with the first hypothesis of the present
study, which was that the COMPARE problem texts do not
facilitate the mapping onto the coordination of two number
lines, with the result that the first-graders encountered
more difficulty than solving the EQUALIZE and WON’T GET
problems. This is the present study’s interpretation of the
effect of problem text.

This interpretation was supported when the strategy data
were analyzed. When solving the EQUALIZE problems, first-
graders tended to use the ADD-ON strétegy. When solving the
WON’T GET problems, they tended to use the MATCH strategy.
Although they are different in terms of-involving different
acfions, the ADD-ON and MATCH strategies have one thing in
common, that is, they both try to coordinate the two number
lines and to constrain their actions by using the criterion
set by the cqordination. The ADD-ON strategy acts on the

number line which represents the smaller set, adding more
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objects to it, but the action of adding is always limited by
the length of the other number line which represeﬁts the
larger set.

According to the descriptions of previous studies
(Carpenter et al., 1981; Hudson, 1983), the MATCH strategy
first projects the shorter number line onto the longer line,
building one-to-one correspondence, and then counts the units-
unmatched on the longer line. This was found in the present
study, too. In addition, the present study observed another
variation of matching. The problem solver arranged two
object iines, side by side, then took away objects from the
longer line, one by one, until the two lines had the equal
length, i.e., matched. The taking away action was always
constrained by the length' of the shorter number line. No
matter which kind of MATCH strategy the problem solvers used,
it was done by coordinating the two number lines.

Using a particular strategy reflects the kind of
representation the problem solver has-been constructing. The
ADD-ON and MATCH strategies showed that the problem models
built by the first-graders were represented by the
coordination of the two number lines, when they tried to
sol&e the EQUALIZE and the WON’'T GET problems. dn the other
hand, first-graders tried to use various other strategies to
solve the COMPARE problems, including the st;ategies which
were'unclassifiable and undefinable. Generally, améng those
alternative strategies, no one was used mofé times than any
others. This reflected the uncertainty of first-graders on

what kind of problem model they could build according to the
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COMPARE problem texts.

. The only difference among the three type of problems was
problem text. Thus the source of the relative difficulty
among the problems can only be traced back to the problem
texts. Through the analyses of the strategies used for
solving the problems, it can be concluded that the problem
texts of the EQUALIZE and the WON’T GET problems could be
easily mapped onto the coordination of two number lines, so
the appropriate problem models céuld be constructed to
produce the correct solutions. Specifically, the phrase
“what to do to get as many ... as ...” in the EQUALIZE
problem texts, and the phrase “how many won’t get ...” in the
WON’T GET problem texts, cued the coordination of two number
lines. The COMPARE problem text did not cue the coordination
of fwo number lines, which is the prerequisite for solving
such problems, so that this type became the most difficult
differencé—finding problem,

This interpretation produced an answer to the question
“Qhat_makes the problem involving comparison so difficult,”
which was central to the main issue of the greater difficulty
of the Compare problems. Riley et él. (1983) and Cummins
(1991) could not provide the answer because they assumed that
the part-whole structure was responsible for the problem
representation. When Riley and Greeno (1988) found that the
part;whole structure was not appropriate, and when Cummins
(1991) proposed that the source of difficulty was the failure
of mapping, they still failed to find a new underlying

mathematical structure. Okamoto (1992) proposed the
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coordination between two number lines as the underpinning éf
the construction of the problem model, which provided the
structural base for the study of mapping. However, Okamoto
compared the Compare‘problems with other categories‘such as
the Change problems and the Combine problems. ' The lack of |
‘comparability across the categories redﬁces her model’s
explanatory power on the issué of the relative diffiéulty of
comparison problems. The present study adopted Okamoto’s
proposal about the coordination of £wo number lines as the
problem model, and employed three types of word problems
sharing the same mathematical essence. Thus the effect of
the problem texts Qas revealed.

The present study failed to find a differential effect
of using blocks on the problem representation. The result
that using blocks generally facilitated the problem solving
performance for all types was open to various
interpretations, for example, the blocks might not influence
the representation, but merely reduce processing load.

When the blocks were available, first-graders tended to
use the MATCH strategy more often than another coordination-
appropriate strategy, ADD-ON, to solve the COMPARE problems.
Exactly why one appropriate strategy was cued by the blocks
but not the other, cannot be explained within fhe framework
of the present study. The effect of concrete materials on
the problem representations and its interaction with the
problem texts is a topic for the future studies. The blocks
used in the present study were still relatively abstract,

because they were used as referents for any kinds of objects.
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If some “naturally paired” objects were presehted, such as
eggs and-egg cups, desks and chairs, birds aﬁd nests etc.,
the MATCH strategy would be more easily cued. Although this
would seem a fruitful direction for future research, it ig
beyond the scope of the present study. What was found in the
present study was that the MATCH strategy was not used more
often than those unclassifiable and undefinable strategies
even when the blocks were available. Therefore,‘what made
the COMPARE problem difficult was still the problem text,
which apparently does not cue the coordination of two number

lines.

Limitations

Although this study extends previous regearch, it was
limited to.problems involving finding the numerical
difference between two disjoint sets. The interpretation
derived from this.study may not be able to explain the effect
of rewording in other problem categories. The rewording
effect on the Combine problems found in Carpenter et al.’s
(1981) and Lindvall and Ibarra’s (1980b) studies seems to be
related to whether the texts can make the part-whole
structure more explicit. De Corte, Verschaffel, and De Win
(1985) found such an effect of rewording on the Change
problems. Because the Change problems do not involve
disjoint sets, the problems probably can be solved by acting

on one number line.
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Also, the present study did not deal with the social
context and situational aspects of the problem texts. It was
found that the context personalization (Davis-Dorsey, Ross, &
Morrison, 1991), the structure, role, and intent of the word
problem texts (De Corte & Verschaffel, 1985), and the
situation described in the problem texts (Reuséer, 1990;
Reusser et al., 1990) all affect relative difficulty.
However, the present study focused on just the one aspect of
the problem texts relating to the more “pure” mathematical |
structures.

Another possible li@itation of this study is the
methodology -used to get the strategy data. Pressley (1992)
questioned the microgenetic method for studying cognitive
development, pointing out that the children’s choice of
strategy may be cued by the experimenters’ promoting specific
options during the interviews. This was not the case in the
present study, in which the experimenter only asked “how did
you get the answer” and “why”, and provided no guidance and
directions. However, this raises the question of whether the
children’s own repoft, especially when there was no blocks,
could be taken as the evidence of their strategy use. This
method is not without its critics (Ginsburg, Kossan,
Schwartz, & Swanson, 1983). In fact, one of the main
criticisms is that.-a child may fail to report a considerable
part of his/her thinking process. However, the interview
method and the children’s verbal report are still the ma’jor
source of any information of problem solving processes.

According to Ginsburg et al. (1983), to judge the value of
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subject’s descriptions of some of their cognitive processing
depends 'on how one construes the notion of processing. If
the notion is limited to descriptions of neural processing,
the introspective reports will be no use; if stages or steps
taken in solviné a problem, such as in mathematics, are the
aspects of processing that are of interest, verbal reports
may be a valuable source of information. Certainly, it would
be more reliable if this method were combined withrsome other
more “objective” method, such as De Corte and Verschaffel’s
(1990) collection of eye-movement data while children read
and solve word problems. However, it is not clear just how
well the physiological and self-report assessments match up,
and in any event the strategies found here have high face

validity.

Implications

This study examined the very nature of word problems,
that is, the fact that the word problems are mathematical
problems presented in wverbal forms. From this perspecti&e,
further research on word pfoblem solving processes should
focus on the interaction between linguistic comprehension and
mathematical reasoning. Th;s means not only trying to find
what kind of linguistic competence is required, or what kind
of mathematical structure i1s underlying thé problem
representation, but also we should examine how the two

components interact. To analyze the mapping processes in
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detail i1s one way to understand the interaction.

In future studies, this method should be extended to all
other problem types to study the different mapping processes
under the current categorizaﬁion. It may also be used in
stud?ing woxrd problems beyond arithmetic, such as algebra
word problems. Another related area may be to study the
degrees of children’s dependency on linguistic comprehension
at different cognitive developmental ievel(.or with different
amount of exposure and exercise. This could help explain why
the COMPARE problems were difficult for first-graders but not
for third- or second-graders.

Educational research should integrate the findings of
word problem solving studies into the studies of mathematics
currilculum and instruction. At the present time the problems
involving comparison are introduced to first-grade textbooks
without any preparation for the students. The information-
processing analysis and detailed descriptions of word problem
solving processes, including the mapping processes between
linguistic comprehénsion and mathematical reasoning, would
provide thé base on.which curriculum revision should be
developed and instruction should be desigged. Also, the
findings from the studies on the development of word problem
solving ability should be integrated into educational
studies, so that curriculum can be sequenced according to the
development of children’s ability, and educators can know how
to get around the difficult mathematical points which
originate in the constraints in cognitive development by

making use of the influence of problem texts.
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During the course of data collection for the present
study, a first-grade teacher predicted that the probiems used
here would be too difficult for the students, because (by the
end of the first year) the students “have met some of the.
COMPARE problems, but have not seen the EQUALIZE and the
WON’T GET types at all”. The teacher suggested that the
researcher do this experiment in grade two instead. This
example shows there is a great deal of information not
aelivered fo teachers, including that (1) the three types
share the same mathematical structure and require the same
problem solving competence; (2) the COMPARE problems are more
difficult than the other two types, and this is not the
problem of exposure but the basic problem text; (3) it would
be better to let students encounter the EQUALIZE and the
WON’T GET problems before the COMPARE problems; and (4)maybe
a better way to teach solving the COMPARE problems is to let
the students first do the mapping in the manner that they do
in solving the EQUALIZE and WON’T GET problems, that is, by
using matching or adding-on strategies, so that they may
avoid the difficult point intrinsic to the COMPARE problem

texts.
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APPENDIX A

Word Problems Used in the Experimentation

COMPARE

1. Joe has 8 marbles.

Tom has 5 marbles.

How many more marbles does Joe have than Tom?
2. Peter won 4 prizes at a fair.

Mary won 7 prizes.

How many more prizes did Mary win than Peter?
3. John has 9 apples. '

Ann has 4 apples.

How many more apples does John have than Ann?
4, Tom has 9 toy cars.

And he has 5 toy trucks.

How many more toy cars does he have than his toy trucks?
5. You got 8 books.

I got 3 books.

How many more books did you have than Ié
6. Mark and Sue like cups.

Mark collected 3 cups.

Sue collected 7 cups.

How many more cups did Sue collect than Mark?
7. Susan puts some pencils in her pencil box.

There are 6 green pencils.

(Continued next page)
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10.

E

1.

And there are 4 red pencils.

How many more green pencils are there than red pencils?
There are 9 blue balloons in the sky.

And there are 6 yellow balloons there.

How many more blue balloons are there than yellow ones?
My brother read 5 books in a week.

My sister read 7 books.

How many more books did my sister read than my brother?
In a zoo, there are 9 monkeys. .

And there are 3 panda bears.

How many more monkeys are there than panda bears?

ALIZE

Joan picked 9 flowers.

Bill picked 4 flowers.

Bill wanted to have as many flowers as Joan.

How many more flowers would he need to pick?

Fred has 9 buckets.

Betty has 5 buckets.

How many more buckets does she have to get to have as
many buckets as Fred?

There are 8 desks in a classroom.

And there are 3 chairs there.

If we need to have as many chairs as desks,

(Continued next page)
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How many more chairs will we need?
4. Some children are playing marble games.
Steve has 5 ma;bles.
Wade has 8 marbles.
How many marbles does Steve have to win to have as many
ﬁarbles as Wade?
5. At first, Wendy drew 7 picfures.
Jill drew 3 pictures.
Jill drew some more so she had as many pictures as Wendy.
How many more pictures did Jill draw?
6. One day, children were telling stories.
A girl told 7 stories.
A boy told 4 stories.
The boy told more stories later so he told as ﬁany
stories as the girl.
How mény'more stories did the boy tell?
7. 6 boys and 4 girls came to Bob's birthday party.
But Bob invited as many girls as boys to his party.
So we know some girls were late.
How many girls were late?
8. Tony's mom gave him 9 crackers yesterday.
And gave him 6 today. |
Tony wanted to have as many crackers today as he got

yesterday.

(Continued next page)
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10.

So he asked mom for more.

How many more would he ask for?

Some children were preparing for a picnié.
They got 7 apples and 5 bananas.

But they need as many bananas as apples.
How many more bananas do they have to get?
You have 9 pencils.

I have 3 pencils.

If I want to have as many pencils as you,

How many more pencils do I have to get?

WON'T GET

1.

There are 7 riders.

But there are only 5 horses.

How many riders won't get a horse?
There are 9 children in a room.

And there are 3 chairs in the room.
How many children won't get a chair?
Here are 9 children.

And here are 4 candies.

How many children can not get a candy?
9 children went to a store to buy hats.
There were only 5 hats in the store.

How many children would not get a hat?

(Continued next

page)
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5. Here are 8 birds.
And heﬁe are 3 WOIrms.
Suppose evefy bird wants to get a worm.
How many birds won't get a worm?
6. There are 7 dogs.
They are playing with 3 cats.
Each dog wants to catch a cat.
How many dogs won't get a cat?
7. 8 people went to a movie.
But there were only 5 tickets left. .
How many people couldn't get a ticket?
8. There are 7 people getting on a bus.
There are 4 empty seats.
How many people won't get a seat?
9. There are 6 drivers.
There are 4 cars can be driven.
How many drivefs will not get a car to drive?
10. Here are 9 pilots, and
hére are 6 pianes at an airport.

How many pilots won't get a plane?




