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ABSTRACT 

This study investigated the effect of problem text on 

arithmetic word problem solving involving difference finding. 

Data on correct solutions and strategies for three types of 

such word problem, namely COMPARE, EQUALIZE, and WON'T GET, 

were collected from first-grade students and analyzed by 

repeated-measures analyses of variance. The correct 

solutions for the EQUALIZE and WON'T GET problems were found 

to be significantly higher than for the COMPARE problems. 

The dependency of strategy use on the problem text was also 

found, specifically, the EQUALIZE problems were most 

frequently solved by using an ADD-ON. strategy, and the WON'T 

GET problems by a MATCH strategy, which reflected the 

construction of a coordination between two mental number 

lines as the problem representation. There was no one 

strategy used significantly more than others for the COMPARE 

problems, suggesting that the problem text of COMPARE did not 

facilitate the coordination. 
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CHAPTER I 

INTRODUCTION 

The focus of this study is the effect of problem texts 

on simple arithmetic word problem solving, specifically 

problems with the same mathematical content and structure but 

having different wording. Studies have found the change of 

problem wording influences the relative difficulty of the 

problem (Hudson, 1983; Carpenter, 1985; De Corte, 

Verschaffel, & De Win, 1985; Cummins, Kintsch, Reusser, & 

Weimer, 1988; Cummins, 1991; Okamoto, 1992) . However, the 

explanation of how problem texts affect the performance of 

problem solving remains unclear. Some authors suggested that 

it could be attributed to the alteration of problem semantic 

structure (Riley, Greeno, & Heller, 1983; De Corte et al., 

1985) . Other authors focus on the mathematical knowledge 

required to represent the semantic relations (Riley & Greeno, 

1988; Resnick, 1989; Gelman & Greeno, 1989) . Still others 

oppose the mathematical viewpoint, and proclaim a linguistic 

development view emphasizing the effect of the problem text 

comprehension (Cummins, 1991; Hudson, 1983) 

Because of the different perspectives of the researchers 

and the various types of problem covered by the studies, the 

current situation in this field perfectly fits what T. P. 

Carpenter (1985) described:. "It is clear that differences in 

wording contribute to a problem's difficulty, but it is not 

•at all clear exactly how. .. .beyond knowing that certain 

wordings are more difficult, we have a much less precise 
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picture of how differences in wording influence children's 

solutions." (p. 26) 

The existing controversy, on the other hand, reflects 

that word problem solving has become the common interest of 

researchers from different perspectives. It has become 

relevant to such areas as problem-sol\ring processes, 

mathematical knowledge required for problem solving, text 

processing, linguistic knowledge required for problem 

solving, and cognitive development of problem solving. 

Therefore, the joint effort of researchers from various 

perspectives has provided the opportunity to study the 

complexity of word problem solving. 

The problems involved in research of this field are 

simple one-step arithmetic addition and subtraction problems. 

On the one hand, the simplicity provides a way to model the 

problem solving processes, and to infer the knowledge 

required to solve the problems; on the other hand, the 

processes and knowledge involved in problem solving show the 

complexity of the research questions raised from these simple 

problems. 

The interest of the present study was derived from an 

issue with the difficulty in solving the word problems 

involving comparison. Young children up to first grade find 

it difficult to solve problems stated.this way: "Tom has 8 

marbles; Joe has 5 marbles; How many more marbles does Tom 

have than Joe?". However, Hudson (1983) found that the 

problem became much easier when the text was changed to 

"There are 5 birds,; There are 3 worms; Suppose the birds race 
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over and each tries to get a worm; How many birds won't get a 

worm?". What made this difference? What is the effect of 

the problem texts? This phenonenon has been related to 

almost every fundamental aspect of word problem solving, such 

as the conceptual understanding of word problems, the 

construction of problem representations, the required 

linguistic knowledge, the required mathematical knowledge, 

and the development of children's word problem solving 

ability. Research on this topic is extensive, but, as 

mentioned above, controversy exists. 

What is the effect of problem text? How does problem 

text affect the problem solving process? The present study's 

research problem derives from the controversy. Also, from 

the previous studies, the present study adopted a fundamental 

framework for answering the questions. 

The theoretical framework regarding the word problem 

solving process adopted by the present study assumes that (1) 

successful solution to a problem relies on the conceptual 

understanding of the problem, that is, building a coherent 

mental conceptual representation of the problem (Riley et al, 

1983; kintsch & Greeno, 1985); (2) the representation is a 

dual one including a text base consisting of information 

given in the problem text, and a problem model in which 

information from the text base is reconstructed in terms of a 

mathematical structure acquired by the problem solver through 

development (kintsch & Greeno, 1985); (3) the mapping between 

text comprehension and mathematical reasoning occurs when 

information from the text base is being reconstructed in the 



4 

problem model (kintsch & Greeno, 1985); (4) the problem model 

is represented as two mental number lines which are 

coordinated to produce an answer to the problem (Okamoto, 

1992); and (5) the problem solving strategy is determined by 

the problem model, and the observed strategy can be used as 

an indicator of what kind of problem model is being 

constructed (Riley et al, 1983; Carpenter, Hiebert, & Moser, 

1981) 

To study the effect of problem text, the present study 

employed three types of arithmetic word problems, namely 

COMPARE, EQUALIZE and WON'T GET. They shared the same 

mathematical essence, that is, finding the numerical 

difference between two disjoint sets, and the difference 

among them is only in problem text. By observing and 

analyzing the first-grade students' problem solving processes 

on these three types of problems, this study attempted to 

investigate the mapping between the liguistic comprehension 

and mathematical reasoning, and to study this mapping process 

in detail, in order to obtain data about the effect of the 

problem texts on the construction of the problem 

representations. This in turn would reveal the source of 

difficulty in solving the problems involving comparison. 

This study also attempted to investigate the effect of 

using concrete materials on the problem representations. 

This is partly because the presence or absence of concrete 

materials in previous studies has not been considered as a 

variable affecting problem representation, but some 

facilitating effect on performance has been 
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found (Riley et al., 1983). Also, knowing whether any 

interaction between problem texts and concrete materials 

exists would help clarify the effect of problem text. 
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CHAPTER II 

LITERATURE REVIEW 

Conceptual Understanding in Word Problem Solving 

Problem Categorization  

Studying word problem solving processes starts from the 

analyses of the problem themselves. The word problems 

involved in this study are simple arithmetic problems 

presented in verbal forms. Simply one-step addition and 

subtraction are involved in the problems, but the problems 

vary in terms of problem length, grammatical complexity, and 

order of problem statements, etc. This has led to the issue 

of word problem classification. Several approaches 

concerning these variables have been taken (see Riley et al., 

1983, for a review) . Those classifications deal more with 

the syntax than semantics of word problems. In order to 

study conceptual understanding in word problem solving 

processes, word problems are categorized according to 

analyses of their semantic structures. 

A word problem identifies some quantities and describes 

a relationship among them. Based on the semantic relations 

among quantities, three types of word problem, namely, 

Change, Combine and Compare (see Table 1), were categorized 

by Heller and Greeno (1978) . In Change problems, the 

relationship among quantities is the action that causes 

increases or decreases in some quantity. The initial 

quantity is referred to as the "start set", the increased or 
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decreased quantity as the "change set", and the resulting 

quantity as the "result set". Both Combine and Compare 

problems involve static relationships for which there is no 

direct or implied action. Combine problems involve the 

relationship about the union of two distinct quantities. The 

union is frequently referred to as the "superset", and the 

other two quantities as the "subsets". In Compare problems, 

the relationship is the comparison between two distinct, 

disjoint quantities. Since one quantity is compared to the 

other, it is possible to label one quantity as the "referent 

set" and the other as the "compared set". The third quantity 

is the "difference", or the amount by which the larger 

quantity exceeds the other. 

In the study by Carpenter and Moser (1982), another 

type, Equalize problems (see Table 1), was included. The 

Equalize type is a hybrid of Compare and Change problems. 

There is the same sort of action as found in Change problems, 

but the action is based on the comparison between the two 

disjoint quantities. 

In addition to the various semantic relations, there are 

other dimensions for which the word problems in Table 1 

differ. One is the identity of the unknown quantity. Within 

each type of problem, different problems can be formed by 

varying the given quantity and the unknown quantity. In 

Change problems, any of the "start set", the "change set" or 

the "result set" can be unknown if the other two are given, 

yielding three different cases. Furthermore, the direction 

of change action can either be an. increase or a decrease, so 
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Table 1 

Types of Word Problems  

Chanqe  

Result Unknown 

1. Joe had 3 marbles. 

Then Tom gave him 5 more marbles. 

How many marbles does Joe have now. 

2. Joe had 8 marbles'. 

Then he gave 5 marbles to Tom. 

How many marbles does Joe have now. 

Change Unknown  

3. Joe had 3 marbles. 

Then Tom gave him some more marbles. 

Now Joe has 8 marbles. 

How many marbles did Tom give him. 

4. Joe had 8 marbles. 

Then he gave some marbles to Tom. 

Now Joe has 3 marbles. 

How many marbles did he give to Tom. 

Start Unknown  

5 Joe had some marbles. 

Then Tom gave him 5 more marbles. 

Now Joe has 8 marbles. 

How many marbles did Joe have in the beginning? 

6. Joe had some marbles. 

(Continued next page) 
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Table 1 (Continued) 

Then he gave 5 marbles to Tom. 

Now Joe has 3 marbles. 

How many marbles did Joe have in the beginning? 

Combine  

Superset Unknown  

1. Joe has 3 marbles. 

Tom has 5 marbles. 

How many marbles do they have altogether? 

Subset Unknown  

2. Joe and Tom have 8 marbles altogether. 

Joe has 3 marbles. 

How many marbles does Tom have? 

Compare  

Difference Unknown 

1. Joe has 8 marbles. 

Tom has 5 marbles. 

How many more marbles does Joe have than Tom? 

2 Joe has 8 marbles. 

Tom has 5 marbles. 

How many less marbles does Tom have than Joe? 

Compared Quantity Unknown  

3. Joe has 3 marbles. 

Tom has 5 more marbles than Joe. 

How many marbles does Tom have? 

(Continued next page) 
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Table 1 (Continued) 

4. Joe has 8 marbles. 

Tom has 5 fewer marbles than Joe. 

How many marbles does Tom have? 

Referent Unknown  

5. Joe has 8 marbles. 

He has 5 more marbles than Tom. 

How many marbles does Tom have? 

6. Joe has 3 marbles. 

He has 5 fewer marbles than Tom. 

How many marbles does Tom have? 

Equalize  

Increase  

1. Joe has 3 marbles. 

Tom has 8 marbles. 

What could Joe do to have as many marbles as Tom? 

(How many more marbles does Joe have to get to have as 

many as Tom?) 

Decrease  

2. Joe has 8 marbles. 

Tom has 3 marbles. 

What could Joe do to have as many marbles as Tom? 

(How many marbles does Joe have to lose to have as many 

marbles as Tom?) 
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that there are six kinds of Change problems in total. In 

Combine problems, either the "superset" or one "subset" can 

be unknown, yielding two sorts of problems. In Compare 

problems, the unknown quantity may be any of the "referent 

set", the "compared set", or the "difference", with the 

direction of difference may be "more" or "less", totally 

yielding six variations. Six different cases (two shown in 

Table 1) can also be produced in Equalize problems by varying 

the unknown among the three quantities analogous to those in 

Compare problems, and by indicating the different directions 

of action as in Change problems. Classifying the word 

problems based on both semantic relations and identity of 

unknowns results in the problem types in Table 1. 

Relative Difficulty  

The word problems in Table 1 involve either addition or 

subtraction as operations for solution. However, problems 

which require the same operation are not equally difficult. 

There is a strong influence from semantic structures by which 

the problems are described. This has been evident in many 

empirical studies (Carpenter, Hiebert, & Moser, 1981; Riley, 

1981; Tarnburino, 1980) . They found, separately, that 

Compare-3 and Compare-6 problems are more difficult than 

either Change-1 or Combine-1 problems, although all four 

problem solutions involve a simple addition. Similarly, 

problems involving subtraction can also vary in difficulty 

across semantic structures. Combine-2 problems and virtually 

all Compare problems are, in general, more difficult than 
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Change-2 and Change-4 problems. These findings are 

consistent with other studies. It has been found that 

Compare-1 problems are more difficult than Change-2 problems 

for first-graders (Gibb, 1956; Schell & Burns, 1962; Shores & 

Underhill, 1976) . It has been also found that Combine-2 

problems are, in general, more difficult than Change-2 for 

kindergartners and first-graders (Gibb, 1956; Ibarra & 

Lindvall, 1979; LeBlanc, 1968; Nesher & Katriel, 1978; 

Vergnaud, 1982), but are slightly easier than Compare-1 

problems (Schell & Burns, 1962) 

Attempting to partly explain the influence of a 

problem's semantic s.tructure on children's solutions to word 

problems, Riley et al. (1983) suggested that the various 

semantic structures may correspond to some specific concepts, 

such as the concepts of quantitative change, equalization, 

combination, and comparisoh. They also speculated that these 

concepts emerge at different times in cognitive development.-

For example, at a certain age, a specific child might have 

the concepts of change and combination, but not the concept 

of comparison. 

In addition, problems having the same semantic structure 

also vary in difficulty. This is the effect of identity of 

the unknown quantity. Some studies (Carpenter, Hiebert, & 

Moser, 1981; Riley, 1981; Tarnburino, 1980) found children 

have no difficulty solving Change problems when the "start 

set" and the "change set" are given and the "result set" is 

unknown. Even preschool children can solve these problems 

(Buckingham & MacLatchy, 1930; Hebbeler, 1977) . However, 
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many kindergartners and first-graders have difficulty if the 

"start set" and "result set" are given and they are asked to 

find "change set". As for Change-5 and Change-6 problems, 

when "result set" and "change set" are given with "start set" 

unknown, they become more difficult for even second- and 

third-graders (Riley, 1981; Hiebert, 1981; Lindvall & Ibarra, 

1980a; Vergnaud,. 1982), and even more difficult than Combine-

2 and Compare-1 problems. Within Combine and Compare 

problems, difficulty also varies depending on which quantity 

in a problem is unknown. Combine-2 problems in which one of 

the subset is unknown are significantly more difficult than 

Combine-1 problems in which the two subsets are given with 

"superset" unknown. Compare-5 and Compare-6 problems in 

which "referent set" is unknown are more difficult than any. 

of the other Compare problems (Riley et al., 1983) 

Evidently, word problems differ in the semantic 

structures as well as in the identity of unknown quantity. 

The resulting problem types (Table 1) have been employed in 

studies to reveal the fairly systematic differences in 

children's performance. Furthermore, the analyses of problem 

semantic structures serve as the basis for studying the word 

problem solving processes and children's knowledge required 

to solve the problems. 

RGH Model  

Riley, Greeno, and Heller (1983) de'veloped a computer-

implemented model, to be called the RGH model (De Corte & 

Verschaffel, 1988), constituting an account of the internal 
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processes and cognitive structures underlying children's 

performance on word problems. In this model, three main 

kinds of knowledge during word problem solving are proposed: 

(a) problem schemata for understanding various semantic 

relations described in problem texts; (b) action schemata for 

representing the model's knowledge about actions involved in 

problem solutions; and (C) strategic knowledge for planning 

solutions to problems. When the model is given a word 

problem to solve, it uses its knowledge of problem schemata 

to represent the particular problem situation being 

described. The model's planning procedures then use action 

schemata to generate a solution to the problem. 

Among the three main components of knowledge needed for 

successful performance, it is proposed that the main source 

of children's difficulty is not their lack of knowledge about 

the actions required the solve certain problems. Instead, 

the main locus of children's improvement in problem solving 

skill is in the acquisition of schemata for understanding a 

problem in a way that relates it to already available action 

schemata. This hypothesis appears to be supported in some 

studies involving children's performance on slightly reworded 

Combine-2 problems compared with the performance on Combine 

2's stereotype. Consider this as an example: "Joe and Tom 

have 8 marbles altogether. Joe has-5 marbles. How many 

marbles does Tom have?". Although the solution procedure for 

this problem involves three simple-actions, namely "make-

set", "take-out", and "count-all", which most children have 

available since they can use it to solve Change-2 problems, 
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most first-graders still find it difficult. However, when 

the problem wording is slightly changed, their performance is 

changed. Carpenter et al. (1981) reported that thirty-three 

out of forty-three first-graders solved it correctly when the 

problem was changed to: "There are 6 children on the 

playground. 4 are boys and the rest are girls. How many 

girls are on the playground?". Another variation, "Together, 

Tom and Joe have 8 apples. Three of these apples belong to 

Tom. How many of them belong to Joe?", was found 

significantly easier for kindergartners than the stereotype 

by Lindvall and Ibarra (1980b). What is done by the above 

rewording is that the variations make the relationship among 

quantities more explicit. Therefore, Riley et al. (1983) 

concluded that successful solution relies on children's 

ability to understand problems, that is, the ability to 

represent the relationships among quantities described in 

problem situations. 

The RGH model emphasizes that the locus of improvement 

in word problem solving skill lies in the acquisition and 

development of problem schemata. Based on the analyses of 

problem semantic structures, three main types of problem 

schemata are proposed for understanding Change, Combine, and 

Compare problems. Understanding a problem is defined as 

building a schematized problem representation. The 

representation has the form of semantic network structures 

consisting of elements and relations between the elements. 

Within each type of. schema, three levels of conceptual 

development are hypothesized. The main differences between 
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the levels relate to the ways in which information is 

represented and the ways in which quantitative information is 

manipulated. Those with more detailed representational 

schemata and more sophisticated action schemata represent the 

more advanced levels of problem solving skill. Consider 

Change problems as an example: Level-1 understands 

quantitative relations by means of a simple schema that 

limits the representations of Change problems to the external 

display of objects. This knowledge is sufficient to solve 

Change-1, Change-2, and Change-4 problems. Level-2 has a 

Change schema for maintaining an internal representation of 

increases and decreases in the set of objects it manipulate; 

the process of building this representation is still 

relatively "bottom-up" in the sense that it still depends 

upon the external display of objects. Because of, the richer 

understanding of relationships between quantities and a 

richer set of action schemata, Level-2 can solve Change-3 

problems. Level-3 also has a Change schema for representing 

relations internally, but it can use its Change schema in a 

more "top-down" fashion. It has an understanding of part-

whole relations, as well as a richer set of action schemata. 

By transforming the more complicated Change relations into 

part-whole relations, Level-3 can solve Change-5 and Change-6 

problems. 

These three levels of development are paralleled in 

solving Combine and Compare problems. That is, at the lowest 

level, the child's representations of problems are limited to 

the external displays of objects; at an intermediate level 
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there are schemata for representing, internally, additional 

information about relationships among quantities; and at the 

most advanced level, schemata are available that direct 

problem representations and solutions in a more top-down 

manner. 

Factors in Conceptual Understanding  

The RGH model (1983) was the first attempt to 

systematically model children's word problem solving 

processes and their development in terms of conceptual 

understanding. This model has become influential in studies 

of word problem solving. First, its emphasis on conceptual 

understanding is consistent with that in other analyses of 

mathematical problem solving. Mayer (1985, 1986) 

distinguished representation and solution as two components 

of problem solving, and concluded that the construction of an 

appropriate conceptual problem representation is the crucial 

component. Second, the problem categorization on which its 

analyses are based has been widely accepted in researches (De 

Corte & Verschaffel, 1985, 1987; De Corte, Verschaffel, & De 

Win, 1985; Carpenter, 1985; Kintsch & Greeno, 1985; Riley & 

Greeno, 1988; Cummins, Kintsch, Reusser, & Weimer, 1988; 

Cummins, 1991; Okamoto, 1992) . Third, its use of semantic 

structure analyses.as a basis of modelling problem solving 

processes has been verified in other studies. De Corte & 

Verschaffel (1985, 1987) have found a strong influence of 

semantic structures on problem representations and on 

solution strategies. Carpenter (1985) concluded that we have 
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a reasonably clear picture of how semantic structure affects 

children's solution processes (p. 26) . Finally, relating 

problem relative difficulty to the development of children's 

conceptual understanding helps identify cognitive structures 

or knowledge underlying problem solving skills. This 

approach is also used in other analyses (Briars & Larkin, 

1984; Okamoto, 1992) 

The RGI-i model pioneers the systematic analysis of 

conceptual understanding in word problem solving. However, 

the model itself has some limitations in its characterization 

of the "conceptual understanding". The first invclves the 

role of problem schemata. When the RGH model is given a word 

problem, it uses a problem schema, e.g. Change, Combine, or 

Compare, to represent the particular situation being 

described; with the schematic representation, appropriate 

action schemata are associated by procedure attachments. 

Also, the development of conceptual understanding is proposed 

to be within each of these problem categories. This model 

does not include Carpenter and Moser's (1981) Equalize 

problems, but these might be put in another category and thus 

another problem schema must be proposed. The more problem 

types that are involved, the more problem schemata must be 

proposed. Therefore, understanding and its development are 

problem type dependent, and the theory loses its generality 

across problem types. Another model of word problem solving, 

Briars and Larkin's (1984) model CHIPS (Concrete Human-like 

Inferential Problem Solver.); has no distinct schemata for 

representing the different categoiies of problems and works 
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well. Eventually, in Riley and Greeno's (1988) revision of 

the RGH model, the problem schemata are no longer essential 

to the problem solving processes. 

The second limitation is related to the nature of 

hypothesized cognitive structures which underlie conceptual 

understanding and its development. In the RGH model, the 

improvement in representing and solving word problems relies 

on the increasingly sophisticated structures representing set 

relations. At Level 1, a single set can be represented but 

without relations to other sets. At Level 2, a certain sort 

of set relation can be represented inerna1ly. Finally at 

Level 3, all other kinds of relations are assimilated into 

part-whole relations. Despite the constraints by problem 

types, all the proposed representing structures are 

mathematical in nature. According to this model, children's 

difficulty with certain types of problems can be attributed 

to the lack of such mathematical structures. This is the 

hypothesis which has been widely opposed. 

De Corte and Verschaffel (1985) suggested that, besides 

mathematical schemata, word problem solving skill development 

depends on a more general "word-problem schema" that 

indicates the structure, role, and intent of word problems in 

general. The main function of such a word-problem schema, is 

to encode implicit rules, suppositions, and agreements 

concerning typical word problems that will enable a problem 

solver to interpret ambiguities correctly and to compensate 

for insufficiencies in the problem text. In a word problem 

solving process model developed by Reusser (1990), and 
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Reusser, Kämpfer, Sprenger, Staub, Stebler, and Stüssi 

(1990), a concrete, intermediary, non-mathematical "situation 

model" is proposed to be established before the building of 

mathematical representation. Mathematical structures alone 

cannot be sufficient to constitute understanding of word 

problems. More importantly, since a word problem is a 

mathematical problem presented in verbal form, language 

comprehension also plays a crucial role in understanding. 

With regard to language understanding, the RGH model 

obviously shows some limitation and has been criticized by 

many other researchers (Kintsch & Greeno, 1985; Cummins et 

al., 1988; Cornmins, 1991) . As related to the present study, 

when the RGH model encounters Compare problems, the 

limitation becomes more obvious. 

The Issue With Compare Problems 

Hudson's Study  

Compare problems are usually identified as the most 

difficult type of problems among those in Table 1. In 

Carpenter et al.'s (1981) study, 81% of first-graders 

correctly solved Compare-1 problems. This proportion is lower 

than the proportions for Change-1, Change-2, Equalize-1, 

Equalize-2, and Combine-1 problems. Furthermore, there was 

only 28% of first-graders who correctly solved Compare-3 

problems. Riley (1981) reported that 17% of kindergartners, 

28% of first-graders, and 85% of second-graders could solve 
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Compare 1 problems correctly. Only third-graders could solve 

the problems at 100%. Other Compare problems were more 

difficult for children at each grade level. Again, Compare 

problems in general were more difficult than Change and 

Combine problems at any grade level. 

However, Hudson's (1980, 1983) study on the word 

problems involving comparison showed an interesting result. 

Hudson presented drawings with, for example, five birds and 

four worms to the subjects, and asked two different 

questions. One is the question identical to a Compare-1 

question: "How many more birds are there than worms?". 

Another is called a "Won't Get" question: "Suppose the birds 

all race over and each one tries to get a worm. Will every 

bird get a worm? How many birds won't get a worm?". He 

devised a set of eight questions for each type. Children who 

correctly solve six or more were scored as giving correct 

response. The result was that only 17% of nursery school 

children, 25% of kindergartners, and 64% of first-graders 

gave correct responses to the "how many more ... than ... ?" 

question. But to the "how many won't get" question, 83% of 

nursery school children, 96% of kindergartners, and 100% of 

first-graders gave correct responses. 

Hudson's intention was to study two alternative 

explanations about children's performance in determining 

numerical difference between disjoint sets. Children's poor 

performance on the "how many more ... than ... ?" question 

could be explained as hypothesized by Piaget (1965), namely 

that the children may be unable to establish suitable one-to-



22 

one correspondences between the given sets. Having observed 

children's successful performance on the "Won't Get" 

question, Hudson's conclusion was that the children did 

establish correspondence and were able to determine the 

numerical difference, but they did not do so because they 

misinterpreted the "how many more ... than ... ?" question. 

In addition, Hudson (1983) found that children's performance 

was also poor when the term "more" in the question was 

replaced by other comparative terms such as "taller", 

"longer", and "older". Thus, a linguistic factor, that is, 

children's limited comprehension of the comparative 

construction "how many ... [comparative term] ... than . ..?", 

can account for young children's failure in finding the 

numerical difference between disjoint sets. This 

interpretation is consistent with much evidence indicating 

that the range of cognitive abilities elicited by cognitive-

assessment tasks can be significantly affected by the 

language employed by those tasks (Donaldson, 1979; Gelman & 

Gallistel, 1978; Siegel, 1978) . Although Hudson's original 

purpose was not to study word problem solving, researchers in 

this field have taken great interest in his findings. 

Interpretations About Difficulty With Compare Problems  

Cummins (1991) took Hudson's finding as an evidence 

against the RGH model which she labelled as a "logico-

mathematical development view". The RGH model interprets 

many word problem solution failures as a lack of knowledge 

concerning set relations, particularly part-whole relations 
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Cummins argued that the evidence suggests children often know 

more about logical set relations than the RGH model supposes. 

She cited Hudson's (1983) finding about the solution 

strategies children employed as an evidence of a tacit 

understanding of logical set relations. The most common 

strategy the children used involved counting the number of 

worms, counting out a subset of birds equal to the 

cardinality of worms, and returning the cardinality of the 

remaining subset of birds as the answer. Cummins believed 

this strategy implies a tacit understanding of one-to-one 

correspondence and subset equivalence (see Briars & Larkin, 

1984) of sets with identical cardinalities, as well as the 

part-whole structure of the sets in question. Therefore, 

Cummins (1991) proposed a "linguistic development view" which 

suggests that a major source of difficulty' children encounter 

when solving word problems is properly interpreting certain 

words and phrases in terms of sets and logical set relations. 

Cummins' view is supported by the fact that children 

often transform comparative terms into simple possession 

terms when retelling word problems (Cummins et al., 1988), 

skip over comparative terms when reading, phrases containing 

them (De Corte & Verschaffel, 1986), and perform better when 

problems containing comparative terms are reworded to exclude 

them (De Corte et al., 1985; Hudson, 1983) . Besides 

comparative terms, Cummins' view also applies. to other 

ambiguous terms such as "altogether", "each", and "some", 

etc., in all kinds of word problems. 

Extending the work by Cummins et al. (1988),Cummins 
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(1991) asked children to solve Compare-4, Compare-6, Combine-

5, and Change-6 problems and then to select pictures that 

represented the problems' structures. Her hypothesis in one 

of the experiments was that solution accuracy could be 

predicted from children's selection of pictures with correct 

problem representations, which shows successful understanding 

of the problematic terms. 

hypothesis. However, the 

The results generally support this 

variance in solution accuracy 

accounted for by the picture selection task was 43%, 16%, and 

22% for Compare-4, Compare-6, and Combine-5 problems, 

respectively (Change 6 did not correlate with the picture 

selection task) . Although the linguistic view appears to 

hold some explanatory power, more than half of the variance 

in each of these problems is yet to be explained (Okamoto, 

1992) 

Hudson's findings indeed show the RGH model's 

limitation, especially when it is applied to Compare 

problems. The model is quite successful in Change and 

Combine problems. It roughly hypothesizes that the 

development of conceptual understanding in solving Compare 

problems parallels that in solving Change and Combine 

problems. Riley et al. (1983) noticed that Compare-1 

problems are usually quite difficult for kindergarten and 

first-grade children. The explanation the model gives is 

that the failure is associated with the lack of a schema for 

understanding the problem situation in a way that makes 

contact with the model's available action schemata, in this 

case the match action schema. This explanation attributes 
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the failure to the lack of a specific problem schema --

Compare schema. Linguistic factors are excluded in the 

model. Hudson's (1980) finding is only taken as an example 

supporting their general hypothesis that the lack of 

conceptual understanding instead of solution actions is the 

major source of children's difficulty in word problem 

solving. 

However, in a revision of the RGH model, Riley and 

Greeno (1988) admitted the role of a linguistic factor. They 

agreed that the failure of nearly all the kindergarten and 

first-grade children to reach Level-1 performance on Compare 

problems probably indicates that they lack the linguistic and 

conceptual knowledge to understand the language involving in 

"how many more ... than . . . ?". Young children are able to 

solve problems involving comparisons of sets when there is 

sufficient linguistic support for their understanding, but if 

the phrases "more ... than ..." and "less ... than ." lack 

quantitative meanings for children, then their ability to 

infer the differences will not be used. 

In the revision (Riley Greeno, 1988), the model still 

cannot satisfactorily predict performance on Compare 

problems. They take the linguistic view as one possibility, 

indicating that children may need knowledge for understanding 

specific patterns of information involved in quantitative 

comparisons. However, they raise an alternative possibility 

which goes back to their mathematical interpretation, namely, 

understanding of comparisons depends on acquiring knowledge 

about differences as a relation bet'ween sets. In a part-
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whole schema, the union of two sets is still a set, but the 

difference between two sets is not a set. This means that 

the numbers, involved in set unions can be understood as the 

cardinalities of individual sets, but the numbers involved in 

set differences must .be understood as a relation between sets 

or between the cardinalities of two sets. What makes this 

difficult for children is that the "difference" describes a 

relation between quantities which is not a direct 

quantification of objects in the real world the way all sets 

are in Change and Combine problems (Resnick, 1989) . When 

children encounter a phrase like "5 more than . . .", they must 

understand this number as the value of an operator instead of 

the cardinality of a set. This understanding requires a more 

advanced understanding of numbers.' 

Another word problem solving model, Briars and Larkin's 

CHIPS (1984) includes Hudson's Won't Get problem type and 

deals with its difference from Compare problems, but takes a 

different approach. CHIPS manipulates physical or mental 

"chips" as the model's basic action. It also draws key terms 

and phrases as cues for its actions. According to CHIPS, the 

difficulty with Compare problems is that, in their usual 

wording, these problems describe no actions that the model or 

a child can imitate. Hudson's Won't Get wording changes a 

static comparison problem into an action-cued problem so that 

CHIPS can solve it easily. CHIPS first builds sets of chips 

representing the birds and worms separately. It then 

interprets the phrase "how many birds won't get . . ." as a cue 

to match the birds one-by-one to the worms and to count the 
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leftover birds. This is done by a production that makes a 

"match" schema and a count schema. The match schema holds 

the knowledge of what sets are to be matched. In this 

analysis, Carpenter and Moser's (1981) Equalize problems are 

also categorized as action-cued comparison problems. 

When CHIPS encounters a Compare-1 problem, additional 

language capability is required. Based on the ability to. 

make match schemata in response to action-cued comparison 

problems, a new production is needed to recognize the phrase 

"how many more ... than . . ." as a cue to build appropriate 

match and count schemata. It is essential to know that the 

phrase means to match the two given sets and count what is 

left over. 

CHIPS constructs a display of counters directly derived 

from certain terms in problem texts, rather than requiring 

intermediate representations of sets and set relations of the 

kind that are constructed in the RGH model. This is 

consistent with Longford's (1986) proposal about "thinking on 

the table" versus "thinking in the head", assuming that 

instead of forming a structural mental representation of 

problem information the child, at least in the easiest 

problem types, simply takes each piece of information as it 

comes in and represents it on the table with blocks. 

However, solving the "action-cued" comparison problems 

involves two action schemata "match" and "count" which are 

cued by term "get" and "how many ... won't", separately. 

What remains unexplained by the above proposal is how these 

two schemata become associated in solving the problems if 
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there is nothing coordinating the two. 

There is an agreement among researchers that Compare 

problems are difficult, and that certain rewordings can make 

them easier. However, the explanation of why they are 

difficult and what the effect of rewording is remains 

controversial. Each interpretation holds some explanatory 

power, but all of them have some aspecls left unexplained. 

Problems Involving Difference Finding  

The interest of the present study is drawn from the 

issue with Compare problems. The present study includes 

three types of word problems: Compare-1 problems (Riley et 

al., 1983), Equalize-1 problems.(Carpenter & Moser, 1981), 

and Won't Get problems (Hudson, 1980, 1983) . They all 

involve finding the difference between two disjpint sets. 

The formal solution to all of them is "larger set, subtract 

smaller set, equals difference". In other words, they share 

the same mathematical content and structure. What makes them 

different to form three types is only the problem texts. The 

three types of problems, named COMPARE, EQUALIZE, and WON'T 

GET, respectively in this study, are listed in Table 2. 

After presenting the two given sets, (1) COMPARE problems ask 

how many more objects are in the larger set than in the 

smaller set; (2) EQUALIZE problems ask what to do to make the 

smaller set have as many objects as in the larger set; and 

(3) WON'T GET problems ask how many objects from the larger 

set won't get the objects of the smaller set. 

Are the three types of problems as difficult as one 
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Table 2 

Three Types of Problems Involving Difference Finding 

COMPARE  

Joe has 8 marbles. 

Tom has 5 marbles. 

How many more marbles does Joe have than Tom? 

(Riley, Greeno, & Heller, 1983) 

EQUALIZE  

Joan picked a flowers. 

Bill picked c flowers (a < c) 

What could Joan do so she would have as many flowers as 

Bill? How many more would she need to pick? 

(Carpenter, Hiebert, & Moser, 1981) 

WON'T GET  

There are 5 birds. 

There are 3 worms. 

Suppose the birds race over and each one tries to get a 

worm. How many birds won't get a worm? 

(Hudson, 1983) 
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another to children at a certain grade level? If 

makes one more difficult or easier than another? 

problem text that makes the difference, what does 

and how does it have the effect? These questions 

not, what 

if it is 

it affect, 

are similar 

to those which were at issue in the studies mentioned above. 

None of the previous studies could answer the questions 

satisfactorily. Mere mathematical reasoning ability or 

language understanding capability alone cannot account for 

the relatively complicated word problem solving processes. 

More detailed analysis of the relationship between language 

comprehension and mathematical reasoning is needed. Also, it 

is plausible to propose an internal representation to mediate 

problem text understanding and mathematical reasoning 

followed by problem solution in this process. The question 

remaining is how the representation is constructed, and how 

it mediates the components in the process. 

Problem Representation and Competence 

Dual Representation  

Integrating both text comprehension and problem solving 

aspects of word problem solving, Kintsch and Greeno (1985) 

developed a model of understanding and solving word problems. 

This model includes a more thorough analysis of processes of 

text comprehension than the RGI-I model. The general theory of 

text comprehension used in this model is developed by Kintsch 

and van Dijk (1978), and van Dijk and Kintsch (1983) . The 
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problem solving theory used in this model includes Riley et 

al.'s (1983) assumptions about the semantic knowledge 

required for representing the problems and the processes of 

operating on the numbers to find the answers. The model is 

implemented in two computer programs, namely WORDPRO 

(Fletcher, 1985) and ARITHPRO (Dellarosa, 1986) 

According to van Dijk and Kintsch (1983), memory 

representations of texts have two components, a propositional 

structure of information that is in the text in a specific 

sense, and a "situation model" that is derived from the text, 

wholly or in part. The propositional structure, or "text 

base," is obtained by constructing a coherent conceptual 

representation of the text itself, called a microstructure, 

and then deriving from the microstructure a hierarchical 

macrostructure that crresponds to the essential ideas 

expressed in the text. If the text is studied in its own 

right, the text base is adequate for comprehension. However, 

if the text is merely the medium by which information is 

transmitted, in other words, the reader's purpose is learning 

from reading the text, another component is needed for 

comprehension (Kintsch, 1986) . This is called the situation 

model, because it includes inferences made by using knowledge 

about the domain of the text information. It is a 

representation of the content of a text, independent of how 

the text is formulated, but integrated with relevant 

experiences in this domain. Its structure is adapted to the 

demands of whatever tasks the reader expects to perform. 

When children read a word problem and try to solve it, they 
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construct a representation including both components (Kintsch 

& Greeno, 1985) 

Kintsch and Greeno's model includes a set of knowledge 

structures and a set of strategies for using these knowledge 

structures in building a representation and in solving the 

problem. The representation is a dual one: on one side, the 

text base represents the textual input, and on the other 

side, an abstract problem representation, called the "problem 

model" (instead of "situation model" in van Dijk and 

Kintsch's term), contains the problem-relevant information 

from the text base in a form suitable for calculational 

strategies to yield the problem solution. 

Problem representations are built in several steps. The 

verbal input is transformed into a conceptual representation 

of its meaning, a list of propositions. The propositions are 

organized into a task-specific macrostucture that highlights 

the general concepts and relations mentioned in the text. 

This organized set of propositions is referred to as the text 

base. Coordinated with the representation of propositions is 

the problem model, which reflects knowledge of the 

information needed to solve the problem. In constructing the 

problem model, the reader infers information that is needed 

for solving the problem but is not included in the text base, 

and excludes information in the text base that is not 

required for solution of the problem. 

The propositions in the text base hold four "slots": 

object, quantity, specification, and, role. The first three 

can be filled directly by textual input, e.g. Tom owns 3 
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marbles. The role slot cannot be filled in text base because 

it can only inferred from mathematical knowledge. Then a set 

of strategies organizes the propositions into a coherent, 

task-specific text base, which takes the form of set and set 

relation. However, because the role slot is not filled yet, 

the set relation is still in question. The set and the set 

relation in question, then, constitute the content of the 

problem model. Now, mathematical knowledge or semantic 

knowledge referred to as "higher order schemata" are employed 

to fill the role slot in problem model. These schemata deal 

with set relations which are critical for deciding how to 

solve the problem. Five such schemata are proposed in the 

model. A TRANSFER schema assigns a "start set", "transfer 

set", or "result set" role to an appropriate set. Two 

variations of this schema are TRANSFER-IN and TRANSFER-OUT. 

A PART-WHOLE schema assigns "subset" role and "superset" role 

to sets. There are also MORE-THAN and LESS-THAN schemata to 

assign "largeset", "smallset", or "difference" to the empty 

role slots in a problem model. Once the role slots are 

filled by inferring the higher order schemata, the goal of 

the problem solution is determined. Then a set of 

calculational strategies or actions such as COUNT-ALL, ADD-

ON, or SEPARATE-FROM are triggered to provide the answers to 

the problem. 

This model proposes that the problem representation 

constructed by a child during a solution attempt is a joint 

product of his or her language comprehension and mathematical 

reasoning. The interaction between these two components is 
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simulated by the processes of constructing the dual 

representation: from text base to problem model. This model 

is the first attempt ,to include both a linguistic factor and 

a mathematical factor in the integrated process ofword 

problem solving. The dual nature of this model not only 

indicates the necessity of both components in the process 

but, more importantly, reveals the interdependency between 

the two components. On the one hand, the problem model uses 

information in text base as its content. Thus, the 

prerequisite for building a problem model is that children 

understand words such as "have", "give", "all", "more", and 

"less" in a general way, and also in a special, task-specific 

way. This means they have to represent propositions 

involving "having", "giving", and so on with arguments that 

refer to sets of objects. This also includes extensions of 

the ordinary use of terms such as "all" and "more" to more 

complicated constructions involving sets, denoted by 

"altogether" and "more than". Furthermore, the inference to 

mathematical schemata is cued by certain key propositions 

such as HAVE-ALTOGETHER in text base. The construction of 

the problem model is initiated by the text base. 

On the other hand, textual cues do not directly lead to 

the solution operations. In the problem-solving process, 

information from text base is reconstructed in problem model. 

This is evident in a problem recall study reported by K±ntsch 

(1986) . Dellarosa, Weimer, and Kintsch (1985) presented word 

problems in both easy versions and hard versions on the basis 

of relative difficulty of the problems, and asked 30 second-
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graders to recall the problems in two conditions. One was to 

recall the problems without solving them, the other was to 

recall after solving the problems. When the subjects only 

had to recall the problems but not solve them, there was no 

significant difference between the recall of easy and hard 

problems, confirming that the text base of these problems 

were quite comparable. However, after solving the problems, 

the subjects recalled significantly more easy problems than 

hard problems. In other words, although the hard problems 

were not inherently less recallable than the easy problems, 

they were not recalled as well after a solution attempt had 

been made. The complexity of the problem model required for 

solving hard problems confused the subjects. There was a 

tendency to misrecall the problems as if they were easier 

ones. The subjects who misrecalled did not recall the text 

directly, but rather they recalled the problem model they had 

formed from the text base. After the mistakes in recall were 

analyzed (Kintsch, 1986), it was clear that the text bases of 

the problems were not used as the basis for the recall; 

rather, the texts were reconstructed from the problem model. 

The distortion of the textual information in recall of 

word problems supports the existence of the "problem model" 

and the role of mathematical knowledge in the representation 

construction. This means that the textual information must 

be reconstructed in the problem model so that the information 

can be used for problem solution. The problem model is 

represented in a form of a mathematical structure which 

consists of relations among sets. Any linguistic input, if 
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needed for problem solution, must be understood in its 

specific mathematical sense. 

Kintsch and Greeno's (1985) model is apparently more 

sophisticated than previous word problem solving models. It 

in turn has become the basis for further studies in this-area 

(Riley & Greeno, 1988; Cummins et al., 1988; Okamoto, 1992) 

Researchers from either the mathematical perspective or the 

liguistic perspective use the, same model to simulate the 

problem solving processes. Both of them have found support 

for their own view of the competence underlying the dual 

representation. 

Competence for Understanding Word Problems  

In view of the dual representation assumption, any 

emphasis on one factor of understanding no longer means 

excluding the role of another factor. The linguistic point 

of view and the mathematical point of view both agree that 

the competence for understanding word problems consists of 

both linguistic and mathematical aspects. The argument now 

concerns along what line the competence is devloped. 

Cummins' (1991) linguistic development view suggested 

that the major source of children's difficulty with certain 

types of word problems is their misinterpretation of certain 

words and phrases in problem texts. This misinterpretation 

does not mean they do not understand the 'expressions at all, 

but there has been a failure in mapping the' expressions onto 

appropriate mathematical structures. In other words, 

children who fail do not understand the words and phrases in 
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terms of mathematical set relations. This in turn, leads to 

a failure to access the mathematical knowledge which has been 

available. 

Cummins suggested that development of the competenc 

depends on the acquisition of new meanings of the terms and 

phrases which are already understood in a general sense. 

Through instruction or experience, children can learn the 

mathematical meanings of the language and familiarize 

themselves with the mapping onto mathematical relations. 

This line of development starts from language with general 

meaning towards language understood in mathematical sense. 

On the contrary, there is another developmental line 

proposed as starting from a more "pure" mathematical 

competence to linguistically related competence. Gelman and 

Greeno (1989) hypothesize three levels of understanding of 

numerals. At the simplest level, the meanings of numerals 

include reference only to individual objects and the results 

or arguments of counting operations. Implicitly, numerals 

are associated with sets in the process of counting, but this 

does not imply that the representations of meaning include 

explicit references to sets. At a second level, numerals 

denote the cardinalities of sets, and reference to sets is 

included in the meaning of propositions that have numerals 

and other quantifiers, such as "some". For example, when a 

child hears or reads a phrase "three marbles," he or she 

understands that there is a set of marbles and that "three" 

denotes the cardinality of the set. The competence for 

understanding propositions including reference to sets is 
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referred to as a "linguistic cardinality principle". At a 

third level, numerals also denote the numerical differences 

between sets. At this level, the meaning of a sentence such 

as "Tom has two more marbles than Joe" includes reference to 

the set of Tom's marbles, the set of Joe's marbles, and a 

third entity, the numerical difference between the two sets. 

In this usage, numbers are properties of a relation between 

sets. This concept of number therefore is more complex than 

that in which numbers are only cardinalities of individual 

sets. This competence for understanding propositions that 

include reference to set differences is called by Gelman and 

Greeno the principle of "linguistic numerical difference". 

According to Gelman and Greeno (1989), the development 

of competence for understanding numbers starts from a 

nonlinguistic principle of cardinahity and proceeds to the 

two linguistic meanings. Young children have some counting-

specific competence at the beginning, then the learning of 

linguistically related principles can be based on this 

competence. The process of learning such new principles 

happens as part of their instruction in arithmetic, where 

they learn to add and subtract. Some data reported in Riley 

at al. (1983) is cited to support this point, specifically 

that Compare-1 and -2 problems were solved correctly by 80% 

of the children who were near the end of second grade, but by 

only 25% of the children who were near the end of first 

grade. 

The linguistic development view proposes a developmental 

sequence which gradually increases mathematical components in 
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language understanding (Cummins, 1991). Gelman & Greeno 

(1989) proposed a developmental sequence towards a 

"linguistic numerical difference" principle which includes 

linguistic components in a mathematical structure. It is not 

hard to find that these two lines of competence development 

start from contrasting originss but come to the same end, 

only expressed differently, either understanding language in 

terms of mathematical relations or understanding mathematical 

relations in linguistic forms. In other words, they both 

point out the mapping between the two components. This, 

'indeed, is the key to the understanding of word problems. 

Coming to this point does not mean they have answered 

all the questions to be answered, nor does it mean the issue 

with Compare problems or with difference-finding problems 

ceases to exist. The first remaining question involves the 

development of the competence. They both attribute it to 

instructions and experience, supposing children can learn as 

long as they are exposed to the problems. But, is there any 

initiation device or constraint on such learning? Why have 

second-graders learned but first-graders not learned the 

"numerical difference" concept? Is this only a matter of 

time, exposure, or familiarization? 

Another problem with both sides is that they each have 

pointed out the mapping, but neither of them has described 

the process of mapping. This process is implied as naturally 

happening because children's competence has achieved the 

understanding of mathematical meaning in a language form. 

But if all the competence is term-specific or form-specific, 



40 

how many different kinds of competence must be hypothesized 

if children repeatedly encounter different types of 

difference-finding problems? 

Their failure in describing the mapping process, 

especially in solving Compare problems, also reflects the 

researchers' uncertainty as to what mathematical structures 

the linguistic input can map onto. Cummins (1991) proposed 

only part-whole relations to be mapped onto. She interpreted 

the matching strategy used by Hudson's (1983) subjects as a 

tacit understanding of part-whole relations. Cummins' 

proposal is based on Riley et al.'s (1983) hypotheses. 

However, Riley and Greeno (1988) have abandoned using part-

whole schema as the mathematical set relation inferred to 

construct problem models for Compare problems, because the 

difference between sets cannot be treated as a set as in 

part-whole relations. Gelman and Greeno's (1989) hypotheses 

about the "linguistic numerical difference" is an effort to 

re-explain the process of solving Compare problems. In 

addition, mapping from Compare problem texts to the part-

whole schema requires a much harder transformation from the 

problem situation to the structure, and the processing demand 

would be heavily increased if mapping to part-whole schema 

were not automatized. However, they have not proposed any 

other problem model construction to replace part-whole 

structure. 

Further explanation about the underlying competence and 

its development is needed, as is a basis for simulating the 

mapping processes. 
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Central Numerical Structure in Word Problem Solving 

The word problem solving models mentioned above cannot 

go beyond their own limitations when they attempt to explain 

young children's difficulty with Compare problems and the 

relative difficulty of problems involving difference finding. 

Their domain-specific perspectives prevent them from looking 

at children's more generalized potential and limitations in 

the development of the competencies underlying word problem 

understanding. In turn, they fail to find a cognitive 

structure base on which they can simulate the process of 

mapping between linguistic input and mathematical reasoning. 

This difficulty is overcome by a new word problem solving 

model developed by Okamoto (1992) who integrates a 

generalized developmental theory (Case, 1992) into the study 

of word problem solving. The new model suggests that a set 

of "central numerical structures" proposed by Case (1992) 

underlies the understandIng of word problems. This 

conception provides a plausible base for simulating the 

mapping between problem text and mathematical reasoning. 

Okamoto's model is also to be seen as an application of 

Case's general theory of cognitive development in a new 

domain. Although the issues regarding specificity and 

generality in cognitive development are not the concern of 

the present study, this developmental theory does produce a 

framework for the present study that is not possible from the 

previous theories. 
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Case's General Theory of Cognitive Development  

In Case's .(1985) theory of cognitive development, the 

basic constructs are control structures, stages, and 

substage. The control structures are what children construct 

to cope with problems in their daily life, and contain three 

components: a representation of the essential features of 

some particular class of problem, a representation of the 

goals that this problem class most frequently occasions, and 

a representation of a sequence of operations that will bridge 

the gap between the problem's initial and terminal states. 

According to this theory, much of children'.s development 

stems from a change in their control structures. This change 

is hypothesized to be constrained and potentiated by a set of 

changes that are system-wide and that have a strong 

biological component. These changes influence the highest 

level of intellectual operation that children can execute 

successfully under optimal environmental conditions, as well 

as theirworking memory for the products of such operations. 

As these upper limits change, the'control structures are 

believed to progress qualitatively -through a universal 

sequence of four stages that are labelled as the sensorimotor 

stage, interrelational stage, dimensional stage, and 

vectorial stage. Within each of the four stages, a recursive 

sequence of structural changes is proposed: at the first 

substage, children assemble a new class of operations, by 

coordinating two well-established executive structures that 

are already in their repertoire. As their working memory 
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increases (as a function of maturation and practice), they 

enter a second substage in which they are capable of 

executing two such operations in sequence. Finally, with 

further growth in working memory, they enter a third substage 

in which they become capable of executing two or more 

operations of the new sort in parallel, and integrating the 

products of these operations into a coherent system. Once 

consolidated, these integrated systems then function as the 

basic units from which the structures of the next stage are 

assembled, and the process of integration repeats. 

Central Conceptual Structures  

In Case's (1985) earlier work, a control structure is 

defined as a tripartite entity consisting of three 

representations regarding a particular class of problem. 

Although the assembly of any given control structure and the 

construction of any new control structure are constrained and 

potentiated by some system-wide components, and the 

development of control structures occurs through a universal 

sequence of four stages, the control structures, by 

definition, are task-specific. The formation of a control 

structure is a function of the particular question which has 

been posed to the child. Thus, the control structures within 

any one phase of development are constructed in isolation of 

each other, in an independent, unrelated fashion. 

More recently, a series of studies by Case and his 

associates (Case; 1992) resulted in an extension of Case's 

general theory of cognitive development. It was found that 
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"it is a mistake to see children as assembling executive 

control structures for each separate task in complete 

isolation from those for each other task, subject only to an 

upper bound on their processing capacity. Rather, it seemed 

more appropriate to view children as assembling a central 

conceptual structure that is applicable to a broad range of 

tasks, then utilizing this central structure, more or less 

successfully, as a guide for assembling the particular 

executive control structures that each new task may require" 

(Case, 1992, p. 355) 

By postulating a "central conceptual structure", the 

hypothesized locus of generality in children's performance is 

shifted from the emphasis on the size of their working memory 

to including conceptual structure assembled under the 

constraints of the working memory. This central structure 

exists prior to a problem being posed, thus, the control 

structures can no longer be seen in an independent, unrelated 

fashion. Rather, they must been seen as being part of a 

network of related control structures, which are tied 

together by a common conceptual core. 

A central conceptual structure (Case & Griffin, 1990; 

Case & Sandieson, 1992) is an internal network of concepts 

and conceptual relations that plays a central role in 

permitting children to think about a wide range of situations 

•at a new epistemic level and to develop a new set of control 

structures for dealing with them. By a "structure," the 

notion means an internal mental entity that consists of a 

number of nodes and the relations among them. By 
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"conceptual" it means that the nodes and relations are 

semantic rather than syntactic. And by "central," it means 

structures that (a) form the core of a wide range of more 

specific concepts, and (b) play a pivotal role in enabling 

the child to make the transition to a new type of thought, 

where these concepts are of central' importance. 

Central conceptual structures are found in several 

domains of child development, such as logico-mathematical 

thought, social and emotional thought, and spatial thought, 

and in motor development. It is also found that these central 

conceptual structures bear a certain resemblance to each 

other, both in their form and in the timing of their 

emergence. These commonalities suggest that all the 

structures may be subject to a common set of constraints, in 

speed of processing or in working memory (Case, 1992) 

Central Numerical Structures  

In its application to the domain of mathematics, the 

general developmental theory identifies a set of central 

conceptual structures regarding quantitative variables. 

Specifically, children's development of number concepts from 

approximately four to ten years of age is explained in terms 

•of the acquisition of central numerical structures as shown 

in Figure 1 (Case & Griffin, 1989) . Based on the results of 

Resnick's (1983) and Fuson's (1982) studies, Case and Sowder 

(1990) proposed the "mental number line" by which the central 

numerical structure is represented. 

Children at the age of four are capable of counting 
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10 years  

1 2 3 4 5 6 7 8 9 10 
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a little a lot 
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(-) 

1 -> 2 -> 3 -> 4 

I I I 
00 0 0 

Figure 1. Development of Central Numerical Structures (4 to 

10 years of age) (From Case & Griffin, 1989) 
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(structure for enumeration) or making judgment of relative 

quantity (structure for quantity evaluation), but are not 

able to integrate these two structures. At the age of six, 

there is a qualitative shift in thought as children enter the 

first substage of the dimensional stage. They understand the 

relation between the two structures and are able to integrate 

them and, thus, think in terms of a single number line. At 

the second substage, 8-year-olds are able to coordinate two 

unit of operations,, that is, to think in terms of two number 

lines, at least in a sequential fashion. A full capacity to 

coordinate the two number lines develops at the last substage 

where 10-year-olds are able to think in terms of two mental 

number lines in an integrated or on-line fashion, and 

appreciate the relationship between them. Finally, the 

integrated structure will function as the initial single unit 

to be reorganized into the structures of the next stage. 

These central numerical structures represented as number 

lines have been identified in children's development of, for 

example, computational estimation (Case & Sowder, 1990), 

scientific reasoning (Marini, 1992), everyday mathematical 

knowledge including time-telling and money-handling (Griffin, 

Case, & Sandieson, 1992), and sight-reading of musical 

notation (Capodilupo, 1992) . These cross-task studies have 

shown theexistence of such central numerical structures and 

their roles in the development in the domain of quantity, 

which have verified Case's general description of cognitive 

development, as well as proved the applicability of the 

construct to a broad range of tasks, also showing a potential 
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to apply to the domain of word problem solving. 

Okamoto's Model  

Okamoto (1992) applied-the notion of central numerical 

structures to the development of children's word problem 

solving ability. By integrating the models of word problem 

solving regarding numerical competence by Riley and Greeno 

(1988) and by Gelman and Greeno (1989), models regarding text 

processing by van Dijk and Kintsch (1983) and by Kintsch and 

Greeno (1985), and the developmentaltheory by Case' (1985, 

1992) as it has been applied to the domain of number (Case & 

Griffin, 1989; Case & Sandieson, 1988; Case & Sowder, 1990), 

Okamoto assumed that the word problem solving process 

involves (a) the construction of semantic networks, as a 

result of comprehending problem texts, and (b) the 

construction of problem models using the various number lines 

that are available at different levels of development. 

Okamoto (1992) developed a set of computational models 

to simulate children's solutions' of the set of word problems 

categorized by Heller and Greeno (1978) (Table 1) at each of 

three developmental levels of knowledge. Each computational 

model performs three functions. First, it constructs 

semantic networks representing propositions extracted from 

the problem text, in Kintsch and Greeno's (1985) terms, 

forming the text bases. Second, it constructs problem models 

which are simulated in a form of arrays which increase in 

complexity from-a mental object line to two coordinated 

mental number lines as a function of development. Prototypes 
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of the problem models at different levels of development are 

shown in Figure 2. A choice for one form over the others 

depends upon linguistic information represented in the text 

base and the levels of central numerical structures assumed 

to be available. Third, it generates answers. The specific 

characteristics of the problem model are checked against a 

set of production rules'. When appropriate conditions are 

met, manipulations of number on the mental arrays take place, 

simulating children's counting behavior. Based on the three 

functions, three levels of processes are simulated by 

applying the three different cognitive models in Figure 2 to 

each category of word problems. 

Level-i processes are limited to the lowest level of 

dimensional thought (unidi.mensional thought) . At this level, 

objects described in a problem can be represented and 

manipulated mentally only on a single dimension. 

Specifically, Level-1 processes can line up objects 

internally on a single mental object line, add to or take 

away mental objects, count those objects that are present on 

a mental object line, and cite as an answer the last mental 

objects counted. Therefore, Change-1, Change-2, and Combine-

1 problems can .be solved at this level. When solving a 

Combine-1 problem ("Joe has 2 marbles. Tom has 6 marbles. 

Flow many marbles do they have altogether?"), for example, 

Level-1 processes construct a problem model representing 2 

marbles possessed by Joe and 6 marbles owned by Tom 

internally on one mental object line with the owner-

specification "Joe and Tom". Then the answer is obtained by 
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Level 3: Two mental number lines, well coordinated 

Owner 1 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <-> 7 <-> 8 <-> 9 <-> 10 

Owner 2 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <-> 7 <-> 8 <-> 9 <-> 10 

Level 2: Two mental number lines 

Owner 1 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <-> 7 <-> 8 <-> 9 <-> 10 

Owner 2 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <-> 7 <-> 8 <-> 9 <-> 10 

Owner 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 <-> 7 <-> 8 <-> 9 <-> 10 

.1: 
Counter 0 <-> 1 <-> 2 <-> 3 <-> 4 

Level 1: Single mental object line 

1 2 3 4 5 6 7 8 9. 10 

0 < -S > 0 <> O<-> 0 <> 0 <> 0 <> 0 <> 0 <> 0 <> 0 

a little a lot 

Notes. <-> indicates a "next-to" relation. 

can point to any number. 

Figure 2. Prototypical Problem Models at Three Levels of 

Development (From Okamoto, 1992) 
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counting all eight objects on this mental object line. 

Level-2 processes include a simple coordination of two 

mental number lines (bidimensional thought). That is, the 

unknown quantity is represented by coordinating two known 

quantities (each of which is represented on a mental number 

line) . The relational information concerning the known and 

unknown quantities can be used to specify how one mental 

number line is to be manipulated with regard to the second. 

One of the simplest of such operations is "reflection", in 

which the quantity derived on one line is marked off or 

"reflected" on the other. Thus, Level-2 processes are able 

to solve Combine-2, Change-2 to Change-6, Compare-i and 

Compare-2 problems. For example, a Combine-2 problem ("Joe 

has 2 marbles. Tom has some marbles. They have 6 marbles 

altogether. How many marbles does Tom have?") is solved in 

the following manner. A problem model is constructed 

consisting of two mental number lines, one representing Joe's 

2 marbles, another representing the 6 marbles with the owner-

specification "Joe and Tom". To answer "how many marbles 

does Tom have?", these two mental number lines are 

coordinated, that is, Joe's number line is reflected on the 

second line (whole) to indicated the part owned by Joe, and 

therefore the rest is inferred as the part owned by Tom. 

Finally, a counting procedure is carried out mentally to 

produce the answer. 

Level-3 processes can fully coordinate two mental number 

lines (integrated bidimensional thought), that is, reverse 
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the reflective operations executed at Level-2. Level-3 

processes understand that (1) a numerical difference can 

represent the amount above (more) or below (less) a 

criterion, and (2) a positive difference on one line can be 

compensated for by a negative difference on the other line. 

Compare-5 and Compare-6 problems can be successfully solved 

at this level. A Compare-5 problem ("Joe has 6 marbles. Tom 

has some marbles. Joe has 2 more marbles than Tom. How many 

marbles does Tom have?") can be used as an illustration. The 

problem model is constructed containing one mental number 

line representing Joe's 6 marbles, another line representing 

"some" marbles owned by Tom. The way to coordinate the two 

lines is that "2 more" on Joe's line is reflected in reverse 

as "2 more to reach the number of marbles Joe has" on Tom's 

line, by which Tom's line has "2 fewer than Joe's 6". Then 

the answer is produced by counting mentally. 

Okamoto's model was examined through a series of 

empirical studies involving word problem solving by school 

children at ages from six to ten. The results showed that 

there was a reasonable fit of the data to the computational 

model. That is, the difficulty levels of the problems 

identified by the children's actual performance were quite 

similar to those predicted by the model regarding the central 

numerical structures children possess at different 

development levels. This model consists of same semantic 

networks for building text base as in Riley and Greeno's 

(1988) and Kintsch and Greeno's (1985) models. What makes 

Okamoto's model different from the previous models is its 
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assumption of problem model construction by applying Case's 

central numerical structures to this domain, so that her 

model can accurately simulate the entire solution process, 

especially the process of problem model construction. 

Furthermore, Okamoto's model successfully predicted the 

difficulty levels for Compare problems which was not 

explained by Riley and Greeno's (1988) model. 

Number Line Coordination in Solving Compare Problem  

The most important contribution of Okamoto's (1992) 

model to the analyses of problem solving processes for 

Compare problems is that it describes the problem model as 

represented by two number lines, and in solving a problem, 

the number lines are coordinated by a reflective operation. 

This is the most plausible assumption because of the nature 

of the problem itself. A Compare problem involves the 

difference between two disjoint sets. To find the 

difference, the most plausible way is to act on one set while 

constraining the action by referring to the criterion 

represented by the other set It is less plausible to use a 

part-whole schema as the mathematical set relation inferred 

to construct problem models for Compare problems, because the 

difference between sets cannot be treated as a set as in 

part-whole relations. In addition, mapping between Compare 

problem texts to a part-whole schema requires a much harder 

transformation from the problem situation to the structure, 

and the processing demand would be heavily increased if 

mapping to part-whole schema were not automatized. Okamoto's 
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model accurately describes the construction of the problem 

model as represented by number lines and the operations 

leading to the solution to the problem. 

As an illustration, consider a Compare-1 problem: "Joe 

has 2 marbles. Tom has 6 marbles. How many more marbles 

does Tom have than Joe?". This problem can be solved by 

Level 2 processes, which means the solver must be around 

eight years old, at the level of bidimensional thought in 

development. According to Okamoto's model (Figure 3), 

initially, one number line represents Joe's 2 marbles; the 

second number line represents Tom's 6 marbles. Then, Joe's 2 

marbles are reflected onto Tom's number line to indicate the 

difference between Joe's 2 marbles and Tom's 6 marbles. The 

difference is inferred as the amount that Tom has in excess 

of Joe's. Finally, one number line acts as a counter to 

count the difference marked off on the other number line to 

produce an answer. 

This model is based on children's capability of 

representing two mental number lines. Coordination of the 

two number lines by a reflective operation is the key to 

solving the problem. Although, at Okamoto's Level-2 

processes, the coordination is more or less sequential, 

rather than performed in an on-line, integrated fashion, it 

is adequate for solving this particular type of problem. 

This combination of plausibility and accuracy have never been 

achieved by any of the previous models. Furthermore, 

Okamoto's empirical studies (1992) showed that children's 

performance on this problem is well predicted by her model. 
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?roblem Model for Compare-1  

P1. 

Array (Joe) 1 <-> 2 < > 

Array (Tom) 1 <-> 2 <-> 3 <-> 4 <-> 5 <-> 6 

12 

Compare-1  

Joe has 2 marbles. 

Tom has 6 marbles. 

How many more marbles does Tom have than Joe? 

Notes. P1: Propositibn 1 [Owner-specification = Joe, quantity 

= 2, objects marbles]. 12: Proposition 2 [Owner-

specification = Tom, quantity = 6, objects = marbles] 

Figure 3. Problem Model for a Compare-1 Problem (from 

Okamoto, 1992) 
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In the RGH model (1983) and Riley and Greeno's (1988) 

model, Compare-1 problems are supposed to be solved at Level-

1, where children are able to make individual sets by 

manipulating external display of objects. No description of 

the solution process is explicitly given. It seems that the 

model suggests children make the two given sets externally, 

then if they have a "compare schema" available, children will 

be able to understand "how many more ... than . . 2" question 

and relate it the an "action schema" called "match". 

However, Riley and Greeno (1988) find that the data pattern 

in their study 'casts considerable suspicion on the models' 

characterization of knowledge for Compare problems. Although 

the kinds of knowledge assumed in Level-1 and Level-2 for 

Compare problems are similar to the kinds of knowledge for 

those levels for Combine and Change problems, many more 

kindergarten and first-grade children were at Level-1 or. 

Level-2 for Combine and Change problems than for Compare 

problems. The scalability analyses and ordinal analysis were 

less successful for Compare problems than they were for 

Combine and Change problems. In the proportions of children 

matching model performance, statistical agreement was good 

for kindergartner and first-graders, but only because most 

children solved none of the problems. ... These different 

levels of knowledge distinguish among kindergarten and first-

grade children's performance on the Combine and Change 

problems, but few of those children had response patterns on 

Compare problems that were consistent with any of the models 

except the null model that predicts no success." (p. 84) 
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In Briars and Larkin's CHIPS (1984) model, no 

intermediate internal representations are hypothesized for' 

solving Compare.1 problems as well as Won't Get and Equalize 

problems. Linguistic inputs are directly mapped to two 

solution actions, "match" and "count". This pattern is 

probably a result of children's having well established the 

coordination between two number lines and having been 

extensively exposed to these kinds of problems. Otherwise it 

is hard to explain why the two actions can be used together 

for one of these problems. This can be done only when the 

problem solver uses one of the two given sets as the 

criterion for matching and counting the rest of the objects 

after matching, which requires the coordination proposed by 

Okamoto's model. , 

In terms of the present study, Okamoto's model not only 

successfully describes the entire process for solving Compare 

1 problems, but also can be applied to all the problems 

involving difference finding between disjoint sets. It's 

assumption about number line coordination as the key to the 

problem solution also provides a basis for simulating the 

mapping between problem texts and mathematical operations in 

the processes. 

The Effect of Concrete Materials 

In previous studies, it is hard to find any discussion 

about the effect of concrete materials on the solution 
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processes of Compare problems. It is assumed that at lower 

levels or young ages children are limited to direct modeling 

of problem situations and to solutions using concrete objects 

(Carpenter, 1985; Riley et al., 1983; Briars & Larkin, 1984) 

As a result, researchers consistently use certain kinds of 

concrete materials when they present Compare-1 problems to 

young children. Riley (1981) presented blocks with Compare-1 

problems to kindergartners and first-graders and found 17% of 

the former and 28% of the latter correctly solved the 

problems. Carpenter, Hiebert, and Moser (1981) made a set of 

red and white Unifix cubes available to their subjects and 

told them to use the cubes to help them solve the problem if 

they needed the cubes or not sure of their answers. Their 

results showed 29 out of 43 first-grade students correctly 

solved Compare-1 problems. Hudson (1983) used a set of 

drawings of the objects described in his Compare-1 and Won't 

Get problems. The proportions of correct Compare-1 responses 

were 17% for nursery school children, 25% for kindergartners, 

and 64% for first-graders. The concrete materials were 

included in these studies simply because they were believed 

to be needed by the young children and would have no effect 

on the problem difficulty. Hudson (1983) mentioned that 

children responded incorrectly to "how many more ... than 

•..?" questions even when the given sets were block rows 

placed side by side so that appropriate one-to-one 

correspondence were visually understood, suggesting that the 

difficulty from the problem text could not be overcome just 

by using blocks. 
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However, there is some evidence for a facilitation 

effect of concrete materials on word problem solving other 

than Compare problems. Riley (1981) found there was a 

general improvement in kindergartners' performance when they 

used objects to solve all types of Change problems except 

Change 5 and 6. Steff and Johnson (1971) obtained a similar 

result for four types of Change problems and Combine-1 and -2 

problems. In addition, Carpenter et al. (1981) observed that 

first-graders preferred to use blocks if they had the choice. 

The concrete materials used for word problem solving can 

be included in the concept of "task environment" defined as 

comprising all the elements of a task that are available and 

perceived by the problem solver (i.e., the "givens" of a 

problem) (Resnick & Ford, 1981) . Generally, task environment 

provides the raw materials out of which the information-

processing system builds a representation of the problem. 

This in turn determines which solution strategy is selected. 

Information about how concrete materials facilitate solution 

correctness does not show their effect on the problem 

representation. This effect is assumed to be reflected in 

the strategies the children use under different conditions. 

Carpenter. et al. (1981) found an effect for the 

availability of Unifix cubes on some strategies used by 

first-graders in solving arithmetic addition and subtraction 

word problems. In addition problems, children were able to 

use a counting-on strategy, but the availability of cubes 

influenced children -to use a counting-all rather than a 

counting-on strategy. In subtraction problems, a matching 
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strategy was only feasible when objects were available. 

These findings support the position that the availability of 

concrete materials as a part of the task environment 

influences the construction of problem representations. 

In previous studies, considerable attention has been 

given to determining how problem semantic structures 

influence representations, how linguistic factors influence 

representations, even how children use concrete materials to 

model the problem structures. However, there has seldom been 

research on how concrete materials influence representations, 

especially with Compare problems. Thus some questions 

remain: do children use a matching strategy in solving 

Compare problems? Do they use it only when concrete 

materials are available? Is there any influence of concrete 

materials on their Compare problem representation 

construction? 
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CHAPTER III 

RATIONALE AND HYPOTHESES 

Rationale 

The purpose of the present study was to investigate the 

mapping between text comprehension and mathematical reasoning 

in the processes of solving difference-finding word problems 

by first-graders. The theoretical framework regarding word 

problem solving process adopted by the present study includes 

these assumptions: (1) successful solution to a problem 

relies on the conceptual understanding of the problem, that 

is, building a coherent mental conceptual representation of 

the problem; (2) the representation is a dual one including a 

text base consisting of information given in the problem 

text, and a problem model in which information from the text 

bae is reconstructed in terms of a mathematical structure 

acquired by the problem solver through development; (3) the 

mapping between text comprehension and mathematical reasoning 

occurs when information from the text base is being 

reconstructed in the problem model; (4) the problem model is 

represented as two mental number lines which are coordinated 

to produce an answer to the problem; and (5) the problem 

solving strategy is determined by the problem model, and the 

observed strategy can be used as an indicator of what kind of 

problem model is being constructed. Based on this framework, 

several inferences on the processes of solving difference-

finding problems and on the mapping between text 
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comprehension and mathematical reasoning in the processes can 

be made. 

Napping Onto the Coordination of Two Number Lines  

First, to solve the three types of difference-finding 

problems, namely COMPARE, EQUALIZE, and WON'T GET (Table 2) 

requires the same mathematical reasoning competence, that is, 

the coordination of two number lines. The purpose of all the 

three types is to find the numerical difference between two 

disjoint sets. The two sets are given. They are represented 

in each problem model as two number lines. Then in the case 

of COMPARE, the question is "how many more objects are in the 

larger set than in the smaller set". According to Okamoto 

(1992), two sets of objects cannot be lined up on a single 

mental object line to capture the comparative nature of the 

problem. Coordinating two number lines is a prerequisite of 

comparing two disjoint sets. In the case of EQUALIZE, the 

question is "what can be done to make the smaller set have as 

many objects as in the larger set". It does not matter which 

number line the problem solver works on, either to make the 

smaller set larger or to make the larger set smaller, but it 

is necessary to refer to th6 criterion about how far to go 

indicated by the other line. In the case of WON'T GET, the 

question is "how many objects from the larger set won't get 

the objects of the smaller set". A matching strategy is 

proposed in almost all previous studies to solve the problem. 

Matching actually means making correspondence between the two 

number lines. Furthermore, in order to reach a solution, 
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matching must be followed by a counting-the-rest action. 

This action is constrained by the criterion about where to 

start the counting. This starting point is marked by the 

smaller set line when it is matched onto the larger set line. 

Therefore, coordination between the two number lines, as in 

the cases of COMPARE and EQUALIZE, is required in the case of 

WON'T GET. 

Second, successful solution for any of the three types 

of problems depends upon if the problem texts can be mapped 

onto the coordination of the two number lines. This is the 

reason for any difference in difficulty among the three 

types. In the EQUALIZE problem text, the question sentence 

contains the phrase "as many ... as ...". It cues the 

problem solver to take both sets into consideration, and to 

use one set as criterion to constrain the action on the other 

set. If the problem solver possesses the competence to 

coordinate two number lines, the EQUALIZE problem text can be 

easily mapped onto this structure to build an , appropriate 

problem model, and then the coordinating operation can be 

applied to produce an answer. In the WON'T GET problem text, 

the phrase "each one tries to get a . ." cues the problem 

solver to build the one-to-one correspondence between the two 

sets, in other words, to project one number line on the other 

in the problem model. Then the phrase "won't get" cues the 

counting of the unmatched objects. However, this counting 

action is not independent of the coordination of the two 

number lines. It uses the mark made by the end of the 

smaller set line as the criterion to start counting. 
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Although the whole process may occur in sequence, that is, 

taking the result of projection as a "given", and then 

counting the unmatched, instead of in a "on-line" fashion, 

the problem text is clearly mapped onto the coordination of 

the two number lines. In the COMPARE problem text, however, 

no cues are available. The phrase "how many more ... than 

." does not cue to build any operational relationship 

between the two number lines. Even if the problem solver 

possesses the competence of coordination of two number lines, 

he or she may not be able to apply the structure in this 

COMPARE problem context. In summary, unlike EQUALIZE and 

WON'T GET problem texts, the COMPARE problem text does not 

facilitate the mapping onto the coordination of two number 

lines. 

Third, whether the problem text is mapped onto a 

mathematical structure to build a problem model can be 

reflected by the strategy the problem solver uses to solve 

the problem. For the difference-finding problems, three 

strategies are proposed, namely PART-WHOLE (Riley et al., 

1983; Cummins, 1991), ADD-ON (Carpenter et al., 1981), and 

MATCH (Hudson, 1983; Carpenter et al., 1981; Briars & Larkin, 

1984) . The PART-WHOLE strategy treats the larger set as 

whole, the smaller set as one part, and the difference as the 

other part. The interrelationship in this structure is 

"whole = part + part". The strategy then takes away the 

given part from the whole and counts the objects in part left 

as the difference. As mentioned in a previous section (see 

Chapter 2), mapping onto a PART-WHOLE structure from the 
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difference-finding situation requires a harder 

transformation, so that the competence of simple coordination 

of two number lines does not easily produces a PART-WHOLE 

strategy. The ADD-ON strategy adds more objects to the 

smaller set to make it equal to the larger set, then takes 

the added objects as the difference. This strategy is 

clearly based on the coordination between two number lines. 

It acts on the smaller set line by adding more objects on the 

line, but constrains the action by referring to the criterion 

marked by the larger set line, that is, continuing to add 

until the smaller set line reaches the end of the larger set 

line. The MATCH strategy matches up the objects of the two 

given sets and find the unmatched objects as the difference. 

This strategy also reflects the coordination between the two 

given sets. The matching action reflects the projection of 

one number line onto the other, and the counting-the-left 

action uses the mark. made by the end of the smaller set line 

as the starting point to count. Thus, if either the ADD-ON 

or MATCH strategy is observed, it can be inferred that the 

problem model is being represented as the coordination 

between the two number lines. As for the PART-WHOLE 

strategy, it does not reflect a simple coordination between 

two sets, it shows that a more demanding transformation is 

being used and a more sophisticated representation is being 

built. 

In summary, all the three types of difference-finding 

problems require the ability to coordinat two number lines; 

certain types, like EQUALIZE and WON'T GET facilitate the 
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mapping from their problem texts onto the coordination of two 

number lines, but certain types, like COMPARE, do not. If 

the mapping is successful, the problem model represented as 

the coordination of two number lines can be constructed, and, 

the successful problem model construction can be inferred by 

the presence of certain problem solving strategies, like ADD-

ON and MATCH. 

Developmental Level  

The COMPARE problems are reported to be difficult for 

young children up to first-grade students (Riley, 1981; 

Hudson, 1980, 1983) . This is well explained by Okamoto's 

(1992) model which is based on Case's (1992) theory of the 

development of central numerical structures (see Chapter 2) 

Across a wide range of tasks, children show a similar pattern 

of development. At the age of four, prior to the dimensional 

reasoning, children count and make judgments of relative 

quantity, but are not able to integrate the two structures. 

At about six years of age, children can understand the 

relation between enumeration and quantity evaluation. This 

relation allow them to think in terms of a single mental 

object line or along one dimension. This structure still 

does not allow children to deal with the word problems 

involving comparison between two disjoint sets. It is at 

about age eight that children enter the bidimensional 

substage and are able to construct two number lines to 

coordinate them. Not until this level do children possess 

the competence to solve the problems involving comparison. 
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Children at age of seven would be the best candidates to 

reveal the differences of the three types of difference-

finding word pr.oblems in mapping onto the coordination of two 

number lines. Generally speaking, seven-year-old children's 

processing capacity has allowed them to begin to build two 

number lines and to coordinate the two lines, but this newly 

developed structure has not yet consolidated. Their ability 

to construct such a structure in a problem solving situation 

is task-dependent, that is, to represent the problem in terms 

of such a structure heavily depends on the factors such as 

problem formation, familiarity, and task environment. In the 

context of solving difference-finding word problems, this 

task-dependency would be mainly reflected by the fact that 

the problem model construction in terms of the coordination 

of two number lines relies on the problem text. It is 

reasonable to assume that if the text cues the coordination, 

the newly developed structure can be applied to the problem; 

if not, the structure is not accessible. 

Using Blocks  

Based on Resnick and Ford's (1981) argument that the 

task environment influences problem representations, and 

Carpenter et al.'s (1981) findings that the availability of 

concrete materials influences strategy use by first-graders 

in solving word problems, it can be inferred that the 

presence of certain concrete materials affects the 

construction of representations of difference-finding 

problems. Specifically, if the COMPARE problem texts do not 
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cue the mapping between the two number lines representing the 

two given sets, the availability of certain objects like 

blocks may provide a perceptual cue for the coordination. 

That is, when children have two piles of blocks to represent 

the two given sets, and they arrange the two sets of blocks 

in two rows side by side, they may see that the row of blocks 

representing the larger set exceeds the row, of blocks 

representing the smaller set. Then when they hear the 

question "how many more ... than ... ?", the removability of 

the blocks may cue them to try to manipulate the two block 

lines to build a one-to-one correspondence between them, and 

then they see the unmatched blocks, and count them to produce 

the difference. Thus, it can be assumed that the perceptual 

cues may compensate for the lack of textual cues in building 

a appropriate problem model. 

According to this assumption, the availability of blocks 

would reduce the difficulty of COMPARE problems. However, an 

alternative is also plausible. The above manipulation and 

arrangement wIth the blocks may be merely an external 

representation of the problem solver's mental number lines. 

This reduces the problem solver's processing load and this 

then increases correct solutions. This means the 

availability of blocks does not influence the construction of 

the problem model, only re-represents the problem model by 

means of the concrete materials. 

The hypotheses of the present study were derived from 

the main theoretical framework provided by the previous 

studies, and from the inferences made on the mapping of texts 
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onto the coordination of two number lines, the development 

level, and the effect of using blocks. 

Hypotheses 

The general hypothesis of the present study was that, 

among the three types of simple arithmetic word problems 

involving finding the numerical difference between two 

disjoint sets, the EQUALIZE and WON'T GET problem texts 

facilitate their mapping onto the problem models represented 

as the coordination of two mental number lines, whereas the 

COMPARE problem texts do not facilitate the mapping. This 

general hypothesis yields the following specific predictions. 

1. First-grade students will perform better in terms of 

correct solutions in solving EQUALIZE and WON'T GET problems 

than in solving COMPARE problems. 

2. First-grade students are more likely to use ADD-ON 

and MATCH strategies to solve EQUALIZE and WON'T GET problems 

and they are less likely to use the two strategies to solve 

COMPARE problems. 

3. First-grade students will perform better in terms of 

correct solutions in solving all the three types of problems 

when the problems are presented with blocks than without 

blocks. 

4. When the COMPARE problems are presented with blocks, 

first-grade students are more likely to use ADD-ON and/or 

MATCH strategies to solve the problems. 
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CHAPTER IV 

METHOD 

Sample 

• Twenty-nine first-grade students were recruited with 

parental consent from two Catholic schools in northwest 

Calgary, Canada. Both schools were located in middle-class 

neighborhoods. One student withdrew during the experiment, 

so that the final data were collected from twenty-eight 

subjects, including 16 boys and 12 girls, with a mean age of 

7.0]. (standard deviation =.40) . None of the subjects had 

received any previous formal instructions on the problem 

types involved in the experiment. 

Materials 

Problems  

Thirty, simple arithmetic word problems were created 

based on previous studies (Riley et a].., 1983; Carpenter et 

a].., 1981; Hudson, 1983.; De Corte, Verschaffel, & De Win, 

1985) . The thirty problems shared the same mathematical 

structure, specifically finding the numerical difference 

between two disjoint sets. The text of these problems 

,distinguished three types of problems: COMPARE, EQUALIZE, and 

WON'T GET (see Table 2) . Each type consisted of ten 

problems. 

The COMPARE problems involved a static comparison 
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between two disjoint sets. The two sets were presented and 

the question was "how many more objects of the larger set are 

there than those of the smaller set". For example: "John has 

9 apples. Ann has 4 apples. How many more apples does John 

have than Ann?" 

The EQUALIZE problems involved actions reqired to make 

two disjoint sets numerically equal. The two sets were 

presented and the question was posed as "what could be done 

to the smaller set to make it equal to the larger set". For 

example: "Fred has 9 buckets. Betty has 5 buckets. How many 

more buckets does Betty have to get to have as many buckets 

as Fred?" 

The WON'T GET problems involved finding element 

correspondence between two disjoint sets. The two sets were 

presented, then the question was "how many objects of the 

larger set won't get the objects of the smaller set". For 

example: "8 children went to a store to buy hats. There were 

only 5 hats in the store. How many children would not get a 

hat?" 

Among all the problems, the objects of the sets and the 

owners of the objects varied. The numbers used to present 

the larger set were not greater than 9. The number triples 

involved in the problems had ten variations: 9-5-4, 9-4-5, 9-

6-3, 9-3-6, 8-5-3, 8-3-5, 7-4-3, 7-3-4, 7-5-2, and 6-4-2. 

(For all the problems, see Appendix A) 

Blocks  

A set of 20x20x5mrn wooden square blocks (Activity 
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Resources Company Inc., 1973) were used. The blocks were 

presented with half of the problems of each type. The 

presence and abence of the blocks produced two problem 

solving conditions, namely "without blocks" and "with 

blocks". 

Tasks 

The subjects were required to solve the three types of 

problems without blocks and then with blocks. Five problems 

of each type would be solved without blocks. Another five 

problems of each type would be solved with blocks. The tasks 

included (1) giving an answer to the question of each 

problem, then (2) identifying the strategy he/she tried to 

use to solve the problem. Based on previous studies of 

soliiing problems involving difference finding between 

disjoint sets, three kinds of strategies were expected, 

namely PART-WHOLE, MATCH, and ADD-ON. 

The PART-WHOLE strategy treats the larger set as whole, 

the smaller set as one part, and the difference as the other 

part. 

The MATCH strategy matches up the objects of the two 

sets and finds the objects left in the larger set as the 

difference. 

The ADD-ON strategy adds more objects to the smaller set 

to make it equal to the larger set, then takes the added 

objects as the difference. 
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Procedures 

The testing was conducted in May of 1992, when none of 

the subjects had yet received any formal lessons on the types 

of problems involved in the experiment. Each subject was 

tested in an individual interview situation in his/her 

school. Each subject was tested in three sessions (20 

minutes each), with a one week interval between sessions. 

The subjects from one school started solving the 15 

problems (5 from each type) presented without blocks, and 

then solved the other 15 problems (5 from each type) 

presented with blocks. The subjects from the other school 

started with the problems with blocks, and then the problems 

without blocks. Every subject solved exactly the same 

problems. However, the sequence of presentation of the 

problems was randomly arranged for each subject. 

At the time of testing, each problem was read to the 

subject. A problem might be read twice, if required by the 

subject. First the subject gave an answer for each problem. 

Under the without-blocks condition, using fingers was 

prohibited. Under the with-blocks condition, the researcher 

would make two piles of blocks (without any particular 

pattern of arrangement) on a table to represent the two given 

sets as reading the problem. The subject's numerical 

solution to the problem was recorded. 

After solving a problem, the subject was asked to 

identify the strategy he/she used to get the solution, no 

matter whether he/she got a correct or incorrect numerical 



74 

solution. For this purpose, the researcher would ask two 

questions "how did you get the answer?" and "why?", and only 

these two questions. The questions were asked in a neutral 

manner, no guidance or directions were provided. Under the 

without-blocks condition, the subject was asked td verbally 

explain the strategy. Under the with-blocks condition, the 

subject was allowed to rearrange the blocks to show how 

he/she got the answer. 

The numerical solution to each problem and the strategy 

presented by the subject were recorded on a sheet on which 

the question itself, "right" and "wrong" marks, and the 

categories of the strategies had been printed. 

Scoring 

Correct Solutions  

A score of "1" was awarded to each correct numerical 

solution to the problem, and a "0" to each incorrect 

solution. Because there were five problems for each type of 

problem under each condition, the score for each subject 

ranged from 0 to 5 for each type of problem under each 

condition. 

Strategies  

The strategy a subject used to solve a problem would 

fall into one of the following four categories: (1) PART-

WHOLE, when the subject presented "larger set - smaller set = 

difference" or "smaller set + difference = larger set"; (2) 
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MATCH, when the subject matched the objects of the smaller 

set to those of larger set, then counted the objects left in 

the larger set as difference; or took away the objects from 

larger set until the two sets matched up, then counted the 

objects taken away as the difference; (3) ADD-ON, when the 

subject added more objects to the smaller set until it 

equalled to the larger set, then counted the added objects as 

the difference; (4) OTHER, when the subject stated "I have 

no idea", "I can not remember", "I don't know", and "1 

guessed", etc., or when the strategy presented by the subject 

did not fit any of the above known strategies. 

A score of "1" was awarded to one of the four categories 

according to the subject's presentation for each problem, no 

matter he/she got a correct numerical answer to the problem 

or not. Because each subject solved five problems of each 

type under each condition, his/her possible score for each 

category would range from 0 to 5. 
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CHAPTER V 

RESULTS 

A set of repeated-measures analyses of variance were 

performed to analyze (1) the correct solutions of the 

problems, and (2) the strategies for solving the problems. 

The analyses were conducted by SPSS/PC+ through SPSS MANOVA 

(Norusis/SPSS Inc., 1990) . The E values and their 

significance were calculated by the averaged test of 

significance, which is equivalent to 

analysis of variance (Winer, 1971) 

Test was used to check the violation 

a mixed-model univariate 

The Mauchly Sphericity 

of the assumption that 

the variance of all the transformed variables for an effect 

be equal and that their covariance be zero. When the 

assumption was violated, the degrees of freedom for the E 

test were adjusted by the Huynh-Feldt Epsilon (Huynh & Feldt, 

1967) . Only the final, adjusted results will be reported in 

the following section. Focused analyses for significant main 

effects were performed by pairwise contrast analyses 

(Rosenthal & Rosnow, 1985),. and the corresponding parameter 

estimates will be reported. 

Correct Solutions 

The means and standard deviations of the correct 

solutions of the three types of problems under two conditions 
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of availability of blocks are shown in Table 3. A 3 x 2 

(Type x Condition) repeated-measures analysis of variance was 

conducted to reveal the difference in correct solutions among 

the three problem types under different conditions. 

Significant differences were found in the main effect of 

Type, E.(1,37) = 10.45, < .001, and Condition, .(1,27) = 

19.68, p < .001. There was no significant interaction between 

Type and Condition, E(2,54) < 1. 

For the Type effect, three pairwise contrast analyses 

were performed (Table 4), and showed that the mean solutions 

of COMPARE problems was significantly lower than those of 

both EQUALIZE and WON'T GET problems, j. = 3.04, p < .01, and 

= 3.70, p < .01, respectively, while there was no 

difference between EQUALIZE and WON'T GET problems, t = 1.20, 

> .05. 

The results showed that (1) no matter whether the 

problems were presented with or without blocks, COMPARE 

problems were the most difficult problem type compared to 

EQUALIZE and WON'T GET problems, and (2) across the three 

types, the problems presented with blocks were easier than 

those presented without blocks. 

Strategies 

Without Blocks  

Table 5 shows the means and standard deviations of the 

strategies for solving each type of problems presented 
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without blocks. A significant interaction between Type and 

Strategy was found through a 4 x 3 (Strategy x Type) 

repeated-measures analysis of variance, (3,94) = 53.63, p < 

.0001. This analysis indicated that the frequencies of using 

different strategies depend upon the types of problems. 

Therefore, a set of one-way repeated-measures analyses of 

variance on the strategies for each Type were performed to 

reveal the differences of usage frequency among the 

strategies. Alpha was set at .017 (.05/3) to control the Type 

I error rate. 

For COMPARE problems, no significant difference was 

found among the strategies, .(3,81) = 1.79, > .05. This 

indicates that the first-graders were not clear how to solve 

COMPARE problems, because they did not use any strategy more 

often than any other, and especially because there was no 

difference between OTHER, the unclassifiable strategies, and 

the strategies suitable for difference finding problems. 

When solving EQUALIZE and WON'T GET problems, the 

tendency to use one strategy over the others was significant. 

For EQUALIZE problems, the Strategy main effect was 

significant, E(2,54) = 31.09, . < .0001. The contrast 

analyses further revealed the use of the ADD-ON strategy 

overwhelmingly more than any other strategies (Table 6), 

indicating that the first-graders mainly tried to use the 

ADD-ON strategy to solve EQUALIZE problems. 

For WON'T GET problems, the Strategy main effect was 

also significant, E.(2,56) = 38.81, p < .0001. The pairwise 

contrast analyses showed that among the strategies, MATCH was 
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most frequently used (Table 7), which suggested that WON'T 

GET problems were usually solved by using MATCH strategy. 

To summarize, when the three types of problems were 

presented without blocks, using a particular strategy to 

solve each of the problems depended on the problem type which 

determined by the problem text. The kind of strategy that 

was used for COMPARE problem was not clear. However, it was 

clear that the first-graders mostly used the ADD-ON strategy 

to solve the EQUALIZE problems, and the MATCH strategy to 

solve the WON'T GET problems. 

With Blocks  

When solving the problems presented with blocks, the 

first-graders' strategy use showed a similar pattern to that 

for solving the problems presented without blocks. The means 

and standard deviations of the strategy scores for each type 

of problem presented with blocks are shown in Table 8. A 

significant interaction between Type and Strategy was found 

through another 4 x 3 (Strategy x Type) repeated-measures 

analysis of variance, E(4,104) = 31.55, < .0001. 

Furthermore, a set of one-way repeated-measures analyses of 

variance on the strategies for each Type were performed to 

reveal the differences of usage frequency among the 

strategies. Alpha was set at .017 (.05/3) to control the 

Type 1 error rate. 

For EQUALIZE problems, a significant Strategy main 

effect was found, (2,57) = 17.00, p < .0001. Through the 

pairwise contrast analyses (Table 9), the ADD-ON strategy was 
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found as the most frequently used strategy. 

For WON'T GET problems, a significant Strategy main 

effect was found, .E(1, 39) = 154.36, p < .0001. A set of 

pairwise contrast analyses (Table 10) showed that the MATCH 

strategy was used more than other strategies. 

The presence or absence of blocks did not seem to 

influence the use of strategies to solve the EQUALIZE or 

WON'T GET problems. No matter whether the problems were 

presented with blocks or not, the first-graders tended to use 

the ADD-ON strategy to solve the EQUALIZE problems, and the 

MATCH strategy to solve the WON'T GET problems. 

However, presenting the problems with blocks did make a 

minor difference in strategy use for solving COMPARE 

problems. Under this condition the Strategy main effect for 

COMPARE problems was significant, (3,81) = 3.75, = <.017. 

The only two significant results by the contrast analyses on 

strategies for COMPARE problems (Table 9) were between the 

MATCH and PART-WHOLE strategies, and between MATCH and ADD-ON 

strategies. These showed that when solving COMPARE problems 

presented with blocks, the MATCH strategy was used more than 

the PART-WHOLE and the ADD-ON strategies. The comparison 

between MATCH and OTHER, however, was not significant. 

These results from the analyses on the COMPARE problems 

presented with blocks suggested that, when the blocks were 

available, the first-graders tended to use the MATCH strategy 

to solve the COMPARE problems rather than use the PART-WHOLE 

or the ADD-ON strategies. However, the MATCH strategy was 

used only more often than the PART-WHOLE and the ADD-ON 
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strategies. It was this difference that produced the 

significant main effect. Another important piece of 

information from the analyses was that the MATCH strategy was 

not used significantly more often than the OTHER strategy. 

The rather high value for unspecified or random strategies 

does not give a clear picture of exactly what strategies they 

could use to solve the COMPARE problems. 

The results from the analyses on the strategies clearly 

showed the dependency of strategy use on the problem type 

which is determined b the problem text, across the two 

conditions of block availability. The EQUALIZE problems were 

mostly solved by using the ADD-ON strategy, and the WON'T GET 

problems were mostly solved by using the MATCH strategy. 

Under both conditions, the first-graders tried to use some 

unclassifiable or random strategies as well as the strtegies 

suitable for difference-finding problems to solve the COMPARE 

problems. There was no significant difference between the 

use of unclassifiable strategies and the use of the suitable 

strategies, indicating that the first-graders were not clear 

what they could use to solve the COMPARE problems. 

The effect of the blocks on strategy use showed on the 

COMPARE problems. When the blocks were not available, no one 

strategy was used significantly more often than any others. 

When the blocks were available, the MATCH strategy was used 

more often than the ADD-ON and the PART-WHOLE strategies. 
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Table 3 

Mean Solutions and Standard Deviations (in parentheses) by  

Type and Condition  

Type of problem 

Condition COMPARE EQUALIZE WON'T GET 

Without blocks 

with blocks 

3.04 

(1.90) 

3.68 

(1.93) 

3. 82 

(1.28) 

4. 68 

(0.61) 

3.89 

(1.20) 

4. 93 

(0.26) 

Note. Maximum score = 5. 
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Table 4 

Contrast Analyses for Type Main Effect  

Comparison 

COMPARE vs. EQUALIZE 

COMPARE vs. WON'T GET 

EQUALIZE vs. WON'T GET 

3.04** 

3.70** 

1.20 

.01. 
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Table 5 

Means and Standard Deviations (in parentheses) of Strategies  

Used for Each Type (Without Blocks)  

Strategy 

Type PART-WHOLE MATCH ADD-ON OTHER 

COMPARE 1.18 0.61 1.64 1.57 

(1.68) (0.92) (1.62) (2.08) 

EQUALIZE 0.68 0.25 3.43 0.64 

(1.49) (0.52) (1.50) (1.03) 

WON'T GET 0.71 3.68 0.25 0.36 

(1.41) (1.56) (0.65) (0.95) 

Note. Maximum score = 5. 
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Table 6 

Contrast Analyses on Strategies for EOUALIZE (Without  

Blocks)  

Comparison t. 

ADD-ON vs. PART-WHOLE 

ADD-ON vs. MATCH 

ADD-ON vs. OTHER 

5. 18** 

10.44** 

7. 09** 

.01. 
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Table 7 

Contrast Analyses on Strategies for WON'T GET (Without  

Blocks)  

Comparison 

MATCH vs. PART-WHOLE 5.67** 

MATCH vs. ADD-ON 9.89** 

MATCH vs. OTHER 8.26** 

* *< . 01. 
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Table 8 

Means and Standard Deviations (in parentheses) of Strategies  

Used for Each Type (With Blocks)  

Strategy 

Type PART-WHOLE MATCH ADD-ON OTHER 

COMPARE 0.68 2.28 0.75 1.29 

(1.52) (2.14) (1.30) (1.94) 

EQUALIZE 0.71 1.11 2.96 0.21 

(1.27) (1.40) (1.77) (0.63) 

WON'T GET 0.32 4.54 0.04 0.11 

(0.95) (1.17) (0.19) (0.57) 

Not 'e. Maximum score = 5. 
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Table 9 

Contrast Analyses on Strategies for EQUALIZE (With Blocks)  

Comparison 

ADD-ON vs. PART-WHOLE 

ADD-ON vs. MATCH 

ADD-ON vs. OTHER 

4.40** 

337** 

14.89** 

.01. 
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Table 10 

Contrast Analyses on Strategies for WON'T GET (With Blocks)  

Comparison 

MATCH vs. PART-WHOLE 1O.91** 

MATCH vs. ADD-ON 19.81** 

MATCH vs. OTHER 14.89** 

.01. 
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Table 11 

Contrast Analyses on Strategies for COMPARE (With Blocks)  

Comparison I 

MATCH vs. PART-WHOLE 2.79* 

MATCH vs. ADD-ON 2.85** 

MATCH vs. OTHER 1.45 

*<O5 **<.0l. 
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CHAPTER VI 

DISCUSSION 

A New Interpretation of Text Effect 

Among the three types of word problems involving finding 

the numerical difference between two disjoint sets, COMPARE, 

EQUALIZE, and WON'T GET, the COMPARE problems were found- to 

be the most difficult type in this study. This is consistent 

with the findings of Hudson (1980, 1983) and the prediction 

of Briars and Larkin's (1984) word problem solving model. It 

is also consistent with the first hypothesis of the present 

study, which was that the COMPARE problem texts do not 

facilitate the mapping onto the coordination of two number 

lines, with the result that the first-graders encountered 

more difficulty than solving the EQUALIZE and WON'T GET 

problems. This is the present study's interpretation of the 

effect of problem text. 

This interpretation was supported when the strategy data 

were analyzed. When solving the EQUALIZE problems, first-

graders tended to use the ADD-ON strategy. When solving, the 

WON'T GET problems, they tended to use the MATCH strategy. 

Although they are different in terms of -involving different 

actions, the ADD-ON and MATCH strategies have one thing -in 

common, that is, they both-try to coordinate the two number 

lines and to constrain their actions by using the criterion 

set by the coordination. The ADD-ON strategy acts on the 

number line which represents the smaller set, adding more 
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objects to it,, but the action of adding is always limited by 

the length of the other number line which represents the 

larger set. 

According to the descriptions of previous studies 

(Carpenter et al., 1981; Hudson, 1983), the MATCH strategy 

first projects the shorter number line onto the longer line, 

building one-to-one correspondence, and then counts the units 

unmatched on the longer line. This was found in the present 

study, too. In addition, the present study observed another 

variation of matching. The problem solver arranged two 

object lines, side by side, then took away objects from the 

longer line, one by one, until the two lines had the equal 

length, i.e., matched. The taking away action was always 

constrained by the length of the shorter number line. No 

matter which kind of MATCH strategy the problem solvers used, 

it was done by coordinating the two ,number lines. 

Using a particularstrategy reflects the kind of 

representation the problem solver has-been constructing. The 

ADD-ON and MATCH strategies showed that the problem models 

built by the first-graders were represented by the 

coordination of the two number lines, when they tried to 

solve the EQUALIZE and the WON'T GET problems. On the other 

hand, first-graders tried to use various other strategies to 

solve the COMPARE problems, including the strategies which 

were unclassifiable and undefinable. Generally, among those 

alternative strategies, no one was used more times than any 

others. This reflected the uncertainty of first-graders on 

what kind of problem model they could build according to the 
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COMPARE problem texts. 

The only difference among the three type of problems was 

problem text. Thus the source of the relative difficulty 

among the problems can only be traced back to the problem 

texts. Through the analyses of the strategies used for 

solving the problems, it can be concluded that the problem 

texts of the EQUALIZE and the WON'T GET problems could be 

easily mapped onto the coordination of two number lines, so 

the appropriate problem models cOuld be constructed to 

produce the correct solutions. Specifically, the phrase 

"what to do to get as many ... as . . ." in the EQUALIZE 

problem texts, and the phrase "how many won -ft get . . ." in the 

WON'T GET problem texts, cued the coordination of two number 

lines. The COMPARE problem text did not cue the coordination 

of two number lines, which is the prerequisite for solving 

such problems, so that this type became the most difficult 

difference-finding problem. 

This interpretation produced an answer to the question 

"what makes the problem involving comparison so difficult," 

which was central to the main issue of the greater difficulty 

of the Compare problems. Riley et al. (1983) and Cummins 

(1991) could not provide the answer because they assumed that 

the part-whole structure was responsible for the problem 

representation. When Riley and Greeno (1988) found that the 

part-whole structure was not appropriate, and when Cummins 

(1991) proposed that the source of difficulty was the failure 

of mapping, they still failed to find a new underlying 

mathematical structure. Okamoto (1992) proposed the 



94 

coordination between two number lines as the underpinning of 

the construction of the problem model, which provided the 

structural base for the study of mapping. However, Okamoto 

compared the Compare problems with other categories such as 

the Change problems and the Combine problems. The lack of 

comparability across the categories reduces her model's 

explanatory power on the issue of the relative difficulty of 

comparison proble'ms. The present study adopted Okamoto's 

proposal about the coordination of two number lines as the 

problem model, and employed three types of word problems 

sharing the same mathematical essence. Thus the effect of 

the problem texts was revealed. 

The present study failed lo find a differential effect 

of using blocks on the problem representation. The result 

that using blocks' generally facilitated the problem solving 

performance for all types was open to various 

interpretations, for example, the blocks might not influence 

the representation, but merely reduce processing load. 

When the blocks were available, first-graders tended, to 

use the MATCH strategy more often than another coordination-

appropriate strategy, ADD-ON, to solve the COMPARE problems. 

Exactly why one appropriate strategy was cued by the blocks 

but not the other, cannot be explained within the framework 

of the present study. The effect of concrete materials on 

the problem representations and its interaction with the 

problem texts is a topic for the future studies. The blocks 

used in the present study were still relatively abstract, 

because they were used as referents for 'any kinds of objects. 
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If some "naturally paired" objects were presented, such as 

eggs and egg cups, desks and chairs, birds and nests etc., 

the MATCH strategy would be more easily cued. Although this 

would seem a fruitful direction for future research, it is 

beyond the scope of the present study. What was found in the 

present study was that the MATCH strategy was not used more 

often than those unclassifiable and undefinable strategies 

even when the blocks were available. Therefore, what made 

the COMPARE problem difficult was still the problem text, 

which apparently does not cue the coordination of two number 

lines. 

Limitations 

Although this study extends previous research, it was 

limited to problems involving finding the numerical 

difference between two disjoint sets. The interpretation 

derived from this study may not be able to explain the' effect, 

of rewording in other problem categories. The rewording 

effect on the Combine problems found in Carpenter et al. 's 

(1981) and Lindvall and Ibarra's (1980b) studies seems to be 

related to whether the texts can make the part-whole 

structure more explicit. De Corte, Verschaffel, and De Win 

(1985) found such an effect of rewording on the Change 

problems. Because the Change problems do not involve 

disjoint sets, the problems probably can be solved by acting 

on one number line. 
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Also, the present study did not deal with the social 

context and situational aspects of the problem texts. It was 

found that the context personalization (Davis-Dorsey, Ross, & 

Morrison, 1991), the structure, role, and intent of the word 

problem texts (De Corte & Verschaffel, 1985), and the 

situation described in the problem texts (Reusser, 1990; 

Reusser et al., 1990) all affect relative difficulty. 

However, the present study focused on just the one aspect of 

the problem texts relating to the more "pure" mathematical 

structures. 

Another possible limitation of this study is the 

methodology-used to get the strategy data. Pressley (1992) 

questioned the microgenetic method for studying cognitive 

development, pointing out that the children's choice of 

strategy may be cued by the experimenters' promoting specific 

options during the interviews. This was not the case in the 

present study, in which the experimenter only asked "how did 

you get the answer" and "why", and provided no guidance and 

directions. However, this raises the question of whether the 

children's own report, especially when there was no blocks, 

could be taken as the evidence of their strategy use. This 

method is not without its critics (Ginsburg, Kossan, 

Schwartz, & Swanson, 1983) . In fact, one of the main 

criticisms is thata child may fail to report a considerable 

part of his/her thinking process. However, the interview 

method and the children's verbal report are still the major 

source of any information of problem solving processes. 

According to Ginsburg et al. (1983), to judge the value of 
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subject's descriptions of some of their cognitive processing 

depends on how one construes the notion of processing. If 

the notion is limited to descriptions of neural processing, 

the introspective' reports will be no use; if stages or steps 

taken in solving a problem, such as in mathematics, are the 

aspects of processing that are of interest, verbal reports 

may be a valuable source of information. Certainly, it would 

be more reliable if this method were combined with some other 

more "objective" method, such as De Corte and Verschaffel's 

(1990) collection of eye-movement data while children read 

and solve word problems. However, it is not clear just how 

well the physiological and self-report assessments match up, 

and in any event the strategies found here have high face 

validity. 

Implications 

This study examined the very nature of word problems, 

that is, the fact that the word problems are mathematical 

problems presented in verbal forms. From this perspective, 

further research on word problem solving processes should 

focus on the interaction between linguistic comprehension and 

mathematical reasoning. This means not only trying to find 

what kind of linguistic competence is required, or what kind 

of mathematical structure is underlying the problem 

representation, but also we should examine how the two 

components interact. To analyze the mapping processes in 
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detail is one way to understand the interaction. 

In future studies, this method should be extended to all 

other problem types to study the different mapping processes 

under the current categorization. It may also be used in 

studying word problems beyond arithmetic, such as algebra 

word problems. Another related area may be to study the 

degrees of children's dependency on linguistic comprehension 

at different cognitive developmental level, or with different 

amount of exposure and exercise. This could help explain why 

the COMPARE problems were difficult for first-graders but not 

for third- or second-graders. 

Educational research should integrate the findings of 

word problem solving studies into the studies of mathematics 

curriculum and instruction. At the present time the problems 

involving comparison are introduced to first-grade textbooks 

without any preparation for the students. The information-

processing analysis and detailed descriptions of word problem 

solving processes, including the mapping processes between 

linguistic comprehension and mathematical reasoning, would 

provide the base on which curriculum revision should be 

developed and instruction should be designed. Also, the 

findings from the studies on the development of word problem 

solving ability should be integrated into educational 

studies, so that curriculum can be sequenced according to the 

development of children's ability, and educators can know how 

to get around the difficult mathematical points which 

originate in the constraints in cognitive development by 

making use of the influence of problem texts. 
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During the course of data collection for the present 

study, a first-grade teacher predicted that the problems used 

here would be too difficult for the students, because (by the 

end of the first year) the students "have met some of the. 

COMPARE problems, but have not seen the EQUALIZE and the 

WON'T GET types at all". The teacher suggested that the 

researcher do this experiment in grade two instead. This 

example shows there is a great deal of information not 

delivered to teachers, including that (1) the three types 

share the same mathematical structure and require the same 

problem solving competence; (2) the COMPARE problems are more 

difficult than the other two types, and this is not the 

problem of exposure but the basic problem text; (3) it would 

be better to let students encounter the EQUALIZE and the 

WON'T GET problems before the COMPARE problems; and (4)maybe 

a better way to teach solving the COMPARE problems is to let 

the students first do the mapping in the manner that they do 

in solving the EQUALIZE and WON'T GET problems, that is, by 

using matching or adding-on strategies, so that they may 

avoid the difficult point intrinsic to the COMPARE problem 

texts. 
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APPENDIX A 

Word Problems Used in the Experimentation 

COMPARE  

1. Joe has 8 marbles. 

Tom has 5 marbles. 

How many more marbles does Joe have than Tom? 

2. Peter won 4 prizes at a fair. 

Mary won 7 prizes. 

How many more prizes did Mary win, than Peter? 

3. John has 9 apples. 

Ann has 4 apples. 

How many more apples does John have than Ann? 

4. Tom has 9 toy cars. 

And he has 5 toy trucks. 

How many more toy cars does he have than his toy trucks? 

5. You got 8 books. 

I got 3 books. 

How many more books did you have than I? 

6. Mark and Sue like cups. 

Mark collected 3 cups. 

Sue collected 7 cups. 

How many more cups did Sue collect than Mark? 

7. Susan puts some pencils in her pencil box. 

There are 6 green pencils. 

(Continued next page) 
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(Continued) 

And there are 4 red pencils. 

How many more green pencils are there than red pencils? 

8. There are 9 blue balloons in the sky. 

And there are 6 yellow balloons there. 

How many more blue balloons are there than yellow ones? 

9. My brother read 5 books in a week. 

My sister read 7 books. 

How many more books did my sister read than my brother? 

10. In a zoo, there are 9 monkeys. 

And there are 3 panda bears. 

How many more monkeys are there than panda bears? 

EQUALIZE  

1. Joan picked 9 flowers. 

Bill picked 4 flowers. 

Bill wanted to have as many flowers as Joan. 

How many more flowers would he need to pick? 

2. Fred has 9 buckets. 

Betty has 5 buckets. 

How many more buckets does she have to get to have as 

many buckets as Fred? 

3. There are 8 desks in a classroom. 

And there are 3 chairs there. 

If we need to have as many chairs as desks, 

(Continued next page) 
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How many more chairs will we need? 

4. Some children are playing marble games. 

Steve has 5 marbles. 

Wade has 8 marbles. 

How many marbles does Steve have to win to have as many 

marbles as Wade? 

5. At first, Wendy drew 7 pictures. 

Jill drew 3 pictures. 

Jill drew some more so she had as many pictures as Wendy. 

How many more pictures did Jill draw? 

6. One day, children -were telling stories. 

A girl told 7 stories. 

A boy told 4 stories. 

The boy told more stories later so he told as many 

stories as the girl. 

How many more stories did the boy tell? 

7. 6 boys, and 4 girls came to Bob's birthday party. 

But Bob invited as many girls as boys to his party 

So we know some girls were late. 

How many girls were late? 

8. Tony's mom gave him 9 crackers yesterday. 

And gave him 6 today. 

Tony wanted to have as many crackers today as he got 

yesterday. 

(Continued next page) 
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So he asked mom for more. 

How many more would he ask for? 

9. Some children were preparing for a picnic. 

They got 7 apples and 5 bananas. 

But they need as many bananas as apples. 

How many more bananas do they have to get? 

10. You have 9 pencils. 

I have 3 pencils. 

If I want to have as many pencils as you, 

How many more pencils do I have to get? 

WON'T GET  

1. There are 7 riders. 

But there are only 5 horses. 

How many riders won't get a horse? 

2. There ae 9 children in a room. 

And there are 3 chairs in the room. 

How many children won't get a chair? 

3. Here are 9 children. 

And here are 4 candies. 

How many children can not get a candy? 

4. 9 children went to a store to buy hats. 

There were only 5 hats in the store. 

How many children would not get a hat? 

(Continued next page) 
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5. Here are 8 birds. 

And here are 3 worms. 

Suppose every bird wants to get a worm. 

How many birds won't get a worm? 

6. There are 7 dogs. 

They are playing with 3 cats. 

Each dog wants to catch a cat. 

How many dogs won't get a cat? 

7. 8 people went to a movie. 

But there were only 5 tickets left. 

How many people couldn't get a ticket? 

8. There are 7 people getting on a bus. 

There are 4 empty seats. 

How many people won't get a seat? 

9. There are 6 drivers. 

There are 4 cars can be driven. 

How many drivers will not get a car to drive? 

10. Here are 9 pilots, and 

here are 6 planes at an airport. 

How many pilots won't get a plane? 


