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Abstract 

The determination of chord-length distributions for various measures of randomness 

(including ), ii, A, -y, P, a) through arbitrary ovoids K is important in many scientific 

disciplines, particularly stereology. Traditional methods of generating chord-length 

distributions for egg-shaped ovoids and non-symmetric polgyons for which analytical 

results are difficult to obtain have previously involved direct simulation. 

However, relationships exist between an overlap function Q and chord, ray and 

segment distributions for various randomness measures that allow generation by two 

new approaches - the f and S1 methods. 

In this thesis, the feasability of the fT;A and Q methods will be examined for 

various two-dimensional ovoids, including circles, ellipses and arbitrary polygons. 

In three dimensions, only the fT; method will be studied for the ovoids ellipsoids, 

spheres, cubes, cylinders and hemispheres. Comparisons are made between the new 

approaches and the traditional simulation approach. Future directions and recom-

mendations will also be discussed. 
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Chapter 1 

Introduction 

Stochastic geometry (synonymous with geometric probability) deals with random 

geometric objects. For an excellent introduction to this growing field see Kendall 

and Moran [50] or Solomon [91]. 

Stereology, a branch of applied stochastic geometry, is primarily concerned with 

the problem of recovering, from available planar or linear sections, information on 

a three-dimensional structure. An important objective of stereology is to determine 

particle size/shape distributions from planar or linear cuts through the particle, 

such cuts usually at a microscopic level. Linear cuts through a specimen yield secant 

length distributions, a secant being a chord through two points on the boundary of 

the particle, i.e. the intersection of a straight line with the particle. Relationships 

between particle size/shape distributions and linear intercept distributions can be 

found in Kok [53], Weibel [103], Russ [82] or Stoyan et al. [95]. Determining secant 

length distributions for various particle shapes is therefore important in stereology, 

and indeed in many other scientific disciplines. 

1.1 Some Practical Applications of Stochastic Geometry 

In this section, applications that require the calculation of intercept length distribu-

tions will be discussed. Many problems arising in geology, radiology, nuclear physics, 

metallurgy, biology, acoustics, computer science and oceanography, among others, 

1 
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involve determining the length distribution of some type of ray through a body K. 

1.1.1 Geology 

In geology, Hanson [38] verifies through computer simulation the relationship of 

grain density of minerals to the average intercept length of a test line with the grain 

surface. Riss and Durand [78] simulate areal sectioning applied to identification of 

particle shape for cubes and various polyhedra for a geological application. In this 

paper they are interested in typical mosaic patterns seen on thin or polished sections 

of crystalline aggregates. Warren [98] conducted an experimental study where a 

microstructure was simulated of uniformly sized steel cubes dispersed in a matrix of 

a lead-tin alloy. This application verified Itoh's [44] result. 

1.1.2 Radiology 

Radiology connotes the use of ionizing radiation as a diagnostic tool. Applica-

tions in radiology are therefore those that analyze the diagnostic devices. For 

example, Birichoff et al. [4] note that pulse height spectra observed from energy-

proportional devices, such as a cylindrical gas proportion counter, depend partly on 

the track length distributions of charged particles in the sensitive volume of the de-

vice. Birkhoff simulates chord length distributions in right circular cylinders of finite 

length, and reviews results for infinite slabs, spheres and infinite cylinders. Wilson 

and Emery [107] are also interested in this problem, and present a calculation of 

path length distributions for cylinders in an isotropic distribution of straight tracks. 
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1.1.3 Nuclear Physics 

Applications of linear-intercept distributions to nuclear physics are basically confined 

to analysis of paths of radioactive rays through some sensitive area. Primak [77] es-

timates the gamma-ray dosage in samples undergoing irradiation in nuclear reactors 

through path length of such a ray to a reactor wall. Goudsmit [33] solves a problem 

asked of him by Niels Bohr. In cloud chamber experiments errors could occur in in-

terpretation because tracks might seem to originate from the same point. In response 

to this Goudsmit studied the probability of several independent tracks intersecting 

at almost the same point. Dirac et al. [20] used chord length distributions in relation 

to the shape of radioactive material in the atomic bomb, since the critical mass of 

the bomb depends on the shape of uranium. Also, bombardment by cosmic rays and 

the corresponding threat of spontaneous ignition were contributing factors to their 

research. Caswell [10] considers neutrons in spheres, and Rossi [80] evaluates pulse 

height spectra obtained with proportional counters. 

Langworthy and Bendel recently extended the study of path lengths through 

some sensitive area to space electronics. In space electronics, one is often inter-

ested in predicting single event "upsets". Such upsets include events that produce 

sufficient ionization, such as alpha emission by some radioactive impurity in the ma-

terials, highly ionized cosmic ray tracks and interactions with high energy protons. 

Langworthy [61], [63] and Bendel [3] apply linear-intercept distributions, and note 

that upsets occur when the rate of ionization along a path multiplied by the path 

length of a ray through a sensitive area exceeds the critical charge. 

Kellerer [47] gives other references for acoustics, reactor design, microscopy, ra-
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diation physics, microdosimetry and general dosimetry. He calculates the ri-random 

chord distribution for the cylinder and considers surface radiator ('y) randomness in 

the context of radiation physics. 

1.1.4 Metallurgy 

In metallurgical science it is often of interest to estimate the distribution of sizes 

of particles embedded in an opaque material such as an alloy. For an example, 

see Fullman [28]. Hilliard [41], [42] hints at another application - the analysis of 

semi-transparent materials by reflected light, where the depth of light penetration 

corresponds to the section's thickness. Hilliard shows the relationship between mo-

ments of the size distribution and the distribution of intercept lengths on particle 

profiles. Gurland [36] and Butler [9] analyze WC-Co alloy strengths (WC is sim-

ply a cement). They note that above a critical mean path length of intercepts the 

strength of the alloy is proportional to the volume fraction of WC, and is inversely 

proportional to the WC particle size. Thus they relate the material behaviour with 

the structure of this alloy. 

Using an alternative approach, Sepulveda et al. [88] use a computer simulation to 

determine volumetric abundance of certain valuable minerals from linear intercepts 

through the volume. Goldsmith [32] uses particle size distributions, obtained from 

measurements of particle sizes in a thin section, applied to delustrant and pigment 

particle sizes seen in a micrograph of a slice of polymer chip or extruded fibre. 



5 

1.1.5 Biology 

In biology Melhuish and Lang [57], [58] use planar cuts of plant roots to estimate 

lengths and diameters. They do so by relating the probable total length of root to the 

number of intersections made with a plane of unit area cut through the soil. McIn-

tyre [67] uses linear intercepts to estimate the percentage ground cover by different 

species in a stand. McIntyre considers different sampling quadrats and determines 

that established perennials in open shrub or grassland communities having plants of 

fairly regular shape and cover have densities which can be estimated from transect 

chords. Hammersley [37] measured the damage caused to plants by the presence 

of radioactive tracers in the fertilizers (which could also be considered a radiology 

application). 

In biology and in medicine in the organs of the body (animal or human) a number 

of small, fairly regular shaped particles are embedded in the tissue. These particles 

vary greatly in size and number between and within organs, and between individuals. 

For example, Wicksell [105], [106] used areas of spleen contours to express the dis-

tribution of sizes of embedded particles, and uses linear intercepts of these contours 

to calculate a distribution function of particle diameters. 

Gundersen et al. [35] study needle biopsies of the kidneys of four humans and 

wedge biopsies of the kidneys of two animals (a rat and a bull) by intercepts to 

determine membrane thickness. 

1.1.6 Acoustics 

In acoustics Kingman [52] considers a convex room with perfectly reflecting walls 

having a particle projected from a point inside. The particle bounces around, its 
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trajectory after many reflections being many segments whose average length is the 

mean free path. For certain room shapes, then, the mean free path depends on the 

point of initial trajectory and the direction of projection. Bate and Pillow [2] calcu-

late this mean path of sound in an auditorium. Kosten [54] uses the mean free path 

of an enclosure, which is of practical use in diffuse sound fields, and develops stereo-

logical relationships dealing with reverberation time in proportion to path length of 

reflected sound rays. 

1.1.7 Computer Science 

In computer science applications You et al. [108] use chord length distributions in 

pattern recognition. Such distributions can help discriminate between planar closed 

shapes. In this article a Kolmogorov-Smirnov goodness-of-fit test is used to dis-

tinguish between shapes, and a simulation is done using countries as shapes. In a 

related article lleckhert [40] uses ray-surface intersections as a means or algorithm 

to synthesize general images, in this case Jell-0®. 

1.1.8 Oceanography 

In oceanography, Rothrock and Thorndike [81] measure the distribution of ice floe 

sizes by sampling lengths of line segments on floes. Another application of stereo-

logical methods to Arctic oceanography is the determination of the probability of 

an object colliding with a ridge in an old (multi-year) ice floe. The structure has 

to dissipate the kinetic energy of the ice floe. The greatest loads occur when the 

structure is interacting with a ridge, ridges being the thicker portions of the floe. 

Knowledge of the probability of an interaction between a structure and a ridge can 
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be used in risk analyses and design load calculations. In one study the distance from 

the edge of a floe to a ridge, the spacing between ridges, and the angle between the 

centreline of a ridge and a structure were determined by drawing random lines across 

aerial photographs of floes (see Morrison [70]). 

Marcellus and Morrison [65] also consider the size distribution of ice floes. They 

relate structure design for locations in the Beaufort Sea with the distribution of 

sizes of old, multi-year ice floes. From publicly available records of upward-looking 

profiles of the under-ice canopy of the Arctic Ocean obtained from American nuclear 

submarine transects, they determine the distributions of chord lengths of floes. See 

also Wadhams et al. [97] and McLaren et al. [56]. 

1.2 Types of Randomness 

Clearly, linear intercept distributions are important. These distributions can be 

generated by segments T, rays R or chords L. A segment connects two points in the 

interior of some body K, a ray connects a point in the interior of K with a point on 

the boundary of K, and a chord connects two boundary points of K. Both segments 

and rays can obviously be extended to the boundary of K to form chords. 

Various types of randomness define different segment, ray or chord distributions. 

These measures arise when different processes are used to generate the linear element 

(segment, chord or ray). For K we consider only ovoids (compact convex subsets 

of Rn with nonempty interior). For example, v-random rays are generated as fol-

lows: choose a point P randomly inside K. Then choose, independently of F, some 

random direction 0. The resulting v-random ray extends from P to the surface of 



8 

K in direction 0. Other types of randomness consist of choosing independently and 

uniformly random (IUR) combinations of points (both surface and interior points of 

K) and directions. 

In a series of papers, Enns and Ehlers [22], [23], [24], [25], [26] have discussed 

the theory of random linear probes in convex bodies. Their focus has been on six 

types of randomness. These random measures fall naturally into three sets. The 

so-called /9-measure involves two surface-random points. The measures labelled a 

and y involve one point selected in the surface of the body. Finally, measures it , ii 

and ) do not employ any surface-random points. 

Kingman [51], [52] has shown that the chord-length distributions for the three 

measures , ii and ). are simply related. Enns and Ehlers provide further relations 

involving ray-length and segment-length distributions. They also derive (Enns and 

Ehlers [24]) a relation between a- and 'y-random chord-length distributions. 

Analytical results are extremely complicated for any but the simplest shapes 

of convex bodies. Simulation of probability density functions for chord- and ray-

length is therefore important. Such simulations have been reported by Itoh [44] and 

Warren and Naumovich [101]. All of the reported simulations have employed what 

in this thesis will be called the direct simulation method. For example, Itoh directly 

simulates n-random chords in a cube and compares the resulting density function 

of chord length with the analytical density function. Warren simulates n-random 

chords through cubes and ellipsoids. 

The principal aim of this thesis is the investigation of the feasibility of two alter-

native methods for the simulation of chord- and ray-length density function of type 

in {it, 11 )}. One of these methods (fT;A or segment method) is based on the fact that 
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all such density functions are related to the probability density function for segment 

length under A-randomness, which is relatively easy to generate. The second new 

method (overlap or Q method) results from the relation of chord-, ray- and segment-

length density functions to the overlap function for the convex body, as defined by 

Enns and Ehlers [23]. This overlap-function method is inherently appealing since it 

is deterministic, that is, it does not involve any random-number generation. 

The various types of randomness are defined in Table 1.1 and Figure 1.1. Note 

in particular that different types of randomness generate multiple distributions of 

path lengths. Under A-randomness, in particular, three different distributions exist: 

one for segments, one for rays and one for chords. Table 1.1 includes references to 

Figures in Chapter 2 where theory is presented. 
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Table 1.1: Types of randomness 

Randomness Description 

W, ii Interior radiator randomness 
Weighted invariant randomness. 

A point P E K and a direction 0 are 
chosen independently and uniformly 
random. See Figures 2.4, 2.5. 

Invariant uniform randomness 
Isotropic uniform randomness 
Mean-free path randomness. 

From a beam of parallel rays with 
a uniformly random orientation that 
hit the body, the secant is uniformly 
random. See Figure 2.3. 

A - Points P and Q in K are chosen in-
dependently and uniformly random. 
See Figure 2.7. 

a - A point P in K and a point Q on 
the surface of K are chosen indepen-
dently and uniformly random. See 
Figures 2.9, 2.10. 

Both points P and Q are chosen in-
dependently and uniformly random 
from the surface of K. See Fig-
ure 2.11. 

S, 'y Surface radiator randomness A point P on the surface of K and 
a direction 0 are chosen indepen-
dently and uniformly random. See 
Figure 2.8. 
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Figure 1.1: Types of randomness 
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1.3 The Direct Simulation Method 

For simple ovoids K, calculation of the analytical distributions for various random-

nesses is possible. In Chapters 3 and 4, results and article references are given for 

various ovoids. However, for non-simple ovoids, such as non-symmetric polygons or 

egg-shaped ovoids, the calculation of actual intercept length distributions is diffi-

cult. Direct simulation was the only method available for determining within some 

accuracy an estimate of a distribution. 

Traditionally, Warren and Naumovich [101] and Itoh [44] were the first to simulate 

chord distributions under n-randomness. Tables 1.2 and 1.3 give several articles 

where simulations were performed through various convex bodies. Results given in 

these articles will provide a useful check on simulation results for Chapters 3 and 4. 

Table 1.2: References for computer simulations of chords through selected ovoids 

Reference Description 

Barbery [1] Analysis by test lines for the measures 
a and it for right cylinders, ellipsoids and 

boxes. 

Itoh [44] Derives analytical expressions of distribution 
of /,t-random chord length of a randomly ori-
ented cube, and confirms with a computer 
simulation. 

Riss et at. [79] Simulates it-random chord distribution for 
various polyhedra. 
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Table 1.3: References for computer simulations of chords through selected ovoids 

Reference Description 

Naumovich and Kriskovets [72] A computer simulation of the random in-
tersecting process used to derive relative 
frequency distribution of random intercepts 
through deformed cubes and pentagonal and 
hexagonal prisms of different heights. 

Naumovich and Warren [73] Simulation of p-random chords to determine 
relative influence of particle size and particle 
shape distribution on intercept length distri-
bution observed on a section. Ovoids con-
sidered included the sphere, ellipsoids, cube-
spheres, cube, rectangular prisms and trian-
gular prisms. 

Naumovich et al. [71] Uses a Monte-Carlo simulation of p-random 
chords through a cube as a check for pro-
grams simulating /t-random chords through 
various polyhedra. 

Warren and Naumovich [101] Computer simula-
tion of ft-random chords through ellipsoids, 
rounded cubes, orthogonally-faceted spheres, 
rectangular prisms and triangular prisms in 
a method similar to Itoh [44]. 

Warren and Durand [100] Explores stereological relationships between 
such parameters as mean number of features 
per volume and the number per unit area 
of section by computer simulation p-random 
chords through cubic particles, plates, poly-
hedra and ellipsoids. 

Wasén and Warren [102] A comprehensive look at chord distributions 
for various polyhedra. 
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1.4 The fT;A or Segment Method 

The segment method first involves direct simulation of the segment )-random dis-

tribution. This simulation is relatively easy to generate, since it involves choosing 

two points inside some convex body K (see Figure 1.2). This is done by choosing 

two random interior points in the rectangle [a, b] x [c, d] and classifying them as 

interior/exterior. 

a b 

Figure 1.2: Illustration of the fr;), method 

d 

C 

The segment method involves repeated selection of interior points to generate a 

number of random segments whose lengths are then grouped to form a histogram. 

Relationships between several densities and the segment A-random density are de-

veloped in Chapter 2. Several of these relations require the use of derivatives of 
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the estimated segment density. Calculation of derivatives requires the use of non-

parametric density estimates, other than the histogram, that smooth the density 

and provide differentiable estimates. These nonparametric density smoothers will be 

explained in Chapter 3. 

1.5 The Overlap or Q Method 

The overlap function can be explained by first translating some body K a distance 

1 in direction 0 to form K(l, 0) (see Figure 1.3). 

Figure 1.3: Overlap volume of 2 semicircles 

The volume of the intersection of K with its translate, when averaged over 0, 

yields fl(l). The overlap function is important because it is related to the \-, z'- and 

n-random length distributions. These relationships will be discussed in Chapter 2. 
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1.6 The New Approaches 

A new approach, proposed in this thesis, is to exploit the relationships that exist 

between the segment length distribution, the overlap function, and the .A-, p- and 

v-random length distributions to determine the relevant ray, chord or segment distri-

butions. Relevant in this sense means v- and )-random ray and chord and /J-random 

chord densities, integrally related to the overlap function and to the segment den-

sity. We wish to determine the feasibility of the 1 method or the fT;A method as 

generators of the related distributions. The following comparisons will be made: 

Estimate via direct simulation 

versus 

Estimate via 0 method (new) 

versus 

Estimate via fT;A method (new). 

Both proposed new methods obtain chord- and ray-length probability density 

functions by differentiating a simulated function. Such derived functions are strongly 

dependent on the accuracy of the original, simulated function. The principal value 

of these methods lies in their simplicity. Direct simulation for arbitrarily shaped 

convex bodies is very awkward to implement. From a programming point of view, 

existing code for one shape requires significant modification for other shapes. The 

'segment' method, on the other hand, involves only the generation of two random 
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interior points. Shape dependence is then confined to the problem of classifying 

random points as exterior/interior. 

In the f or 'overlap' method one must determine the content of the intersection 

of the convex body with a translate of itself. While this is not quite as simple as 

the 'segment' method, it is nonetheless much simpler than the direct simulation 

approach. This is particularly true for arbitrary polygonal regions in R.2. 

This thesis reports results of applying the 'segment' method to both two- and 

three-dimensional bodies. The chief difficulty is the problem of fitting the segment-

length density curve sufficiently well to obtain good estimates for the first two deriva-

tives of this curve which are required for the chord- and ray-length density functions. 

Unfortunately, the results are not encouraging. 

The fl method was applied only to polygons in V. Comparison of polygonal 

approximations with analytical results for the circle indicates that polygonal ap-

proximations with relatively few vertices should work well for non-polygonal shapes. 

We expect that in 1V polyhedral approximations will work as well. The decision to 

restrict this method to 1?2 was made because there exists a very efficient procedure 

for computing the area of a polygon in terms of its vertices. Thus we are able to 

avoid computing the overlap by pixel-counting. We are not aware of a similar effi-

cient procedure in V. Three-dimensional problems would therefore have to employ 

voxel-counting, which we consider to be too inefficient for determining the overlap. 

(It may be possible to use image analysis software to determine the overlap function. 

This possibility was not investigated.) 

Objects in reality to not appear as perfect circles and ellipses, and it is the purpose 

of this thesis to try to determine a methodology for dealing with non-trivial shapes, 
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such as non-symmetric polygons and egg-shaped ovoids. "Simulated Secants and 

Overlapping Ovoids" is a step in this direction. 

1.7 Comparisons To Be Made 

In two dimensions, comparisons will be made only for the following two-dimensional 

ovoids: arbitrary ellipses and polygons (including the circle, square, equilateral tri-

angle). In three dimensions, comparisons will be made between direct simulation 

and the segment density approaches for the following ovoids: hemispheres, spheres, 

cubes, ellipsoids, cylinders. A summary of the work completed for this thesis is 

given in Tables 1.4 and 1.5. In the two-dimensional table, there are three columns. 

Direct denotes direct simulation of the density, fT;A denotes generation of that den-

sity through the segment length distribution, and Q denotes generation through the 

overlap function. In three dimensions, of course, only the direct simulation and the 

segment length density approaches are possible. A "\/" denotes completed work and 

an "F" signifies that more work is required. Chapter 5 considers possible directions 

in extending the comparisons to include those entries marked with an "F". 

'This title basically refers to the comparison of simulated intercepts through a body and the 
corresponding overlap function. 
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Table 1.4: Summary of simulations performed - 2-dimensions 

Measure Ellipse (Circle) 

Direct I fT;A I ≥(l) 
Rectangle 

Direct I IT;?. 10(l) 

Triangle 

Direct IT;?. I f(1) 

Polygons 

Direct I fr; I 
A R Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt 
A L Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt 
ii R Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt 
ii L Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt 

L Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt 
R Vt Vt Vt Vt 

ly 

fi 

L 

L 

L 

Vt 
Vt 
Vt 

Vt 
Vt 
Vt 

Vt 
Vt 
Vt 

Vt 
Vt 
Vt 

Vt - Completed F - Future 

Table 1.5: Summary of simulations performed - 3-dimensions 

Measure Sphere 

Direct IT;?. 

Ellipsoid 

Direct IT;, 

Box 

Direct I f'; 
Hemisphere 

Direct IT;, 

Cylinder 

Direct I fr; 

Polyhedra 

Direct I IT;?. 

A R Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt F F 

A L Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt F F 

zi RVt Vt Vt Vt Vt Vt Vt Vt Vt Vt F F 

ii L Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt F F 

L Vt Vt Vt Vt Vt Vt Vt Vt Vt Vt F F 

R Vt F Vt Vt Vt F 

c L Vt F Vt Vt Vt F 

y L Vt F Vt Vt Vt F 

L Vt F Vt Vt Vt F 

Vt - Completed F - Future 
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Comparisons were made only visually. Recall that the purpose of this thesis is 

to study the feasibility of using the alternative methods to generate distributions. 

Quantitative comparisons between the methods, although important, were not in-

corporated into the analysis. Note also that some a, /3 and 'y results are presented, 

although they do not fit into the comparison category since they are not related to 

either the overlap function or the segment density. 

1.8 Overview 

Chapter 2 contains the theory and its development that relates the segment length 

distribution, the overlap function and the A, ii and p densities. Chapter 2 also derives 

relationships between the ,8, 'y and a densities. 

Chapter 3 presents results for two-dimensional ovoids. In this chapter, some 

of the techniques used to generate A- and v-random ray and A-, i'- and p-random 

chord densities from either the segment length distribution or the overlap function 

are given. These techniques include the use of splines and the use of nonparametric 

density smoothers. Chapter 3 also contains the driving algorithm behind the polygon 

program. References for theoretical results for each ovoid - circles, ellipses, rectan-

gles, triangles - are given, as well as special techniques that may have been required 

in direct simulations, including some new results for ellipse surface-randomness. 

Chapter 4 extends the analysis to three dimensions (but no overlap method) by 

presenting results for the sphere, cube, cylinder, hemisphere and ellipsoid. Again, 

techniques for direct simulation and references where appropriate or available are 

given. 
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Chapter 5 points to possible future directions, such as extending the polygon 

program to three dimensions. 



Chapter 2 

Review of Theory 

2.1 Introduction and Notation 

Six different random measures for generating chords, rays and segments are discussed 

in this thesis. A number of relations exist between the corresponding probability 

density functions. This chapter provides definitions of the measures and reviews 

relations between them. 

The notation that will be used is provided in Tables 2.1, 2.2 and 2.3. Figures 2.1 

and 2.2 illustrate some of the terms used. 

Table 2.1: Notation 

Notation Description 

JUR Independently and uniformly random. Refers to the choice 
of combinations of points and directions which define r-
randomness, r C IV) [L,A,y,,8,c]. 

K Arbitrary convex bodies in n-dimensional Euclidean space. 

L Chord length, the distance between two points on the boundary 
of K. 

R Ray length. 

T Segment length. 

K(l, 0) The body K translated a distance 1 in direction 0. 

22 
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Table 2.2: Notation 

Notation Description 

V(.) Volume of (.). 
S(.) Surface content of (.). 
Var r(•) Variance of (.) under r-randomness. 
Er() Expectation of (.) under r-randomness. 

ED(') Expected value of (.) when averaged over D. For example for D 
being point F, the average is taken over the point P. When D 
is some angle 0, the average is taken over the angle 0. 

f(l, 0) = V(K fl K(l, 0))/V(K) = the (normalized) overlap of K with its 
translated self K(l, 0). See Figure 1.3. 

= E9 (1(l, 0)) = the expected value of the normalized overlap vol-
ume when averaged over 0 distributed uniformly over all possible 
directions. 

W(I) = E9[S(K fl K(l, 0))]/S(K)] = the expected value of the normal-
ized surface content when averaged over all possible 0. 

11(1, F) The conical subsets of B(l, F) that fall partially outside K. See 
Figure 2.1. 

q(l, F) The total angle subtended at P by components of 11(1, F). 

F, (1) = F{L ≤ lr - randomness},r E [v, y, A] 

= 1Fr(l) 

fr(1) Probability density function of chord length under r-
randomness. 

fx;r(l) Probability density function of X-length obtained through r-
randomness where X E [L, R, T] and r E [it, i', A, 'y, a, /3]. 

13(1, F) The n-ball of radius 1 centered at P. 

= 27rf'2/[nP(m/2)], the volume or content of the unit n-ball. 
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Table 2.3: Notation 

Notation Description 

clK,G(l) = V[K(l,O) fl G]/V(K) = overlap function for embedded bodies. 
See Chapter 5. 

Surface of K. (Note that ÔB(l, F) means the surface of B(l, F).) 

Figure 2.1 illustrates the conical subsets 11(1, F) (shaded). In figure 2.2 w(l) for 

the rectangle is shown. 

K 

C(l,P) 

Figure 2.1: Conical subsets 11(1, F) that fall partially outside K (shaded) 
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K 

K(1, 0) 

Figure 2.2: Surface overlap function (w) for the rectangle 

This review will focus on presenting density functions in terms of the overlap 

functions 1Z.(l) and w(l) which are defined in Table 2.2. Part of this review requires 

a result of Kingman [51], [52] who has shown that 

f,(l) cc 1'f(l) cc 
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2.2 The Randomness Measure 

Consider a randomly-directed (uniform angular distribution) beam of parallel lines 

intersecting a convex body K. Choose (uniformly random) one of the lines hitting K 

and a ri-random chord has been generated (see Figure 2.3). Much of the theoretical 

work for /L-random measure was done by Kingman [52], [51] and Coleman ([12]). 

Figure 2.3: Demonstration of ft-random secants 

Enns and Ehlers [23] show (implicitly) that the probability density function of 

chord length may be written in terms of the overlap function l as follows: 

(2.1) 
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where primes denote differentiation with respect to 1. 

Coleman [12] proves an interesting theorem according to which si-random chords 

may be generated in a convex body K by embedding K in a large sphere K' and 

generating -y-random chords (see Section 2.5) for the sphere. The intercepts of the 

7-random chords of K' with K form (approximately) n-random chords of K. 

Theorem 2.1 Secants of a convex body K are 1u-random if when extended they are 

the 7-random chords of a sphere K' of very large radius r -+ co having K near its 

centre. 

This theorem is of practial importance because it is a very interesting way of 

relating 7-random chords with si-random chords. 
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2.3 The Randomness Measure i-' 

u-random rays are generated by selecting a uniformly random point in K and then 

forming the connecting line segment to 8K in a uniformly random direction. ii-

random chords consist of the union of a u-random ray with the ray in the opposite 

direction (the "forward" and "backward" rays; see Figure 2.4). 

U+V=L 

Figure 2.4: Illustration of u-random chords and rays 

Enns and Ehlers [24] show that the ray length density is given by 

fR;v(T') = -S'(r). (2.2) 

This result is easily established. In a convex body K, let a point P and a direction 

0 be chosen independently and uniformly random. Let R denote the length of the 
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ray from P to the boundary of 9K in direction 0. Then (see Figure 2.5) 

P(R≥rl0) 
V[K fl K(r, 0)]  

= 
V(K) 

= f(r,0). 

Averaging over direction yields 

P(R≥r)=f(r) 

which is equivalent to Equation (2.2). 

Figure 2.5: Relation of v-random ray length distribution to fl 

(2.3) 

(2.4) 

(2.5) 

The chord length density may be derived from the joint distribution of "forward" 

and "backward" ray lengths R and U: 

V(K(r, 0) fl K fl K(—s, 0))  
P(R r, U ≥ I 0) = V(K) 

V (K(r, 0) fl K(—s, 0))  

V(K) 
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V(KflK(r+ s, 0))  

V(K) 

= (r+s,O). 

Integration over 0 yields the unconditional joint distribution 

P(R ≥ r, U ≥ a) = f.(r + .$). (2.6) 

Since L = R + U, a change of variable results in 

f(l) = lcl"(l). 

The moments of v-random chords and rays are given by 

P00 ro I lkdF(l) = k(k + 1) I l' -1c(l)dl = (k + l)E(Rk). 
Jo Jo 

Special cases are: 

and 

P00 

E(L)=2. I f(1)dl, 
Jo 

(n+1)V 

- an 

E(R') = V(K)  

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

The latter two moments are clearly independent of the shape of K. Their deriva-

tion follows most easily from normalization in Equations (2.23) and (2.24) [see 

the next section]. It also follows from Equations (2.1) and (2.7) that E(Lk) = 

E(L 1)/E(L). Since Var(L) > 0 this shows that E(L) > E(L). 

Next consider the expectation of L 1. From Equation (2.7) 

E L' - d2c1(l) dl - d(l) ( )— j d12 - (. ) 
0 dl 1=0 
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This expectation becomes (Enns and Ehlers [23]) 

(2.13) 

If attention is restricted to the n-ball of radius r, this expectation simplifies to 

E(L') = C_i/(rC). (2.14) 

Equation (2.13) implies that E(L) = [E(L-')] -1 is maximized for the n-sphere. 

The following two theorems were originally conjectured by Enns and Ehlers [23]. A 

reference is given for the subsequent proof, but that proof is omitted here. 

Theorem 2.2 Over all bodies of unit volume, E(L) is maximum for the n-sphere. 

Proof. For a proof, see Schneider [86], Davy [17] or Santalo [84]. I 

Enns and Ehlers [23] concluded that the theorem would be true if for any convex 

K, the graphs of (l) for K and B, the unit n-sphere, cross only once (see Equation 

(2.9)). 

Theorem 2.3 Var (L) is minimum for the disc when compared with any other body 

K of equal volume. 

Proof. This follows from Equation (2.10) and Theorem 2.2. I 

Note that Theorem 2.3 refers to arbitrary dimensionality but Theorem 2.2 is 

restricted to the two-dimensional case. Therefore, for n ≥ 3, the Enns and Ehlers [23] 

conjecture remains unproved. 

This section ends with a note on averaging, which will be of use in the next section 

on A-measure. The equation P(R ≥ r) = 1Z(r) was obtained above as an average 
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over 0 of f(r, 0). But since the generation of a v-random ray requires two random 

variables (a point P and a direction 0), there are in fact two averages involved in 

deriving P(R ≥ r), one over 0 and one over P. [Above, the average over P is implicit 

in the use of V[K fl K(l, 0)]]. Switching the order of these averages results in a useful 

relation for (r). 

Let 1(x) denote the indicator function for which 1(x) = 1 if x ≥ 0 and 1(x) = 0 

if x <0. Let d(0, F) denote the distance from P to 1K in direction 0. Then 

P(R ≥: rio, F) = I[d(0, F) - r].  

Averaging first over F, then over 0: 

P(R ≥ r) = E0EpI[d(0, F) - r] (2.16) 

= Eon (r,0) (2.17) 

= f(r). (2.18) 

Averaging first over 0 requires E0I[d(0, P)—r]. To evaluate this in the two-dimensional 

case, surround P with C(r, F), a circle of radius r. The intersection of the cir-

cle with K defines angles , 2••• subtended at P (see Figure 2.6), for which 

I[d(O,P)— r] = 1. Let (r, P) = + +.... Then 

(r, P) 

2ir 
E9I[d(0, F) - ,r] = (2.19) 

For the n-dimensional case, let 4 denote solid angle. The corresponding result is 

P(R ≥ rIP) =   (2.20) 
nCn 

Therefore 

I 
P(R >,r) = (r, P)1 ncmj. (2.21) 
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This may be used to relate fl and : 

Ep€rc ['I(r,P)] = nCfl(r). 

C(r,P) 

Figure 2.6: Solid angles subtended at a random point 

(2.22) 
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2.4 The Randomness Measure X 

Recall that the measure ). arises whenever two points are selected at random from 

within K. Hence a chord of length L, a ray of length R and a segment of length T 

are defined. This is demonstrated in Figure 2.7. 

Figure 2.7: Illustration of .\-random chords and rays 

Using the fact that f,\(I) 0 lThf(l) (Kingman [52]), the distribution of chord 

length under .X-randomness is 

cn  
1 (n+i)V d12 

where the normalization coefficient follows from E11(L1). 

(2.23) 
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The distribution of segment lengths under )-randomness was considered for the 

n-sphere by Kendall and Moran (1963), and for general convex K by Kingman [52]. 

Enns and Ehlers [25] show that,.for arbitrary (that is, not necessarily convex) regions 

K, the probability density function of segment length can be written in terms of the 

overlap function (.) as 

fT, '1'  lTh_1 (l). (2.24) 
V(K) 

The distribution of ray length under )-randomness can be derived from the dis-

tribution of segment length. This distribution can, be written (see Figure 2.1) 

Ep1[V{C(l,P) fl K}]  (2.25) P(T < 1) = V(K) 

The distribution of ray length R is 

Ep1[V{fl(l, F) fl K}]  
P(RA <1) = V(K) 

It is clear that 

V(ll(1,P)) - V(fl(l)P) n K) = V(C(l,P)) - V(C(l,P) n K), 

which implies that 

(2.26) 

Ep1 [V(fl(l,P)) - V(C(l,P)) + V(C(l,P) fl K)]  
(RA < 1) = V(K) 

Substituting the obvious relations V(C(l,.P)) = Cl' and V(ll(l,P)) = l(l,P)/n, 

and (Equations 2.5, 2.20) 

leaves 

Ep1 {4'(l,P)} = nCP(R < 1) = nC(1 - 11(1)) (2.27) 

In C1(l) 
P(R<l)=P(T<l) 

V(K) 
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The density function through differentiation is then 

fR;A(1) = P(RA <) =  

Equations (2.2) and (2.28) show that 

(2.28) 

fR;(l) 0 1'fR;v(1). (2.29) 

With the distribution for ray lengths under A-randomness, it is an easy task to 

calculate moments. For example, 

E(R) = (c)C  ro l' -1 c(l)dl. 

In particular, when k is zero, 

J 00 l"'1(l)dl = V(K)  
ncn . 

Moments for A-random chords can also be related to moments of segment lengths. 

Such a relationship is given by the equation 

E(L') = (n+k)(n+k+ 1)E(Tk) 
n(n+1) 

(2.30) 

The following theorem demonstrates that A-random rays have greater mean than 

v-random rays. This fact will will provide a useful check on simulation results when 

actual distributions are not available for comparisons. 

Theorem 2.4 E(R,) > E(R). 

Proof. Using the inequality 

E(X 1) ≥ E(XTh)E(X) 



37 

and Equation (2.29), it is possible to write 

— E(R) 

≥ E(R,,) 

(2.31) 

(2.32) 

where equality holds only when K is just a single point. For any K of interest, 

therefore, this theorem holds. I 

Similarly, the relation f.x(l) oc l'f(l) oc 1 1f,t(l) implies 

E,1(L) ≤ E(L) ≤ EA(L). (2.33) 
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2.5 The Randomness Measure 

-y-random chords of K are defined as follows. Choose a uniformly random point P 

in the boundary 9K and a uniformly random direction 0. The intersection of the 

line through P in direction 0 is then a 'y-random chord of K (see Figure 2.8). 

Figure 2.8: Sample chord under -y-randomness 

Paralleling the derivation of the distribution of v-random rays, the 0-conditional 

distribution of 'y-random chords satisfies 

P(L> 110) = S(K(l, 0) n K)  
S(K) 

(2.34) 

where S(.) is the surface content of (.) and K(l, 0) is the i-translate of K in direction 

0. The unconditional distribution is then 

E9[S(K(l, 0) n K)]  
F)(L> 1) = S(K) (2.35) 
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which shall be defined as the surface overlap function of K (see Figure 2.2). The 

probability density function of 'y-random chord length is thus 

f.,(l) = —w'(l). (2.36) 

As was the case for u-measure, the averages over P and 0 may be done in either 

order which results in the relation 

EpEaJ-{4 (l,P)} = Thcn ---w(l), 

or, equivalently, 

Ry(L> 1) =  EpEarc{(l,P)}. 

Moments of chord length are easily shown to be given by 

E_(Lk) = Ic . j 00 I'-'w(I)dl. (2.39) 

Since it can be shown (see Equation (2.45)) that 

(2.37) 

p00 2V(K) 
i 'w(i)di= 

the following shape-independent relation holds: 

E(L) = 
Cn 

(2.38) 

(2.40) 

(2.41) 
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2.6 The Randomness Measure a 

Recall that under a-randomness, both rays and chords can be generated by choosing 

points P and Q independently and uniformly random in K and OK, respectively. 

The corresponding ray can be extended through P to form a chord. Figure 2.9 

demonstrates rays and chords under cE-randomness'. 

Figure 2.9: Illustration of a-random chords and rays 

The distribution of a-random rays can also be written in terms of the surface 

overlap function w(l). Enns and Ehlers [24] show that 

ncn  I r 1w(r)dr, P(R <1) 2V(K) Jo 

and the ray length density is therefore 

fR;c(1) = 
2V(K) 

(2.42) 

(2.43) 
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Now moments of Ra can be derived as 

nC too 

E(R) = 2V(K) Jo ln+k_lw(l)dl 

for which a value of k = 0 gives the relation 

1 00 i w(i)di = 2V(K)nCn 

(2.44) 

(2.45) 

This establishes Equation (2.40). 

Chords under a-randomness are formed by the line through P E K and Q E OK. 

The conditional distribution of P(L ≤ lQ) may be derived as follows. Consider the 

intersection of the ball B(l, Q) with K. See Figure 2.10 where Q) + 2(l, Q) + 

= (l, Q) is the total angle subtended at Q as shown. Then 

l(l  V[B(i, Q) n K] = VEII(l, Q) n K] + Q)  
72 

(2.46) 

is a partition of the intersection volume of B(l, Q) with K. Dividing by V(K), the 

first two terms can be interpreted as probabilities: 

Pc(R<lIQ)Pa(L<iIQ)+ 1-(I (1,  Q)  
nV(K) 

Averaging over Q E OK and using Equation (2.38) yields 

Pa(R ≤ 1) = Pa(L < 1) + CnIn 2V(K)11> 1), 

from which the probability density function of a-random chord length is 

cnin  
fa(1) = 2V(K)W, 

It is also noted that f(l) oc imf..,(i). 

(2.47) 

(2.48) 

(2.49) 
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Figure 2.10: Representative chords under a-randomness 
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Moments of a-random ray and chord length and 'y-random chord length are then 

related by 

Ea(Lk) = 12+  E(Rk) =  C.  E 
n 2V(K) 

It follows (cf. Theorem 2.4) that 

(2.50) 

Ea(L) > E(L). (2.51) 

2.7 The Randomness Measure /3 

A 18-random chord is defined as the line segment connecting two independent uni-

formly random points in 0K. Figure 2.11 illustrates the creation of a ,8-random 

chord. 

To derive the chord density under /9-randomness, Ehlers and Enns [22] proceed 

by noting the density can be obtained as a limit of A-random segments. Recall 

Equation (2.24) for the distribution of segment lengths under A-randomness. Also 

recall that Enns and Ehlers [25] show that this holds for arbitrary (that is, not 

necessarily convex) regions K. Therefore, if K is a shell of width Lx around K, 

then choosing two points in Is is equivalent to choosing two points in a non-convex 

region (see Figure 2.11). 
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Figure 2.11: Illustration of /3-random chords and rays 
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Therefore, denote the distance between two points P and Q chosen according to 

.A-randomness in K1 as T, which clearly has as distribution Equation 2.24. As Lx 

approaches zero, T converges to the fl-random secant length, L, that is 

urn P,(T ≤ 1) = P,3(L ≤ 1). (2.52) 

Since the distribution of T is known, 

fL;p(l) = Jim fT; (l) (2.53) 

= mCl'' lim   -o V(K1))' (2.54) 

where V(K1) = S(If)AX + O(AX)2 implies that 

fL,(l) - flCn (S(K))2 l- €(l), (2.55) 
-  

with €(l) defined as 

- lim E9[V(K1(l,O) n K)] 256 
(x)2 ) 

Note that normalization of the chord density yields 

o 00 f l"-1 €(l)dl = (S(K))2 . (2.57) 
ncn 

For bodies whose boundary 0K contains fiat portions (e.g. polyhedra, hemispheres, 

cylinders), the above derivation permits chords which lie entirely within OK. For 

such bodies, it may be desirable to restrict points P and Q so as to form chords 

which contain interior points of K. 

2.8 Inequalities and Moment Relations 

For several distributions relationships exist between moments of the ray- and chord-

length distributions. For example, moments may be related by some inequality as in 
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the following theorem and conjecture. 

Theorem 2.5 E(R) <E(R) for any n and K. 

For a proof, see Enns and Ehlers [24]. The following conjecture remains unproved. 

Conjecture 2.1 E(R) <E(R). 

Moment relations involving equalities are given throughout the Enns and Ehlers 

papers. Enns and Ehlers [22] gives a summary of the moment relations, which is 

summarized here in Tables 2.4 and 2.5. Moment relations depending only on S(K) 

and V(K) are provided in Table 2.4. 

Table 2.4: Moment relations between densities depending only on V(K) and S(K) 

Moment Relations 

EP, (R7) = = V(K)/C 

E(L") = (EA(L))' = (n + 1)V(K)/C 

E1(LTh) = (E(L)) 1 = 2V(K)/C 

EA (L) = (E(L')) 1 nCV(K)/(C_1S(K)) 

= (EA(L 1)) 1 = n(n + 1)(V(K))2/(C_1S(K)) 
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Table 2.5: Moment relations between densities 

Moment Relation 

E(Km ) = 

E),(Lm) = 

E(Lm+n) 

m+n+1 

E(Lm+n+l) C-IS(K) 

n(m+n+1) CV(K) 

EA(R-)V(K)  
cm 

E(Lm)(n + 1)V(K)  

C(n+m+1) 

EA(Tm)(n + m)V(K)  

cnn 

2(n-I-m)V(K)  
E(Rm) 

7Cn  

= 2V(K)E(Lm) 
cn 

2.9 Summary of Fundamental Relationships 

Table 2.6 summarizes the fundamental relationships of the ray, chord and segment 

densities with the overlap function. These relationships will be used for the two-

and three-dimensional ovoids to be discussed in Chapters 3 and 4. Note that primes 

denote differentiation with respect to 1. 
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Table 2.6: Relationships of pdfs to 11(1) 

Density Relation to f(1) Equation 

fR;v(1) f'(l) (2.2) 

fL;zi(l) = lfl"(l) 

= = nCV(K)  
C-IS(K) 

fR;A(1) = _CnlTh v(I ) 

fL;A(l) = Cfll  + 1)V(K) 

(l)  
fT;A(l) = 1V(K) 

W(I)  
= 2V(K) 

fL;c(l) = _Cfll WI (1)  
2V(K) 

fL(l) = —w'(l) 

ncn  
(S(K))2 

(2.7) 

(2.1) 

(2.26) 

(2.23) 

(2.24) 

(2.43) 

(2.49) 

(2.36) 

(2.55) 

Primes denote differentiation with respect to 1 
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Given the direct proportionality between the overlap function Q and the )¼-

random segment density fT;A (Equation (2.24)), consider the overlap function in 

terms of the segment density: 

- V(K)  

ncnln_1 fT;A(1). -  

An estimate of the overlap function is thus 

A(l) = V(K) t JT,,\(l))non  l-

(2.58) 

(2.59) 

An estimate of the first derivative of f(l) is then 

= V(K)  nCn I l.%\(l) - (;:- 1)JT,A(l) }, (2.60) 

with the second derivative of f(l) having as estimate 

- V(K) J l2J1,(l) + (2 - 2n)lf ,A (l) + n(n - 1)JT,A(l) (2.61) -  non 1\ ln+1 J. 
In Table 2.6, simply replace fl(l) and its derivatives by the estimates above, and 

what remains are estimates of the densities in terms of the estimated segment density 

fT;(l). These estimates are given in Table 2.7. 

Tables 2.6 and 2.7 provide two important methods of generating densities for 

'u-, )- and v-measures. By exploiting the relation between , f and fx;r, for 

X E [L, R] and r E [, ii, A], an estimate for either n or fT;A can be transformed into 

an estimate for the other densities. This is exactly what is done in Chapters 3 and 

4 for various two- and three-dimensional ovoids, respectively. 

Note also the relation between w(l) (Figure 2.2) and the a- and 'y-random den-

sities (see Table 2.6). An estimate of of w or fR;a, which is proportional to w, gives 

estimates of fa and f'r 
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Table 2.7: Relationships to JT;A(l) 

Density Relation to fT;)(l) 

V(K) F(n -  1).fT - 141 
• —ncL 

fL,1. (l) - V(K) 1l2/ + (2 -  2m)l.f + n(n - 1) /Ti 

• — mont 1  In 

(72 - 1)fT - if.i 
fR;A(1) = I I 

I 72 j 

1l2j+(2_2n)lf+m(m_ 1)/Ti 
fL;A(1) = n(n+1) 

- [V(K)]2  1l2/ + (2 -  2m)lJ + n(n -. 1)/Ti 

- C-IS(K) t ] 
Primes denote differentiation with respect to 1 



Chapter 3 

Ovoids in Two Dimensions 

Recall from Chapter 1 comparisons between the new methods n and fT;), and the 

old approach of direct simulation: 

Estimate via direct simulation 

versus 

Estimate via 1 method 

versus 

Estimate via fT;A method. 

In Chapter 2, theory was developed that provided us with the necessary relationships 

that allow generation of chord densities with measure in [ii, A, 71] and ray densities 

with measure in [A, v] from fT;A and D (see Tables 2.6 and 2.7). Note that the direct 

relation between n and fT;A (Equation (2.24)) allows us to use either fl or as an 

estimate of the other. Note also that ray densities (v, A) depend on first derivatives 

of Q or fT;A, while chord densities (, v, A) depend on second derivatives. 

Therefore, calculation of derivatives of either Q or fT;A is required. For fT;A this 

requires the use of nonparametric density estimates; for Q this requires the use of 

splines. Both splines and nonparametric density estimates are necessary because 

they provide differentiable estimates of the functions. Ovoids considered include 

arbitrary polygons, circles and ellipses. 

51 
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3.1 The fT;,\ Method 

The fT;A method employed the generation of 10,000 independently and uniformly 

random pairs of points P and Q in the ovoid K. From each of these pairs of points 

a segment length T was calculated (a histogram was then produced by dividing the 

observations into 40 bins of equal width). The form of density estimation most 

statisticians use as a quick and simple tool is the histogram where the frequency 

of observations over some particular interval with specified bin (or window) width 

is measured. However, a histogram is not differentiable. Therefore, several other 

methods have been developed that provide differentiable estimates of the function 

(in this case, fT;A, although these estimates can apply to finding smoothed estimates 

of any directly simulated density). All of these methods deal with using random 

observations, and include the following: 

(1) Use splines as follows: 

Fitting a spline through the midpoints of the histogram bins. 

• Forming the empirical distribution function and estimating with a spline 

(such a method is appealing because a spline should be ideally suited to 

a monotonically increasing distribution function). 

• Averaging the histogram by shifting it some small positive amount. An 

estimate of the density at a point is then an average of the values of 

each of the shifted histograms at that point. Fit a spline through the 

corresponding averaged points. 
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Splines were not used for the fT;A method in this thesis. They are mentioned 

because they are computationally appealing. 

(2) Use nonparametric density estimates (NDEs). Such estimates include kernel 

smoothers and orthogonal series estimators (to be defined below). [A good 

review article on different nonparametric density estimates is Izenman [45]. 

Other references include Buckland [7], [8] (includes code) and Breiman and 

Peters [6] (extensive comparison of four nonparametric density estimators).] 

(3) Use local regression smoothers (LRSs). These estimates fit low-order polyno-

mials locally, and were first considered by Stone [93] and Cleveland [11]. A 

heated discussion occurs over the merits and pitfalls of NDEs and LRSs in 

Hastie and Loader [39]. LRSs have been largely ignored, including in this the-

sis, but are included here because we believe they may not be susceptible to 

the same problems as NDEs (to be discussed later). 

NDEs used in this thesis can be split into two categories - orthogonal series 

estimators and kernel smoothers. Both of these methods use the actual observations 

(like LRSs) on T to obtain an estimate of the segment density at x0, fT;A(xo), by 

weighting observations closest to x0 with the largest weights. 

3.1.1 Orthogonal Series Estimators 

In an orthogonal series estimate (see Schwarz [87]), f is estimated by the coefficients 

of its series expansion. Define (x) to be these coefficients. Then a natural unbiased 
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estimator for (x) is given by 

Iv = 

A density estimate is then 

I(s) = (3.1) 

where ) are weights and r. is a cutoff that truncates the series. Both the A, and ic 

determine the amount of smoothing. That is, as r. increases, the amount of smoothing 

decreases and the faster the weights A,, go to zero, the more smoothing. r. was chosen 

by trial and error, i.e. ic was changed to obtain an accurate estimate that visually 

was closest to the true distribution where that was known. A value of ic of 10 or 15 

was in all cases acceptable. 

The orthogonal polynomials are convenient because simple recurrences can be 

derived for their derivatives. In this thesis, the following normalized orthogonal 

polynomials were considered: Hermite, Fourier, Legendre, Chebychev (first and sec-

ond kinds) and Laguerre. However, the normalized Hermite polynomials were better 

than their counterparts because they fit the segment density fT;A much closer. How-

ever, they had two distinct disadvantages. First, when ic is even moderately large, 

estimates using the orthogonal polynomials require a large number of computations. 

Second, even the Hermite polynomials, the best of the orthogonal polynomials, were 

poor in comparison to the kernel smoothers. 

3.1.2 Kernel Smoothers 

The kernel estimator of a density function (see Silverman [90]) is defined as 

f = 1 'n K (x — X ), 
_nh E h 
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where K is the type of kernel used, h is a window or bin width, and n is the number 

of observations. The kernel K must satisfy K(x) ≥ 0 and 

JK(x)dx = 1. 

Several kernels K(x) and their relative benefits and shortcomings are given in Ta-

ble 3.1 below. These are the kernels that were used in this thesis. 

A slight modification to the kernel approach yields the adaptive kernel. An 

adaptive kernel is a two-stage process, where an initial kernel estimate is improved 

in a second kernel estimate. Calculating a typical adaptive kernel would involve 

(1) Estimating the density via kernel method. 

(2) Computing 

where 

logy = -  log J(X) 

and c e (0, 1) is a sensitivity parameter. 

(3) Calculating the adaptive kernel estimate as 

!*= .n TAT 2K(thAj 2). 

Adaptive Kernels seemed to do no better or worse than regular kernels, and their 

computational difficulty (they require fitting a kernel twice) left them undesirable. 
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Table 3.1: Types of kernels used 

Kernel K(y) Notes 

Gaussian 
e_V2I2 

Initial fits and derivatives 
were good. 

Cauchy 
1 

Initial fits poor. 
ir(l+y2) 

Sine 
1 

Initial fits poor. 
(siny/2) ' 

2  
Epanechnikov 3 Y•) 11V1"V5- Initial fits and derivatives 

were good; however, the 
Epanechnikov kernel 
is similar in fit to the 
Gaussian kernel and its 
second derivative is a 
constant. The Gaussian 
kernel then becomes the 
kernel of choice. 

(. - 
4 VF(5) 5 

Polynomial 

rs2B(8+11Ir) 

' (1— I ii IT 11Y1<1 

r 

The biweight kernel 
(r = s = 2) fit the 
initial density well but its 
derivatives were poor. 

r>O,s≥O 

Logistic Initial fits poor. 
/3 [1 + e/1]2 
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Kernel smoothers or estimators had the advantage that derivatives were easy to 

calculate. However, kernel smoothers misbehaved in the tails of the distributions 

(i.e. bias was introduced), and when substantial curvature effects were present, this 

bias would also occur (see Hastie and Loader [39]). [LRSs are a proposed alternative 

to these kernel smoothers.] 

3.2 The Q Method 

The overlap function or Q method involved translating a polygon (not necessarily 

convex) for some length 1 and averaging over 0 E (0, 2ir). In all cases, 0 was in-

cremented over 400 equal intervals, 1 over 40 intervals from zero to the maximum 

chord length attainable. Thus 40 x 400 = 16,000 calculations were required. To 

estimate circles and ellipses, therefore, the polygon program could only be used in 

an approximating sense. The nodes were thus those lengths 1 for which the overlap 

function was calculated. Through these nodes a spline was fit. Simple cubic splines 

were used. 

The program that computes, deterministically, the overlap function for arbitrary 

polygons is described in detail in the next section. Splines are naturally suited to 

fitting f2, since the Q method generates observed overlaps at each of several nodes 

through which a natural cubic polynomial is easily fit. Splines are also easy to 

differentiate, since they are polynomials. Thus, once a spline has been fit to Q, it is 

a simple task to obtain its derivatives. 

Several types of splines were considered in this thesis. They include 

1. Histospline - used exclusively for histogram data, these splines have the added 
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condition that areas from one node to the next must match the area in the 

corresponding bin of the histogram. Histosplines are considered in Spth [92]. 

Histosplines have potential application with i(l) only in that densities that 

depend on 11(1) could be required, through conditions such as those imposed on 

histosplines, to have unit area when integrated over their respective supports. 

Currently, densities derived from f2(l) and its derivatives are not required to 

be densities in the sense that they integrate to one. 

2. Weighted spline - ideal in that they are best suited to fit functions which vary 

considerably. Since many of the chord densities have discontinuities, weighted 

splines are more likely to smooth less in areas where jumps occur. Weighted 

splines were developed by Salkauskas [83] and code was provided by Bos [5]. 

3. Natural cubic spline - fits a piecewise cubic polynomial through adjacent 

nodes such that the approximating polynomial is then twice differentiable. 

Reliable computer code for the natural cubic spline is given in Press et al. [76]. 

Of these types of splines, only the natural cubic spline was actually used for the 

graphs reproduced in Chapters 3 and 4. Code was modified from Press et al. [76] to 

produce derivatives. 

Note that the approaches used to differentiate the curves produced in the fT;A and 

the 0 methods differs greatly. However, this is easily explained since fT;A involves 

random observations and fl(l) does not. Comparisons between the two methods then 

becomes even more interesting. 
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3.3 Methods of Comparison 

To compare the distributions generated by the three methods, fT;A and 92 and 'direct 

simulation', we considered only qualitative measures. Such measures included visual 

closeness, computer time (roughly) and computational ease. 

The easiest way to compare the above three approaches is graphically. Any 

differences between the three methods should be apparent on graphs of the density 

function. Therefore, graphs have been reproduced for the chord densities fL;, x E 

{ p, v, )} and the ray densities fn, x E {v, )}, which show a histogram, an actual 

(analytical) curve where available, a curve based ,n the density as a function of Q, 

and the best curve based on the density as a function of fT;.>. Best in this case 

means that more than one kernel and more than one orthogonal series estimator 

were calculated, and the one that appeared (visually) to be closest to the actual 

curve was taken to be the best estimate. Note that in three or more dimensions, the 

curve based on the density as a function of 1 is not available, since no program for 

arbitrary approximating polyhedra is yet functional. 

Other methods are possible to measure the relative success of the fl, fT;,\ or 

direct simulation methods as generators of a distribution. These include Kolmogorov 

goodness-of-fit tests using measurements at the nodes or mean absolute deviation. 

Recall, however, that this thesis proposes to test the feasibility of the P or the 

fT;A methods in comparison with direct simulation. Quantitative measures should 

be incorporated into future work and are important; however, this thesis has not 

included them. 

For the chord densities fL;, x E {a, 'y, 13}, and for fR;c only results for direct 
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simulation and nonparametric fits based on direct simulation were performed. Note 

that not all graphs are reproduced in this thesis. 

Actual computer code is reproduced in Appendix A for the polygon program. 

Other programs, including the ellipse surface-randomness programs, where original 

work was required, are available from the author upon request. 

3.4 Polygons 

Generating chord-length distributions for arbitrary polygons is important because 

analytical results for non-symmetric polygons are difficult to obtain. For this rea-

son, we found it necessary to extend comparisons between the f, fT;A and direct 

simulation methods to arbitrary polygons. For this thesis, this has required the de-

velopment of programs that determine the overlap function (the polygon program) 

and the segment density for arbitrary polygons. Results are established for triangles 

and rectangles, polygons for which results are known, as a check on the software. 

3.4.1 The fT;A Program 

Recall that )-random segments are generated through two points chosen indepen-

dently and uniformly random in the interior of the ovoid K. For arbitrary polygons, 

choosing two points inside requires choosing two points in a bounding box (see Fig-

ure 1.2) and then checking if these points are internal. 

To ascertain whether a point is internal, Preparata and Shamos [75] (c. 2) provide 

the following algorithm. For a point Q = (qi, q) in a convex polygon K, the wedge 

in which it lies (see Figure 3.1) is between the rays given by Pi and P+1 through 
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some known internal point Z if and only if 

q1 q2 1 

zi z2 1 

X1 Yi+1 1 

The point Q is then internal if and only if 

<0 and 

1 Yi+i 

q1 q2 1 

> 0. (3.2) 

> 0. (3.3) 

This algorithm is very useful, not only for the purpose of determining the segment 

length distribution for arbitrary polygons, but also for the polygon program. If 

we choose a point inside some polygon K, then by determinants we can determine 

whether or not it lies inside the body K. 

= (Xi+i,yi+i) 

F = (Xj,yj) 

Figure 3.1: Testing for interior points for a polygon 
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3.4.2 The 1 or Polygon Program 

For two-dimensional bodies with smooth boundaries, a program has been devised and 

developed that calculates the overlap function based on an approximating polygon. 

The following approach differs from one in which a computer science philosophy 

is applied by using pixels or voxels in two and three dimensions, respectively. A 

pixel or voxel approach was considered for calculating the overlap function, but not 

employed. The main difference between a computer science and the deterministic 

approach that we employ is that the computer science approach is at machine level 

(i.e. it involves approximating a body with pixels on a visual terminal) while the 

deterministic approach is much more user-guided (i.e. it involves solution of linear 

systems). 

Instead, a program that takes an arbitrary polygon K, translates it to form 

K(l, 0), and then calculates the overlap volume from the coordinates of the convex 

polygon which forms the intersection of K and its translate was developed. This 

program calculates the overlap function for arbitrary polygons. 

The algorithm employs the principle that for two overlapping convex polygons 

the region of overlap is also a convex polygon whose vertices can be of three types. 

First, a vertex can be a point of intersection of the two polygons. There will always 

be two points of intersection between two overlapping polygons. Second, a vertex 

may be a vertex of the original polygon that is interior to the translated polygon. 

Third, a vertex may be a vertex of the translated polygon which is interior to the 

original polygon (see Figure 3.2). Note that in this figure, the shift is somewhat 

special in that it happens to be parallel to two edges. Therefore, some cases exist 
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where there is conflict between identifying when a point is internal or when it is 

an intersection (Stone's algorithm, discussed below, can automatically remove the 

inconsistency). 

-' 

- Original 

- - - Translate 

• • Translate 

x - Intersections 

o - Interior to Translate 

• - Interior to Original 

Figure 3.2: Classifying points for the polygon program 

The polygon program's algorithm uses the fact that points are only of these three 

types and determines (see Figure 3.2): 

(1) the points of intersection of the polygon with its translate, 

(2) the points interior to the polygon which are vertices of the translate, 

(3) the points interior to the translate which are vertices of the original. 

This set of points forms the vertices of the resulting overlapping polygon. Atten-

tion then moves to sorting the resulting set of vertices into counterclockwise order. 

Finally, the area of the overlapping polygon may be computed according to the the 

procedure of Stone [94]. 
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Stone [94] writes an algorithm for the area of a polygon in terms of the coordinates 

of the vertices. This fdrmula is 

2 

X1 xn_1 xn 

Yi Y2 ... Yn-i Yn 

where is interpreted as the sum of positive products of downward-to-the-

right diagonals (x1y2 +...) with negative products of upward-to-the-right diagonals 

(—Y1 X2 + . . .), including wrap-around for (x, yn). Figure 3.3 illustrates this for a 

polygon with four vertices (xi, y), i = 1,2,3,4. This procedure, it should be noted, 

only works when the points are arranged in a counterclockwise (or clockwise) fashion. 

Exterior 

In Figure 3.3, 

Interior 

Figure 3.3: Polygonal area 

A = (A1.-i-A2)—(A3-i-A4) 

1 Xl 2:2 

= +...+ 
Yi 

2:4 Xj 

Y4 Yi 
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Recently, Strang [96] reaffirmed this result and added one based on boundaries with 

curvature. This may have some use for non-polygonal convex shapes. [Also interest-

ing is Cowan's [16] suggestion to consider the distribution of intersection points of 

the polygons when the polygon K is translated randomly a distance 1 in direction 0. 

This is a simple modification of the polygon program which can be implemented in 

future work.] 

3.4.3 Results For The Triangle 

For the equilateral triangle, the overlap is difficult to calculate. Below, the overlap 

function will be given. But first, surface randomness for bodies with linear boundaries 

(polygons) can be described for the triangle and easily generalized for arbitrary 

polygons. 

Take the perimeter of the triangle, p, and choose a random number in the interval 

(0, p). Convert this number into a coordinate by going along the boundary until 

reaching the required distance. This has to be done by segment - that is, consider 

an equilateral triangle with sides each of length one and with starting point one of 

the vertices. If the random number chosen is 1.3, the point lies on the second side 

from some starting vertex, and the distance formula combined with a check on the 

coordinates in relation to the vertices returns a point on the surface (perimeter). See 

Figure 3.4 for an illustration. Points chosen for /3-randomness were required to be on 

different segments, but this was not essential. Including chords that comprise only 

boundary points is possible, but changes the analysis slightly. 

Figure 3.4 demonstrates surface-randomness. As a starting point take the vertex 

labelled o. Proceed along the sides of the triangle so long as the perimeter travelled 
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does not exceed the random number chosen. In this figure, then, proceeding past * 

to • yields the random point on the surface. Actually, the distance along this side is 

known, so the distance to any of the nearest vertices is known, and two unique points 

exist at this distance from the reference vertex. A check that the point marked by o 

is not on the surface of this triangle gives . as the only candidate. This algorithm is 

easily extended to arbitrary polygons. A distribution involving surface-randomness 

for the equilateral triangle is given in Figure 3.5. 

Figure 3.4: Surface Randomness for the Triangle 
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For the equilateral triangle, Enns, Ehlers and Stuhr [22] give 1(l) as 

2p + ( +4) ,2 1 

= 2 FT)'° 
+3/p2_1_(2+p2)sec_1(p) 1≤p≤2/v', 

and w(l) as 

7r 7r 
o≤p≤l 

= _p+2/p2_1_2sec_1(p) 1≤p≤ 2/V, 

where p = i/a, a being the height of the triangle. These known results for the 

equilateral case will provide a useful check on arbitrary triangles. The following 

triangles were considered here: right triangles with angles ir/6 and ir/4, and isosceles 

triangles with common angles ir/6, 5ir/12 and ir/12. Each triangle is assumed to have 

unit area. A graph of the segment length density derived from Q for these triangles 

is given in Figure 3.6, and a graph of the relative overlap functions ) for the triangles 

is given in Figure 3.7. 

Figures 3.8, 3.9, 3.10 and 3.11 demonstrate the accuracy of the method once 

again. Using the polygon program, fits based on the derivatives of the overlap func-

tion are closer than fits based on the derivatives of the segment density. However, the 

segment density looks promising in each of the cases, and is a reasonable estimator. 

0 
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surface-randomness 
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Figure 3.6: fT;,\ for various triangles from Q program 
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Figure 3.7: f(l) for various triangles from Q program 
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Figure 3.8: fR,, for the equilateral triangle - estimate via Q method versus fT;), 
method 
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Figure 3.9: fR, for the equilateral triangle - actual curve versus 1 method versus 
fT;A method [actual curve and Q method are indistinguishable] 
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Figure 3.10: fL,u for the equilateral triangle - actual curve versus Q method versus 
f method 



74 

1.2 -

(X) 1.0-

0.8 -

0.6 -

0.4-

0.2-

0.0 

/ 

I 

00 0.5 10 15 20 

Chord length 

Symbol 

Actual 

From c(l) 

From fT,A 

Figure 3.11: fL,,\ for the equilateral triangle - actual curve versus Q method versus 
method 
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3.4.4 Results For The Rectangle a x b 

The overlap function for the rectangle as given by Ehlers [21] is 

ir 1 1 12 
l;a,b)=----.+-- O<l<a 

1 \/l— a a 
=—cos'(a/1)--+  a<l≤b 

a a 

= sin 1(b/l) - cos' (a/i) + \/12 - a2 
a 

+ b 2ab 
\/12 - b2 (a2 + b2 + 12) 

b < 1< -\,'a2 +b2. 

Horowitz [43] also calculates the 'y-random chord distribution as 

fLçy(l) (a+b) O≤l≤a 

ab  v'12—a2 ] 
(a+b)1 [ ll2_a2 I +1 a<l≤b 

4 1 ab  12—a21 

= (a+b) I IV12 — a2 1 j 
I ab  /l2_b21 

+(+b) LM2_b2 I b<i<a2+b2. 

For the rectangle, convergence to a thin plate was checked by taking lengths a 

and widths b such that ab = 1 (unit area). The length a was decremented from 1 by 

.1 to .1 to illustrate changes in both n(l) and fT;A. Results are shown in Figures 3.12 

through 3.16 for various rectangles. Both methods provided fairly decent estimates, 

although the overlap function approach was better each time. For the v-random 

chord density with length 0.2, neither method was suitable. An estimate from f(i) 

shot off to infinite close to zero, and the estimate from the segment A-random density 

was useless. 

The S1 method provides an initial estimate of the segment density that is very 
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close to the actual curve (see Figures 3.12 and 3.13). This explains why fits are 

better for distributions requiring derivatives. For example, in Figure 3.14, the fT;A 

method gives an estimate with right tail bias, although both methods provide decent 

estimates. In Figure 3.15 the fT;A method cannot pick out the infinite jump in the 

density at the point of discontinuity. In Figure 3.16 neither method gave an adequate 

estimate - perhaps the dimensions of the rectangle differed too greatly. 
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3.5 The n-Sphere - Special Case: Circular Ovoid 

Results for this "two-dimensional" body are presented here only because the circle 

was one body for which simulations were performed and overlaps calculated, but the 

theory is most presentable in its general form. 

3.5.1 Theory 

For the n-sphere of radius a, Enns and Ehlers (1978) have determined the overlap 

volume, whenever 0 ≤ 1 ≤ 2a, as 

(l) = 2C_1 1 dx(1 - x2)(_1) _Cn_1B + 1 1\ 
C,,. JI/2z C,,. 2 '2)' 

(3.4) 

where a = 1 - (l/2a)2 and B,,, (p, q) is the incomplete beta function. 

In particular, for u-randomness, the distribution of chord lengths reduces to 

Cn 12 / 12 \ (m-3) 

(ri - 1) (1 - 

0 otherwise. 

0 < 1 < 2a 

For distributions requiring (l) and w(l), Enns and Ehlers have derived the ex-

pressions 

and 

+ Cn-1 w(l) = f(l)  
nCn 

(1 —)'\ ( 2 (n-1)/2 

a) 
(3.5) 

" 1 -3)/2 ( (1 \ a  
6(l) = (n - 1)C_1  - I\2a) 2 ) (n (3.6) 

These expressions give the entire spectrum of segment, ray and chord length 

distributions. These results, derived by f(l) above and the results of Chapter 2 

(Table 2.6), are given in Table 3.2. For other references to analytical derivations for 

the circle, see Horowitz [43] and Coleman [12], [15]. 
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Table 3.2: Actual distributions for the unit circle 

Function Expression Function Expression 

2 sin—' (1/2) iJi - 12/4 
(l)= 1— 

lv 4R 

2 

l/1 - 12/4 
212 Vi -  12/4 

= 
lv 

12 

fL;v 2r1— 12/4 

12 

fL;a = 
2lv1 - 12/4 

1 
fL;O=   

- 12/4 

fT;A= 2l(l) 

w(l)= 1 2s1n'(l/2)  
T 

fR;o! 
21 sin-'(1/2)  

1 
iv 

2,/1 - 12/4 

fR;zi=   
iv 

1 
fL;,z 

4J1 - 12/4 

1 

7r VI - 12/4 

14 

fL; 
67r VI - 12/4 
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3.5.2 Results for n = 2 - Circle 

Direct simulations for the unit circle were performed for every distribution given in 

Table 2.6. In addition, for f, x E [\, ft, ii] and for fR;3J x E [), ii], estimates based 

on both the 11(1) and fT;,x methods were generated. 

Interior point randomness was simulated by simply choosing a point in the square 

[-1, 1] x [-1, 1] and checking for x2 + y2 < 1. Surface randomness required choosing 

an angle 0 in the interval (0, 2ir). The subsequent point (cos 0, sin 0) was random on 

the surface of the circle. 

Two polygonal approximations were considered. They are 

(1) Estimate the circle by choosing points equally spaced on the unit circle. This 

gives an estimate of the true f(l) by incribed polygons whose volume is always 

less than the volume of the circle. With a sufficient number of points, however, 

the approximation should be close enough to the circle to provide reasonable 

estimates. 

(2) Estimate the circle with regular polygons of area ir. First the equilateral tri-

angle, then the square, then the pentagon, and so on, up to the undecagon 

or the dodecagon. [This approach standardizes with respect to area. A regu-

lar ri-gon of area 'ir can be generated by taking n points on a circle of radius 

J27r/ sin(27r/n), equally spaced.] 
To illustrate these approaches, both were applied to simulation 'of the segment den-

sity fT;A. Figure 3.17 demonstrates convergence under the first, inscribed polygon, 

approach. Figure 3.19 demonstrates the second, regular polygon approach, starting 

at the equilateral triangle and ending with the hexagon. Convergence is swift in both 



85 

cases, and relatively few points should approximate the circle accurately. The first 

approach was used in the remaining simulations because it was easier to implement. 

Now that 1(l) is established in accuracy, fT;A can be analyzed. In Figure 3.18 a 

comparison between 1(l) generated with 40 points and the segment density kernel 

smoother as fits to the actual fT;.\ are given. Note that the overlap function is here 

slightly better than the segment density for estimating other densities for which 

first and second derivatives are required that depend heavily on the initial estimate. 

However, even slight variations can cause severe fluctuations in estimated derivatives, 

and this explains why the fl approach becomes a better estimator of distributions 

requiring derivatives. 

It is no surprise, then, that fR;v (Figure 3.20) and fR;,', (Figure 3.21) are best 

estimated by the overlap function (polygon program). However, the fT;A method 

exhibits bias in the left tail, as does the fl method. For the chord densities under ii-, 

p-randomness (Figures 3.22 and 3.23 respectively) the fT;) method is inefficient with 

too many fluctuations. The 9 method in each of these cases provides reasonable 

estimates that exhibit bias throughout. The case is only slightly better for fL;A, 

where the fits from both the overlap function and the segment density are poor 

(Figure omitted). 



86 

00 0.5 1.0 1.5 2.0 

Segment length 

Symbol 

Actual 

10 Points Generated 

20 Points Generated 

Figure 3.17: Convergence of fT;,' using Q for inscribed polygons 
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Figure 3.18: fT,A for the unit circle - estimate via fl versus estimate via direct 
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Figure 3.22: fL, for the unit circle - estimate via 
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Figure 3.23: fL,, for the unit circle - estimate via Q 
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3.6 Results For The Ellipse 

For the ellipse surface-random chords cannot be dealt with theoretically and no 

published results exist. Surface randomness by simulation is therefore a step forward. 

Objects in reality do not appear as perfect circles and ellipses, and it is the purpose of 

this thesis to try and determine a methodology for dealing with non-trivial shapes, 

such as non-symmetric polygons and egg-shaped ovoids. Ellipse surface-random 

chords are a step in this direction. 

We were required to develop an original methodology for generating uniform 

points on the surface of the ellipse. This methodology first involved parametrizing 

the ellipse 
2 2 

T2 b2 

through the relations x = a sin(t) and y = bcos(t). Then the arc length is given by 

Pt 

S(t) = I 8 = It /a2 cos2 0 + b2 sin  OdO 
Jo 

1 ( 1.2\ 
- 1--isin OdO, 

a2) 

(3.7) 

(3.8) 

the well-known Legendre elliptic integral of the second kind. What is required for 

surface randomness is to first choose a random number 9 in the interval (0, S(2ir)). 

This gives a random point on the surface of the ellipse in terms of arc length. Then 

= S(t) can be inverted through the Jacobi elliptic function S 1(t) (simply the 

inverse of S(t)), to give t = S 1(.), thus returning the coordinate (a sin t, b cos t). 

Simulations for a2 = b2 = 1 return the unit circle (special case of the ellipse when 

a = b = 1) results. Figure 3.24 shows this methodology. 
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Figure 3.24: Ellipse Surface Randomness 
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The distributions for surface randomness are given in Figures 3.25, 3.26, 3.27 and 

3.28. 

Other original work relates to the use of the polygon program to approximate 

the ellipse in generating chord and ray densities where appropriate under )-, ii- or 

u-randomness. The ellipse, like the circle, can be approximated through the polygon 

program by simply taking a number of points (a cos t, b sin t) where t is incremented 

from 0 to 2ir by some consistent level. Note that the kernel fit (from which derivatives 

are based in the fTA method) and the segment density from the 1 program are close 

(see Figure 3.29). There is no theoretical curve to compare with; however, the 

program gives a much smoother estimate and its derivatives behave better (Figures 

omitted). [Theory for the ellipse has been developed by Piefke [74] for chords under 

u-randomness. Gasparyan [29] basically recovers the overlap function for the ellipse.] 
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Figure 3.26: fL,p for the ellipse (a = 2, b = 1) - several kernel fits 
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Figure 3.27: fR,a for the ellipse (a = 2) b = 1) - several kernel fits 
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Figure 3.28: fL,c for the ellipse (a = 2, b = 1) - several kernel fits 
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Figure 3.29: fT,A for the ellipse (a = 2) b = 1) - direct simulation versus estimate 
via Q method 



Chapter 4 

Ovoids in Three Dimensions 

In this chapter results for three-dimensional ovoids are presented. Ovoids consid-

ered here include the box, ellipsoid (and prolate spheroid), hemisphere, cylinder, 

and sphere. Since the fl or polygon program was not extended to three dimen-

sions, comparisons in this Chapter are limited to comparisons between the direct 

simulation and fT;A methods. Distributions for surface-randomness for which the 

comparisons do not apply are included for the sphere to provide conclusions about 

kernel smoothers. Conclusions and recommendations involving analysis for both two-

and three-dimensional ovoids are given at the end of this Chapter. 

4.1 Results For The Box (Cube) 

Simulations performed for the cube include all distributions listed in Table 2.6 [al-

though figures for distributions involving surface-randomness were omitted]. Note 

that the simulations were done only for the cube - they were not generalized to 

boxes. However, generating both 1(l) and fT;A for arbitrary boxes is possible, and a 

natural place to start in extending the polygon program to higher dimensions. 

This section also describes how to generate -random secants of a body K di-

rectly, using the procedured outlined by Itoh [44] for a cube to confirm his derived 

distribution. For all of the bodies studied in this thesis, including two-dimensional 

ovoids, his method was adapted to generate a-random chords. The following para-
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graphs describe Itoh's method for the cube. 

First center the body K at some origin 0 and calculate the maximum intercept 

(or chord) length lma7j. Choose a point (X0, Y0) in the interval (1max/2, lmax/2). 

Next rotate the line through this point perpendicular to the z-axis around z by 81, 

around y by 02 around z by 03, and finally incline the line to the z-axis with 02. In 

this case, for Ui independent uniform (0,1) variates, 

01 = 2irU, COS 02 = 2U2 -  1, and 03= 2irU3. 

Also, X0 and Y0 are chosen by picking two random uniform variate and then scaling 

to the appropriate interval. It remains to find the intersections of the rotated line 

with the boundary of K. However, this is a simple exercise since the points after 

rotation can be expressed as (with transformation matrices given) 

Y 

—C3 S3 0 

= —S3 C3 0 

0 01 

c2 0 

0 1 

—S2 

0 

S2 0 C2 

C1 0—S2 

Si C1 0 Y 

0 0 1Z 1 

with Ci = COS 0j, Si= sin Oi and (X,Y,Z)T being the original point with rotated 

coordinates (x, y, z) T. These matrix relations give the equation 

X -  xo(C1C2C3 - 5153) - yo(51C2C3 + C1S3)  

—52C3 
Y - xo(—C1C283 -  S1C3) -  yo(—S1C2S3 + C1C3)  

S2S3 
-  x0C1S2 -  YoS1S2  

which is more convenient when x, y and z are written as 

X = xi+t(x2—xi), 
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Y = yi+t(y2—yi), 

z = zi+t(z2—zi). 

For the cube with side length a, Ehlers (1972) found 

47r(l) = 4ir - 6ii-p + 8p2 - 

= (6ir - 1) 

P 

8+6p+2p3_8(l+2p2)l +24 P  
cos p 

= (6ir -  5) 
87r + 6(7r — 1)p — p 3 + 

P 

8(l+p2)  p2-2 24(1+p2) 

tan 1(\/p2 -  2) + 24tan 1(p/p2 —2) 
P 

0≤P≤1 

where p = i/a. [Analytical results for the cube can also be found in Horowitz [43], 

Coleman [13], [14], Ehlers and Enns [22], Gille [31] and Bendel [3].] 

For c- and 7-random rays, 

aS(i)  

3 8a 
(4.1) 

Simulation results are given in Figures 4.1 through 4.11. Figure 4.1 shows an 

adequate fit, no better than some of the other segment length fits for other ovoids. 

However, Figure 4.3 is unusually excellent. Recall that this fit is from a derivative of 

the smoothed version of the segment density shown in Figure 4.1. Figure 4.5 is also 

a good fit, although some of the poor tail properties are beginning to show to the 

left. Figure 4.9 is also quite good compared to some of the other derivative-based 

densities seen in Chapter 4. 
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An interesting question is then why are the fits so perfect here and not elsewhere? 

After much deliberation and checking of results, we could not find a clear answer. 

The segment density seems to be appropriate in some cases of which the cube is one. 

Note also that Figures 4.7, 4.11 are again poor fits, but still closer than for most 

other three-dimensional ovoids. 
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4.2 Results For The Ellipsoid 

No distributions involving surface randomness for the ellipsoid were simulated. For 

a spheroid (two of a, b, c equal) the problem is simple. Choose a random point on 

one of the x, y, or z axes. Cut the body perpendicular to that axis and then choose 

a point on the resulting ellipse (the cut will be elliptical, so simply choose on the 

surface of this cut) as outlined in Chapter 4. For the general ellipsoid the problem 

is more difficult because the integral giving partial ellipsoid surface area cannot be 

inverted to obtain a random surface point. 

4.2.1 The Prolate Spheroid 

For the three-dimensional prolate spheroid with semi-axes a, b and c with a> b = 

the v-random density of L is (see Enns and Ehlers [23]) 

312 / b2\ 
fL; (l) = (1 - 

3121 / 

8 b3  a 2) 

=0 

where 

1-4b2l2 Y 4b 2"l 

1_b2a 2) 12 

0 <1 <2b 

2b < 1 <2a 

otherwise 

g  = (1 - x)3/2 + 3 (sin-'\/ (1 - x)h/2 + 8 ) 
Note that Table 2.6 provides a useful way to derive the distributions fL;x and fL;,i 

from fL;1'. 

The lcth moment of chord length is 

( 
E1' (Lk)  3  2b)'= (k+3) y Jo (secO)k_1dO, 

where 7 = \/1 - b2/a2. 

(4.2) 
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Similarly, for )-random rays, the moments are 

E(Rk)  32 3b'' 1 sin-I = I (secO)' 2dO. 
(k + 4)(k + 6)7a Jo 

(4.3) 

Moments of R follow from Table 2.6. 

Previous work for the ellipsoid includes Gundersen and Jensen [34], who derive a 

rather complicated formula for fL;v for the general three-dimensional ellipsoid. De-

Hoff and Bousquet [18] consider linear intercepts through triaxial ellipsoidal particles. 

Kellerer [49] works with spheroids. 

All simulations were performed for a = 3 and b and c varying from 1 to 3 (both 

triaxial and prolate spheroids were considered here). The segment density fT;A was 

not an efficient estimator of the densities to which it is related. A clear example of 

this is Figure 4.12, which gives the fR;A distribution. The huge variations in the curve 

resulting from the derivative of the segment density demonstrates the inadequacy of 

the segment density as estimator. Figure 4.13 shows several si-random distributions 

for various choices of a, b and c. 



118 

0.5 -

0.4-

0-3-

f M 

0.2-

V 

0.1 -

0.0 I 1 I 
00 1.0 2.0 30 4.0 

Ray length 

5.0 6.0 

Average Variance Symbol 

Simulated 2.895473 1.034804 Kernel Est. 

From fT;) 

Figure 4.12: fR,A(l) for the ellipsoid (a = 3, b = 2, c = 1) - kernel fit versus estimate 
via fT;A method 



119 

f(x) 

00 1.0 2.0 3.0 4.0 

Chord length 

Figure 4.13: fL,,(l) for some ellipsoids 

5.0 6.0 



120 

4.3 Results For The Sphere 

Although theory was already presented in Chapter 4, a note should be made here 

about surface randomness for the sphere. Marsaglia ([66]) considered this problem. 

He gave several methods, the most efficient including 

Method Description 

1 Choose V1, V2 and V3 independently and uniformly in the 

interval (-1,1) until S = V12 + V22 + V,3 < 1. The point is 

then given by (Vi/v', V2/V, V3//). This method chooses 

a point in the cube which is inside the sphere, and then 

projects the point outward to the surface of the sphere. 

2 Choose Yi and V2 in the interval (-1, 1) until S = 

V12 + V22 < 1. Then the point on the surface is given by 

(2V1(1 - S) 1/2, 2V2(1 - S)_h/2, 1 - 2S). 

For the sphere, all distributions given in Table 2.6 were simulated directly, and 

derivatives of the segment density fT;), were used to estimate densities depending on 

IZ(l). All distributions for the sphere are included here. The actual sphere distri-

butions are all fairly "regular" in the sense that Equation 3.4 reduces to a simple 

polynomial when n = 3. The sphere is therefore the perfect opportunity to weed out 

those kernel or series estimators that fail to even fit a simple polynomial. Parameters 

used include s = 15, the cutoff for the Hermite series estimator, and h = 0.1, the 

window width for the kernel smoothers. 
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Figures 4.14 through 4.22 give these distributions. Note that the ilermite series 

estimator in each case smooths too much, and that the tails, particularly for the 

chord distributions, seem to taper off prematurely. Fits for the ray and segment 

distributions seem very good. 

Figures 4.24 and 4.23 show the actual distribution (solid line) versus the distri-

bution resulting from the derivative of a smoothed estimate of fT;A. In Figure 4.23 in 

particular, the left tail is a very poor fit, but the curve rebounds to make a decent fit 

for the right tail. In Figure 4.24, the fit is generally good. Note that the accuracy of 

these estimates (from fT;) depend on the initial accuracy of the smoothed estimate 

of fT;, which is very good (see Figure 4.21). 
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4.4 Results For The Hemisphere 

Simulations for the hemisphere were performed for all surface and interior point 

random distributions from Table 2.6. However, only the v-random chord distribution 

is reproduced in this thesis. 

Interior randomness for the hemisphere was naturally easy. Surface randomness 

required weighting a random number to choose either the spherical cap or the flat 

bottom of the hemisphere. Once this was done, points were generated from the 

bottom by simply choosing a point inside a circle, and a point generated from the 

spherical cap by slightly modifying the sphere surface randomness procedure. 

Nothing interesting came out of the analysis. The segment density fT; was not a 

good estimator of even the ray length distributions for 11- and )-randomness. How-

ever, as can be seen in Figure 4.25, the v-random chord distibution, the general shape 

of the distribution first discovered by Langworthy [60] is repeated (this distribution 

is indicative of most of the chord distributions, including the u-random distribution 

which he considers). 
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4.5 Results For The Cylinder 

For the cylinder, programs were developed to directly simulate each of the distribu-

tions listed in Table 2.6. No actual curves were calculated, although Kellerer [47] 

derives the a-random chord distribution in cylinders having arbitrary cross section, 

and Langworthy [59] and Mäder [64] present numerical results for right circular 

cylinders. See also Gille [30] and Kellerer [48]. 

All simulations were performed for a cylinder of unit height and radius with the 

exception of the n-random chord distribution, which was done for arbitrary height 

and radius (i.e. height and radius could be set at arbitrary values). 

Interior randomness was done by simply choosing a z-coordinate, thus slicing the 

cylinder. With the remaining circle, a point (x, y) was chosen as points internal to 

a circle are chosen. Surface randomness for the cylinder constituted weighting the 

endcaps and the "wall" of the cylinder appropriately. Once this was done, points 

could be chosen on the caps as points are chosen interior to a circle, and points on 

the "wall" as points are chosen on the surface of the circle, once a z-coordinate is 

chosen. 

Results to be demonstrated here include the A-random segment density (Fig-

ure 4.26) with several Gaussian kernel fits. In Figure 4.26 the crucial nature of the 

inital estimate of fT;), is demonstrated. First derivatives of the segment density are 

demonstrated in Figure 4.27. Note the fluctuation in this curves derived from the 

segment density for small changes in the window width h. The segment density was 

also not a good estimator of the chord length distributions or of the fR;v distribution. 
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4.6 1Z(l) versus fT;.\ - A Brief Summary 

Single and double derivatives of either the fl or fT functions depend heavily on 

the accuracy of the initial estimate. The behaviour of generated distributions, then, 

depends on the behaviour of the methods used to generated fT;), (kernels) or 

(splines). 

Recall that comparisons were evaluated visually although there is a great n ed for 

a quantitative measure to support the Q method over the fT;), method. However, as 

alternatives to direct simulation for generating distributions, the fl and fT;) methods 

show great promise. 

In particular, the method generated an initial estimate of the density fT;A that 

agreed to within four or five decimal places of the analytical density. Kernel fits 

to the fT;A (from which derivatives are calculated) were not as accurate. It was no 

surprise, then, that f2 provided a better estimate than fT;A for ray densities (ii, A) 

and chord densities (v, A, ). The fl method also provided excellent estimates when 

approximating the circle. 

Generation time, also an important comparison measure, was much quicker for 

the Q program when the number of vertices of the polygon was 20 or less. This 

fact is easily explained by three things. First, the segment densities require a large 

number of calls to a random number generator. Second, computations involving 

the segment density are more computer-intensive, with many more square roots and 

trigonometric functions required. Third, and most important, many points for non-

square regions (in two dimensions) are thrown away because they do not fall within 

the required body K, especially when K differs greatly from a rectangle. 
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Recommendations: 

(1) Pursue LRSs (Chapter 3) as an alternative to kernels as estimators of fT;, 

(2) Use weighted splines for estimating f, 

(3) Continue analysis by extending the R method to three dimensions. 

With slight modifications to the fl and fT;A programs incorporating these recommen-

dations, these two new methods can become efficient generators of the ray densities 

with measure E [A, ii] and chord densities with measure E [A, ii, ii]. 



Chapter 5 

Future Directions 

In this chapter some mention will be made of possible future directions. Once the sim-

ulation was completed for two-dimensional arbitrary polygons, a natural extension 

would be three-dimensional arbitrary polyhedra. Other natural extensions include 

bivariate rays, non-convex regions and embedded bodies. 

Also, in keeping with the methods employed in this thesis, it would be reasonable 

to generate surface-random chords and rays from surfaces of arbitrary bodies. For 

the ellipsoid problems arose when points could not be chosen from the surface - 

that is, the ellipse surface-randomness procedure could not be extended to higher 

dimensions. Currently there is little if any theory developed for ,8-random chords 

for the general ellipsoid. As future work, then, simulation of /3-random chords is 

important as a step in developing theory. 

5.1 Polyhedra 

The main objective of this thesis has been to determine the feasibility of developing 

a computer program that can generate chord length distributions of arbitrary two-

and three-dimensional ovoids. For such regions, a program has been developed that 

deals with arbitrary polygonal regions, and bodies such as circles or ellipses that can 

be closely approximated by choosing a polygon with enough edges. 

For three-dimensional regions, an extension to the polygon approach is certainly 
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possible for a box but was not attempted here. 

The algorithm used to determine if points are interior to a polygon can be ex-

tended to polyhedra, and indeed to n-dimensional simplexes defined by (n+1) points. 

Two methods exist, each of them unchecked but both with applications to generating 

fT; for general polyhedra. 

First, for a convex n-hedron, describe each of the surfaces in the form 

>akxk = C. 

Let the ordered n-tuple formed by ak be vector A. If P . A < c for each surface, the 

point is inside. 

Second, observe that each subset of n points defines an (n - 1)-dimensional hy-

perplane; the test point is inside the polytope (n-dimensional polygon) if and only 

if it is on the appropriate side of each of these hyperplanes. Let the points defining 

the polytope be P1, P2,. . . ,P +i where P2 = (Pi,1)Pi,2,. .. ,pj,). Let Q be the point 

whose position must be determined. Then form the linear equations given by 

>\jP=Q and 

which form a system of (n + 1) equations. If all )j ≥ 0, then the point is inside. 

However, the generalization of the area formula from vertices (Stone [94]) is not 

so straightforward when applied in three dimensions. Schaer and Stone [85] devised 

a method for calculating the area of a polyhedron when a traverse is known. A 

traverse is simply a sequential list of all of the faces so that adjacent faces in the list 

share exactly two vertices. This fact could not be used to calculate Q for arbitrary 

polyhedra since a traverse is not always guaranteed. 
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5.2 Bivariate Rays 

Bivariate rays have received some attention lately. In particular Misi ([68]) consid-

ered various types of randomness and defined a new overlap function which arises 

out of his research. 

Types of randomness include 1', where a point P is chosen from within K. Two 

directions 01 and 02 are then chosen independently and uniformly random to define 

two rays R and S. 

Another randomness is ., where three points F, Q and 0 are chosen indepen-

dently and uniformly random from within K, giving two rays U = PQ and V = 

A description of the new bivariate overlap function is given in Figure 5.1. The 

shaded region defines this new overlap function. 

This overlap function is defined as the intersection volume of K with two inde-

pendent translates K(r, 0) and K(s, 02), averaged over 01 and 02, that is 

fj (r, s) = E01,02 { V[K n K(r, 0) fl K(s, 02)]  } 
V(K) 

(5.1) 

Consideration of bivariate rays could have some immediate applications in many 

of the areas for which chord distributions are now exclusively used. 
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K(s,02) 

Figure 5.1: Bivariate overlap function 
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5.3 Non-uniform Directions 

This thesis has not considered chords generated by non-uniform angular measures. 

The author is not aware of any published results regarding such anisotropic measures. 

It should be relatively simple to modify our simulation techniques to accommodate 

anisotropy. For example, y-random chords might be chosen with 0 chosen according 

to a (multivariate) normal law. Simulation would be all the more important because 

analytical results may be expected to be extremely difficult. 

5.4 Exotic and Embedded Bodies 

Single-body results can be extended to the case of one body embedded in another. 

One possible application is the case of nucleated particles - essentially convex parti-

cles containing a (possible non-convex) nuclear region. Below, we review the theory 

of embedded bodies as developed by Enns and Ehlers [25]. 

Let K be some body completely embedded within some convex body G. Line 

segments can then be generated on K, or on both K and G, and then projected 

outward. Define the overlap function as 

- E9[V(K(l, 0) fl G)]  
IlK,G(l) - V(K) • (5.2) 

For example, consider the randomness measure defined by choosing a point P E K 

and a point Q E G, where G is not necessarily convex. The distance between P and 

Q defines a segment length T (see Figure 5.2). Recall that B(l, F) is the n-ball of 

radius 1 with centre P and surface ÔB(l, F). Then 

P T < i - Ep1[V(B(l, F) fl G)}  
VG ' (.) 
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where P is uniformly averaged over the region K. Writing this in terms of the total 

solid angle subtended at P by G fl ÔB(l, F) one obtains 

MI) = Ep1 [l'uI(l, F)]  
V(G) 

Figure 5.2: Embedded body - generation of T 

Equation (2.22) is easily generalized to 

giving as segment density 

Ep1 ['(l, F)]  
ncn = 

fT(l) - nCi,a(l) n_i• 

- V(G) 

(5.4) 

(5.5) 

(5.6) 

When K = G, this density recovers the Chapter 2 result (see Table 2.6). 

Rays and secants in G can also be generated from within K. Assume G convex 

and K to be some non-empty subset of G. Select a point P E K and a direction 0, 

thus defining v-randomness (see Figure 5.3). 



146 

L=S-j-R 

Figure 5.3: Embedded body - generation from within K 
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Two rays are thereby formed. The first, a forward ray R, starts at P and ends 

at 9G (surface of G) in direction 0. The second, a backward ray S, begins at P 

and ends at ÔG in direction —0. A secant L of G is formed when the forward and 

backward components are combined. Clearly 

and therefore 

P(R ≥ 1) = P(S >= 1) = 

P(R> 1) - V(G)fT(l)  
- nCl' 

Given this relationship, moments are related by 

E(Rm+Th) = n + rn V(G)E(Tm) 
nCn 

(5.7) 

(5.8) 

(5.9) 

Note, when K = t9G, the connection between 'y-random chords and a-random rays 

can be recovered, since then P(R ≥ 1) = P(L1, ≥ 1) and fT(l) = fR;c(l) (Table 2.6). 

The final type of ray to be considered here is defined when two points P E K 

and Q r= G are chosen where K C G and C is convex. Then Q clearly lies in C with 

probability V(K)/V(G). Define W as the length of the ray formed from P through 

Q to the boundary of C. 

To derive the distribution of W for this type of randomness, place an n-ball of 

radius 1 having centre at P (see Figure 5.4). Let C(l, F) be the union of conical 

subsets of B(l,P) subtended by l) (1, P) at P. In this way, C(l,P) is then those 

conical portions of the n-ball whose caps fall inside C. 
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Figure 5.4: Rays in G generated by two points in K and G 
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Then V(C(l,P)) = l(l,P)/n and 

P(W> lIP) = P(T> lIP) + P(T ≤ 1, W> ljP) (5.10) 

l4 (l, p) 
= P(T >1IP)+ 

nV(G) 

a conditional distribution, that, when averaging over the point P becomes 

P(W> 1) = P(T> 1) + lflEpj[4(l, nV(G)F)] 

= P(T > 1) + CnIn 1K,G(l). 
V(G) 

The density of W is thus 

—Cl- d 
K,G(l) fw(l) = V(G) dl 

- ClThfR(l)  

- V(G) 

Finally, moments of W, R and T are related by 

E(Wm) = Cn V(C)U) = n+m E (T m) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

In this type of randomness, K = C gives A-randomness in the Chapter 2 setting. 



Bibliography 

[1] Barbery, G. (1974) Determination of Particle Size Distribution from Measure-
ments on Sections. Powder Technology 9, 231-240. 

[2] Bate, A.E. and M.E. Pillow (1947). Mean free path of sound in an auditorium. 
Proc. Phys. Soc. London 59, 535-541. 

Bendel, W.L. (1984). Length Distribution of Chords Through a Rectangular 
Volume: Naval Research Laboratory Memorandum Report 5369. 

[4] Birkhoff, R.D. Turner, J.E. et al. (1970). The Determination of LET Spectra 
from energy- prop orational pulse-height measurements I. Track-length distribu-
tions in cavities. Health Physics 18, 1-14. 

[5] Bos, L.P. Computer Code in FORTRAN for Weighted Splines. 

[6] Breiman, L. and S. Peters (1992). Comparing Automatic Smoothers (A Public 
Service Enterprise). International Statistical Review 60, pp. 271-290. 

Buckland, S.T. (1992). Fitting Density Functions with Polynomials. Appl. 
Statist. (JRSS (Series C)) 41, 63-76. 

[8] Buckland, S.T. (1992). Algorithm AS270 - Maximum Likelihood Fitting of 
Hermite and Simple Polynomial Densities. Appl. Statist. (JRSS (Series C)) 41, 
241-266. 

[3] 

[7] 

[9] Butler, T.W. (1960). An Investigation of Particle Size Analyses as Applied to 
WC-Co. Metallography 2, 289-292. 

[10] Caswell, R.S. (1966). Deposition of Energy by Neutrons in Spherical Cavities. 
Radiation Research 27, 92-107. 

[11] Cleveland, W.S. (1979). Robust locally weighted regression and smoothing scat-
terplots. J. Amer. Statist. Assoc. 74, 829-836. 

[12] Coleman, R. (1969). Random Paths Through Convex Bodies. J. Appl. Prob. 6, 
430-441. 

[13] Coleman, R. (1973). Random Paths Through Rectangles and Cubes. Metallog-
raphy 6, 103-114. 

[14] Coleman, R. (1981). Intercept Lengths of Random Probes Through Boxes. J. 
Appl. Prob. 18, 276-282. 

150 



151 

[15] Coleman, R. (1989). Random Sections of a Sphere. The Canadian Journal of 
Statistics 17, 27-39. 

[16] Cowan, R. A Collection of Problems in Random Geometry. Teubner Texte zur 
Mathematik - Band 65, pp. 64-68. [Stochastic Geometry, Geometric Statistics, 
Stereology. Proceedings of a Conference held at Oberwolfach, 1983. Rm. Am-
bartzumian and W. Weil, eds. B.C. Teubner Verlagsgeseflschaft, Leipzig.] 

[17] Davy, P.J. (1984). Inequalities for Moments of Secant Length. Z. Wahrschein-
lichkeitsthcorie verw. Gebiete 68, 243-246. 

[18] Delloff, R.T. and P. Bousquet (1970). Estimation of the size distribution of 
triaxiai ellipsoidal particles from the distribution of linear intercepts. Journal of 
Microscopy 92, 119-135. 

[19] Delloff, R.T. and F.N. Rhines (1961). Determination of Number of Particles 
Per Unit Volume From Measurements Made on Random Plane Sections: The 
General Cylinder and the Ellipsoid. Trans. A.LM,E. 221, 975-982. 

[20] Dirac, P.A.M., K. Fuchs, R. Peierls and P. Preston. Applications to the Oblate 
Spheroid, Hemisphere and Oblate Hemi-spheroid. Declassified British Report 
MS-D-5, Part II, 1943. 

[21] Ehlers, P.F. Particle Number Fluctuations and Their Relation to Geometrical 
Probability. Ph.D. Thesis, U.B.C., 1972. 

[22] Ehlers, P.F. and E.G. Enns (1981). Random Secants of a Convex Body Gener-
ated by Surface Randomness. J. Appl. Prob. 18, 157-166. 

[23] Enns, E.G. and P.F. Ehlers (1978). Random Paths Through a Convex Region. 
J. Appi. Prob. 15, 144-152. 

[24] Enns, E.G. and P.F. Ehlers (1980). Random Paths Originating Within a Convex 
Region and Terminating On its Surface. Austral. J. Statist. 22, 60-68. 

[25] Enns, E.G. and P.F. Ehlers (1988). Chords Through a Convex Body Generated 
From Within an Embedded Body. J. Appi. Prob. 25, 700-707. 

[26] Enns, E.G., P.F. Ehlers and S. Stuhr (1981). Every Body Has Its Moments. 
Statistical Distributions in Scientific Work 5, 387-396. 

[27] Exner, H.E. and H.L. Lukas (1971). The Experimental Verification of the Sta-
tionary Wagner-Lifshitz Distribution of Coarse Particles. Metallography 4, 325-
338. 



152 

[28] Fuilman, R.L. (1953). Measurement of Particle Sizes in Opaque Bodies. Journal 
of Metals 5,447-452. 

[29] Gasparyan, V.M. (1984). Pleijel Identity and Distribution of Chord Length for 
Planar Convex Domains. In Teubner Texte zur Mathematik - Band 65, pp. 
91-94. [Stochastic Geometry, Geometric Statistics, Stereology. Proceedings of a 
Conference hel at Oberwolfach, 1983. Rm. Ambartzumian and W. Weil, eds. 
B.C. Teubner Verlagsgesellschaft, Leipzig.] 

[30] Glue, H.W. (1987). The Intercept Length Distribution Density of a Cylinder of 
Revolution. Experimentelle Technik der Physik 35, 93-98. 

[31] Gille, H.W. (1988). The Chord Length Distribution Density of Parallelepipeds 
with Their Limiting Cases. Experimentelle Technik der Physik 36, 197-208. 

[32] Goldsmith, P.L. (1967). The calculation of true particle size distributions from 
the sizes observed in a thin slice. Brit. J. Appi. Phys. 18, 813-830. 

[33] Goudsmit, S. (1945). Random Distribution of Lines in a Plane. Reviews of Mod-
ern Physics 17, 321-322. 

[34] Gundersen, H.J.G. and E.B. Jensen (1983). Particle sizes and their distributions 
estimated from line- and point-sampled intercepts. Including graphical unfold-
ing. Journal of Microscopy 131, 291-310. 

[35] Gundersen, H.J.G., T.B. Jensen and R. østerby (1978). Distribution of Mem-
brane Thickness Determined By Lineal Analysis. Journal of Microscopy 113, 
27-43. 

[36] Gurland, J. (1963). The Fracture Strength of Sintered Tungsten Carbide-Cobalt 
Alloys in Relation to Composition and Particle Spacing. Trans. A.I.M.E. 227, 
1146-1150. 

[37] Hammersley, J.M. (1950). The Distribution of Distance in a Hypersphere. Ann. 
Math. Stats. 21, 447-452. 

[38] Hanson, K.L. (1979). Determination of Grain Density in Space-Filling Geome-
tries from Measurable Two-dimensional Parameters. Acta Metall'argica 27, 515-
521. 

[39] Hastie, T. and C. Loader (1993). Local Regression: Automatic Kernel Carpen-
try. Statistical Science 8 (No. 2), 120-143. 



153 

[40] Heckbert, P.S. (1987). Ray Tracing JELL-O' Brand Gelatin. Computer Graph-
ics 21, 73-74. 

[41] Hilliard, J.E. (1962). The Counting and Sizing of Particles in Transmission 
Microscopy. Trans. A.I.M.E. 224, 906-917. 

[42] Hilliard, J.E. (1968). Direct Determination of the Moments of the Size Distri-
bution of Particles in an Opaque Sample. Trans. A.I.M.E. 242, 1373-1380. 

[43] Horowitz, M. (1965). Probability of Random Paths Across Elementary Geomet-
rical Shapes. J. Appl. Prob. 2, 169-177. 

[44] Itoh, H. (1970). An Analytical Expression of the Intercept Length Distribution 
of Cubic Particles. Metallography 3, 407-417. 

[45] Izenman, A.J. (1991). Recent Developments in Nonparametric Density Estima-
tion. JASA 86, 205-224. 

[46] Jensen, E.B. and Moller, J. (1986). Stereological Versions of Integral Geometric 
Formulae for n-dimensional Ellipsoids. J. Appl. Prob. 23, 1031-1037. 

[47] Kellerer, A.M. (1971). Considerations on the Random Traversal of Convex Bod-
ies and Solutions for General Cylinders. Radiation Research 47, 359-376. 

[48] Kellerer, A.M. (1981). Proximity Functions for General Right Cylinders and 
Criteria for the Equivalence of Spherical and Cylindrical Proporational Counters 
in Microdosimetry. Radiation Research 86, 264-286. 

[49] Kellerer, A.M. (1984). Chord-Length Distributions and Related Quantities for 
Spheroids. Radiation Research 98, 425-437. 

[50] Kendal, M.G. and P.A.P. Moran. Geometrical Probability. Charles Griffin & 
Company Limited, London, 1963. 

[51] Kingman, J.F.C. (1965). Mean Free Paths In a Convex Reflecting Region. J. 
Appl. Prob. 2, 162-188. 

[52] Kingman, J.F.C. (1969). Random Secants of a Convex Body. J. Appl. Prob. 6, 
660-672. 

[53] Kok, L.P. 100 Problems of my Wife and their Solution in Theoretical Stereology. 
Coulomb Press Leyden, Leiden, 1990. 

[54] Kosten, C.W. (1960). The Mean Free Path in Room Acoustics. Acustica 10, 
245-250. 



154 

[55] Lamport, L. LATEX: A Document Preparation System. Addison-Wesley, Reading, 
1986. 

[56] Mclaren, A.S., P. Wadhams and R. Weintraub (1984). The Sea Ice Topography 
of M'Clure Strait in Winter and Summer of 1960 from Submarine Profiles. Arctic 
37, 110-120. 

[57] Meihuish, F.M. and A.R.G. Lang (1970). Lengths and Diameters of Plant Roots 
in Non-random Populations by Analysis of Plane Surfaces. Biometrics 26, 421-
431. 

[58] Meihuish, F.M. and A.R.G. Lang (1971). Quantitative Studies of Roots in Soil: 
2. Analysis of Non-random Populations. Soil Science 112, 161-166. 

[59] Langworthy, J. (1988). The Chord Distribution for a Right Circular Cylinder. 
Naval Research Laboratory Memorandum Report 6220. 

[60] Langworthy, J.B. (1989). A General Approach to Chord Length Distributions 
Applied to a Hemisphere. Radiation Research 118, 21-36. 

[61] Langworthy, J.B. (1989). Depletion Region Geometry Analysis Applied to Sin-
gle Event Sensitivity. IEEE Transactions on Nuclear Science 36, 2427-2434 
(corrected by Dr. Langworthy). 

[62] Langworthy, J.B. (1991). General Methods for Chord Distributions Applied to 
a Semicircle (unpublished - provided by Dr. Langworthy). 

[63] Langworthy, J.B. (1993). The Effects of Funneling on Space Upset Rate 
(preprint). Accepted for publication in February Transactions on Nuclear Sci-
ence of IEEE. 

[64] Mäder, U. (1980). Chord Length Distribution for Circular Cylinders. Radiation 
Research 82, 454-466. 

[65] Marcellus, R.W., and T.B. Morrison. Ice Design Statistics for the Canadian 
Beaufort Sea. Canada Marine Engineering Ltd. Report # 1015, prepared for 
the Environmental Impact Statement Partners, April, 1982. 

[66] Marsaglia, G. (1972). Choosing a Point From The Surface of a Sphere. Ann. 
Math. Stats. 43, 645-646. 

[67] McIntyre, G.A. (1953). Estimation of Plant Density Using Line Transects. J. 
Ecol. 41, 319-330. 



155 

[68] Misi, T. Random Bivariate Rays, Statistical Societies and Buffon's Pi. Ph.D. 
Thesis, University of Calgary, 1992. 

[69] Moller, J. (1988). Stereological Analysis of Particles of Varying Ellipsoidal 
Shape. J. Appi. Prob. 25, 322-335. 

[70] Morrison, T.B. Development of Statistics Related to Ridge Spacing and Ori-
entation in Multi-Year Ice Floes. Proprietary report prepared for Gulf Canada 
Resources Limited, February 1989. 

[71] Naumovich, N.V., M.N. Bodyako and V.P. Kasichev (1980). Statistical Param-
eters of Some Polyhedrons. Practical Metallography 17, 192-200. 

[72] Naumovich, N.V. and T.I. Kriskovets (1982). Influence of the Body Shape on 
the Profile of Chord Length Distribution. Acta. Stereol. 1, 51-59. 

[73] Naumovich, N.V. and R. Warren (1978). Influence of Particle Shape and Spatial 
Size Distribution on Random Intercept Length Distributions. Special Issue of 
Practical Metallography 8, 161-170. 

[74] Piefke, F. (1979). Chord Length Distribution of the Ellipse. Lietuvos Matem-
atikos Rinkinys 19, 45-54. 

[75] Preparata, F.P. and M.I. Shamos. Computational Geometry: An Introduction, 
2nd and revised printing. Springer-Verlag, New York, 1985. 

[76] Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling. Numerical 
Recipes in C. Cambridge University Press, Cambridge, 1988. 

[77] Primak, W. (1956). Gamma-Ray Dosage in Inhomogeneous Nuclear Reactors. 
Journal of Applied Physics 27, 54-62. 

[78] Riss, J. and M.-C. Durand (1980). Stereological Properites of Polyhedra. 
Mikroskopie 37 (Suppl.), 387-389. 

[79] Riss, J., J. Grolier, M. Hucher and G. Sabatier (1982). Shape and Stereology of 
Two Ideal Pseudo Williams' Polyhedra. Acta Stereol. 1, 37-43. 

[80] Rossi, H.H. (1967). Energy Distribution in the Absorption of Radiation. Ad-
vances in Biological and Medical Physics 11, 27-85. 

[81] Rothrock, D.A. and A.S. Thorndike (1984). Measuring the Sea Ice Floe Size 
Distribution. Journal of Geophysical Research 89, 6477-6486. 

[82] Russ, J.C. Practical Stereology. Plenum Press, New York, 1986. 



156 

[83] Salkausicas, K. (1974). C1 Splines for Interpolation of Rapidly Varying Data. 
Rocky Mountain Journal of Statistics 14, 239-250. 

[84] Santa16, L.A. On the Measure of Line Segments Entirely Contained in a Convex 
Body, in Aspects of Mathematics and its Applications, J.A. Barroso, ed. North-
Holland, 1986. 

[85] Schaer, J. and M.G. Stone. Face Traverses and a Volume Algorithm for Polyhe-
dra. In Lecture Notes in Computer Science 555, H. Maurer (ed.). New Results 
and New Trends in Computer Science, Graz, Austria, June 1991 Proceedings. 
Springer Verlag, pp. 290-297. 

[86] Schneider, R. (1985). Inequalities for Random Flats Meeting a Convex Body, J. 
Appi. Prob. 22, 710-716. 

[87] Schwartz, S.C. (1967). Estimation of Probability Density by an Orthogonal 
Series. Ann. Math, Statist. 38 1361-1265. 

[88] Sepulveda,, J.E., Miller, J.D. and C.L. Lin. Generation of Irregularly Shaped Mul-
tiphase Particles for Liberation Analysis. Proc. Fifteenth International Mineral 
Processing Conference, Cannes, 1985. 

[89] Sheng, T.K. (1985). The Distance Between Two Random Points in Plane Re-
gions. Adv. Appl. Prob. 17, 748-773. 

[90] Silverman, B.W. Density Estimation. Chapman and Hall, London, 1986. 

[91] Solomon, H. Geometric Probability. Society for Industrial and Applied Mathe-
matics, Philadelphia, 1978. 

[92] Späth, H. Spline Algorithsm for Curves and Surfaces. English translation by 
W.D. Hoskins and H.W. Sager, Utilitas Mathematica Pubi., Inc., Winnipeg, 
1974. 

[93] Stone, C.J. (1977). Consistent nonparametric regression (with discussion). Ann. 
Statist. 5, 595-620. 

[94] Stone, M.G. (1986). A Mnemonic for Areas of Polygons. American Math. 
Monthly 93, June-July, 479-480. 

[95] Stoyan, D., W.S. Kendall and J. Mecke. Stochastic Geometry and Its Applica-
tions. John Wiley, Chichester, 1987. 

[96] Strang, G. (1993). Polar Area is the Average of Strip Areas. American Math. 
Monthly, March, 250-254. 



157 

[97] Wadhams, P., A.S. McLaren and R. Weintraub (1985). Ice Thickness Distri-
bution in Davis Strait in February From Submarine Sonar Profiles. Journal of 
Geophysical Research 90, 1069-1077. 

[98] Warren, R. (1971). An Experimental Study of the Stereology of Cubic Particles. 
Metallography 4, 561-564. 

[99] Warren, R. (1987). Microstructural Modelling in Stereology. Acta. Stereol. 6, 
157-173. 

[100] Warren, R. and M.-C. Durand (1983). Microstructural Modelling of Partially-
Oriented, Elongated Particles in Opaque Samples. Acta Stereol. 2 (Suppl. I), 
47-52. 

[101] Warren, R. and N. Naumovich (1977). Relative frequencies of random inter-
cepts through convex bodies. Journal of Microscopy 110, 113-120. 

[102] Wasén, J. and R. Warren. A Catalogue of Stereological Characteristics of Se-
lected Solid Bodies. Volume .1, Polyhedrons. Department of Engineering Metals, 
Chalmers University of Technology, 1990. 

[103] Weibel, E.R. Sterological Methods Volume 2 - Theoretical Foundations. Aca-
demic Press, London, 1980. 

[104] Wichura, M.J. (1987) The PjCTEXManual. TEXUsers Group, Providence, 
Rhode Island. 

[105] Wicksell, S.D. (1925). The Corpuscle Problem. A Mathematical Study of a 
Biometric Problem. Biometrilca 17, 84-99. 

[106] Wicicsel, S.E. (1925). The Corpuscle Problem. Second Memoir: Case of Ellip-
soidal Corpuscles. Biometrika 18, 151-172. 

[107] Wilson, W.S.J. and E.W. Emery (1968). Path Length Distributions Within 
Cylinders of Various Proportions. In Proceedings of the Symposium on Micro-
dosimetry, Ispra (H.G. Ebert, ed.), pp. 79-92. Euratom, Brussels (1968). 

[108] You, Z. and A.K. Jam (1984). Performance Evaluation of Shape Matching via 
Chord Length Distribution. Computer Vision, Graphics and Image Processing 
28, 185-198. 



Appendix A 

Computer Code for Polygon Program 

The computer algebra system MACSYMA (Release 417.125) was used when required 

to differentiate 1 (when Q was known) to produce /L-, ii- and .A-random distributions 

and to integrate 1(l) to produce expectations and variances for these same densi-

ties. MACSYMA was run on a 486-33 MHz computer with 16MB of RAM. Graphs 

were reproduced using PjCTIX macros provided in Wichura [104]. Random number 

generators were taken from Press et al. [76]. 
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(polygon.c) 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "nuinrec .h" /* See Press et al. [76] */ 

#deflne MAXNUM 400 
#deflne BIGNUM 40 
#deflne P1 3.141596 
#deflne TMP 60 

10 

float max(float c, float d) 

{ 
if (c >= d) return c; 

else return d; 

} 

float min(float a, float b) 

{ 
if (a <= b) return a; 
else return b; 20 

} 

void spline(x,y,n,yp 1,ypn,y2) 
float xfl,yI],yp1,ypn,y2]; 
jut n; 

{ 
mt i,k; 
float p ,qn,sig,un,*u,*vector; 
void free_vector 0; 

u=vector(1,n-1); 
if (ypl > 0.99e30) 

y2[1]u[1]=0.0; 
else { 

y2[l] = —0.5; 
u[l]=(3.O/(x[2]__x[l]))*((y[2]_y[1])/(x[2]_x[1])_ypl); 

} 
for (i=2;i<=n-1;i-H-.) { 

sig=(x[i] —x[i— 1])/(x[i+1]—x[i-1J); 
p=sig*y2[i_1]+2.0; 
y2[i]=(sig-1.0)/p; 
u[ij=(y[i+ 1]—y[i])/(x[i+1]—x[i]) - (y[i]—y[i-1])/(x[i]—x[i— 1]); 

30 

40 

23:26 Aug 05 1993 Page 1 of polygon.c 
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main(polygon.c) 

u[i]=(6.0*u[i]/(x[i+1]_x[i_1])_sig*u[i_1])/p; 

} 
if (ypn > 0.99e30) 

qn=un=0.0; 
else { 

qn=0.5; 
un=(3.0/(x[n] —x[n— l]))*(ypn_ (y[n] —y[n— 1]) /(x[n]—x[n— 1])); 

} 
y2[n]=(un._qn*u[n_ 1])/(qn*y2[n_1]+1.0); 

for (k=n-1;k>=1;k--) 
y2[k]=y2[k]*y2[k+1]+u[k]; 

free_vector(u,1,n-1); 

} 

void spiint(xa,ya,y2a,n,x,y) 
float xa[] ,ya ,y2a[] ,x,*y; 
mt n; 
{ 

mt kio,khi,k; 
float h,b,a; 
void nrerrorO; 

kio=1; 
khi=n; 
while (khi—kio > 1) { 

k=(khi+kio) >> 1; 
if (xa[k] > x) khi=k; 
else klo=k; 

} 
h=xa[khi] —xa[klo]; 
if (h == 0.0) nrerror("Bad XA input to routine SPLINT"); 
a=(xa[khi]—x)/h; 
b=(x—xa[klo])/h; 
*y((ya[khi] .-ya[kio])/h) .((3.0*a*a_ 1.0)*h*y2a[klo]/6 .0)+ 

((3.0*b*b_ 1.0)*h*y2a[khi]/6.0); 

} 

void 

mainO 
{ 
float p[56][2], q[56][2]; 
float mx[TMP], my[TMP], *area, ci, maxci, *overlap, vol, surf; 

50 
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float a, b, c, d, e, f, g, h, mpt, xpt, ypt, ii, i2, i3, i4, dist, sq; 
float length, theta, ix, iy, ixt, iyt, *xint, *yip, ti, t2, t3, tol; 
float ypi, ypn, y, *y2, *derl; 
float ttt, aaa, bbb; 
float sidi, sid2, radii; 
hit j, i, SS, k, I, m, n, nopts, mdi, ind2, ind3, ind4, v, uu, z; 
mt cint, evert; 

area = vector(0, MAXNUM); 
xint = vector(i, TMP); 
yint = vector(i, TMP); 
overlap = vector(1, BIGNUM); 
y2 = vector(1, BIGNUM); 
X = vector(1, BIGNUM); 
derl = vector(1, BIGNUM); 

1* 

90 

100 

* Points, Tolerance and Interior Point Initializations. 
*   

* Arrange points in a counter—clockwise direction for convenience. This 
* algorithm then requires less sorting at the start. Indices for the 
* points should read [x][y], where x is the point number and y is 0 
* or 1 as the value is the x— or y—coordinate. 
*   *1 

tol = 0.000001; 
nopts = 40; 
aaa = 2.0; 
bbb = 1.0; 
for (k 0; k <= nopts-1; k++){ 

ttt = 2.0*PI*((float) k)/((float) nopts); 
p[k][0] = aaa*cos(ttt); 
p[k][1] = bbb*sin(ttt); 

} 
1* 
* 

* Maximum Chord Length. 
*   

maxcl = 0.0; 
for (j = 1; j <= nopts - 1; j++){ 

for (k = 0; k <j; k++){ 
sq = (p[j][0]_p[k]{0J)*(p[j][0]_p[k][O]) + 

(p[j][l]—p[k] [1])*(p[j][i]_p[k][1]); 
cl = (float) sqrt(sq); 

110 
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if (ci >= maxci) maxci = ci; 

} 

1* 

} 
printf("Maxiiuum Chord Length: %f \n", maxci); 130 

* Volume of Polygon. 
*   *1 

vol = ((p[nopts— i] [0]p[O] [1]) —(p [0] [0]*p[nopts_ 1] [1]))/2.0; 
for (k = 0; k <= nopts-2; k++){ 

vol += ((p[k][0]*p[k+1][1])_(p[k+1][0]*p[k][1]))/2.0; 
} 
printf("Volume: %f \n " , vol); 

1*  
* Surface Area (Perimeter) of Polygon. 140 

*   *1 
surf = 0.0; 
surf = sqrt((p[nopts— 1] [U]—p [0] [O])*(p[nopts_ 1] [U]—p [0] [0]) + 

(p[nopts_1][1]_p[0J[1])*(p[nopts_1][1]_p[0] [1])); 
for (k = 1; k <= nopts-1; k++){ 

surf += sqrt((p[k][0]_p[k_1][O])*(p[k][O]_p[k_1][O]) + 
(p[k][1]—p[k— l][l])*(p[k][l]_p[k_l][l])); 

} 
printf("Surf ace Area: %f \n", surf); 

1*   
*   

* Actual program Loop. 
*   

150 

*   *1 
for(v = 1; v <= BIGNUM; v++) overlap[v} = 0.0; 
for (v = 1; v <= BIGNUM; v++){ 
length = v*maxci/((float) BIGNUM); 
for (z = 0; z <= MAXNUM; z++){ 

theta = (2.0 * P1 * (float) z)/((float) MAXNUM); 
for (j = 0; i <= nopts - 1; j++){ 

q[j][0] = p[j][OJ + ((double) (iength*cos(theta))) ; 
q[j][1] = p[j][l] + ((double) (iength*sin(theta))); 

} 
ixt = ix+length*cos(theta); 
iyt = iy+length*sin(theta); 

1* 

160 

* Intersection of original polygon with the translate. 
*   *1 
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ss = 1; 
cint = 0; 170 

for (j = 0 j <= nopts —1; j++){ 
if (j == nopts - 1){ 

ii = 
i2 = p[O][l]; 

} 
else{ 

ii = pU+l][O]; 
i2 = p+lJ[l]; 

} 
for (k = 0; k <= nopts - 1; k++){ 

if (k == nopts - 

13 = q[0][0]; 
14 = q[O][1); 

} 
else{ 

i3 = q[k+1][0]; 
14 = q[k+1][1J; 

} 
a = il—p[j][O]; 
b = p[j][1]-12; 
C = p[j][1]*a + p[j][OJ*b; 
d = 13—q[k][0]; 
e = q[k][1]—i4; 
I = q[k][1]d + q[k][O]*e; 
mpt = (a*e)_(b*d); 1* JAI / 
ypt = (c*e)_(b*f) ; /* jA_lj *1 
xpt = (a*f)(c*d); 1* A_ */ 
if ((mpt 1= 0.0) && 
((ypt/mpt) >= rnin(p[j][l],12)—tol) && 
((ypt/mpt) >= min(q[k] [1] ,i4) —to!) & 
((ypt/mpt) <= max(q[k][1],14)+tol) && 
((xpt/mpt) >= min(q[k][O],i3)—tol) && 
((xpt/mpt) <= max(q[k][0],13)+tol) && 
((ypt/mpt) <= max(p[j][1],i2)+tol) && 
((xpt/mpt) >= min(p[j] [0] ,il) —to!) && 
((xpt/mpt) <= max(p[j] [0] ,il)+tol)){ 

xint[ss] = xpt/mpt; 
yint[ss] = ypt/mpt; 
ss++; 
cint++; 
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} 
} 

} 
1* 
* Vertices of Original Polgyon Which Are Interior to Translate. 
*   *1 

evert = 0; 
for (k = 0; k <= nopts-1; k++){ 

mdi = 90; 
if ((q[k][O] == ix) && (q[k][1] == iy)){ 

xint[ss] = ix; 
yint[ss] = iy; 
cvert++; 

} 
else{ 

for (j = 0; j <= nopts-1; j++){ 
if (j == nopts-1)f 

= p[j][0]; 
f=p[j][i]; 

g = p[O][O]; 
h = p[O]{l}; 

} 
else{ 

= p[i][0]; 

g = p[j+i][OJ; 
h = p[j+l][i]; 

} 
t1 = ix*h_iy*g_q[k] [0] *h+q[k] [1]*g+q[k] [0] *iy_q[k] [i]*ix; 
Q = ix*f_iy*e_q[k] [0] *f+q[k] [1]*e+q[k] [0] *myq [k] [1] *; 
Q = g*q[k] [l]—q[k] [0]*h_q[k] [i]*e+q[k] [0]*f+e*h_flcg; 
if ((ti < 0.0) && (t2 > 0.0) && (t3 > 0.0)){ 

indl=j; 
j = nopts - 1; 

} 
} 
if (mdi 90){ 

xint[ss] = q[k][0]; 
yint[ss] = q[k][1]; 
cvert++; 
ss++; 
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} 
} 

} 
1* 
* Vertices of Translated Polgjon Which Are Interior io Original. 
*   *1 

for (j = 0 j <= nopts-1; i++){ 
mdi = 90; 

if ((p[j][O] == ixt) && (p[11[il == iyt)){ 
xint[ss] = ixt; 
yint[ss] = iyt; 
cvert++; 

} 
else{ 

for (k = 0; k <= nopts-1; k++){ 
if (k == nopts—i){ 

e = q[k]10]; 
f= q[k][i]; 
g = q[0][0]; 
h = q[0][1]; 

} 
else{ 

e = q[k][0]; 
f=q[k][i]; 
g = q[k+1][0]; 
h = q[k+i][i]; 

} 
U = ixt*h_iyt*g_p[j][0]*h+p [j] [i]*g+ 

p [j] [0]*iyt_p [j} [i]*ixt; 
t2 = ixt*f_iyt*e_p[j][0]*f+p[j] [i]*e+ 

p[j][0]*iyt_p[j] [i]*ixt; 
U = g*p[jj[1]_p[j][0]*h....p[j][1]*e+ 

if ((ti < 0.0) && (t2 > 0.0) && (t3 > 0.0)){ 
mdi = k; 
k = nopts - 1; 

} 
} 
if (mdi != 90){ 

xint[ss] = p[j][O]; 
yint[ss} = p[j][i]; 

260 
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cvert++; 
ss++; 

} 
} 

} 
1* 300 

* Counterclockwise Sort of Points. 
*   *1 

for (k = 0; k <= TMP - 1; k++){ 
my[k] = 0.0; 
mx[k] = 0.0; 

1* 

} 
MAO] = yint[1]; 
mx[O] = xint[1]; 
for (j = 2; j <= ss - 1; i++){ 

if ((yint[j] == my[OJ) && (xint[j] < mx[O])){ 
mx[0] = xint[j]; 
MY[O] = yint[j]; 

} 
else if (yint[j] < my{0]){ 

mx[0] = xint[j]; 
my{0] = yint{j]; 

} 
} 

* NORTHEAST 
*   *1 

uu = 10; 
ind2 = 1; 
for (k = ind2; k <= ss - 1; k++){ 

dist = 10.0; 
uu = 0; 
for (j = 1; j <= ss - 1; j++){ 

if ((xint[j] > mx[k.-.1]) && 
(yint[j] - my[k-1] < dist)){ 

dist = yint[jJ - my[k—l]; 
mx[k] = xint[j]; 
my[k] = yint[j]; 
uu++; 

310 

320 

} 
} 
if (uu != 0) ind2++; 

330 
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if (uu == 0) break; 

} 
1* 
* NORTHWEST 
*   *1 

uu = 10; 
for (k = ind2; k <= ss - 1; k++){ 

dist = 10.0; 
uu = 0; 
for (j = 1; j <= ss - 1; j++){ 

if ((yint[j] > my[k—l]) && 
(mx[k-1] - xint[j] < dist)){ 

dist = mx[k-1] - xint[jj; 
mx[k] = xint[j]; 
my[k] = yint{j]; 
uu++; 

} 

340 

1* 

if (uu 1= 0) ind2++; 
if (uu == 0) break; 

} 

350 

* SOUTHWEST 
*  *ft0 

uu = 10; 
for (k = ind2; k <= ss - 1; k++){ 

dist = 10.0; 
uu = 0; 
for (j = 1; j <= ss - 1; j++){ 

if ((xint[j] < mx[k-1]) && 
(my[k-1] - yint{j] < dist)){ 

dist = my[k-1] - yint[j]; 
mx[k] = xint[j]; 
my[k] = yint[j]; 370 

uu++; 

} 
if ((mx[ind2] == mx[ind2-1]) && 
(my[ind2] == my[ind2-1])){ 

uu = 0; 

} 
} 
if (uu != 0) ind2++; 
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if (uu == 0) break; 

} 

168 

main(polygon.c) 

380 

* SOUTHEAST 
*  *1 

uu = 10; 
for (k = ind2; k <= ss - 1; k++){ 

dist = 10.0; 
uu = 0; 
for (j = 1;j <= ss - 1;j++){ 

if ((yint[j] < my[ind2.-1]) && 
(xint[j] - mx[ind2-1J < dist)){ 

dist = xint[j] - mx[ind2-1]; 
mx[ind2] = xint[j]; 
my[ind2] = yintj]; 

1* 

} 
if ((mx[ind2] == mx[ind2-1]) && 
(my[ind2] == my[ind2-1])){ 

uu = 0; 

} 
} 
if (uu != 0) ind2++; 
if (uu == 0) break; 

} 

390 

400 

* Area (Sione's Formula). 
*   *1 

area[z] = 0.0; / Iniüalizaüon */ 
if ((cint == 0)!! (evert == 0)) area[z] = 0.0; 
else{ 

area[z] = (mx [ind2_2]*m y[0]) _(mx[0]*m y[i11d2_2]); 

for (k = 0; k <= ind2-3; k++){ 
area[z] += (mx[k] *my [k+ 1])_(mx[k+1]*my[k]); 

} 
} 
area[z] = 0.5*area[z]; 

} 
ind3 = (ind4) = 0; 
for (z = 0; z <= MAXNTJM; z++) overlap[v] += area[z]; 
free_vector(area, 1,MAXNUM); 
overlap[v] = overlap [v]/((float) (MAXNTJM) * vol); 

410 
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printf("/. %f \n", length, overlap [v]); 

free_vector (xint, 1,TMP); 
free_vector(yint,1,TMP); 

1* 
* Segment Lambda Distribution. 
*   *1 
for (v = 1; v <= BIGNUM; v++){ 

length = v*maxcl/((float) BIGNUM); 
printf("% /.An", length, 2,0*PI*length*overlap[v]/vol); 

} 
1* 

430 

* Cubic Spline Fit to \Omega(l) with first and second derivatives. 
*   *1 
printf("Cubic Spline Fit\n"); 
ypi = 0.0; 
ypn = 0.0; 
for (v = 1; v <= BIGNUM; v++) x[v] = 0.0; 
for (v = 1; v <= BIGNUM; v++){ 

x[v] = v*maxcl/((float) BIGNUM); 

) 
spline(x,overlap,BIGNIJM ,ypl,ypn,y2); 
printf("Second Derivatives\n"); 
for (v = 1; v <= BIGNUM; v++){ 

printf("%:f %f,\n " , x[v], y2[v]); 

} 
for (v = 1; v <= BIGNUM; v++) derl[v] = 0.0; 
printf("First Derivative\n"); 
for (v = 1; v <= BIGNUM; v++){ 

splint(x,overlap,y2,BIGNUM ,x[v] ,&y); 
derl[v] = y; 
printf("%f %f\n", x[v], derl[v]); 

} 
1* 

440 

450 

* Ray Alpha, Ray Lambda, Ray Nu Distributions. 
*   *1 
printf( "Segment Lambda Density\n"); 
for (v = 1; v <= BIGNUM; v++) 

printf("/.± '/.f\n", x[v], 2.0*PI*x[v]*overlap [v]/vol); 
printf("Ray Nu Density\n"); 
for (v = 1; v <= BIGNUM; v++) 

printf("/.f '/.f\n", x[v], —derl[v]); 

460 
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printf("Ray Lambda Density\n."); 
for (v = 1; v <= BIGNUM; v++) 

printf("/.f %±\n", x[v], _PI*x[v]*x[v]*derl [v]/vol); 
1*   
* Chord Lambda, Chord Nu, Chord Mu Disfribuions. 
*   *1 
printf("Chord Nu Density\n"); 
for (v = 1; v <= BIGNUM; v++) 

printf("%f %f\n", x[v], x[v]*y2[v]); 
printf("Chord Lambda Density\n"); 
for (v = 1; v <= BIGNUM; v++) 

printf("%± %\n", x[v], pj*x[v] *x[v]*x[v]*y2[v]/(30*vol)); 

printf("Chord Mu Density\n"); 
for (v = 1; v <= BIGNUM; v++) 

printf("/.f %f\n', x[v], PI*vol*y2[v]/surf); 

} 

470 
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