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The solvation energy of hard spherical ions immersed in dipolar hard sphere solvents is
investigated as a function of ion diameter. We apply both the mean spherical and linearized
hypernetted-chain approximations and show that for ions of physically realistic size both theories
give qualitatively similar results. The ion solvation energy is obtained as the sum of two competing
terms: U,p, the direct ion-solvent interaction energy, which is negative, and Up,,, the change in
the solvent—solvent interaction energy per ion at infinite dilution. U, is found to be positive and
to make an important contribution to the solvation energy for all ion diameters.

I. INTRODUCTION

The primitive model of electrolyte solutions assumes
that the ions are immersed in a dielectric continuum, thus
ignoring the molecular nature of the solvent. Recently, the
study of electrolyte solutions has progressed well beyond
this simple model. In particular, integral equation theories
have been successfully used to determine the structural,
thermodynamic, and dielectric properties of mixtures con-
sisting of charged hard spheres in dipolar hard sphere sol-
vents.'” The ion behavior, both in solution and near charged
surfaces®'* has been investigated using these dipolar solvent
models. More complex solvent models, which can mimic the
dielectric constant of water from 25 to 300 °C, have also been
studied."' These models will hopefully improve our under-
standing of aqueous electrolyte solutions.

Despite this recent interest in nonprimitive models of
electrolyte solutions, not much attention has been given to
the calculation of ion solvation (hydration) energies, i.e., the
energy released in transferring an ion from the (ideal) gas
phase to the solution phase. The ion solvation energy is not
simply the direct ion-solvent interaction energy at infinite
dilution. The ions in solution influence the structure of the
solvent and hence the solvent-solvent interaction energy.
This change in solvent-solvent interaction energy (with re-
spect to the pure solvent) per ion, at infinite dilution, must be
added to the direct ion—solvent interaction energy to deter-
mine the total ion solvation energy.

The classical Born model of ionic solvation''” assumes
that the solvent is a dielectric continuum and that the ion (a
hard sphere with embedded point charge) does not affect the
bulk solvent properties even near the surface of the ion. This
implies that dielectric saturation effects are not incorporated
into the Born model. However, in the nonprimitive solvent
models, the saturation of the dielectric constant is indirectly
reflected in the structure of the solvent around an ion and
hence is implicitly included in the calculation of the ion sol-
vation energy.
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In this paper we consider a model electrolyte solution
consisting of a mixture of ions (hard spheres with embedded
point charges) in a dipolar solvent (hard spheres with embed-
ded point dipoles). The ions and solvent particles may have
different diameters. The Ornstein-Zernike (OZ) equations
for this model are well known'~” and are used to calculate the
ion solvation energy. Both the linearized hypernetted-chain
(LHNC)*' and mean spherical approximation (MSA)'-’
closures have been used to solve the OZ equations. The MSA
and LHNC results for the total ion solvation energy agree
surprisingly well considering the failure'*>'® of the MSA to
predict the energy of the pure dipolar solvent. The solvent—
solvent energy contribution to the total solvation energy was
found to be positive and important for all ion diameters.

II. ION-SOLVENT MODEL

We consider a mixture of hard spheres each of which
may carry a point charge and a permanent dipole moment. It
is convenient to write the equations for this general case, and
later, to obtain results for specific ionic solutions by setting
appropriate charges and dipole moments to zero. Species a is
characterized by a diameter d,,, a charge ¢, a dipole mo-
ment x,,, and a number density p,, . The system is taken to be
electrically neutral so that

Y 94 pa =0. (2.1)

The pair potential between two particles of species o
and /3, separated by a distance 7, can be written as

u, 5(12) = 420 (NP °(12) + ui%(N® '°'(12)

+ ugll;(r)¢0”(12) + u,‘zg'(r)¢ 112(12), (2.2)
where
ulo(r) = ub3(r) + 9.95/7 (2.3a)
uyg(r) =ta 95/7, (2.3b)
up(r) = —qa pg/7, (2.3¢)
and
ull() = — papg/r. (2.3d)
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The hard sphere interaction, u}5(r), is defined by

WSl = [°°’ (< des:
“ 0, r>d,g,
where d,, =(d, +dg)/2. The rotational invariants,'
@ ™" (12), depend upon the dipolar orientations. These func-
tions are not explicitly used in this paper and their definition
can be found in the paper of Levesque, Weis, and Patey
(LWP).6

(2.3¢}

IN. THEORY

A. The LHNC and MSA approximations

The development of the theory begins with the OZ inte-
gral equations for a mixture,

h,5(12) —c, p(12) = ﬁZp, fha,,(13)c7,ﬁ(32)d(3), (3.1)

wherec, 5(12)and 4, 5(12) are the direct and pair correlation
functions, respectively, and d (3) indicates that the integra-
tion is to be taken over the position and angular coordinates
of particle 3. (We use the notation of LWP in this section.)
The OZ equation must be supplemented with approximate
expressions relating ¢, ; and A, ;. In the present work we
shall use the LHNC or MSA closures which are defined be-
low.

In Fourier space, the OZ equation can be reduced to a
set of algebraic equations. This is achieved, following
Blum,"” by expanding the correlation functions 4, 5(12) and
¢, g(12) in a set of rotational invariants, for example,

h,g(12) =

and using the orthogonality properties of the rotational in-
variants to obtain a set of integral equations for the functions
h 75(r) and ¢J'3(7). These equations are then Fourier trans-
formed to obtain a set of algebraic equations.*” Only a finite
number of terms are usually included in the expansion (3.2).
For the ion-solvent model described in Sec. II, only the
terms with 0<m, n<1, and 0</<2 are retained. These terms
are sufficient to determine the thermodynamic and dielectric
properties of the system.®’

The complete set of algebraic equations derived using
the procedure described above are given in LWP. Only the
equationsfor s °'', 4 ''2 and 4 ''°arerequired tocalculate the
ion solvation energy and these will, for convenience, be sum-
marized below. These equations which describe a three com-
ponent {positive ions, negative ions, and solvent molecules)
electrolyte solution are obtained by setting ¢, =g,
9259 @=0,py=p,=0, u3=p,d,=d,, d,=d_,
andd, = d,,, where we have labeled the positive and negative
ions and the dipolar solvent with the subscripts +, — , and
#. One finds

z R 7@ ™™ (12) (3.2)

RO =& = p RS + 1p A NELS + 26412), (3.3a)
h110h~no _ __Zp"hon-'gl'ul
1pulh 28 + 2k 26, (3.3)

h 112 ‘"112 —_ _zp”hgll"’Oll + ‘&p"
x(h 02 + B Lele + B, (339

where i can represent either + or — and the sum on # is
over the subscripts + and — . The tilde denotes the Hankel
transform

h mllk ) = 4ari f Pjknh J5(ndr, (3.4)

where j, (kr) is the spherical Bessel function, and 4 ™" (k ) and
& (k ) have been written as # ™ and é™", respectively, in
Egs. (3.3).

As previously mentioned, the OZ equation will be
solved in conjunction with the LHNC or MSA closure rela-
tions. The LHNC equations, as the name implies, are ob-
tained by a linearization' of the usual hypernetted-chain
approximation. The details can be found in LWP. The
LHNC closure relations are

i) [g"s(r)[ =Bl + 13 N] — M), r>di.
MR, r<d,
(3.5a)
110( )= [8“5(")77”0(r) 77,1413(")’ r>d,u (3.5b)
Tl r<dy, '
and
2 [gHS(r)[ — Bul2() + 2] — 7l2, r>d,,
e Tuulrh  r<dy,
(3.5¢)
where 8 = 1/kT (k being the Boltzmann constant and 7" the

absolute temperature),
8ap(r) =ho3(r) +1
and
mnl, — mnl mnl,
Naplr) =hZ5r) — cgalr).
In Egs. (3.5) the *“exact” pair correlation functions for hard
sphere mixtures, g5 (r), have been used in order to reduce

the error resulting from the LHNC treatment of the hard
sphere potential. The MSA closure equations are obtained

by setting g% (7) = 1 in Egs. (3.5).
B. lon solvation energy

The total internal energy U of the ion~dipole mixture is
the sum of ion-ion, ion—dipole, and dipole-dipole contribu-
tions. U does not include the kinetic energy of the particles.
The various contributions to U are given by the formulas®

U (ion—ion) = Z—Zp.p,q,q,f h 3(r)r dr,

47N =
- (—3 )pu B Y pid; f k3 (rdr,
0 i 0

(3.6b)

(3.6a)

U (ion—dipole) =

o 112
- 4—775(/1;1)2 ZJ. ( ) —£E__dr, (3.6c)
(1]

where the indices i and j refer to the ionic species only,
p = 2, p, and N is the total number of particles in the mix-
ture(N=N, + N_ +N,)

U (dipole—dipole) =
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The ion solvation energy, U, of the jith ion is the ex-
cess internal energy of the ion—dipole mixture, at infinite
dilution, due to the presence of the ion. UL}/, for example,
can be calculated from the expression

_ (0]
UL = lim lim (U—NU.—> (37)
+

p,—0 p.—0
where the limits are taken in the indicated order and the
superscript [0] is used to indicate the infinite dilution or pure
solvent results, e.g., U [°! is the internal energy of the dipolar
solvent in the absence of ions. In writing Eq. (3.7), the inter-
nal energy of a gas phase ion (apart from kinetic energy) was
taken as zero. Since, for the dipolar solvents of interest in this
paper, the ion solvation energy is independent of the sign
{but not the magnitude) of the ion charge, we henceforth
drop the superscript ( + ) on Uy,
Equations (3.6) can be used to divide Ug,, into its con-
stituent parts. The ion—ion interaction energy does not con-
tribute to Us,, in the infinite dilution limit; therefore

USol =Up + UDD’ (3-8)

where U, is the contribution from the direct ion-dipole
interaction energy (3.6b) and U, is the contribution due to
the change in the dipole—dipole interaction energy (3.6¢) in-
duced by the presence of the ion. Explicit expressions for
U,p and U,, can be derived using Eqgs. (3.6) and (3.7). At

J
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infinite dilution, we obtain

_ Ar

Uip =~ T p, ua, [ heriar 3.9)
and
0 6~h“2
Upo = = (g [ 272 g
0

112
pp

B2 =h )2 + 2 pibih B2(r) 4 e

where/ = + or — and we have written & !'*(#} in the form

(3.11)

The pi dependence, with z = 1, shown in Eq. (3.11) is essen-
tial for obtaining a finite nonzero value for U,,. Ifz< 1 or
z> 1then Uj,, would be infinite or zero, respectively [see Eq.
(3.7)]. The expansion in Eq. (3.11) is also consistent with the
exact results of Héye and Stell>’ for low ionic concentra-
tions.

Equations (3.3) and (3.5) must be solved in the infinite
dilution limit in order to calculate Uy, and Upy. AL/ is
obtained by solving Egs. (3.3a) and (3.5a) withp, =p_ =0.
The set of coupled equations, which can be solved for
8,h ,'2(r), are derived by expanding the functions & ,'2, i \?

Iz pupr P ppr

)2, ci'?, and gi'5 in the form shown in Eq. (3.11) for & !

and collecting terms of equal order in the ion concentration
p;:- The resulting equations are

8L~ BENS = — ORI Ly g, (1OVE0 4 8,7 02 4 2k L0821 26,h L3S (3.122)
and
Bih Sy — 8,80 = — 2O 4 4o, (ROSEN: + 8,8 0N + b8
+ 8,k 12811000 4 pJ120Ig gl12 4§ fp 12g112100) (3.12b)
The LHNC closure relations become
s etoy = [+ RIS, 1>
icuy(r)_ _s 110 d (3133.)
i”py(r)’ r< 1734
5,c12(r) — [5,.;, mnNL = Buliln) +mi 0] + BEC NS, r>d,, (3.13b)
itpp\t] :

—&muln, r<d,,

7

where

8imuyir) = 8:h 7lr) — 8ic).
The MSA closure relations are obtained by setting
8:h,5 =0andh P8I0l = 0in Egs. (3.13). & mal101 and gt 1)
are infinite dilution or pure solvent correlation functions.

These functions satisfy Egs. (3.3) and (3.5) with
pr=p_=0.
The function 8,4 15 (), which appears in the LHNC

closure relations (3.13), accounts for the change in the
spherically symmetric part of the dipole—dipole pair correla-
tion function caused by the addition of the ions, at constant
volume, to the solvent. The constant volume solvation of the
ion, in essence, increases the effective solvent density. There-
fore, this effect will not be strongly dependent on the ion
charge and should be more important for larger ions (i.e.,
d; >d, ) and/or at higher solvent densities.

r
C. Asymptotic behavior of /),'°/() and 5,h. (")

The asymptotic (large r) behavior of the functions

h {1 r) and 8,4 )2 (r), which appear in the expressions for

U,p and Uy, respectively, can be easily determined. First,

Egs. {3.3), with p, =p_ =0, and (3.12) are solved for

ROk ) and 8,k }'2(k ), respectively, in the limit k—0, and

then the Hankel transforms are inverted to obtain the
112

asymptotic » dependences of 4 {,'°'(r) and 8,k .'; (r). These
asymptotic 7 dependences are exact for any solvent with a
permanent dipole moment. Therefore, knowledge of the
asymptotic 7 behavior of 47, and 6,4 2 should provide
some general insights into the solvation of ions in polar sol-
vents.

It can be shown,>” using Eq. (3.3a), withp, =p_ =0,
and Egs. (17)—(20) of LWP, that in the limit k—0,

- ~1\ i
AON ) (50 )_,
w Dk )y>4mBy; p e, ) &

(3.14)

J. Chem. Phys., Vol. 79, No. 12, 15 December 1983

Downloaded 26 Jul 2007 to 136.159.235.227. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


http://jcp.aip.org/jcp/copyright.jsp

Garisto, Kusalik, and Patey: Solvation energy of ions in dipolar solvents

where ¢, is the pure solvent dielectric constant and
= (47/9) p, Bu?. Inversion of the Hankel transform yields,

for r— o0,
j01110) (50 )
(> 3ye, r

This result is not unexpected since the ion—dipole interaction
potential (2.3b) is also proportional to r 2.

The functions 8,c'? and 8,c,'?, which appear in Eqgs.
(3.12), are short ranged compared to 8,4 and &;A L‘,‘j.
Therefore, they do not contribute in the limit ~—0 and using

Eq. (3.14), we obtain

(3.15)

—-1y¢ 4
8 |2 (k) ( ) , (3.16)
o €& / (p.ufk’
or in 7 space,
3 (eg—1\ &
8.k 12 (p)—s — —( 0 ) d (3.17)
o 87\ & / (p,pir

as 7— oo . The long range nature of this function is surprising,
since the pure solvent dipole—dipole correlation function
falls off as 3 for large r. The ion~dipole interactions [the
first term on the right-hand side of Eq. (3.12b)] at infinite
dilution, i.e., in the absence of screening, lead to this long
range behavior of the dipole-dipole correlation function.
The sign of 8,4 ,'2(r) implies that dipoles have an enhanced
tendency to align in opposite directions in the ion—dipole
mixture as compared to the pure dipolar fluid (i.e., Uy, is
positive).

If Egs. (3.15) and (3.17) are used in Eqgs. (3.9) and (3.10),
respectively, very crude approximations, which neglect short
range correlations, can be obtained for U, and U,,,. These
approximations, which will be denoted by U'%' and U'y),
are given by

2
Uty = ~(€°—1)i (3.18)
60 diu
and
1y &
Uls) = i(f_o__l) 4 (3.19)
2 € d,

Great importance should not be placed on the exact form of
these expressions. In particular, Eq. (3.19) suggests that U,
should be independent of the ion diameter. This, as we shall
see, is not correct. However, it should be pointed out that
both U3 and U5} depend on g2 only. More importantly, if
d;=d, and ¢, is large, U's;) contributes significantly to the
total ion solvation energy. These general observations are

consistent with the more exact calculations presented in Sec.
Iv.

IV. RESULTS AND DISCUSSION

The solvation of ions in dipolar hard sphere solvents
was investigated as a function of the ion radius. The set of
equations given in Sec. III B were solved numerically, for
both the MSA and LHNC approximations, using iteration
techniques described elsewhere.'* The functions 4 Hsto)y)
and 6,k s . () in Egs. (3.13) were obtained using the semiem-
pirical expressmns of Lee and Levesque.'® At infinite dilu-

6297

tion, the ion—dipole system is totally characterized by the
dimensionless parameters, p¥ =p,d >, u* =(Bu’/d})'"?,
q* =(Bqi/d,)""?, and the ratio d, /d;. It is also convenient
to define dimensionless energies, for example,
Ul = Umd,‘/qiz-

The MSA has been extensively used to study primitive
electrolyte models,'>?° dipolar fluids,'®'” and ion-dipole
mixtures'~’ even though it often gives poor results for the
thermodynamic, structural, or dielectric properties of these
systems. However, interest in the MSA persists since the
MSA integral equations can usually be solved analytically.
In fact, it is possible to derive an analytical expression for the
energy U of an ion—dipole mixture'? (for low ion concentra-
tions) without explicitly determining the correlation func-
tions A "‘"’(r) appearing in Eq. (3.6). Once U is known for low
but finite ion concentrations, U, can be calculated using
Eq. (3.7).

The MSA energy, U,,(MSA), for an ion—dipole mixture
withd, =d_ =d, and d, #d,, has been derived® by Chan
et al. Moreover, for d, =d;, Upp(MSA) can be extracted
from the work of Adelman and Deutch? (essentially z, in Eq.
IV.35 of their paper). Although Blum has solved the MSA
for an arbitrary mixture of ions and dipoles’ (with d, #d,) it
is difficult to extract U,,(MSA) from the expressions given
in his paper. Therefore, we have rederived, using the Baxter
factorization method,"'”?! the set of seven nonlinear alge-
braic equations that is required to determine U, (MSA) and
Upp(MSA) for d, #d,,. These equations, for convenience,
are summarized in the Appendix.

The expression obtained for U¥,
result of Chan et al.>:

where £, is the real solution of the equation

4r AT (o = (1+450)° _ (1—-2&)

3 (1 —2£,)° (1 + &)

in the range 0<£, < 1/2 and the pure solvent dielectric con-
stant €, is given by

'»(MSA) agrees with the

Utr(MSA) =

(4.2)

o= IL+4EP(1 + &) w3
(1—25)°
U3, (MSA) is more complex. We obtain
U3, (MSA)
=(€o—1)2 (1 +&oleo D [&_ _ 3% ]‘2
€ 16(1 — £0/2)(1 + 4,)* 1+ 44,

164,
x [——d (L £l +460) — 3(1 + 14, + lsgz)] (44

with

D=[l+ 260(1+§0)2 ]—l'

(1 +48,)(1 — £0/2)

This expression for U %, (MSA) has not previously appeared
in the literature.

At infinite dilution, the Helmholtz free energy for
charging a hard sphere in a dipolar solvent (at constant vol-
ume) can be obtained from U,,,.

(4.5)
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9 L ID (q)
4.6
( )

[4snla) — Asal0)] = [ dg = VUonla:)
where the second equality applies in the MSA to the ion—
solvent models considered in this paper. Ag; (x) is the Helm-
holtz free energy for transferring a hard sphere of charge x
from the gas phase to the dipolar solvent and the ¢, depen-
dence of U, has been explicitly indicated in Eq. (4.6). In the
limit of a large ion (d,, /d;—0) Eq. (4.6) reduces to the classi-
cal expression for the Born free energy of solvation.!>!?
More interestingly, Us(q;) — Us,;(0) can be obtained from
Eq. (4.6) using the thermodynamic relation
U=(3BA/38),. In the MSA, Uy, (0) =0 and an explicit
determination of this derivative shows that the expression
(4.4) for Up,,(MSA) is recovered exactly. Therefore, the
MSA results for U,;, and Uy, are self-consistent in the sense
that Uy, can be derived from U, . It is not known if this
property of the MSA applies to other ion-solvent models.

The expression for U,,(MSA) can be rewritten in the
form

U,p(MSA) = —(1 - ei)q%(R.- 4y @)
0
where
[ 3%
A“[z 1+4§0] " (4.8)

and R, is the ion radius. Therefore, in the MSA, the expres-
sion for A4, (¢;) = [A4se1(g:) — Asi(0)], as has been noted,”
resembles the empirical formula that is often used to fit ex-
perimental data.'? The renormalized ion radius (R, + 4 ) de-
pends on the solvent properties and temperature. This tem-
perature dependence of 4 is important, since A4 can be
used to calculate all the thermodynamic properties of ion
solvation, e.g., entropy and constant volume heat capacity.
It is interesting to note that 4 = 0 in the limit §,—1/2 (or
€y— ), 1., the classical Born expression for 44, is recov-
ered exactly (for all ion sizes) in this limit.

U*,(MSA),U%,(MSA), and hence U %, (MSA) are, for
a given value of £, only dependent on the parameter d, /d;.
These functions are plotted in Fig. 1 for £, =0.1313 or,
equivalently, for the dipolar solvent described by the param-
eters u* = 1.5 and p* = 0.8. The dielectric constant €, for
this particular solvent, is calculated to be 23.7 or 78.5 using
the MSA or LHNC approximation, respectively. The im-
portance of U%,, is shown clearly in Fig. 1. The absolute
value of the ratio U %, /U ¥, is approximately 0.30 for small
ions (d,, /d;,, ~2) and 0.50 for large ions (d,, /d;, ~O0).

U#*,(MSA) is plotted in Fig. 2 for various values of £,
[€s(MSA) = 2.05, 4.18, 10.95, and 64.0 for &, = 0.03, 0.06,
0.10and 0.17, respectively]. The ion solvation energy is more
negative for smaller ions (at fixed &,) and for larger values of
o, i.e., larger values of u* and ¢, (at a given value of d,, /d,).
This is, in general, consistent with experimental observa-
tions and with the classical Born theory of ion solvation.'>"?
In the limit d,, /d;—0, Us, (MSA) is equal to the Born solva-
tion energy calculated using €,(MSA). However, in contrast
tothe MSA, the U§,, vsd,, /d, plots are linear in the classical
Born theory.

The LHNC approximation was used to study the solva-
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Energy (dimensionless units)

04 06 08 10 12 14 16
d,/d;,

FIG. 1. Comparison of different approximations for UY;,, U%,, and U%,
for a dipolar hard sphere solvent at u* = 1.5, p% = 0.8, and §, = 0.1313:
solid curves, MSA; points, LHNC results for d, =0.28 nm and
g* = 14.152.

tion of ions in the dipolar solvent described by the param-
eters u* = 1.5, p* = 0.8, and d, = 0.28 nm. For an ion of
unit electron charge (g* = 14.152), the LHNC values for
U%,, U%p, and U%, are shown in Fig. 1. The MSA and
LHNC values for U%, agree surprisingly well (within 5%)
ford, /d;, 20.9. Since the MSA and LHNC values for U7},
and U%,, agree only to within 8% and 15%, respectively, the
good agreement for U¥, is partially due to cancellation of
errors.

The much larger deviations between the MSA and
LHNC approximations, for d, /d;,, ~0.5, are due to the sol-
vation of the ion at constant volume, i.e., the function 5,4 |5,
in Egs. (3.13) (5,55 =0 in the MSA). In fact, setting

it pp
8,k 15 = 0 in the LHNC calculations makes the MSA and
LHNC values for U%, agree to within 5% over the whole
range of ion diameters.

The effects of 5,43 are easily understood. The con-

up
[ £S5
20| $om-17
i {om 10
=.06
— 50
*D‘?, I é
> 1.0 Zo=.03
r
y i | 1 1 1 1 i i I | |
(o} 1.0 20 30 40 50

du/di

FIG. 2. MSA values of U%, for various values of £,
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1.0 2.0 3.0 4.0 5.0

FIG. 3. Comparison of different approximations for 4 °/}l°!(r) for a dipolar
hard sphere solvent at u*=1.5, p% =08, d,=d, =028 nm, and
q* = 14.152: dashed curves, MSA; solid curves, LHNC; dots and dashes,
asymptotic limit from Eq. (3.15).

stant volume solvation of the ions increases the effective sol-
vent density (i.e., the excluded volume increases) and, there-
fore, the dipole—dipole interaction energy becomes more
negative. (This effect is absent in the MSA since 5,4 2,
which determines U, is not coupled to changes in the hard
sphere pair correlation function, 8§,4}"5.) Since the ion
charge tends to make the dipole—dipole interaction energy
more positive [ U$,(MSA)> 0], the net effect is a decrease
in the value of U %, compared to the MSA result. U %,, how-
ever, is not affected by 8,4 1, .

In Figs. 3 and 4 we have presented the correlation func-
tions 4 °'\°r) and 8,k ,'2(r), for d; = d,,, determined using
the MSA and LHNC calculations. These functions appear in

the expressions for U, and U, respectively. The figures
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FIG. 4. Comparison of different approximations for &,4 .'3(r) for a dipolar
hard sphere solvent at u* =15, p? =08, d,=d, =028 nm, and
q* = 14.152: dashed curves, MSA; solid curves, LHNC; dots and dashes,

asymptotic limit from Eq. (3.17).
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show that the MSA probably does not accurately describe
the structural properties of the ion—dipole mixture at infinite
dilution. Obviously, the energies U;,, and U, are not sensi-
tive to the exact structure of the correlation functions # {,'*!
and 8, ,‘,‘,f The functions obtained by extending the asymp-
totic » dependences of A {.''%(r) and 8,4 ) }(r) up to r =d,
have also been plotted in Figs. 3 and 4, respectively.

V. CONCLUSIONS

In this article the solvation of ions in dipolar solvents
has been investigated using both the MSA and LHNC ap-
proximation. In particular, we have calculated ion solvation
energies Ug,, at infinite dilution. Uy, is the energy released
in transferring an ion from the gas phase to a dipolar solvent.
The ion solvation energy is the sum of two competing terms:
U;p, the direct ion—solvent interaction energy (negative) and
Upp, the change in solvent energy (per ion) due to the solva-
tion of the ions. Uy, can be considered as a measure of the
change in solvent structure produced by the ions. For dipo-
lar solvents, U, is large and positive. Therefore, the effect
of ion solvation on the solvent structure is important. This is
evident from the long range nature [Eq. (3.17)] of the non-
spherical part of the dipole-dipole pair correlation function
(at infinite dilution), which implies that many solvent mole-
cules are influenced by ions in solution and hence contribute
to Upp.

The LHNC and MSA results for U,, and U, agree
reasonably well. However, for larger ions (d; >d,, ), differ-
ences between the LHNC and MSA become more impor-
tant. This can be explained in terms of excluded volume ef-
fects which are not taken into account by the MSA. These
excluded volume effects make Uy, (0) (the solvation energy
of an uncharged hard sphere) nonzero in the LHNC approxi-
mation.

The ion solvation energies, for the dipolar solvents stud-
ied in this paper, are not dependent on the sign of the ion
charge. This is clearly not in agreement with experiment.'>"3
Solvent models that can distinguish between solvation of an-
ions and cations are not difficult to devise. For example,
dipolar solvents consisting of hard spheres with off-centered
point dipoles®? can be used to study the differences between
the solvation of anions and cations. We are currently pursu-
ing the study of ion solvation using solvent models that give a
good description of the dielectric properties of water.'" This
model will also be modified to give different solvation ener-
gies for anions and cations of the same size.

APPENDIX

The equations used to derive the expressions for
U#%,(MSA) and U %,(MSA) given in Eqs. (4.1) and (4.4), re-
spectively, are summarized below. These equations were de-
rived from the OZ equations for an ion—dipole mixture
(@, =d_ =d,;#d,) using the Baxter factorization meth-
od."?! The derivation is straightforward, although care must
be taken in handling the ion-ion and ion—dipole poten-
tials,"?° and draws heavily on previous work.!*'%!7 These
equations, with enough effort, could also have been extract-
ed from the work of Blum'® or Carnie and Chan.'°
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The various contributions to the energy of an ion—di-
pole mixture are given by the formulas:

U (ion—ion) = A *VH,, (Ala)
U (ion—dipole) = — (2/3)4 % p, uVH,, (Alb)
and
o 8, W2V
U (dipole-dipole) = — -%f‘— , (Alg)
)

where Vis the volume of the mixture, A > = 3, p,qZ and the
parameters H,, H,, and £ are obtained by solving the follow-
ing set of equations:

drB=A3} +p,A43/3, (A2)

4mBp=44,0, — Qud,, (A3)

4,” 2 /{2 %

—-535”—" - 03+ —p;‘Q— -0 =0,-0., (A4

Coev _ Hgd:
(1-28)+B]Q = BTH
X {244,[3d;, —d,(1 +&)] +34%d?4,H, — 6},

(AS)

(1 =267+ B1Q, = 1 + 4 — *Pudu Hitz

36
X [34d2H,+ 6d;, —2d,(1 +£)]
(A6)
Ap.dLH} 2
X4, = 5 [3di, —d.(1+£)] —2H(1 - 28 ),
(A7)
and
XA, =Ad}HH\(1 +4£) 4+ d.H (1 + 4¢)
+d,H\(l—-2£+3B), (A8)
where
Q_=(1-2£)P/(1+¢&), (A9)
B=4A%d¥d2p, H?, (A10)
and
2 2 2
X =3Ad, BH1 —2£) + Q"fgi'_
d* B
X (d,-dy(l —2£)— “6 )
— (1 4+ Ad, Hy(1 —2£ ). (A11)

The set of seven equations, (A2) to (A8), cannot be solved in
closed form. For low ion concentrations each variable ap-
pearing in these equations (i.e., 4,,4,,0,,0,,H,,H ,£ ) can be
expanded in a power series in A, for example,

E=EO L AEM 4 120 4 .., (Al12)

Garisto, Kusalik, and Patey: Solvation energy of ions in dipolar solvents

Up and Upp, can be calculated if HO, £9=¢, and
£3&™ = 0) are known. An explicit calculation gives

o _ o____l_ 477.3 172
HY =140 = 2(60) , (A13)
AP = —4rBu(QY )7, (Al4)
D= (14+4&P/(1 — 280, (A15)
(0)
€= g—@ (A16)
HO= 2Be [d'_f‘ _ 36 ]_], (A17)
d,09 ld, 1+ 4£,
and
fo— _ TP CELVNILA
9609 \ €& /(1—-§/2)
X D [d;, (1 + 4&0) — 3d,£,] 2
X [16d,,,(1 + &)1 + 4£,)
—3d,(1 + 14&, + 16£2)], (A18)

where £, and D are given by Eqgs. {4.2) and (4.5), respectively.
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