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Abstract

In this article, we investigate experimentally the suitability of several Bayesian filtering techniques for the problem
of tracking a moving device by a set of wireless sensor nodes in indoor environments. In particular, we consider a
setup where a robot was equipped with an ultra-wideband (UWB) node emitting ranging signals; this information
was captured by a network of static UWB sensor nodes that were in charge of range computation. With the latter,
we ran, analyzed, and compared filtering techniques to track the robot. Namely, we considered methods falling
into two families: Gaussian filters and particle filters. Results shown in the article are with real data and correspond
to an experimental setup where the wireless sensor network was deployed. Additionally, statistical analysis of the
real data is provided, reinforcing the idea that in this kind of ranging measurements, the Gaussian noise
assumption does not hold. The article also highlights the robustness of a particular filter, namely the cost-reference
particle filter, to model inaccuracies which are typical in any practical filtering algorithm.

1. Introduction
Wireless sensor networks (WSNs) enable a plethora of
applications, from which localization of moving devices
appears as an appealing feature that complements (or
substitutes) global navigation satellite systems (GNSSs)
based localization, especially in places where GNSS sig-
nals are very weak, such as in indoor environments, or
in situations where the portion of in-view sky is small,
such as urban areas with tall buildings.
There is extensive literature available on the topic, see

for instance [1,2] and references therein. In the last dec-
ade, literally hundreds of research papers have been
published dealing with localization and tracking of
devices surrounded by wireless sensors, a problem that
can be mathematically cast into an estimation problem
of time-varying parameters, and where the equations
modeling the system are essentially nonlinear. Two
main types of estimation techniques have been consid-
ered so far: (i) centralized approaches, in which all mea-
surements obtained by the sensors are transmitted to a
central processing unit in charge of performing the esti-
mation (see, e.g., [3]), and (ii) distributed estimation

techniques (see [4,5]), where each sensor is responsible
for the processing of its measurements and of data pro-
vided by neighboring sensors. Most of the proposed
solutions can be classified in the framework of Bayesian
filtering, a statistical approach that has also evolved
importantly during the last few years due to its good
behavior in dynamical nonlinear systems [6,7] and the
availability of powerful computational resources that
enable their practical application. For instance, in [8]
measurements were collected from various sensors and
processed in a centralized processing unit wherein a
particle filter was used to track a moving target. More-
over, [9] showed how even measurements of different
types can be incorporated into a single filtering algo-
rithm. In [9], authors tracked moving objects using var-
ious kinds of Bayesian filters.
From the wide range of wireless technologies available

for WSNs, we focus our attention on impulse-radio-
based ultra-wideband (UWB), a technology that has a
number of inherent properties, which are well suited to
sensor network applications. UWB technology not only
has a very good time-domain resolution allowing for
precise localization and tracking, but also its noise-like
signal properties create little interference to other sys-
tems and are resistant to severe multipath and jamming.
In [10], authors provided an overview of the IEEE
802.15.4a standard, which adopts UWB impulse radio to
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ensure robust data communications and precision
ranging.
In this article, we undertake an experimental approach

with commercial off-the-shelf devices, in contrast to
most contributions where controllable, computer-simu-
lated, results are used to assess the performance of a
given method. Here, the focus was on the use of real-
world data, with its inherent inaccuracies and non-mod-
eled effects, to test a set of localization algorithms. This
prevented distributed estimation techniques, since the
sensor nodes did not allow additional, custom signal
processing, but provided real-life ranging measurements
from which interesting conclusions could be extracted,
such as their non-Gaussianity nature. From an algorith-
mic perspective, we analyzed a set of sequential estima-
tion techniques that account for a priori information of
the moving device, the so-called Bayesian filters. In par-
ticular, Gaussian filters and particle filters were studied
and compared in the nonlinear setup. The former
included the well-known extended Kalman filter (EKF),
and the recently proposed quadrature and cubature Kal-
man-type techniques that showed a compromise
between filtering performance and computational com-
plexity. The class of particle filters we investigated
encompassed standard and cost-reference particle filters
(CRPFs). Another main contribution of this work is the
assessment of the robustness of these methods to non-
Gaussian model distributions as well as other model
inaccuracies through the processing of real world data.
Specially remarkable is the robustness performance of
the CRPF, since model assumptions are mild compared
to the rest of the filtering solutions.
The article is organized as follows. In Section 2, the

experimental setup is described, including an statistical
analysis of the database. Section 3 provides an overview
of Bayesian filtering techniques, motivating the descrip-
tions of suitable algorithms depending on the assump-
tions about the distribution of measurement noise and
the linearity of the measurement equation. Section 4
presents results of the aforementioned algorithms in the
experimental scenario described in Section 2, and finally
Section 5 draws some conclusions.

2. Experimental setup
The work reported in this article is related to the exten-
sive UWB measurement campaign made within NEW-
COM++, an EU FP7 Network of Excellence [11]. The
measurement campaign was performed in an indoor
environment with a network of N = 12 static UWB sen-
sors deployed in the area. The scenario was an office-
like environment, whose floor map can be consulted in
Figure 1. From the sensors shown in the figure, we only
take into account UWB technology, neglecting thus the
deployed ZigBee sensors. In this experimental setup, a

robot was moved in a straight path along the corridor of
a building. The robot took a 90° turn almost at the mid-
dle of its run. So the trajectory of the robot was L-
shaped, 20 m length approximately. The robot was
equipped with a number of sensors, namely UWB, Zig-
Bee, and accelerometer measures (see Figure 2). As
mentioned, only UWB technology is considered in this
work. The UWB sensor mounted on the robot emitted
pulsed radio signals while moving on the track. The rest
of 12 UWB sensors were placed around the trajectory of
the robot. Range estimates provided by each UWB sen-
sor were recorded and later combined by the filtering
algorithms for localization. The data were taken for two
cases: once by keeping the speed of the robot constant
and again by moving the robot with varying speed. The
speed of the robot was controlled through commands
sent from a laptop using a Bluetooth channel. The robot
was kept stationary for the initial 5 s before it started to
move. Since the trajectory of robot was totally con-
trolled according to the command generated by writing
an algorithm which defines each movement of the robot
in terms of direction and speed, the true position of the
robot at each instant could be easily obtained. Such
ground truth was estimated using a ruler located in the
path (as might be observed in Figure 2) and carefully
measuring by similar means the location of anchor
nodes in the plane. Of course, the precision of such
ground truth was limited by the experimental nature of
the measurement campaign, although the procedure is
valid to extract important conclusions after data proces-
sing. With the knowledge of true position of robot and
anchor nodes, the true range was obtained for each
anchor node in the sampling instants. Figure 3 shows
the comparison of true and observed ranges for anchor
node seven during the full run of the robot along its tra-
jectory. It can be observed that the measurements are
quite noisy as compared to the true ranges (i.e., depar-
ture from the ideal line).
In this work, the tracking of a single mobile node (i.e.,

the robot) was considered for the experiment. However,
the experiment could be easily extended for multiple
moving nodes if one runs independent filters per robot
in the case of self-positioning, or using more sophisti-
cated data association techniques to discern among tar-
gets [12-15]. The multiple target tracking setup is left
for future work, focusing our attention and conclusions
on the case in which measurements in [11] were
recorded.
The Timedomain PulsON 220 UWB sensors [16],

used for the experiment, operate with a center fre-
quency of 4.7 GHz and a bandwidth (10 dB radiated) of
3.2 GHz at -12.8 dB EIRP. Pulse repetition frequency
was 9.6 MHz. The measured quantity is the distance
estimate between the sensor nodes at a certain sampling
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rate (500 ms in our case). These sensors are interfaced
via Ethernet using the user datagram protocol (UDP)
controlled from a laptop as shown in Figure 2. The loca-
tions of these sensor nodes were accurately measured.
Note that all nodes were located at a same height of
1.13 m, with the ceiling being at 3 m. Timedomain Pul-
sON 220 UWB node computed a range estimate using a
proprietary time-of-arrival (TOA) estimator, whose
implementation is not public. The experiment of com-
puting ranges between robot’s node and the rest of
nodes was performed 700 times per pair, composing the
database described in [11]. Notice that some nodes were
located inside neighboring rooms and hence those mea-
surements were in non-line-of-sight (NLOS) conditions
for the whole (or part of the) trajectory of the robot.
More precisely, the measurement database is com-

posed of (i) the accurately measured locations of each
node, which will be used as the true positions for algo-
rithms assessment. In the sequel, let us use xt = [xt, yt]

T

to denote the 2-D position of the robot at time t and ri

= [xi, yi]
T the static coordinates of the i-th node; and (ii)

the instantaneous range estimates from each node i to
the robot, denoted as ρ̂i,t. The recorded measurements
are modeled as

ρ̂i,t = ρi(xt) + ni,t , i ∈ {1, . . . , N}, (1)

with ni,t denoting the ranging error and ri(xt) = ≜ ∥xt
- ri∥ the true distance from the i-th node to the robot at
t.
The positioning problem is that of obtaining an esti-

mate x̂t of robot’s position given ρ̂i,t and ri with i Î
{1,...,N}. Many positioning algorithms could be used for
such problem, as those reported in [17]. For instance, to
enumerate some of them, we could apply a nonlinear
least squares (LS) algorithm to deal with (1), such as
those proposed in [18,19]; a projection onto convex sets,
reported in [20]; a transformation of the measurements
could be done to obtain a linear equation [21], which
can be straightforwardly solved by an LS, total LS or
weighted LS algorithms. The list of algorithms is

××××

××××

Figure 1 L-shaped trajectory of the robot along with the location of UWB sensors [11].
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obviously not limited to the latter and one might find
many contributions in the literature. Here, we are inter-
ested in those methods that sequentially estimate the
possibly time-evolving mobile position given the avail-
able measurements, as well as previous records. This
sequential procedure finds its theoretical justification
within Bayesian filtering, which is outlined in Section 3,
along with some popular filtering algorithms.

2.1. Testing for normality of UWB-based distance
measurements
Before delving into the use of Bayesian filters for track-
ing the mobile robot, it is important to assess the degree
of Gaussianity of the measures in the database. The
aforementioned database serves to test positioning algo-
rithms, which sometimes resort to the Gaussian
assumption, and thus their performance potentially
depends on the validity of such assumption.
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Figure 2 Robot used in the experimental setup [11].
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Figure 3 True versus observed range for anchor node number
7, along with ideal line (solid red).
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There have been several attempts to model the indoor
propagation channel for UWB transmissions. Particu-
larly, a model due to [22] was proposed for the distribu-
tion of TOA estimates. In this work, it was already seen
that these errors could not be considered merely Gaus-
sian, but of a rather more complex nature. The latter
includes multipath effect (bias) and LOS/NLOS condi-
tions. Recent works have reinforced this idea [23,24].
In this section, we analyze the particular results

reported in [11] using the Anderson-Darling test, which
is one of the most powerful tools to assess normality of a
sample based on its empirical distribution function [25].
In order to provide meaningful results, from a statisti-

cal point of view, a database of Lm = 700 independent
measures is considered here. In this setup, the same set
of UWB anchor nodes was used, with same locations,
and Lm range measures were recorded for each pair of
connected nodes (i, j) [11]. The Anderson-Darling test,
which can be consulted in Appendix 1 and particular-
ized to our application, is a detector to assess whether
the set of measurements from i to j follows a normal
distribution with unknown mean and variances or not.
Let us denote the probability that the test output is
affirmative as Pi,j{H0}, where H0 is the hypothesis that
the sample is normally distributed.
The results can be consulted in Figure 4 for different

values of the detection probability. In Figure 4a, the
average probability of accepting H0, P{H0} has been
plotted. It is defined as

P{H0} =
1
nc

∑
i,j∈C

Pi,j{H0}, (2)

where C is the subset of all nodes that are connected
to others, i.e., those whose measurements are available

in the database. The dimension of C is denoted by
nc = dim{C}. Notice that there are pairs which are not
connected, for instance due to obstacles in the propaga-
tion path. Figure 4a also shows the maximum probabil-
ity, over all nodes in C that H0 is accepted:

Pmax{H0} = max
i,j∈C

Pi,j{H0}. (3)

The results show that the Gaussian assumption is not
realistic. Probability values below 0.15 were obtained on
the average. Moreover, even in the best measures, where
the Gaussianity fits the most, probability values range
from 0.582 to 0.884 depending on the significance level
a. For the sake of completeness, Figure 4b plots the
ordered values of Pi,j{H0} with i, j ∈ C. From this, we
can see that the probability decays rapidly and that actu-
ally few measurements could be classified as Gaussian
with a probability larger than 0.5 even with low values
of a.
As a conclusion of this subsection, we can claim that

the Gaussian assumption does not hold in general for
the measurements in the database [11]. Even though in
some pairs of range measures it could be accepted, the
majority of pairs failed the statistical test. Therefore, it is
expected that those filtering algorithms based on such
modeling assumption should behave poorly when com-
pared with other techniques that can cope with non-
Gaussianities or are distribution free.

3. Bayesian filtering
The problem of interest concerns the estimation of an
unobserved discrete-time random signal in a dynamic sys-
tem. The unknown is typically referred to as the state of
the system. State equation models the evolution in time of
states as a discrete-time stochastic function, in general

PD = 1− α
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Figure 4 Average and maximum probabilities of accepting the hypothesis that measurements are normally distributed (left figure).
The probabilities, as function of a, sorted in descending order can be seen in the right-hand side figure.
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xt = ft−1(xt−1, ut), (4)

where ft-1(·) is a known, possibly nonlinear, function of
the state xt and ut is referred to as process noise which
gathers any mismodeling effect or disturbances in the
state characterization. The relation between measure-
ments and states is modeled by

yt = ht(xt,nt), (5)

where ht(·) is a known, possibly nonlinear function
and nt is referred to as measurement noise. Both pro-
cess and measurement noise are assumed with known
statistics and are mutually independent. The initial a
priori distribution of the state vector is assumed to be
known, p(x0) ≜ p(x0|y0). From a theoretical point of
view, all necessary information to infer information of
the unknown states resides in the posterior distribution.
Bayesian filtering involves the recursive estimation of

states xt ∈ Rnx given measurements yt ∈ Rny at time t
based on all available measurements, y1:t = {y1,...,yt}. To
that aim, we are interested in the filtering distribution p
(xt|y1:t) and its recursive computation given p(xt-1|y1:t-1),
as well as p(yt|xt) and p(xt|xt-1) referred to as the likeli-
hood and the prior distributions, respectively. Such
recursive solution is implemented in two steps, predic-
tion and update, each one consisting in the evaluation
of integrals. The reader is referred to textbook refer-
ences for further insight into the Bayesian filtering fra-
mework [6,26-28]. Once the filtering distribution
becomes available, one is typically interested in comput-
ing statistics from it. For instance, the minimum mean
square error (MMSE) estimator EX|Y{xt|y1:t}, or in gen-
eral any function of the states EX|Y{ϕ(xt)|y1:t}.
Unfortunately, the filtering equations involved in the

Bayesian estimation can be solved analytically only in
few cases such as the case of linear/Gaussian dynamic
systems where the KF yields to the optimal solution
[29]. In general setups, one has to resort to suboptimal
solutions, most of them based on efficient numerical
integration methods [6].
The experimental setup presented in Section 2 can be

easily mapped into a dynamic system of the form (4)-
(5). For instance, a linear constant acceleration model
has been adopted for state evolution [30], and thus

⎛
⎜⎜⎝

xt

yt

ẋt

ẏt

⎞
⎟⎟⎠

︸ ︷︷ ︸
xt

=

⎛
⎜⎜⎝

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ xt−1

︸ ︷︷ ︸
ft−1(xt−1)=Ftxt−1

+

⎛
⎜⎜⎝

T2

T 0
0 T2

T
T 0
0 T

⎞
⎟⎟⎠ at + ut

(6)

where the state vector is composed of position and
velocity components, pt ≜ (xt, yt)

T and vt ≜ (ẋt, ẏt)
T,

respectively. Process noise ut is assumed to be a zero-

mean Gaussian process, i.e., ut ∼ N (0, Q), with covar-
iance chosen to be Q = 0.1 · I4 hereinafter according to
measurement campaign processing. Finally, T denotes
the sampling period in (6).
In (6) we have accounted for external information

other than ranging. In particular, we have considered
that the robot was equipped with an inertial measure-
ment unit (IMU) that provides filtered estimates of
acceleration of the mobile [31,32]. Particularly, we con-
sidered the three-axis acceleration sensor LIS3L02DQ
[33]. at � (ẍt, ÿt)T can then be modeled as the true
acceleration plus zero-mean additive Gaussian noise
with a standard deviation 0.01 m/s2.
On the other hand, from (1), we know that measure-

ment equation

yt = [ρ̂1,t , · · · , ρ̂N,t]T (7)

=

⎛
⎜⎝

‖ xt − r1 ‖
...

‖ xt − rN ‖

⎞
⎟⎠

︸ ︷︷ ︸
ht(xt)

+

⎛
⎜⎝

n1,t
...

nN,t

⎞
⎟⎠

︸ ︷︷ ︸
nt

(8)

is nonlinear. As some of the most popular Bayesian fil-
ters resort to the Gaussian assumption, we consider that
measurement noise nt is normally distributed according
to nt ∼ N (0, R), although we know from Section 1 that
it is not the case in general. Notice that some of the fil-
ters that will be discussed in this article do not impose
Gaussianity of noise distributions. In the simulation
results of Gaussian filters reported in Section 4, we con-
sidered that R = 4 · IN m2. This value was obtained after
off-line analysis of database measurements.
The rest of this section presents a number of filtering

algorithms based on different assumptions on the model
defined by (4)-(5). Particularly, we focus our attention
on the location problem defined in Section 2, in which
measurements were nonlinear and states evolved
linearly.

3.1. Extended Kalman filter
The KF achieves optimal MMSE solution only under the
highly constrained linear/Gaussian conditions. However,
for most real world systems, the assumptions are too
tight. They may not hold in some applications where the
dependence of measurements on states is nonlinear, or
when noises cannot be considered normally distributed
or zero-biased. In such situations, the MMSE estimator is
intractable and we have to resort to sub-optimal Bayesian
filters. Among the suboptimal filters, the EKF [26] has
been widely used for some years. The main idea adopted
in the EKF is to linearize the state transition and/or
observation equations through a Taylor-series expansion
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around the mean of the relevant random variable and
apply the linear KF to this linearized model. This filter
behaves poorly when the degree of nonlinearity becomes
high. Moreover, EKF involves the analytical derivation of
the Jacobians which can get extremely complicated for
complex models. In our case, measurements are defined
by range estimates (1) and the Jacobian of ht, necessary
for EKF implementation, is

∇xtht =

⎛
⎜⎜⎝

∂h1,t

∂xt

∂h1,t

∂yt

...
...

∂hN,t
∂xt

∂hN,t
∂yt

⎞
⎟⎟⎠ , (9)

where ∂hi,t

∂xt
= xt−xi

2‖xt−xi‖, and
∂hi,t

∂yt
= yt−yi

2‖yt−yi‖ , ∀i = 1, . . . , N.

3.2. Sigma-point Kalman filters
To overcome the drawbacks of EKF, many derivatives of
KF have been proposed to date, the most popular one
being the unscented Kalman filter (UKF) [34]. UKF
belongs to a family of Kalman-like filters, called the sigma
Point Kalman filters (SPKFs) [35]. SPKF addresses the
issues of EKF for nonlinear estimation problems by using
the approach of numerical integration. The dynamic sys-
tem is again considered Gaussian, and thus one can iden-
tify that the prediction/update recursion can be
transformed into a numerical evaluation of the involved
integrals in the Bayesian recursion [36]. Then, only esti-
mates of mean and covariance of predicted/update distri-
butions are necessary and the integrals are numerically
evaluated by a minimal set of deterministically chosen
weighted sample points, called the sigma points. The non-
linear function is then approximated by performing statis-
tical linear regression between these points. This approach
of weighted statistical linear regression takes into account
the uncertainty (i.e., probabilistic spread) of the prior ran-
dom variable. Besides UKF, various other SPKFs such as
quadrature Kalman filter (QKF) [37,38] and cubature Kal-
man filter (CKF) [39] have been proposed and the choice
among these filters depending upon various factors such
as the degree of nonlinearity, order of system state,
required accuracy, etc. Moreover, computationally efficient
and numerically stable variants of these filters have also
been proposed by means of the square root version of
QKF and CKF. Although the former is able to provide
enhanced results with respect to the CKF [40], its compu-
tational cost is considerably larger in high-dimensional
problems. Whereas the number of sigma-points generated
within the QKF increases exponentially with nx, the
increase is linear in the CKF case.

3.3. Standard particle filter
All of the Kalman-type filters, discussed above, are
based on the assumption that the probabilistic nature

of the system is Gaussian. The performance of these
filters tend to degrade when the true density of the
system is not Gaussian. With the improvement in pro-
cessing power of the computers, sequential Monte
Carlo (SMC) based Bayesian filters are gaining popu-
larity as they intend to address the problems of non-
linear systems, which do not necessarily have a
Gaussian distribution. The term particle filtering (PF)
denotes one of the algorithms in the SMC methods
family [41,42].
As opposite to Kalman-type filters, where the poster-

ior distribution is fully characterized by its mean and
covariance, a PF provides a discrete characterization of
the distribution. The set of Np weighted random points

is referred to as particles
{
x(i)

t , w(i)
t

}NP

i=1
. These random

samples are drawn from the importance density distri-
bution, π(·),

x(i)
t ∼ π

(
xt|x(i)

0:t−1, y1:t

)
(10)

and weighted according to

w̃(i)
t = w(i)

t−1

p
(
yt

∣∣∣x(i)
0:t, y1:t−1

)
p
(
x(i)

t

∣∣∣x(i)
t−1

)
π

(
x(i)

t

∣∣∣x(i)
0:t−1, y1:t

) . (11)

Here, we consider the standard particle filter (SPF)
based on the sampling importance resampling (SIR)

concept [7]. In this case, π(·) = p
(
xt

∣∣∣x(i)
t−1

)
is the transi-

tional prior and weights can be expressed in terms of

the likelihood distribution, w̃(i)
t = p

(
yt

∣∣∣x(i)
t

)
. After parti-

cle generation, weighting and normalization(
w(i)

t = w̃(i)
t /

∑
i
w̃(i)

t

)
, a MMSE estimate of the state can

be computed as

x̂t =
Np∑
i=1

w(i)
t x(i)

t , (12)

which was proved to converge a.s. to the true value if
Np was large enough [43,44].
A typical problem of PFs is the degeneracy of particles,

where all but one weight tend to zero. This situation
causes the particle to collapse to a single state point. To
avoid degeneracy, we apply resampling, consisting in
eliminating particles with low importance weights and
replicating those in high-probability regions [45,46].
In this article, we consider a variant of the SPF, which

resorts to the prior distribution to generate particles.
Such algorithm is widely used that it deserved a specific
name; typically, one refers to this implementation as the
bootstrap filter. Particle generation and filtering is

Dhital et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:21
http://jwcn.eurasipjournals.com/content/2012/1/21

Page 7 of 13



x(i)
t ∼ N

(
x(i)

t−1, Q
)

(13)

w(i)
t ∝ N

(
ht

(
x(i)

t

)
, R

)
(14)

in this case, where we made use of the assumptions of
the dynamic system described in (6)-(7).

3.4. Cost-reference particle filter
Particle filters are also sensitive to the proper specifica-
tions of the model distributions [47]. In fact in many
situations, especially when the true noise distribution is
unknown or it does not have a proper mathematical
model, it is impossible to obtain a solution in closed
form and hence mostly a Gaussian distribution is
assumed for the ease of computation and to obtain
tractable solution. So, it is likely that the PFs may
degrade in performance whenever the assumed distribu-
tion is different from the true distribution.
A new type of SMC filter, known as the CRPF, was

first introduced in [48]. The idea in CRPF is to propa-
gate the particles from one time epoch to the other
based on some user-defined cost function. This family
of methods tries to overcome some limitations of gen-
eral PF algorithms: namely, the need for a tractable and
realistic probabilistic model of the a priori distribution
of the state, p(x0), the conditional density of the transi-
tion, p(xt|xt-1) and the likelihood distribution p(yt|xt). In
order to surmount such problems, CRPF methods per-
form the dynamic optimization of an arbitrary cost
function, which is not necessarily tied to the statistics of
the state and the observation processes, instead of rely-
ing on a probabilistic model of the dynamic system (in
contrast to the SPF algorithm). By a proper selection of
this cost function, we can design and implement algo-
rithms in a quite simple manner, regardless of the avail-
ability of process and measurement noise densities.
The CRPF algorithm can be interpreted as follows.

Firstly, Np particles are randomly initialized at t = 0.
Usually, one draws from a uniform distribution in the
bounded interval Ix0, and a zero cost is assigned to each
particle:

x(i)
0 ∼ U(Ix0) (15)

C(i)
0 = 0, (16)

for i = 1,..., Np. Notice that in the CRPF algorithm, we

denote as particles the set
{
x(i)

t ,C(i)
t

}Np

i=1
. At t + 1, parti-

cles with higher cost are selected (by resampling) and
those with lower cost are rejected. The cost of the
selected particles does not change in this stage.

Preserving the cost of particles after resampling helps to
shift particles toward local minima of the cost function.
The predictive cost of the particle, defined as

R(i)
t+1 = λC(i)

t + R
(
x(i)

t |yt+1

)
, (17)

is calculated for each particle. We use the following
risk function

R
(
x(i)

t |yt+1

)
=

∥∥∥yt+1 − ht

(
ft

(
x(i)

t

))∥∥∥q
, (18)

where q ≥ 1 and ‖ b ‖=
√

bTb denote the norm of b.
Then, a probability mass function (PMF) of the form

π̂
(i)
t+1 ∝ μ

(
R(i)

t+1

)
(19)

is defined, where μ : ℝ ↦ [0,+ ∞] is a monotonically
decreasing function, known as the generating function.
The most intuitive choice of PMF is

μ
(
R(i)

t

)
= 1/R(i)

t , (20)

which we adopt in the sequel. Then, we resample the

trajectories
{
x(i)

t ,C(i)
t

}Np

i=1
according to π̂t+1 and obtain a

new set
{
x̂(i)

t , Ĉ(i)
t

}Np

i=1
.

The following algorithmic step is particle propagation.
First, a set of Np random particles are drawn from an
arbitrary conditional distribution, pt+1(xt+1|xt), with only
constraint being that Ept+1(xt+1|xt){xt+1} = ft(xt). These
new particles have associated weights

C(i)
t+1 = λĈ(i)

t + �C(i)
t+1, (21)

where, l, which lies between 0 and 1, is the forgetting
factor that controls the weights assigned to old observa-

tions. �C(i)
t+1

is the incremental cost function. An intui-

tive and computationally simple choice [49] is

�C(i)
t+1 =‖ yt+1 − ht

(
x(i)

t+1

)
‖q, (22)

where q ≥ 1. The updated set of particles is then{
x(i)

t+1,C(i)
t+1

}Np

i=1
, which is used for estimation purposes as

follows. As in the selection step, a PMF is once again
defined:

π
(i)
t+1 ∝ μ

(
C(i)

t+1

)
, (23)

from which several estimators can be computed,
including the minimum cost estimator. In this paper, we
are interested in the mean estimate
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x̂t+1 =
Np∑
i=1

π
(i)
t+1x(i)

t+1, (24)

which reminds of the estimator in (12) for the SPF
algorithm.

4. Results
The Bayesian filters introduced in Section 3 were used
to track and locate the robot of the experimental setup
in Section 2. Recall that a robot was moved along a tra-
jectory while emitting an UWB ranging signal; such sig-
nal was received by a set of UWB sensors located in an
office environment with known locations. The problem
tackled in this article is that of a data fusion center in
charge of tracking the position of the robot accounting
for the measured ranges. Initial position ambiguity was
modeled with a Gaussian random variable with covar-
iance 10 · I2
Figure 5 shows the cumulative density function (CDF)

of the localization error for various filters. Also, a solu-
tion based on the LS algorithm applied to the observa-
tions in (7) was evaluated for the sake of comparison.
Note that this is not a sequential method. Particularly,
we considered Np = 50 particles for both SPF and CRPF
algorithms, as well as q = 2 for the cost function in
CRPF. The plot shows the probability that a certain fil-
ter occurs in an error lower than the selected x-axis
value. Therefore, a good filter in terms of such figure of
merit is one which tends quickly to 1, meaning that
small errors were committed. Notice that it is a mono-
tonically increasing function. From the results in Figure
5 we can see that, when applying the filters to the real
data in [11], the best performance was obtained by the

CRPF. As predicted by theory, the Gaussian assumption
made by the filters proved to be inappropriate, and
hence the inferior performance.
The selection of the cost function for CRPF algorithm

is known to be a design issue, which might modify the
performance of the filter. Typically, the Lq-norm is used
due to its simplicity [50] as we considered in (18) and
(22). For the results in Figure 5 we considered the intui-
tive value q = 2, but other options are possible. In Fig-
ure 5, it can also be observed that the performances of
SPKFs are better than that of SPF. It shows that for cer-
tain applications, SPKF can be a choice over SPF. This
is especially beneficial when computational efficiency is
one of the major factors under consideration. A similar
result has been observed in [51], wherein a UKF has
outperformed a SPF for the particular application of
localization. Moreover, it can also be observed that
Bayesian filters have better performance as compared to
the LS estimator. This shows that using even a trivial
prior information can enhance the performance, thus
showing the superiority of Bayesian filters to non-Baye-
sian ones. In Figure 6, the CDF of the localization error
for three values of q can be consulted. The Euclidean
norm, q = 2, obtain fair results as shown in Figure 5.
However, the high degree of non-Gaussianity in range
measures, mainly due to the presence of a large percen-
tage of outliers, makes it more appealing to use other
values. For instance, it is well known [52] that the sam-
ple mean (corresponding to q = 2) is less robust to out-
liers than the median (q = 1). Given the relevance to
our application, it was worthy to study the effect of
using different types of norms in the cost function.
Moreover, we studied the use of q = ∞. Results shown
in Figure 6 are in accordance with theory; the value q =
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Figure 5 Comparison of the cumulative localization error
distribution functions for a number of filters.
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Figure 6 Comparison of the cumulative localization error
distribution functions of the CRPF for a number of q-values
and Np = 100 particles.
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1 provides the most robust result in the presence of out-
liers, being this choice for the cost function very conve-
nient in the setup reported in this article.
The convergence properties of SPF and CRPF do

depend on the number of particles considered [43]. A
number of Np-values were also tested to evaluate its
effect. Figure 7 depicts the overall root mean square
error (RMSE) for SPF and CRPF algorithms versus Np Î
[2, 100]. CRPF used q = 1 in this figure. Apart from the
conclusion that CRPF outperforms SPF, we can see that
increasing Np above ten particles did not modify the
performance of both filters. The main reason could be
the high noise of measures, which prevents obtaining
better estimation results independently of Np.
The localization errors have been plotted with the 1.5s

and 3s confidence intervals for LS and CRPF filters in

Figure 8a.b, respectively. After using the same axis inter-
vals, we can see that the error values are much less and
are well bounded in the case of CRPF as compared to that
of LS.
For the sake of completeness, the estimated trajectory

of the CRPF with Np = 50 particles and q = 1 is shown
in Figure 9. Also the true trajectory is plotted, which
started at coordinates (14.4, 11.1) meters. Crosses
denote the location of UWB sensors, in accordance with
the deployment in Figure 1.

5. Conclusions
In this article, we addressed the problem of robot locali-
zation by means of a set of UWB ranging devices, as
well as measures from acceleration sensors. In particu-
lar, we used an experimental setup, and thus we dealt
with real data. The contributions of this article are two-
fold. On the one hand, we analyzed the Gaussian
assumption of recorded data, which is commonly con-
sidered in the derivation of many signal processing algo-
rithms. After an exhaustive statistical analysis by the
Anderson-Darling test, we found out that this assump-
tion does not hold in general. Therefore, localization
algorithms resorting to this consideration are likely to
fail.
In a second part of the article, we studied a number of

Bayesian filters to track the time-evolving position of the
robot. Mainly, we considered Kalman-type filters, stan-
dard PF, and a recently proposed CRPF, which reduces
considerably model assumptions on noise distributions.
From the results, with real data from the experimental
setup, we saw that CRPF outperforms the rest of the fil-
ters due to its inherent robustness against model inac-
curacies. Other filters require rather tight model
assumptions, which do not hold in general.
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Figure 7 RMSE of localization for (a) SPF and (b) CRPF versus
the number of particles, Np.
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Appendix 1
The Anderson-Darling test for normality
The aim of the test is to assess the normality of the
sample composed of a set of L measured ranges between
a node i and its neighbor j. The set is defined as{
ρ̂

(�)
i,j

}L

�=1
, where index ℓ denotes a realization of the ran-

dom variable (1) in the static scenario and L ≤ Lm. This
section presents the method used to accept/reject Gaus-
sianity of UWB range measures, based on the Ander-
son-Darling statistic A2 as proposed in [53]. A2 statistic
is known to be one of the most powerful tools when
testing normality [25]. The procedure is as follows.
First, for each (i, j) node pair, the set of ranges are

sorted in ascending order

ρ̂
(1)
i,j ≤ ρ̂

(2)
i,j ≤ · · · ≤ ρ̂

(L)
i,j (25)

and, since the hypothetic underlying normal distribu-
tion is unknown, the mean and variance are estimated
as

μ̂ =
1
L

L∑
�=1

ρ̂
(�)
i,j (26)

σ̂ 2 =
1

L − 1

L∑
�=1

(
d̂(�)

i,j − μ̂
)2

. (27)

With F(·) being the standard normal CDF,a we use
the standardized sample

ξ (�) =
ρ̂

(�)
i,j − μ̂

σ̂
, � = 1, . . . , L (28)

to compute the Anderson-Darling statistic A2, which
is defined as:

A2 = −
L∑

�=1

2� − 1
L

[
ln �

(
ξ (�)

)
+ ln

(
1 − �

(
ξ (L+1−�)

))]
− L. (29)

Then, the null hypothesis H0 that the sample is nor-
mally distributed is rejected if the modified statistic
exceeds a given threshold:

A2∗ � A2
(

1 +
4
L

− 25
L2

)
> γα. (30)

The threshold ga is fixed for a chosen level of signifi-
cance a, where 0 ≤ a ≤ 1 is defined as

α = P
{
A2∗

> γα|H0
}

, (31)

that is, the probability of rejecting the null hypothesis
while true. ga can be obtained numerically by Monte
Carlo simulations or refer to the tabulated values as a
function of L and a [25]. The detection probability can
then be straightforwardly computed as

PD = P
{
A2∗ ≤ γα|H0

}
= 1 − α. (32)

Indeed, we are not interested in the case of L = Lm since
the Anderson-Darling test is known to reject the null
hypothesis for large sample sizes in the presence of small
discrepancies, such as outliers. Therefore, instead of test-
ing the whole set of Lm measurements, the approach taken
considers the random selection of L = 10 samples from
the measurement set. Notice that the test is more likely to
reject H0 when increasing L. The subset is then processed
following the above procedure, which is performed inde-
pendently 700 times per each pair of nodes (i, j) and aver-
aged. One could use different L values with similar
conclusions as those discussed in Section 1.

Endnote
aRecall that the CDF of a normal random variable x with

mean μ and variance s2 is �(x; μ, σ 2) = 1
2 + 1

2 erf
(

x−μ√
2σ

)
,

with the error function [54] being defined as

erf(x) = 2√
π

∫x
0 e−t2

dt.
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