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ABSTRACT

The present thesis ié to survey the Reissner—Sagoci\problem in the
linea£ theory of elasticity. 1In Chapter ‘I we have given aAb?ief summary
of the various Reissner-Sagoci type problems solved so far. Chapter II
deals with the derivation of the basic equations of linear theory of
elasticity. In Chapter III we have given the solution of the classical
Reissner-Sagoci problem as discussed by Reissner‘and Sagoci and later én“
by Sneddon. In Chapter IV we have solved a Reissner-Sagoci type problem
for a homogeneous elastic layer bonded to another homogeneous elastic
layer. The numerical values have been tabulated and displayed

~

graphically.
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CHAPTER I
INTRODUCTION

In 1944 Reissner and Sagoci {22] investigated the torsional
oscillations produced in a semi-infinite, homogeneous, isotropic medium
by a periodic shear stress aﬁplied in an axially symmetrical manner to a
circular area of the plane surface of the médium. Earlier in 1937 the
same problem was studied by Reissner [21] under the assumption that the
law of variation of shear stresses over the surface is given. Reissner
[21] obtained a solution'of the problem for the case of shear strésses
increasing linearly from the centre of the stressed surface region to the
edge of the stressed surface region, by means of the Fourier-Bessel
integral method. He also obtained the solution of the problem when the
law of variation of displacement over the loaded portion of the surface
igs prescribed. Mathematioally‘this is a mixed boundary préblem and the
Fourier-Bessel method reduces the problem to an integral equation problem
which may be further reduced to ﬁhe problem of solving an infinite number
of linear algebraic equations for an infinite number of unknowns.
Reissner and Sagoci [22] in their paper obtained solution of the mixed
boundary problem by introducing in a suitable manner a system of oblate
spheroidal coordinates, for static case of tofsional deformation. ' This

problem is now known as the Reissner-Sagoci problem.
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Sagoci [23] also studied the forced torsional oscillations of an
elastic half-space under the action of a rigid circular disk oscillating
periodically about an axis through its centre. He found the expressions
for displacement and shear stresses at any point‘of the surface and
derived the relation between tﬁe angle of rotation and the resultant
moment of the surface shear stress. He also gave a method for the
determination of the shear modulus of the half-space through a study of
its torsional oscillations.

Later on in 1947 Sneddon [26] solved the same Reissner-Sagoci
problem by a different approach. He reduced the problem té a pair of
dual integral equations by using the Hankel transform method. 1In the
 gtatic case these dual integral equations reduce to the known dual
integral equations whose solution was given by Titchmarch {33]. Bycroft
[1] gave an approximate treatment of the oscillations in both the
half-space and a stratum by assuming the distributions of thé shear
stress under the disk in both cases to be the'same as the distribution in
the static case for the half-space and then applying the Hankel transform
to obtain the displacement which is only valid if the frequency of the
oscillations is very small and the thickness of the stratum is very
large. Collins [3] solved the torsional problem of an elastic half-space
by supposing the displacement at any point in the half-space to be due to
a distribution of wave sources over the part of the free surface in
contact with the disk. He obtained the integral equation governing the
problem, holding for all freguencies of oscillations, which he solved

approximately by iteration for small frequencies. The same method was
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extended to the oscillations in an elastic stratum. Gladwell [15] solved
the Reissner-Sagoci problem for an elastic layer of finite thiclmess,
when the lower face is either stress free or rigidly clamped, by reducing
the mixed boundary value problem to a Fredholm integra; equation by
Noble’s:[19] method and gave an approximate solution for small values of
the reduced frequency and large values of the stratum depth. His
analysis was much simpler for the cese when the elastic layer was rigidly
clamped to a rigid foundation, compared to that of Collins [3].

Sneddon [29] in his book on mixed boundary value problems of
potential theory used Hankel ﬁransforms to solve mixed boundary value
problems of the linear theory of élasticity. It was shown by him that
the mixed boundary value problems reduce to the solution of dual integral
equations. A simple method for the solution of dual integral equations
was developed by Sneddon [27]. Making use of his own method Sneddon [28]
in 1966 obtained the solution of the Reissner-Sagoci problem. He [31]
also considered the problem of determining the distribufion of stress in
the interior of a very long circular cylinder of homogeneous isotropic
material when a circular area of its flat surface is forced to rotate
through an angle about the axis of the cylinder, whose curved surface is
fixed. |

Freeman and Keer t14] investigated a torsion problem of an elastic
cylindrical rod welded to an elastic half-space. " The problem was
formulated so as to involve coupling between dual integral equations and
Dini~-Series, and these equations were reduced to a single integral ’

equation which was solved numerically.
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Keer, Jabali and Chantaramungkorn [18] considered the problem of a
layer bonded to an elastic half-space, where the layer is driven by
torsional oscillations of a bonded rigid circular disk. They reduced the
problem to a Fredholm integral equation of the second kind which was
solved numerically. They also developed dynamic stiffnesses for a range
of layer thicknesses, material properties and frequepciés. Jabali [16]
considered the static solution to the problem of a layer bonded to an
elastic half-space, when the layer is driven by torsioﬁal rotation of a
bonded rigid circular disk. The problem was reduced to the Fredholm
integral equation of the second kind and an iterative solution, had been
obtained for large values of the ratio of the stratum depth to the radius
of the disk. ;

For a non-homogeneous, isotropic, elastic half—spacé Reigssner-Sagoci 7
-problem has been first solved by Kassir [17]. He assumed the modulus of
rigidity of the medium in the form u(z) = yoza (0 é « < 1) where Ho is
some real constant, and z is the coordinate perpendicular to the plane
boundary of the half-space. He solved the problem by reducing it to a
pair of dual integral equations and then solving it by_Copson’s.[S] '
elementary solutions. He also solved the problem for a long circular .
cylinder of finite radius whose curved surface may be either clamped or
stress free by reducing the ﬁroblem to a Fredholm integral equation of
the second kind and using the method developed by Sneddon and Srivastava
[30].

Dhaliwal and Singh [7] considered the problem of torsion, by an

annular die, of an elastic layer of assumed thickness bonded to an
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elastic half-space when both the elastic layer and half-gpace are assumed
to be isotropic, homogeneous and consisting of different elastic
constants. The problem was reduced to the solution of a system of four
Fredholm inﬁegral equations of the second kind in four unknown functions.
An iterative solution of these integral equations was obtained for the
case of simple rotation of the amnular die through‘a'small angle for a/b
<< 1 and b/h << 1 where h is the layer thickness and a and b are the
inner and outer radii of the annular die.

Protsenko [20] considefed the elastic equilibrium of a half-space
being twisted by the rotation of a rigid éylindrical die, with flat base,
bonded to the half-space where the modulus of elasticity of the
half-space varies with the depth by u(z) = poza (0 ¢ 1) and AO is a
constant. He solved the ppoblem by reduciﬂg it to a pair of dual
integral equations and solving them by Sneddon’s method. Later én W
Chuaprasert and Kassir [2] solved the same problem by assuming the
modulus of rigidity u(z) = po(c+z)a where Hgr © and « are real constants.
By employing the Hankel transform and Fourier-Bessel series method to the
éroblem, for both half-space and a semi-infinite circular cylinder whose
lateral surface is clamped, thex reduced the problem to Fredholm integral
equation of the second kind.

Singh and Dhaliwal [24] oonsidgred the torsion‘of an elastic layer
by two circular disks of rigid material and of different radii bonded to
the opposite faces of an infinite elastic layer, rotated throughr
different angles. The solution of the problem was reduced to a pair of

simultaneous Fredholm integral equations which were then solved by the
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method of iteration as well as numerically.

Dhaliwal and Singh [6] considered the Reissner-Sagoci problem for an
isotropic, nonhomogeneous, elastic layer of finite thickmess and modulus
of rigidity pl(z) = pl(a+z)a perfectly bonded to an isotropic,
nonhomogeneous elastic half-space of modulus of rigidity ﬁz(z) = ,uz(b+z)'13
where Hyis Hg» a, b, a and B are real constants. They reduced the problem
to the solution of a Fredholm integral equation of the second kind which
was solved iteratively. By assigning different values to «, 8, a, b, Hy
and Hg» they derived solutions of many of the earlier solved problems by
Reissner and Sagoci [22], Jabali [16], Chuaprasert and Kassir [2] and
Gladwell [15] for a half-space and a layer of finite thickﬁess.

Dhaliwal, Singh and Sneddon [10] considered a Reissner-Sagoci type
problem for an elastic cylinder embedded in an e}astic half-space of
different modulus of rigidity, assuming that there is perfect bonding at
the common cylindrical surface and torque is applied to the cylinder
through a rigid disk bonded to its flat surface. They reduced the
problem to a pair of dual integral equations, by means of the integral
transforms, which were then reduced to a Fredholm integral equation of
the second kind and solved numerically. Also Dhaliwal, Singh and.Rokne
[8] considered the torsion of a homogeneous isotropic elastic hemisphere
embedded in a semi-infinite isotropic elastic medium when a rigid
circular disk is clamped to the plane face of the hemisphere and the
stresses are caﬁsed by the rotakion of the disk through a small angle.
They reduced the problem to a pair of dual‘integral equations By assuming

appropriate solutions of the two regions. These dual integral equations
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were further reduced to the solution of a Fredholm integral equation.of
the second kind which was solved numerically. By taking the same values
of modulus of rigidities of the two regions, they derived the solution to
the classical Reissner-Sagoci problem which was in agreement wiéh the
solution of Reissner and Sagoci [22].

In 1982 Erguven {11] considered the Reissner-Sagoci problem for a
transversely isotropic, nonhomogeneous elastic half-space. The modulus
of rigidity of the medium was assumed to be variable as a power.of the
radial coordinate in the form.r/3 (8 2> 0). He reduced the problem to the
solution of dual integral equations for the determination of an unknown
function which were then solved by taking an appropriate form of the
unknown function. The expressions for stress, torque and the
displacement were found. |

Dhaliwal, Singh, Rokne and Vrbik [9] found the stress distribution
in an homogeneous isotropic elastic hemisphere embedded in another
semi-infinite homogeneous isotropic elastic medium when a rigid annular
disk‘is clamped to the plane face of the hemisphére and the stresses were
caused by the rétation of the annular disk through an angle g. By
assuming appropriate solution for two regions, they reduced the solution
of the problem into triple integral equations. These triple integral
equations were further reduced into a Fredholm integral equation of the
second kind by Cook’s method [4].

Erguven [12] considered the torsional stresses and displacement'of a
transversely isotfopic elastic layer of finite thickness for which

torsional shearing forces are prescribed on its boundary surface. He
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_solved the problem by reducing it to a pair of dual integral equations
which were further‘reducéd to a Fredholm equationrof-the second kind. He
also derived splutions for some particular cases. .

The intent of the present thesis is to study the Reissner-Sagoci
problem for various configurations. The organization of the chaﬁters of
the thesis are as follows.

The second chapter deals with the basic definitions and derivation
of fundamental equations of elasticity to be used in later chapters.

In the third chapter we have derived a complete solution of
Reissner-Sagoci problem solved by Reissner and Sagoci [22] and Sneddon
[26]. |

The fourth chapter forms the main oontributién of this thesis in
which we have considered a Reissner-Sagoci type problem, for a
homogeneous iéotropic, elastic layer bonded to another homogeneous
isotropic elastic layer of different modulus of figidity and thickhess,
whose lower surface is bonded to a rigid foundation{ A rigid circular
cylinder is bonded to the top surface of the upper layer and it is
rotated through a small angle and the rest of the surface is stress free.
By the use of Hankel transforms the problem is reduced té the solution of
a pair of dual integral equations. The dual integral equations are
further reduced to a Fredholm equation of the second kind which has been

" solved numerically to find the numerical values of the torque required to

rotate the rigid cylinder through a small angle.



CHAPTER II
BASIC EQUATIONS OF ELASTICITY

82,1 Deformation and Strain Tensor

In the formulation of continuum mechanics the configuration of a
solid body is described by a continuous mathematicalrmodel whose
geometrical points are identified with the place of the material
particles of the body. When such a continuous body changes its
configuration under some physical actions, we impose the assumption that
the change is continuous; that is, neighbourhoods are chaﬁged into its
neighbourhoods. Thus, when the particles of a continuous body move so
that the distance_between particles is changed, the body is said to be
deformed. When the distance between the particles is unchanged, the body
is said to be undeformable or a rigid body.

Let a system of coordinates 2y 8, 84 be chosen so that a point P
of a body at a certain instant of time is described by fhe coordinates
8 (i = 1,2,3). At a later instant of time, the body moves to a new
configuration; the point P moves to @ with coordinates Xi (i = 1,2,3)
with respect to new system of coordinates X1 Xo» x3.7 The coordinates
a1y 8,1 84 and X(s Xy Xg WAY be curvilinear; and describe a Euclidean
space. \

The change of configuration of the body will be assumed continuous
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and the mapping from P to Q is assumed to be one-to-one. The equation of

transformation can be written as

x; = % (a,858,), (1= 1,2,3) ~(2.1.D
which has a unique inverse
e, = ai(xl,xz,xs),‘(i = 1,2,3) (2.1.2)

for every point of the body. The functions ii(aj) and Ei(xj) are assumed
to be continuous and differentiable.

We shall be concerned with the description of the strain of the
body, that is, with the stretching and distortion of the body. If P, P¢,
P'' are three neighbouring points forming a triangle iﬁ the original
configuration, an@ if they are transformed to points @, @', Q' in the
deformed configuration, the change in area and angles of the triangle is
completely determined if we know the change in length of the sides. But
the "location" of the triangle is undetermined by the change of the
sides. Similarly, if the change of the length between any two arbitrary
points of the body iswknown, the new configuration of the body will be
completely defined except for the location of &he body in space.
Therefore the description of the change in distance between any two
points of the body is the key to the analysis of deformation.

Let us consider a cartesian coordinate system in which the point P0

(a?,ag,ag) is moved to the point QO (x?,xg,xg) after deformation. We
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denote the small displacement of the point P0 by

0 0 0 0 0 .
ui(al,az,as) =X - 8.y (i =1,2,3). (2.1.3)

) -~
Let us consider a neighbourhood point P(al,az,as) and let A be the vector
joining 20 and P. Let Q(kl,xz,x3) be the deformed position of P. The

-displacement u, at the point P is

_ 0 0 0 . . .
ui(al,az,a3) = ui(al+Al,az+A2,a3+A3) =X - ai, (i = 1,2,3) (2.1.4)

- -
where Al’ AZ’ A3 are the components of A. The deformed vector X has

components

X- = X. - X, (20105)

- -+ -+

and 6A = X - A has component

_ 0 0
5Ai -‘(xi-xi) - (ai—ai)

_ 0 0

= (x;-a;) - (x5-84)

- 0 0 0 0 0 0

= ui‘a1+A1,az+A2,a3+A3) - ui(al,az,aB)
ou.

- [_1] A. (2.1.6)
aaj 0 9

plus the remeinder in the Taylor’s expansion of the function

ui(ag+A1,ag+A2,ag+A3) and the subscript 0 indicates that the derivatives
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are to be evaluated at the point P.,. Writing

0
ou.
—zu (2.1.7)
Ja.. i,J i
J
and dropping the subscript, we have
GA. = u, .A. . (2.1.8)
1 1,J 3 .

Now if we assume that the displacement ui, and its partial derivatives
are so small that their product can be neglected then (2.1.8) defines an

infinitesimal affine transformation of the neighbourhood of the point.

Now
SA, = u., .A.
1 1,3 J
u. .Hfu. . u., .-u. .
- [1,.) Jri 71,7 J:l]A_
2 2 Y
where
‘ _1
eij = 2'(ui,j+uj,i) (2.1.10)
_ 1 .
wij = Z'(ui,j-uj,i)' (2.1.11)

The symmetric coefficient eij is called strain tensor and it
characterizes pure deformation. The skew-symmetric coefficient wij
corresponds to rigid body motion.

In general consider an infinitesimal line element connecting the
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point P(ai) to a neighbouring point P'(ai+dal).‘ The square of the length ‘
dsO of PP* in the original configuration is given by

dsj = &, da’da’ , (2.1.12)

ij -

where aij evaluated at the point P is the Euclideén metric tensor for the
coordinate system a; . When the points P, P' are deformed to the points
Q(xi) and Q'(xi+dxl), respectively, the square of the length ds of the
new element QQ' is

2

ds® = giJ.dxlde (2.1.13)

where gij is the Euclidean metric tensor for the coordinate system Xi'

The equations (2.1.12) and (2.1.13) may also be written as

24, da.,
1

2 _ ¢ ..m
(4 m
2 axi 3X. ¢. m
ds® = g.. —= . —2 da“da". (2.1.15)
1J aaz aam

The difference between the squares of the length elements may be written

either as

‘ X 3x . .
ds®-ds? = [g <. 559_ - aij]da»lda‘) (2.1.16)
: J

or as



2 daa aap‘ l J -

Now we define the strain tensors as

1 K, X, ;
i J i ,
as, aa -
I P P -
57 7 {gij s 3% = (2.1.19)
so that 7
dsz—ds(z) = 2E. .datda’ (2.1.20)
ij ‘
dsz-dsg = 2e. .dxtdx) . (2.1.21)
ij .

The strain tensor Eij was introduced by Greeﬁ and ét. Venanf and is
called Green’s st?ain tensor [13]. The strain tensor eij was introduced
by Cauchy for infinitesimal strains, and by Almansi and Hamel for finite .
strain, and is known as Almansi’s strain tensor [13].

The tensors Eij and eij ére symmetric, that is
.=E.., e..z=e.. . (2.1.22)

If we use thé rectangular cartesian (rectilinear and orthogonal)
coordinate system to describe both the original and the deformed

configurations of the body, then



Furthermore, if we introduce the displacement vector 4 with the

components
U = x;-a (i =1,2,3)
then
axd aua
a8, = Ja. + Gai
i i
Ja ou
-5 . -2
axi i IX.

and the strain tensors reduce to

17 axa
E"=‘2' &

17 ™

a gsimpler form

)4
& B ]
| o aai an. . iJ

Ju
B -
5ai}[353 + Gpj] 513]

-OU . au. Ju adu
- 1 + i & &
7 |oa. da. oa. aa.]
- 1 Jd 1 J
and
. 1 s ) aaa aa.p
ij ~ 2 [ij ap 3X; axJ.

du, du du_ du
- 1 J 4 a B
-7 |3x. X X, ax.] :
- 1 1 J

(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26)

(2.1.27)
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Now if the components of the displacement u, are such that their first
derivatives are so small that the squares and products of the partial
derivatives of ui are negligible then eij reduces to Cauchy’s

infinitesimal strain tensor, given by (2.1.10)

.= e.. = 2'[ui,j+uj,i] (2.1.28)

since if the displacement and its derivetives are small it is
"immaterial" whether the derivatives of the displacéments are calculated
at the position of the point before or after the deformation.

The component of the strain tensor cannot be arbitrary. In order to

find this condition, let Po(xg,xg,xo) be some point of a simply connected

region, at which the displacements uo(xg,xg,xo) and the components of
rotation wij(xg,xg,x3) are known. The displacements uj at any other

point P'(xi,xé,xé) are given by

o
uj(xi,xé,xé) = uj + J duj
P
Pl
= u. + J j,kdxk
P

(2.1.29)

:
'y

&
oW

A

&

Jk Tk

Now
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e 0.0 '
= (xk Xk)wjk + JPO(Xk Xk)wjk,edxe {(2.1.30)
P
and hence
u,(x!,x:,xt) = u.+(x'—-x0)w0 + JP e, +(x'-x ) |dx (2.1.31)
§\F1 %20 %3 k k’” jk ol-de % k,e ! |TFe 0 h
. P
Also from (2.1.11) we have
W =2 1 (u. , -u )
jk,e axe 2 ik Tk,
= 1 (u - ) + - (u -u )
7T Wike %k, 50 T T Mo, 5k, 5k
_ a1 3 1
= 5§£'2'(u€,j+uj,€) 323.2 (uk,€+u€,k) (2.1.32)
or
wjk,e = eej,k—eke,j (2.1.33)
so now (2.1.31) becomes
u.(x!,xt,xt) = u0 + ( '—xo)w0 + U, dx (é 1.34)
VR0 %0 %3 57 PRk MRS TAS: ol
where
Uje = eje + (xﬁ—xk)(eej,k_eke,j)' (2.1f35)

Now as the displacements u, must be independent of the path of

integration, Ujpdxe must be exact differential, so we must have
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=0 (2.1.36)

Yiie T Ye,i
or
®iie 6€k(eijyk—eki,J) T C5e,i + ski(eej,k'ekg,j)
'_ - — —
g (85 5 ke 8k, e %05 ke Poke i) = O (2.1.37)

In equation (2.1.37) the first line is identically =zero, and since this

is true for arbitrary choice of (xﬁ—xk), we must have

®ij,ke ~ ®ki,je " ®eg,ki * ke,ji T © (2.1.38)
which is called the compatability condition and the components of strain

tensor must satisfy this condition.

82.2 Stress Tensor
(A) Strésses:

Consider a configuration occupied by a body B at some time. Imagine
a closed‘surface S within B. We would like to know the iteraction |
between the material exterior to this surface and that in the interior.
Consider now a small surface element 4S on the oﬁtside of imagined
surface S. Let us draw a unit normal vector ¥ on 4S with its direction -
outward from the interior of S. Then we can distinguish the two sides of
4S8 according to the sense of ¥. Now consider the portion of the material

lying on the positive side of the normal. This portion exerts a force
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—’
say 4F on the other portion of the material, which is the negative side

-
of the normal ¥. The force 4F is a function of the area and the

orientation of the surface considered. We make the following assumption:

-

* -t
As 48 tends to zero, the ratio 4. tends to a definite limit dF/ds
and that the moment of the forcesracting on the elementary surface 4s
about any point within the area venishes in the limit.

Thus the limiting vector wi;l be written as

-
T =

Bl1&

where the subscript v is introduced to denote the direction of the umit

"y .
normal ¥ of the surface 4S. This limiting vector T is called the "stress .

vector" or '"traction", and represents a force per unit area acting on the
surface.

(B) Components of stresses:

Consider a special case in which the surface ASk is parallel to one

of the coordinate planes. Let the normal ASk be in the positive

direction of the xk axis.

-k
Let the stress vector acting on Ask be denoted by T , with component

T?, Tg, Tg along the directions of the coordinate axis Xy1 Xoy Xg
respectively, the index i of T? denoting the components of the force, and
the symbol k indicating the surface on which the force acts. In this

case we introduce a new notation for the stress components
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V7
™

Figure 1l: Notation of Stress Components.




T11{=°k1’ 2 = %2’ *3 T %3

If we arrange the components of tractions acting on the surfaces

k=1, k= 2, k = 3 in a square matrix as shown below:

Components of Stress

1 2 3
surface normal to x1 011 012 S13
surface normal to X, 021 022 Gyg
surface normal to x3 031 032 033 .

The components O 11 Oggr Ogg BTE called "normal stresses” and the

remaining components G191 Fqg etc. are called "shearing stresses'.

(C) Stress at a point:

In this we shall show that knowing the components oij’ we can write

the stress vector acting on any surface with unit outer normal vector ¥

: -V
whose components are Vis uz, v3. This stress vector is denoted by T

withrcomponents Ty, Tv, Tg given by Cauchy’s formula:

™zvo.. . , , (2.2.1)
i Jij 4
Let us consider an infinitesimal tetrahedron formed by three
surfaces parallel to the coordinate planes and one normal to the unit

vector ¥. Let the area of the surface normal to ¥ be ds. Then the area
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Figure 2: Stress at a Point.
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of the other remaining surfaces are:

ds, = ds cos(U,il) = v,ds = area of the surface Il to X, X, plane
ds2 = vzds = area of the surface Il to X Xq plane
ds3 = usds = area of the surface U to X%, plane.

The volume of this tetrahedron is

1

dv = 3

hds
where h is the height of the vertex from the base ds.

On account of the assumed continuity of the stress vector Tq, the
xi—component of the force acting on the face ABC of the tetrahedron is

(T:+ei)ds where lim e, = 0. The corresponding component of force due to

h~0
stresses acting on the faces of area dsi is (_cji+eji)dsj where
lime.. = 0 and Gji are taken with negative sign due to the outer normals

h-0

to the three surfaces which are opposite in sense with respect to the
coordinate axis. Finally the contribution of the body force Xi to the

x.-component of the resultant force is (X.+e¢!) 1 hds, where lim e! = 0.
i i1’ 3 b0

Thus for the equilibrium of the tetrahedron we must‘havé
1
(TV+e.)ds + (-o,.+e..)ds, + (X.+e!) = hds = O .
ii Ji Ji’3 i 1" 3

Now ds‘j = ujds so dividing by ds we have
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H 1 —
(Tz+ei) + (-oji+eji)vj + (Xi+ei) 3-h = 0.

Taking limit as h -+ 0, we obtain

™ =z0.v. . (2.2.2)
1 Jr J

£82.3 Equations of Motion

Consider a continuous medium, every portion of which is contained
within the volume V bounded by the cloéed surface S. Each point P of S
is subjected to traction Ti and each mass element of the medium is
subjected to a body force per unit mass fi’ which includes any inertia
forces present. Then for equilibrium, both the resultant force acting on
the body within V and the resultant moment of all the forces acting

(produced by body and surface forces) on the body must vanish, that is

!

J pf AV + Tzds =0 (2.3.1)
v s '
[V o7 5 5V + I vijk$§xkds =0 (2.3.2)

where p = p(xl,xz,x3) is the mass density of the body under consideration

at the point in space with coordinate xk; and vijk“are defined as:
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J +1 if ijk represent an even permutation of 123
qijk = 0 if any two of ijk indices are zero .
1 -1 if ijk represent an odd permutation of 123

Substituting for Tz from equation (2.2.2) into equation (2.3.1) we get
JV pfidV‘+ JS ojiude = 0. (2.3.3)

Now, since the function Gji and their first partial derivatives are
continuous and single-valued in V, the divergence theorem can be applied

to the surface integral in (2.3.3) and we have

: -+ . . - : ) . *
Jv(pfl 045, )V = 0 R

since the region of integration V is arbitrary and integrand of (2.3.4)

is continuous. Thus at every interior point in V, we have

.. .+ pof. = 0. 2.3.5
ch,J PL;. ( )

Next consider the consequence of vanishing of the resultant moment,
that is, the equation (2.3.2). Using equation (2.2.2) and the divergence

theorem we have

Js ’ijkT;Xde = Jé 75 51%mim kS

J;(vug%ﬂmkfy
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= Jv (4 5655 %ms,m* 1. 55%m; %l

Here the ?elatlon Xk,m = skm has been used where Bkm is the usual

Kronecker delta defined by

5 _ 1 if k =m
km ~ } 0 if k#m°

ij and from equation (2.3.5) we have

Since kaomj Ele]
the equation (2.3.6) becomes

J PP J 13 5%E M5 55V -

Using this relation in equation (2.3.2) we get

dv = 0 .
JV 15Kk

)dv, (2.3.6)

Since this integrand is continuous and the volume V is arbitrary, we must

have

Yi3kj T

(2.3.7)
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for every point in V. Expanding this equation, we get

cij = oji (i,J = 1,2,3) (2.3.8)
that is to say, that the stress tensor is symmetric.

Equations (2.3.5) and (2.3.8) are equations of motion and are true
for any continuous medium. If, in addition, to the body force Fi rer
unit mass exerted by some external agency, interia forces are present,

then we can write

and equation (2.3.5) takes the form

.. .+ pF. = pu, 2.3.9)
olJ;J P 1 P {
where ui = ui(xl,xz,xs,t) is the displacement vector of a particle at the

point P with coordinate X at any time t and a dot denotes a derivative

with respect to time.

82.4 Generalized Hook’s law

Generalized Hook’s law states that the components of stresses are
linearly related to the components of strains. That is to say
(2.4.1)

%35 ° CijkeSke
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where cijke is called the tensor of the "elastic constants" or '"moduli”

of the material. Also since Oij = Oji’ we have

= Cjike (2.4.2)

i jke

Further, since e = Sk and in equation (2.4.2) the indices k and ¢ are

dummies, we can symmetrize ci with respect to k and ¢ without altering

Jke

the sum. Thus

Cijke T Cijex °
According to these symmetric properties the maximum number of independent

elastic constants is 36.

Again, if we define a strain energy function w by

W = %’Cijkeeijeke (2.4.3)
with the property
ai?. =045 , (2.4.4)
1J
then the quadratic form (2.4.3) ig symmetric and it follows that
(2.4.5)

Cijke = keij
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and the number of independent elastic constants is further reduced to 21.

Now introducing the notation

"

11 ~ 91 922 T 992 933 T 931 Tgg = Ty I34 = 955 Gyp = g
11 7 €1 C20 T g7 ©33 T €37 €33 T €41 €31 = €5y €99 T &g

the equation (2.4.1) can be written as

o, = cijej (i,j = 1,2,...,6). {(2.4.6)

If the medium is elastically symmetric in certain direction, then
the number of independent constants_cij in (2.4.6) is further reduced.
Consider a substance elastically symmetric with respect to the X%y
plane. This symmgtry ig expressed by the statement that the cij are
invariant under the transformation

Ky =R Ky = Ry Ky = - %

and by using the transformation of coordinates we have

oi =0 ei =e; (i =1,2,3,6)

1

- 04, e& = - e4, oé = - 05, eé = - e5

and equation (2.4.6) for i = 1 becomes



- 30 -

ei + Clzeé + Cl3eé + Cl4e:l + 015(3:.'5 + 0166'6

Q
1

= %11

or

Q
1

17 C11%1 T C18 t C13%3 T 1484 T C15%5 * C16% -

Also from equation (2.4.6) for 1 = 1, we have

e, +c,.e, +c.,,e, +c,,e, +c,.e. + c,.e

9 = %1151 1252 13%3 14%4 15%5 166 °

i 11

Thus on comparison of these two we get

14 7 715 T

Similarly taking equatioﬁs for °é"”’°é we get

24 25 34 35 ~

Hence for a material with one plane of elastic symmetry (taken to be XX,
plane) the matrix of the coefficients of the linear forms in (2.4.6) can

be written as



°13 C2 3 0 0 ey ]
Co1 Ca2 %3 0 0 Oy
°33 C32 C33 0 0 cs 2 T)
0 0 0 o cp O
0 0 0 o of O
%1 %2 %3 © O ©gp

In case of an orthotropic materials, that is, the material which
have three mutually orthogonal planes of elastic symmetry, if we choose
the axis of coordinates so that the coordinate planes coincide with the
plane of elastic symmetry, then some of the coefficients cij in (2.4.7)

vanish. In this case the matrix is given by

c11 012 013 0 0 0
021 022 c23 0 0 0
c c c 0 0 0
31 32 33 . (2.4.8)
0 0 0 Cy4 0 0
0 0 0 0 Ce 0
0 0 0 0 0 c

In the case of an isotropic media, that is, the material in which
the elastic properties of a body are identical in all directions, these
constants reduce to 2. Now from the definition of the isotropic media,
its elastic properties are independent of the orientation of the
coordinate axes. In particular, the coefficients cij ﬁust remain ‘

invariant when we introduce new coordinates axes xi, Xé’ xé, obtained by
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rotating the xl,xz,x3—system through a right angle about the xl—axis. By

considering ci, we have

C12 T ©13? ©31 T P21 P32 T C23’ €33 T 22’ Ces T Cs5°

Similarly, a rotation of axes through a right angle about the x3—axis

leads to

Co1 7 C12? 22 T 117 C23 T C13' 31 T C32’ Cs5 T Cuyc

Finally consider the coordinate system xi, xé, xé obtained from
xl,xz,x3—system by rotating the latter through an angle of 45° about the

x3-axis. In this case,

From equation (2.4.6) we have

4476

. and referred to xi,xé,xé—axis we have

M=
1

4476

or

L ovoL) =
7 (—cl+02) = c44(—el+ez) . (2.4.9)
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Now from (2.4.7) we have

91 ¥ C1181 * G128 * Cy3%3 «

T, = 02161 + szez + 02383

and from above relations, namely,

=C = C

Co2 T ©11’ 23 ¥ 13 T %12 T Cx1

we get

1 1 1
7 (0y+op) = 5 (09181%C0p82) ~ 7 (C1181%C12%9)
1
= 2‘[011(82‘81’"012(ez"e1)]

= 7 (013-0qp) (epey) -
Comparing (2.4.9) and (2.4.10) we get
Cq = %'(011"°125 = He
Also writing Cyp = A, we have from equation (2.416)

11 T ©11%11 t C12%22 T C12%33

cipleyqtegatess) + (o -cqpleyy
A + 2ue

11’

© (2.4.10)
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where 4 = e, +e So the generalized Hook’s law for a

11%®00%€33 = €45

homogeneous isotropic body can be written as

Oij = AaijA + Zyeij (i, = 1,2,3). (2.4.11)

? 2
The constants A and p were introduced by G. Lame and are called the Lame

constants.

82.5 Equations of motion in teérms of displacements

The equation of motion is given by the equation (2.3.9) as

azui
.. . +pF. = .
%ji,g TP TP 32

Now substituting for Gji from equation (2.4.11) we have

2
‘ 3 ui
.4, + L.os t . = .
AalJAJ ZyelJ’J pFl P ;Ez—
These equations can be written as
azu azu azu azu
(atu) 24 4 Lo 1wt v oF, = !
ol ) ) ) P¥y =P g~
1 axl axz ax3 at



34 ,azuz azu2 azuz. azuz
(A+u) + U + + + pF, = p —

aXz . ~ax2 ax2 ax2 / 2 at

1 2 3
.azu azu azu 5 azu

(A+p) ad F 3 + 3 + 3 + oF. = 3

3%, pJ Z 7 Py = P —5—
. -axl ax2 ax3 - at

These are the equations of motion in terms of displacements.

equation (2.1.11) we have

(2.5.1)

Now from 7

(2.5.2)

= 1 (u, .-u. .)
i 7% 'i,5 J,i
so that
2 2 2
2. _"u1+au1+a“1_a4 _2""’21_"“’13
vy -'axZ 'aXZ aXZ - x,  lex, 3%,
1 2 3
and hence equations (2.5.1) may be rewritten as
eIty A azu
a4 (21 137 1
(A+2U) =— - 2u - + pF, = p .
ax1 _axz ax3 j 1 ‘ at2
.15 AW 3 u
a4 32 21) 2
(A+2U) — = 2u|zee— - + pF, = p JN
93X, CEN oX; ] 2 atﬁ
36 I azu
ad 13 327 3
(A+2u) — = 2U{e——— = ——f + pF, = p
. EE 9% 9%, | 3 atZ
If we write w21 = w3, w13 =-w2, and w32 = w1 these equations become



9
AW AW 5+ d u

a4 3 2 : 1

(A+2U) ——— = 2Ujxe— = =—| + PF, = p
ax1 ~axz ax3‘ 1 atZ
a4 awl ’ aws. azué

(A+2u) — - 2Ujz== = =—| + PF, = p : (2.5.3)
ax2 _ax3 axl_ 2 atZ .
a4 .awz awlﬂ 82u3

(A+2L) — = 2U{=——— ~ —=| + pF, = p ]
ax3 _axl axz_ 3 atZ

§2.6 Curvilinear orthogonal coordinates

Let f(x,y,2) = «; where « is some constant, be the equation of a
surféce. If a« is allowed to vary we obtain a family of surfaces. If
at+da is the parameter of that surface of the family which passes through
(x+dx,y+dy,z+dz) we have

o

af of of . aat ac
T+ Ly +Laz=Fax+ Tay+ 3 oaz (2.6.1)

do = =

ax

If we have three independent families of surfaces given by equations
E £ (xy,2) = oy £,(x,5,2) = B, £5(x,7,2) =9

so that in general one surface of each family passes through a chosen
ﬁoint, then a point may‘be determined by the values of a, 8, v which
belongs to the surface that passes through it .and the neighbouring point
will be determined by the neighbouring values a+dx, g+dg, vy+dv. Such

guantities as «, B8, v are called "curvilinear coordinates" of the point.
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When the families of surfaces cut each other everywhere at right angles
it is called an "orthogonal curvilinear coordinates”". So let us take «,
By 7 to be parameters of such a set of surfaces, so that the following

relations hold:

|
(I
+
|
I
-+
|
|
"
(=

Now the direction cosines of the normal to « at the point (x,y,2)

are

1 dx 1 da 1 d«
&’ B &7 R &

where h1 is given by equation (2.6.2) below. By projecting the line

Jjoining two neighbouring points on the normal ny to a, we have

fele

1 Fsle da, _ dx
dnl-fq[gidx+3§dy+3_z.dz]-h—l-

by equation (2.6.1). In the same way the elements dnz, dn3 of the

normals to 8 and v are dp/hz and dp/h3 where
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hz - fea) 2 + o4 2 + Eld 2
n = -3/_352 + FLBEZ + FEE.Z
2 | 9X | (9 | 3
a2 Y/ 2
2 _ [on 37 (39 ]
h3 * = + 5 + 3z) - (2.6.2)

2

Now the distance between two neighbouring points is (dn§+dn2+dn§)1/2 S0

that line element ds is given by

(2.6.3)

§82.7 Components of strain referred to curvilinear orthogonal coordinates
Let P(«,8,v) and Q(a+a,p+b,7+q) be two points at a small distance r

apart, and let the direction cosines of PQ, referred to the normals at P
to those surfaces of the «, g and v families which passes through P, be

¢, my n. Then, to the first order in r
a = erhl, b = mrhz, c = nrh3.

‘Let the particle which is at P, @ in the unstrained state be
displaced to P1, Q1 and u,, up, u, be the projections of the displacement
PP1 on the same three norméls, and let a+t, p+q,)v+§ be the curvilinear

coordingtes of P, If the displacement is small, so that u,, up, u, and

¢, g, ¢ are small quantities of same order, we have
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The curvilinear coordinates of Q are expressed with sufficient

approximation as

— 3 4 p 2 3¢
a+a+¢+aaa+b$+cgy—,

and the values of 1/h1,-~v at P, are expressed with sufficient

approximations as

so the projéction of PlQl on the normal at Pl’ to those surfaces of the
a, B and v families which pass through P1 are expressed with sufficient

approximation by three formulas of type

P S N S PR S PN

oY)

I y
which can be simplified by neglecting the terms of order higher than one
in ¢, 77, ¢. On substituting for a, b, c and ¢, 5, ¢ and squaring and
adding three formulas of this type, we obtain an expression for the

square of the length P This length is r(l+e), where e is the

19

‘extension of a linear element along PQ. Hence e is given by
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1 173 1283 HI 1737y a7 Hl‘
by s by :
+ mﬁ.Ié_- (hluz) + nﬁ-I (hluz) o0

neglecting squares and products of Uy Uy, uy , we may write the results

<
as
2 _ .2 2 2
7 e = ecxcxe + eppm + e, + e’mmn + e‘mne + eapem
where
au ‘ 3
_ o 3 [i 3 (1]
%aa = P13t PP 3p [B] T MMy o (R
au fq o .
- B a (1 a (1
e 85 hz Fyo + hzh?’u,y 3 h; +hhou — IE )
u - fq -
_ . 3 1] : 3 1
1y = P33t MY 3w [Rg) * P2 o ()
. (2.7.1)
h h
_ 22 39
epy = Hg'a? (h3u7) + H-z--e’—; (hzup)
h, . h
.32 1o
Cya T h_1- EX2 (hlua) + h'g 3 (h3u'v)
h h
_ 1o 29
eap = H'z"a—a' (hzup) + h—l-é-/} <h1u<x)
The quantities € T € By -++» are the six components of strain referred

to the orthogonal coordinates.
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82.8 Equations of motion in cylindrical coordinates

In the case of cylindrical coordinates r, 8, z, which is a special

case of an orthogonal curvilinear coordinate, we have the line element

{(dr)2 + r2(de)? + (dz)%}1/2

and the displacements are U,y Ugy U . Then from equation (2.7.1) we have

Ju au u Ju
e =_F e = 1 77 + L e =_2
rr  ar ' 66 T 38 T ' 2z 9%
- (2:801)
_ 1 auz . aue _ aur . auz _ Jau _ ug . 1 6ur
9z ~— T 36 3z ' Tzr T 3z or ! ré - ar r T 30
and the dilatation is given by
Ju au
_ 1o 1 ] z
4= 557 M) Y w5t (2.8.2)

AW s[4 3 u

34  2u Tz o _ r
W s W TP

AW eI azu

SNV r z _ 9
(A+2u) 355 2u 3 + 2u s =P _z—at

A azu

a4 _ 2u 8 ro_ z
(A+2u) F " F 5 (rwe)‘ + 2u 55— =P _Tat
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where - . (2.8.3)
20 _lau _aua
r T 38 A
3u au
2w = L__2
9 3z or
du
_ 13 1 " r
20, = w37 (M) - 555

These are the equations of motion in the cylindrical coordinates.
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CHAPTER III

REISSNER~SAGOCT PROBLEM

83.1 Introduction

Reissner and Sagoci [22] in 1944 investigated the torsional
- oscillations of a homogeneous, isotropic elastic half—spacé under the
influence of periodic shear stresses applied in a rotationally symmetric
manner to a circular portion of the surface-of the half-space. They
obtained solution for the static case of the above mixed boundary value
problem by introducing in a suitable manner a system of oblate
spheroidical coordinates. Later on in 1947 Sneddon [26] solved the same
problem by a different approach. He reduced the'problem to‘a solution of
a pair of dual integral equations by using the Hankel transform method.
In the static case these duai integral equations reduce to simple dual
integral equations whose solution is known. This problem is now known as
the Reissner-Sagoci problem. In this chapter I have discussed the
solution of the Reissner-Sagoci problem given‘by Reissner and Sagoci [22]

and Sneddon [26].
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83.2 Basic equations

The equations of motion in cylindrical polar coordinates (r,8,z) in

the absence of body forces are given by (2.8.3)

(Atzp) 32 - %ﬁ;;i+2pz_:i=p:_t;€

. feI) AW ozu

(2u) 32— 2wt 4 ouZ=p ;;rg ! (3.2.1)
A{rw ) AW azu

(A+2u) gé-— %E'——E?E_'+ u 355.: Jel ;;25

where A and u are elastic constants, p the mass density, ur, ue, uz the

displacements in the corresponding coordinates, 4 is the dilatation and

Wos Wos wz the components of the rotational vector which are given by

au u ) '
_ 19 1 7 7s Z ‘
4= g5y (tu) + o5t a5 (3.2.2)
o = 1 auz _ aue
r T8 Er
aur auz
2(.09 = s-z— —3—1‘— = . (3'203)
33U
_1oa 1 "
2o, = a7 (M) ~ w3 |

If the problem is symmetric about the z-axis then the rotation,
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dilatation and diéplacement components must be independent of 8 and hence

equations (3.2.1), (3.2.2) and (3.2.3) above may be written as

2
3w d u
a4 _ T
(M%) 55 v W TP
at
awr awz J ua . .
at
2
3 u
34 2 3 _ 4
(M24) 5z = 737 (™) =P —5—
, at J
with
3u
_ 19 z - ‘
4= E'-f'(rur) + T : (3.2.5)
and
du
— 2]
Zwr = -3
aurﬂ. auz
2‘&)9 = E— - -5—1-:-— (3'2-6)
2w = 1 6(ru9)
z T  or
Also the expressions for stresses are given by
auz
O, = Ad + 2 5
aur . .
Oy = Ad + 2u > (3.2.7)
069 = Ad




=10} Ju
5 = r Z
rz "'[az 37 ]
u
_ 3 ;]
Oy = HF == &?% ‘ (3.2.8)
5 _ éue
ze = H 3z

Substituting from (3.2.5) and (3.2.6) into (3.2.4), we get

2.
au -OU au I
3 19 Z 3 T z) . T
(M2 57 [F'ar (ru.) + 53 ] TH3E 3 T ] =P 32
du . "oy a(ru,) d™u
3 9 o (1 9 _ o |
H 3z [az ] FH3F [Frar ] ST (3.2.9)
a(ru ) au au du o u
3 1 r 3 r z]] _ z
(A2 37 [r v T3z ] T K3y [r 3z ar ]] =P 52

In the equations (3.2.9) the first and last equations contain only
u, and u, and the second equation contains only ug . Also from (3.2.7)

and (3.2.8) the stresses o » 9, are functions of u.r and uz

o o
rr’ "8’ “zz

only and the stresses Org? fo] are functions of ug only. Hence in

6z
axisymmetric problems there occur two systems of displacements which do
not influence each other in any way. 8So in order to obtain the most

general axisymmetric solution they can be superimposed. Let us consider
the éase in whioh only u, is present, and we will denote this by v(r,z).

In this case the first and third equations of (3.2.9) become identically

zero and the second equation becomes



v 1 ov v v v
p[—z+—--—-— + ] =p 23 (3.2.10)
ar r ar ;Z A7 at
and the non-zero stresses are given by
o =u v
8z oz (3.2.11)

g = v _ v
re Hlat~ T

83.3 Formulation of the problem

Let us take a homogeneous isotropic eléstic half-space (z > 0}, a
circular portion of whose surface (r > rO) is forced to rotate through an
angle w, the axis of rotation being perpendicular to the surface of the
half-space. The remaining portion of the surface (r > ro) is assumed to
be free of stress. The problem is to find the stresses and displacement
in the half-~space.
| In this casé only the circumferential displacement component v
occurs and ﬁha£ a}l components of stresses are zero except the following

two components of shear stress

Q
n
R~
I

6z
(3.3.1)

where v satisfies the following equation of equilibrium



- 48 -

Figure 3: Semi-Infinite Space z = 0. |



2 2
I3V 1av v AV _
or r ar r 3z

The boundary conditions are given by

v(r,0) = wr ’ r < r, (3.3.3)
v
ogz(r,O) = u 32-Z—O =0, r> ry (3.3.4)

and the applied torque T required to rotate the circular portion r < Ty

of the boundary through an angle w, is given by

To

T=-27% J rzc {(r,0)dr . {3.3.5)
0 (2374 .

§3.4 Reissner-Sagoci solution

Reissner and Sagoci solved the equation (3.3.2) by introducing a
system of curvilinear coordinates in which the circular disk becomes one

of the coordinate surfaces. Such coordinates ¢, p are [32] the following

2.,1/72 =

L= [(1+¢2)(19%)1Y2, =

0

= ¢ . (3.4.1)

|

The surface ¢ = constant represents ellipsoids of revélution, the
surface 7 = constant represents hyperboloids of one sheet. The
half-space z » 0 is defined in the new coordinates by 5 > 0 while the -

portion r ¢ ry of the surface of the half-space is characterized by

t
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£ =0,
In terms of the coordinates g; n the boundary conditions (3.3.3) and

(3.3.4) become

at ¢ = 0 (3.4.2)

v = wro(l_qz)l/z
v _ _
35 - 0 at 7 =0 (3.4.3)

Let us consider solution of equation (3.3.2) in the form
vir,z) = £(¢)g(n) T (3.4.4)

and solve it by separation of variables. Now treating ¢ = ¢(r,z) and

n = n(r,z), we obtain

% _ r¢ ag _ g

ar £ 4 or $ 4

Z 2 .- . (3.4-5)
o . mite®)  ep . s(i-n”)

AZ r0(§5+q ) 3z r0(§2+q2)

Differentiating (3.4.4) with respect to r and z partially, we find that

av _ ref(8)eglg) - gt (g)f(s) (3.4.6)

ar -rg($2+02)



aZv r252 rZUZ
= 7 fre(g)elg) oo g () f(x)
ar® rg(§z+qz)2 ry(§7+7")
2 2. 4.2 .2
2 -—
P £ ()t () + |+ ST S M () 2()
rols7+77) RS A N S
2 .2 2
rg(3¢T-") _ n . ) -
rolé7+07) rols7+77)
2 2,.,.2.2 2., 2.2
° ; = Z (;+€2)z £ ()eln) + 1) gnnye(e)
3z rolé4n7) rols 4y )
2 2,,.2 , 2
+ ot £ (s)g () + S T30 £ (e)a(n)
ro(¢7+7") ry(87477)

. Toalg’-3¢2)
ro($ )

g (n)f(g) (3.4.8)

where ‘prime denotes the derivative with respect to the argument and we
have used (3.4.5) to obtain the above expressions.
Substituting from (3.4.4) and (3.4.6)-(3.4.8) into (3.3.2) and

simplifying we obtain

(1462) 801 (2)g(g) + (1-42)g  (7)E(2) + 28E° (2)g(n)

$242
- 2ng* (g)f(g) - 2 a — £(8)e(7) = 0. (3.4.9)
(14¢7) (1-97)

Dividing (3.4.9) by £(¢)g(p), we get
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e?yer(e) | Aen®) L0, 2800080 | 2080 ()
FTE) EW I (13 207
. [ 1 —- 1 ’ ] -0 (3.4.10)
1-g 1+¢
which may be rewritten as
2 ] 2 1
JLawetHeen’ 1 tatemd’ D 1 g
£(¢) 14¢° g(n) 1-*

Now the variables are separated and, by equating the left hand side and
right hand side of (3.4.11) to -de, the separation constant, we obtain

the following two differential equations for f(¢) and g(g):

2 ' 1
[(14¢7)Er ()] - |4, - __Zf(ﬁ =0 (3.4.12)
[‘.’ 1+§ ]
[(1-p2)g ()1 + [de - -—1-—2-]g(17) =0 . (3.4.13)
1-n

The values of the separation constant d?’ insuring periodicity in g, are

de = (e+1)(e+42), 2 = 0,1,2,-++ ' (3.4.14)

Now equations (3.4.12) and (3.4.13) are associated Legendre’s

equations of degree (£+1) and order one whose solution is given by

1

re(m) + B, () (3.4.15)

g,(n) = AP
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f (¢) =¢C P 1(:La) + D Q 1(1&) (3.4.16)

e e+

where Pﬁ(z) and Qﬁ(z) are defined by

d (z)
P:ll(Z) (1-z )m/2 ——nm——
dz
(3.4.17)
1]
Pz = (122 07
n dzm )

m is a positive integer, -1 < z < 1, n being unrestricted. When z is not

a real number, these functions are defined by

Pz) = (z2-1)™?2 fT35131
n - a2
mn
z) = (z2-1)V2 A
n dzm

m is a positive integer, n is unrestricted and arg z, arg(z+l), arg(z-1) .
have their principal values. The Legendre functions Pn(z) and Qn(z) are

defined by

P (z)

z (- 1) (2n-2r)! zn—Zr
.r!(n—r)!(n—Zr)!

where k = %-n or %-(n—l), whichever is an integer and



1
.1 dy
Qn(z) =7 J_]_Pn(Y) E-—y-

where n is a positive: integer, and z is not a real number.
Since Pi+1(i§) becomes infinity as ¢ approaches infinity and Q}+1(q)

becomes singular for n = 1, we must have
B - C = O. (3.4.18)

Also, the condition that v is an even function of 7 requires that only
even values of the subscript ¢ occur. The series solution for v -

possessing appropriate behavior is then given by

vrz) = Hem =) AP (I, (i8) ,  (3.4.19)
€20,2, -

where we have taken De = 1.
The first term of the above series is given by AOPi(q)Q%(ig) and we find

that

2172 ®qln) 2,1/2 d

1 1L - = (1..21/2
P (g) = (1-77) —T (1-9 7 (1-7)

(3.4.20)

1. _ 2.1/2 4 - - 2,1/2 4 |ig ig+l
aptie) = (reHY2 goa ey = ne®HVE G [ 108 HT 1]
2,1/2 3 i ig+l '
= (14¢%) [- —— + 5 log ] (3.4.21)
§ +l z ig-1



since
i ig+l _ 7w -1 '
Z.log T 7 tan "¢ (3.4.22)
we may write '
1.\ 2,1/2fn ¢ . -1 T a4 o
Ql(lg) = (1+¢7) [’Z ;_2+_1 tan g] . {3.4.23)

Now from (3.4.19), (3.4.20) and (3.4.23) we find that

W0 = pag-n e S ARy e, 0 . (320

if
Zwro 1
B = =
. (3.4.25)
Ae = 0, e - 2’4,’ J

Hence the expression for v is given by
= _2 2172, 21/2fx ¢ . -1
v(¢,n) = = WT, (1-n7) (1+¢7) [2 ‘ QZII tan 5] . (3.4.,26)

The above equation for ;(g,q) satisfies the boundary condition (3.4.3)
identically. From equation (3.4.26) we find that the surface

displacement in cylindrical coordinates is given by



J wr r £ T,
v(r,0) =
_ 2 1/2 r..2,1/2
bofis - o[- -2 (- (577
0 0
ry T, (3.4.27)
The shear stress distribution under the plate is given by
- av
ogz(r,O) - “[5EJZ_
- . |ov ot v dp
e
at 3z af JZ £=0
= K [a_"]
Fof 8,0
2,1/2
= - 4‘;’:’ (1"7”) ERER (3.4.28)
and changing to cylindrical coordinates we find that
_ _ Ao 1
oez(r,O) = = [[ro 75 77 r < ry (3.4.29)
—f -1
= -1

The torque T required to rotate the circular area through an angle w is

given by

£
b
2]

5



16 w3 . (3.4.30)

§3.5 Sneddon’s Solution
Sneddon [26] solved the problem by reducing it to a pair of dual
integral equations. In order to find solution of the equation (3,3.2),

he introduced the Hankel-transform
_ o0
v(s,z) = f rv(r,z)Jl(sr)dr (3.5.1)
0 e

of the circumferential component v of the displacement vector.

Multiplying both sides of equation (3.3.2) by rJl(sr) we get

2 2
3% v v 3% _
rJl(sr) ;;2 + Jl(sr) T E-Jl(’sr) + rJl(sr) E;Z =0 . (3.5.2)

Integrating the above equation with respect to r from zero to infinity we

get
oo 2 J 2 .
v , 1ov v A"V _
J r[ A —Z]Jl(sr)dr + J ri(sr) 27 dr=0.  (3.5.3)
0 ‘or rdr r 0 3z
Now [25]
00 2

JO r[a vVelov . XZJJl(sr)dr = - g% (3.5.4)

or r Jr r



so that we have

2
Az
where v is the.Hankel transform of v and is given by (3.5.1). By means
of the Hankel inversion theorem [33] we have
-
vir,z) = J sv(s,z)Jl(sr)ds {3.5.6)
0
and
® a%(s,z)
- ? '
caz(r,z) = M JO S —5— Jl(sr)ds . (3.5.7)
The solution of equation (3.5.5) is given by
V(s,2) = A(s)e °Z 4+ B(s)e"? (3.5.8)

where A(s) and B(s) are unknown functions ﬁo be determined by the

boundary conditions (3.3.3) and (3.3.4) and the condition that v and

hence v tends to zero as z tends to infinity. This last condition

requires that we must take B(s) to be identically zero and hence

G(s,z) = A(s)e_SZ .

(3.5.9)

Substituting the value of v and Cys from equation (3.5.6) and (3.5.7)

into (3.3.3) and (3.3.4), we get
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(2]
J s@(s,O)Jl(sr)ds = wr, r < ry l
0 .
. (3.5.10)
 Tav(s,z)
’ -
J [__35._.} J,(st)ds = 0, r>r,
0 z=0 .

Substituting the value of v from equation (3.5.9) into equations (3.5;10)

we get

- )
J sA(s)Jl(sr)ds = wr r < ry 1
0

. (3.5.11)
szA(s)J {sr)ds = O r>r
0 o1 0
Making the substitution
2 3
r=pry S = C/rox S A(C/ro) =T, F(¢) (3.5.11a)
the equations (3.5.11) become
|
AT l
0
(3.5.12)

I; F($)J (4p)as = 0 p>1 J |

In order to solve the above dual integral equations let us take

1
F(g) =g f #(t)sin ¢t dt . (3.5.13)
0 ‘

Substituting the value of F(¢) from (3.5.13) into the second equation of

(3.5.12) we get
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0 1 .
J ¢ J #(t)sin ¢t dt J (¢p)ds = O o> 1. (3.5.14)
o Jo

Changing the order of integration in (3.5.14) we get

1 )
J s(t)dt J ¢ sin ¢t J,(¢p)ds = 0 p>1..  (3.5.15)
0 0
Since [29]
w J—T%z O¢pct
J ¢ sin ¢t Jl(gp)dg = J{t7=p) (3.5.16)
0 l 0 e>t

the equation (3.5.15) is identically satisfied. By substituting the

value of F(¢) from (3.5.13) into the first equation of (3.5.12) we have
oo.1 .
J J #(t)sin ¢t dt Jl(gp)dg = W p <1, (3.5.17)
0 -0 .

Changing the order of integration in the above equation, and making use

of the following relation [29]:

- 0 if 0¢<p<t
J sin ¢t J,(¢p)d¢ = t (3.5.18)
0 2 .2.1/2 > t .
1 p(p“~t") P
the equation (3.5.17) gives
Jp _Efézlz_T72.dt zwp , p< L. . (3.5.19)
0 p(p™-t") ' ' :



- 61 -

We may write

to(t) S
Jp "‘7?‘??172’d$ = I (#(t),p) (3.5.20)
0 p(p™-t") z 0:%

where I o is called Erdelyi-Kober operator defined by

202 |
L, o EW,%) = 2x JX (x2u?)* 1t B ryau, « >0 (3.5.21)
, 0

r(a
and
-20-2n-1
I (£(w),x) = .’E________.gs{. JX W2t (224 (wydu, -1 < « < 0. (3.5.22)
I r(i+a) 0
. . . - 2 -1 . 2.
Multiplying equation (3.5.19) by — I 1 that is, by — I1 1 where
o | S Oy A oy
I--1 is the inverse of I and is defined by I—1 = I , we get
n,a n,a 0, 7o, —x .
t 3
_214d pw
e(t) = Efa’ff 17z 9% (3.8.23)
0 (£t7-p")
which gives
o(t) = i"’“_‘i . (3.5.24)

Substituting the value of ¢(t) into equation (3.5.13) we get

, 1
F(¢) = il_;’:i t sin ¢t dt . (3.5.25)

0
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Integrating (3.5.25) by parts we get

F(¢) = 42§ [sig ¢ _ cos g]
$ $

- v [sin ¢

= z—= — ©cos g] .

Substituting from equations (3.5.9), (3.5.11a) and (3.5.26) into

equations (3.5.6) and (3.5.7) we get

(3.5.26)

’ 4(")]:‘0 ® fgin ¢ cos ¢ -u¢
vir,z) = — f [ LI } e85, (sp)dk (3.5.27)
0 *¢ $
and
o (ryz) =~ B (T qsine ) Wy (p)de (3.5.28)
ez’ - T Jg 3 : 1'%P T
where
u = z/rO . (3.5.29)

In order to evaluate the integrals in equations (3.5.27) and

(3.5.28) let us take

<0
_ -pt. . n
In(p) = JO e t Jl(pt)dt .

Substituting the value of Jl(pt) given by

(_1)u(pt/2)1+20

v! r{v+2)

in (3.5.30) we get

(3.5.30)

(3.5.31)
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°° (—1)“ p1+2u . e—pt tn-i-1+2u

I (p) = J dt
n 0 } 2 1Y 1 r(u42)

(-1)" p1+zu % -pttn+1+2u 4
T+00 e oodt .
2701 rw+2) Y0

v=0

By taking t = u/p and making use of the following integral
od
J et ™ at = r(m)
0
we obtain
&
) (-1)Y P 1 (® -untle2w
e = } T+2v | ThEgE I ¢ u du
~ 2 v! r(p+2) p 0
v=0
o
} I‘(n+2+2v)(-1)u . p1+2v
£ 21+2UU!T(U+2) pn+2+2v

Taking n = 0 in (3.5.34) we have

[+ ]

. 1+2v
-pt (-1)Y r(e+ev) p
I(P)'—‘JepJ(pt)dt= )
0 1 Z bt 25 r (az)  piT
. v=0
® 2
_P } (2u+1)! [_ o ]”
;2- u=6 t¥e,, (v+l)! -1-)-2-
-p 1 _3 .oz+5 94,,,
S22 3 Z I 7T '
p 2p 2 p

Noting that the expansion of

(3.5.32)

(3.5.33)

(3.5.34)

(3.5.35)



-1/2 _ 1 3 2 5 3
we may write
J e—thi(pt)dt =l___»® P <P . (3.5.37)
0 P 2 2.1/2
plp +p

Similarly, taking n = -1, we get

o

j e Pl (pt)at
0

I_i(p)

<o

§ ) (-n” Pt
21+2uv!1‘(v+2) -p1+2u

v=0

o]

(oo
- P. } vt ‘ [_ pz'
vt ) J1F | 2]

2 4
_pP

1 1 p 1 p v ]
= _.[ Eg._z i |- (3.5.38)
P 2" p

o]

Again comparing the expansion of (1+x)1/2 with (3.5.38) we can write

o 2. 2.1/2 ,
J e Py (pryar = LR TP o cp . (3.5.39)
0 _ ,

=)

Taking p = (u-i) in equation (3.5.37), we obtain



If we take

[(p24u®-1) - 2ui]

then we have

1/2

[1 _ u-i

[pz+(u—i)2]1/2] '

= c+id

d = - u/c

Now we may write (3.5.40) in the form

0

J (cos t + i sin t)e_utJl(pt)dt =1
0 P

2 _ (p2+u2—1) + [(;:>2+u2—1)2+4u2]1/2 ]
- 2

i

{1 _ (u-i)(c-id)
c +d

which, on equating the real part from both sides, gives

00

J cos t e—utJl(pt)dt =
0

Again taking p = u-i in (3.5.39) we get

o0 e—ut
JO (cos t + i sin t) 'TT_'Jl(pt)dt

where ¢ and d are given by (3.5.42).

[1 _uc-d ]
c +d

el e

2,1/2

(p%+(u-1)%)

- (u-i)

P
(ct+id) - (u-i)

0

7(3.5.40)

(3.5.41)

(3.5.42)

(3.5.43)

(3.5.44)

(3.5.45)

Equating the real and imaginary parts from both sides of equation

(3.5.45) gives



- 66 -

00
cos t -ut . C—u
0 —5— Jl(pt)dt = - (3.5.46)
and
® gin t -ut d+1
O-—fE-— e Jl(pt)dt = —= (3.5.47)

Integrating equation (3.5.39) with respect to p between 0 to p we get

pt
* 1-e”
——-z—— Jl(pt)dt

1/2
- %5 {p(p )2 4 % g P (p” ;P ) l - pzjl . (3.5.48)

Again taking p = (u-i) in the above equation, we obtain

ut 1t)
J ___2_ 3, (pt)dt

(3.5.49)

2 .
1 (u-i)+(ct+di) u -1-2ui
=75 [(u—l)(0+dl) + P In o J - 2P

where c and d are given by (3.5.42).
Equating the imaginary parts from both sides of equation (3.5.49) yields
¥ gin t -u 1 2, -1d-1] . u
—zz—— J (pt)d = 25.[(udrc) + p~ tan u+c] + 5" (3.0:50)
Substituting from (3.5.44), (3.5.48), (3.5.47) and (3.5.50) into (3.5.27)

and (3.5.28), we obtain the following expressions for the displacement

and the shearing stress:
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4wy
vir,z) = - — 0 [ITp [(ud+c) + 0% tan~ ! 3_;%]} (3.5.51)
_ Adwu [ uc-d ] .
Ogp(riz) = - — 1d + s (3.5.52)
8z P c +d

where ¢ and d are given by (3.5.42).
When z = 0 that is u = 0, the expressions for v anc'l.orez on the

surface are given by

1/2
v(r,0) = wrop[{l - g-tan_l(pz—l)l/z} - %-[1 - 32] y P> 1 (3.5.53)

and

o_4(r,0) = - 2K [lz - 1] , p<1 (3.5.54)

which agree with those obtained by Reissner and Sagoci.
The expression for torque T required to fotate the circular area
through an angle w is given by

o

_ 2
T = - 2n J r oez(r,O)dr
Yo
Yo 2
8“’“[ Tz 7z &
0 01™ _ 1
T

6 .3
3O HTy
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CHAPTER IV

A REISSNER-SAGCCI PROBLEM FOR AN -ELASTIC LAYER

BONDED TO ANOTHER ELASTIC LAYER

84.1 Introduction

In this chapter we have considered the Reissner-Sagoci type problem
for two, isotropic, homogeneous elastic layers of different thicknesses
and modulus of rigidities bonded to a rigid foundation. The problem has

¢
been reduced to the solution of a Fredholm integral equation of the

second kind, which has been solved numerically. The expression for’the
torque required to rotate the circular portion of the boundary throﬁgh an
angle w has béen obtained in the closed form. Numerical values of the
torque T for variocus ratios of the thicknesses ana elastic moduli of the
two layers has been given in tabulated form as well as displayed
graphically. ‘
The results for the following four problems have been derived as

particuiar cases:

(i) Reissner-Sagoci problem for fhe half-space.

(ii) Reissner-Sagoci problem for a layer bonded to a rigid

foundation.

(iii) Reissner-Sagoci problem for a layer with lower face stress free.
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(iv) Reissner-Sagoci problem for a layer bonded to an elastic half-

space.
The results for these cases have been shown to agree with the known

results.

84,2 Statement of the problem and solution

Let us consider two isotropic homogeneous elastic layers of

thickness hl’ h,, and modulus of rigidity Hyir Mo respectively, bonded

2

together and to a rigid foundation. A rigid circular cylinder of unit
radius bonded to the upper layer of thickness h1 is forced to rotate
through an angle and the remaining portion of the surface of the layer
is assumed to be free of stress. The axis of rotation is perpendicular
to the surface of the layer. It is assumed that the lower face of the

layer of thickness h, is rigidlj fixed. Let us take the common boundary

2

of the two layers as the plane z = h1 and, takiné the z-axis downwards as

shpwn in the Figure 4, we denote the upper face by z = 0 and the lower

face by z = h,+h Now we denote the region 0 ¢ z 5'h1 by R1 and the

172

1 < 2 < h1+h2 by Rz. The physical quantities for the region Ri

(i =1,2) are denoted by thensubscript/supersoript (i), namely Hir» V

region h

i!

(1) (1) ., _
OGZ , ore (i =1,2).
As shown by Reissner [21] in this case only the circumferential
displacement v, occurs and all the compdnents of stresses are zero except

the following two components of shearing stress:
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z=

vy (r h +h ) 0

TS S ///////

V

2

Figure 4: Two Layers 0 =z = hl and h1 =z = hl+h2
Bonded to a Rigid Foundation.



(4'2'1)
3V, V.,
(1) - 1L i
°re T Hi |ar T
and Ve satisfies the partial differential equation
azv 1 av vi azvi
. P -t = 0 in R.. (4.2.2)
or r ar r oz
The boundary conditions of the problem are
vl(r,O) = w f(r) O0¢r¢i 1
(4.2.3)
(1) -
%on (r,0) =20 r>1 J
vz(r,h1+h2) =0 0w, (4.2.4)
The continuity conditions at the interface z = h1 are
[V(rh)]2=0 0¢r<<w
AL $ 1 i
(1) . (4.2.5)
o\ (x0)1220  o¢r<w]

In order to solve the differential equation (4.2.2) let us multiply this
equation by rJl(gr) and integrate with respect to r from 0 to «, to

obtain



. Ei;z - gZ]Gi =0 ' (4.2.6)
where

- e <]

vi(’s‘,Z) = Jo rvi(r,z)Jl(gr)dr ) (4.2.7)

denotes the Hankel transform of order one of the function vi(r,z). By

the Hankel inversion theorem, we have

OO0
v, (r,2) = JO €7, (8,2)3, (s7)ds 428
and we have
(i) v, 0 ax";.l
o{(r,2) = p L= p J; ¢ == 3, (er)ds (4.2.9)

The solution of equation (4.2.6) is given by
Vi (6,2) = A (8)ef® 4 B ()etE, 1= 1,2 (4.2.10)
where Ai and Bi (i = 1,2) are the unknown functions which are to be

determined by using the boundary and continuity conditions. Sdbstituting

(4.2.10) in (4.2.8) and (4.2.9) we get

v, (r,2) = jo e [a,()e8% + B (6)e 710, (sr)de (4.2.11)

(1) N ¢z ~¢z
Opp (L12) = Hy JO £70A (8)e*” - By (t)e "71J, (4r)de.  (4.2.12)
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Now substituting from (4.2.11) and (

(4.2.4) and continuity conditions (4

¢(h,+h,)
172 +B2e

o

1
o

-€(h1+h

+B, e

2

Q0

2 . th ¢th
: [u [,
Jo 1A

1, Ttk

—Ble

1
2

-¢h,

~-B_ e

4,2,12) into the boundary condition

.2.95) we get

z’]

Jl(gr)dg =0

l]]Jl(gr)dg = 0L, O<rdeo  (4,2,13)

_gh

1]]J1(§r)d§=0

Since the equations (4.2.13) hold true for all values of r; we must have

¢ (h,+h,) -t (h,+h,)
172 172 _
Aze + ?ze =0
€h1 ' -ihl ihl -ihl
Ale ‘ +B1e = Aze + Bze : (4.2.14)
¢h ~-th th ~-¢h
1 1] _ 1 1
yl[Ale —Ble ] = yz[Aze —Bze ] J

Solving equations (4.2.14) for Al’ B

1 and A2 in terms of BZ’ we find

) -2¢(h,+h,,)
B, = - B 1™y
A, = 23 [(1—5)e—2€h - (1+5)e-2€(h1+h2)] ! (4.2.15)
1 ]
B, —2¢h
B, = 25 [(1+5) - (1-8)e 2]
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where

& = pz/yl .

(4.2.186)

Substituting the values of A1 and B1 from (4.2.15) into (4.2.11) and

(4.2.12), we find the following expressions for v,(r,0) and o;;)(r,m,

-2¢h

o ~2¢h
vl(r,O) = % Jong(g){(l—é)[e 1—e 2]
-2¢ (h,+h,)
+ (1+5)[1—e 172 ]}Jl(ar)da
] -2¢th -2¢h
oé;)(r,O) = % JOgZBZ(g)lu-s)[e lie | 2]

—25(h1+h2) 1
- (1+6)[e + 1]I Jl(gr)ds

which can be written as

. o0

v, (r,0) = JO [H(£)-11P(¢)J, (s7)ds
0
Oé;)(r,o) = pl'JO §P(¢)J, (¢r)dg
where
~-2¢h, -2t¢th
P(g) = %—B2(€){(176)[e Lie 2]—(1+5)[1+e

—2§(h1+h2)]

(4.2.17)

(4.2.18)

(4.2.19)

(4.2.20)

(4.2.21)
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_ -2¢h_, -2¢h
2l + pe 2 e 1
) = Rz =7l #h,) (4.2.22)
[e +e ]+p[1+e ]
with
pIERL i (4.2.23)

Substituting from (4.2.19) aiqd (4.2.20) into the boundary conditions
(4.2.3), we find that these will be satisfied if P(¢) is a solution of

theifollowing dual integral equations: '

o

[ mor-1pe)a en)
0

Wwf(r), 0<r <1 (4.2.24)

(o o]
J ¢ P(e)Jl(gr)dg 0, r>1. (4.2.25)

In order to solve these dual integral equations, let us take
1
P(¢) = J o(t) sin gt dt . | (4.2.26)
0 )
Now substituting for P(¢) from (4.2.26) into (4.2.25) we have

oo 1 .
j R [ #(t) sin ¢t dt J,(¢r)dg =0, 1> L. (4.2.27)
o Jo

Changing the order of integration, we have



.- 76 -

1 )
J o (t)dt J ¢ sin(¢t)J (¢r)ds = 0 , r > 1. (4.2.28)
0 g ,
Now [29]
"Tmr , r<t
00 (t-r.)
J 3 sin(st)Jl(er)da = ‘ (4.2.29)
0 1 0 ’ r > t.

Hence we find that the equation (4.2.25) is identically satisfied.

Substituting for P(¢) from (4.2.26) into (4.2.24), we have
o .1 '
I J #(t) sin ¢t[H(¢)-1]J, (¢r)dtd = wf(r), 0 < T ¢ 1 (4.2.30)
070 ‘

or

o 1
J J #(t)sin ¢t Jl(tr)dtdg
Y0 Y0

o .1
= - of(r) + J j #(t)singt H(¢)J (¢r)dtdg, 0 ¢ r < 1. (4.2.31)
0 Jo

Now

oo .1 .1 0
Jj¢mmmuJ(amwg=JﬂmesmaJ@m@
0 J0 1 0 0 1

t o(t)

= —-—2—7-17-2-(11: ] | (4'2132)
0 r(r-t7)

since [29]
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——z—tﬂ7.2- for 0 ¢t<r
oo r(r -t")
Jsin(gt)Jl(gr)dg = . (4.2.33)
0
1 0 for t>r

Therefore equation (4.2.31) may be written as

t o(t)

—T'ZTZdt
0 r(r -t7)

1 .
= - wf(r) + f J¢(t)sin(§t)H(§)Jl(gr)dtdg, 0O<r¢l. (4.2.34)
0 Jo

Now in the notation of Erdelyi-Kober operators [32] Iq o Ve may write

’

t #(t) _ S

it = 1 (o (t);r} (4.2.35)
0 r(e?t5) /2 T 02
.where
~20-2p & :
2t 2yl hau, a >0,  (4.2.36)

]:q,cx“’,(u)’t} = T (t

~2a~2n-1
LlBw,t) = t—ﬁ—ra“t‘j W2 (12005 % (u)du, -1 < @ < 0 (4.2.37)

and the inverse operator is given by

-1 _
7, - Ir7+a,-<x . (4.2.38)

Now operating equation (4.2.34) by g—- 1011/

27 that is by
S
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2 -1 2 '
—1I {f(r)st} = —1I {f(r);t}

t rzf(r)

1d J
ol mdr (4.2.39)
tdt 0 (t7-r")

we get

t 2
21d rwf(r)
o(t) = - 2 f ar
n T dt 0 (tz_rz—f/vz)
t 2 o 1
21d r .
TEEE J.o W dr fofosb(u)smEuH(f)Jl(fr)dudg

0<r<t. (4.2.40)

Interchanging the order of integration in the last term of (2.3.40) we

get
t 2
214d r wf(r)
s(t) = - 2 J dr
T T dt 0 (tZ_rZ)I72
9 1 ( 1d t erl(gr) .
+ = J I ¢(u)sin(gu)H(¢) dr duds (4.2.41)
T Jodo TA Jy (252
since [29]
2
t r'J,(¢r) ) .
1d 1 = gin ¢t (4.2.42)

—-Z-—2—17-2-dr
tdt 0 (t7-r")

we may write (4.2.41) as
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t rzwf(r)

214
SRl A2 ek

0.1
Jqb(u)sin(gu)sin(gt)H(g)dudg‘.
040

J

SIS

+

Noﬁ if we denote

K(u,t) = - gj H(¢)sin(¢u)sin(et)de
0
t 2
h(t) = - %-%gff or £r) _ ar

0 (t°-r ):
then equation (4.2.43) may be rewritten in the form

1

¢(t) + JO

%
¢(u)K(u,t)du = h(t), 0<¢t <1

(4.2.43)

(4.2.44)

(4.2.45)

 (4.2.48)

This is called the Fredholm integral equation of the second kind for ¢.

If we take
f(r) = r
we find that

h(t) =—%“.”.t

and hence the integral equation (4.2.46) becomes

(4.2.47)

(4.2.48)



1 .
¢(t) + J #(wK(u,t)du = - —t, 0 ¢t ¢ 1. (4.2.49)
0

Again if we take

o(t) = -:L?Q—?(t) (4.2.50)

we may write (4.2.49) in a simplified form

. 1 |
P(t) + J PWE(u,t)du = ~t, 0 <t < 1. ' (4.2.51)
0

The torque T required to produce the prescribed rotation of the solid

cylinder is given by

1

T = - 2m J r26'1) (1,0)ar . (4.2.52)
0 oz

From (4.2.20), we find that

o{V(x,0) = jo ¢ P(£)J, (¢r)dt

-y & { J:P(g)JO(gr)dg } . (4.2.53)

Substituting the value of P(¢) from equation (4.2.26), in equation
(4.2.53), we find that the value of the shear stress under the rigid

cylinder is given by
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. o 1
ey _ 3 .
oi(r,00 = - p & Jojorb(t):-‘,ln gt AtT (sr)ds, 0 ¢ v < 1,  (4.2.54)
since _
3 (t2p2)7/2 0Tt
J sin ¢t J,(¢r)ds = (4.2.55)
0 1 0 r>t
equation (4.2.54) becomes
(1)(r 0) = s 1 e(t)at (4.2.56)
% (W0 Z T His | TE T 42

1)

Substituting this value of c (r,O) in equation (4.2.52) we get

3 Lo |t ewyar | .2
T = 2m Jo =1 L BT | rdr . (4.2.57)

Integrating (4.2.57) by parts we get

& (t)dt '
T = - dmpy J L - ) dr . (4.2.58)

Changing the order of integration (4.2.58) becomes
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t r dr |

1
= - 4mu o(t)at | —
1 J’0 0 (t7-r")

=]
I

1

- dmp J te(t)dt. (4.2.59)
0

Writing #(t) in terms of ¥(t) from equation (4.2.50), we ge£

1
T = - L6y, j te(t)dt . (4.2.60)
0

§4.3 Numerical results and discussion

In order to find numerical values of the torque T, we»need to find
the numerical values of ¥#(t). We first of all write the integral
equation (4.2.51) as a system of algebraic equations by dividing the

interval {0,1] into n equal parts:

n
1 ' .
P(t) + = } P K(ug,t;) = <6, 12 0,1,00n (43.1)
=0

where

(1,5 = 0,1,2,+++yn). (4.3.2)

ct
1"
sl
o
1
Sl

To obtain the numerical values of K(u,t) we may rewrite its expressions

given by equations (4;2.44) and (4.2.22) by meking the substitution

et =p, h, = hyo | (4.3.3)
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in the following form.

h 8 Zhl -1

- —_4 (1+up ) p . . L
K(u,t) = J Zh TR - PR TT%3) sin(ulogp)sin(tlogp)dp
+p 1 + ull+p ]

(4.3.4)

The numerical values of K(uj’ti) have been obtained from (4.3.4) by using
Simpson’s rule by dividing the interval [0,1] in 24 equal parts. Then
the system of equations (4.3.1) has been solved for n = 24 which involves

solving 25 equations for 25 unknown ?i’ i=20,1,2,.--,24, where

?i = ?(ti) = ?(ui), i=20,1,2,-..-,24 {(4.3.5)

The numerical values for ?i have been obtained for the following

combination of the numerical values for the geometrical and physical

parameters:

Hy ~ '_ -~ _ 1

ol 5 = 0.0,0.2,0.25,0.50,0.75,1.0,2.5,5.0,7.5,10.0
1

h2 ‘

- ¢ = 0.0,0.2,0.4,0.6,0.8,1.0,2,0,4,0,6.0,8.0,10.0 - (4.3.6)
1 .

h1 = 0.25,0.5,1.0,2.0,4.0.

It may be noted that the radius of the circular portion of the upper
boundary bonded to a rigid circular cylinder is taken as unity.

X
The numerical values of the torque T = T/ylw have now been
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TABLE 1

Values of 6 = hz/hl’ h1 and & = pz/yl

0.00 ' 0.10 l 0.25 ! 0.50 l 0.75
h, = 0.25
0.2 5.53981 7.00420 8.01186 8.43940
0.4 4.58750 5.90673 7.02497 7.63866
0.6 4.14041 5.30849 6.40352 7.05801
0.8 3.87553 4.92913 5.97788 6.63946
1.0 3.69907 4.66686 5.66984 6.32647
2.0 2.42551 3.29858 4.05021 4.90892 5.52263
4.0 3.15752 3.72079 4.49516 5.07617
6.0 3.02128 3.62967 4.38536 4.95979
8.0 2.99498 3.59411 4.34456 4.91760
10.0 2.98180 3.57734 4.32614 4.,89895
h, = 0.50
0.2 5.11165 5.68446 6.07585 6.26167
0.4 4.73595 5.26742 5.70505 5.94295
0.6 ‘4.55878 5.04330 | 5.48071 5.73643
0.8 4.45476 4.90386 5.33274 5.59512
1.0 4.38657 4.80973 5.22969 5.49463
2.0 3.82346 4.23985 4.60335 4.99838 5.26514
4.0 4.17118 4.51015 4.89635 5.16489
6.0 4.,15334 4.48815 4.87403 5.14384
8.0 4.14631 4.48018 4.86647 5.13695
10.0 4.14296 4.47657 4.86321 5.13407
hy = 1.0
5.21919 5.37024 5.47570 5.52683
5.12375 5.26413 5.38052 5.44436
5.08002 5.20973 5.32672 5.39509
5.05509 5.17727 5.29325 5.36364
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5.03920 5.15618 5.27110 5.34258
4.88795 5.00695 5.11329 5.22592 5.29955
4.99320 5.09608 5.20870 5.28362
4.,98983 5.09230 5.205625 5.28059
4.98853 5.09097 5.20412 '} 5.28225
4.98790 5.09037 5.20365 5.27924
h1 = 2.0
0.2 5.30897 5.33508 5.35384 5.36314
0.4 5.29318 5.31720 5.33753 5.34887
0.6 5.28616 5.30840 5.32879 5.34084
0.8 5.28225 5.30331 5.32356 5.33593
1.0 5.27980 5.30008 5.32020 5.33276
2.0 5.25445 5.27499 5.29376 5.31365 5.32660
4.0 5.27301 5.29134 5.31130 .} 5.32446
6.0 5.27253 5.29083 5.31084 5.32407
8.0 5.27234 5.29063 5.31070 5.32395
10.0 5.27225 5.29056 5.31063 5.32390
h1 = 4.0

COOCOCOCOU, N

COMMENHOOOO

2 e

et

5.32976 5.33360 5.33599 5.33730
5.32762 5.33092 5.33376 5.33533
5.32669 5.32974 5.33256 5.33424
5.32617 5.32906 5.33186 5.33358
5.32585 5.32864 5.33102 5.33289
5.32242 5.32522 5.32782 5.33057 5.33237
5.32496 5.32750 5.33027 5.33210
5.32489 5.32743 5.33021 5.332056
5.32486 5.32741 5.33019 5.33203
5.32484 5.32739 5.33018 5.33202

1.0 2.50 5.00 7.50 10.00

h, = 0.25

8.76190 9.34738 9.57324 9.65256 9.69303
8.02991 8.95450 9.35383 9.50054 9.57675
7.49866 8.62919 9.16101 9.36395 9.47107
7.10178 8.36103 8.99423 9.24358 9.37700
6.79768 8.14030 8.85158 9.13903 9.29462
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5.99209 7.49305 8.40685 8.80443 9.02710
5.53577 7.09678 8.11938 8.58270 8.84713
5.41790 6.99530 8.04538 8.52539 8.80070

COOOCOORMBN

COMMRNFHFOOOO

=

5.37579 6.96016 8.02004 8.50583 8.78482
- 5.35742 6.94526 8.00941 8.49766 8.77820
h1 = 0.5
6.37097 6.60532 6.69717 6.72964 6.74626
6.09446 6.45508 6.61257 6.67082 6.70118
5.90697 6.34099 6.54489 6.62289 6.66403
5.77535 - 6.25518 6.49221 6.58498 6.63451
5.68035 6.19057 6.45166 6.55558 6.61342
5.46050 6.03485 6.351865 6.48236 6.55380

5.36491 5.96745 6.30827 6.45056 6.52872
5.34536 5.95449 6.30016 6.44466 6.52410
5.33910 .| 5.95055 6.29774 6.44292 6.52274
5.33653 5.94899 6.29680 6.44225 6.52221

e e & o ® o o .

-

QUM PAEN=OOOO
COOOQOOXO N

ot

5.556732 5.62399 5.65068 5.66022 5.66512
5.48533 5.58415 5.62803 5.64441 5.65297
5.44070 5.55705 5.61196 5.63000 5.64414
5.41172 5.53864 5.60078 5.62500 5.63792
5.39216 5.52595 5.592989 5.61941 5.63355
5.35211 5.49978 5.57688 5.60781 5.62450
5.33756 5.49072 5.57141 5.60390 5.62146
5.33489 5.48919 5.57053 5.60328 5.62098
5.33407 5.48874 5.57028 5.60311 5.62089
5.33374 5.48857 5.57018 5.60304 5.62080

QCQOMBNDHROOOO
OCQCOCOOOOOOMOM BN

e o e o ¢ e o e o

=t

5.36876 5.38128 5.38640 5.38824 . 5.38919
5.35622 5.37421 5.38234 5.38540 . 5,38701
5.34893 5.36976 5.37969 5.38352 5.38555
5.34442 5.36691 5.37797 5.38228 5.38459
5.34148 5.36503 5.37682 5.38146 5.38395
5.33457 5.36141 5.37462 5.37989 5.38272
5.33387 5.36025 5.37393 5.37946 5.38234
5.33353 5.36006 5.37383 5.37933 5.38229
5.33343 5.36001 5.37380 5.37931 5.38227
5.33339 5.35999 5.37379 5.37930 5.38226
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OO PPN OOOO
COOOOOM N

[y

h1 = 4,0
5.33810 5.33990 5.34064 5.34091 5.34105
5.33636 5.33891 5.34007 5.34051 5.34074
5.33537 5.33830 5.33971 5.34025 5.34060
5.33477 5.33792 5.33948 5.34009 5,34041

5.33402 5.33767 5.33933 5.33998 5.34033
5.33365 5.33721 5.33904 5.33978 5.34017
5.33340 5.33706 5.33896 5.33972 5.34012
5.33338 5.33704 5.33895 5.33971 5.34012
5.33335 5.33703 5.33894 5.33970 5.34012
5.33334 5.33702 5.33893: 5.33970 5.,34012

TABLE 2
Numerical Values of T* = T/ylw for 8 = 0 (h2 = 0)
for Various Values of h1
0.25 0.50 1.0 2.0 4,0

9.81779 6.79768 5.68035 5.39216 5.34148
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calculated from equation (4;2.60) by using the Simpson’s rule Ey dividing

the interval [O,lj in 24 equal parts. These numerical vélues of T* are

given in Tables 1 and 2 and are displayed graphically in Figurés 5-13.
It may be noted that 6 < 1 (or 6 > 1) means that the modulus of

figidity of the upper layer is larger (or smaller) than the modulus of

rigidity of the lower layer since & = pz/pl.‘ Also it may be noted that

# <1 (or 8 > 1) means that the thickness of the upper layer is larger

(or smaller) than the thickness of the lower layer since ¢ = hz/h1°

Numerical values oftT* = T/ylw have been displayed against
8 = hz/hl’ (¢ = 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0, 10.6) for

hl = 0.5, 1.0, 2.0 and & = ;Jz/;.ll = 0.1, 0.5, 1.0, 5.0 in the following

figures:

Fig. 51 hy = 0.5; 6 = 0.1, 0.5, 1.0, 5.0; 6 = 0.2, 0.4, 0.6, 0.8, 1.0

Fig. 6: h, = 0.5; & = 0.1, 0.5; 6 = 2.0, 4.0, 6.0, 8.0, 10.0

Fig. T: hy = 0.5; 6 = 1.0, 5.0; 6 = 2.0, 4.0, 6.0, 8.0, 10.0 |

m&szhlsza=04,mm1ﬁ;5me=02,mL05,m&1@

Fig. 91 h, = 1.0; 6 = 0.1, 0.5; 6 = 2.0, 4.0, 6.0, 8.0, 10.0

Fig. 10: hy = 1.0; & = 1.0, 5.0; @ = 2.0, 4.0, 6.0, 8.0, 10.0

Fig. 11: h, = 2.0; 6 = 0.1, 0.5, 1.0, 5.0; 8 = 0.2, Ot4;'0.6, 0.8, 1.0
Fig. 12: hy = 2.0; 6 = 0.1, 5.0; 6 = 2.0, 4.0, 6.0, 8.0, 10.0

Fig. 13: h = 2.0; 6 = 1.0, 5.0; 6 = 2.0, 4.0, 6.0, 8.0, 10,0

Figures 5, 6 and 7 show T* against e for h1 = 0.5 i.e. when the

thickness of the upper layer is half of the radius of the circular
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portion which is being rotated. In these figures it is clear that as the
thickness of the lower la&er increases the value of T* decreases for all
values of 8. Although for 8 = 5 (Fig. 5) i.e. as the ratio of the
modulus of rigidities is increased there is not much change in the value
of T* with increase in ¢ = hz/hl. From Figs. 6 and 7 we see that as o
increases from 2 to 6, the value of T* decreases sharply but there is a
slight‘decrease when the thickness increases frém 6 to 10. When &6 = 1
i.e. both layers have same modulus of rigidity, the value of T* tends to
5.333, which is equal to TNpr = 16/3, where T is the torque for a
éemi—infinite space. 8So even if we increase the thickneés beyond 10, the
value remains close to 5.3333.

Figure 8 shows T* against @ for h1 = 1 i.e. when the thickness of
the layer is equal to the radius of the circular portion which is being
rotated. In this case we see that as 6 increases from .2 to 1 the value
of T* decreases, although there is not much change in the value of T*
when @ changes from 6.8 to 1. As & increases i.e. the ratio of modulus
of rigidities increases from .1 to 5, the value pf T* increases which is
obvious since as & increases the lower layer becomes stiffer relative'to
the upper layer, so it needs more force to rotate the circular portion.
From Figure 9 and 10 we see that there is not much decrease in the value
. of T* as @ increases from 6 to- 10 éspecially when 6 = 1 and 5. Also when
& =1, the value of T* tends té 5.333 (Fig. 10), which is same as shown
by Gladwell [15].

When h, is equal to 2 i.e. the thicknesg of the upper layer is twice

1
the radius of the circular portion which is being rotated one sees that
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6.9

s-e{w

o e e T S S T S S A S S A . —
0.2 0.4 0.8 0.8 1.0

Figure 5:Numerical values of 'I‘*=T/ulb against
6=h,/h =2,4,6,81.0 for h =0.5 and 6=1,.51,5.
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5.00+
4.97 - g
4.94 -
aorf

4.88 1
1 0=0.5

L R L —
2.0 4.0 6.0 8.0 10,0

422t
4.19¢

4161

4013 bl ¥ A v ; L v 1 v ; L] L] ¥ ¥ ; L) 1 1 T
2.0 4.0 6.0 - . 8.0 10.0

Figure 6:Numerical values of T*=T/,u,lw against
6=h, /h,=2,4,6,8,10 for h =0.5 and 6=p,/p;=0.1,0.5
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6.35

6.33¢

6.31%
=5,Q
6.29 A ¥ ¥ A ; v L ¥ A ; T L] ¥ L) : L ¥ L) L]
2.0 4.0 6.0 8.0 10.0
5.48
5.43-%
5381
6=1.0
5033 v ¥ ¥ v : b v A A ; v ¥ i ¥ ; T L) A ¥
2.0 4.0 6.0 8.0 ‘ '10.0

0

Figure 7:Numerical values of T'=T/u ® against
9=h.2/ h1=2,4,6,8,10 for l]1=0.5 and 6=”2/”1=1'0'5'0
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5.7

f =5.0
56+

1B T S S——
0.2 0.4 0.6 0.8 1.0

Figure 8:Numerical values of T"=T/u @ against
9=h2 /! hl=.2,.4..6,.8,1.0 1"‘01‘ h 1=1.0 and 6=1,51,5.
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5.23
5.22+4
5214
0=0.5
B B e e o A A S o T . T . T S T——
2.0 4.0 6.0 8.0 10.0
5.01
5.00 -+
4991 6=0.1
4.98 e .

2.0 4.0 - 6.0 8.0 10.0

Figure 9:Numerical values of T*=T/,u,lco against
6=h,/h =2,4,6,8,10 for h;=1 and é=u,/u,=0.1,0.5
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5.5729 ¢+

0=5.0
55699 et eemeereepmemepmsee et
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5.35
4
5.34
1 0=1.0
5,33 eyt e
2.0 , 4.0 6.0 8.0 10.0

0

Figure 10:Numerical values of T*=T//.l.lw against
6=h, /h1=2,4,6,8,10 for h =1 and O=p, /y.l=1.0,5.0
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Figure 12:Numerical values of T'=T/u » against
6=h, /h =24,6,810 for h.=2 and 6=p,/4;=0105
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(Fig. 11, 12, 135 there is not much variation in the values of T* as ¢
increases from 0.2 to 10. In this case too when & is equal to one, T* is
approaching to 5.333 as 9 increases (Fig. 13). Also when & is equal to 5
there is not much change in the value of T* as 9 incréases from 0.2 to 1
(Fig. 11). In this case we also see that the graphs are almost paraliel
in all the cases which is understandable since the thickness of the upper
layer has been increased compared to the cases when h1 is equal to 1 and

0.5 and hence there is a lesser effect of the thickness h2 of the lower

layer.
In conclusion we notice that when & increases (i.e. when Ho
increases for a fixed pl) T* increases for any fixed value of 8 = hz/h1’

but when 6 increases (i.e. when hz increases for a fixed hl) T* decreases

for any fixed value of 6 = yz/yl.

84,4 Particular cases

The results for the following‘particuiar problems have been derived
by assigning particular values to Hir Moo h1 and h2 in the results of

section 2:

CASE 1: Reissner-Sagoci problem for the half-space (Fig. 14)

To derive the results for this caée, we let
h1 - ® Hy = H (4.4.1)

By taking h, - o in equation (4.2.22) we get

1



- 100 -

T
Jié l z=0

Figure 14: Semi-Infinite Space z = 0.
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Figure 15: A Layer 0 < z =< h.Bonded to a Rigid Foundation.
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H(g) = 0 : (4.4.2)

and hence from equation (4.2.51) and (4.2.60) we get

s(t) = - f;.t‘, (4.4.3)
T = - 4umw J t o(t)dt
0]
_ 16
_._.3.(,),,{ ,

which agrees with the already kmown results (e.g. equation (3.4.30) gives
the same value of T as above by taking ry = 1).
CASE II: Reissner-Sagoci problem for a single layer of thickness h

with its lower face rigidly fixed (Fig. 15)

To obtain the results for this case, we let

hz -+ 0’ h1 = h’ ,Jl = IJ . (4'4'5)

By taking h, - 0 and h

o 17 h in equation (4.2.22) we find

H(¢) = —o%h (4.4.6)
and hence from equation (4.2.45) we obtain

K({u,t) = 4 ———2—5-81n(£u)51n(tu)dg

0 l+e
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o0

= %-JO I—EEEH.[cos(u+t)-cos(t—u)€]d§ . (4.4.7)
te

-

~

Now #(t) and the torque T are given by equations (4.2.51) and (4.2,60).

The above results are in full agreement with the results obtained by

Gladwell [15] by noting the change in notation.
CASE I1I: Reissner-Sagoci problem for a layer of thickness h with its
lower face stress-free (Fig. 16)
For this case we let

Hz - O, hl = h,‘ ,4(1 = I-I . (4-4-8)

For this case when Hy = 0, we have 5 = 0 and hence x4 = -1 and from

(4.2.22) we obtain

2 e—zah
H(g) - - —————_zm . (4.4.9)
1 -e
Then from (4.2.44), we obtain
g (° 4R :
K(u,t) = = o I:;:ZEH sin(¢u)sin(tu)d¢

it -
= %-J {coth(¢h)-1]1{cos(t-u)t-cos(t+u)¢ldg (4.4.10)
0 -
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ﬁuf:::::%
> . z=0
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Figure 16: A Layer 0 < z = h With Lower Face Stress-Free.

Figure 17: A Layer O < z =< h Bonded to a Semi-Infinite Space z = h.
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which is in agreement with that of Gladwell [15] by noting the change of

notation.

CASE IV: Reissner-Sagoci problem for a layer of thickness h bonded to
an elastic half-space (Fig. 17)

The results for this case may be derived by letting

hz - 0, hl = h- (4!4‘11)

A

For this case, we find from equation (4.2.22) and (4.2.45) that

- 2
H(g) = TR (4.4.12)

8hy-1i os(ttu)s-cos(t-u)e1de  (4.4.13)

: o0
K(u,t) = .z_f [1+7e’
T
0
and #(t) and the torque T are given by equations (4.2.51) and (4.2.60)
respectively. The above results are in agreement with those obtained by

Jabali [16] by noting the change in notation.
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