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ABSTRACT 

The present thesis is to survey the Reissner-Sagoci problem in the 

linear theory of elasticity. In Chapter 1 we have given a brief summary 

of the various Reissner-Sagoci type problems solved so far. Chapter II 

deals with the derivation of the basic equations of linear theory of 

elasticity. In Chapter III we have given the solution of the classical 

Reissner-Sagoci problem as discussed by Reissner and Sagoci and later on 

by Sneddon. In Chapter IV we have solved a Reissner-Sagoci type problem 

for a homogeneous elastic layer bonded to another homogeneous elastic 

layer. The numerical values have been tabulated and displayed 

graphically. 
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CHAPTER I 

INTRODUCTION 

In 1944 Reissner and Sagoci [ 22] investigated the torsional 

oscillations produced in a semi-infinite, homogeneous, isotropic medium 

by a periodic shear stress applied in an axially symmetrical manner to a 

circular area of the lane surface of the medium. 1?arlier in 1937 the 

same problem was studied by Reissner [ 21] under the assumption that the 

law of variation of shear stresses over the surface is given. Reissner 

[21] obtained a solution of the problem for the case of shear stresses 

increasing linearly from the centre of the stressed surface region to the 

edge of the stressed surface region, by means of the Fourier-Bessel 

integral method. He also obtained the solution of the problem when the 

law of variation of displacement over the loaded portion of the surface 

is prescribed. Mathematically this is a mixed boundary problem and the 

Fourier-Bessel method reduces the problem to an integral equation problem 

which may be further reduced to the problem of solving an infinite number 

of linear algebraic equations for an infinite number of unknowns. 

Reissner and Sagoci [ 22] in their paper obtained solution of the mixed 

boundary problem by introducing in a suitable manner a system of oblate 

spheroidal coordinates, for static case of torsional deformation. This 

problem is now known as the Reissner-Sagoci problem. 
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Sagoci [23] also studied the forced torsional oscillations of an 

elastic half-spare under the action of a rigid circular disk oscillating 

periodically about an axis through its centre. He found the expressions 

for displacement and shear stresses at any point of the surface and 

derived the relation between the angle of rotation and the resultant 

moment of the surface shear stress. He also gave a method for the 

determination of the shear modulus of the half-space through a study of 

its torsional oscillations. 

Later on in 1947 Sneddon ( 26] solved the same Reissner-Sagoci 

problem by a different approach. He reduced the problem to a pair of 

dual integral equations by using the Hankel transform method. In the 

static case these dual integral equations reduce to the known dual 

integral equations whose solution was given by Titchinarch (33]. Byoroft 

[1] gave an approximate treatment of the oscillations in both the 

half-space and a stratum by assuming the distributions of the shear 

stress under the disk in both cases to be the same as the distribution in 

the static case for the half-space and then applying the Hankel transform 

to obtain the displacement which is only valid if the frequency of the 

oscillations is very small and the thickness of the stratum is very 

large. Collins [ 31 solved the torsional problem of an elastic half-spare 

by supposing the displacement at any point in the half-space to be due to 

a distribution of wave sources over the part of the free surface in 

conthrt with the disk. He obtained the integral equation governing the 

problem, holding for all frequencies of oscillations, which he solved 

approximately by iteration for small frequencies. The same method was 
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extended to the oscillations in an elastic stratum. Gladwell [ 15] solved 

the Reissner-Sagoci problem for an elastic layer of finite thickness, 

when the lower face is either stress free or rigidly clamped, by reducing 

the mixed boundary value problem to a Fredhoim integral equation by 

Noble's [ 19] method and gave an approximate solution for small values of 

the reduced frequency and large values of the stratum depth. His 

analysis was much simpler for the case when the elastic layer was rigidly 

clamped to a rigid foundation, compared to that of Collins [ 3]. 

Sneddon [ 29] in his book on mixed boundary value problems of 

potential theory used Hankel transforms to solve mixed boundary value 

problems of the linear theory of elasticity. It was shown by him that 

the mixed boundary value problems reduce to the solution of dual integral 

equations. A simple method for the solution of dual integral equations 

was developed by Sneddon [27]. Making use of his own method Sneddon [ 283 

in 1966 obtained the solution of the Reissner-Sagoci problem. He [ 31] 

also considered the problem of determining the distribution of stress in 

the interior of a very long circular cylinder of homogeneous isotropic 

material when a circular area of its flat surface is forced to rotate 

through an angle about the axis of the cylinder, whose curved surface is 

fixed. 

Freeman and Keer [ 14] investigated a torsion problem of an elastic 

cylindrical rod welded to an elastic half-space. The problem was 

formulated so as to involve coupling between dual integral equations and 

Dini-Series, and these equations were reduced to a single integral 

equation which was solved numerically. 
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Keer, Jabali and Chantaramungkorn [ 18] considered the problem of a 

layer bonded to an elastic half-space, where the layer is driven by 

torsional oscillations of a bonded rigid circular disk. They reduced the 

problem to a Fredhoim integral equation of the second kind which was 

solved numerically. They also developed dynamic stiffnesses for a range 

of layer thicknesses, material properties and frequencies. Jabali [ 16] 

considered the static solution to the problem of a layer bonded to an 

elastic half-space, when the layer is driven by torsional rotation of a 

bonded rigid circular disk. The problem was reduced to the Fredhoim 

integral equation of the second kind and an iterative solution, had been 

obtained for large values of the ratio of the stratum depth to the radius 

of the disk. 

For a non-homogeneous, isotropic, elastic half-space Reissner-Sagoci 

problem has been first solved by Kassir [17]. He assumed the modulus of 

rigidity of the medium in the form p(z) = pza ( 0 ≤ a ≤ 1) where po is 

some real constant, and z is the coordinate perpendicular to the plane 

boundary of the half-space. He solved the problem by reducing it to a 

pair of dual integral equations and then solving it by Copson' s [51 

elementary solutions. He also solved the problem for a long circular - 

cylinder of finite radius whose curved surface may be either clamped or 

stress free by reducing the problem to a Fredholin integral equation of 

the second kind and using the method developed by Sneddon and Srivastava 

[30]. 

Dhaliwal and Singh [ 7] considered the problem of torsion, by an 

annular die, of an elastic layer of assumed thickness bonded to an 



elastic half-spare when both the elastic layer and half-spar'e are assumed 

to be isotropic, homogeneous and consisting of different elastic 

constants. The problem was reduced to the solution of a system of four 

Fredholm integral equations of the second kind in four unknown functions. 

An iterative solution of these integral equations was obtained for the 

case of simple rotation of the annular die through a small angle for a/b 

<< 1 and b/h << 1 where h is the layer thickness and a and b are the 

inner and outer radii of the annular die. 

Protsenko [ 20] considered the elastic equilibrium of a half-spare 

being twisted by the rotation of a rigid cylindrical die, with flat base, 

bonded to the half-spire where the modulus of elasticity of the 

half-sp -'e varies with the depth by p(z) poza ( 0 ≤ a. < 1) and po is a 

constant • He solved the problem by reducing it to a pair of dual 

integral equations and solving them by Sneddon's method. Later on 

Chuaprasert and Kassir [ 2] solved the same problem by assuming the 

modulus of rigidity p(z) = p0 (c+z) where po, c and a. are real constants. 

By employing the Hankel transform and Fourier-Bessel series method to the 

problem, for both half-space and a semi-infinite circular cylinder whose 

lateral surface is clamped, they reduced the problem to Fredholm integral 

equation of the second kind. 

Singh and Dhaliwal [ 24] considered the torsion of an elastic layer 

by two circular disks of rigid material and of different radii bonded to 

the opposite faces of an infinite elastic layer, rotated through 

different angles. The solution of the problem was reduced to a pair of 

simultaneous Fredholm integral equations which were then solved by the 
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method of iteration as well as numerically. 

Dhaliwal and Singh [6] considered the Reissner-Sagoci problem for an 

isotropic, nonhomogeneous, elastic layer of finite thickness and modulus 

of rigidity p(a+z)a perfectly bonded to an isotropic, 

nonhomogeneous elastic half-sper'e of modulus of rigidity p2(z) p2(b+z)'3 

where p1, p2, a, b, a and p are real constants. They reduced the problem 

to the solution of a Fredhoim integral equation of the second kind which 

was solved iteratively. By assigning different values to a, p, a, b, p1 

and 2' they derived solutions of many of the earlier solved problems by 

Reissner and Sagoci [22], Jabali ( 16), Chuaprasert and Kassir [ 2] and 

Gladwell [ 15] for a half-space and a layer of finite thickness. 

Dhaliwal, Singh and Sneddon ( 10) considered a Reissner-Sagoci type 

problem for an elastic cylinder embedded in an elastic half-spare of 

different modulus of rigidity, assuming that there is perfect bonding at 

the common cylindrical surface and torque is applied to the cylinder 

through a rigid disk bonded to its flat surface. They reduced the 

problem to a pair of dual integral equations, by means of the integral 

transforms, which were then reduced to a Fredhoim integral equation of 

the second kind and solved numerically. Also Dhaliwal, Singh and Rokne 

[8] considered the torsion of a homogeneous isotropic elastic hemisphere 

embedded in a semi-infinite isotropic elastic medium when a rigid 

circular disk is clamped to the plane face of the hemisphere and the 

stresses are caused by the rotation of the disk through a small angle. 

They reduced the problem to a pair of dual integral equations by assuming 

appropriate solutions of the two regions. These dual integral equations 
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were further reduced to the solution of a Fredhoim integral equation of 

the second kind which was solved numerically. By taking the same values 

of modulus of rigidities of the two regions, they derived the solution to 

the classical Reissner-Sagoci problem which was in agreement with the 

solution of Reissner and Sagoci [ 22]. 

In 1982 Erguven [ 111 considered the Reissner-Sagoci problem for a 

transversely isotropic, nonhomogeneous elastic half-space. The modulus 

of rigidity of the medium was assumed to be variable as a power of the 

radial coordinate in the form (p ≥ 0). He reduced the problem to the 

solution of dual integral equations for the determination of an unknown 

function which were then solved by taking an appropriate form of the 

unknown function. The expressions for stress, torque and the 

displacement were found. - 

Dhaliwal, Singh, Rokne and Vrbik [ 9] found the stress distribution 

in an homogeneous isotropic elastic hemisphere embedded in another 

semi-infinite homogeneous isotropic elastic medium when a rigid annular 

disk is clamped to the plane face of the hemisphere and the stresses were 

caused by the rotation of the annular disk through an angle p. By 

assuming appropriate solution for two regions, they reduced the solution 

of the problem into triple integral equations. These triple integral 

equations were further reduced into a Fredhoim integral equation of the 

second kind by Cook's method [4]. 

Erguven [ 12] considered the torsional stresses and displacement of a 

transversely isotropic elastic layer of finite thickness for which 

torsional shearing forces are prescribed on its boundary surface • He 
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solved the problem by reducing it to a pair of dual integral equations 

which were further reduced to a Fredhoim equation of-the second kind. He 

also derived solutions for some particular cases. 

The intent of the present thesis is to study the Reissner-Sagoci 

problem for various configurations. The organization of the chapters of 

the thesis are as follows. 

The second chapter deals with the basic definitions and derivation 

of fundamental equations of elasticity to be used in later chapters. 

In the third chapter we have derived .a complete solution of 

Reissner-Sagoci problem solved byReissner and Sagoci [ 22] and Sneddon 

[26]. 

The fourth chapter forms the main contribution of this thesis in 

which we have considered a Reissner-Sagoci type problem, for a 

homogeneous isotropic, elastic layer bonded to another homogeneous 

isotropic elastic layer of different modulus of rigidity and thickness, 

whose lower surface is bonded to a rigid foundation. A rigid circular 

cylinder is bonded to the top surface of the upper layer and it is 

rotated through a small angle and the rest of the surface is stress free. 

By the use of Hankel transforms the problem is reduced to the solution of 

a pair of dual integral equations. The dual integral equations are 

further reduced to a Fredholm equation of the second kind which has been 

solved numerically to find the numerical values of the torque required to 

rotate the rigid cylinder through a small angle. 
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CHAPTER II 

BASIC EQUATIONS OF ELASTICITY 

%2.1 Deformation and Strain Tensor 

In the formulation of continuum mechanics the configuration of a 

solid body is described by a continuous mathematical model whose 

geometrical points are identified with the place of the material 

porticles of the body. When such a continuous body changes its 

configuration under some physical actions, we impose the assumption that 

the change is continuous; that is, neighbourhoods are changed into its 

neighbourhoods. Thus, when the particles of a continuous body move so 

that the distance between particles is changed, the body is said to be 

deformed. When 'the distance between the particles is unchanged, the body 

is said to be undeformable or a rigid body. 

Let a system of coordinates a1, a2, a3 be chosen so that a point P 

of a body at a certain instant of time is described by the coordinates 

a1 ( i = 1,2,3). At a later instant of time, the body moves to a new 

configuration; the point P moves to Q with coordinates x. (i = 1,2,3) 

with respect to new system of coordinates x1, x2, x3. The coordinates 

a1, a2, a3 and x1, x2, x3 may be curvilinear; and describe a Euclidean 

space. 

The change of configuration of the body will be assumed continuous 
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and the mapping from P to Q is assumed to be one-to-one. The equation of 

transformation can be written as 

x. 1 i = x(ai ,a2 ,a3), ( i = 1,2,3) 

which has a unique inverse 

.a . 1 a1. (x1 2'x3 ,x3 ), ( 1 = 1,2,3) (2.1.2) 

for every point of the body. The functions x .( a.) and .(x.) are assumed 

to be continuous and differentiable. 

We shall be concerned with the description of the strain of the 

body, that is, with the stretching and distortion of the body. If P, P', 

P'' are three neighbouring points forming a triangle in the original 

configuration, and if they are transformed to points Q, Q', Q'' in the 

deformed configuration, the change in area and angles of the triangle is 

completely determined if we know the change in length of the sides. But 

the "location" of the triangle is undetermined by the change of the 

sides. Similarly, if the change of the length between any two arbitrary 

points of the body is known, the new configuration of the body will be 

completely defined except for the location of the body in space. 

Therefore the description of the change in distance between any two 

points of the body is the key to the analysis of deformation. 

Let us consider a cartesian coordinate system in which the point P° 

000 0000 
(a1,a2 ,a3) is moved to the point Q (x1,x2 ,x3) after deformation. We 



denote the small displacement of the point P° by 

0 0 0 - 0 0 
U. (a1,a2 ,a3 1 ) - x. - a. 1 , (1 = 1,2,3 ). (2.1.3) 

Let us consider a neighbourhood point P(a1 ,a2 ,a3) and let A be the vector 

joining P° and P. Let Q(x1,x2,x3) be the deformed position of P. The 

displacement u at the point P is 

u.(a1,a2 ,a3 ) = u.(a?+Ai,a+A2 ,a +A3) x. - a., ( i 1,2,3) ( 2.1.4) 
1 1 

where A1, A2, A3 are the conponents of A. The deformed vector X has 

components 

0 
X.x.-x. 
1 1 1 

and SA = X - A has component 

0 0 
6A. (x. 1 -x.) - (a. 1 -a.) 

1 1 

(x a.) - (x 0.-a 0 .) 
1 1. 1 1 

0 0 0 000 
U. (ai+A1 ,a2+A2 ,a3+A3) - u.(a1,a2,a3) 

8u. 
A. 

1aaJ 0 j 

(2.1.5) 

(2.1.6) 

plus the remainder in the Taylor's expansion of the function 

U. (a+A1,a+A2,a+A3) and the subscript 0 indicates that the derivatives 
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are to be evaluated at the point P0. Writing 

au. 
1 

- U. 
aa. 
3 

and dropping the subscript, we have 

1,3 
(2.1.7) 

6A. u. A. . (2.1.8) 
1 1,JJ 

Now if we assume that the displacement u, and its partial derivatives 

are so small that their product can be neglected then ( 2.1.8) defines an 

infinitesimal affine transformation of the neighbourhood of the point. 

Now 

where 

6A. = u. A. 
1 1,33 

U. .+U. . U. .-U. 
= f 1,3 3,1 +  1,3 J,1IA 
1 2 2, J3 

(e 1J. .-.1J .)A 3 . (2.1.9) 

1 
e. . 2 (u. A-u. .) 
13 1,3 3,1 

(u. .-u. .). 
13 1,3 3,1 

The symmetric coefficient e ij .. is called strain tensor and it 

(2.1.10) 

(2.1.11) 

characterizes pure deformation. The skew-symmetric coefficient 
ij 

corresponds to rigid body motion. 

In general consider an infinitesimal line element connecting the 
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point P(a.) to a neighbouring point p1 (a.+da'). The square of the length 

ds0 of PPI in the original configuration is given by 

a. .da1da3 
0 13 

(2.1.12) - 

where a.. evaluated at the point P is the Euclidean metric tensor for the 
ij 

coordinate system a.. When the points P, P' are deformed to the points 

Q(xi) and Q' (x1+dx'), respectively, the square of the length ds of the 

new element QQ I is 

g 13 . .dx1dx (2.1.13) 

where g.. is the Euclidean metric tensor for the coordinate system x1. 

The equations ( 2.1.12) and (2.1.13) may also be written as 

.)a. aa. 
a... em 
iJ 0 aXe aX 

ax. ax 
g  i . ..._ _:L e m 
jaa aa e m 

(2.1.14) 

(2.1.15) 

The difference between the squares of the length elements may be written 

either as 

22 

or as 

ax 8x, - a. lda'dai 19to 
3 

(2.1.16) 
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--'a] 22 = 19ij - a/3 aaa 

Now we define the strain tensors as 

so that 

ax ox 
E _ 1I a -p 
ii 2[aPj __ a ij 

r Oa Oa /3 _11 - a 
6ij_•ij a—-- 

ds 22 = 2E. 
0 ij 

ds2-ds2 2e.. .dx1dx3 . 
0 ij 

(2.1.17) 

(2.1.18) 

(2.1.19) 

The strain tensor E. . 13 was introduced by Green and St. Venant and is 

called Green's strain tensor [13]. The strain tensor s. . 13 was introduced 

by Cauchy for infinitesimal strains, and by Almansi and Hamel for finite 

strain, and is known as Almansi's strain tensor [ 13]. 

The tensors E ij .. and €.. are symmetric, that is 

H. 13 = H31.., 6 
ii = S 3.1.  . (2.1.22) 

If we use the rectangular cartesian ( rectilinear and orthogonal) 

coordinate system to describe both the original and the deformed 

configurations of the body, then 
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( 1 for i = j 
g..=a..= j i5 
13 13 O for i j 

Furthermore, if we introduce the displacement vector i with the 

components 

then 

(2.1.23) 

u i = x_a (i = 1,2,3) (2.1.24) 

ax au 
a_ 

<3 a. aa. cd 
3. 1 

aa au 
- 

R-7 cLi ax. 
1 1. 

1 
J 

and the strain tensors reduce to a simpler form 

E 13.. 

and 

1 
- 

1 
- 18a'a 

ax cc ax 

ôa aa.  
1 3. 

au 

rSua +o .11—+ .1 ail boa /33J '3 

au. au. au au 
_1 j+ i 

-  Oa aa. ôa. [—aai 
3 1 3 

1 
- 

1 
- 

1 
- 

aa aa 1 

..- ap 1 L 1 J4 I 

- (5ai. au aug11I ii cp  - cI - i I 
ji..I 

+ 
au. au au 

1 a 1  
ax. 
3 

ax. ax.3 
1  

(2.1.25) 

(2. 1 . 26) 

(2.1.27) 
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Now if the components of the displacement u. are such that their first 

derivatives are so small that the squares and products of the partial 

derivatives of u. are negligible then e. ij .. reduces to Cauchy's 

infinitesimal strain tensor, given by ( 2.1.10) 

• e. 1 [u. .+u. . 1 
13 13 2 1,3 3,1 

(2.1.28) 

since if the displacement and its derivatives are small it is 

"immaterial" whether the derivatives of the displacements are calculated 

at the position of the point before or after the deformation. 

The component of the strain tensor cannot be arbitrary. In order to 

find this condition, let P 0 (x1,x2,x3 000 ) be some point of a simply connected 

region, at which the displacements u 0 (x1x2x3 000 ) and the components of 

rotation w 0 ••(x1 0 ,x2 0 ,x3 0 ) are known. The displacements u at any other 

point P1 ( x1,x,x) are given by 

Now 

0 p1 

du. 
, 

P0 

0 
U ilk kk 3 ., 0 

P 

U. + j.P eJkdxk + J jkk 

(.) j dx 
k k - 0 jkdk_ 

P P 

(2.1.29) 
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and hence 

pe 
00 

'-x ),>. + (x (x'-x ) dx k k jk k k jk,ee 
p 

.. 

P I 
U+(X1 0 0 -x ) + e + j k Ic _Xk)Wjk,e) 

PO 

Also from ( 2.1.11) we have 

or 

w - 01 (u j -u k,e j,k k,j 

1 
(uj,ke_U,je) + (ue , jl(11e , jk 

81 81 
(u .+u. 

ax Y e,j j,€ - 
J 

so now ( 2.1.31) becomes 

where 

t.) e -e 
jk,e j,k ke,j 

(2.1.30) 

dXe • (2.1.31) 

p l 

+ (x-x)t. ° + U dx 
jk  P0 je e 

(2.1.32) 

(2.1.33) 

(2.1.34) 

U je j e Ic e + (xm_xk)(e -eke, j). (2.1.35) ej , k  

Now as the displacements u1 must be independent of the path of 

integration, U jP .dx must be exact differential, so we must have 
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U: - U j 0 (2.1.36) 
ji,e e,i 

e.. - 6 (e. . -e . .) - e. . + 6 .(e . -e .) 
ji,€ k ij,k kl,J je,i ki ej,k ke,, 

+ (x_xk)(eij,ke_eki,je_eej,ke+ekp,jj) 0. (2.1.37) 

In equation ( 2.1.37) the first line is identically zero, and since this 

is true for arbitrary choice of (X_Xk), we must have 

=0 eijje - eki,je - eej,ki ke,ji (2. 1 . 38) 

which is called the compatability condition and the components of strain 

tensor must satisfy this condition. 

%2.2 Stress Tensor 

(A) Stresses: 

Consider a configuration occupied by a body B at some time. Tmsgine 

a closed surface S within B. We would like to know the iteraction 

between the material exterior to this surface and that in the interior. 

Consider now a small surface element 4S on the outside of imagined 

surface S • Let us draw a unit normal vector v on AS with its direction 

outward from the interior of S. Then we can distinguish the two sides of 

AS according to the sense of U. Now consider the portion of the material 

lying on the positive side of the normal. This portion exerts a force 
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-p 

say & on the other portion of the material, which is the negative side 

-p 
-I 

of the normal U. The force 4F is a function of the area and the 

orientation of the surface considered. We make the following assumption: 

-ø 
-p 

As AS tends to zero, the ratio = tends to a definite limit dF/ds 
Ids 

and that the moment of the forces acting an the elementary surface 4s 

about any point within the area vanishes in the limit. 

Thus the limiting vector will be written as 

where the subscript v is introduced to denote the direction of the unit 

-$) 

normal i of the surface 1S. This limiting vector T is called the "stress 

vector" or "traction", and represents a force per unit area acting on the 

surface. 

(B) Components of stresses: 

Consider a special case in which the surface AS  is parallel to one 

of the coordinate planes. Let the normal AS be in the positive 

direction of the Xk axis. 

Let the stress vector acting on dsk be denoted by T , with component 

T, T, T along the directions of the coordinate axis x1, x2, x3 

respectively, the index i of T denoting the components of the force, and 

the symbol k indicating the surface on which the force acts • In this 

case we introduce a new notation for the stress components 
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22 

Figure 1: Notation of Stress Components. 



- 21 - 

Tk 0k1 °k2' 3 Ok3 

If we arrange the components of tractions acting on the surfaces 

k = 1, k = 2, k = 3 in a square matrix as shown below: 

Components of Stress 

1 2 3 

surface normal to x1a 11 0 12 0 13 

surface normal to x2 021 022 °23 

surface normal to x3 0 31 0 32 033 

The components Cli , 033 are called "normal stresses" and the 

remaining components 0 i2 0i3 etc. are called "shearing stresses". 

(C) Stress at a point: 

In this we shall show that knowing the components 01,j' we can write 

the stress vector acting on any surface with unit outer normal vector 

-4Z) 

whose components are z, I)2 v3. This stress vector is denoted by T 

with components '1, T, T given by Cauchy's formula: 

1 J1J 
(2.2.1) 

Let us consider an infinitesimal tetrahedron formed by three 

surfaces parallel to the coordinate planes and one normal to the unit 

vector V. Let the area of the surface normal to i be ds. Then the area 
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x3 

Figure 2: Stress at a Point. 

2 
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of the other remaining surfaces are: 

ds I = ds cos( -V*,x-p 1) = i.ds = area of the surface if to x 2 x 3 plane 

ds2 = V 2 ds = area of the surface II to x 1 x 3 plane 

ds3 = i'3ds = area of the surface II to x 1 x 2 plane. 

The volume of this tetrahedron is 

du Is hds 

where h is the height of the vertex from the ha-se ds. 

On account of the assumed continuity of the stress vector the 

x.-component of the force acting on the face ABC of the tetrahedron is 

)ds where urn s. = 0. The corresponding component of force due to 
1 h-.0 

stresses acting on the faces of area ds. 1 is (- 3131 c..+E... 3)ds. where 

urn e.. 0 and a.. are taken with negative sign due to the outer normals 
ji 

to the three surfaces which are opposite in sense with respect to the 

coordinate axis. Finally the contribution of the body force X to the 

x.-component of the resultant force is (X.+!) 1 hds, where urn 0. 
1 11 

ri-pu 

Thus for the equilibrium of the tetrahedron we must' have 

(? +6 )ds + ( --a )ds + (X.+€!) 1 hds 0 
1 1 31 31 3 1 1 

Now ds. = v.ds so dividing by ds we have 
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+ + (X.+!) 1 h O. 
1 1 Ji 31 3 

Taking limit as h -. 0, we obtain 

(2.2.2) 

%2.3 Equations of Motion 

Consider a continuous medium, every portion of which is contained 

within the volume V bounded by the closed surface S. Each point P of S 

is subjected to traction T and each mass element of the medium is 
1 

subjected to a body force per unit mass fi, which includes any inertia 

forces present. Then for equilibrium, both the resultant force acting on 

the body within V. and the resultant moment of all the forces acting 

(produced by body and surface forces) on the body must vanish, that is 

fV 
pf1dV + ' T'dS 0 

1 

I pi.. f.xdV+ I .. T'xdS0 
ijkjk ijkjk 

(2.3.1) 

(2.3.2) 

where p = p(x1,x2,x3) is the mass density of the body under consideration 

at the point in space with coordinate and ijjk are defined as: 
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ff +1 if ijk represent an even permutation of 123 
- 0 if any two of ijk indices are zero 

ijk -1 if ijk represent an odd permutation of 123 

Substituting for T from equation ( 2.2.2) into equation ( 2.3.1) we get 

fV pfdV + ,•f O..LJ.dS = 0. (2.3.3) 

Now, since the function o ji .. and their first partial derivatives are 

continuous and single-valued in V, the divergence theorem can be applied 

to the surface integral in ( 2.3.3) and we have 

fV' . 
1 J1,J )dV = 0 (2.3.4) 

since the region of integration V is arbitrary and integrand of ( 2.3.4) 

is continuous. Thus at every interio point in V, we have 

a J1.. ,J . L • pf. = 0. (2.3.5) 

Nect consider the consequence of vanishing of the resultant moment, 

that is, the equation ( 2.3.2). Using equation ( 2.2.2) and the divergence 

theorem we have 

fS 
3 

ijk kt fS 1.. ijk mj o .Z)in X k dS 

(y ijk .. xkamj m ) dV 
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fV (1'imj ,m + i ijk a mj6km )dV. (2.3.6) 

Here the relation xk,in = 6 km has been used where 6 km is the usual 

Kronecker delta defined by 

6- { 1 if km - 0 if k # m 

a m.j . = akj and from equation ( 2.3.5) we have 
Since 6km  

a =-pf. 
mj,m j 

the equation ( 2.3.6) becomes 

'Is I .. Tx dS fV (-pi. x f.+i.. a .) dV 
ijk 3 k ijk k j ijk kj 

Using this relation in equation ( 2.3.2) we get 

fV 
•i ij..kokj .dV=O. 

Since this integrand is continuous and the volume V is arbitrary, we must 

have 

i ij..k ka j = 0 (2.3.7) 
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for every point in V. Expanding this equation, we get 

a 1,3 . . Ji a. (i,j = 1,2,3) (2.3.8) 

that is to say, that the stress tensor is symmetric. 

Equations ( 2.3.5) and ( 2.3.8) are equations of motion and are true 

for any continuous medium. If, in addition, to the body force F per 

unit mass exerted by some external agency, interia forces are present, 

then we can write 

f. = F. - u. 
1 1 1 

and equation ( 2.3.5) takes the form 

a 13. . ,3 . 1 + pP. 1 Pu. (2.3.9) 

where u = u.(x1,x2 ,x3 ,t) is the displacement vector of a particle at the 

point P with coordinate x, at any time t and a dot denotes a derivative • 

with respect to time. 

§2.4 Generalized Hook's law 

Generalized Hook's law states that the components of stresses are 

linearly related to the components of strains. That is to say 

a ij . . c. jke eke (2.4.1) .  
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where c ij. .ke is called the tensor of the "elastic constants" or "moduli" 

of the material. Also since c. . 13 31 = a.., we have 

C..ke j =0 i ijke (2.4.2) 

Further, since eke = eek and in equation ( 2.4.2) the indices k and e are 

dummies, we can symmetrize c ijke with respect to k and e without altering 

the sum. Thus 

C..ke = 0 ij ijek 

According to these symmetric properties the maximum number of independent 

elastic constants is 36. 

Again, if we define a strain energy function w by 

with the property 

1 
(= Z j ike 13 C e..e k 

at.) 
  - 0. 
ae 13 . . 13 

then the qurIratic form ( 2.4.3) is symmetric and it follows that 

(2.4.3) 

(2.4.4) 

0 ij.. = 0 k keij 
(2.4.5) 
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and the number of independent elastic constants is further reduced to 21. 

Now introducing the notation 

0 11 a ll 022 °2' 033 '3' 3 023 '4' 031 ' 5' 5 0 12 06 

e11 e1, e22 = e2, e33 e3, e23 e4,e31 e5, e12 = e6 

the equation ( 2.4.1) can be written as 

a.= oe ( i,j = 1,2,••,6). (2.4.6) 

If the medium is elastically symmetric in certain direction, then 

the number of independent constants c.. in ( 2 . 4.6) is further reduced. 

Consider a substance elastically symmetric with respect to the x 1 x 2 

plane. This symmetry is expressed by the statement that the o are 
ij 

invariant under the transformation 

x1 =x .,, 2 =x,x3 =-x 

and by using the transformation of coordinates we have 

a., e e. U 1,2,3,6) 
1 1 1 1 

-ag, e - e4, o 05 e - e5 

and equation ( 2.4.6) for i = 1 becomes 



or 
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c11e+c 12e+c 1 e' + c e' + c e+c e 
33 144 15o 166 

a c e + 0 e + 0 e c e - c_e.+c e 
1 111 122 133 144 1b 166 

Also from equation ( 2.4.6) for i = 1, we have 

a1 c11ej + c12e2 + c13e3 + c14e4 + c15e5 16 + ce6 

Thus on comparison of these two we get 

0 14 0 15 0• 

Similarly taking equations for a,•••,a we get 

024 = 025 = 034 - 035 - 064 065 = 0 

C41 042C43 0 6 051C52C53 0 56 0 

Hence for a material with one plane of elastic symmetry ( taken to be x1x2 

plane) the matrix of the coefficients of the linear forms in ( 2.4.6) can 

be written as 
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0 1 012 C13 0 0 016 

021 022 023 0 0 026 

031 C32 033 0 0 c36 

0 0 0 044 C45 0 

0 0 0 054 055 0 

C61 062 063 0 0 066 

(2.4.7) 

In case of an orthotropic materials, that is, the material which 

have three mutually orthogonal planes of elastic symmetry, if we choose 

the axis of coordinates so that the coordinate planes coincide with the 

plane of elastic symmetry, then some of the coefficients c ij .. in ( 2.4.7) 

vanish. In this case the matrix is given by 

c 1 0 12 013 0 0 0 

0 21 022 023 0 0 0 

031 032 033 0 0 0 

o o 0 c44 0 0 

o o 0 0 055 0 

o o 0 0 0 066 

(2.4.8) 

In the case of an isotropic media, that is, the material in which 

the elastic properties of a body are identical in all directions, these 

constants reduce to 2. Now from the definition of the isotropic media, 

its elastic properties are independent of the orientation of the 

coordinate axes. In particular, the coefficients c ij must remain 

invariant when we introduce new coordinates axes x, x, x, obtained by 
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rotating the x1,x2,x3-system through a right angle about the x1-axis. By 

considering o, we have 

0 12 = 0 13 0 31 = 0 21 0 32 = 0 23 0 33 - C22 = 0 0 66 55 

Similarly, a rotation of axes through a right angle about the x3-axis 

leads to 

0 21 C 12 022 = O, 0 23 = 013, °31 - °32' 055 - 044 • 

Finally consider the coordinate system Xj x x obtained from 

x1,x2,x3-system by rotating the latter through an angle of 45° about the 

x3-axis. In this case, 

- + Y C 21 e - e1 + e2 

From equation ( 2.4.6) we have 

06 = 044e6 

and referred to x1,x,x-axis we have 

- c e1 
6 - 44 6 

or 

2 = c44 (-e1+e2) (2.4.9) 
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Now from ( 2.4.7) we have 

+ c12e2 + c13e3 

02 021e1 + c22e2 + c23e3 

and from above relations, namely, 

022 = 0, 023 - C13 012 = °21 

we get 

'T  
(o21e1+o22e2) - 11e1+c12e2) 

[o,,(e2_e1)_012 (e2_e1)] 

1 
. (c11-o12 )(e2-e1) 

Comparing ( 2.4.9) and (2.4.10) we get 

1 
044 - °11°12 E p. 

Also writing 012 = A, we have from equation ( 2.4.6) 

c11e11 + c12e22 + c12e33 

c12 (e11+e22+e33) + (o11-c12 )e11 

A4 + 2pe11 , 

(24.10) 
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where 4 = e11+e22+e33 = e ii ... So the generalized Hook's law for a 

homogeneous isotropic body can be written as 

c..A5 ij ..4+2pe ij (i = 1,2,3). ( 2.4.11) 

The constants A and p were introduced by G. Lane and are called the Lame 

constants. 

%2.5 Equations of motion in terms of displacements 

The equation of motion is given by the equation ( 2.3.9) as 

a 2u. 
a.. . + pB. P 

1 

31,3 1 at2 

Now substituting for a ji .. from equation ( 2.4.11) we have 

i 
A6. .4. + 2pe. . + pF p 2 

13 3 1 3,3 at 

These equations can be written as 

a2uald 1 a2u a2u a2u1 

ax (A+p) + [--2 + 1 ax1 ax 1 + ax1' + 2 at 
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.a2u2 ô2u2 + + pF2 à2u2 
2 + 2  2) at2 ox2 ax1 Ox2 `3 

31d 02u3 02u3 + 02u31 + pF3 (A+/.I) _+ lax 2 + ax --z-
1 8x a x at- 

(2.5.1) 

These are the equations of motion in terms of displacements. Now from 

equation ( 2.1 • 11) we have 

so that 

= 1 (u. .-u. ) 
ij 2 i,j j,i 

2 0u1 82u1 82u 04 10w21 13 
VU1 2 2 2 

ax  Ox2 Ox3 - axi - .lax2 - ax3 ] + +  

and hence equations ( 2.5.1) may be rewritten as 

10()21 Ow 13.1 
(A+2) ax y) 

- 2[ax2 - Ox3 j + pF1 

(A+2p) 

(A+2/.I) 

04 

ax  

04 

ax  

rOw 13 
- 2y2 [ax1 - 

32 1] ax2 

+ pP2 

+ pF3 

2 a 

2 at 

2 a 

2 at 

2 a 

2 at 

(2.5.2) 

If we write w21 = w3' w13 = and w32 = wl these equations become 
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2p (A+2 p) f'3 aw 2 ____ 

p - - + pF = 
31 1 a 2t 

(A+2p) 

(A+2p) 

ad 
ax2 

a1 

ax3 

aw au2 

T --'] - + pF2 =  

. U3 

+pF3_p 2 
at 

(2.5.3) 

%2.6 Curvilinear orthogonal coordinates  

Let f(x,y,z) = ai where is some constant, be the equation of a 

surface. If a is allowed to vary we obtain a family of surfaces. If 

a+da is the parameter of that surface of the family which passes through 

(x+dx,y+dy,z+dz) we have 

da = dx + Lf dy + dz dx + dy + dz. 
az -3z ax ax 

(2.6.1) 

If we have three independent families of surfaces given by equations 

f1(x,y,z) = a, f2(x,y,z) p, f3(x,y,z) 

so that in general one surface of each family passes through a chosen 

point, then a point may be determined by the values of a, ,6, i which 

belongs to the surface that passes through it and the neighbouring point 

will be determined by the neighbouring values a+da, ,8+dO, i+th. Such 

quantities as a, /3, i are called "curvilinear coordinates" of the point. 
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When the families of surfaces cut each other everywhere at right angles 

it is called an "orthogonal curvilinear coordinates". So let us take a, 

/3, i to be parameters of such a set of surfaces, so that the following 

relations hold: 

apa 8,8 a - o 
ax-  ay ay azaz 

a1 aa + a1 aa + aaa_0 
axax ayay azaz 

aaa/3 + aaa/3 + aaa/3 _0 
axax ayay azaz 

Now the direction cosines of the normal to a at the point ( x,y,z) 

are 

1 da 1 da '1 &x 
ç5E' ç' 

where h1 is given by equation ( 2.6.2) below. By projecting the line 

joining two neighbouring points on th normal n1 to a, we have 

dn1 dx + 3 dy  + t±z 

Iax I - T.-

by equation (2.6.1). In the same way the elements dn2, dn3 of the 

normals to /3 and i are dp/h2 and dp/h3 where 
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h 

+ 

+ 

+ 

faa 2 
ay 

lap'2 
layi 
lai 2 
ay 

+ 

+ 

+ 

faal 2 
laz 
lapl 2 
lazJ 
fav 1 2 
taz (2.6.2) 

Now the distance between two neighbouring points is (dn +dn+dn)"2 so 

that line element ds is given by 

dn + dn + dn (2.6.3) 

%2.7  Components of strain referred to curvilinear orthogonal coordinates 

Let P(a,1c3,) and Q(a+a,13+b,i+c) be two points at a small distance r 

apart, and let the direction cosines of PQ, referred to the normals at P 

to those surfaces of the a, p and i families which passes through P, be 

e, m, n. Then, to the first order in r 

a€rh1, b=mrh2, onrh3. 

Let the particle which is at P, Q in the unstrained state be 

displaced to P1, Q1 and u, u,, u ly be the projections of the displacement 

PP  on the same three normals, and let a+, /3+q, i+ be the curvilinear 

coordinates of P. If the displacement is small, so that Ua U, , u and 

, ,, are small quantities of same order, we have 

=hu, z7=h2u = hu 
3i 
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The curvilinear coordinates of Q are expressed with sufficient 

approximation as 

and the values of 1/h1,... at P1 are expressed with sufficient 

approximations as 

1 a a 1i a •71 + 11 + 17 + ' 

so the projection of P1Q1 on the normal at P1, to those surfaces of the 

, p and y families which pcs through P1 are expressed with sufficient 

approximation by three formulas of type 

fa[I + + b + c a 1 a j,—p —a7 R 7 ja— [H '•ip— [H-11 
i 1 

which can be simplified by neglecting the terms of order higher than one 

in t, q, . On substituting for a, b, c and t, q, and squaring and 

Rdding three formulas of this type, we obtain an expression for the 

sqire of the length P1Q1. This length is r( i+e), where e is the 

extension of a linear element along PQ. Hence e is given by 
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111 +hhu  (1+e) 2 [eJ 1i + h1 + h1h2u  1 3 

h2 h3 
+ m (h1u2 _) + n (h1u2) 

neglecting squares and products of u, u, u, we may write the results 

as 

2 2 2 2 
e e aa e + e in + e ii n + e/31 mn+e ne+e ap em 

where 

3u 
h _.+ h1h2u[_,]+hhu ±_ 11 

a lacx 3 1 i i 

au 
P+hh3u[_)+hhu ezh2_ 2 AP  ap 1 2 8c tçJ 

e h ._L+hhu + h h •1 'd 
ii 381 'ja— IHLJ 2 3U,8 3 

h28 h38 
(hu) + - ._. (h 2u18) 

h3 (h u) h18 
(h u 

la H-1 1 a + ç 

h18 h28 
= .. (h2u) + - (h u 

(2.7.1) 

The quantities e aa e 1 •.. are the six components of strain referred 

to the orthogonal coordinates. 
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%2.8 Equations of motion in cylindrical coordinates  

In the case of cylindrical coordinates r, 8, z, which is a special 

case of an orthogonal curvilinear coordinate, we have the line element 

{(dr) 2 + r2(do)2 + 

and the displacements are Ur U9 y U . Then from equation ( 2 • 7.1) we have 

Ou u ou 
r 1 8 r z 

e -, e --+—, e -- 
rr Or .99 r  3 r z  3z 

(2.8.1) 
Ott au au au Ou U Ott 

1 z 8 r z 0 9 1 r 
e --+—, e —+—, e ----+- 
8z r 08 Oz zr Oz Or re Or r r 00 

and the dilatation is given by 

c3U 
4!.(ru) 0 z 

rar r r ye— (2.8.2) 

By substituting from equations ( 2.8.1) and (2.8.2) into ( 2.5.3) we get 

(A+2p) 
042p z 
Or r 08 

Ow 
r 

je 
(A +2p) - - 2p - 

(A+2/) 04 - 2M a 
j-Z F 

+ 

+ 21.4 
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where 

au au 
2w 9 
r r89 az 

u au 
2w 

r z 
---- e az 8  

au 
la 1 r 

2w —— (ru) - — ---- 
z rar B roB 

(2.8.3) 

These are the equations of motion in the cylindrical coordinates. 
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CHAPTER III 

REISSNER-SAGOCI PROBLEM 

%3.1 Introduction 

Reissner and Sagoci [ 22] in 1944 investigated the torsional 

oscillations of h homogeneous, isotropic elastic half-space under the 

influence of periodic shear stresses applied in a rotationally symmetric 

manner to a circular portion of the surface of the half-space. They 

obtained solution for the static case of the above mixed boundary value 

problem by introducing in a suitable manner a system of oblate 

spheroidica.1 coordinates. Later on in 1947 Sneddon [26] solved the same 

problem by a different approach. He reduced the problem to a solution of 

a pair of dual integral equations by using the Hankel transform method. 

In the static case these dual integral equations reduce to simple dual 

integral equations whose solution is known. This problem is now known as 

the Reissner-Sagoci problem. In this chapter I have discussed the 

solution of the Reissner-Sagoci problem given by Reissner and Sagoci [ 22] 

and Sneddon [ 26]. 
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%3.2 Basic equations 

The equations of motion in cylindrical polar coordinates ( r,e,z) in 

the absence of body forces are given by ( 2.8.3) 

2 

(A+2/.J) ) - Z + 2y 
Ow 0 U all 2/j r 

r 2 
at 

.2 
OW OW 

(A+2p) - 2u—+ Z 0 
Oz 

at 

(A+2/-I) 
04 - 2p a(rw0) 

0z r Or 

Ow a 2 

- at2 

(3.2.1) 

where A and ,.i are elastic constants, p the mass density, u, U9 , u the 

displacements in the corresponding coordinates, . is the dilatation and. 

W  I we , the components of the rotational vector which are given by 

13 4—(ru) 0 z 
r rO r 

au 
2w .- 9 
r r 3 az 

3u ou 

r ar 2w9 az  z 

a 
1 2w 1 13  u r 

z rar 

If the problem is symmetric about the z-axis then the rotation, 

(3.2.2) 

(3.2.3) 
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dilatation and displacement components must be independent of 9 and hence 

equations ( 3.2.1), ( 3.2.2) and (3.2.3) above may be written as 

a2 
r 

(A+2j4_— + 2p. - p 2 
at 

aw ô2u9 

-2p _+ 2p z_-  at Tr 2 

(A+2p) 

with 

and 

Ld - 2p a 
a  r ar 

2 
au 

(rw9) p 
at 

4ii...(ru) z 
au 

rar r az 

2w 
r Oz 

au au 
- r z 

9 az ar 

a(ru9) 
2w -   

z r or 

Also the expressions for stresses are given by 

au 
a 
zz 

au 
rr ar r 

Ad 

(3.2.4) 

(3.2.5) 

(3.2.6) 

(3.2.7) 
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-au .3u 

rz 
r z 

o 

.3 1u0 
o r9 pr .3rr 

au 

0 9 az I1 

Substituting from ( 3.2.5) and (3.2.6) into ( 3.2.4), we get 

au 
(A+2/.I) - (ru ) + -IF'.3z 

or Or r Oz 

.3 

az 

a2 
.3ir H r 

at 
2 

ar [ O(ru9 ). 82U9 

Frl Or J at2 

1 °' r au au au .32u 
Z] zZ(A+2/4) az  I or + -  ar [r [ E - ar } I =at - 

(3.2.8) 

(3.2.9) 

In the equations ( 3.2.9) the first and last equations contain only 

Ur and u and the second equation contains only u9. Also from ( 3.2.7) 

and ( 3.2.8) the stresses a , a , a , a are functions of u and u 
rr 99 zz rz r z 

only and the stresses a a are functions of U9 only. Hence in 

axisymmetric problems there occur two systems of displacements which do 

not influence each other in any way. So in order to obtain the most 

general axisyminetric solution they can be superimposed. Let us consider 

the case in which only u9 is present, and we will denote this by v(r,z). 

In this case the first and third equations of ( 3.2.9) become identically 

zero and the second equation becomes 
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a2V 1 a v a 2 v a 2 v 
p + - - - + p 2 

ar rat' r az at 

and the non-zero stresses are given by 

av 
ez 0 -j -z 

a lay v 
re lar r 

(3.2.10) 

(3.2.11) 

%3.3 Formulation of the problem 

Let us take a homogeneous isotropic elastic half-space (z ≥ 0), a 

circular portion of whose surface ( r > r) is forced to rotate through an 

angle w, the axis of rotation being perpendicular to the surface of the 

half -spr'e. The remaining portion of the surface ( r > r 0 ) is assumed to 

be free of stress. The problem is to find the stresses and displacement 

in the half-spare. 

In this case only the circumferential displacement component v 

occurs and that all components of stresses are zero except the following 

two components of shear stress 

av 
08z = 

(3.3.1) 

a 
lay v 

r9 lar r 

where v satisfies the following equation of equilibrium 



48 - 

T 

zO 
-<- 

z 

Figure 3: Send-Infinite Space z ? 0. 
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82 18v v 82v_ 

8r r8i' r 8z 

The boundary conditions are given by 

v(r,O) or , r ≤ ro 

c9 (r ,O) = p av 0-az , r > r0 

(3.3.2) 

(3.3.3) 

(3.3.4) 

and the applied torque T required to rotate the circular portion r 

of the boundary through an angle w, is given by 

r 
0 2 

T - 27r I0 Gz r a ( r,0)dr . (3.3.5) 
J  

%3.4 Reissner-Sagoci solution 

Reissner and Sagoci solved the equation ( 3.3.2) by introducing a 

system of curvilinear coordinates in which the circular disk becomes one 

of the coordinate surfaces. Such coordinates t, q are [ 32] the following 

- (1-77 )] ,  
r {( 1+ 2) 2 1/2 z (3.4.1) 

The surface constant represents ellipsoids of revolution, the 

surface q-= constant represents hyperboloids of one sheet. The 

half-space z > 0 is defined in the new coordinates by q ≥ 0 while the - 

portion r < r0 of the surface of the half-space is characterized by 
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= 0. 

In terms of the, coordinates t, q the boundary conditions ( 3.3.3) and 

(3.3.4) become 

v : ;ro (1_ 2)h/2 at = 0 

ov 
(3.4 • 2) 

at q = 0 (3.4.3) 

Let us consider solution of equation ( 3.3.2) in the form 

v(r,z) = f(t)g(q) . (3.4.4) 

and solve it by separation of variables. Now treating C = (r,z) and 

17 = 17 ( r, z), we obtain 

--

ar ar 
22' 22 

z7 (1+ 2) a - (1 q2) 

3  r0( 2+t72) 3z r0(2+z72) 

(3.4.5) 

Differentiating ( 3.4.4) with respect to r and z partially, we find that 

av - rf'()g(q) - rqg'(17)f() 
222 

ar r0( +q 
(3.4.6) 
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2 22 22 
r  

- 4 2 2 2 f''()g(q) +  r 17  g''( 17 )f() 
4 2 22 

.r r0( +q ) r0( +z 

1 
2r2z7  f'(Ug'(q) + [  + r 2 (3q 2 2 -  

4222 42231 
r0 r0 2 2 ( +17 ) ( +17 2 ) r0( +q ) j 

12 2 2 
+ fr q(3 -17 ) -  17  
14223 222 
1r0( +17 ) r0( +q )J 

2 2 1+ 2)2 2 22 av q(  f''()g(q) +  (1-t )  g''(q)f() 
2 2 22 az r02 ( 2 +q 2 2 ) r0( +q 

+  2r2 q  f'()g'(q) + 4 2 2 ( 2 2 3 -3t7 2 f()g(q) 
4 2 22 
r0( +q ) r0( +q 

222 
+ rq(17 23 g'(i7)f() 

r0 4 (t +i 

(3.4.7) 

(3.4.8) 

where prime denotes the derivative with respect to the argument and we 

have used ( 3.4.5) to obtain the above expressions. 

Substituting from ( 3.4.4) and ( 3.4.6)-(3.4.8) into ( 3.3.2) and 

simplifying we obtain 

+ (1-172)g''(q)f() + 2f'()g(17) 

22 
- qg'(q)f() - 2 2  f()g(17) = 0. 

(1+ )( 1-q 

Dividing ( 3.4.9) by f()g(17), we get 

(3.4.9) 
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(1+ 2 )fh 1 () + (lQ2) g''() + 2f'() - 

g(i7) ±'() g(z7) 

[2 1-17 l+ 2 

which may be rewritten as 

- [( 1+ 2)f'()] 1 - {( 1-q2 )g'(q)J 1 

f) 1 - 2 g(i7) 1-17 

(3.4.10) 

(3.4.11) 

Now the variables are separated and, by equating the left hand side and 

right hand side of ( 3.4.11) to the separation constant, we obtain 

the following two differential equations for f( ) and g(q): 

- (de - ' 2)f() = 0 (3.4.12) J+t 

[(1-z72)g(z7)] + [d€ - 1 2]g(q) = 0 . (3.4.13) 

1-17 

The values of the separation constant de insuring periodicity in 17, are 

de = (e+1)(e-f-2), = 0,1,2,... . (3.4.14) 

Now equations ( 3.4.12) and ( 3.4.13) are associated Legendre's 

equations of degree ( e+1) and order one whose solution is given by 

= AeP +i(l7) + BeQ'e+i( 17) (3.4.15) 
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CeP +i(i) + DeQ +i(iU 

where P"(z) and Qm (Z ) are defined by 

dmP (z) 
2m/2  n  p;m(z) ( 1-z 

n - dz' 

2 m/2 dmQ(Z) 
z) = (1-z 

cizm 

(3.4.16) 

(3.4.17) 

m is a positive integer, -1 < z < 1, xi being unrestricted. When z is not 

a real number, these functions are defined by 

d"P (z) 
2 m/2  xi 

(z) ( z - 1) 
n dZm 

Qm 2 m/2 dmQ(Z) 
(z) ( z -1) 

m is a positive integer, n is unrestricted and arg z, arg(z+1), arg(z-1) 

have their principal values. The Legendre functions P(z) and Q(z) are 

defined by 

It 

P(z) = ( 1)r  (2n-2r)!  n_2r 

r0 2 . r! ( n-r)! ( n-2r)! 

1 1 
where k n or 7.  (n-I), whichever is an integer and 
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Q(z) dy 

where n is a positive integer; and z is not a real number. 

Since P 1 becomes infinity as approaches infinity and Q•1(q) 

becomes singular for q = 1, we must have 

Be = 0e (3.4.18) 

Also, the condition that v is an even function of q requires that only 

even values of the subscript e occur. The series solution for v' 

possessing appropriate behavior is then given by 

v(r,z) (,z7) , (3.4.19) 

e=0,2, 

where we have taken D e = 1. 

The first term of the above series is given by A0P(z7)Q(i) and we find 

that 

(q) ( 1-z7 2 1/2 dP  - - (1 2 ) 1/2 d dq t7 = (1.,72 )h/2 (3.4.20) 

1/2 d 1i l i+1 Q(i) ( 1+2)h12 Q1(i) 2 (1+ ) UF [2— log i-1 _111 

= (1+ 2 )h121  L_ 2+i + log i+1 i_1J1 
(3.4.21) 
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since 

we may write 

log i+1 - ' tan' 
j_-1 •2• 

l/2r 2+1 - tan 1J Q(i) (1+2)  

Now from ( 3.4.19), ( 3.4.20) and ( 3.4.23) we find that 

21/2 
=Y A0 (1-17 ) + AeP•+i(z7) • (0) Q +i 

(3.4.22) 

(3.4.23) 

(3.4.24) 

It is easy to see that the boundary condition ( 3.4.2) will be satisfied 

if 

(3.4.25) 

Hence the expression for v is given by 

- 2 2 1/2 2h121 
v(,q) - wr, ( 1-17 ) (i+ - ___ - . (3.4.26) 

T U 

The above equation for ( q) satisfies the boundary condition ( 3.4.3) 

identically. From equation ( 3.4.26) we find that the surface 

displacement in cylindrical coordinates is given by 
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v(r,0) 

(1 

r < r0 

2 _1[ 2 1/2 [roltan  _i] Tr 
2 11 - ifi2i'12l 

I.. 1JJ J 
r0 < r . (3.4.27) 

The shear stress distribution under the plate is given by 

- [av1 
8z 0 (r,0) - p -J=0 

lay a + ôv Iq 7a= p a zj =0 

- P 
T 1au 0 

2)1/2  
- 4p(1-q  ,r<r0 
- '7 

and changing to cylindrical coordinates we find that 

o (r,0) = _ 4)p  1 
Oz ir r r 12 1/2 , r < r 0 

L[ 0j 1  

(3.4.28) 

(3.4.29) 

The torque T required to rotate the circular area through an angle w is 

given by 

T = - 2ir 

r 0 
1 

Jo r2a9 (r,0)dr 

2 
r 

POI 

r2 , 1/2 

- 1 

dr 
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16 3 
r- (3.4.30) 

%3.5 Sneddon's Solution 

Sneddon [261 solved the problem by reducing it to a pair of dual 

integral equations. In order to find, solution of the equation ( 3,3.2), 

he introduced the Hankel-transform 

00 

(s,z) f rv(r,z)J1(sr)dr (3 .5.1) 
JO 

of the circumferential component v of the displacement vector. 

Multiplying both sides of equation ( 3.3.2) by rJ1(sr) we get 

rJ1(sr) + J(sr) av - - J1(sr) + rJ1(sr) - - 0 
ar 

(3.5.2) 

Integi'ating the above equation with respect to r from zero to infinity we 

get 

0° 2 

ffa lay v r{ + - - - _ jJ1(sr)dr + J rJ(sr) 4 dr 
o ar rôr r 0 ôz 

Now [ 25] 

00 2 
1' lay lay v 2- 

jo 
r1— +- - - _ jJ1(sr)dr - a v 

0 ar rar r 

(3.5.3) 

(3.5.4) 
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so that we have 

L2 a2 _ jv=O (3.5.5) 

where v is the Hankel transform of v and is given by ( 3.5.1). By means 

of the Hankel inversion theorem ( 33) we have 

and 

v(r,z) 1100 s(s,z)J1(sr)ds 
Jo 

CO - 

o95 (r,z) p 1 s ôv(s,z) J(sr)ds 
as 

The solution of equation ( 3.5.5) is given by 

-sz sz 
(s,z) = A(s)e + B(s)e 

(3.5.6) 

(3.5.7) 

(3.5.8) 

where A(s) and B(s) are unknown functions to be determined by the 

boundary conditions ( 3.3.3) and ( 3.3.4) and the condition that v and 

hence tends to zero as z tends to infinity. This last condition 

requires that we must take B(s) to be identically'zero and hence 

-sz 
v(s,z) = A(s)e (3.5.9) 

Substituting the value of v and a9 from equation ( 3.5.6) and ( 3.5. 7) 

into ( 3.3.3) and ( 3.3.4), we get 
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00 

0 
sv(s,0)J1(sr)ds 

f av(s,z) {] J1(sr)ds 0, 
az z=0 

r < r0 

r > r0 

1 
I 

(3.5.10) 

Substituting the value of V from equation ( 3.5.9) into equations ( 3.5.10) 

we get 

00 

f sA(s)J1 A (sr)ds 
J0  

wr r < r0 

PO J s2A(s)J1(sr)ds'= 0 r > 

1 
I 

(3.5.11) 

Making the substitution 

r = pro, s /r0, 2A(/r0) r03F() (3.5.11a) 

the equations ( 3.5.11) become 

J!00 ( 1F(4)J1(p)d 
0  

00 

f F()J1(p)d 0 
"0 

(3.5.12) 

In order to solve the above dual integral equations let us take 

1 F() 5(t)sin çt dt 
0 

(3.5.13) 

Substituting the value of F() from ( 3.5.13) into the second equation of 

(3.5.12) we get 
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00 1 fo 0 5 (t)sin t dt J (p)d 0 

Changing the order of integration in ( 3.5.14) we get 

Since [ 29] 

p > 1. (3.5.14) 

•(t) dt 5 sin t J1(p)d 0 p > 1. ( 3.5.15) 

-p  
Co - J( t2_.p2)312 

JI t J1(p)d -  t 0 o  

0 ≤p<t 

p> t 

(3 . 5. 16) 

the equation ( 3.5.15) is identically satisfied. By substituting the 

value of F() from ( 3.5.13) into the first equation of ( 3.5.12) we have 

001 5 5 '( t)sin t dt J1(p)d. 
00 

p < 1. ( 3.5.17) 

Changing the order of integration in the above equation, and making use 

of the following relation [ 29]: 

f 0 if 0≤p<t 

I sin t J1(çp)dç  t (3.5.18) 

0 1 p(p2-t2)1"2 P > t 

the equation ( 3.5.17) gives 

IJPO to (t) 
2 2 1/2 dt w p < 1. 

0 p(p -t p , 
(3.5.19) 
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We may write 

to (t)  -hi 
"JO p(p2-t')112 dt 2- . ((t),p) 

° '2 

where I is called Erdelyi-Kober operator defined by 

(3.5.20) 

2x-2a-2q I (f(u),x) ' 2 2 a-i 2 (x -u ) u f(u)du, a > 0 (3.5.21) 
r(a) 

and 

It7 POL  (f(u),x) - 

Multiplying 

-i 
I is the 
17 cc 

which gives 

d 

F(i+a) ro 2q+1 2 2a 
u (x -u ) f(u)du, -1 < a < 0. ( 3.5.22) 

equation ( 3.5.19) by I , that is, 

inverse of I and is defined by I 

t (t 3 i(t)_21d fo   
2 -p21/2 °f' 

by I where 

Substituting the value of #( t) into equation ( 3.5.13) we get 

,weget 

(3.5.23) 

(3.5.24) 

- 1 sin t dt . (3.5.25) 
fo 
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Integrating ( 3.5.25) by parts we get 

F() - - [sin cos 
iT  

- 4 [sin  cos 
- - . (3.5.26) 

Substituting from equations (3.5.9), ( 3.5.11a) and (3.5.26) into 

equations ( 3.5.6) and (3.5.7) we get 

v(r,z) 

and 

4r0 00 
t - 

fo [ - 2 } e (3.5.27) 

- - I sin -u 
a ( r,z) 

- ___ j 7T 0 [ - cos e J1(p)d ( 3.5.28) 

where 

u = z/r0 . (3.5.29) 

In order to evaluate the integrals in equations ( 3.5.27) and 

(3.5.28) let us take 

00 

I (p) I e_Ptt11J1(pt)dt 
In   

Substituting the value of J1(pt) given by 

00 

J1(pt) 
v! 1(v+2) 

in ( 3.5.30) we get 

(3.5.30) 

(3.5.31) 
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() = Co CO (-1) , pl+2iJ t1 l+2Vdt 
I  

z.=O 

00 

-- (- 1)' 1+2v 00 P  
= 1+2v 

2 i..'! F(u+2) f O 

By taking t = u/p and making use of the following integral 

we obtain 

00 

= 

Jo 

f00 _ttm_ldt o e  = 1(m) 

(-1) 
U 1+2v 
p  

21+2! !'(i'+2) 

21+2Uv!F(v+2) 

Taking n = 0 in ( 3.5.34) we have 

= f 

1  
00 

n+2+2v fo p  

P  
n+2+2z' 
p 

-u n+1+2z.' 
e u du 

Co 

e tJ1(pt)dt = ( 1)LJ r(2+2v)  

1(v+2) 

(2z.'+l)! 
1+2v 

v! (vi-1)! I-

[-TI 

2 4 
p  3 p p 

2 UT" 
p -2T p 2 p 

Noting that the expansion of 

1+2v 
P  
2+2U 
p 

(3.5.32) 

(3.5.33) 

(3.5.34) 
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(1+x 112 = 1 - 1 3 2 x + x - 5 3 x + ' < 1 

we may write 

(3.5.36) 

PO e_Ptj1 _ 1  p t)dt - 2 p < p . (3.5.37) 
.10 _ 2 

p(p +p 1/2 

Similarly, taking n = -1, we get 

= : e -pt t_lJ1(pt)dt 

00 

r F(2v+1) (-1)' 

2 21+2 

00 

p 

2v! 

V! ( v+1)! 2 1+2w 

p [77 
l 1 p 2 1 p 

4 

2T 2p -2T p I (3.5.38) 

Again comparing the expansion of ( 1+x) 112 with ( 3.5.38) we can write 

00 
J e_Ptt_lJ1(pt)dt  2 2 1/2 +p ) -  p  

0 p 

Taking p = ( u-i) in equation ( 3.5.37), we obtain 

p<p. (3.5.39) 
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If we take 

then we have 

JPO  1 -ut it 
e e J1(pt)dt . [i - 2 2 1/2j 

O p +(u-i u-i) I 

2 2 1/2 
p +u - 1) - 2u1] c+id 

C 
2 - (p2+u2-1) + [(p2+u2-1) +4u 2 2 1/2  2 1 
d = - u/c 

Now we may write ( 3.5.40) in the form 

00 

I(Cos t+i 
Jo 

J 

sin t)eitJ1(pt)dt ! Ii - (u-i)(c-id)] 
T 

which, on equating the real part from both sides, gives 

00 

fo 
cos t-utt)dt - 1 I uc-d  1 

e J1(p - 1 - c2+d21 

Again taking p = u-i in (3.5.39) we get 

00 -Ut J (cos t + i sin e J1(pt)dt -  .>2>l/2 - (u-i)  

0 P 

= (o+id) - (u-i) 

P 

(3.5.40) 

(3.5.41) 

(3.5.42) 

(3.5.43) 

(3.5.44) 

(3.5.45) 

where a and d are given by ( 3.5.42). 

Equating the real and imaginary parts from both sides of equation 

(3.5.45) gives 
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00 

0 

005 t -ut J(t)dt c-u e -—p-

00 

I sin  -ut 
e J1(pt)dt = 

(3.5 . 46) 

(3.5.47) 

Integrating equation ( 3.5.39) with respect to p between 0 to p we get 

1-  fo t-' pt J1(pt)dt 

1 2 2 1/2 2 (p+(p2+p2)"2  
(p(P. +P) + p in 1 

Again taking p = (u-i) in the above equation, we obtain 

00 (1-e -ut e it 

t2 J1(pt)dt 
fo 

1 (u-i) ( c+di) + p2 in r_ 
(u-i)+(c+di) 

where c and d are given by ( 3.5 • 42). 

I 

2 

u2-1-2u1 
2p 

(3.5.48) 

(3.5.49) 

Equating the imaginary parts from both sides of equation ( 3.5.49) yields 

00 

f sin t -ut t)dt = 1 [(_c) + p2 tan _-1 + . (3.5 50) J0 2 e J1(p 
2p— +oj p - 

Substituting from ( 3.5.44), ( 3.5.46), ( 3.5.47) and (3.5.50) into ( 3.5.27) 

and ( 3.5.28), we obtain the following expressions for the displacement 

and the shearing stress: 
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k ' d-11' v(r,z) = - 4r0  [( ud+c) + p2 tan 

- [. + uc-d] 
0e (i,Z) c +d J 

(3.5.51) 

(3.5.52) 

where c and d are given by ( 3.5.42). 

When z = 0 that is u = 0, the expressions for v and a9 on the 

surface are given by 

v(r,0) = wr0p[{i - ! tan' 2 1/21 2 1 1/2 (n-i) - [i - I > 1 ( 3.5.53) 
IT 7T  

and 

1 -1/2 
a (r,0) rO 7T [_2 , 

P 

(3.5.54) 

which agree with those obtained by Reissner and Sagoci. 

The expression for torque T required to rotate the circular area 

through an angle t. is given by 

r 
0 

T 2 I r 2 oz a ( r,O)dr 
o 

r0 2 

-  1/2 dr 
- fo 11012 I 

16 3 
P r0 
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CHAPTER IV 

A REISSNER-SAGOCI PROBLEM FOR AN ELASTIC LAYER 

BONDED TO ANOTHER ELASTIC LAYER 

%4.1 Introduction 

In this chapter we have considered the Reissner-Sagoci type problem 

for two, isotropic, homogeneous elastic layers of different thicknesses 

and modulus of rigidities bonded to a rigid foundation. The problem has 

t 

been reduced to the solution of a Fredhoim integral equation of the 

second kind, which has been solved numerically. The expression for the 

torque required to rotate the circular portion of the boundary through an 

angle w has been obtained in the closed form. Numerical values of the 

torque T for various ratios of the thicknesses and elastic moduli of the 

two layers has been given in tabulated form as well as displayed 

graphically. 

The results for the following four problems have been derived as 

particular cases: 

(i) Reissner-Sagoci problem for the half-spsre. 

(ii) Reissner-Sagoci problem for a layer bonded to a rigid 

foundation. 

(iii) Reissner-Sagoci problem for a layer with lower face stress free. 
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(iv) Reissnr-Sagoci problem for a layer bonded to an elastic half-

space. 

The results for these cases have been shown to agree with the known 

results. 

%4.2 Statement of the problem and solution 

Let us consider two isotropic homogeneous elastic layers of 

thickness h1, h2 and modulus of rigidity pl , p2 respectively, bonded 

together and to a rigid foundation. A rigid circular cylinder of unit 

radius bonded to the upper layer of thickness h1 is forced to rotate 

through an angle w and the remaining portion of the surface of the layer 

is assumed to be free of stress. The axis of rotation is perpendicular 

to the surface of the layer. It is assumed that the lower face of the 

layer of thickness h2 is rigidly fixed. Let us take the common boundary 

of the two layers as the plane z = h1 and, taking the z-axis downwards as 

shown in the Figure 4, we denote the upper face by z.= 0 and the lower 

face by z h1+h2. Now we denote the region 0 ≤ z ≤h1 by R and the 

region h1 ≤ z < h1+h2 by R2. The physical quantities for the region R. 

(i = 1,2) are denoted by the subscript/superscript ( i), namely p., v, 

(i9Z rO 

As shown by Reissner [ 21] in this case only the circumferential 

displacement v occurs and all the components of stresses are zero except 

the following two components of shearing stress: 



z0 

zh1 

//////// 

z 

v2 (r,h1+h2)=O 

  z=hl+h2 

Figure 4: Two Layers 0 5 z 5 h1 and h1 5 z f: h1+h2 

Bonded to a Rigid Foundation. 
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ay. 
1 

6z 

a   Vr9  i •vi 
F - F 

1 

I 

and v satisfies the partial differential equation 

2 + I ___. - 4 + ____ - 0 in R 
3r .. 1 r z 

The boundary conditions of the problem are 

v1(r,0) = w f(r) 

c 1 (r,O) = 0 

v2(r,h1+h2 ) = 0 

0≤r<11 

r>1 J 

(4.2.1) 

(4.2.2) 

(4.2.3) 

O≤r<øo. (4.2.4) 

The continuity conditions at the interface z = h1 are 

0 

[a (1) (r , h1 )] 0 
9z 

O≤r<o1 

0≤r<coj 
(4.2.5) 

In order to solve the differential equation ( 4.2.2) let us multiply this 

equation by rJ1(r) and integrate with respect to r from 0 to oo, to 

obtain 



- 72 - 

where 

2- IN [2--z - lv. 0 az 
ii 

(4.2.6) 

= J0 ry .( r,z)J1(r)dr (4.2.7) 

denotes the Hankel transform of order one of the function v(rz). By 

the Hankel inversion theorem, we have 

and we have 

v1(r)z) J (4.2.8) 

8v. o 
(i) - 

a (r,z) -. p. - - /.4. J _! J1(r)d 
Oz 1 

(4.2.9) 

The solution of equation ( 4.2.6) is given by 

1(,z) = A()e + B.(Ue, i = 1,2 (4.2.10) 

where A. and B. :1. (1 1,2) are the UnlmoNn functions which are to be 
1  

determined by using the boundary and continuity conditions. Substituting 

(4.2.10) in ( 4.2.8) and ( 4.2.9) we get 

v(r ,z) (A()eZ + B. ()e JJ1(r)d (4.2.11) 

Co 
2 a(i) ( r,z) = p. {A ()e - B ()eZ]J(r)d. (4.2.12) 

9z 1J0 i i 1 
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Now substituting from ( 4.2.11) and (4.2.12) into the boundary condition 

(4.2.4) and continuity conditions ( 4.2.5) we get 

00 (h1+h2) -(h1+h2) fo [i2e +B2e JJ1(r)d = 0 

00 fo [Al hh le_th1_ A2 h1+B2e_th1] Jl 0 

00 

fo 2 [p [Aleth1_Ble 1]-P2[A2 e 1 B2e 1]]J1( r)d=0 

O<r<o ( 4.2.13) 

Since the equations ( 4.2.13) hold true for all values of r; we must have 

-(h1+h2) 
A2e + B2e 

h1 - h1 h1 - h1 
A1  +B1e A2  + B2  

h1 - h1 h1 - h1 

PJ[A 1 e -B1e ] = P2 [A2e -B2e J 
(4.2.14) 

Solving equations ( 4.2.14) for A1, B1 and A2 in terms of B2, we find 

-2 (h1+h2) 

B2 -2h1 -2(h1+h2)1 
A1 = 2 

j 

B1 = [(1+5) - (l_5)e2J 

(4.2.15) 
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where 

5 (4.2.16) 

Substituting the values of A1 and B1 from ( 4.2.15) into ( 4.2.11) and 

(4.2.12), we find the following expressions for v1(r,O) and o 1 (r,O). 
ez 

Co . -2h1 -2h21 
v1(r,O) = $ B2( 1e -e j 

+ ( 1+5)[1_e-2(h 

-2h1 -2h2 
J 2B() {( 1_5) [e +e ] 

(1+5) [e -2(h1+h2) + I J1(r)d 

which can be written as 

v1(r,O) = 

0 

o 1 (r,O) p1 J P()J1(r)d 
where 

(4.2.17) 

(4.2.18) 

(4.2.19) 

(4.2.20) 

(h1•h2)111 
P() & B2(){(1_5)[e -2th1 -2 h2]_(,+,5)I +e ]_( 1+5)[1+e -2 (4.2.21) 
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H() 

with 

-2th21 -2 
2[1+e ] e h1  

[re 2hj 1 -2h21 + + e -2(h1+h2) 
p[1  

-  P - 5+1 

(4.2.22) 

(4.2.23) 

Substituting from ( 4.2.19) and (4.2.20) into the bounthry conditions 

(4.2.3), we find that these will be satisfied if PQ) is a solution of 

the following dual integral equations: 

00 

0 
[H(U-1]P()J1(r) = wf(r), 0'< r < 1 (4.2.24) 

00 

0 P()J1(r)d = 0, 
J 

r > 1 . (4.2.25) 

In order to solve these dual integral equations, let us take 

1 fo 4(t) sin t dt 

Now substituting for P() from ( 4.2.26) into ( 4.2.25) we have 

(4.2.26) 

00 1 

J J #( t) sin t dt J1(r)d 0 , r > 1. (4.2.27) 
0 0 

Changing the order of integration, we have 
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(t)dt J sin(t)J1(r)d 0 , r > 1. (4.2.28) 

Now L 29 

00 

fo 
1-(t2-r2)312 

r < t 

sin(t)J1(r)d = (4.2.29) 

{ 0 , r>t. 

Hence we find that the equation ( 4.2.25) is identically satisfied. 

Substituting for PQ) from ( 4.2.26) into ( 4.2.24), we have 

or 

Now 

001 

00 
'(t) sin t(H()-13J,  wf(r), 0 < r < 1 (4.2.30) 

00 1 

fo  
fo- ( t)sin t J1(r)dtd 

00 

fo 

00' 

+ J0 j'0 ( t)sint H()J1(r)dtd, 0 ≤ r < 1. 

1 1 00 

0 
(t)sint J1(r)dtd 0 J .( t)dt fo sintJ1(r)d 

- f t(t) 
- 2-t 2112dt, 

r(r  

since [ 29] 

(4.2.31) 

(4.2.32) 
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+ 

00 J r r 2 t 2 1/2 

I sin(t)J S. r)d 
JO 1(  

for 0 ≤ t < r 

for t,> r 

Therefore equation ( 4.2.31) may be written as 

00 

t (t)  

r.(r2-t2)112 dt 

= - tf(r) + J 0 r < 1. 
fo 0 

(4.2.33) 

(4.2.34) 1 17,a 

Now in the notation of Erdelyi-Kober operators { 32} we may write 

rr  t(t) dt -
O r(r -t2)"2 - 2 I0,112{(t);r} 2  

where 

(4.2.35) 

{(u),t} 2t  fo t( t 2 -u 2 ) a-i u (u) du, a > 0, (4.2.36) 
F(a) 

I {(u),t} d  F(1+a) U  2q+1 (t-2 u2)%(u)du, -1 J 

and the inverse operator is given by 

I- = 1 
q,a q+a,-c( 

< a < 0 ( 4.2.37) 

Now operating equation ( 4.2.34) by 2 - I -1 1 that is by 
,hi 

(4.2.38) 



- 78 - 

2 -1 2 
10,1/2 {f(r);t} {f(r);t} 

we get 

_21d fo rf(r) dr 
(t 2 -r 21/2 

1 d ft,0 r2(.)f(r)  
dr 

(t 
(t) - 2_r 2 1/2 

t 2 2 1 d  r  1• - €: (t2-r2)112 
J ool 

dr' f00 

(4.2.39) 

0 ≤ r ≤ 1 . (4.2,40) 

Interchanging the order of integration in the last term of ( 2.3.40) we 

get 

since [ 29J 

2 1 d rt r2 f(r)  
- J0 2_r 2 1/2 di' 

(t  

00  1 1 d jt r2J(r) 
+ .. f f 1 

0  (u)sin(u)H() E 0 (t 2 2 1/2 dr dude ( 4.2.41) 
-r 

1 d r2J1(r) 
aEJ 2 2112drsint 

0 ( t -r 

we may write ( 4.2.41) as 

(4.2.42) 
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2 1 d r2of(r)  
2 2 1/2 dr 

(t -r 

2 001 

00 

Now if we denote 

(4.2.43) 

00 

K(u,t) - - f H()sin(u)sin(t)d (4.2.44) 
T j0 

2 1 d f r2f(r)  
h(t) - a J0 (t 2-r 2 1/2 dr 

then equation ( 4.2.43) may be rewritten in the form 

1 Ix 
O(t) + (u)K(u,t)du h(t), 0 ≤ t 1 

0 

(4.2.45) 

(4. 2.46) 

This is called the Fredhoim integral equation of the second kind for 0. 

If we take 

we find that 

f(r) = r (4.2.47) 

h(t) = - t 
iF 

and hence the integral equation ( 4.2.46) becomes 

(4.2.48) 
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1 
(t) + (u)K(u,t)du - t, 0 < t < 1. fo Ti. 

Again if we take 

(t) 

we may write ( 4.2.49) in a simplified form 

1 
?(t) + fo ?(u)K(u,t)du = -t, 0 ≤ t ≤ 1. 

(4.2.49) 

(4.2.50) 

(4.2.51) 

The torque T required to produce the prescribed rotation of the solid 

cylinder is given by 

1  T- 2r fo r 2 ( 1) a (r,0)dr 
9z 

From ( 4.2.20), we find that 

00 

o(r,0) = Jo  
00 

= - lu  - J fo P()J0(r)d 1 
1ar1 I 

(4.2.52) 

(4.2.53) 

Substituting the value of P( ) from equation ( 4.2.26), in equation 

(4.2.53), we find that the value of the shear stress under the rigid 

cylinder is given by 



- 81 - 

001 
1 (r,O) - p1 _ f J(t)sin t dtJ0(r)d, o < r < 1, 

Oz 

since 

00 

f sin t J0(r)d = 
Jo 

equation ( 4.2.54) becomes 

0 < r < t 

0 r > t 

a 1 #( t)dt  

oz - l fr (t 2_r 2 1/2 

Substituting this value of a >(r,O) in equation ( 4.2.52) we get 
ez 

11 J 1 .p(t)dt  1 
T=2p1J1f :.(t 2_r 21/2jrdr 

Integrating ( 4.2.57) by parts we get 

T=_41TP1 fo 1 rj r1 (t (t)dt  dr 
2_r 21/2 

Changing the order of integration ( 4.2.58) becomes 

(4.2.54.) 

(4.2.55) 

(4.2.56) 

(4.2.57) 

(4.2.58) 
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T - 4ip fo 1 0 (t(t)dt  rdr J 2_r ) 2 1/2 
1 

- 4irp1 J' t(t)dt. 
0 

Writing P(t) in terms of ?( t) from equation ( 4.2.50), we get 

1 

T - 16wp1 J tP(t)dt 
0 

(4.2.59) 

(4.2.60) 

4.3 Numerical results and discussion 

In order to find numerical values of the torque T, we need to find 

the numerical values, of P(t). We first of all write the integral 

equation ( 4.2.51) as a system of algebraic equations by dividing the 

interval [ 0,11 into ii equal parts: 

where 

+ ?(u)K(ut) = -t., i = 0,1,•••,n (4.3.1) 

u. = i , (i,j = 0,1,2,...,n). ( 4.3.2) 

To obtain the numerical values of K(u,t) we may rewrite its expressions 

given by equations ( 4.2.44) and ( 4.2.22) by making the substitution 

e= p , h2 h10 (4.3.3) 
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in the following form. 

1 
- 2h10 2h1 -1 

(l+ p   fo sin(ulo)si(tlo)dp 
2h 

[p 1 8 +p 2h ] + 2h1(1+e)  

(4.3.4) 

The numerical values of K(u.,t.) have been obtained from ( 4.3.4) by using 

Simpson's rule by dividing the interval [ 0,1] in 24 equal parts. Then 

the system of equations ( 4.3.1) has been solved for n = 24 which involves 

solving 25 equations for 25 unknown ?, i where 

P.= ?( t.) = flu i ), i = 0,1,2,.,24 (4.3.5) 

The numerical values for . have been obtained for the following 

combination of the numerical values for the geometrical and physical 

parameters: 

P2 
.5 = 0.0,0.2,0.25,0.50,0.75,1.0,2.5,5.0,7.5,10.0 

P1 

h 
8 = 0.0,0.2,0.4,0.6,0.8,1.0,2.0,4.0,6.0,8.0,10.0 

1 

h1 = 0.25,0.5,1.0,2.0,4.0. 

(4.3.6) 

It may be noted that the radius of the circular portion of the upper 

boundary bonded to a rigid circular cylinder is taken as unity. 

* 
The numerical values of the torque T = T/plw have now been 
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TABLE 1 

Numerical Values of T* = T/p1w for Various 

Values of 0 = h2/h1, h1 and 5 = 

5 

0.00 
9 

0.10 0.25 0.50 0.75 

h1 0.25 

0.2 
0.4 
0.6 
0.8 
1.0 
2.0 
4.0 
6.0 
8.0 
10.0 

2.42551 

5.53981 7.00420 8.01186 8.43940 
4.58750 5.90673 7.02497 7.63866 
4.14041 5.30849 6.40352 7.05801 
3.87553 4.92913 5.97788 6.63946 
3.69907 4.66686 5.66984 6.32647 
3.29858 4.05021 4.90892 5.52263 
3.15752 3.72079 4.49516 5.07617 
3.02128 3.62967 4.38536 4.95979 
2.99498 3.59411 4.34456 4.91760 
2.98180 3.57734 4.32614 4.89895 

0.50 

0.2 
0.4 
0.6 
0.8 
1.0 
2.0 
4.0 
6.0 
8.0 
10.0 

3.82346 

5.11165 
4.73595 
4.55878 
4.45476 
4.38657 
4.23985 
4.17118 
4.15334 
4.14631 
4.14296 

5.68446 
5.26742 
5.04330 
4.90386 
4.80973 
4.60335 
4.51015 
4.48815 
4.48018 
4.47657 

6.07585 
5.70505 
5.48071 
5.33274 
5.22969 
4.99838 
4.89635 
4.87403 
4.86647 
4.86321 

6.26167 
5.94295 
5.73643 
5.59512 
5.49463 
5.26514 
5.16489 
5.14384 
5.13695 
5.13407 

h1 = 1.0 

0.2 
0.4 
0.6 
0.8 

5.21919 
5.12375 
5.08002 
5.05509 

5.37024 
5.26413 
5.20973 
5.17727 

5.47570 
5.38052 
5.32672 
5.29325 

5.52683 
5.44436 
5.39509 
5.36364 
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1.0 
2.0 
4.0 
6.0 
8.0 
10.0 

4.88795 
5.03920 
5.00695 
4.99320 
4.98983 
4.98853 
4.98790 

5.15618 
5.11329 
5.09608 
5.09230 
5.09097 
5.09037 

5.27110 
5.22592 
5.20870 
5.20525 
5.20412 
5.20365 

5.34258 
5.29955 
5.28362 
5.28059 
5.28225 
5.27924 

2.0 

0.2 
0.4 
0.6 
0.8 
1.0 
2.0 
4.0 
6.0 
8.0 
10.0 

5.25445 

5.30897 5.33508 5.35384 5.36314 
5.29318 5.31720 5.33753 5.34887 
5.28616 5.30840 5.32879 5.34084 
5.28225 5.30331 5.32356 5.33593 
5.27980 5.30008 5.32020 5.33276 
5.27499 5.29376 5.31365 5.32660 
5.27301 5.29134 5.31130 5.32446 
5.27253 5.29083 5.31084 5.32407 
5.27234 5.29063 5.31070 5.32395 
5.27225 5.29056 5.31063 5.32390 

h1 = 4.0 

0.2 
0.4 
0.6 
0.8 
1.0 
2.0 
4.0 
6.0 
8.0 
10.0 

5.32242 

5.32976 5.33360 5.33599 5.33730 
5.32762 5.33092 5.33376 5.33533 
5.32669 5.32974 5.33256 5.33424 
5.32617 5.32906 5.33186 5.33358 
5.32585 5.32864 5.33102 5.33289 
5.32522 5.32782 5.33057 5.33237 
5.32496 5.32750 5.33027 5.33210 
5.32489 5.32743 5.33021 5.33205 
5.32486 5.32741 5.33019 5.33203 
5.32484 5.32739 5.33018 5.33202 

6 

0 
1.0 2.50 5.00 7.50 10.00 

0.25 

0.2 
0.4 
0.6 
0.8 
1.0 

8.76190 
8.02991 
7.49866 
7.10178 
6.79768 

9.34738 
8.95450 
8.62919 
8.36103 
8.14030 

9.57324 
9.35383 
9.16101 
8.99423 
8.85158 

9.65256 
9.50054 
9.36395 
9.24358 
9.13903 

9.69303 
9.57675 
9.47107 
9.37700 
9.29462 
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2.0 
4.0 
6.0 
8.0 
10.0 

5.99209 
5.53577 
5.41790 
5.37579 
5.35742 

7.49305 
7.09678 
6.99530 
6.96016 
6.94526 

8.40685 
8.11938 
8.04538 
8.02004 
8.00941 

8.80443 
8.58270 
8.52539 
8.50583 
8.49766 

9.02710 
8.84713 
8.80070 
8.78482 
8.77820 

h1 0.5 

0.2 6.37097 6.60532 6.69717 6.72964 6.74626 
0.4 6.09446 .6.45508 6.61257 6.67082 6.70118 
0.6 5.90697 6.34099 6.54489 6.62289 6.66403 
0.8 5.77535 6.25518 6.49221 6.58498 6.63451 
1.0 5.68035 6.19057 6.45166 6.55558 6.61342 
2.0 5.46050 6.03485 6.35165 6.48236 6.55380 
4.0 5.36491 5.96745 6.30827 6.45056 6.52872 
6.0 5.34536 5.95449 6.30016 6.44466 6.52410 
8.0 5.33910 . 5.95055 6.29774 6.44292 6.52274 
10,0 5.33653 5.94899 6.29680 6.44225 6.52221 

h1 = 1.0 

0.2 5.55732 5.62399 5.65068 5.66022 5.66512 
0.4 5.48533 5.58415 5.62803 5.64441 5.65297 
0.6 5.44070 5.55705 5.61196 5.63000 5.64414 
0.8 5.41172 5.53864 5.60078 5.62500 5.63792 
1.0 5.39216 5.52595 5.59299 5.61941 5.63355 
2.0 5.35211 5.49978 5.57688 5.60781 5.62450 
4.0 5.33756 5.49072 5.57141 5.60390 5.62146 
6.0 5.33489 5.48919 5.57053 5.60328 5.62098 
8.0 5.33407 5.48874 5.57028 5.60311 5.62089 
10.0 5.33374 5.48857 5.57018 5.60304 5.62080 

h1 2.0 

0.2 5.36876 5.38128 5.38640 5.38824 . 5.38919 
0.4 5.35622 5.37421 5.38234 5.38540 5.38701 
0.6 5.34893 5.3697 .6 5.37969 5.38352 5.38555 
0.8 5.34442 5.36691 5.37797 5.38228 5.38459 
1.0 5.34148 5.36503 5.37682 5.38146 5.38395 
2.0 5.33457 5.36141 5.37462 5.37989 5.38272 
4.0 5.33387 5.36025 5.37393 5.37946 5.38234 
6.0 5.33353 5.36006 5.37383 5.37933 5.38229 
8.0 5.33343 5.36001 5.37380 5.37931 5.38227 
10.0 5.33339 5.35999 5.37379 5.37930 5.38226 
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h1 4.0 

0.2 5.33810 5.33990 5.34064 5.34091 5.34105 
0.4 5.33636 5.33891 5.34007 5.34051 5.34074 
0.6 5.33537 5.33830 5.33971 5.34025 5.34060 
0.8 5.33477 5.33792 5.33948 5.34009 5.34041 
1.0 5.33402 5.33767 5.33933 5.33998 5.34033 
2.0 5.33365 5.33721 5.33904 5.33978 5.34017 
4.0 5.33340 5.33706 5.33896 5.33972 5.34012 
6.0 5.33338 5.33704 5.33895 5.33971 5.34012 
8.0 5.33335 5.33703 5.33894 5.33970 5.34012 
10.0 5.33334 5.33702 5.33893 5.33970 5.34012 

TABLE 2  

Numerical Values of T* = T/p1w for e = 0 (h2 = 0) 

for Various Values of 

0.25 0.50 I 1.0 2.0 I 4.0 

T* 9.81779 6.79768 5.68035 5.39216 5.34148 
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calculated from equation (4.2.60) by using the Simpson's rule by dividing 

the interval [0,1] in 24 equal parts. These numerical values of T* are 

given in Tables 1 and 2 and are displayed graphically in Figures 5-13. 

It may be noted that a < 1 ( or 6 > 1) means that the modulus of 

rigidity of the upper layer is larger ( or smaller) than the modulus of 

rigidity of the lower layer since a = p2/p1. Also it may be noted that 

9 < 1 ( or 9 > 1) means that the thickness of the upper layer is larger 

(or smaller) than the thickness of the lower layer since 9 = h2/h1. 

Numerical values of T* = T/p1 have been displayed against 

9 = h2/h1, (9 = 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0) for 

h1 = 0.5, 1.0, 2.0 and 6 0.1, 0.5, 1.0, 5.0 in the following 

figures: 

Fig. 5: h1 = 0.5; 6 = 0.1., 0.5, 1.0, 5.0; 9 = 0.2, 0.4, 0.6, 0.8, 1.0 

Fig. 6: h1 = 0.5; 5 = 0.1, 0.5; 9 = 2.0, 4.0, 6.0, 8.0, 10.0 

Fig. 7: h1 = 0.5; a = 1.0, 5.0; 9 = 2.0, 4.0, 6.0, 8.0, 10.0 

Fig. 8: h1 = 1.0; 6 = 0.1, 0.5, 1.0, 5.0; 9 = 0.2, 0.4, 0.6, 0.8, 1.0 

Fig. 9: h1 = 1.0; 5 = 0.1, 0.5; 9 = 2.0, 4.0, 6.0, 8.0, 10.0 

Fig. 10: h1 = 1.0; 6 = 1.0, 5.0; 0 2.0, 4.0, 6.0, 8.0, 10.0 

Fig. 11: h1 = 2.0; 5 = 0.1, 0.5, 1.0, 5.0; 9 = 0.2, 0.4,. 0.6, 0.8, 1.0 

Fig. 12: h1 = 2.0; 6 = 0.1, 5.0; 9 = 2.0, 4.0, 6.0, 8.0, 10.0 

Fig. 13: h1 = 2.0; a = 1.0, 5.0; e = 2.0, 4.0, 6.0, 8.0, 10.0 

Figures 5, 6 and 7 show T* against 9 for h1 = 0.5 i.e. when the 

thickness of the upper layer is half of the radius of the circular 
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portion which is being rotated. In these figures it is clear that as the 

thickness of the lower layer increases the value of T* decreases for all 

values of 5. Although for 5 = 5 ( Fig. 5) i.e as the ratio of the 

modulus of rigidities is increased there is not much change in the value 

of T* with increase in o = h2/h1. From Figs. 6 and 7 we see that as 

increases from 2 to 6, the value of T* decreases sharply but there is a 

slight decrease when the thickness increases from 6 to 10. When 5 = 1 

i.e. both layers have same modulus of rigidity, the value of T* tends to 

5.333, which is equal to T°°/pw = 16/3, where TOO is the torque for a 

semi-infinite space. So even if we increase the thickness beyond 10, the 

value remains close to 5.3333. 

Figure 8 shows T* against o for h1 = 1 i.e. when the thickness of 

the layer is equal to the radius of the circular portion which is being 

rotated. In this case we see that as e increases from .2 to 1 the value 

of T* decreases, although there is not much change in the value of T* 

when 0 changes from 0.8 to 1. As 6 increases i.e. the ratio of modulus 

of rigidities increases from . 1 to 5, the value of T* increases which is 

obvious since as 6 increases the lower layer becomes stiffer relative to 

the upper layer, so it needs more force to rotate the circular portion. 

From Figure 9 and 10 we see that there is not much decrease in the value 

of T* as 0 increases from 6 to 10 especially when 5 = 1 and 5. Also when 

a = 1, the value of T* tends to 5.333 (Fig. 10), which is same as shown 

by Gladwell { 15}. 

When h1 is equal to 2 i.e. the thickness of the upper layer is twice 

the ran I  us of the circular portion which is being rotated one sees that 
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Figure 5:Numerical values of T*=!r/,tw against 

0=h2/h1=.2,.4.6,;8,1.0 for h1=0.5 and 6=.1,.5,1,5. 
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Figure 6:Numerical values of T*=T//.t1c against 

O=h2/h1=2,4,6,8,1O for h1 2,4,6,8,10  and 
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Figure 7:Numerical values of T*=T/p1w against 

9=h2/h1=2,4,6,8,10 for h1=0.5 and 

10.0 
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6=5.0 
5.6 - 

5.5 - 

6=1.0 

5.4-

6=0.5 
5.3-

5.1-

5.0- . . 

0.2 0.4 

6=0.1 

0.6 0.8 1.0 

0 

Figure 8:Numerical values of T*=T/,L1W against 

9=h2/h1=.2,.4,.6,.8,1.0 for h1=1.0 and ô=.1,.5,1,5. 
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Figure 9:Numerical values of T*=T/jt1w against 

O=h2/h1=2,4,6,8,10 for h1=1 and 6=2//h1=0.1,0.5 
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Figure 10:Numerical values of T*=T/,aiw against 

O=I/h1=2,4,6,8,1O for 1i=1 and ô=j2//L1=1.O5.O 
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Figure 11:Numerical values of T*=T//L1w against 

0--h2 /h1  for h1=2.0 and o=.1,.5,1,5. 
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Figure 12:Numerical values of T*=T/,L1w against 

O=h/h=2,4,6,8,1O for h=2 and 
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Figure 13:Nümerical values of 1=T//i1w against 

O=h2/h1=2,4,6,8,10 for h1=2 and 6=/2//21=1.0,5.0 
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(Fig. 11, 12, 13) there is not much variation in the values of T* as 8 

increases from 0.2 to 10. In this case too when 5 is equal to one, T* is 

approaching to 5.333  as 8 increases ( Fig. 13). Also when 5 is equal to 5 

there is not much change in the value of T* as 0 increases from 0.2 to 1 

(Fig. 11). In this case we also see that the graphs are almost parallel 

in all the cases which is understandable since the thickness of the upper 

layer has been increased compared to the cases when h1 is equal to 1 and 

0.5 and hence there is a lesser effect of the thickness h2 of the lower 

layer. 

In conclusion we notice that when ö increases ( i.e. when p2 

increases for a fixed p1) T* increases for any fixed value of 8 = 

but when 0 increases ( i.e. when h2 increases for a fixed h1) T* decreases 

for any fixed value of 5 = p21p1 

4.4 Particular cases  

The results for the following particular problems have been derived 

by assigning particular values to y,, P2 ' h1 and h2 in the results of 

section 2: 

CASE I: Reissner-Sagoci problem for the haLf-space (Fig. 14) 

To derive the results for this case, we let 

h1 °° = (4.4.1) 

By taking h1 -. oo in equation ( 4.2.22) we get 
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Figure 15: A Layer 0 < z 5 hBonded to a Rigid Foundation. 
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= 0 

and hence from equation ( 4.2.51) and (4.2.60) we get 

= 

1 
T - 4p7r t (t)dt 

0 
16 

= 

(4.4.2) 

(4.4.3) 

which agrees with the alreRôy known results ( e.g. equation ( 3.4.30) gives 

the same value of T as above by taking r0 = 1). 

CASE II: Reissner-Sagoci problem for a single layer of thickness h 

with Its lower face rigidly fixed (Fig. 15) 

To obtain the results for this case, we let 

h2 -, 0, h1 = h, p1 = 

By taking h2 -, 0 and h1 = h in equation ( 4.2.22) we find 

(4.4.5) 

H() 1+ 2 e 2h (4.4.6) 

and hence from equation ( 4.2.45) we obtain 

00 

K(u,t) - 4. fO 12  hsin(u)sin(tu)d1+e 
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2 1  
i JO  2h[cos(u+t)-cos(t-u)]dL+e (4.4.7) 

Now 0 (t) and the torque T are given by equations ( 4.2.51) and ( 4.2.60). 

The above results are in full agreement with the results obtained by 

Gladwell [ 15] by noting the change in notation. 

CASE III: I?eissner-Sagoci problem for a layer of thickness h with its 

lower face stress-free (Fig. 16) 

For this case we let 

P2 - 0, h1 = h,' p1 = p . (4.4.8) 

For this case when p2 0, we have 0 and hence p = -1 and from 

(4.2.22) we obtain 

-2h 
2 e (4.4.9) 

H() -  - e-2h 
1  

Then from ( 4.2.44), we obtain 

K(u,t) 
.4 f0 e 2 '  

f. 
sin(u)sin(tu)d 

- J {coth(h)-1][cos(t-u)-cos(t+u)]d 
7r 0 (4.4.10) 
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Figure 16: A Layer 0 5z h With Lower Face Stress-Free. 
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Figure 17: A Layer 0 z 5 h Bonded to a Send-Infinite Space z h. 
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which is in agreement with that of Gladwell [ 15] by noting the change of 

notation. 

CASE IV: Peissiner-Sagoci problem for a layer of thicknesis h bonded to 

an elastic ha1f-space (Fig. 17) 

The results for this case may be derived by letting 

h2 -, oo, h1 = h. 

For this case, we find from equation ( 4.2.22) and ( 4.2.45) that 

H() 
2  

+ p - e 2h 

(4.4.11) 

I 

(4.4.12) 

K(u,t) = ! (4.4.13) 
71 

and ( t) and the torque T are given by equations ( 4.2.51) and (4.2.60) 

respectively. The above results are in agreement with those obtained by 

Jabali [161 by noting the change in notation. 
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