Personalizable Groupware:
Accomodating Individual Roles and
Group Differences

Saul Greenberg

1991

Citeas

Greenberg, S. (1991) “Personalizable groupware: Accomodating individual roles and group
differences.” In Proceedings of the European Conference of Computer Supported Cooperative
Work (ECSCW '91), pp. 17-32, Amsterdam, September 24-27, Kluwer Academic Press.

A working copy of this document was published as Research Report 90/404/28, Dept of Computer
Science, University of Calgary, Alberta, Canada. A much earlier version was presented at CSCW
'90 Workshop on Groupware Implementation in Computing Systems and Social Systems, Los
Angeles, October 7.

Personalizable groupware:
Accommodating individual roles
and group differences

Saul Greenberg
Department of Computer Science, University of Calgary, Canada T2N 1N4

Abstract—For groupware to be considered successful, it must be usable and
acceptable by most, if not all, members of the group. Yet the differences present
between group members—their varying roles, needs, skills—and the differences
between groups as a whole are a serious obstacle to achieving uniform acceptance of the
groupware product, especially when the product treats all people and groups identically.
This paper raises several consequences of not accommodating individual differences,
and then offers a possible solution to the problem. First, instances of groupware failure
are described: the inability of the group to reach a critical mass; the unequal accessibility
of the groupware by participants; the failure to accommodate the different roles
participants may play; the failure to balance the work done against the benefits received;
and the failure of groupware to evolve with the needs of the group. Second, the notion of
personalizable groupware is proposed, defined as a system whose behaviour can be
altered to match the particular needs of group participants and of each group as a whole.
Finally, the paper presents SHARE, a working example of personalizable groupware.
SHARE is a shared screen system that offers its users a flexible choice of floor control
models to help them mediate their interactions with the shared application.

1. Introduction

Design teams now build single user systems with good interfaces suitable for
selling to the mass market. While the product may not be to everyone's tastes, the
vendor’s goal isto haveit acceptable to enough customers to make its production
an economically worthwhile venture. Those customers with differing requirements
or preferences simply go to another product, or do without.

Designers of groupware face morerigid criteria. Of course, the product must satisfy
enough groups to be commercially viable. But unlike single user software, the
product chosen by the group should aimost by definition be acceptable and usable
by almost all its members. While this may seem a strong claim, experience has
revealed conditions of groupware failure due to its inability to satisfy all its
supposed users.

Consider the following issues and instances of groupware failures.

a)

b)

d)

A critical mass of system adopters may not be reached if too many people opt out
of using the groupware product. A new feature-rich asynchronous conferencing
system was introduced at a work site to replace an old but still usable one.
Although the new product had a strong champion and was used heavily by 20%
of the departmental community (predominantly upper management), a good
number of the staff resisted switching to it mostly due to the overhead of
learning and using the new system’ s primitive user interface. Conference activity
dwindled as contributors realized they were not reaching the majority of the
intended audience. The new system was eventually shelved until a better
interface could be developed. (See aso Markus and Connolly’s 1990 discussion
of payoff criteriafor adopting technology).

Participants who cannot or will not use the technology face the danger of
becoming second class citizens within their own group. Participants of
CAPTURE LAB face-to-face meetings can access a large public screen through
their personal computers (Mantei 1988). Austin, Liker and McLeod (1990)
noticed that CAPTURE LAB participants who rated themselves as less than 25%
proficient with its computer technology were unlikely to use it. Those with
greater proficiency were equally likely to use or not use it. Austin et al suggest
the existence of a*“ proficiency floor”, above which an individual would perceive
themselves as having sufficient competency to use the technology. Those below
the floor would avoid its use.

Our similar observation concerned face to face meetings whose members had
shared access to a spreadsheet program being projected at the front of the room.
Participants who were not familiar with the spreadsheet package or who were
not adept typists were inhibited from adding to the model being displayed.

New people joining an established but evolving group must be able to use the
system adeptly, otherwise cliques of expertise may evolve. The initia joining
period is critical for new members to assert themselves into the established
group. In the spreadsheet case above, we observed that the complex uses made
of the spreadsheet package by the already adept but established group made the
system almost unreachable by new participants. The newcomers, although
familiar to some extent with the technology, were unfamiliar with the ways it had
been applied. Unconsciously, the established group became a clique of elite
controllers.

Participants in a group may have quite different roles that are not recognized by

the groupware product. Consider a screen sharing package that enforces a pre-
emptive floor control protocol (ie anyone can pre-empt control away from
anyone else). We have observed one interacting team of a senior and junior
person, where the junior person was quite uncomfortable and almost unwilling
to take control away from the senior person.

Another effect of role differences was noticed in the CAPTURE LAB study
mentioned above. Austin et a (1990) write that use of the public screen
technology was proportionally higher by influential group members when
contrasted to members with less influence, and by males when compared to
females. They suggest that some group members perceived the public screen asa
means of influencing other group members. The CAPTURE LAB technology does

not recognize these effects; unequal use of the technology is neither encouraged
nor guarded against.

€) There is often disparity between who does the work and who gets the benefit
when using groupware. Grudin (1988) argues that groupware applications often
fail because they require that some group members do additional work even
when they are not the ones who perceive or receive a direct benefit. A familiar
example is a group appointments scheduler that requires all members to do the
extrawork of keeping their on-line calendars up to date for the benefit of the
person (usually the manager) who schedules most of the meetings (Grudin 1988;
Bullet and Bennett 1990).

f) Group needs evolve rapidly, not only from meeting to meeting but within the
course of a meeting. The Groupware must keep pace. Users of COGNOTER, a
multi-user idea organizer, would often split into multiple sub-groups to work on
ideas raised in the brainstorming session (Foster and Stefik 1986; Tatar, Foster
and Bobrow 1991). An early COGNOTER design created aformal division of the
sub-groupsinto “rooms’ (Stefik et a 1987). However, these formal boundaries
did not reflect the evolving sub-group membership or interactions between them.
Asaresult, Stefik et al conjectured that formation and dissolution of subgroups
would be inhibited.

We believe that a prerequisite to successful groupwareisthat it must be acceptable
by most or all members of the group. This can be accomplished in several ways.
First, groupware use can be so generic or transparent that almost anyone can use it.
For example, tele-conferencing requires only normal interaction skills of
participants, while vanilla electronic mail requires mostly familiarity with an editor
of choice. Second, the service provided could be so valuable or so entrenched in the
organization (perhaps politically) that all users are effectively “forced” to
accommodate to it.

This paper raises athird possibility: that groupware be personalizable so that it can
accommodate individual roles and group differences.

2. Personalizable Groupware

Personalizable groupware is defined as groupware whose behaviour can be tailored
to match the particular needs of group participants (ie each member of the group
may observe a different behaviour), and the particular needs of the group as a
whole (ie each group may observe a different collective behaviour). lllustrating the
first point, suppose that a small group of three people, say two architects and a
client, are in a remote real time meeting consulting over blueprints displayed
through a shared computer aided design (CAD) package. Depending upon personal
needs and tastes, each participant may require adightly or even completely different
style of user interface. For instance, the senior architect may have complete access
to the controlsin the CAD package, while the apprentice architect may only be able
to observe the drawing. The CAD-naive client may still be able to gesture and
sketch around the existing drawing through a very simple graphics pencil.
[llustrating the latter point about between-group differences, the same groupware
tool may be used by a group of contractors to implement the blueprint. In this case,
the contractors may only be able to annotate that part of the drawing that they are
responsible for, perhaps to indicate deviations they had taken from the design.

Although this paper names and champions the concept of personalized groupware,
it isnot anovel idea. A handful of groupware systems incorporate some level of
personalization. Consider QUILT, a computer-based tool for collaborative document
production (Leland, Fish and Kraut 1988). A person’s ability to manipulate a
document istailored to one’ s position in a permission hierarchy. Some positions are
readers, commentors and co-authors, each with greater powers of annotation and
revision. Another example is INFORMATION LENS (Malone et al 1987), an
information manager for mail and news. Here, users can construct their own semi-
structured templates representing particular types of mail they wish to compose, can
create their own rules to filter incoming information in quite sophisticated ways,
and can create custom views that summarizes selected information (see also OBJECT
LENS, Liaand Malone 1988). A third example is CRUISER, a video-based “virtual
hallway” system that facilitates casual interaction (Root 1988; Fish 1989). Peoplein
the CRUISER network can control privacy by setting a variety of personal
permissions that limit how others can observe and/or interact with them. Finally,
the VIRTUAL LEARNING COMMUNITY (Johnson-Lenz and Johnson-Lenz 1991) is
an asynchronous conferencing system that lets a conference facilitator tailor the
groupware to support the purpose and the variety of the group’s activities. For
example, the boundaries that define group membership can be adjusted to either
enforce equal participation of all group members, or to alow “lurkers’—people
who follow the group’ s discussion but who never express themselves.

Aside from these four and a few other notable exceptions, personalization is usually
ignored—sometimes intentionally—in groupware design. Consider at the extreme
the point of view of “groupware as mechanism”, where the computer’srole isto
provide a single well-defined mechanism that incorporates some social model of
interaction (Johnson-Lenz and Johnson-Lenz 1991). Here, the social model
enforced by the system and imposed on its users is an explicit attempt by the
designer to provide methods to help keep the group on task, enforce roles and
commitments, and make the group efficient and productive (a common goal of
group decision support systems). While such systems certainly have a positive role
in some settings, the Johnson-Lenzs argue that inflexible structures may trigger
organizational and individual resistance, and that flexible patterns encouraging
personal initiative are just as important as well-defined group procedures. The
negative outcome of mis-matched groupware as mechanism may well be inflexible
systems that force its users to do things in undesirable and unproductive ways,
where people must change their behaviour to match the machine’s model, rather
than vice versa. At their worst, users will perceive such systems as “fascist
software” and will avoid their use (for example, see Bair and Gale's 1988 report on
the COORDINATOR).

Y et we do not advocate the chaos of a completely customizable and unstructured
interface, for these will often leave its users at alost of what to do (Johnson-Lenz
and Johnson-Lenz 1991; Thimbleby 1980; but see Dykstra and Carasik 1991 for
another point of view). We see personalizable groupware as a way to soften the
negative effects of groupware as mechanism by offering arange of structures that
reflect a complementary range of the group’s requirements. The groupware
designer’sjob is to determine what parts of the groupware system should remain
immutable and what part personalizable, and then to set reasonable constraints on
the personalization allowed.

3. A working example of personalizable groupware

3.1 Shared window systems and floor control.

“Collaboration aware” groupware for real-time sharing of work explicitly
recognizes the existence of each participant in the collaboration (Lauwers and Lantz,
1990). For example, a collaboration-aware sketchpad can be designed to support
what people actually do in collaborative design (Tang 1991) eg gesturing by
displaying multiple cursors, and concurrent work by allowing participants to
sketch simultaneously into a common shared workspace (Greenberg and Bohnet
1991). It is unlikely, however, that collaboration aware systems will have a major
impact on the market in the next few years. Not only are they technically difficult to
build, but the prerequisites for design are lacking—we really know very little about
how people work together.

An alternate approach stems from the old idea of taking a single-user application
and sharing it between participants of an on-line meeting through a* shared screen”
or “shared window” (Engelbart and English 1968; see Greenberg 1990 for a
survey). Each participant would have an identical view of the running application
and an opportunity to interact with it. Special “view-sharing” software would allow
any unaltered single-user application to be brought into a meeting; the application
itself would have no awareness that more than one person was using it. This
scheme is usually implemented by merging all participants inputs into a single
stream sent to the application, and by sending a copy of the application’'s output
stream to every participant’s workstation!. While limited in power, shared views
are alogica and reasonable “ stepping stone” to true collaboration aware systems
(Johansen 1989).

A catch of sharing single-user applications is that users must take turns; attempts at
simultaneous activity would have the input to the application garbled (eg two people
typing at the same time would have their input merged into a nonsense sentence;
simultaneous attempts to move the single cursor would result in “cursor wars”).
Consequentially, most shared view systems enforce serial turntaking through some
type of explicit floor control mechanism (see Table 1 for a brief summary of several
floor control protocols and some systems that implement them). For example, the
CAPTURE LAB, the face-to-face meeting room that allows participants to share a
single large screen, forces a pre-emptive protocol where one can pre-empt the floor
away at any time from the current floor holder (Mantei 1988). The commercial
TIMBUKTU product offers afree floor, where any participant can enter any input at
any time—turntaking must be mediated out-of-band (Farallon 1988). In contrast,
CANTATA uses afirst in, first out queue with explicit release, where the current
floor holder must release the floor before the next person in line gets it (Chang,
Kasperski and Copping 1987).

While existing shared view systems usually offer one particular style of protocol for
floor control, no literature provides justification as to why that style was chosen. Is
there, in fact, a “best” general floor control policy? We believe there is not, for
groups will differ in how its members interact with each other. As Lauwers writes
(the designer of the technically sophisticated DIALOGO view sharing system)

IWhile simple to do in shared terminal systems (eg by using pseudo-tty filtersto trap i/o in
UNIX), the technology of sharing windows is far more complex and is fraught with many technical
issues and difficulties (Lauwers, Joseph, Lantz and Romanow 1990; Greenberg 1990).

“...the only certainty [about floor control] isthat no one policy will suffice for al
groups, in al situations’ (Lauwers 1990 p97).

We can easily envision situations where groups desire different policies. A small
group of practised collaborators may prefer the free floor, choosing to mediate
interaction by voice alone, while a larger cooperating group may employ pre-
emptive control to avoid accidental input merging. Asacase in point, programmers
using the SharedX shared window system (Garfinkle, Gust, Lemon and Lowder
1989) reported the need to alternate between free floor when brainstorming to
system-controlled one-person-at-a-time when wanting to make sure a particular
piece of code was coded correctly (reported in Lauwers 1990). In distance
education, aseminar presenter or teacher may use a“central moderator” approach to
hand off and take back control from members of the audience who are posing
guestions. In a formal meeting context, a group decision support system may

enforce around-robin or queue policy.

Protocol Description Where implemented
Free floor Any participant can enter input a | TIMBUKTU (Farallon 1988)
any time, with floor control SHARE (Greenberg 1990)
mediated out of band usually
through a voice channdl.
Accidental mixing of multiple
input streamsis possible.
Pre-emptive Any participant can pre-empt CAPTURE LAB (Mantei
control away at any timefromthe| 1988)
floor holder. DIALOGO (Lauwers 1990)
SHARE (Greenberg 1990)
Explicitrelease | Thefloor holder must explicitly | CANTATA (Chang et a
release the floor before another 1987)
participant may claimiit. SHARE (Greenberg 1990)
Firstin, first out | Participants line up to take turns, | CANTATA (Chang et a
gueue with where the floor, once explicitly 1987)
explicit release. | released by the floor holder, is | VCONF (Lauwers 1990)

Central
moderator

Pause detection

given to the person at the front of
theline.

A moderator oversees al activity
and decides who should hold the
floor, usually by monitoring
requests for the floor by other
participants.

The floor is made available to
any participant only after the
system detects a suitabl e pause of
activity by the floor holder.

RTCAL (Sarin & Greif
1985)
SHARE (Greenberg 1990)

EMCE (GarciaLuna
Aceves et d 1988)
SHARE (Greenberg 1990)

Table 1. Somefloor control protocols that have been implemented in view-
sharing systems

Lauwers (1990) suggests that even aspects of the operating environment—the
availability and quality of an audio/video channel, the length of communication
delays—will also influence the choice of policy. For example, agroup preferring to
use out-of-band traditional socia protocol (ie voice, gestures) to mediate a free floor
may suffer increasing accidental input collisions as a function of lengthening the
communication delays and degrading the audio/video channel.

3.2 Personalizable floor control in SHARE

Lauwers (1990) recommends that an ideal shared window system should “support
a broad range of [floor control] policies... in an architecture capable of switching
between different policies depending on user preferences and the operating
environment”. We have taken up this challenge. Based on the belief that no single
policy can address adequately all groups, we have designed and implemented
SHARE, aview-sharing system that supports personalizable floor control.

SHARE is a “policy free” view-sharing system whose kernel supports primitives

upon which one can build a broad range of policies to manage floor control

(Greenberg 1990). Its architecture is comprised of four entities (Figure 1).
. The Registrar is a daemon process responsible for initiating the shared view
conference set up and tear down, the selective entry and departure of
participants while the conference is in progress, and feedback of the
conference’s current status. One or more conferences may be established viathe
Registrar, and participants may join as many of the running conferences as they
wish. There is one Registrar daemon for the entire network

b. The View Manager is the technical heart of the system, a process responsible
for synchronizing and transmitting the shared views between participants. There
isone View Manager per conference. In the current implementation, the View
Manager provides only rudimentary shared views of a text-based terminal
window running UNIX applications (eg UNIX SHELL, the GMACS editor, €etc),
and cannot share views of graphical mouse-based applications. While this limits
the true usability of SHARE, we avoided the extremely time-consuming
implementation of a graphics-based window-sharing system?, allowing us to
concentrate on other design aspects such as floor control.

c. The Chair Manager process is responsible for interpreting (but not setting!) a
floor control policy. It receives directions from the Turntaker (see next point) on
what observe and write permissions it should set on each participant’ s view into
the application. There isone Chair Manager per conference.

d. The Turntaker process sets a particular floor control policy and presents the
interface to it. User interactions are interpreted and translated into protocol
primitives, which is sent to the Chair Manager. There is usually one Turntaker
per participant.

When a person asks for a new shared view meeting, the Registrar will create
instances of the View Manager and Chair Manager processes. A fully interactive
and sharable UNIX SHELL window will then appear on the person’s workstation.
Other people may now join the meeting, which will cause a copy of the UNIX
window to appear on their workstations.

2SHARE was up and running within two man-months of work. In contrast, the technically
sophisticated SHAREDX (Garfinkel et al 1989) and DIALOGO (Lauwers 1990) systems required
several man-years to implement.

At this point, no floor control policy has been specified. The Chair Manager will by
default allow only the original meeting creator to enter input into the shared view.
Others can observe but not interact with the application. The actual floor control
policy residesin the Turntaker processes—one activated for each participant—that
presents its users with an interface to a particular floor control scheme and converts
auser’ srequest into aset of primitive messages sent to the Chair Manager (as listed
in the Appendix). These primitives include asking the Chair Manager: to set any
participant’ s observe and write status; to get information about other participants,
and to forward messages to other Turntakers. The result is that different floor
control policies are easy to implement. Each participant’s Turntaker and itsinterface
may be specialized to reflect one’s specific political role in the meeting, and floor
control policies can even be switched on the fly. The Appendix gives detail on the
sequence of events that occurs between the Turntaker and the Chair Manager.

Figure 2, for example, illustrates a simple pre-emptive floor control interface
supported by SHARE. Here, al participants have invoked the Turntaker process that
enforces the pre-emptive policy. When a user selectsthe “Acquire floor” button, the
Turntaker requests the Chair Manager to assign write permission for that person,
and observe-only status to all other meeting participants (bottom of Figure 2,
Appendix). The Turntaker also tells its user who is in the meeting and who
currently holds the floor.

In contrast, Figures 3a and 3b illustrate the more complex “central moderator”
protocol (Table 1) used by a seminar presenter and by the audience respectively.
This scheme requires two different (but coordinated) styles of Turntaker processes
representing the roles of the presenter and of the seminar participants. The single
presenter would invoke the Presenter Turntaker, while each audience member
would invoke their own copy of the Participant Turntaker. In Figure 3a the
presenter sees: alist of al participants who desire the floor (the raised hands); who
currently holds the floor (the writing hand); and who is just observing (the eyes).
The presenter can assign or take away interaction permission by selecting the icon
portraying the chosen participant. In Figure 3b participant Ruth has requested the
floor by selecting her single icon (selecting it again will put her back to observer
status). She also sees that participant George is the current floor holder. It isworth
noting that the presenter and the participant also have different controls affecting
conference departure. While the presenter can terminate the conference for all
participants by pressing the “end conference” button, participants can only leave
(which does not affect any other participants).

Another floor control policy we have implemented is pause detection (Table 1). If
thereisapause in input activity of the current floor holder for several seconds, the
floor becomes free. The floor is then automatically assigned to the next participant
that attempts to interact with the application (eg by typing). Because a short pause is
required before the floor is freed (we use a delta of 2 seconds), the accidental
overlap of input commonly seen with a free floor policy is eliminated. We have
found this method effective for general use by small cooperating groups as it
reflects a person’s natural and implicit way of mediating turntaking in conversation,
unlike the other methods mentioned here that require one to explicitly request aturn.

Some shared view architectures have similarities to SHARE. We are aware of two
other systems—DIALOGO (Lauwers and Lantz, 1990) and SHAREDX (Garfinkle,
Gust, Lemon and Lowder 1989)—that have the same potentia in its architecture for
flexible floor control. What is novel isthat we have striven to give the power of this
flexibility directly to the end users. Additionally, SHARE has an extensible open

architecture. Given the protocol primitives understood by the Chair Manager (as
mentioned in the Appendix), a programmer should have little trouble designing new
Turntakers. Access to SHARE'S source is not required, and the kernel does not
need recompilation3. In the current version of SHARE, people and groups
personalize their system by selecting the desired floor control policy from alibrary
of policies—the library is extended only by programming new Turntakers. We
foresee providing end users with the power to construct and/or extend a floor
control policy through a prototyping tool or through a scripting language.

4. Summary

In spite of individual differences and preferences between group members and
between groups, most groupware now available requires its users to conform to a
single model of use. As a consequence, people may opt out of using the product,
which serioudly threatens the potential benefit the system can offer to the group asa
whole. This paper argued that personalizable groupware can lead to wider
acceptance of the product by offering a system that conformsto the individual needs
of participants and of groups.

We have presented SHARE, a shared view system, as a simple example of
personalizable groupware. As these systems allow only serial interaction with the
running application, floor control must be mediated. SHARE supports between
group differences by providing an extensible library of floor control policies for
groups to chose from. Within-group differences are managed as well, for a
particular policy may provide severa roles appropriate to a participant’s position
within the group (as in the seminar presenter/student case).

Programming the differet policies proved both easy and quick. What is missing is
an end user evaluation. Although we have our own successful experiences using
SHARE’s various floor control policies, it remains to be tested in an unbiased
environment, preferably by tracking its long term use by people requiring desktop
conferencing capabilitiesin real settings. Thiswill be difficult to do in practice, for
it demands the costly process of bringing Share to near-product functionality and
reliability.

Personalizable groupware has a long way to go. On the social side, we must
understand how group participants vary and how groups differ. This is
fundamental if we are to supply appropriate flexibility to handle that diversity. On
the technical side, we must provide not only architectures appropriate to
personalization (an interesting possibility is a self-adaptive interface; Greenberg
1985), but also the means to allow the participant and the group to select the method
the best fits their needs.

3We recently discovered that the ASPECTS, acommercial groupware product, allows asingle
group mediator to select three floor control levels: free floor, serial, and central moderator (Group
Technologies 1991). Unlike SHARE, however, ASPECTS is a closed system. Policies are hard
wired and can only be extended by altering the source code.

Appendix. Protocol primitives used between the
Turntaker and the Chair Manager

This appendix describes the protocol primitives transmitted between the Turntaker
and Chair Manager processes and gives examples of their use. The Chair Manager
and the View Manager form the kernel of SHARE, with participants creating,
entering and leaving conferences through the Registrar. The Turntaker process,
which implements a particular floor control policy, may be created and destroyed by
the participant at any time. When a Turntaker is created, it establishes a UNIX socket
connection with the Chair Manager and then presents an interface to the user (asin
Figures 2 and 3). The Turntaker then embodies the particular floor control policy by
sending message primitives to the Chair Manager and to other Turntaker processes.
The list below describes most of the primitives exchanged. The <id> field indicates

the identification of the participant. The ‘[isused asafield delimiter.

Protocol

Explanation

TURNTAKERREGISTER <id>

REGISTERUSER <id>

UNREGISTERUSER <id>|<id>]|...

ENDMEETING

SETFLOORPERMISSIONS
<id><permission>|
<id><permission>|...

SETMETAFIELD
<id>|messagel<id>|messagg|...

GETINFORMATION
<bit mask>|<id>|<id>|...

STATUSCHANGED <bhit
mask>|<id>|message]...

TIMERCHANGE <seconds>

The Turntaker registers with the Chair Manager. If the
participant id is specified, the Chair Manager will signal the
Turntaker when that participant leaves the conference, upon
which the Turntaker will usually destroy itself.

The Chair Manager informs the Turntaker that a new
participant has connected to the conference.

The Turntaker requests the Chair Manager to unregister the
participants specified by their id's from the conference. This
will delete that user’s shared view from their workstation.

The Turntaker requests the Chair Manager to terminate the
entire conference. Thiswill unregister all participants and
destroy the meeting’s Chair and View Manager processes.

The Turntaker requests the Chair Manager to assign
observe-only or write permission to the participants listed.

The Turntaker requests the Chair Manager to attach a
message to a participant’sid and then forward it as a
STATUSCHANGED message to all other Turntaker processes.
Usually used to define a protocol between Turntakers.

Turntaker requests information on some or all participants
(thisinformation is stored by the Chair Manager). The bit
mask indicates the information desired, which includes:

«the participants login name,

«the host and port number of the participant’s machine,

«the participant’ s pseudo-terminal containing the shared view
the message (meta) field associated with the participant

othe current observe/write status of the participant.

When a participant’s status information is changed, the
Chair Manager broadcasts the particular change to all
Turntakers. The bit mask is as noted in GETINFORMATION.

Turntaker specifiesatime delay value for pause detection.

Consider a meeting implementing the smple pre-emptive floor control policy shown

in Figure 2. When the Turntaker processis started, it does the following.

1. Register with the Chair Manager viathe TURNTAKERREGISTER request.

2. Ask the Chair Manager for all it knows about the other conference participants
viathe GETINFORMATION request; this will include who is in the conference,
who holds the floor, and so on.

3. Present the user interface, listing the current status of other participants (eg
“Judy is observing”).

4. When a message is received from the Chair Manager indicating a change of
status of any of the participants (the STATUSCHANGED message), then update
the status information on the display.

5. When the user selects the *Acquire Floor’ button, tell the Chair Manager to
change the permissions to write for self, and observe for all others via the
SETFLOORPERMISSIONS message. The Chair Manager acknowledges via a
STATUSCHANGED message.

6. If the ‘Leave Conference’ button is pressed, the Turntaker notifies the Chair
Manager via the UNREGISTERUSER message. When the Chair Manager
acknowledges the request, the Turntaker will destroy itself.

7. Alternatively, if the Terminate Conference button is pressed, the Turntaker will
send the ENDMEETING message to the Chair Manager.

Changing thisfloor control policy to explicit release (explained in Table 1) isfairly

straight forward. Substituting for step 5 above:

5a. Alter the “Acquire Floor” button so that it is enabled only when no participants
hold the floor (ie have write permission), and dimmed otherwise. When enabled
and selected, the Turntaker requests the Chair Manager to set write permission
for self. The button’slabel isthen changed to ‘ Release Floor’. Other Turntakers
will be informed of the change in status and will dim their * Acquire Floor’
buttons.

5b. When ‘Release Floor’ is pressed, the Turntaker tells the Chair Manager to
change the permission of self from write to observe. A status message
indicating that floor permissions have changed is sent automatically by the Chair
Manager to all Turntakers, who in this case react by enabling their “Acquire
Floor” button.

A more complex example is the centralized floor control interface shown in Figure
3, where a participant may request the floor from the presenter. As the Chair
Manager has no primitive that directly supports a ‘floor request’, this must be
implemented as a protocol between cooperating Turntakers. In our implementation,
Turntakers attach a “raised hand” and “lowered hand” message to a participant id
and transmit status changes to each other. To illustrate, when the participant
requests the floor by selecting the icon (Figure 3b), the Turntaker sends the Chair
Manager the SETMETAFIELD primitive along with the participant’s id and the
message “raised hand”. This is then forwarded by the Chair Manager to the
presenter’s Turntaker (Figure 3a), which will interpret the message and change the
appropriate icon on the display. The important point here is that this extended
protocol is implemented completely within the Turntakers; no change had to be
made to the code in the Chair Manager. The rest of the centralized floor control
interface is straight forward. When the presenter assigns the floor to a participant,
the appropriate permission fields are set and sent via the SetFloorPermissions
message. When the Turntaker of the participant chosen receives its StatusChanged
message, it will change the icon being displayed to awriting pen.

As a final twist, we can implement a selective free floor policy in the above
centralized floor control scheme. All that isrequired isto set write permission for
the presenter, which is maintained even when a student has write permission.

Acknowledgements. The Alberta Research Council sponsored part of this research
during my position there as a National Science and Engineering Research Council
Industrial Research Fellow. Many thanks to Ralph Bohnet, who was instrumental in
implementing SHARE.

References

Austin, L. C., Liker, J. K. and McLeod, P. L. (1990) “Determinants and patterns of control over
technology in a computerized meeting room.” In Proceedings of the Conference on Computer
Supported Cooperative Work (CSCW '90), p39-52, Los Angeles, California, October 7-10,
ACM Press.

Bair, J. H. and Gale, S. (1988) “An investigation of the Coordinator as an example of computer
supported cooperative work.” Hewlett Packard Laboratories, California, Unpublished.

Bullen, C. V. and Bennett, J. L. (1990) “Learning from user experience with groupware.” In
Proceedings of the Conference on Computer Supported Cooperative Work (CSCW '90), Los
Angeles, California, October 7-10, ACM Press.

Chang, E., Kasperski, R. and Copping, T. (1987) “Group co-ordination in participant systems.”
Technical report, Department of Advanced Computing and Engineering, Alberta Research
Council, Calgary, Alberta, Canada, September.

Dykstra, E.A. and Carasik, R.P. (1991) “Structure and support in cooperative environments: The
Amsterdam Conversation Environment.” In S. Greenberg (ed.):Computer Supported
Cooperative Work and Groupware, Academic Press, London. Originally published in Int J
Man Machine Studies, 34(3), March.

Engelbart, D. and English, W. (1968) “A research center for augmenting human intellect.” In
Proceedings of the Fall Joint Computing Conference. Montvale, NY, Fall, AFIPS Press.

Farallon (1988) “Timbuktu user's guide.” Manual, Farallon Computing Inc., Berkely, California,

Fish, R. S. (1989) “Cruiser: A multi-media system for social browsing.” The ACM SSGGRAPH
Video Review Supplement to Computer Graphics, 45(6). ACM Press, Baltimore, MD.
Videotape.

Foster, G. and Stefik, M. (1986) “Cognoter: Theory and practice of a Colab-orative tool.” In
Proceedings of the Conference on Computer-Supported Cooperative Work (CSCW '86), p7-15,
Austin, Texas, December 3-5, ACM Press.

Garcia-Luna-Aceves, J.J., Craighill, E.J. and Lang, R. (1988) “An open-systems model for
computer-supported collaboration.” In Proceedings of the |EEE Conference on Computer
Workstations, p40-51, March.

Garfinkel, D., Gust, P., Lemon, M. and Lowder, S. (1989) “The SharedX multi-user interface
user's guide, version 2.0.” Research report STL-TM-89-07, Hewlett-Packard Laboratories, Palo
Alto, California, March.

Greenberg, S. (1990) “Sharing views and interactions with single-user applications.” In COIS* 90:
Proceedings of the Conference on Office Information Systems, Boston, April.

Greenberg, S. and Bohnet, R. (1991) “GroupSketch: A multi-user sketchpad for geographically-
distributed small groups.” In Proceedings of Graphics Interface '91, Calgary, Alberta, June 5-7.
Also available as Reseach report 90/414/38, Dept of Computer Science, University of Calgary,
Alberta, Canada.

Greenberg, S. and Witten, 1. H. (1985) “ Adaptive personalized interfaces -- a question of viability.”
Behaviour and Information Technology, 4(1), pp. 31-45, January.

Group Technologies (1991) “Aspects: The first simultaneous conference software for the
Macintosh, Version 1.” Manual, Group Technologies Inc, Arlington, Virginia.

Grudin, J. (1988) “Why CSCW applications fail: Problems in the design and evaluation of
organizational interfaces.” In Proceedings of the Conference on Computer-Supported
Cooperative Work, pp. 85-93, Portland, Oregon, September 26-28, ACM Press.

Johansen, R. (1989) “User approaches to computer-supported teams.” In M.H. Olson (ed.):
Technological Support for Work Group Collaborations, pl-32, Hillsdale, New Jersey,
Lawrence Erlbaum Associates.

Johnson-Lenz, P. and Johnson-Lenz, T. (1991) “Post-mechanistic groupware primitives:
Rhythms, boundaries and containers.” In S. Greenberg (ed.): Computer Supported Cooperative
Work and Groupware, Academic Press, London. Originally published in Int J Man Machine
Sudies, 34(3), March.

Lauwers, J. C. (1990) “Collaboration transparency in desktop teleconferencing environments.”
PhD Thesis, Available as Technical Report CSL-TR-90-435, Stanford University, Computer
Systems Laboratory, Stanford, CA, July.

Lauwers, J. C. and Lantz, K. A. (1990) “Collaboration awareness in support of collaboration
transparency: Requirements for the next generation of shared window systems.” In Proceedings
of the ACM/SIGCHI Conference on Human factors in Computing, Seattle, April, ACM Press.

Lauwers, J. C., Joseph, T. A., Lantz, K. A. and Romanow, A. L. (1990) “Replicated architectures
for shared window systems: A critique.” In Proceedings of the Conference on Office
Information Systems, p249-260, Boston, April 25-27.

Leland, M. D. P., Fish, R. S. and Kraut, R. E. (1988) “Collaborative document production using
Quilt.” In Proceedings of the Conference on Computer-Supported Cooperative Work, p. 206-
215, Portland, Oregon, September 26-28, ACM Press.

Lia, K.-Y. and Maone, T. W. (1988) “Object Lens: A 'spreadsheet’ for cooperative work.” In
Proceedings of the Conference on Computer-Supported Cooperative Work, p. 115-124,
Portland, Oregon, September 26-28, ACM Press.

Malone, T. W., Grant, K. R,, Lai, K.-Y., Rao, R. and Rosenblitt, D. (1987) “ Semi-structured
messages are surprisingly useful for computer-supported coordination.” ACM Trans Office
Information Systems, 5(2), p115-131, April.

Mantei, M. (1988) “Capturing the Capture concepts: A case study in the design of computer-
supported meeting Environments.” In Proceedings of the Conference on Computer-Supported
Cooperative Work, 257-270, Portland, Oregon, September 26-28, ACM Press.

Markus, M. L. and Connolly, T. (1990) “Why CSCW applications fail: Problems in the adoption
of interdependent work tools.” In Proceedings of the Conference on Computer Supported
Cooperative Work (CSCW '90), Los Angeles, California, October 7-10, ACM Press.

Root, W. R. (1988) “Design of a multi-media vehicle for social browsing.” In Proceedings of the
Conference on Computer-Supported Cooperative Work, p. 25-38, Portland, Oregon, September
26-28, ACM Press.

Sarin, S. and Greif, |, (1985) “Computer based real-time conferencing systems.” |EEE Computer,
18(10), p33-45.

Stefik, M., Bobrow, D.G., Foster, G., Lanning, S. and Tatar, D. (1987) “WY SIWIS revised:
Early experiences with multiuser interfaces.” ACM Trans Office Information Systems, 5(2),
147-167, April.

Tang, J. C. (1991) “Findings from observational studies of collaborative work.” In S. Greenberg
(ed.): Computer Supported Cooperative Work and Groupware, Academic Press, London.
Originaly published in Int J Man Machine Sudies, 34(2), February.

Tatar, D. G., Foster, G. and Bobrow, D. G. (1991) “Design for conversation: Lessons from
Cognoter.” In S. Greenberg (ed.): Computer Supported Cooperative Work and Groupware,
Academic Press, London. Originally published in Int J Man Machine Sudies, 34(2), February.

Thimbleby, H. (1980) “Dialogue determination.” Int J Man Machine Studies, 13.

Chair Manager

N

v

Turntaker Turntaker Turntaker

%ruser interface user interface user interface Q

Figure 1. Main architectural components of Share

Prenptive floor contrc

(Acquire floor) (Leave conf er)n@e Term nat e conf}

=

Saul hol ds the floor
Judy is observing
Akbar is observing

This panel contains the shared view

ForEach participant
if participant[i] .id = self
SendToChairManager (SETFLOORPERMISSONS, participant[i].id, “ Write”)
ese
SendToChairManager (SETFLOORPERMISIONS, participant[i].id, “ Observe”)

Figure 2 Pre-emptive floor control: the interface and the protocol sent for pre-
empting control

Presenter’s interfac

=

e e

George Ruth Akbar Roslyn Adam Maurice

(End Conference)

This panel contains the shared view

3a. Theinterface for the seminar presenter

Parti ci pant Rut

2

a7

(George is in control)

This panel contains the shared view

3b. The interface for a participant who can only request the floor

Figure 3. Two rolesfor participantsin a centralized floor control interface.

