MAINTAINING B-TREEN ON AN EREW PRAM*

LISA THIGHAM AND BRIC SCHRNK

h"“ﬂul el g teal algorithma for mainiaining geneisl B irees

|1I (0 HRUW FRAM we presontod Glven o I trme of order b with m

!.‘ N treondds, e sl Geupectively, inest and deloie) problem

I Ry besobeed on ann processor KREW PRAM i O(log n +

huu, eyl Do o logy m)) and OK Qog, 1 log, m)))
fhue

| INTRODUCTION

I tmke the fllest wwe of largo scale synchronous paral-
fid nefiines utgorithons that efficlontly malntain search (reos
i ‘mm“rl W it This papoer prosents algonithms for
OIRLIERLI g 1 reen o an i procossor exclusive remd exclu-
Alvw wille gannttel unodom accoss mchine (KREW PRAM),

A IHAM Le i collection of tndependent synchronized se-
(AL s w it andgue identiflens and u shared global
Ny Do esch e step, each processor cun read a loca-
flonn i thie global memory, pecform s loeal computation, and
(et bt u docation tn the global memory. In an EREW
PIAM s tws o eswons iy simultaneously secess the same
ety focation fon eliher eading or writing. Karp and Ra-
e hinidean | 7] provide an overview of PRAM rewulis,

AW tee ol onder b s g search (ree stislylng: (1) every
(il fiww ot bchitdren; (2) overy node excopt the root
Wik e fenven s at feant b7 2 childeen; (3) o non: leaf node
WAL hey b o 8 Ontldeen; and (4) all leaves nee 1 the same
feeed ool the e T hieee me two common vatants of the B-tree
HEEIE Lo geneod 10 e, keys are stored Inall nodes; in a
Wt kyw e stored only In the leaves. Comer 4] provides
W Renet Al ieview o the B8 nee Histure

Ihrnghont thie paper the number of keys i the B-tree s
ettt iy o thie number of PRAM processors by n. Given
Wy ki, A il 1Y e B, we dofine theee problems,

Lhe o NO’ Seateh Problem, Foreach f, 1 - ¢ < n, find the
e v o Bttt (VLA B i 8 then k, 18 in v, and (2) I
A it i B then o 1 the leat of B at which the insenion of &
it ke pobnce

Ll 1 Wey tnsertlon Problem. Modify B 10 o new B-treo
Whtoim kisyw e thes keys ol 8 union 1 TT Y

Lhe 0 Mey Deletton Problem. Modily # 10 new B tree
whir kopd we the beyw of B minus [k, L k,)

LT T suppattedin pait by o eaearch grant and a postgraduate
w holwerhilgs hoth o the Nataral Sciences and g inesting Reseaich Couneil
al Canaide

‘The problem of allowing muliljle asy i i P e
to concurrently sccons and upedites 1 tgers i i dlileaae)
in the concurrent databuse literutiie 906 hat)-f“.!""h-’ l~|m1
uil Lehman (9], Lehman and Yu | 1] Haple H]Fanin am
Shasha | 11], Shasha and oodiman | 1) and W fhl aml Wuur
[20] uw well an some earller papen |9 4 14 o appiosh
tuken in all of these pupers in 1o allow el i s i apply
read and write locks (o B tree nodes 1o precent il aflions
that would lead o incorrect reanlin: T the nagi s s iing
the problem is complicated by the necenalig ul niniminting 4
wearchable structure at all timew despite b AL it iy
b Introduced by updaten that are i progrean i ime the
emphasis in these papern Is 10 gumaiten «isfie s 0 e
presence of asynchrony, However, te 1o 'IIIU‘HM ’uum«nlml
In these papors are inwufficlent 1o guntantee HIH oIy
when the number of upkiating prow enees i bige Wihes 1)
In easily confirmed that i the woist « ae thean flgisithing i
{ulre O(n) steps Lo complete n shmidinneons pasalb. isieions
or delotions, Weihl and Wang | 20] prarviide o sk fo
concurrent dictionary algorithing tha g)yes igh ey
for reads, even in the presence of multiplr e Huweve)
the cont of pure updates can still b mimle Hont 10 ol
the techniques of this paper saplol sy by ismlve the
ugprogate problems of n shmulintieony spre e s iong o
theletlons in & cooperative mannes, while nenliling ks en
tirely. Since only one of thews ilire |m:|‘vlmln A (1 Dy sodveed
At atime, further gain in efficlency ne mmls by abnidming ol
fempts to maintain a soarchable st tp: durig i cssdion
ol the Insertion and delotion algenlthine

‘There has been lens research on matntensne . b 310 fes
i synchronous environment. Waung aid ¢ hien | 18] 1 mahibe
the problem of constructing a n node 1 e b bt 11 4
t tree) from a sorted urry of # datn elements Wang ¢ hen
el Yu [19] extond this construction @ gewsigl B s Hhey
deowcribe an n / log log n processn Hiiiw PHAM alyiithin
that takos O(log log n) thme, un well py i o possswinn § HhwW
(voncurront road oxclusive weite) 14 AN ulpen |Hin that tahva
O(1) time. "Thelr algorithm can b e iy sislvs Hi i e
{nwertion problem on an m node I8 1ee i Ol 1) Hin
o an (m + n)-processor EBREW PRAM hy sttt g the
(ree from scratch. (The extra time mnl P eagiibn i 1 Wil
(o nort). Shibayama [17] glven nn algorilims 1l ineigen 18
" trees of order 3 (2.1 trees) with alsen st ik g with
My < my intoa single tree In Oy 1l niy) HHB R
pocessor HREW PRAM. Paul, o1 af |1 V] sl st i ensin

MAINTAINING B-TREES ON AN EREW PRAM 2

FIGURE 1. Representation of a B-tree node. Nodes are outlined with a dotted line. Records A, C and D, have
the head flag set to true, record B has the tail flag set to true, and record D has the last flag set to true.

EREW PRAM algorithms for the n key search, insertion and
deletion problems on a 2-3* tree. Each of their algorithms has
time complexity O(log n + log m).

This paper presents n-processor EREW PRAM algorithms
for the n key search, insertion and deletion problems for gen-
eral B-trees of order b that achieve O(logn + blog, m) time
for searching, O(b(logn + log, m)) time for insertion, and
O(b*(log, n+ log, m)) time for deletion. While our algorithms
share some similarities with those of Paul, et. al, and achieve
the same time complexity for constant b, they differ because
our algorithms

(1) apply to standard B-trees (rather than B*-trees),

(2) apply to B-trees of any order (rather than only order 3),

(3) require only O(n) work space (rather than ©(n log n)).

Our algorithms rely upon implementation details and in-

put preprocessing outlined in section 2. Sections 3, 4 and 5
present, respectively, the search, insertion and deletion algo-
rithms. Section 6 briefly summarizes the new contributions of
this paper and adds some additional observations.

2. B-TREE REPRESENTATION AND INPUT PREPROCESSING

Throughout this paper, b denotes the order of the B-tree, and
L denotes the maximum level, with the leaves at level 0 and
the root at level L. A B-tree node v withkeys c; through ¢; and
pointers go through ¢, is instantiated as a doubly-linked list of /
records, ry through r;. Each record r; in this list contains the key
ci (stored in r;. key), three flags (7;. head, ;. tail and r;. last) and
four pointers (r;. data, r;. child, 7;. pred and r;. succ). Figure 1
illustrates this structure. Pointer ;. data points to the data in
global memory associated with key c;. It is assumed that this
field is set whenever r;.key is set and is henceforth ignored.
Pointer r;. child points to the first record of the node pointed at
by gi—1. Fori > 1, r;. pred points to the record for key ¢;_;.
Pointer r;. pred points to the record corresponding to the parent
of node v. For i < I, r;. succ points to the record for key c;q;.
Pointer ;. succ points to the first record of the node pointed at
by ¢:. The flag r;. head (respectively, r;. tail) is set if and only
if r; is the first (respectively, last) record of a B-tree node. The
last record of a node has two children that may compete for
concurrent access to the parent record. The /ast flag is added
to arbitrate control between two such children. Hence the flag

r;.last is set if and only if r; is the head of node v and v is
the second child of the last record of the parent of v. Each
record also contains a scratch field used by our algorithms for
marking and communication.

With just a reinterpretation of pointers but no change in
structure, this representation of a B-tree with L levels converts
to a binary tree with depth at most bL. When we wish to
emphasize this interpretation we will use the names r;. leftchild,
r;.rightchildand ;. parent as synonyms for 7;. child, 7;. succ and
r;. pred respectively. Our search algorithm heavily exploits this
correspondence.

By preprocessing with Cole’s Merge Sort [3] to sort the
input keys, and then with prefix sums [10] to remove dupli-
cates, we can assume that input keys are sorted and distinct.
This costs O(logn) time on an n-processor EREW PRAM,
This is a non-restrictive assumption because our algorithms
use O(logn + logm) time and n-processors for B-trees with
constant order b. Therefore, throughout the paper &, ..., ky
denotes the sorted sequence of distinct inputs.

At the beginning of insertion, each processor is allocated
one B-tree record, with the structure described above, to store
the key it is inserting. Similarly, at the end of deletion, each
processor returns the record used to store its deleted key to
the memory pool. This is the only memory management re-
quired by our B-tree maintenance algorithms. The necessary
allocations or deallocations can be performed by an n/ logn-
processor EREW PRAM in O(log n) time using the method of
Higham and Schenk [6].

3. SEARCH

3.1. Informal Overview of the Algorithm. Given the B-tree
representation described in section 2, the search problem be-
comes a search of a binary tree of records.

The search algorithm has three stages. As soon as a proces-
sor completes a stage it continues with the next one. In stage 1
a subset of processors determine the required search result
for packets of keys. In stage 2, broadcast is used to inform
each remaining processor s of the search result for key ;. In
stage 3 synchronization is used to ensure a clean termination.
Stage 1 does the major work of the algorithm and proceeds
in rounds as follows. Initially, the sorted list of search keys
forms a single packet residing at the root of the search tree.

MAINTAINING B-TREES ON AN EREW PRAM 3

Subsequently, each packet travels down the tree to its search
destination splitting en-route whenever keys in the packet fol-
low different paths. At each step a simple computation assigns
one of four labels to each packet. It will be proved that at any
step, for any node, there resides at most one packet of each
label type. Hence, by scheduling one time slot for each label
type, simultaneous access to a record is avoided.

Three arrays, POSITION, DIRECTION and FINISHED, each
of size n, are used. If the search for key &; is successful,
POSITION[] points to the record containing key k;, otherwise
it points to the leaf record of the binary tree where the search
terminated. In the first case, DIRECTION[] is set to found.
Otherwise it is set the left or right depending on whether
ki is less than or greater than the key of POSITION(:]. The array
FINISHED is used to coordinate termination.

3.2, Formal Description. Define a packer of keys, de-
noted pkt[i..j], to be the subsequence of keys &; through k;

inclusive. Define a labeling function A : {1,2,3,4} -
{1,2,3,4} by:

A = 1,

A2) = 4,

A(3) = 1, and

A@d) = 4

All actions ascribed to a packet pkt[i ..j] are performed by
the i processor. We say that processor i manages packet
pkt[i..j].

(1) (Find) Stage 1 proceeds in rounds and is described in-
ductively. At the beginning of round 1, pkt[1..a] has
label 1 and resides at the root of the tree. Suppose that
at the beginning of round ¢ some pkt[s .. s + /] resides at
record r. Then either

(@) kst < r.key in which case the search for all keys in
pkt[s.. s+ {] should continue in the left subtree of r,
(b) & > r.key in which case the search for all keys in
pkt[s .. s + {] should continue in the right subtree of
r,or
(€) ks < r.key < ke in which case pkt(s..s + 1] is said
to straddle r.
In case (a) (respectively, case (b)), if the left (respectively,
right) subtree of r is non-empty, then in round ¢ processor s
changes the residence of pkt[s .. s+/] tor leftchild (respec-
tively, r.rightchild), and updates the label of pkt[s..s + /]
by applying the labeling function 4 to its current label. If
the left (respectively, right) subtree is empty then proces-
sor s sets DIRECTION(s] to left (respectively, right),
sets POSITION(s] to r, and is then finished stage 1. In case
(c), if I > 1 then pki[s..s + {] is split into two approxi-
mately equal packets: pktls..s + |I/2|] with label 2 and
pktls+ |1/2] + 1..5 + {] with label 3. Processor s alerts
processor s+ |//2| +1 to manage pkt[s+ [//2]|+1..5s+1]
in round ¢ + 1. Each packet remains resident at record r.

If I = 0O then processor s sets DIRECTION[s] to found,
sets POSITION(s] to r, and is then finished stage 1. To
avoid read conflicts each round of stage 1 is executed in
four steps. A processor managing a packet with label i
executes in step i only.

(2) (Broadcast) Suppose processor s manages pkt[s.. s + /]

at the beginning of stage 2. Then POSITION[s] and
DIRECTION(s] contain the search results for all keys
in pkt[s..s +[]. Using a standard broadcast mech-
anism POSITION{s] and DIRECTION(s] are copied into
POSITION[¢] and DIRECTION([i] for every i such that s <
i < s+1asfollows.
Say that processor s manages some packet pkt[s..s + /] at
round ¢ of stage 2. If I = 0 then processor s is finished
stage 2. Otherwise, s splits the packet pktfs..s + /] into
two approximately equal packets pkt[s..s + |I/2]] and
pkt[s+ [//2] +1..s+1I], notifies processor s+ [/ 2] +1to
manage pkt{s+ |//2] +1..s+[] inround ¢ + 1 of stage 2,
and copies DIRECTION(s] into DIRECTION(s + (/2] + 1],
and POSITION(s] into POSITION[s + |1/2] + 1].

(3) (Termination) Various processors typically complete
stages 1 and 2 at different times. A simple synchroniza-
tion mechanism is employed to ensure the simultaneous
termination of all processors, even when the size of the B-
tree is not known. Specifically, processor s marks location
s of a global FINISHED array only when it has completed
stage 2 and processors 2s and 2s + 1, if they exist, have
marked their corresponding positions in the FINISHED ar-
ray. The algorithm terminates (using a broadcast) when
FINISHED(1] is marked.

3.3. Correctness. Given that the search algorithm is free of
read conflicts, correctness for an EREW PRAM would follow
directly from the following easily established claims.

Claim 3.1. If a processor s completes stage 1 managing
pkts .. s+] for some! > 0, then POSITION(s] and DIRECTION[s]
contain the required search result for all keys in pkf[s ..s +1].

Claim 3.2. Every process s completes stage 2, and upon com-
pletion POSITION[s] and DIRECTION[s] contain the required
search result for key k.

Claim 3.1 follows from the well established correctness of
the usual binary tree search algorithm. Claims 3.2 is immediate
from the algorithm.

Stages 2 and 3 are clearly free of concurrent reads and
writes. Stage 1 has no concurrent writes. It remains to be
shown that stage 1 is free of read conflicts. The following
labeling scheme is easily extracted from the algorithm.

(1) Initially, pkt[1..n] is labelled 1.

(2) If pktla..d] straddles a record in round ¢ then in
round ¢ + 1 the new packets pkt[a..|(a+d)/2|] and
pkt[|(a+d)/2] +1..d] are labelled 2 and 3 respectively.

(3) If a packet descends one level of the binary tree in round
t, then

MAINTAINING B-TREES ON AN EREW PRAM 4

(a) a packet labelled 1 retains label 1.
(b) a packet labelled 2 is relabelled 4.
(c) apacket labelled 3 is relabelled 1.
(d) a packet labelled 4 retains label 4.

The algorithm schedules four steps per round such that a
processor with label i executes in step i of the round. To ensure
that the n-key search algorithm with this labeling and schedul-
ing is correct for an EREW PRAM, it suffices to establish the
following theorem.

Theorem 3.3. For each round of stage 1, and for each record
r, the packets residing at r have distinct labels chosen from
{1,2,3,4}.

The notation pkt[a .. b] < pkt[c .. d] denotes that the largest
key in pkt{a .. b], ks, is less than the smallest key in pkt[c .. d],
kc. Apacket pkt[a .. b] left-bounds (respectively, right-bounds)
a collection of packets if for every pkt[c..d] in the collection,
either pkt{a..b] = pkt(c..d] or pkt[a .. b] < pkt[c..d] (respec-
tively, pkt[a..b] > pktlc..d]). The following lemma is used
in the proof of Theorem 3.3.

Lemma 3.4. Any packet labelled 1 (respectively, 4) residing
at record r left-bounds (respectively, right-bounds) the set of
packets in the subtree rooted at r.

Proof. The proof is given for packets with label 1. The proof
for packets labelled 4 follows the same reasoning. According
to the algorithm, a packet labelled 1 in round ¢ was labelled
either 1 or 3 inround ¢ — 1. Proof is by induction on the number
of rounds that a fixed packet has label 1. For the basis, suppose
that in round ¢o packet pkt[c .. d], residing at record r, is first
labelled 1. Then either fo = 1 or in round f, — 1 pkt[c..d]
was labelled 3 and resided at p, the parent of 7. If ¢y = 1 then
the lemma follows trivially. Otherwise, it follows from the
algorithm that in round t — 1:

(1) there was also a packet pkt[a .. b] labelled 2 residing at p,
and
(2) pktla..b] and pktlc.d] were formed by splitting
pktla..d], and
(3) a < p.key, and
@) pkey<ec.
Thus, there is no search key & outside of pkt[a .. 5] satisfying
p.key < k < c. So pkt[c ..d] left-bounds the set of packets in
the subtree rooted at r. For the inductive step, suppose that at
round ¢ pktfa .. b] residing at r and labelled 1 left-bounds the
packets in the subtree rooted at r. Then pki[a .. b] left-bounds
both the packets in the left subtree and the packets in the right
subtree of r. So if pkt[a.. 5] descends a level to record g it
left-bounds the set of packets in the subtree rooted at ¢, where
q is either child of r. If pkt{a .. b] does not descend then it is
split in two and the two new packets are labelled 2and 3. =

Proof of Theorem 3.3. Suppose the theorem is false. Let ¢ be
the first round in which two packets with the same label reside
at the same record, and suppose r is one such record. If the

label is 2, then in round ¢ — 1 two packets must have resided
atr each straddling r. key. Since packets never overlap, this is
impossible. The same argument applies to label 3. If the label
is 1, then there must have been one packet labelled 1 and one
labelled 3 both of which descend from p, the parent of 7, to r
inround ¢ — 1. The existence of a packet pkt[c .. 4] with label 3
implies the simultaneous existence of a packet pkt[a .. b] with
label 2 also residing at p. Since packet pkt[a ..d] straddled
and pkt[c ..d] descended, it must be that a < p.key < c. But
by Lemma 3.4, in round ¢ — 1, the packet with label 1 left-
bounds the packets in the subtree rooted at p. Thus the packet
labelled 1 must have moved to the left subtree in round ¢ — 1
and the packet labelled 3 must have moved to the right subtree
in round ¢ — 1. So they could not have descended to the
same record. The same type of argument applies to packets
labelled4. m

3.4. Complexity. Ateach round in stage 1, each packet either
splits into two halves or moves down to a child record. Thus,
all processors must complete stage 1 after at most logn + (b —
1) log,, m rounds. Each round uses four steps and each step
takes constant time. After stage 1 there are a further log n steps
for each of stages 2 and 3. Thus the algorithm completes in
O(logn + blog, m) time.

The results of this section are summarized by the following
theorem.

Theorem 3.5. Then-Key Search Problem foran order b B-tree
containing m nodes can be solved on an n-processor EREW
PRAM in O(log n + blog, m) time.

Notice that the search algorithm determines the required
node in the B-tree and the exact location within the node where
an absent record would be inserted.

4. INSERTION

4.1. Informal Overview of the Algorithm. The algorithm
has four stages. Stage one applies the search algorithm to find
the insertion point for each record. Stage two arranges each
packet of records that share a common insertion point into a
balanced binary tree. The major work of the insertion algo-
rithm is accomplished in stage 3, which proceeds in rounds. In
each round, the root of each binary tree is inserted into a leaf
node thus creating distinct insertion points for the roots of each
subtree. Each node that exceeds the size limit of b — 1 after
the record insertions is reconfigured into a root node with one
record and two children, and the root is scheduled for insertion
into the next level of the tree in the next round. To avoid si-
multaneous access of records, the progressive insertions of the
roots of the binary insertion trees are separated by 2 rounds.
Stage 4 ensures a clean termination.

MAINTAINING B-TREES ON AN EREW PRAM 5

4.2. Formal Description.

(1) (Search) Apply the search algorithm of section 3. We
assume that no insertion key is already in the B-tree.
(Otherwise, follow the search stage with a constant time
step to do the updates, and a logarithmic time parallel
prefix operation to compact the remaining insertion keys.)
Each processor p records key k, in the record r,, which
is allocated as discussed in section 2. The pointer fields
rp.child and r,.succ are initialized to null. The pointer
rp.pred and the flags r,.head, r,.tail and r,.last will be
initialized during remaining steps of the algorithm.

(2) (Insertion scheduling) Define an insertion interval
I[i,/] to be the maximum interval [i,j] such that the in-
sertion points determined by search for keys k; through
k; are identical. That is, I{i,j] is the maximal interval
such that for all p, g in I[%, /], POSITION[p] = POSITION{q],
and DIRECTION[p] = DIRECTION[q]. All processors de-
termine if they are an endpoint of an insertion interval
by examining the POSITION and DIRECTION arrays. Pro-
cessors at the head and tail of an insertion interval com-
municate through the scratch field of the record at their
insertion point to determine the insertion interval. Con-
sider any insertion interval I[i,j]. The processors with
indices in [i,7] proceed inductively, as follows, to ar-
range the records r; through 7; inclusive into a balanced
binary search tree called an insertion tree and denoted
T[i, /1. If DIRECTION[i] = left (respectively, right),
then initially processor i manages processors in the in-
terval [i,] to construct a left (respectively, right) subtree
of the record, say r;;, pointed to by POSITION[i]. Let
z = [(i+))/2]. Processor i alerts processor z to doubly
link (using the binary tree interpretation) record r; as a
left (respectively, right) child of ;;. If j > z, then pro-
cessor i alerts processor z+ 1 to manage processors in the
interval [z+1, j] to construct a right subtree of r,. Finally,
processor i manages processors in the interval [i,z — 1],
if any, to construct a left subtree of r,.

(3) (Progressive insertions) This stage proceeds in rounds
starting with round 0. Each round ¢ has a record insertion
step and a node reconstruction step. For i < x < j,
define (x) to be the depth of record r, in the insertion
tree T(i, j1, where 8([(i +j)/2]) = 0. Initially, processor
P is scheduled for round 28(p) and manages record r, for
insertion at level 0 of the B-tree.

(a) (Record insertion) For each processor p scheduled
for round 1, processor p inserts the record it is man-
aging, r,, into the B-tree at the position determined
by r,. parent and 7,.last, which were set during the
construction of T, j]. First left children are inserted
then right children. Each of these steps requires only
local redirection of pointers and updating of flags,
and is specified by procedure 1 in the appendix.

(b) (Overflow correction) For every node v that re-
ceived at least one insertion in the record insertion

step of round ¢, the set of processors that inserted
into node v cooperate to elect a leader, L,, as fol-
lows. Each processor that inserted a left child into
the node list, marks for election the record it inserted.
Next each processor that inserted a record walks up
the node list toward the head of the node until either
it encounters a marked record, other than the one
it inserted, or the head of the node. The processor
reaching the head of the node is the leader. The
other participants in the leader election are finished
stage 3. For each node v that received at least one
insertion, processor L, determines the new size s,
of v, removing the election marks in the process. If
s, < b then L, is finished stage 3. Otherwise, v has
grown too large so L, splits v into three pieces: the
middle record, say r/, those records that precede 7/,
and those records that follow r. These pieces are
restructured into a depth 2 B-tree with root 7. Again
this involves only local redirection of pointers and
setting of flags, and is specified by procedure 2 in
the appendix. Let /(v) be the level of v. Ifi(v) = L
then v was the root of the B-tree so L, updates the
global root information and is then finished stage 3,
otherwise processor L, is scheduled for round ¢ + 1
and manages r’ for insertion at level I(v) + 1.

(4) (Termination) Apply the same termination procedure

as used in stage 3 of the search procedure.

4.3. Correctness. We first show that for every round ¢, all
records scheduled for insertion in round ¢ have distinct insertion
points. In round 0, each root of an insertion tree is scheduled
for insertion and has a distinct insertion point among the leaves
of the B-tree. Given the insertion of a depth d record r of an
insertion tree during round ¢, the depth d + 1 children of r,
which are scheduled for insertion at round ¢ + 2, have distinct
insertion points because they lie on either side of 7. Insertions
into internal nodes are also at distinct locations, because the
overflow correction step promotes at most one record of a node
for insertion into its parent.

Right insertions always follow Left insertions so no simul-
taneous access of the same record can occur within one level.
The algorithm separates successive insertions into the leaves
of the B-tree by two rounds. Thus if there are insertions at
level i in round ¢ then there are none at level i — 1 or level
i+ 1inround ¢. Thus insertions at adjacent levels do not oc-
cur in the same round. So simultaneous modification of the
same pointer is avoided and the algorithm has no read or write
conflicts.

Finally we show that the B-tree structure is maintained.
Consider any collection of insertions into a correct B-tree node
v, at level ! with z < b — 1 records. There are at most z + 1
insertion points for a total of at most 2b — 1 records. Hence,
after overflow correction there is either one node v at level [
with at most b — 1 records, or there are two new nodes of size

MAINTAINING B-TREES ON AN EREW PRAM 6

at most b — 1 at level /, and one parent record, promoted for
insertion into level [+ 1. This property suffices to show (by a
simple inductive argument) that when the insertion algorithm
terminates, the B-tree data structure is reestablished for the
whole tree.

4.4. Complexity. A complexity of O(logn + blog, m) has
been established in section 3 for stage 1. Clearly, stage 2 com-
pletes in O(log n) steps. The maximum depth of any insertion
tree is logn. Thus in stage 3 each record of each insertion
tree is scheduled for insertion at level 0 by round 2 log n. Any
insertion at level / at round ¢ that results in a node splitting,
creates a new insertion at level / + 1 scheduled for round ¢ + 1.
Hence after at most 2 log n + log, (m + n) rounds the last inser-
tion is complete. Since each round completes in O(b) time, the
insertion algorithm takes O(b(log n + log;, m)) time.

The results of this section are summarized by the following
theorem.

Theorem 4.1. The n-Key Insertion Problem for an order b
B-tree containing m nodes can be solved on an n-processor
EREW PRAM in O(b(log n + log, m)) time.

5. DELETION

5.1. Informal Overview of the Algorithm. The algorithm
has four stages. Stages 1 and 2 find and mark each record
that is to be deleted by applying the search algorithm. For
each marked internal record, the succeeding record (which is
necessarily the head record of a leaf node) is also found. The
deletions and required rebalancing are performed in stage 3
which proceeds in rounds. In each round, each marked internal
record swaps its key and data pointer with those of the first
unmarked record in the succeeding leaf node if one exists.
Otherwise, to avoid simultaneous access or records, the marked
internal record waits three rounds before trying again to swap.
All marked records in leaf nodes are removed. If any node
becomes too small after the deletions, then that node, its parent
and its siblings restructure themselves so that the children are
large enough. If the parent is now too small, it schedules
itself as a child needing restructuring in the next round. In
the case that local restructuring results in an empty parent,
dummy nodes containing only a parent and a child pointer and
a flag to indicate that it is a dummy node serve to propagate
the necessary restructuring upwards. Stage 4 ensures a clean
termination.

5.2. Formal Description.

(1) (Search) Apply the search algorithm of section 3. If
deletion key k, is not in the B-tree then processor p ter-
minates. Each remaining processor p manages the record
r,, specified by POSITION[p].

(2) (Partial scheduling) Each processor p, marks r, for
deletion. If r, is in an internal node then p finds the first
record that follows r,, in sorted order and retains a pointer
m, to it. The details are specified in procedure 3 in the

appendix. Before proceeding to stage 3, processors are
synchronized as in stage 3 of the search algorithm.

(3) (Progressive deletions) Stage 3 proceeds in rounds be-
ginning with round 0. Initially all processors are sched-
uled for round 0. Each round ¢ has a record deletion step
and a node reconstruction step.

(@) (Record deletion) Each processor p managing a

record in an internal node, examines the node v,
whose head is pointed to by m,. If any record in
vp is not marked for deletion, then p swaps the key
and data in record r, with the key and data in the
first unmarked record, say s, in v,, becomes the
manager of record s,, unmarks r, for deletion and
marks s, for deletion. Otherwise all records in v, are
already marked for deletion so p sets 7, to m,.pred
and schedules itself to continue at the start of round
t+4.
Next all processors managing a record in a common
leaf node v cooperate to elect a leader, L, as in stage
3 step 2 of the insertion algorithm. Each processor
that does not become a leader is finished stage 3.
Each leader L, deletes from v the records marked for
deletion, removing the election marks in the process.
If all records in v are deleted, then L, replaces v with
a dummy node constructed out of v’s first record.

(b) (Node reconstruction) All leaders of nodes with a
common parent, say u cooperate to elect a chief C,,
in three steps as follows. Let L, be any such leader of
anode vand let r, be the record in node p containing
the pointer to node v. First, if v is the last child of
u then L, marks r, for election. Second, if v is not
the last child of i and r, is unmarked for election
then L, marks r, for election. Finally, all leaders
that marked a record for election elect a chief as in
the leader election in stage 3 step 2 of the insertion
algorithm. Each leader that does not become a chief
is finished stage 3. Each chief C,, collects all records
in node u and its immediate children (except dummy
nodes), removing election marks in 4 in the process.
These records are formed into a B-tree B, of height
atmost 2. If B, has height 1 and y is not the root of
the B-tree, then a dummy root node with no keys is
used to pad to height 2. All grandchildren of u are
reattached to B, in order. Let u’ denote the root of
B,,. If 4 was not the root of the B-tree, then chief C,
attaches p’ in place of u at u’s parent. Otherwise,
C,, updates the global root information to '
Finally, if u’ has fewer than 5/2 — 1 keys, and u
was not the root, then C,, is the leader of node ' in
round ¢ + 1. Otherwise, C, is finished stage 3.

(4) (Termination) Synchronize the processors by applying
the termination procedure of stage 3 of the search pro-
cedure. Each processor marked exactly one record for
deletion that was successfully deleted. Before terminat-

MAINTAINING B-TREES ON AN EREW PRAM 7

ing the algorithm, the processors cooperate to return these
records to the memory pool. As noted in section 2, this
can be accomplished in O(log n) time.

5.3. Correctness, Correctness of stage 1 (Search) and stage
4 (Termination) are already established in section 3 so we
consider only stages 2 and 3. Let B, denote the structure
existing at the end of round ¢ of stage 3. First consider the
operation of the algorithm when all records to be deleted reside
in the leaves of the B-tree.

Lemma 5.1. If all records to be deleted reside in the leaves
of the B-tree, then at the end of round ¢ of stage 3, all leaders
reside at level t + 1 and a node has a leader if and only if it has
fewer than b /2 — 1 records.

Proof. Initially all leaders are at level 0. During round ¢, either
a leader at level ¢ becomes a chief at level ¢ + 1 or is finished
stage 3 and is therefore permanently out of contention. Next
a chief at level ¢ + 1 becomes a leader for round ¢ + 1 if it has
fewer than b/2 — 1 records or it is finished stage 3 and again
is permanently out of contention. B

Lemma 5.2. If all records to be deleted reside in the leaves
of the B-tree, then at the end of round ¢ of stage 3 for any
t < L -2, each subtree at level t of B, is a correct B-tree of
height t + 1 whose root contains betweenb/2 — 1 and b — 1
records.

Proof. The proof is by induction on the round number. Since
the basis (¢ = 0) is clear from the algorithm, assume that at the
end of round ¢ < L — 3, each subtree at level ¢ is a B-tree of
height ¢ + 1 whose root contains between b/2 — 1 and b — 1
records. By lemma 5.1 each node at level ¢ + 1 either has fewer
than b/2 — 1 records and a resident leader or has between
b/2—1and b — 1 records and no resident leader. Consider a
node vat level r+2. If v has no child with a resident leader then
there is no restructuring within the subtree rooted at v during
round ¢+ 1. Hence at the end of round ¢ + 1, each child of v is
a B-tree of height ¢ + 2 whose root contains between b/2 — 1
and b — 1 records.

Otherwise v has at least one child with a resident leader.
Thus a chief will be elected for v during round ¢ + 1. In this
case we need to show that the chief can reconstruct the subtree
B, rooted in the place of v in such a way that each child of v/,
the new root, has size between b/2 — 1 and b — 1, and each
grandchild of v has a unique attachment point and sorted order
of all records in the subtree rooted at v is maintained. Since no
restructuring has progressed beyond level ¢+ 1, node v contains
at least b/2 — 1 records. Thus there are enough records to
construct at least one non-root B-tree node. In the sorted order
of the records, each record in B, falls between the records of
two adjacent grandchildren of v. Thus the sorted order of the
structure By, is maintained and the number of attachments
points in B, is exactly equal to the number of grandchildren of
v. H

Correctness in the case when all deletions are at the leaves
follows immediately from lemma 5.2. Now consider the gen-
eral case where records in internal nodes are being deleted.

Lemma 5.3. At the beginning of every roundt, ifr, is marked
for deletion andr, is in an internal B-tre¢ node then r, points to
the first record s, of some node v,, where (a) s, is the successor
of r, in the sorted order of records and (b) v, is a leaf node.

Proof. First observe that since sorted order is given by the
inorder traversal, each internal record is followed in the sorted
order by an external node. Thus it suffices to establish (a),
which is done by induction on the round number. The basis
(t = 0) is clear from the algorithm, since =, is set to the
successor of 7, in the sorted order during Partial scheduling.
Assume that r, is marked for deletion and resides in an internal
node ¥, at the beginning of round and that =, points to the
first record s, of some node v,, where s, is the successor of r,
in the sorted order. If the contents of r, are swapped with the
contents of a record in v, during round ¢, then the deletion is
completed, r, is unmarked for deletion, and the lemma holds.

Otherwise all records in v, are marked for deletion. There
are two case to consider, depending on the level of 7,. If r,
resides at some level greater than level 1, then after round ¢, 7,
still resides in an internal node. During round ¢ pointer ,, is set
to the first record g, of the parent of v,. But since all records
in v, are deleted in round ¢, record g, becomes the immediate
successor of 7, and is guaranteed to be in a leaf node after the
node reconstruction of round ¢ so again the lemma holds. If ,
resides at level 1 and r, is the last record in a node, then after
node reconstruction, 7, is guaranteed to be in a leaf node for
round ¢ + 1, so the lemma holds. If r, is not the last record
in a node, then =, is reset to r,.succ, which is the successor
of r, in the sorted order since all records in the node between
these two were deleted during round 1. Furthermore, after node
reconstruction, either r, or rp.succ will be in a leaf node for
round ¢ + 1, so the lemma holds. m

It follows from lemma 5.3 that each record marked for
deletion is eventually deleted. The algorithm can be viewed
as waves of deletions pipelined through the B-tree. There are
three levels between successive waves since when an inter-
nal record fails to swap with a leaf record during round ¢, it
reschedules itself to try again at the start of round ¢ + 4. Since
in round ¢, a chief at a node at level i updates records only at
levelsi — 2 through i + 1 inclusive the separation of three levels
ensures that the pipelined waves do not interfere with each
other. Thus the output of the algorithm is the same as running
each successive wave to completion, and hence by lemma 5.2,
the B-tree structure in maintained.

It remains to show that the algorithm is free of read and
write conflicts. Stage 1 is conflict free by the proof in section
3. Stage 2 is conflict free because for each internal record r,,
m, points to a unique record. The first two steps of the chief
election prevent simultaneous marking by the two children of

MAINTAINING B-TREES ON AN EREW PRAM 8

the last record in the node u (all other records have one child).
The leader election and the remainder of the chief election are
clearly conflict free. The separation of successive waves of
deletion by three levels guarantees the remainder of stage 3 is
conflict free.

5.4. Complexity. Stage 1 requires O(logn + blog, m) time.
Stage 2 requires O(log, m) time to find candidates for swap-
ping, and O(log n) time to synchronize processors. Stage 4
requires O(log n) time. Processors that first become leaders in
round ¢ of stage 3 finish the stage no later than round ¢ +log, m.
New leaders are introduced only when a swap of an internal
record and a leaf occurs.

Claim 5.4, All internal records marked for deletion have been
swapped with records in leaf nodes by round4 [log,,,_, n].

Proof. Any internal record unable to swap must be blocked
by at least /2 — 1 records that will be deleted in the current
round. Therefore, all swap are achieved within [log,,,_, n]
attempts and a new attempt is made every fourthround. W

It follows that stage 3 completes in O(log, m + log, n) rounds
and it is easily established that each round completes in O(52)
time.

Theorem 5.5, The n-Key Deletion Problem for an order b
B-tree containing m nodes can be solved on an n-processor
EREW PRAM in O(b*(log, n + log, m)) time.

6. CONCLUDING REMARKS

Our algonthms differ from that of Paul, e¢. al [13] in several
respects. Our search algorithm searches a general B-tree; theirs
is restricted to a 2-3* tree. While their algorithm could be
extended to a B-tree of order b, the description of the algorithm
would become more complex as b increases. We achieve a
simpler description that is simultaneously general for B-trees
of any order, by exploiting the binary tree interpretation of our
B-tree representation. Another difference is that in each round
of stage 1 a packet either splits or moves to a new location. In
their algorithm packets can both split and move in the same
round. These simplifications facilitate a precise description
and proof of the scheduling required to avoid read conflicts.
Although Paul, et. al prove that in each round there are most
four packets at a node of the 2-3* tree, they do not show
explicitly how to schedule operations on these four packets
without read conflicts. The presence of data in internal nodes
complicates insertion and deletion over that of Paul, et. al so
our algorithms for these operations are more elaborate than
theirs. Our insertion algorithm allocates only one record to
each processor. Thus the work space is only O(n) (rather than
6(nlogn)).

In our algorithms the nodes of the B-tree are structured as
lists. Further efficiency could be achieved for large values of
b by structuring the nodes themselves as a 2-3 tree (a B-tree
with b = 2), however, using a 2-3 tree initially, instead of a

large value for b, provides better constants. This points out a
potentially interesting open problem. In the sequential setting
large values of b are used to offset the expense of obtaining
data from secondary storage at an increase in the expense of
searching in fast primary storage. Can similar reasoning be ap-
plied in the parallel case? What is meant by secondary storage
on a PRAM? The constant in the insertion algorithm can be
improved somewhat at the expense of more involved proofs of
correctness by structuring the insertion tree on the fly, causing
the computation of stage 2 to overlap that of stage 3 after one
step. As well, in stage 3 of the deletion algorithm, successive
waves of deletion can be scheduled with a separation of only
two levels, as opposed to three, but more care must be taken
to ensure that pointers are not simultaneously modified.

REFERENCES

. Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, Data structures
and algorithms, Addison-Wesley Publishing Company, 1983.

- R. Bayerand K. Unterauer, Prefix B-trees, ACM Trans. Database Systems
1(1977),n0. 2, 11-26.

. Richard Cole, Parallel merge sort, SIAM J. Comput. 17 (1988), no. 4,
770-785.

4. Douglas Comer, The ubiquitous B-tree, Comput. Surveys 11 (1979), no. 2,
121-137.

. G.Held and M. Stonebraker, B-trees reexamined, Comm. ACM 21 (1978),
no. 2, 139-143.

6. Lisa Higham and Eric Schenk, Memory initiali:

an EREW PRAM, In preparation.
. Richard M. Karp and Vijaya Ramachandran, A survey of pamllel algo-
rithms for shared-memorymachines, Handbook of Th i
Science (J. van Lecuwen, ed.), vol. A Elsevier Science Publuhen Ams-
terdam, The Netherlands, and The MIT Press, Cambridge, Massachuseus,
US.A,, 1990.

. Donald E. Knuth, Sorting and searching, The Art of Computer Program-
ming, vol. 3, Addison-Wesley Publishing Company, 1973.

. H. T. Kung and Philip L. Lehman, Concurrent manipulation of binary
search trees, ACM Trans. Database Systems 5 (1980), no. 3, 354-382.
10. R. E. Ladner and M. J. Fischer, Parallel prefix compuiation, J. Assoc.

Comput. Mach. 27 (1980), 831-838.

11. Vladimir Lanin and Dennis Shasha, A symmetric concurrent B-tree algo-
rithm, Proceedings of the Fall Joint Computer Confi (Washington,
DC, USA), IEEE Comput. Soc. Press, November 1986, pp. 380-389.

12. P. L. Lehman and S. Bing Yao, Efficient locking for concurrent operations
on B-trees, ACM Trans. Database Systems 6 (1981), no. 4, 650-670.

13. W. Paul, U. Vishkin, and H. Wag Parallel dicti ies on 2-3 trees,

Lecture Notes in Computer Science 143: Proceedings of the 10th Col-
loquium on A , L and Programming, Springer Verlag,
1983 pp. 597-609.

14. Ychoshua Sagiv, Concurrent operations on B*-trees with overtaking, J.
Comput. System Sci. 33 (1986), 275-296.

15. B. Samadi, B-trees in a system with multiple views, Inform. Process. Lett.
5(1976),no. 4, 107-112.

16. Dennis Shasha and Nathan Goodman, Concurrent search structure algo-
rithms, ACM Trans. Database Systems 13 (1988), no. 1, 53~90.

17. Etsuya Shibayama, A fast paralle! merging algorithm for 2.3 trees, Pro-
ceedings of the RIMS Symposia on Software Science and Engineering
11, Lecture Notes in Computer Science, vol. 220, Springer Verlag, Bertin,
New York, 1983/1984.

18. Biing-Feng Wang and Gen-Huey Chen, Cost-optimal parallel algorithms

for constructing 2-3 trees, . Parallel and Distributed Comput. 11 (1991),

257-261.

—

[

w

(2.3

and allocation on

~

oo

o

MAINTAINING B-TREES ON AN EREW PRAM

19. Biing-Feng Wang, Gen-Huey Chen, and M. S. Yu, Cost-optimal parallel

20.

algorithms for constructing B-trees, Proceedings of the Intemational Con-
ference on Parallel Processing (Washington, DC, USA), IEEE Comput.
Soc. Press, August 1991, pp. 294-295.

William E. Weihl and Paul Wang, Multi-version memory: Sofiware cache
management for concurrent B-trees, Proceedings of the 2nd IEEE Sym-
posium on Parallel and Distributed Processing (Washington, DC, USA),
IEEE Comput. Soc. Press, December 1990, pp. 650-655.

7. APPENDIX

Procedure 1: Inserting records into a node.

if rp is a left child (7,.last is false) then
Set rp.head to 7,.pred.head.
Set r.tail to false.
Set rp.pred.head to false.
Set r,.last to r,.pred.last.
Set r,.pred.last to false.
Set r,.succ.pred to r,.pred.
Set 7,.pred.child to r,.succ.
Set r,.succ to r,.pred.
Set rp.pred to r,.pred.pred.
Set r,.succ.pred to point to 7,.
if r,.last is false and r,.head is true then
Set r,.pred.child to point to 7.
else
Set r,.pred.succ to pointto r,.
end if
end if
if 7, is aright child (r,.last is true) then
Set r,.pred.tail to false.
Set r,.tail to true.
Set rp.last to false.
Set r,.head to false.
end if

Procedure 2: Splitting a B-tree node.

Let r be the first record in the node and let 7 be the
middle record in the node.
Set 7 .succ.head to true.
Set ' .succ.last to true.

Set 7’ last to r.last.

Set 7.last to false.

Set ’.pred.tail to true.

Set 7.head to true.

Set 7' .tail to true.

Set r.pred.succ to ~’ child.
Set ¥’ child.pred to ' .pred.
Set r/.pred to r.pred.

Set r.pred to pointto 7.
Set 7 .child to point to 7.

Procedure 3: Finding the next record in sorted order given a
record r, in an internal node.

if rp.last is true then
Set 7, to rp.succ.
else
Set , to r,.succ.child.
end if
while 7,.child is not null do
Set 7, to m,.child.
end while

