THE UNIVERSITY OF CALGARY

Development of a
Feature-based Intelligent Design System

by

Swatantra Yadav

A THESIS
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILI MENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING

CALGARY, ALBERTA
DECEMBER, 1998

© Swatantra Yadav 1998

i~

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your fle Votre référence
Our fle Notre reéfeérence
The author has granted a non- L’auteur a accord€ une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette theése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-38648-1

ABSTRACT

This research focuses on developing a feature-based intelligent design
system for improving the efficiency of product modeling. In this system, features
are used as primitives for modeling products. Features are represented at two
different levels — class and instance levels, corresponding to standard product
library and special product data respectively. Instance features are generated
using class features as their templates. Both the qualitative descriptions and
quantitative descriptions are preserved in the features. The product described by
features is associated with a 3D geometric model for representing the product
geometry. A knowledge-based system has been developed for automated
generation of instance features. The reasoning efficiency has been improved by
introducing an inference mechanism that can select only partial knowledge base
and database. The system has been implemented using Smallitalk, C++, and 3D
Studio MAX. An industrial application has been developed using this system for
designing building products.

il

ACKNOWLEDGEMENTS

First of all, | would like to thank my supervisor, Dr. D. Xue, for his excellent
guidance and untiring support during the past 2 years. It has been a learning
experience for me working with him, not only in academics, but also in other
aspects of life. |- would like to thank Dr. D. H. Norrie for giving me encouragement

and help in the project for the Gienow Products Ltd.

| would like to thank my examining committee members, Dr. D. Xue, Dr. D.
H. Norrie, and Dr. R. Kremer, for the amount of time they have put into reading
this thesis.
gtcthankthe F

of Mechanical and Manufacturing Engineering, and the Gienow Products Ltd. for
their generous financial support during my studies at University of Calgary.

Special thanks are due to Lynn Banach for helping me in a number of
ways. | would like to acknowledge the help received from the support staff of the
Department of Mechanical and Manufacturing Engineering including Dan Forre,
Khee Teck Wong and Nick Vogt for solving the computer-related problems. |
would like to thank Mr. Z. Feng for early work on the Feature Modeling System.

My parents and my uncle Shri Dayaram Yadav deserve a special thanks

for giving me encouragement, support and advice.

iv

TABLE OF CONTENTS

APPIOVAl PAGE.......eeee ettt et ereteeeeeeee e e eenen ii
ADSITACT ...ttt ee e ettt e s e e e e e e ee e e ee e e i
ACKNOWIEAGEMENTES ..ottt ee e e et iv
Table of CONENESooi ettt v
Chapter 1: IntroduUCHion...........cooooi e 1
1.1 PrOlOQUE ...ttt e e e e 1

1.2 BackgroUNd ... oot eeeee e ee e e et e e e oo 2

1.3 Problem Statementso 4

1.4 Research ODJECHVE ..uooeeeeeeeeeeeee ettt aee e 5

1.5 Organization of this Thesisccccceeveemmmeiieeeeeeeeeeeeeee. 6
Chanter 2: Research Rackaround e g
2.1 Conventional CAD SyStemS.....cceuueeiiieeiceeeeeeeeceeeereeeeeeeeeeeeeeeeveeeeans 9

2.1.1 Wireframe Geometric Modelccoeeeeeeieeeeccieeieecereneee. 9

2.1.2 Surface Geometric Model...........c.cccoeeeeieeeieiieieiieeeeee 11

2.1.3 Solid Geometric Modelccoeuummmieiceieeeeeeeceeeeeeee 11

2.2 Feature Modeling......ccocoeeceieiiiieee e 14

2.2.1 Feature Recognitioncccceeoeeeeieiieiceeecceeeeee e, 17

2.2.1.1 Interactive Feature Recognition 17

2.2.1.2 Automatic Feature Recognition..........cccccccceenuee 18

22.2 Feature-Based Design -...ccovememimiieieieeeeee. 19

2.3 Knowledge-Based Designcccuueeiiiiieiieeiieeeiieeeeeeeeeeee e 21

2.3.1 Knowledge ENgin€ering «....c.ceeeeeeeeeemvececeeeeeecceevenenn. 21

2.3.2 Components of Rule-Based Knowledge System.............. 22

2.4 Object Oriented Programmingceeoveeeeeecicimmiceiesereeeeeeeeeeeeeence 23

25 Smalltalk Languageccccoeeeemiiemiirciriieeeeeeeeeceeemeeeeeeeeeseese e 25

2.6 Xue's Research on Integrated and Intelligent Design.................... 27

v

Chapter 3: A Feature Based Intelligent Design System................................. 30

3.1 Functional Requirements for the System............ccoimiiiiricnnnnnnnnn. 30
3.1.1 An Efficient Product Modeling Method 30

3.1.2 Building Blocks for Design...c..ccccoveeeiiimiicereriiiiccencceeeeneeees 32

3.1.3 A Mechanism to Maintain the Product Data Relations35

3.1.4 A Data Representation Scheme......c.c..cccovevvevierenrennnnnn.. 36

3.1.5 Object Oriented Modeling Approachcccceeeeemvreennnn... 36

3.1.6 Automated Product Modelingcccceemiiiiiniiiieiinennee. 37

3.2 System Architecture...........cccooiiiirimiriccecceereeaee 37
3.2.1 Feature-based Design System........ccoovriveriiiiiniiinicrnnnee. 38

3.2.2 Geometry Representation Systemccoouiiiiinmiiiiinaes 39

3.2.3 Intelligent System......cc.. i 40
Chapter 4: Feature Based Design Systemc.c.ccoooiiiiiiiiiiiiiiiinniniicriineee 42
44 AT O TG IO e e eveeeeeenennnenerereuenereetnssnssssossesssnsstemnssssnsssesnnsanssenansasnenssne 42
4.2 Creation of Class Features.........cccoveuiiiniiiiiiiiiniiiincccirecceeeeennees 43
4.2.1 Class Feature BrowsSer......c.ccociiiuiiiimimimnicrerernreececeeieanees 43

4.2.2 Defining Class Features.......c.coouueereeinmiiceriiencerenecceereenens 45

4.3 Representation of Class Featuresc.....coooeveiriieiiiecieiiieiieceneeneeeee 46
4.4 Generating Instance Featurescocoieiiiiiiiiiiiiiiiiciicie s 52
4.5 Maintaining Product Data Relations.........c.ceoiiiiimiiiciiiiiecicicieees 56
4.6 AN EXAMPIE et et ra e e e e e e e s e e e 59
Chapter 5: Geometry Representation System...........cccccoviiiiiiiiiiiiininiinnn. 63
5.1 Geometric Representation in Feature-based Design........c............ 63
5.1.1 2D Product Geometry Representationcccceereennnees 63

5.1.2 3D Product Geometry Representationccccceevuunnnnn 64

5.2 A Geometry Representation Schemecc.ccooiiiiiiiiiiiiiiinnnnnnnnnnnns 66
5.2.1 Generation of Geometric Primitives.........ccccccccocereeinnnnis 66

5.2.2 Operations for Creating 3D Primitives from 2D Primitives 70

vi

5.2.3 Transformation Operations.......cccccceeiiiiairinicaiinnnnnnennn... 71

5.2.4 Boolean Operations.........c.cccoovcveeeiiriemiiciiirienieiciniecennnnnn. 72

5.2.5 Assignment of Material and Color Properties................... 73

5.2.6 Organizing Objects in Groupsccceeeereeneneiiiccccennnnn.. 75

5.3 3D StUdio MAX ...ttt e 75
5.4 Generation of 3D Solid Model............ccoormmmmeiireeiiiiiiican. 76
5.5 AN EXAMPIE ..ccrciiiiiiiiiie e eeeeee 79
Chapter 6: Intelligent System Based Product Modeling................................ 83
6.1 [14 ol [F o7 (o] o FNEU R 83
6.2 Modeling of the Knowledge Base and Database 84
6.2.1 Modeling of the Knowledge Base.........cccccocoiiiiinnninniccceae. 84

6.2.2 Modeling of the Databasecccovrveuierieniiirinineinnennees 89

6.3 Knowledge-based Inference............cccoovvvivemiiiiiniiininninniienicceenees 90
6.3.1 Selection of Partial Knowledge Base and Database 90

§.3.2 Secgusencs of Matching and Executing Rules................... e2

6.3.3 Matchingofa Ruleccooiiimiiiiiiiiiinieeeee 93

6.3.4 Matching of Built-in Predicates..........cccooveeuiiiiniiiieninnnnns 94

6.3.5 Executionof a RUlecuueeriimiireiiiiiiiiiiiiirirtieeee 95

6.4 AN EXAMPIE ccorioeiee et e e 95

Chapter 7: Implementation of the Feature-based Intelligent Design

7.1
7.2

E23V5Y G 11 TR PO 100
System ArchiteCtUre........cciiirieiireeice st 100
New Classes Used for System Implementation..............cceeeel 104
7.2.1 New Classes for Implementation of Class Features....... 106
7.2.2 New Classes for Implementing Instance Features.......... 107

7.2.3 New Classes for Implementing Knowledge Base and
(Y=Y (=) To!= SRR 110
7.2.4 New Classes for 3D Product Geometry Representation 112

vii

Chapter 8: Developing an Industrial Application__.__.............. 115

8.1 Background of Gienow Building Products Ltd............................ 115
8.2 Obijective of Developing the Feature-based Intelligent Building

Product Design System ...ttt eeeeeens 116
8.3 Implementation of the Building Product Design System 117
8.3.1 Feature-based Modeling of Building Products................ 117
8.3.2 Geometric Representation of Building Products............. 122
8.3.3 Data Relation Maintenance for Building Products 125
8.3.4 Intelligent Design of Building Products........................... 128
Chapter 9: Conclusions and Future Work................cccciiinnnnnn. 135
& 7 B @7 Ted (3 1= (o] o F= U R 135

9.1.1 Modeling of Products using Class Features and instance
FEAUIES ...ttt cnr e 135
9.1.2 Representation of Product Geometryc..cccccvciicenens 136
§9.1.3 Automation of ihe Froduct iViodeiing Frocesscceeveeee 137
9.2 FULUrEe WOrK.....e ittt st scevennre e e ae e 137
[(=] (=T =T g Lol = PR 140

viii

Chapter 1

Introduction

This chapter provides a brief introduction to the existing technologies in
the area of computer-aided design and shortcomings of these technologies. The
objective of this research is outlined. The structure of this thesis is given at the

end of this chapter.

1.1 Prologue

Industries in the last four decades have endeavored to increasingly
computerize their operations. In today's information age, industries are
competing at the global level. They are hard pressed to satisfy the requirements
of the customers whe want the best products,

short product development lead-time. The industries meet these demands by

relying more and more on computer-based technologies.

The use of computers in industry leads to shorter product development
time, lower inventory level, better equipment utilization, improved quality,
increased flexibility, and low production costs. Industries use powerful Computer
Aided Design (CAD) systems in modeling product geometry. Computer Aided
Process Planning (CAPP), Computer Numerically Controlled (CNC) machining,
automated inspection using coordinate measuring machines, and automated
assembly by industrial robots have revolutionized the manufacturing process.
The emphasis is on automation of the product development process in order to
meet the high demands of the intemational marketplace. This research is an
effort to develop an intelligent design system that is capable of automating the

process of product modeling.

1.2 Background

Automation in product design and manufacturing aims at improvement of
design efficiency, productivity, and product quality, and reduction of production
costs. Few developments in the history of manufacturing have had greater
impact than the advent of computers. The development of computer-based
design systems started with the work of creating drawings on CRT, for the
Sketchpad system, by Ivan Sutherland in 1962 [Sutherland63]. Thereafter,
computers have been used in a broad range of applications in mechanical

design and manufacturing.

CAD systems allow the designers to design products without having to
make costly and time consuming illustrations, models and prototypes. The
functional performance of the product subjected to forces, fluctuations, and
temperature variances, etc. can be simuiated, analyzed, and tested accurately
and effectively, at low costs. Rapid prototyping is a technique to produce
prototypes of solid models using polymers or metal powder rapidly. CNC
machines can be programmed to produce the components with complex
geometry. Adaptive Control automatically adjusts the process parameters, such
as force, feed rate, etc., to optimize production process. Optimal process-plans
can be generated using CAPP. Group technology (GT) is a method to organize
the parts with similar geometry in groups, thereby applying similar manufacturing
process to the parts in the same group for improving manufacturing efficiency.
Flexible manufacturing systems are used to integrate manufacturing cells into
large units, which consist of several industrial robots serving a number of CNC
machines, using central computers. Artificial Intelligence (Al) is a study of how
to make computers to think, which at the moment humans do better [Rich91]. In
design and manufacturing, Al is being used in the form of expert systems, neural

networks, fuzzy logic, etc. to automate the design and manufacturing proéesses.

3

Among all these computer-based systems, CAD is first used to model the
product data. The downstream product development data, such as
manufacturing process, assembly process, etc., are generated from the CAD
database. The CAD systems in industries today are primarily used for creating
2D and 3D product geometry. The CAD systems are also utilized as visual tools

for generating shaded images and animated displays.

Previous research efforts in the area of CAD have mainly focused on
geometric modeling of products. However, modeling of product geometry is only
one design aspect conducted during detailed design stage. The real life design
involves, among many other things, requirement identification,
conceptualization, optimization of design parameters, modeling of geometry,
engineering analysis, etc. The current CAD systems do not support these design

activities fully.

Product design requires considerable human experience and decision
making. Engineering designs are classified into two types: creative design and
routine design. It is very difficult to automate the creative design process, due to
the lack of understanding of the nature of creative design. However, many
engineering designs are not exactly creative. In a routine design, the sequence
of processes is well formulated, therefore being easily encoded by developing
knowledge-based systems [Potts88, Mittal89, Ishii93].

In order to automate the process of product modeling, an intelligent
system that has the capability of knowledge-based reasoning and decision
making is required. Current CAD systems are not integrated with the knowledge-
based systems, therefore the development of knowledge-based CAD must be

conducted.

1.3 Problem Statements

Conventional CAD systems provide reliable functions for modeling design
geometry. Some of these systems provide facility for defining quantitative
relations among the geometric parameters. However, they still fall short of being

complete design systems. The deficiencies of these systems are listed below:

e Product modeling method is not efficient.

For instance, the object oriented programming concepts, such as abstraction
and inheritance, are not well used in the present CAD systems. If similar
products are defined as libraries and the actual product model is generated
using the libraries as building blocks, the efficiency of product modeling can
be improved considerably. In addition, if the product database libraries are
organized in a hierarchical data structure of classes, the properties defined in
a super-class can be inherited by its sub-classes automatically to improve

the efficiency of modeling design libraries.

e Non-geometric information cannot be modeled.

Existing CAD systems provide excellent geometric modeling functions.
However, product geometry modeling is only a part of the design process.
The whole design process includes conceptual design, detailed design, etc.
Geometric model emerges only during late detailed design stage. Therefore,
support of the whole design activities, especially the conceptual design, must
be considered. The models generated during the early stages of design are
usually represented as symbolic models. Therefore association of the

symbolic model and geometric model is needed.

e Product modeling process is not automated.

The conventional CAD systems are not intelligent, therefore being incapable

of carrying out the intelligent design activities automatically. Design is a

5
process involving decision-making and reasoning. The knowledge of the
designers should be implemented in the design system in order to enable the

system to conduct design with minimum human interference.

1.4 Research Objective

The objective of this research is to develop a product modeling system
that addresses the problems listed in Section 1.3. The motivation to achieve this
objective is to develop a CAD system that supports all phases of the design
process including conceptual design and detailed design. The system should
provide efficient product modeling environment. Product geometry should be
generated in symbolic form and this symbolic model should be associated with
the geometric model. This design system should have a knowledge base and an
inference engine that are used to automate the product modeling process. A
special product modeling scheme should also be developed in this research for
simple and lucid representation of product data and knowledge. The system

should be composed of the following three modules.

1. A feature-based design system:

The feature-based design system is used to generate the product
descriptions. In this system, a product is described in terms of product
building primitives called features. Features are described at two levels:
class level and instance level, corresponding to generic library and special
product data, respectively. Both qualitative descriptions and quantitative
descriptions can be represented by these features. The efficiency of product
modeling can be increased using the feature-based design system. This
design system is implemented using an object oriented programming

approach.

2. A geometry representation system:

The design geometry representation system interprets the symbolic
descriptions of the design model into geometric descriptions. To model the
product geometry, a special representation syntax has been developed to
succinctly describe product geometry in the symbolic form. The symbolic
geometric data are extracted from the design module, and converted to 3D
geometric model using a specially developed product geometry translation

system.

3. An intelligent system:

The intelligent system is used to automate the product modeling process
using knowledge-based inference. A knowledge modeling platform is

developed to encode and preserve the knowledge base, using a knowledge

knowledge base and database are selected for improving inference
efficiency. The knowiedge base is also modeled using an object oriented

modeling approach.

The three modules described above form an integrated system where
feature-based intelligent design can be conducted. The system architecture is

shown in Figure 1.1.

1.5 Organization of this Thesis

This thesis consists of 9 chapters. Chapter 2 describes the detailed
research background of this work. A study of the existing CAD tools is presented
at the beginning of this chapter. The chapter introduces the concept of features
and the feature modeling approach. Existing knowledge-based systems and their
applications by other researchers are surveyed. Object oriented programming

concepts used in the implementation of the system are discussed, with special

~\ P ey ~
1 \ l Representation :
Feature-based Design System + | : System .

{ . |
» I Product I
st instance : 7 - | Geometry |

3 Translati
Bl | Lo Festures | ! Modute :

= « i 1 ‘
E Z ! | :

2 Y !

§ Inteligent System [i !
£ [
2 ' ! 0 :
Inference Knowiedge I | Geometry l

Engine Base I | Output
vy i System !
X l ' !
l i :

/ |

s \ /
______________ - -, e o e — e — e e ™

Figure 1.1: System architecture

focus on Smalitalk, an object-orien*ed programming language, which has been
used in implementing the major portion of the system in this research. This work
is a continuation of the research by Xue on development of an intelligent and
integrated design system [Xue93, Xue94a, Xue94b, Xue96, Xue97]. Chapter 2

ends with the introduction of Xue's previous research.

Chapter 3 enumerates the functional requirements for the feature-based
intelligent design and architecture of the feature-based intelligent design system.

The system details are presented in Chapters 4, 5 and 6.

Chapter 4 of the thesis gives details of the feature-based design module.
The structure of features and their applications in modeling products are
discussed, with special focus on representation of qualitative and quantitative
relations. The properties of hierarchy and inheritance, based upon object
oriented programming, are also presented. The interface environment of the

implemented system is also described.

8

Geometry representation is an important aspect of a CAD system. A
special syntax has been developed for describing product geometry in the
feature definitions. This representation scheme is introduced in Chapter 5. The
chapter describes the syntax for generating 2D and 3D geometric primitives and
applying geometric operations to them. Generation of 3D solid model is also

given in this chapter.

Chapter 6 describes the intelligent system that is used for automatic
product modeling. In this chapter, three issues are discussed. They are (1) the
knowledge base modeling, (2) the database modeling, and (3) the knowledge-

based inference.

Chapter 7 discusses the issues in the implementation of the feature-

based intelligent design system.

Chapter 8 presents an industrial application for modeling building

products using the developed feature-based intelligent design system.

Chapter 9 gives conclusions. The future work is also discussed in this

chapter.

Chapter 2

Research Background

This chapter presents a general review of relevant technologies and
research activities for the research introduced in this thesis. The areas covered
in this survey include: CAD, feature modeling, knowledge-based intelligent
design, and Object Oriented Programming (OOP). The capabilities and

limitations of the conventional CAD tools are also discussed.

2.1 Conventional CAD Systems

Conventional CAD systems primarily provide three functions: (1)
geometric modeling, (2) computer graphics, and (3) design. These systems take
the microscopic view of design where a design is represented and understood
by its geometry. This section gives a survey of the geometric modeiing functions
in the conventional CAD systems. In the conventional CAD systems, geometric
information is organized by databases such as relational databases, hierarchical
database, and network database [Shenoy83]. Three types of geometric models
are usually used. They are: (1) wireframe model, (2) surface model, and (3) solid
model, as shown in Figure 2.1. These three types of geometric models are

described in the following sections.

2.1.1 Wireframe Geometric Model

Wireframe geometric model is the simplest geometric model. It can be
seen as a natural extension of traditional methods of drafting. Typical wireframe
entities are analytic entities, such as points, lines, arcs, circles, ellipses,
parabolas and hyperbolas, and synthetic entities, such as cubic splines, Bezier
curves, and B-splines [Lee85]. Mathematical representation of curves in CAD

systems is in form of parametric equations.

10

Wireframe model

Solid model

Surface model

dels [Zeid91]

1C mo

Three types of geometr

Figure 2.1

11
The wireframe model requires much less computation time and memory

than the surface and solid geometric models in modeling product geometry
[Zeid91]. The wireframe model has many disadvantages, such as the ambiguity

of geometry interpretation.

2.1.2 Surface Geometric Model

The surface model is an improvement of the wireframe model by providing
product surface information. Surface entities used in these systems are analytic
entities and synthetic entities [Mortenson85]. Analytic entities include plane
surface, ruled surface, surface of revolution, and tabulated cylinder. Synthetic
entities include bicubic hermite spline surface, B-spline surface, rectangular and

triangular Bezier patches, Coon patches, and Gordon surface [Forest68].

The surface model provides better visualization functions such as hidden
line/surface removal, shading, coioring, etc. The surface modei is iess
ambiguous for representing product geometry compared with the wireframe
model. Although the surface model and solid model have similar appearance,
there is a fundamental difference between the two — the surface model doesn’t

store any topological information on the geometric elements.

2.1.3 Solid Geometric Model

The solid geometric model provides the complete information of the 3D
product geometry, such as topological relations among geometric elements
including points, lines/curves, surfaces, therefore is better than the wireframe
model and the surface model [Casale85]. Solid model based CAD tools were not
accepted by design engineers until early 1980s due to the limitations on the
speed of computations. But these limitations were fading away with rapid
advances in computer software and hardware development [Krouse85]. Using

this approach, the completeness of information in solid models makes CAD/CAM

12
systems suitable for automation and integration of design and manufacturing

tasks such as interference analysis, Computer-Aided Process Planning (CAPP),
machine vision, Finite Element Analysis (FEA), and mass property analysis
[Tan86].

The solid model is built up using primitives, such as blocks, cylinders,
cones, spheres, etc. In addition, geometric primitives can also be created by
extruding and rotating 2D wireframe entities, such as circles and rectangles
[Tan87]. Two or more primitives can be combined to form a compound solid by

Boolean operations such as union and subtraction.

In the world of the solid model, space is divided into two regions: interior
and exterior, separated by solid boundaries. A solid model of an object is
defined mathematically as a point set S in three-dimensional euclidean space
(E®) [Eastman79]. With this theory as the background, there are many
representation schemes to define solid models. These schemes are: half space
model, boundary representation (B-rep) model, constructive solid geometry
(CSG) model, sweeping, analytic solid modeling, cell decomposition, spatial
occupancy enumeration, and octree encoding [Dave95, Zeid91]. Among these
schemes, CSG and B-rep are used most often. Examples of CSG and B-rep are

shown in Figure 2.2.

CSG models are developed based upon the notion that a physical object
can be divided into a set of primitives that are combined in a certain way using
Boolean operations to form the object [Putnam86]. Unlike B-rep models,
topological information about intersecting edges and faces is not stored, but
calculated when required. A CSG model is represented by a tree of nodes, as
illustrated in Figure 2.2. The nodes at the bottom of this tree are geometric
primitives, while the other nodes represent Boolean operations. The CSG

representation scheme is concise and powerful with minimum storage

Figure 2.2: CSG and B-rep solid models [Shah95]

14
requirements [Johnson86]. The biggest shortcoming of the CSG model is that it

takes considerable time to derive necessary information such as the volume of

the object or the visibility of surfaces.

A B-rep model is composed of faces, edges, and vertices of the object
linked together in a way that topological consistency is maintained. in this
scheme, the solid is bounded by a set of faces. These faces are regions or
subsets of closed and orientable surfaces. A closed surface is one that is
continuous without breaks. An orientable surface is one that is possible to
distinguish the two sides of the surface. Euler operations are used to check the
validity of B-rep models by counting the numbers of faces, edges, vertices, and
so on [Wilson85]. All kinds of polyhedral and curved objects can be represented
in an unambiguous way using B-rep models. Wireframe models can be derived

from the B-rep models. The major disadvantage of B-rep model is that it requires

2.2 Feature Modeling

The conventional CAD systems are primarily used for modeling 3D and
2D product geometric information. Clearly modeling of design geometry is only
part of the activities during the whole design process, which consists of
conceptual design, embodiment design and detailed design. Geometric
modeling serves for documenting design result during the last design stage. To
support the designers during whole design stages, new CAD systems must be

developed.
According to Shah [Shah95], geometric models have the following
deficiencies:

1. The data available in the geometric models are at too low level. The

geometric elements are organized only according to their topological

15
relations. To represent the functions behind geometry, the relations among

geometric elements for particular purposes, including design and

manufacturing, should also be defined.

The geometric model fails to capture the design intent and cannot be used to
generate a manufacturing process, since geometric data are described at low
level. To improve product modeling, the non-geometric information, such as
design functions and manufacturing processes to produce geometry, should

also be defined in the product model.

To solve the problems introduced above, the concept of feature, which is

described by a collection of relevant geometric elements for a particular design

or manufacturing purpose, has been introduced [Grayer76].

There is no single universally accepted definition for features.

Researchers have given various overlapping definitions of features according to

their perspectives and implementation needs. According to Shah [Shah95], a

feature

is a physical constituent of a part,
is mappable to generic shape,
has engineering significance, and

has predicable properties.

A feature model provides combination of the following information

[Shah95]:

Generic shape (topology and/or geometry)
Dimension parameters
Constraints (parameters and/or relations)

Default values of parameters

16
e Location (parameters and/or methods)

e Orientation (parameters and/or methods)
¢ Inheritance rules

e Tolerances

e Construction procedures

e Validation rules

e Non-geometric attributes

From the conventional geometry centered interpretation, a feature is a
geometry for a special purpose such as a design functional performance or a
manufacturing process [Hovart96]. Since these types of features are part of the
descriptions in the conventional geometric model, they are referred to as form

.- W7

£m mk e [S A Y N PO PR | et [P R w (O P,
] Wwed. AfLe! Slinilalr uentnuuil 15 Jgivert vy VICRerS

atures or shape
[Vickers88] that a feature is a geometric abstraction represented by a collection
of geometric and topological descriptions with commonly recognized names,
shapes, and/or functions. Many other similar feature definitions can be found in
references [Dixon88, Vickers88, Gindy89]. An example product and its

composing features are illustrated in Figure 2.3.

in the Standard for the Transfer and Exchange of Product Model Data
(STEP), form features are classified into the following categories: passages,
depressions, protrusions, transactions, area features, and deformations. Some
other classifications suggested by references [Shah88a, Shah89] are: precision '
features, technological features, material features, assembly features, cost

features, etc.

In the manufacturing oriented feature definitions, a feature is considered

as the partial product geometry to be produced by a certain manufacturing

17

BLIND HOLES
BLOCK

SLOT
(on backface)

COMPOUND THRU-HOLE
POCKETS sLoT S

Figure 2.3: A product and its composing features [Shah95]

process [Shah86]. There are two approaches for modeling features: feature

recognition and feature based design.

2.2.1 Feature Recognition

Feature recognition methods extract the manufacturing geometry from the
CAD database for production process planning. Feature recognition is carried

out either manually by users or automatically by computer programs.

2.2.1.1 Interactive Feature Recognition

In this approach as shown in Figure 2.4, first a geometric model is created
using a geometric modeler. The user then picks relevant geometric elements
from this geometric model using an interactive user-interface system to define

the features to be manufactured.

18

INTERA
GEOMETRIC GEOMETRIC GRAPl'Cﬂ-ggE ‘ FEATURE
USER USER

Figure 2.4: Interactive feature recognition approach [Shah95]

Geometric features can be extracted from B-rep model and CSG model.
These two types of solid models have already been discussed in Section 2.1.3.
When a B-rep model is used to define a geometric feature, the geometric entities
(vertices, edges and faces) are picked up interactively by the user, grouped and
associated with a feature name [Nau86]. The method to define geometric
features from a CSG model was proposed by developing a data structure called
VGraphs [Marisa88]. From the CSG graph, interior nodes (representing Boolean
operations) and leaf nodes (representing geometric primitives) are selected and

associated with the feature name.

2.2.1.2 Automatic Feature Recognition

In the automatic feature recognition approach, a computer program is
used to identify the geometric features from the geometric model. The computer
program consists of two parts: a feature recognition module and a feature
extraction module. The feature recognition module identifies the geometric
features by comparing the geometric model with the feature definitions. The
feature extraction module uses the identified geometric elements to form the
geometric features. The process of feature recognition/extraction is illustrated in
Figure 2.5.

Shah classified automatic feature recognition methods into machining

region recognition method and pre-defined feature recognition method [Shah95].

19

FEATURE FEATURE
GEOMETRIC| ('GEOMETRIC): |RECOGNITION| | EXTRCTION |is{ FEATURE
MODELER MODEL ALGORITHM | | ALGORITHM MODEL

i

USER
PRE-DEFINED
FEATURES

Figure 2.5: Automatic feature recognition approach [Shah95]

In machining region recognition technique, the main objective is to
generate NC tool paths directly from CAD database by identifying the volumes to
be removed by milling machining operations. In this approach, no comparison
between the selected geometric object and the pre-defined features is required.
Machine region recognition techniques are of the following types:

« Sectioning [Comey93]
e Convex hull decomposition [Kim94]

e Cell decomposition [Armstrong82]

In the pre-defined feature recognition method, the descriptions of the
geometric model are compared with the pre-defined features. The tasks in pre-
defined feature recognition method include: searching the CAD database to
match topological/geometric parameters, extracting recognized features,
determining feature parameters, completing the feature geometric model, and

combining simple features to obtain higher level features [Shah95].

2.2.2 Feature-Based Design

Extraction of geometric features is a non-trivial task, if it is not impossible.
To solve this problem, another feature modeling approach, namely feature-
based design has been introduced and demonstrated by building prototype
systems [Cutkosky88, Tumer88]. In the feature-based design approach,

20
geometric features are first defined in a library. These geometric features are

used as building blocks for modeling design candidates. The feature-based
design approach is shown in Figure 2.6. Since geometric features are stored in

the generated geometric model already, no feature extraction is required

anymore.
GEOMETRIC
MODELER |———p
/ DESIGN
FEATURE CANDIDATE
MODELER g

I FEATURE
USER LIBRARY

Figure 2.6: Feature-based design approach [Shah95]

Two methods commonly used in this approach are destruction by machine
features [Turner88] and synthesis by design features [Miner85]. The destruction
by machine features approach is also known as destructive solid geometry or
deforming solid geometry. In this approach, the final geometric model is defined
by removing features from the raw stock using machining operations. In
synthesis by design feature approach, a geometric model is built by both adding

and cutting geometric features.

The effectiveness of this approach primarily depends upon the definitions
of features in the feature library. If the feature definitions mainly consist of
microscopic geometric descriptions, the design is limited to geometric modeling.
However, if the standard library comprises design features that provide
macroscopic information such as functions, costs, etc., the product modeling

effectiveness is considerably improved.

21
2.3 Knowledge-Based Design

The conventional CAD systems are primarily used for modeling design
geometry. However modeling of product geometry is only part of the activities
during the whole design process. The early stage of design, such as conceptual
design, is not supported by the conventional CAD systems. To support the
activities of the whole design process, new approaches have to be introduced. In
this research, a knowledge-based system approach has been employed for
modeling the conceptual design process. Techniques that are being investigated
by other researchers are: top-down design [Mantyla90, Suzuki90], function-

based design [Umeda92] and bond graphs-based design [Gui94].

The intent of using knowledge-based systems in engineering design is to
replace human’s intelligent activities by software systems [Rich91]. During the
design process, designers use relevant knowledge to generate design
candidates from design functional requirements, evaluating design candidates,

and documenting design results.

2.3.1 Knowledge Engineering

Knowledge engineering was initiated due to the advances in computer
science and artificial intelligence (Al) [Rich91] for solving the real world
problems. The early effort in knowledge engineering focused on developing the
expert systems. Expert systems are computer programs to model the knowledge
of experts for solving domain dependent problems. Some successful expert
systems are MYCIN [Buchanan84] for blood disease diagnosis, R1
[McDermott82] for computer system configuration, and DENDRAL for
spectrographic analysis [Buchanan78]. Engineering applications of expert
systems have been developed for design candidate generation, production

process planning, and so on. Example design expert systems include a V-belt

22
design system [Dixon84], an air cylinder design system [Soni86] and a gear

drive design system [Zarefar86].

Many knowledge representation schemes have been developed and used
in implementing intelligent systems. These schemes include predicate logic,
rule-based production inference system, semantic nets, frames, conceptual
dependency and scripts [Rich91]. Each expert system uses one of these
knowledge representation schemes and reasoning approaches. For example,
the rule-based approach has been used in MYCIN [Buchanan84]. The advances
in fuzzy logic and neural networks provide new approaches in developing
intelligent systems. In this research, the rule-based approach has been

employed.

2.3.2 Components of Rule-Based Knowledge System

. - o s - s e - Lo o

A ruie-pased knowiedge sSysiem consists of thiee components: a

knowledge base, a database, and an inference engine, as shown in Figure 2.7.

Knowledge
Base Database

Inference
Engine

Figure 2.7: Components of a rule-based knowledge system

e Knowledge base:
The knowledge base is the place to store knowledge. Knowledge is
represented in form of rules. Each rule describes a piece of cause-result

knowledge using the structure of

IFci&co& ... & Cao THEN &rn& ... &

23
where the /F part describes the conditions to be satisfied and the THEN part

describes the resulting actions to be conducted. Both the condition part and
result part are represented by a number of patterns linked with logic-and (&).
e Database:

The database is the place to preserve the data. Since the data should be
compared with the patterns of the rules in inference, representation schemes
of the data and the patterns should be the same. In most rule-based
reasoning systems, a piece of data is described by a predicate with the form
of (p1, p2, ..., Pn). During the reasoning process, data are added and removed

by executing the result parts of rules.

e Inference engine:
The inference engine is used to compare the condition parts of rules with the
database, and execute the result parts of rules if their condition parts are
matched with the database. When all the pattems in the condition part of a
rule are matched with the database, then this rule can be fired. If a number of
rules are being considered to fire, only the “best” rule is selected and its
result part executed (fired). The method to select the best rule is called the
conflict resolution strategy [Rich91]. The major conflict resolution strategies
include: (1) the rule with the most number of conditional patterns should be
fired first, (2) the rule with the most recently matched pattern should be fired

first, etc.

24 Object Oriented Programming

In the real world, everything can be seen as an object having its own
characteristics and behaviors according to which it interacts with other objects in
the environment. These objects could be classified and arranged in a certain
structure. This is nature’s way of organizing things in a vast disordered world.
The same concept is used in object-oriented programming (OOP) approach,

which is now the dominant programming approach.

24
The key concepts in OOP are class, instance, variables and messages

(also called functions or methods). Classes are generic abstractions of those
physical objects with similar characteristics, attributes and behaviors. These
classes have variables representing their attributes, and functions (or methods)
representing the operations and behaviors through which the objects interact
with other objects in OOP paradigm. Classes are used as templates to create
instances, which are used for modeling the real world data. For example, “car” is
a class representing the abstract concept. Specific cars, such as Tom's car or
Jane’s car, are instances of the concept car. A car concept provides number-of-
doors as its member attribute, and fravelling as its member function.

Fundamental concepts in OOP are discussed below:

e Abstraction:
Abstraction has been defined as the essential characteristic of an object that
distinguishes itself from other kinds of objects, thus providing crisply defined
boundaries. Abstraction is implemented by introducing classes and instances
in OOP. For example, concept of gear can be represented by a class, while

specific gears can be described by instances.

e Encapsulation:
Encapsulation is the property that the inside (implementation) details of an
object are hidden from the outside world. This is a very useful property in
developing large systems due to its high modularity characteristic. The user
of an OOP system only needs to know the functions to which objects
respond. If object A wants to access object B, object A has to send a
message to B and ask object B to do so. This mechanism is called message

passing.

e Inheritance:
in the OOP paradigm, classes are organized in a hierarchical data structure.

The sub-class is able to inherit all the characteristics of its super-class

25
automatically. For instance, class Caris a super-class for classes Toyota and

Taurus, therefore all the characteristics of Car can be inherited by Toyota

and Taurus.

s Polymorphism:
Polymorphism is a mechanism to respond to messages with the same name
using different objects (method bodies). For instance, the function display
can be defined in each of the classes of Circle, Rectangle, and Triangle. If
the display method is sent to an object, a circle, a rectangle or a triangle is
displayed depending on the class type of the object. Thus a circle is
displayed on the monitor if the class Circle calls the display message, as
shown in Figure 2.8. The polymorphism property of OOP is used to make the

system more organized and small in size.

~ICm AV
sl"l—l‘\l

[Rectangle J p

(Circle J [gv O
(Triange | wv A

Figure 2.8: Polymorphism in object oriented paradigm

2.5 Smalltalk Language

The major portion of the feature-based intelligent design system has been
implemented using Smalltalk - an object oriented programming language
[Goldberg83]. Smalltalk was developed by Xerox Palo Alto Research Center
(PARC). lts first commercial version, Smalltalk-80, is one of the pioneer OOP
languages. Smalitalk-80 was also the first language to introduce windows

programming, an interactive interface approach. Many concepts of this language

26
have been adopted by subsequent OOP languages such as C++ and Java. Its

latest version, called VisualWorks 3.0, has been used for implementing the

feature-based intelligent design system.

VisualWorks provides an OOP paradigm, a user-friendly interface
environment, and a large library of classes. The weaknesses of this language
are its slow computation speed, large memory requirement, and high price of
software package. From the past experience [Xue92], it was found that it takes
much less time to develop a system using Smalltalk than using other OOP
languages such as C++ or Java. Therefore Smalltalk is an excellent tool for

developing a research oriented software prototype system.

In Smalitalk, everything, including the compiler, debugger, window
manager, etc., is defined as a class and is available for modifying. In
VisualWorks 3.0, several hundreds of classes have been provided for modeling
the components of this system. New classes can be defined in the same
environment by declaring them as subclasses of the existing classes. Users can

also modify the classes defined by the system.

In Smalltalk, every class has a super-class except the class called Object,
which is the top class in the class hierarchy. A class may have two kinds of
variables: class variables and instance variables. The class variables are shared
by all instances of the class, i.e., the value of a class variable is the same for all
the instances of that class. The values of instance variables are specific to a
particular instance. The functions of classes are defined as class methods and
instance methods. Classes respond to class methods (messages), while
instances respond to instance methods. Unlike C++, in Smalltalk all the
variables and methods defined in a class are inherited by its sub-classes. There

are no private or protected variables or methods, as in C++.

27
2.6 Xue’s Research on Integrated and Intelligent Design

The research presented in this thesis is a continuation of the research on
integrated and intelligent design, which was initiated by Xue [Xue92, Xue93,
Xue94a, Xue94b, Xue96, Xue97]. This section gives an overview of Xue's

previous research.

The research on integrated and intelligent design aims at developing a
computer-based design environment that supports the activities in all the product
development life-cycle phases, thereby providing a theoretical and

implementational framework for the next generation CAD/CAM systems.

In Xue's research, a feature-based product life-cycle modeling system
was first introduced [Xue93]. In this system, different product life-cycle aspects
were modeled using aspect primitives called features. Three types of features
were developed: design features, geometrv features, and manufacturing
features. Design features are mechanical components and mechanisms, such as
gears and shafts, for modeling design candidates based upon the functional
requirements. Geometry features are geometric primitives, such as blocks and
cylinders, to construct the product geometry. Manufacturing features are patrtial
product geometry, such as holes and slots, for planning manufacturing process.
Representation of features followed the scheme of a product modeling language
— Integrated Data Description Language (IDDL) [Tomiyama87, Xue92]. IDDL
was originally proposed at the Center for Mathematics and Computer Science in
Amsterdam by Tomiyama [Tomiyama87]. This language was implemented by
Xue at University of Tokyo [Xue92]. In IDDL a product is described by objects,
their attributes, qualitative relations among objects (called facts), and
quantitative relations among attributes (called functions) [Xue92]. Objects were
employed for modeling aspect features in the feature-based product modeling

system.

28
A qualitative intelligent system that combines knowledge-based reasoning

and optimization was introduced to automatically generate the aspect models
and to identify the optimal design using optimization [Xue94a]. To improve the
efficiency of feature identification from the large feature library, a design-function
based design feature coding system and a manufacturing-function based
manufacturing feature coding system were developed for organizing the feature
library and identifying appropriate features to automatically generate design

candidates and plan production processes [Xue94b].

The objective to develop the integrated and intelligent design system was
to achieve the design with best overall product life-cycle performance. Since
production cost is a key measure for evaluating the design from manufacturing
perspective, a number of cost models considering different production processes
and tolerance requirements were introduced [Dong94]. An optimization model

S
tua

£e com

AnnEl b Adratn e 43 m
UTUIL VCLYWTTHT 1Ul LtV

ie design with the best
performance and production cost [Xue96]. A number of global optimization
models were introduced to identify the optimal design considering variation of
design alternatives and parameters [Xue97]. Mathematical models for concurrent
design were also introduced [Yadav98a]. A multi-level heuristic search algorithm
was introduced for generating the production process of the created design for

further evaluation [Yadav98b].

This research aims at further improving Xue's integrated and intelligent

design system. The improvement focuses on the following issues:

1. In the Xue’s system, features are modeled by IDDL objects. Each object is
composed of attributes. No special feature representation scheme was
developed for modeling features. Due to the poor data representation
scheme, many characteristics of features cannot be described using IDDL.

Therefore in this research, a feature representation scheme and its modeling

29
environment have been developed. The different aspects of features, such

as qualitative data, quantitative data, qualitative relations, quantitative
relations, constraints, etc., are modeled separately. If a new aspect is
required to model the feature, this new aspect can be easily added to the
feature definition using the developed interface environment. In addition, a
special data dependent relation maintenance system has also been

developed to keep the consistency of the database.

. In the previous system, geometric information is represented by geometry
features, which are also described by IDDL objects. This symbolic geometric
model is associated with a B-rep solid model by representing the geometric
elements, including vertices, edges, faces, etc., using IDDL objects. The B-
rep solid model was specially designed for IDDL and implemented using C.

In the present research, a geometry representation scheme, based upon

ad The eumhanlic nanmatrie
L~ L] 1w LRI L T TR Y vvv.u‘vsl r g

£
3
£
¢
¢
T
¢
(%]
®
B
0
f
<
T3
(
“

model of the product is first translated into a neutral geometry representation
scheme. The neutral geometric descriptions are further translated into the
geometric modeling schemes by particular CAD systems. In this research, a
3D geometric modeling system called 3D Studio MAX [Michael96] was used

to represent the product geometric information.

. In the IDDL, a rule-based inference system was designed for accessing the
database represented in the IDDL scheme. Therefore, for the present
system, a new rule-based reasoning system was required to access the
feature-based product descriptions. In this research, many built-in predicates
have been developed to add, delete, and modify the feature descriptions. In
addition, a mechanism to select only part of the knowledge base (rules) and
database (features) has also been developed to improve the inference

efficiency.

30

Chapter 3

A Feature-Based Intelligent Design System

In this chapter, a feature-based intelligent design system is proposed to
solve the problems listed in Chapter 1 and Chapter 2. First, the functional
requirements of the feature-based intelligent design system are introduced.

Then the architecture of this system is discussed.

3.1 Functional Requirements for the System

The functional requirements of the feature-based intelligent design
system were identified through extensive study of the feature-based design

approach, geometric representation methods, intelligent systems, and object

o~ s o~ o~ e teatatarlesieelieted

3.1.1 An Efficient Product Modeling Method

Consider an automobile company that manufactures many different types
of automobiles such as cars, vans, trucks, etc. A number of components such as
pistons, brakes shoes, distributors, axles, clutch plates, and so on are common
to all types of vehicles. These components that build up the products are
standard components and used in all automobiles with minor differences. In a
CAD system for designing automobiies, these standard components should be
provided as basic elements that can be defined and stored in a standard library.
Components from the standard library can be used to generate instances for

modeling actual products.

This idea is illustrated in Figure 3.1. Standard objects are described as

building blocks and these building blocks are used for modeling the actual

31

products. This product modeling approach is more efficient than to start the

design from scratch using a geometric modeling tool.

Product

Defining Modeling

Building Blocks Standard

Designer | ——> Building Block | ——— > Product

Library

Figure 3.1: Use of standard building blocks for product modeling

The issues in the development of the system that uses a library of standard

building blocks to model products are summarized as follows:

1.

The data described in a building block should be well organized. This
requires that a standard data scheme should be developed and used for

representing the data of all the building blocks in the system.

The building block entities in the system should be editable, so that
modifications to these standard building blocks can be carried out to model
the actual products. For instance, the size and strength of the axle of a car
are different from the parameters of a truck. Therefore editing is required

after an axle is generated using a standard building block.

The definitions of the standard building blocks should not be affected after
editing operations have been made to the instances during the modeling of a
particular product. The standard generic entities should be only used for
creating instances that can be then modified according to the specific

requirements.

32
3.1.2 Building Blocks for Design

In a building block, data should be described in a standard format. The
data in each building block should be classified into a number of groups,
according to their types. These types include qualitative data, qualitative
relations, quantitative data, quantitative relations, etc. A building block may also
consist of a number of constituent building blocks. For instance, a gear pair
mechanism consists of two gears and two shafts. The concept of building blocks

is illustrated in Figure 3.2.

Data described inside the building block should include the following aspects:
1. Geometric and non-geometric parameters:

Objects have geometric as well as non-geometric parameters. Both types of
parameters are important from the design point of view. For example, a gear
has geometric parameters, such as diameter and tooth height, and non-
geometric parameters, such as rotational speed and direction of rotation.
While the geometric parameters are used for building up the geometric
model, the rotational speed is used for evaluating design functional
performance. In most conventional CAD systems, non-geometric parameters
cannot be defined. Such systems are basically used for geometric modeling.
However, a design system should provide the environment in which both

geometric and non-geometric parameters should be defined.

2. Relations among the parameters:

Among all the parameters, some are calculated using other parameters.
Therefore, parameters are linked through quantitative relations. For instance,
the module of a gear is a function of the diameter and the number of teeth of
the gear. Therefore, the design system should provide the capability to model

quantitative relations among the parameters.

33

A BUILDING BLOCK

Element Building Blocks Parameters
N N
Gear § § Names Values
N D P 85
== P2 3.2
Shaft 2.0
== Pa :
Ps 7
Motor @ﬂ' material | steel
Body —1
Quantitative Relations Qualitative Relations
p1 = fi(Pa, Pa) Gear is mounted on the
pz = fa(p1, Pa) shaft.

Electric Motor is connected
with the lower gear.

Geometry Descriptions

4 ™

-+

D\
\
%
.

N _/

Figure 3.2: An example of building blocks

3. Constituent building blocks:

A building block may be made up by other building blocks. For instance a
gear-pair mechanism is a building block that consists of other building blocks

including gears, shafts, etc. Using this approach, instead of defining all the

34
details of a building block at the same place, we can first define the primitive
building blocks and then use them for modeling more complex building
blocks. The building blocks form a tree data structure in which the sub-nodes
represent the constituent building blocks of the building block at a higher
level, as shown in Figure 3.3. The rela tionship between a building block and
its constituent building blocks is a “made up of” relationship that is different
from superclass-subclass relationship. The characteristics of a building block

will not be inherited by its constituent building blocks.

Gearbox1

L\

D A Quantitative A Parameter
A Building Block Relation

Figure 3.3: A gear pair mechanism represented by building blocks with a
tree data structure

4. Qualitative data:

Product data could be quantitative (e.g., speed ratio of two gears is 1:2) or
qualitative (e.g., a gear and a shaft are connected). Conventional CAD
systems do not provide the capability for defining qualitative data. In order to

develop the intelligent design system that supports the conceptual design

35
activities, qualitative information should be described in building block
definitions. This type of description can be used for knowledge based

reasoning.
5. Constraints on the parameters:

Design parameters are bound by a number of constraints. For instance, the
module parameters of the two gears should be the same in a gear-pair
mechanism. In the building block definition, these constraints should be

defined.
6. Geometric descriptions:

Since geometric information plays a key role in product modeling,
representation of the product geometry should also be provided in the
building blocks. The geometric descriptions include 2D and 3D geometric
descriptions. The geometric descriptions shouid be associated with symboiic
descriptions of the product which are generated during the conceptual design

stage.

3.1.3 A Mechanism to Maintain the Product Data Relations

Design is conducted through an iterative process that requires a number of
redesigns before the final design is reached. If part of the design model is
modified, the change may lead to inconsistency of the product data due to the
pre-defined relations. Therefore, propagation of the data change using these
pre-defined relations is required. In order to avoid inconsistency and to conduct
the design in an efficient manner, a mechanism to maintain the relations of

product data is required.

A dependent relation is defined by
d] (—-d1, dz, d3,...., dn

where parameter d; is calculated using parameters d, do, ds,...., da.

36

3.1.4 A Data Representation Scheme

In order to develop the intelligent design system, a data representation
scheme that can be used for modeling the different aspects of the products is
required. Product data should be represented in a simple and concise manner.
All the elements listed in Section 3.1.2, including constituent building blocks,
qualitative data and relations, quantitative data and relations, constraints, and
geometric descriptions, should be represented using this data representation

scheme.

3.1.5 Object Oriented Modeling Approach

The object oriented modeling characteristics, including abstraction, inheritance,
encapsulation, etc., should be used in developing the feature-based intelligent

e somd

nd o § o~ Tl
UcDIYtl SyostLernit. |

NS requii
1. Abstraction:
The general characteristics of objects should be defined in library building

blocks. The actual building blocks used in modeling products should be

generated using library building blocks as templates.

2. Inheritance:
The library building blocks should be organized in a hierarchical data
structure. A building block at a lower level should inherit all the definitions of
its upper level building blocks. In this way the efficiency of modeling the

standard library can be improved considerably.
3. Encapsulation:

The data described in a building block should not be accessible directly by
other building blocks. Communication among building blocks should be
conducted by message passing. Using encapsulation can improve the

modularity of the system, thus providing better software reusability.

37
3.1.6 Automated Product Modeling

The product design process should be automated to further improve
product modeling efficiency. An intelligent system can serve for this purpose. An

intelligent system consists of a knowledge base and an inference engine.

The knowledge base is described in terms of rules. Rules are pieces of
knowledge described in the IF-THEN structure. The format to represent the rules
should allow the use of parameters, constituent building blocks, etc. The rules in
the knowledge base should be organized in groups to improve the modularity of

knowiedge base modeling.

An inference engine should be developed for knowledge based reasoning.

This will enable the system to make decisions during the design process. A

only relevant knowledge bases and databases.
3.2 System Architecture

To satisfy the objectives and requirements specified in previous sections,
an intelligent feature-based design system is proposed in this research. The
architecture of this system is illustrated in Figure 3.4. The system consists of

three modules:
o Feature-based Design System,
o Geometry Representation System, and

e Intelligent System.

———— —— — —— e -

N s Geometry \
1 \ ! Representation I
Feature-based Design System ; ! : System |
1
t ! :
] Product

. | Cass Instance : e 1'Gecunetry i
S Library Features I on 1
= U
g f 1 | !
s N\ ! !
"g Intelfigent System i 1 !
£ ! ! 3D :
- Inference Knowledge i ! Geometry :
Engine Base 1 I Output l
N ! System !
} [' ;
I ['
/ I !
s \ !

______________ - . e e o o — — — — —

Visualworks C++, 30 Studio MAX

Figure 3.4: System architecture showing the three modules

3.2.1 Feature-based Design System

In this system, features are used as building biocks for product modeling
as described in Section 3.1. Features are defined at two levels: class level and
instance level. Class features are used to capture the generic characteristics of
objects. Instance features are the specific product data generated using class

features as templates.

The class features are stored in a standard library. The object oriented
programming approach is used for modeling the class feature library. Class
features are organized in a hierarchical data structure. A feature at a lower level
in the hierarchy data structure inherits descriptions defined in its super-class

features.

Descriptions of a class feature are organized in a number of groups,

called “aspects” in this system. These aspects include attributes (parameters),

39
attribute relations, element features (constituent building blocks), feature

relations, constraints, geometry descriptions, etc.

All the descriptions in the class features can be derived in the instance
features automatically when they are generated using the class features as
templates. The descriptions in the instance features can be modified during
product modeling process. Since the data in instance features are associated by
their relations and any change of partial product data descriptions can be

propagated to other parts automatically using these relations.

3.2.2 Geometry Representation System

In this system, geometric descriptions are defined as part of the feature
definitions. The geometric descriptions include (1) 2D geometric descriptions

—— B T T o o sy B s —

o fNN N < P) LI ¥4
ana {2) Su geoimetnic aescnptlons.

The 2D geometric descriptions are used for displaying the 2D product
geometry using a specially developed browser. The 2D geometric elements,
including lines, circles, arcs, efc., are used for modeling the product geometry.
The 2D geometry representation function was implemented using VisualWorks

directly.

The 3D geometric descriptions of the features are defined by (1) 3D
primitives (e.g., box, cylinder, etc.), (2) moving and rotating operations to these
primitives, and (3) Boolean operations (e.g., union and subtraction) to these
primitives. To utilize the functions of conventional geometric modeling systems
for displaying the geometric results, a neutral feature geometry representation
scheme is developed in this research. When generation of the product 3D
geometry is required, all the 3D geometric descriptions in the instance features
are extracted and changed into this neutral geometric representation scheme.

The geometric modeling system then translates the neutral geometric

40
descriptions into its geometric representation format to display the 3D geometry.
In this work, a 3D geometric modeling system, namely 3D Studio MAX

[Michael96], has been employed for this purpose.

3.2.3 Intelligent System

An intelligent system has been developed to achieve the objective of
product modeling automation. The intelligent system is composed of a
knowledge base and an inference engine. Product modeling is automated by

knowledge-based inference.

Knowledge is encoded in form of rules. A rule has IF-THEN data
structure. The IF part of a rule describes the condition that has to be satisfy
before the THEN part of rule can be executed. The database is represented by

. Ln - $ e v woem e o tk.— aaaaaa e £L3 T mwn e e

-~ ~de smoem -~ - - - -~ ~emle o
VS ICatuico. 1ut IIPIUVG 11T tCaouttit '9 GHICIGII ’y, ut lly

] -~ e st oo b
tniota 11T [Ciovat it pait v

the knowledge base and database are considered.

Details regarding the feature-based design system, geometry
representation system, and intelligent system will be discussed in Chapters 4, 5,
and 6.

The feature-based intelligent design system provides a user-friendly
interface environment. Using the class features defined in the class library,
modeling of products can be achieved by generating instance features either

manually or using the knowledge-based system.

The object oriented programming language - Smalitalk has been primarily
used for implementing the feature-based intelligent design system. it was used

due to its large class library and good programming/debugging environment.

The geometry representation system was implemented using C++ and 3D

Studio MAX. For translating the neutral geometric descriptions into the specific

41
descriptions for 3D Studio MAX, a translation module has been implemented

using Microsoft Visual C++ 5.0. 3D Studio MAX is used for geometric

representation due to its excellent graphics functions. A snapshot of the
implemented system is shown in Figure 3.5.

Yy Rule Base Browset
'WindowArchitecture
MotionTransferRules

DoorCer
MechanicalApplication DoorleftDifferent

length[?shaft2]
: = locX|?gear3] - DoorRight
| width{?gear?] 3

Rule: RectangularRight

IF (center, ?x) & (<=, gridX[?x], 0) THEN (remaveFeature,

| | ?right) & (generateFeature, Doorleft, ?right) & (natify, The [
right door has been changed according to the center door) P

OB{ Iength{Shan22]
Bl = l0cX(Geart3] - locX|Geart2] + (width[Gear13] <2) + width{Gear12]

Figure 3.5: Snapshot of the implemented system

42

Chapter 4

Feature-based Design System

This chapter introduces the feature-based design system. The methods of
modeling the standard class feature library, generating instance features for
building up products, and maintaining product data relations are discussed in
this chapter. An example is given to demonstrate the functions of the developed

system.
4.1 Introduction

In this research, features are used as building blocks for product
modeling. First, generic characteristics of objects are captured in class features.
Class features are stored in the class feature library of the design system. Using
class features as templates, instance features can be generated for modeling
product data. All the class feature descriptions are inherited by the

corresponding instance features automatically.

In a class feature definition, all the descriptions are organized in a
number of groups called aspects. These groups include quantitative parameters,
relations among quantitative parameters, qualitative descriptions, relations
among qualitative descriptions, constraints, geometric descriptions, and so on.
This structure provides good software re-use and management capabilities. For
example, a new aspect can be added to the feature definitions, when such a

requirement is raised.

The object oriented programming approach has been employed for
modeling class features. The class features are organized in a hierarchical data

structure. Sub-class features inherit all the characteristics of their super-class

43

features. In this way, modeling of class features can be accomplished in an

efficient manner.

Instance features are the specific product data generated using class
features as templates. An instance feature can be modified without affecting its
class feature definition. A product model generally comprises a collection of
instance features that are associated with qualitative relations among

themselves and quantitative relations among the parameters.

4.2 Creation of Class Features

All the class features are stored in different categories due to the large
number of class features. The categories play no role in the product library
modeling process except for helping to search and find the required class
features easiiy. To create a new ciass feature, either an existing category shouid
be selected or a new category should be added. A new class feature is defined
as a sub-class feature of an existing class feature. For instance, the class
feature SpurGear can be defined as a sub-class feature of the class feature
Gear. The descriptions in the Gear class feature can be inherited by the

SpurGear class feature automatically.

4.2.1 Class Feature Browser

The class feature browser is the interface environment to define class
features. A snapshot of the class feature browser is shown in Figure 4.1. The

browser consists of four list views and one text view as illustrated in Figure 4.2.

In the class feature browser, the categories are listed in the category list
view. By selecting one of the categories, the features in that category are shown
in the feature list view. By selecting a feature in the feature list view, a list of

aspects is shown in the aspect list view. The aspects include: attributes,

44

element-features, attribute-relations, feature-relations, geometry3D, constraints,
class-methods, instance-methods, etc. The aspect list is a built-in list that is

common to all features. Element name list view shows the names of the feature

- -aﬂrlbuteﬁ'gm“i

ThreeDFeatures & :
DoorDesign constraints

classMethod4@l

Jength[?shafi2]

= locX[?gear3] - locX[?gear2] + (width[?gear3] =2}

Figure 4.1: Snapshot of class feature browser

Class Feature Browser find..
replace..
Category Feature Aspect Element undo
List List List Name co
View View View List hoved
View paste
accept
j ‘ cancel
| |
File Out File Out
Print Out Print Out Text View
Add Remove
Remove Rename
Rename

Figure 4.2: Views and menus in the class feature browser

45

elements in corresponding aspect. These element names are represented with

different formats. Text view is used to edit the feature definitions.

4.2.2 Defining Class Features

Class features are defined in the text view and saved in the class feature
library. After the category, in which the class feature is to be defined, has been
selected, the following template is shown in the text view of the class feature

browser:

<Super-Class Feature> subclass: <Sub-Class Feature>
instanceVariableNames: <instance variables>
classVariableName: <class variables>

category: <category name>

To define a new class feature, the user is required to replace the text
within brackets with the actual feature definitions. A class feature name starts
with an uppercase letter. A super-class feature should be a class feature already
defined in the system. Instance variables and class variables are the same as
those in Smalltalk. The category name is the one selected for generating the

new class feature. An example of feature definition is given as follows:

<Feature> subclass: <Gear>
instanceVariableNames: <addendum pitch>
classVariableName: <Pi>

category: <Mechanical-Applications>

Atfter filling in this template, the class feature can be saved by executing
the accept menu item in the text view menu. Common editing functions, such as
find, replace, cut, copy, paste, etc., are provided in the text view menu. An
existing class feature can be removed or renamed by selecting the

corresponding menu items of the feature list view.

46

The next step is to define the feature elements using the text view. Details

regarding these feature definitions are introduced in Section 4.3.

4.3 Representation of Class Features

Class features are abstractions of physical objects. The characteristics of
different perspectives of objects, such as parameters and behaviors, are
captured as aspect descriptions of a class feature. In this system, the aspects
are: attributes, element-features, attribute-relations, feature-relations,
constraints, geometry3D, instance-methods and class-methods. An example of

class feature definition is given in Table 4.1.

Table 4.1: An example of a class feature description

items Examples
class definition <Fsature> subclass: <GearPair=

instanceVariableNames: <>
classVariableNames: <>

category: <Mechanical-Applications>

attributes width
100
speedRatio
4

element-features ?geart
Gear
?gear2
Gear
?shaft1
Shaft
?shaft2
Shaft

Table 4.1: An example of a class feature description (continued)

47

Items

Examples

attribute-relations

rpm[?geart]

= rpm[?shaft1]
rpm[?gear2]

= rpm[?shaft2]
speedRatio[?self]

= rpm[?gear1]/ rpm[?gear2]

feature-relations

connection
(connect, ?geari, ?shafti)
(connect, ?gear2, ?shaft2)

(pair, ?geart, ?gear2)

constraints

widthConstraint

widih{7seif] > d{7geari] + d[7gear2]

geometry3D

Geometry3D
(box, platet, plateWidth[?self],
plateThick[?self], platelL_ength[?self])
(rotate, plate1, 0, 90, 0)
(move, platet, 0, 50.0, 18.0)

instance-methods

drawingOn: gc from: aninstanceName

| originPoint aRectangle locX locY |

locX :=locX[?self].
locY = locY[?self].

originPoint := Point x: locX y: locY.

48

In the remainder of this section, the aspects defined in the class features

are introduced with details.

(1) Element-Features:

A mechanical product is usually made up of a number of components. For
instance, a car consists of components including body, engine, wheels, and so
on. Similarly features should also be able to define the composing components.
These composing components are referred as element-features in the feature-
based design system. When an instance feature is generated, its element-
features are also generated automatically. Element-features are listed under the
element-features item in the class feature browser. An element feature is defined
by a variable name and a feature type in a class feature. A variable name is
represented by a string of characters starting with a question mark “?”. The type
of the element-feature must be a class feature already defined in the system.

Examples of element-feature descriptions are:

Example |
?X
Shaft
Example 11
?gearl
Gear

?selfis a special variable to refer to the feature itself.
(2) Attributes:

The parameters of features are described as attributes. Attributes include
numerical attributes (e.g., width and length) and descriptive attributes (e.g., color
and type). In this feature-based design system, an attribute is defined by an

attribute name and an attribute value. An attribute name is described by a string

49

of characters. An attribute value is described by either a number or a string of

characters. Examples of attribute definitions are shown below:

Example |
m
2

This example shows the definition of an attribute name m and its default

numerical attribute value 2.

Example Il
color

red
This example shows the definition of an attribute name color and its default

descriptive attribute value red.

Attributes are used in the format of atfribute[feature] in other parts of the
feature definitions. An attribute m of the element feature ?gear? is represented
as mf?geartl]. Other examples of attributes are: colorf?self| and

diameter{?pulley1].
(3) Attribute Relations:

Relations among numerical attributes are described by functions. Each
function is defined by a number of input attributes and one output attribute. A

general representation of a relation takes the form:

<attribute name>

:= <an expression>

The syntax of <an expression> follows the syntax of Smalitalk. Element-
features and attributes are allowed in the expression. When a complicated

relation is to be described, generally a Smalltalk method is implemented first,

50

and this method is subsequently called in the expression. Examples of attribute

relations are:

Example |
d[?self]

:= m[?self] * z[?self]

Example Il
d[?gearl]
:= Gear diameterWithM: m[?gear2] Z: 30

(4) Feature Relations:

Relations among features are defined by predicates. Each predicate
takes the form of (xi,xz........ X,), where, x1,x,........ X, are called terms. The first
Feature relations are qualitative in nature. A term in a feature relation is
described by a symbol constant, a numerical constant, a variable, or an attribute.
Feature relations are organized in groups. A group of feature relations defined in

class feature GearPair is described as

connection
(connect, ?gearl, ?shaftl)
(connect, ?gear2, ?shaft2)

(pair, ?gearl, ?gear2)
(5) Constraints:

Constraints specify the requirements that a feature must satisfy. A
constraint is defined by an expression with a Boolean return value. Each
constrain is associated with a name, which is defined by a string of characters.
Attributes and element feature variables are allowed in constraint expressions.

An example of constraint is shown below:

51

Example
moduleConstraint
~“#(1.2 1.6 2.0 2.5) includes: m{?gearl]

In this example a Smalltalk method is used to evaluate the constraint.
(6) Class Methods

Definitions of class methods are the same as those in Smalltalk. In
addition, element-feature variables and attributes are allowed in the class

method definitions. Class methods are executed by class features directly.

(7) Instance Methods

Definitions of instance methods are the same as those in Smalltalk. In
addition, element-feature variables and attributes are allowed in the instance
method definitions. Instance methods are executed by instance features. The 2D
product geometry is also defined as an instance method. An example instance

method to achieve the height of a standard casement window is defined as:

Example:

getHeight

| material height |

height := 0.

material := frameMaterial[?self].

material == #primedWood
ifTrue: [height := heightForPrimedWood]
ifFalse: [height := heightForSevilleMetalClad].

“height

In this instance method, two instance variables, heightForPrimedwood and
heightForSevilleMetalClad, are used to obtain the value of the height

attribute.

52
(8) Geometry3D

The 3D product geometry descriptions are described in this aspect. The
3D geometry of a feature is defined by generating primitives (e.g., box and
cylinder), transformation operations (moving and rotating) and Boolean
operations (e.g., union and subtraction) to these primitives. Details regarding

product geometry representation will be discussed in Chapter 5.
4.4 Generating Instance Features

Instance features are used for modeling actual product data. Class
features are used as templates for generating instance features. Instance
features can be generated manually by the user or automatically by the
intelligent system. The instance feature browser of the feature-based design
system is the user interface for generating and modifying instance features. A
snapshot of the instance feature browser is shown in Figure 4.3. This browser

consists of four list views and one text view as illustrated in Figure 4.4.

= . > . ,
I "JInstance Feature Browser

HMotionTransfer |Jll Gear13 R Bl length[?self]
JiDispla Gearl4 llength[?shaft1
| il charicalApphe Gear21 ft 2
DoorDesign Gear22 N
jlCasement Gear23 L locX[?gear!]
- Gear24 locX[?gear2]
o ZearBio | _illocX[?gear3]

Jength[Shaft22]

= locX[Gear13] - locX[Gear12] + (width[Gear13]

Figure 4.3: Snapshot of instance feature browser

53

Different products are generated in separate categories. Instance
features can be added to or removed from a category using the feature list view.
A product description can also be saved in an external file using the File Out

function of the category list view menu.

Instance features can be modified manually using this browser or
automatically using the intelligent system. Manual modification to instance
feature definitions is carried out using the text view of the instance feature

browser.

Representation of instance features is similar to the representation of
class features, except that the element-feature variables are replaced by actual
instance feature names. An instance feature, generated from the class feature

shown in Figure 4.5, is illustrated in Figure 4.6.

Instance Feature Browser

Category Feature Aspect Element
List List List Name
View View View List
View
]] Text View [a-q™
File Out Add replace..
Print Out Remove —t
Create 3D Geometry File| |Rename undo
Add Select Rule Base copy
Remove Start Inference cut
Rename paste
File Out
Computing Attributes Print Out accept

cancel

Figure 4.4: Instance feature browser - the interface for product modeling

54

The following steps are used to generate an instance feature manually:

e Add a new category or select an existing category from the instance feature
browser,

e Select the menu item “add” from the feature list view of the instance feature
browser,

e Select the class feature, which is used to generate the instance feature, by
specifying its category name and class feature name using dialog boxes,

e Specify the name of the instance feature to be generated,

GearPair
Attributes
width
100
gearRatio
4
Attribute Relations
speedRatio[?self]
= rpm[?gear1] / rpm[?gear2]
Element Features
?shaft1 ?shaft2
Shaft Shaft

Feature Relations
connection
(connect, ?geart, ?shafti)
(connect, ?gear2, ?shaft2)
(pair, 7geart, ?gear2)
Constraints

widthConstraint
width{?self] > d[?geart] + d[?gear2]

Figure 4.5: Representation of GearPair class feature

55
e [f the class feature consists of element features, these element features

should also be generated. The user is then asked to specify the names for
these element features.

gearPairt
Attributes
width
100
gearRatio
4
Attribute Relations
speedRatio[gearPairt]
= rpmigear1] / rpm[gear2]
Element Features
geart gear2 shafti shafi2
Gear Gear Shaft Shaft
T Oy SR TRy |
Feature Relations
connection
(connect, gear1, shaftt)
(connect, gear2, shaft2)
(pair, gear1, gear2)
Constraints
widthConstraint
width[gearPair1] > d{gear1] + d[gear2]

Figure 4.6: Representation of gearPair1 instance feature

When an instance feature is created using a class feature as its template,
the instance feature inherits the descriptions in that class feature and its super-
class features. The element feature variables in the class feature descriptions
are replaced by the actual element feature names. The process of instance

feature generation and inheritance among features are shown in Figure 4.7.

56

During the creation of instance features, the default attribute values
defined in class features are inherited to their instance features automatically.
These attribute values can be modified during modeling the product. Element
features, by default, are of the types that are specified in the class feature

definitions.
4.5 Maintaining Product Data Relations

Modifications and redesigns are often required before a product model is
finalized. Since the product data are associated through their relations,
modifications in one part of the data should be propagated to other parts using
these relations. This approach is similar to the traditional parametric design, in
which numerical relations among parameters are defined and used to keep the

consistency of parameter values. In addition, this system also provides the

Class Feature Base -;

[Class Feature: Feature j

; 1 Class Feature: Gear
Class Feature: GearPair :b:: >
Attributes: width[?self] Atrbutes: l'z“'[7s$eellﬂ .

Element Features: ?geari: Gear, ?gear2: Gear| | Attribute Relatlons
eature Relations:....

Instance Feature Base

instance Feature: geart
Attribute: m[gearl], z[gear1]
Attribute Relations:......

Instance Feature: gearPair1
Attributes: width[gearPair1}
Element FeatureS' gear1: Gear, gear2: Gear

Instance Feature: gear2
Attribute: m[gear2], z[gear2}]

Attribute Relations:......

» Class—sub class inheritance -> Class — instance inheritance ==P»Element-feature relationship

Figure 4.7: Generation of instance features using class features as

templates

57

following functions: (1) modeling of the relations among non-geometric
attributes, (2) modeling of the relations among non-numerical attributes, and (3)
modeling of the qualitative relations among features. Figure 4.8 shows a
mechanism that is used to transfer rotational motion from one shaft to another.
Some of the relations among the attributes are listed in this figure. The feature-
based design system uses a data dependent relation management mechanism

(introduced below) to keep the consistency of the product data descriptions.

The data dependency relation network has been developed based upon
the relations for propagating product data changes. The propagation of changes
is carried out in the following manner:

e For each product defined in a category, the system maintains a list
representing the attribute dependency relations. Each element on the list
specifies the input and output relation defined by a function. If an attribute is
changed, the system then checks whether this attribute is used as an input
attribute in a function. If it is so, the output attribute value should be updated
using the function. This process is continued until no propagation is required.

e When an instance feature is deleted, all its element features should be
deleted.

e When an attribute or an element feature is removed, all the relevant
qualitative and quantitative reiations should be deleted.

e The constraints are checked when new features and attributes are created or
modified. A violation of constraint can be resolved by changing the relevant

attribute values.

In the developed data dependent relation management system, an output
attribute value is updated when the input attribute values are changed using an
introduced relation. This approach is different from the conventional constraint
modeling method in which updating the attribute values in both directions can be

carried out using the constraint [Kremer97, Zweben94]. In the conventional

58

Gear1

Shaft2

)
@,

Pulley1

g ——

AN

®4
Shaft1 Worm1 Shaft3

(a) A mechanism

F1: n(Wom1] := n[Shaft1]

F2: n[Gear1] := nf[Wom1}/z{Gear1]

F3: n[Shaft2] := nfGear1]

F4: n[Pulley1] := n[Shaft2]

F5: n[Pulley2] := n[Pulley1] *d[Pulley1})/d[Pulley2]
F6: n[Shaft3] := n[Puliey2]

(b) Attribute relations

C1e D

n[Gear1]
5 -F2 F3
@ Z[Geart] r
d[Pulley1] @ n[shaft2]
n[Pulley1] | -/
F4

n[Shaft3]

Pulley?2]
d[Puiley2] n[L,
l% An Attribute l A Function

(c) A relation network

Figure 4.8: A relation network among the attributes of a mechanism
that transfers rotational motion from one shaft to another

59

constraint-based problem solving systems, first a set of constraints are defined.
Constraint propagation is usually used to deduct more constraints from the
available constraints to reduce the problem solving space [Zweben94]. In the
system developed in this research, the data dependent relations are not the
constraints used in the conventional constraint-based problem solving systems.
If we want to define mutual dependent relations between two attributes, two

quantitative relations should be defined.

4.6 An Example

A mechanical design example is given in this section to show the
effectiveness of the introduced feature-based design approach. In this example,
a mechanism was designed to transfer motion from a shaft of a motor to another
shaft using a number of mechanisms including gear-pair mechanisms, worm-

gear mechanism, pulley-belt-drive mechanism, etc.

The first step in the product design using the feature-based design
system is to define the class features. All the class features in this example were
defined as sub-classes of a class feature called FeatureGeometry. The class
feature, FeatureGeometry, provides attributes representing 2D location
coordinates, namely locX and locY. The class features used in this mechanism
are listed in Table 4.2. Functions are used to define the quantitative relations
among attributes. For instance, the relation among module, m, number of teeth,

z, and diameter of a gear, d, is defined as a function:

d[?gearl] := m[?gearl] * z[?gearl]

When an instance gear feature is generated, the data dependent relation
network is then used to keep the consistency of the attribute values. For
instance, if the module of a gear is changed, the diameter can be updated

automatically using the data dependent relation network.

60

Table 4.2: List of class features in this example

Classes Attributes Element Features
Gear m (module), z (number of teeth), d | None
(diameter), n (rotational speed),
width, etc.
Shaft d (diameter), n (rotational speed), | None
width, etc.
Pulley d (diameter), n (rotational speed), | None
etc.
PulleyBeltDrive | outN, inN (rotational speeds), | ?pulley1, ?pulley2
width, etc.
GearBox inN, outN (rotational speeds), etc. ?geart, ?gear2,
?gear3, ?gear4,
?shaft1, ?shaft2,
?shaft3
Motor width, length, outN (rotational | None
speed), etc.
WormGear d (diameter), inN, outN (rotational | None
speeds), etc.
Mechanism width, length, etc. ?motor,

?pulleyBeltDrive,
?gearboxt,
?gearbox2,

?2wormGear

Product modeling is conducted by generating instance features using
class features as templates. When the instance feature mechanism1 is
generated using class feature Mechanism, its element features are also

generated. The class feature Mechanism consists of 2 element-features of the

61
class type GearBox. Each GearBox has 7 element-features, which are of the
types Gear and Shaft. Therefore, 2 instance features of the GearBox and 2 sets
of the 7 instance features for these 2 gear boxes should be generated. The

whole mechanism consists of 22 instance features, as illustrated in Figure 4.9.

gearil
gearl2
gearl3
gearld
> shaftll
__ shafti2
shaft13

motorl

gearBox1

wormGearl

mechanisml gear21

gear22
—> gear23
~ 7 gear24
shaft21

<

\ " shaft23
pulleyBeltDrivel

x‘ pulleyl

pulley2

Figure 4.9: Diagram showing instance features that build up the product

gearBox2

The 2D representation of the product is displayed in the 2-D Geometry
Browser of the feature-based design system. A snapshot of the geometry
browser displaying the created mechanism is shown in Figure 4.10. The
attributes can be changed according to the requirements of the design. The data
dependent relation network is used to keep the consistency of these attributes.
For instance, if the value of the attribute representing the diameter of the first
gear in the first gear-box is increased, the values of related attributes, such as
the rotational speeds of the shafts in the pulley-belt-drive mechanism, should

also be updated. When the diameter of the gear is changed, the dimensions of

62

the gearbox are also updated accordingly. The changed product representation

is shown in Figure 4.11.

‘ E ZD G'ebm.ét;y .Btdv;sér

Figure 4.10: Representation of 2-D geometry of mechanism1

j "_‘_‘!‘Z—D‘Geometrly Biowser

Figure 4.11: Representation of 2-D geometry of mechanism1 after
changing attributes

63

Chapter 5

Geometry Representation System

This chapter introduces the geometry representation module of the
feature-based intelligent design system. First, geometry representation scheme
in the feature definitions is introduced. Then the method to associate feature-
based symbolic descriptions with 3D solid model is presented. At last, an

illustrative example based upon the introduced method is given.

5.1 Geometric Representation in Feature-based Design

Geometric descriptions are part of the feature definitions in the feature-

based design system. Geometric descriptions include 2D and 3D descriptions. A

feature definition is comnased of a number of asnects, There are two diffarent

aspects for describing product geometry in this system: (1) the 2D geometric

aspect and (2) the 3D geometric aspect.

5.1.1 2D Product Geometry Representation

The 2D geometric descriptions of a class feature are preserved in an
instance method. Instance methods in class features are similar to the instance
methods in Smalltalk. In addition, in these methods use of attributes and element
features is allowed. In a feature definition, the instance method to create 2D
geometric output is called 2DDrawing. This method uses the attributes
preserved in feature definitions and Smalitalk 2D drawing functions to display

the 2D design resuit.

The instance features with 2D geometric descriptions are used for
displaying the 2D product geometric information through a specially developed

interface called 2-D Geometry Browser, as shown in Figure 5.1.

64

.

s N et i M IR
R

Figure 5.1: The 2-D product geometric output window

Many functions have been developed for this 2D geometric information
display window. An object can be displayed against a background to see if the
object is matched with the background. An image of the background can be
selected from the screen of the computer monitor and stored in the system. The
background is then displayed in the 2D product geometry output window, with
the 2D output of the selected instance features on the top of the background, as
shown in Figure 5.1. Background can be moved and scaled in both X and Y
directions to match itself with the 2D output of the product.

5.1.2 3D Product Geometry Representation

The 3D product geometry is described in a feature aspect called
geometry3D. A representation scheme has been developed in this research to
describe the 3D geometry. In this scheme, generation of objects using 2D and

65
3D geometric primitives, transformations of the objects including moving and
rotating, Boolean operations to these objects including union and subtraction,
assignment of material and color properties to the generated objects, etc. are
defined using feature descriptions. Details of the representation scheme are

given in Section 5.2.

The symbolic 3D geometric descriptions in the instance features are
extracted and translated into a neutral format. The neutral geometric
descriptions are further translated into 3D solid models by the 3D geometry
translation module provided in the geometric modeling systems. This approach
is illustrated in Figure 5.2. A 3D geometric modeling system, called 3D Studio
MAX [Michael96], has been employed for developing the geometry

representation system.

Intelligent Geometry Representation System
System yrep Y
+ 3-D Geometry 3-D Geometry
Translation | _ Output
Feature-Based > Module
Design System

Figure 5.2: Geometry representation system receives the input
from the feature-based design system

The geometry representation system provides the following functions:

e Modeling of primitive geometric objects: to create 2D and 3D primitives such

as rectangles, polygons, circles, arcs, boxes, cones, cylinders, spheres, etc.

e Creation of 3D objects from 2D objects: to generate 3D solids by extrude and

lathe operations on the 2D primitives.

e Transformation of objects: to change locations and orientations of objects

using transformation operators including moving, rotating, etc.

66
e Assignment of materials and colors: to assign material properties to objects
and to set up appearance parameters such as color, shininess, color

diffusion, etc.
« Organization of objects: to associate objects in groups.

e Boolean operations to objects: to generate complex objects using Boolean

operations including union and subtraction.
5.2 A Geometry Representation Scheme

The 3D geometry of objects is described in terms of primitive geometric
objects and a series of operations to these objects. The basic steps involved in
representing the geometry are (1) generating objects using primitives, (2)
positioning objects, (3) Boolean operations to objects, and (4) assigning material
and color properties to the objects, These steps are described by predicates,
Each predicate takes the form of (f;, fo,, I;), where t;, f5,, , are the fields
of this predicate. Fields are described by symbols, strings, integers, floats,
variables, attributes and element-features. Therefore the 3D geometry of a

product is defined by a collection of predicates.

5.2.1 Generation of Geometric Primitives

A complex object is usually modeled by combining a number of primitives.
Geometric primitives are classified as 2D primitives and 3D primitives. During
the development of this scheme, issues for ease of understanding and
implementation were considered. Each primitive is associated with a name and
an ID number. The name is provided in the geometric description, while the ID
number is automatically provided by the system when the object is created. The
2D geometric primitives are shown in Figure 5.3. The 3D geometric primitives
are illustrated in Figure 5.4. Generation of these primitives is carried out by the

following built-in predicates.

67

Circle Arc
% Y
A
L sy
Rectangle Ellipse

Figure 5.3: 2-D geometric primitives
1. Circle
Format: (circle, <name>, <radius>)
<name>: name of the new object.
<radius>: radius of the circle.

Reference point: center of the circle.

2. Arc
Format: (arc, <name>, <radius>, <from>, <to>)
<name>: name of the new object.
<radius>: radius of the arc.
<from>: starting angle.
<to>: ending angle.

Reference point: center of the arc.

3. N-Polygon
Format: (n-polygon, <name>, <radius>, <side>)

<name>: name of the new object.

Z
h
o~ Y
Box Cylinder
Z
A
Cone Sphere

Figure 5.4: 3-D geometric primitives

<radius>: radius of the regular polygon.
<side>: number of sides of the regular polygon.

Reference point: center of the regular polygon.

4. Rectangle

5. Ellipse

Format: (rectangle, <name>, <length>, <width>)
<name>: name of the new object.

<length>: dimension in x direction.

<width>: dimension in y direction.

Reference point: center of the rectangle

Format: (ellipse, <name>, <length>, <width>)
<name>: name of the new object.
<length>: dimension in x direction.

<width>: dimension in y direction.

68

69
Reference point: center of the ellipse.
6. Box
Format: (box, <name>, <length>, <width>, <height>)

<name>: name of the new object.

<length>: dimension in x direction.

<width>: dimension in y direction.

<height>: dimension in z direction.

Reference point: center point of the bottom plane.
7. Cylinder

Format: (cylinder, <name>, <radius>, <height>)
<name>: name of the new object.
<radius>: radius.
<heighi>: heignt.

Reference point: center point of the bottom plane.

8. Cone
Format: (cone, <name>, <radius1>, <radius2>, <height>)
<name>: name of the new object.
<radius1>: radius of the bottom circle.
<radius2>: radius of the top circle.
<height>: height.

Reference point: center point of the bottom circle.

9. Sphere
Format: (sphere, <name>, <radius>)
<name>: name of the new object.
<radius>: radius.

Reference point: center point of the sphere.

70

5.2.2 Operations for Creating 3D Primitives from 2D Primitives

Extrusion and Lathe are the operations used for generating 3D solids
from 2D sections. Extrusion is an operation to generate a 3D object with uniform
cross-section, by sweeping a 2D section in the direction of its normal. Lathe is
an operation to revolve a 2D section about an axis by a certain angle to

generate the 3D object. Extrusion and lathe operations are illustrated in Figure

5.5.

Generation of a 3D solid using either of these two operations is carried
out by a two-step process. The first step is the creation of the 2D section on
which the operation will be applied. In the case of extrude operation, the 2D
section is a horizontal cross-section of the solid to be generated. In the case of

lathe operation, the 2D section is half of the longitudinal cross-section of the

] Le e o T~ A ~d H 5 43 £ srbee e
solid to be genei 1hie second step is the application of extiude or lathe

operation to the 2D section created in the first step to achieve the 3D solid. The

two operations are illustrated in Figure 5.5. The built-in predicates for these two

A Z
e Y =
X sm—-
Extrude

z Z

A
/‘ Y

/. » X enerel)>-
Lathe

(i

Figure 5.5: Operations to the 2-D primitives

71

operations are defined as:

1. Extrude
Format: (extrude, <name1>, <name2>, <height>)
<name1>: name of the existing 2D object.
<name2>: name of the new 3D object.
<height>: dimension in z direction.

Reference point: reference point of the 2D section.

2. Lathe

Format: (lathe, <name1>, <name2>, <degree>)
<name1>: name of the existing 2D object.
<name2>: name of the new 3D object.
<degree>: angle to be rotated.

Reference point: geometrical center of the resulting object.

5.2.3 Transformation Operations

Transformation operations are used to change the locations and
orientations of objects to place them at desired positions. Two types of
transformation operations are provided in this system: move and rotate. These

operations are shown in Figure 5.6.

1. Move
Format: (move, <name>, <x>, <y>, <z>)
<name>: name of the existing object.

<x>, <y>, <z>: translation in x, y, and z directions.

2. Rotate
Format: (rotate, < name >, < 6x>, < 0y>, < 0;>)
< name >: name of the existing object.

< 0>, < 8, >, < 8,>: rotation about x, y, and z axes.

72

AZ ALZ
-
Y
Move Py —
"X < - X
L
7 -
AZ AZ
—)p
Y Rotate - b4 e
:x e P " VX

Figure 5.6: Transformation operations

5.2.4 Boolean Operations

Boolean operations are used to create complex objects. In this system,
two types of Boolean operations are provided: union and subtraction, as shown
in Figure 5.7. In the current system, Boolean operations have not been fully
implemented in the 3D solid modeling module, due to the limitation of the 3D

Studio MAX system. The following syntax is used for representing the Boolean
operations:

1. Union

Format: (union, <name1>, <name2>, <name>)

<name1>, <name2>: names of the two existing objects.
<name>: name of the new object.

73

. =
-— —
e —

z Union ‘

B= Ll
X X

B

=
D — =

7 Subtraction 6

T V4

P P

L= !L,

X

Figure 5.7: Boolean operations

2. Subtraction
Format: (subtraction, <name1>, <name2>, <name>)
<name1>: name of the base object.
<name2>: name of the object to be subtracted.

<name>: name of the new object.

5.2.5 Assignment of Material and Color Properties

The geometric model can be made to look more realistic and attractive by
assigning the properties of material and color. The following built-in predicates

are defined for this purpose.

74

1. Material
Format: (material, <name>, <type>)
<name>: name of the existing object.
<type>: type of the material to be assigned to the object. The
materials currently defined in the system are glass, wood,

copper, steel, ferrous, etc.

2. Diffuse-Color
Format: (diffuse, <name>, <red>, <green>, <blue>)
<name>: name of the existing object.
<red>, <green>, <blue>: the three color components represented

by values between 0 and 1.

3. Specular-Color
Format: (specular, <name>, <red>, <green>, <biue>)
<name>: name of the existing object.
<red>, <green>, <blue>: the three color components represented

by values between 0 and 1.

4. Ambient-Color
Format: (ambient, <name>, <red>, <green>, <blue>)
<name>: name of the existing object.
<red>, <green>, <blue>: the three color components represented

by values between 0 and 1.

Definitions of diffuse color, specular color, and ambient color can be found in
Michael [Michael96].

75
5.2.6 Organizing Objects in Groups

Objects can be organized in groups. Each group is composed of a
number of objects and sub-groups. Therefore, all the objects of a product are

organized in a hierarchical data structure. The group operation is defined by:

Group
Format: (group, <namei>, <name2>, <name>)
<name>: name of the new group.

<name1i>, <name2>: objects and sub-groups.

5.3 3D Studio MAX

3D Studio MAX by Kinetix is an system for modeling 3D objects and
displaying the 3D objects using its graphics environment. Since nearly all the
functions in 3D Studio MAX are plug-in components programmed using C++,
modification and expansion of the 3D Studio MAX system can be carried out

easily. A snapshot of the 3D Studio MAX user interface is shown in Figure 5.8.

3D Studio MAX is one of the best 3D computer-graphics environment so
far. The 2D and 3D geometric objects can be created, transformed, modified,
rendered, grouped, etc. using the menu items provided in the system.
Compound objects, such as Boolean objects, can be created using primitives. In
addition, material properties, texture maps, and colors can be assigned to the
created objects. Lights, camera, viewing direction, etc. can also be defined and

selected. In this research, the following functions are primarily used:

e Generation of 2D and 3D primitives,

e Transformation of objects to change locations and orientations by
translating and rotating these objects,

e Assignment of material properties to the objects to enhance the

display visualization,

Figure 5.8: User interface of 3D Studio MAX

e Association of objects in groups,

e Boolean operations to the objects such as union, subtraction, etc. In

the current system, the Boolean operations have not been fully
implemented.

5.4 Generation of 3-D Solid Model

The 3D solid model of a product is created through 4 steps:
1. Defining the 3D geometric descriptions in class features:

The 3D geometric descriptions of a product in a feature definition follow the
scheme introduced in Section 5.2. Attributes and element features can be
used in these descriptions. An example of 3D geometric descriptions for the

feature Gear is illustrated in Table 5.1. The 3D geometry of a gear is

77
created by extruding a 2D circle, and rotated and moved to the desired
position. In addition, the material and color properties are also defined in
the 3D geometric descriptions. The final geometry is described by a

variable ?self.

2. Generating 3D geometric descriptions in instance features using the class

features as templates:

Geometric descriptions in the instance features are generated using the
class feature descriptions as templates. The variables that have been used
in the class feature descriptions for representing element features are
replaced by the instance feature names. The instance feature, geart, is
generated using class feature, Gear, as template. In this example, the

variable ?selfis replaced by the name of the instance feature geari.

3. Extracting the 3D geometric descriptions from instance features and

translating these descriptions into a neutral form:

The symbolic geometric descriptions in the instance features are then filed
out (extracted) to a neutral format from the feature-based design system.
First all the instance features in a category, representing a complete
product, are selected. Then the 3D geometric descriptions in the instance
features are extracted and translated into the neutral form. During the
extraction of geometric descriptions from the instance features, the following

steps are taken:

(1) As described in Section 5.2, every geometric object in a feature is
associated with a name. To ensure that each object in the translated form
is unique, the object name in the neutral form is defined by combining the
instance feature name and the object name described in the instance

feature.

78

(2) Attributes in the instance feature descriptions are replaced by their

values.

(3) If the product consists of more than one instance feature, the geometric

descriptions of these instance features are combined together. The 3D

geometric descriptions of an instance feature are extracted, only after the

geometric descriptions of its element features have already been

extracted.

The extracted 3D geometric descriptions of instance feature gear? are

shown in Table 5.1.

Table 5.1: Geometric descriptions of a gear in different places

Geometric Descriptions

(extrude, cir1, ?self, thickness[?self])

(rotate, ?self, rotX[?self], rotY[?self], rotZ[?self])
(move, ?self, locX[?self], locY[?self], locZ[?self])
(material, ?seilf, copper)

(ambient, ?self, 0.9, 0.4, 0.5)

Instance
Feature:

geart

(circle, cir1, radius[gear1])

(extrude, cirt, gear1, thickness[gear1])

(rotate, gear1, rotX[gear1], rotY[gear1], rotZ[gear1])
(move, gear1, locX[geari], locY[gearl],
locZ[gear1])

(material, gear1, copper)

(ambient, geart, 0.9, 0.4, 0.5)

79

Table 5.1: Geometric descriptions of a gear in different places (continued)

Places Geometric Descriptions

Extracted Neutral | circle geari-ciri 22.0

Data extrude geari-cirl geart 10
rotate geart 0900

move geart -73.3333 0 187.0
material gear1 copper
ambient gear1 0.9 0.4 0.5

4. Translating the neutral 3D descriptions into the 3D solid model:

In this research, the extracted 3D geometric descriptions are first preserved
in a file, and then translated into the 3D solid model. The 3D Studio MAX
has been used as the platform for displaying the 3D geometry. The module
to translate the 3D neutral geometric descriptions preserved in the file was
developed as a plug-in application of the 3D Studio MAX. A plug-in
application in 3D Studio MAX is a piece of program written using C++, and
used to access the objects in 3D Studio MAX. The geometric description
translation module, developed as a 3D Studio MAX plug-in application,
reads the neutral 3D descriptions preserved in the file, and translates these
descriptions into 3D Studio MAX command for generating the 3D product
geometry. A generated gear mechanism in the 3D Studio MAX environment

is shown in Figure 5.9.
5.5 An Example

In this section, an example is given to show how the 3D design geometry
is described in the features using the introduced method. An assembly, as
shown in Figure 5.10 (a), is composed of two components, a base and a shaft.
The two components and the assembly are described by three class features:

Base, Shaft, and BaseShaft, respectively as shown in Figure 5.10 (b). In the

Tergpeoihi

Figure 5.9: A snapshot of 3D Studio MAX with a gear mechanism

class feature Base, the geometry of base is defined by three steps: (1) A
rectangle is extruded to obtain a block with required dimensions. (2) A cylinder is
generated and positioned at the desired location. (3) The base is created by a
subtraction Boolean operation to the block and cylinder. In the Shaft class
feature, the geometry of shaft is defined as the result of a union Boolean

operation to two cylinders.

The final geometric object name is defined using the variable ?self. Three
instance features, base1, shaft1, and baseShaft1, are generated from the three
class features respectively. The instantiated 3D geometric descriptions in these

three instance features are illustrated in Figure 5.10 (c¢). In the three instance

2 oo
— g ———- I
>~ . e L _Z\l
= I t
> >y — :.j -1 __
x - LY
Shaft .=
Assembly
(a) Base-shaft assembly
Class Feamre: Base Instance Feature: basel
3D-Geometry: 3D-Geometry:
(rectangle, recl, length{?self], width[?self]) (rectangle, recl, length[basel], width{base1])
(extrude, recl, box1, height{?self]) (extrude, recl, boxl1, height{basel])

(cylinder, cyll, holeRadius[?self], holeHeight([?self])

(move, box |, locX(?self], locY[?self], locZ[?self])

(move, cyll, locX[?self], locY[?self], locZ[?self] +
height[?self] - holeHeight[?self])

(cylinder, cyll, holeRadius{base1), holeHeight(base1])

(move, box1, locX[basel], locY[basel], locZ[basel])

(move, cyll, locX[basel], locY[basel}, locZ[basel] +
height[basel] - holeHeight[base1])

(subtraction, box1, cyll, ?self) (subtraction, box1, cyll, basel)
Class Feature: Shaft Instance Feature: shaft]
3D-Geometry: 3D-Geometry:

(cylinder, cyll, radius1{?self], heightl[?self])

(cvlinder cvl2 radinedf%ealfl heishf%ealéh

(move, cyll, locX{?self], locY[?scif], locZ{7self])

(move, cyl2, locX[?seif], locY[?self], locZ{?self] +
height1{?self])

(union, cyll, cyl2, 7self)

(cylinder, cyll, radius1{shaft1], height1[shaft1])

{eylinder, oy2, radins2{shaltl], heighiZ{shaiti])

(move, cyll, locX(shaft1], locY(shaft1], locZ[shaft1])

(move, cyl2, locX[shaftl], locY(shaftl], locZ[shaft1] +
beight1{shaft1])

(union, cyll, cyl2, shaftl)

Class Feature: BaseShaft

Instance Feature: baseShaftl

Element-Features: Element-Features:
7BaseFeature ?ShaftFeature basel shaftl
Base Shaft Base Shaft
3D-Geometry: 3D-Geometry:
| (group. group!, 7BascFeature, ?ShaftFeature) I | (group. groupt, basel, shaft1)

(b) Class feature definitions

(c) Instance feature definitions

rectangleb basel-recl 14.0 20.0

extrude basel-recl basel-box1 12.0
cylinder basel-cyll 3.0 7.0

move basel-box1 0.0 0.0 0.0

move basel-cyll 0.0 0.0 5.0

subtraction basel-box1 basel-cyll basel

cylinder shaftlcyll 3.0 5.0

cylinder shaftl-cyl2 6.0 7.0

move shaftl-cyll 0.00.0 7.0

move shaftl-cyl2 0.0 0.0 12.0

union shaftl-cyil shaftl-cyl2 shaftl
group baseShaftl-group! basel shaftl

(d) 3-D geometric descriptions for 3D Studio MAX

Figure 5.10: 3D geometric descriptions of a base-shaft assembly

81

82
features, the positions of the two components are defined by 6 coordinate

attributes. The attribute values and relations are:

LocX[basel] := 0.0

LocY[basel] := 0.0

LocZ[basel] := 0.0

LocX(shaftl] := LocX[basell]

LocY[shaftl] := LocX[basell

LocX[shaftl] := height[basel] - heightl{shaftl]

When the 3D geometric descriptions in the instance features are used to
generate the input data for the 3D Studio MAX, all the attribute names are
replaced by attribute values. The temporary geometric object variables defined
in these instance features are associated with the unique instance feature
names for generating intermediate geometric objects in 3D Studio MAX
environment. The generated 3D geometric descriptions for 3D Studio MAX are

shown in Figure 5.10 (d).

83

Chapter 6

Intelligent System Based Product Modeling

This chapter introduces the intelligent system that is used to automate the
product modeling process. The methods for modeling the knowledge base and
the database are presented first. The knowledge-based reasoning mechanism is
then introduced. Finally, an example is given to illustrate the introduced

approach for automated product modeling.

6.1 Introduction

An intelligent system has been developed in this research for conducting
decision-making activities during the process product modeling through
knowledge-based reasoning. The intelligent system consists of the following two

components:
1. a knowledge base
2. an inference engine

The knowledge base is the place to store knowledge that is described as
rules using the IF-THEN data structure, while the database is the place to
preserve product data that are described by instance features. During the
product modeling process, the condition parts of the rules stored in the
knowledge base are compared with the database. If the condition part of a rule is
matched with the database, the result part of the rule should be executed. This
process is called knowledge-based reasoning or inference. Matching and
executing of rules are conducted by an inference engine. The architecture of an

intelligent system is shown in Figure 6.1.

In this research, an intelligent system has been developed for conducting

automated product modeling. As described in the previous chapters, product

84

Intelligent System

Knowledge Base

t Database
Inference |[€&——F—P

Engine

Figure 6.1: Intelligent system architecture

modeling is carried out by generating instance features using class features as
templates. During the product modeling process, the instance feature

descriptions such as attributes, element features, etc. can also be changed.

6.2 Modeling of the Knowledge Base and Database
6.2.1 Modeling of the Knowledge Base

In a knowledge base system, knowledge is described using a knowledge
representation method. Typical knowledge representation methods inciude
rules, frames, semantic networks, predicates, etc [Rich91]. In this research,
knowledge is represented in form of rules. To improve the inference efficiency,

only relevant rules and data are selected in automated product modeling.

A method of selecting only the relevant part of the knowledge base and
the database has been developed. Since the database representing a product is
described by instance features, the partial database of a product is selected by
choosing only the relevant instance features. The knowledge, represented in
form of rules, is organized in groups. In the knowledge-based reasoning, only
the relevant groups of the knowledge are selected. This idea is illustrated in

Figure 6.2.

85

Instance
Feature
Browser

e
N\

Knowledge
Selection
Browser

"Selected”

Figure 6.2: Only the relevant parts of knowledge base and database are
involved in the inference process
The rules representing knowledge are grouped into a number of rule-
bases. For instance, the rules related to gear design are bundled into a rule-
base. When a gear is being designed, this rule-base should be selected for
inference. Rule-bases are organized by categories. The categories do not affect
the inference process, except for identifying required rule-bases in an efficient

manner due to the large size of rule-bases.

The purpose of not describing all the rules at the same place but in
different rule-bases is to improve the inference efficiency and knowledge
modeling modularity. Every rule-base is associated with a rule-base name. A
rule-base is the smallest unit that can be selected for inference. The method of
selecting a rule-base is described in Section 6.3.1. The user is free to select any

rule-bases from any categories for the inference.

A rule represents a piece of knowledge in the form of an IF-THEN data
structure. The iF part of the rule describes the conditions that have to be

satisfied before the THEN part of the rule can be executed. In this system, each

86
rule has a rule name. Hence a rule is identified by its: (1) category name, (2)

rule-base name, and (3) rule name.

In engineering practice, a number of conditions have to be satisfied
simultaneously before a sequence of actions can be performed. To represent
this type of knowledge, both the IF part and THEN part of the rule are described
by a collection of patterns, each of them representing a separate condition or
action. These pattemns are linked together by operator of logical-and (&). A rule
is matched with the database, only when all the patterns of the rule are satisfied.
The patterns in THEN part of the rule represent actions such as to add certain
data in the database. A pattern is described in the form of (x7,x5........X,), where

X1,X2yeeeeennn X, are called the terms. A pattern is also known as a predicate.

A term in a pattermn can be a symbol constant, a numerical constant, a
variable, or an attribute. During the inference, a variable can be matched with a
number of data. In this system, a variable is described by a string starting with
the letter ‘?’. The methods of representing the aftributes and variables are the

same as those introduced in Chapter 4.

A rule-base for building product design is shown in Figure 6.3. In this
example, the rule-base consists of three rules. The rule-base name is described
at very beginning. The keyword “Rule:” precedes the rule name. Both IF and

THEN part of a rule consist of one or several patterns.

Built-in predicates are the patterns (predicates) to perform special
actions. These special actions include generating instance features, assigning
attribute values, removing attributes, and so on. The built-in predicates are
described in both the condition parts and the result parts of the rules. Part of the
built-in predicates in the condition parts and results parts of rules are described

in the Table 6.1 and Table 6.2, respectively.

87

Rule-base: DoorRightSectionDesign

Rule: RectangularRight

IF (center, ?x) & (<=, gridX[?x], 0)

THEN (removeFeature, ?right) & (generateFeature, DoorRightA, ?right)
& (notify, The right door has been changed according to the center

door)

Rule: GridRight

IF (center, ?x) & (>=, gridX[?2x], 1)

THEN (removeFeature, ?right) & (generateFeature, DoorRightB, ?right)
& (notify, The right door has been changed according to the center
door)

Rule: GridNumbers

IF (center, ?x) & (right,
gridy([?x], 1)

THEN (assignAttribute, gridX{?yl}],
gridy{?y], grid¥[?x])

?y) & (>=, gridX([?x], 1) & (>=,

gridXi?x]) & (assignAttribute,

Figure 6.3: A rule base consisting of three rules

Table 6.1: The built-in predicates in the condition parts

Names

Functions

Examples

To check if two terms are equal. Terms

could be attributes or numerical constants.

(=, m[?x], 2)
(= n[?x], n[?y])

To check if the value of the second term is
less than the value of the third term.

Usage is same as = built-in predicate.

(<, d[?shaft1], 10.0)
(<, n[?geart],
n[?gear2])

To check if the value of the second term is
less than or equal to the value of the third
built-in

term. Usage is same as =

predicate.

(<=, locX[?gear1],
100.0)
(<=, radius[geari],

radius[?x])

To check if the value of the second term is
greater than the value of the third term.

Usage is same as = built-in predicate.

(>, d[?shaft1], 10.0)
(>, n[?geari],
n[?gear2])

Table 6.1: The built-in predicates in the condition parts (continued)

88

To check if the value of the second term is | (>=, locX[?gear1],
- greater than or equal to the value of the 100.0)
third term. Usage is same as = built-in | (>=, radius[geari],
predicate. radius[?x])
question | To ask the user to answer yes or no to a | (question, Do you
question. want to change the
color of the window
panel)
Table 6.2: The built-in predicates in the result parts
Names Functions Examples
generateFeature | To generate an instance | (generateFeature,
feature of the selected class Gear, 7x)
feature and to preserve it in
the current active instance
feature as an element-
feature.
removeFeature To remove an element- | (removeFeature, ?x)
feature of the current active
instance feature.
assignAttribute To assign a value to an (assignAttribute,
attribute. m{?gear1], 2.0)
removeAttribute | To remove an attribute. (removeAttribute,
m[gear2])

notify

To inform the designer with a

message.

(notify, The window

now has a semicircular

top)

89

This system provides a user interface for viewing and editing the rule-
bases. This interface is called the Rule Base Browser, as shown in Figure 6.4.
In this browser, the rule-bases are organized in different categories. To define a
new rule-base, one has to select an existing category or add a new category.
The bottom view of the Rule Base Browser is used to define a new rule-base.
The menu in the bottom view of the Rule Base Browser is used for editing and
compiling the rules. The user should provide a name at the top of a rule-base.
Each rule has a rule name, which is preceded by the keyword Rule. A rule-base
is compiled by executing the accept item of the bottom view menu. In the
knowledge-based design, only relevant rule-bases are selected for rule-based

inference to improve the reasoning efficiency.

6.2.2 Modeling of the Database

The database for representing the product is modeled by instance
features. Instance features are organized in a hierarchical data structure. Details
regarding database modeling can be found in Chapter 4. The partial database
for reasoning is selected by choosing an instance feature as the active instance
feature. When the active instance feature is selected, all its elements, including
element features, attributes, qualitative relations among features and
quantitative relations among attributes, are considered active in the rule-based

inference.

The database is dynamically updated during the inference process. When
the rules are fired, new product description data are added to the database. The
instance features generated during inference are considered as element

features of the active instance feature.

90

1 IWindowArchitecture B |GearBox3Design

H hdotionTransferRules FotationToRotation
1|DoorDesignRules
1{MechanicalApplication

RotationToRotation

1| Rule: VBeltCase
1| IF(firstShatt, ?x) & (secondShatft, ?y) & (transferMotionFrom, ?x, ?y) & (=,
direction[?x], direction[?y]) & (rotational, 22} & (<=, torque[?z], 100} & (>=,
distance[?z], 50) THEN (generateFeature, VBeltDrive, ?vbelt)

Rule: GearBoxCase s
ir (firsiShait, 7x} & (secondShait, 7y} & (transferiviciionrom, ?x, 7y} & (<>, = 1
1] direction[?x], direction[?y]) & (rotational, ?z) & (>=, torque[?z], 100) & (<=, g
{ Ldistancel?7]_15M THEN (nenerateEeature_Gearfiax3_2aearhax)

Figure 6.4: A snapshot of the rule base browser, used for defining
and editing knowledge

6.3 Knowledge-based Inference

In this research, knowledge-based design starts with the selection of
relevant knowledge base and database. The knowledge-based inference is

conducted to model a design database.

6.3.1 Selection of Partial Knowledge Base and Database

During the knowledge-based design, the user should first select the
relevant rule-bases. The Rule Base Selection Browser is used for selecting the
relevant rule-bases for the inference. A snapshot of the Rule Base Selection

Browser is shown in Figure 6.5.

91

DaorDesignRules
{iMechanicalApplication

Figure 6.5: A snapshot of the rule-base selection browser

The menu items for the right-side view are used to select/unselect the
rule-bases. By comparing the Rule Base Selection Browser with the Rule Base
Browser, it can be seen that the list of categories and the lists of rule-base
names in the two browsers are identical. This is expected since only the rule-
bases already defined in the Rule Base Browser can be selected in the Rule
Base Selection Browser. The selected rule-bases are marked with “(s)” in the

browser. The selected rule-bases can also be unselected.

The partial database used for inference is selected by choosing an
instance feature as the active instance feature, which consists of element
features, attributes, qualitative relations among features, and quantitative

relations among attributes. Selection of the active instance feature is conducted

using the Instance Feature Browser.

The advantages of selecting only the relevant knowledge base and

database are:

1. The computation combinatory explosion problem due to the large size of

knowledge base and database can be solved.

92
2. Since the results of inference depend upon the selected rule-bases, different

design candidates can be generated by selecting different rule-bases.

6.3.2 Sequence of Matching and Executing Rules

Once the relevant rule-bases and active instance feature have been
selected, the inference can be started by selecting the menu item Start Inference

from the Instance Feature Browser.

Inference is carried out by matching the condition parts of the rules (IF
parts) with the data in the active instance feature, and executing the THEN parts
of the rules if the condition parts are satisfied. All the selected rules are
considered to be at the same level during inference, irrespective of the
categories and the rule-bases they belong to. First all the rules in the selected
fule-bases are stored in the same place. Matching and execution of these ruies
is conducted from the first one to the last one. The inference does not stop after
the last rule has been accessed. Instead, inference goes back to the matching of
the first rule again. This inference process is continued until no rule can be
matched. Therefore, if there is no contradiction in knowledge base, the
sequence of rules is not important to the reasoning results, as illustrated by the

following example:

Example
Rules:
Rulel: IF (p, a, b) THEN (r, a)
Rule2: IF (xr, a) THEN (p, a)
Rule3: IF (s, a) & (t, b) THEN (p, a, b)
Facts:

(s, a), (t, b)
The reasoning is carried out as follows:
1. Reasoning begins with the Rule1. At this stage, this rule cannot be matched.

93

2. The reasoning engine then starts to access the Rule2. At this stage Rule2
cannot be fired either. '

3. When Rule3 is accessed, since the condition part of this rule is satisfied, the
result (p, a, b) is added to the database.

4. Reasoning retums back to Rule1l. Now the condition part of this rule is
matched, and (r, a) is then added to the database.

5. The Rule2 is then matched, and (p, a) is added to the database.

6. Since Rule3 has already been fired with the same condition, this rule is not
fired again. In the same way, Rule1 cannot be fired again. Since Rule2 is the
last rule fired so far, and no other rule can be fired, the reasoning is

terminated.

In the conventional programming with I[IF-THEN expressions, the
sequence of these IF-THEN expressions is important. For instance, if the rules
in the above example are these IF-THEN expressions in the conventional
program, only Rule3 can be fired and (p, a, b) added to the database. If Rule3 is
moved before Rule1, all these three rules should be fired and (p, a, b), (r, a),
and (p, a) added to the database. However, in the rule-based knowledge
representation, reasoning results using rules with different sequences should be

the same.

6.3.3 Matching of a Rule

A rule is composed of a number of patterns. Matching of a rule is carried
out by comparing all its patterns in the IF part of the rule with the data in the
active instance feature. During the matching process, a pattern in the IF part of
the rule is picked up and its terms are compared with the database. If all the
terms are matched, the pattern is considered matched. The next pattern is
picked up for matching only when the previous pattern has been matched. If a

pattern could not be matched, matching of this rule is considered as a failure.

94

When all the terms in a pattern are constants, then these terms are simply
compared with the data preserved in the active instance feature. If this pattern
has been defined in the database, matching of this pattern is a success. When
variables are used in the patterns, these variables should be matched with the
constants in the database. A variable could be matched with a number of
constants. For example the pattern (P, ?X) can be matched with both of the facts
(P, A) and (P, B). If the pattern is matched with (P, A), the variable ?7X is
instantiated to A. A variable defined in different patterns of the same rule should

be instantiated with the same value.

During an inference process, variables in a rule are instantiated to a
certain set of values only once. For example, if a rule with variables ?X and ?Y
has already been fired for 2X = A and ?Y = B, the rule will not be fired again for
the same set of variable values. A rule without anyv variables can be fired only
once in the inference process. On the other hand, a rule with variables can be
fired many times with different variable instantiations. After matching, the
variables in the THEN part of a rule are replaced by their instantiations for

execution.

6.3.4 Matching of Built-in Predicates

The matching of the built-in predicates is different from the matching of
the ordinary predicates. As an example, consider the matching of a built-in
predicate, (=, m[?x], 2). The first term ‘=’ is defined as a built-in keyword in this
system. The variable ?x has been instantiated with an instance feature name.
The attribute m belongs to the feature that has been instantiated to variable ?x.
If the value of the attribute m is equal to 2, the pattern is considered to be
matched. Similarly the matching procedure is the same for other built-in

predicates such as <, >, =<, =>, etc.

95
6.3.5 Execution of a Rule

A rule is fired when its condition part is matched. As a result of firing, new
data are added to the database and action(s) conducted according to the rule.
Before adding a pattem described in the THEN part of a rule to the database,
the variables in this pattem are replaced by their instantiations obtained in the
process of rule matching. Built-in predicates in the THEN part are not added to
the database. Instead these predicates are used for conducting pre-defined

actions such as generating new instance features changing attribute values, etc.

6.4 An Examplé

The example is to design a mechanism to transfer rotational motion from
one shaft to another. The first step is to define the design requirements. The
design requirements are described by:

(1) two shafts,

(2) the motion to transfer from one shaft to another,

(3) the magnitude of the torque to be transferred,

(4) the distance between the two shafts,

(5) the rotational speed of the driver shatft,

(6) the desired rotational speed of the driven shaft,

(7) rotation direction of the driver shaft and the desired rotation direction

of the driven shaft.

The standard design requirements are defined in a class feature called
Rotational. Two features with the type Shaft are defined as element features of
the class feature Rotational. The magnitude of the torque to be transferred and
the distance between the two shafts are described as attributes. Rotational
speeds of the shafts and their rotation directions are also described as

attributes. Facts (qualitative descriptions/relations) are used to define that there

96

oo L
i ' | Class Feature Browser

{GienowApplicat /I CHItEY B attributes B
MotionTranzfer | RimPulley |attributeRelationssy
GienowWindowiill felementfeaturesi

=

ThreeDFeaturesi : ife.atureF‘elatu:xn-;.)
DoorDesign i constraints .
Mechanical-Apil iclassiMiethods I
Bl instanceMethod B

existingFacts

(rotational, ?self)

(firstShaft, ?firstShaft)
(secondShaft, ?secondShaft)
(transferMotionFrom, ?firstShaft, ?2secondShaft)

Figure 6.6: Snapshot of class feature browser showing the existing facts

are two shafts and motion is to be transmitted from the driver shaft to the driven
shaft. The variables ?firstShaft and ?secondShaft refer to the driver and the
driven shafts respectively. The Shaft feature has its own attributes such as
rotational speed, direction of rotation, and diameter. Relations among the
various attributes are also defined. A snapshot of the Class Feature Browser

showing the Rotational class feature is given in Figure 6.6.

To generate the product using the class feature, an instance feature
called Rotational1 with its element features DriverShaft1 and DrivenShaft1 are
generated. To conduct product modeling automatically, relevant rule-bases are
selected for reasoning. This is carried out using the instance feature browser by
selecting the menu item Select Rule Base, as shown in Figure 6.7. The design
knowledge used for inference in this example is described in different rule-
bases. One of the rule-bases used in this example is shown in Figure 6.8. In this

rule-base, the rule VbeltCase represents the knowledge:

4
h

THEN

97

Feature Browser

@l DrivenShatt1

» DoorDesign
flICasement

5 existingFacts

‘ (rotational, Rotational1)
(firstShaft, DriverShaft1)
(secondShaft, DrivenShaft1) §
{transferMotionFrom, DriverShditT, DY

Figure 6.7: Snapshot of the instance feature browser showing
the selection of rule-bases

(there is a shaft called ?x) and (there is a shaft
called ?y) and (motion has to be transferred from the
?x shaft to the ?y shaft) and (directions of both
shafts are the same) and (there 1is a rotational
mechanism called ?z) and (the magnitude of the torque
to be transferred is less than 100) and (the distance
between the shafts is more than 50)

(generate an instance feature of V-Belt drive)

Similarly the rule GearBoxCase describes the case to generate a gear

mechanism. A gear mechanism is used if the torque to be transferred is large

and the distance between the two shafts is small. A V-belt drive mechanism is

used if the torque is small but the distance is large. One of the two design

alternatives is generated depending upon the design requirements. The

conditions of motion transfer in this example are summarized in Table 6.3. The

existing facts are shown in Figure 6.7. Under these conditions the GearBoxCase

rule is fired. Firing of the rule is summarized in Table 6.4.

a8
Table 6.3: The values of the attributes
Attribute Names Attribute values

torque[Rotationali] 250
distance[Rotationai1] | 100

RotationToRotation

Rule: VBeltCase

IF(firstShaft, ?x) & (secondShaft, ?y) & (transferMotionFrom, ?x, ?y) & (=,
direction[?x], direction[?y]) & (rotational, ?z) & (<=, torque[?z], 100) & (>=,
distance[?z], 50) THEN (generateFeature, VBeltDrive, ?vbelt)

Rule: GearBoxCase

Qo
Fon)
A
it

direction[?x], direction[?y]) & (rotational, ?z) & (>=, torque[?z], 100
distance[?z], 150) THEN (generateFeature, GearBox3, ?gearbox)

Rule: GearBoxInput
IF (firstShaft, 7x) & (GearBox3, ?y) THEN (assignAttribute, inputRPM[?y],

rom[?x]) & (assignAttribute, inputDirection[?y], direction[?x])

Rule: GearBoxOutput
IF (secondShaft, ?x) & (GearBox3, ?y) THEN (assignAttribute,
outputRPM[?y], rpm[?x]) & (assignAttribute, outputDirection{?y],

direction[?x])

Figure 6.8: Descriptions of rules used in this example

As a result of firing the rule GearBoxCase, an instance feature Box7 and
its two element-features Pinion1 and Gear1 are generated. Pinion1 serves as the
input gear connected to the driver shaft, whereas Geart is the output gear. The

instance feature Box1 is of the type GearBox. It has a number of attributes such

99
as inputRPM, outputRPM, inputDirection, outputDirection, and so on. Their
values are generated by the execution of rules. At the next step, the design of
Box1 is accomplished by selecting relevant rule-bases and conducting
inference. These rules are shown in Figure 6.9. Computation is carried out for

automatically updating the attribute values using their dependency relations.

Table 6.4: Firing of the rule GearBoxCase

Patterns Matching
(firstShaft, ?x) ?x is matched with DriverShaft1.
(secondShaft, ?y) ?y is matched with DrivenShaft1.
(transferMotionFrom, ?x, ?y) | ?x and ?y are matched as above.
(<>, direction[?x], The values of the direction attribute in
direction[?y]) DriverShaft1 and DrivenShaft1 are compared.

The condition is true since thev are not equal.

(rotational, ?z) ?z is matched with Rotationali.

(>=, torque(?z], 100) Verify that torque to be transferred is more
than 100.

(<=, distance[?z], 150) Verify that the distance between the two

shafts is more than 150.

GearBox3Design

Rule: Input
IF (GearBox3, ?x) & (inputGear, ?y) THEN (assignAttribute, rpm[?y],
inputRPM[?x]) & (assignAttribute, direction[?y], inputDirection[?x])

Rule: Output
IF (GearBox3, ?x) & (outputGear, ?y) THEN (assignAttribute, rpm[?y],
outputRPM[?x]) & (assignAttribute, direction[?y], OutputDirection[?X])

Figure 6.9: A rule-base for design of a gear box

100

Chapter 7

Implementation of the Feature-based
Intelligent Design System

This chapter presents the architecture and implementation of the feature-
based intelligent design system. The system was implemented using
VisualWorks, C++, and 3D Studio MAX.

7.1 System Architecture

~ The feature-based intelligent design system is composed of three sub-
systems: the feature-based design system, the geometry representation system,
and the intelligent system, as shown in Figure 7.1. The various interface windows
of the feature-based intelligent system and their interactions are shown in Figure
7.2.

The feature-based design system and the intelligent system have been
implemented using Visualworks 3.0 — a window-based environment for
programming in the Smalltalk language [Goldberg83]. The geometry
representation system has been implemented using Microsoft Visual C++ 5.0
[Gregory97] and 3D Studio MAX [Michael96].

The feature-based intelligent design system is managed by an interface
environment called Launcher. All the interface windows of the system, including
the Class Feature Browser, Instance Feature Browser, Rule Base Browser, 2-D
Geometry Browser, etc., can be opened using this launcher. These interface
windows are used for defining class features, generating instance features,
defining rule-bases, and displaying 2D product geometry resulits, respectively. A

snapshot of the Launcher is shown in Figure 7.3.

p - AN " Geometry \
) 1 \ Representation 1
, Feature-based Design System + | : System :

i
| LD ! ! :
I Product
| Fg::: Instance " 1 > | Geometry |
i § Features i Translation |
it | B ! : : Module I
1E f ' ' l
. aY! ' ;
1 JE { : 30 ,
' inference Knawledge I I Geometry i
User { Engine Base ok ! Output l
| System
| * : : ;
| o !

\ / ' /l

N e o e e e e e e e - s \ N e e e 7
Visuvalworks C++, 3D Studio MAX

Figure 7.1: System architecture

Class features are used to define the general product descriptions. Each
class feature consists of a several aspects, including element-features, attributes,
feature relations, attribute relations, constraints, and so on. Class features are
organized in a hierarchical data structure. Due to the large size of class library,
these class features are organized in categories. Class features are defined

using class feature browser, as shown in Figure 4.1.

Instance features are used to model the real product data. Instance
features are generated using class features as the templates. The generated
instance features can be modified by the user. Instance features are modeled
using the instance feature browser, as shown in Figure 4.3. Since each product
is described by a number of instance features, these instance features are also
organized in categories. Each category represents one product. In addition,
calculation of attribute values using the generated quantitative relations is also

conducted using the instance feature browser.

Class Feature Browser

-define new class features
-modify existing class features

-remove class features

Rule Base Browse!

-define rule-bases
-modify rule-bases
-remove rule-bases

~file out rule-bases

file out class features
Launcher

-display messages

-manage the systemn

Instance Feature Browser

-generate instance features
-modify instance features
-remove instance features
-computing attributes
-select rule-bases

-conduct inference

-file out geometric descriptions
-file out product descriptions

Geometry Representation System

-read the neutral file
-interpret symbolic descriptions
~display 3-D geometric descriptions

2-D Geometry Browser

-display product
-select background
-display background
-move background
-scale background
-clear the window

v

Rule-base Selection Browser

-select rule-base(s)
-unselect rule-base(s)

Figure 7.2: Representation of feature-based intelligent design system

102

An intelligent system has been developed to automate the product

modeling process. Knowledge in the form of rules is defined in the Rule Base
Browser. In this browser, rule-bases are defined in different categories. Each
rule-base consists of a number of rules. Using the rules described in the

knowledge base, product modeling is conducted automatically through rule-

based inference.

103

Figure 7.3: A snapshot of the feature-based intelligent design system
launcher

Only the relevant knowledge base and database are involved in the
inference process. First, an instance feature is selected as the database for the
reasoning. A number of rule-bases are then selected for this active instance
feature. The rule-base selection browser is used for selecting the relevant rule-
bases. The active instance feature is selected using the instance feature

browser.

The 2D product geometry is displayed using the 2D geometry browser. In
this window, the background of the product can also be displayed. The
background can be selected from the screen of computer monitor directly, or
from a graphics file. The background can also be moved in location and scaled in

size.

To represent the 3D geometry of the product, a 3D geometry
representation system has been developed. The symbolic geometric descriptions
in the instance features are extracted and translated into a neutral format. These
symbolic geometric descriptions are further translated into 3D solid descriptions
using the translation module for the 3D geometric modeling CAD system. The
translation module has been implemented using the Microsoft Visual C++ 5.0
programming environment. The translation module is linked with the CAD
package - 3D Studio MAX.

104
7.2 New Classes Used for System Implementation

VisualWorks provides a very large library of classes for system
implementation. New classes can also be defined as sub-classes of the system
classes. In the implementation of this system, commonly used system classes
are: Object, ApplicationModel, Dictionary, OrderedCollection, String, etc.
Explanations to these classes are given in Table 7.1. In Smalltalk all the
variables and methods of the super-classes are inherited by the sub-classes
automatically. The classes are organized in different categories. The newly

created categories and the classes are given in Table 7.2.

Table 7.1: The system classes used for implementation

Class Names Explanations

Object Class at the top of the hierarchy of the system
classes

ApplicationModel Class for developing interface

Dictionary Class for storing data in form of a key-and-value

pair where key is described by a symbol and value

can be any Smalltalk object

OrderedCollection | A collection of Smalltalk objects stored in a
sequence and identified by sequence numbers

String Class representing an array of characters

A number of global variables have been defined in the system to preserve
the knowledge and data. For instance, the global variable RulesAspectDic stores
the rule-bases in this system. Similarly the global variable FeatureCategoryDic is
used to store all the class features. When a new class feature is defined (using

the class feature browser), its feature description is stored in the global variable

105
FeatureCategoryDic. Some of the major global variables used in this system are
listed in Table 7.3.

Table 7.2: Newly created categories and classes

Category Names Class Names

Feature-Design e ClassFeatureBrowser
e FeatureClass
e Featurelnitialize

¢ MainBrowser

Feature-Design-Instance ¢ InstanceBrowser
e Featurelnstance

e InstanceDrawer

e BackgroundEditor

o Rarlkaraundlma
e ZDacxgrounamm

na
=

IntelligentDesign e RulesBrowser

¢ RuleBase

e Rule
e Fact
inferenceSupport e RuleBaseSelectionBrowser

e SelectedRule

¢ SelectedRuleCollection

Table 7.3: Major global variables and their descriptions

Variable Names Stored Data

FeatureCategoryDic Class features defined in the system

FeaturelnstanceDic Instance features generated in the system

FeatureDrawingCategory Instance features to be displayed in the 2-
D drawing browser

106

Table 7.3: Major global variables and their descriptions (continued)

Variable Names Stored Data

FeatureAspectsList List of aspects shown in the class feature
browser

FeaturelnstanceAspectsList List of aspects shown in the instance

feature browser

RulesAspectDic The rule-bases defined in the system

A Smalltalk class called Featurelnitialize has been defined in the system
for initializing all the global variables. When a new copy of Smalltalk system is
used, the user should execute the instance method initialize of the class

Featurelnitialize.

7.2.1 New Classes for Inplementation of Class Features

All class features in this system are translated into Smalltalk classes.
Since all class features are sub-classes of the system class feature called
Feature, the common characteristics of class features are described in a
Smalltalk class corresponding to the class feature Feature. In addition, a
Smalltalk class, called FeatureClass, is also defined to store the class feature
definitions using the instance variables. The methods defined in this class are
mostly related to storing the data inside these instance variables. Sub-class
features can inherit the properties of the super-class features. To achieve this
goal, methods such as findSuperClassLink, addFeaturelnheritance, etc. have

been implemented.

ClassFeatureBrowser is the Smalltalk class for implementing the class
feature browser. The methods in this class are used to define the interface
environment and conduct the actions of menu items. When a class feature is
being defined, the actions to be performed are: saving the feature descriptions,
including attributes, element-features, attribute relations, feature relations,

107
constraints, etc., removing feature descriptions, and so on. The class feature
definitions are stored in Smalltalk variables. For instance, the attributes should be
stored in the variable called attributeDic. The data structure to store the class
feature GearBox is shown in Figure 7.4. A snapshot to show the data structure of
GearBox class feature is given in Figure 7.5. A mechanism to check the syntax of

the class feature definition has also been developed.

7.2.2 New Classes for Implementing Instance Features

Instance features are described by the Smalltalk instances that are
generated using the Smalltalk classes corresponding to the class features. The
instance variables of these instances include: instanceName, attributeDic,
attributeRelationDic, instanceOfClass, etc. Many methods have been

implemented to access the data of these instance variables.

InstanceBrowser is the class for implementing instance feature browser

and its menu actions. The methods in this class can be categorized as follows:

e methods for implementing the browser interface:
The instance feature browser consists of five views. Four of them are list-
views and elements on these lists are preserved in instance variables
worldList, featureList, aspectList and namelList. The bottom view is a
textEditor. Many methods have been implemented to carry out the actions of

the menu items in these views.

e methods for generating instance features and their aspects:
Instance features are generated using class features as their templates. The
methods for generating instance features include: featureAdd, addAttributes,

addAttributeRelations, addFeatureRelations, addConstraints, etc.

e methods for modifying instance descriptions:
Instance features can be modified using the instance feature browser. New

elements can be added to the instance feature definitions. The existing

108

weysAs oy uj paiojs s) anjesy ssepo e yojym U} aumonys ejep ay) :p* ainbi

~

o olgpoyew

Uopea)jddyeojueyoaiyy :AioBajen
Ajewosneinjea 'ssejosadng
xogleeny :awep sse|n

o
®

\‘ xogleaoy
@

K sse|Deinjeoy \

Areuopoig
einjead sse|n

AN

ses e

uopjeo||ddyjeojueyoap

/
L K BE BN

seaese

Keuopojqg KioBejen

D R N A A A Y

ojghuoBajenainies

ylejljews

109

B sshatt->a
FeatureClass
#GearBoxBox->a

reeDFeature FeatureClass
mdows—Do -

i\ GearBoxBox
IMotor ST
| Pulley =

e

| dependents fromFeature:
anlnstanceName.

originPoint =

, WormGed|
1

| classVarSe

. lnstanceVa attnbuteRelatl

category nbistes
className featureReIat:o

Figure 7.5: Snapshot showing the storage of class feature GearBox

in the system

110
elements can also be removed. The methods to add new elements include:

acceptAttribute:, acceptAttributeRelation, acceptConstraint:, etc.

methods for computing attribute values using the attribute relations:
The attribute relations are used for keeping the consistency of attribute
values. The methods wused for attribute calculation include:

attributeComputing, etc.

7.2.3 New Classes for Implementing Knowledge Base and Inference

Four classes have been created for knowledge base modeling. These classes

are:

RulesBrowser
RuleBase
Rule

Fact

The class RulesBrowseris used for implementing the interface for defining

rule-bases. The methods defined in this class are used to add and remove rule-

bases.

The other three classes are used for preserving the descriptions of rule-

bases, rules, and facts (predicates), respectively. Each of these classes has a

number of instance variables to describe the different types of descriptions. The

instance variables of the class RuleBase include:

text
ruleNameCollection

numberOfRules

The instance variables of the class Rule include:

ifPart
thenPart

ruleName

111
The instance variables of the class Factinclude:
¢ termCollection

¢ numberOfTerms

All the above classes are in a category called IntelligentDesign in the
VisualWorks system browser. The accepted rules are stored in a global variable
called RulesAspectDic.

Two classes have been created for selecting rule-bases for inference.

These two classes are:

o RuleBaseSelectionBrowser

e SelectedRule

in a category called InferenceSupport. The class RuleBaseSelectionBrowser is a
class for implementing the Rule-base Selection Browser. The SelectedRule class
is used to preserve the descriptions of the selected rules, inciuding the name of
the rule, the name of the rule-base, the name of the category, the content of the
rule, the variable instantiations that have been executed, the variable
instantiations that are currently being matched, the variable instantiations to be

executed, etc.

The rule-based inference was implemented by the methods including:

e methods for matching of rules:
Relevant rule-bases are selected and stored in the active instance feature in
the form of an instance variable, which is an instance of OrderedCollection.
Matching of a rule is carried out by matching all the patterns at the IF part.
The methods for matching rules include: matchRule:at:, matchPattern:with:,

matchTerm:, etc.

e methods for execution of rules:
During firing a rule, since the variables of the rule can be matched with a

number of instantiations, verification is required to ensure that one

112
instantiation can be fired only once. All the instantiations for a rule are stored
in instances of OrderedCollection. These collections are: matched, executed
and execute. The collection matched contains all the possible instantiations,
executed contains instantiations that have been fired already. The collection
execute contains the matched instantiations that have never been executed.

The collection execute is achieved by subtracting the executed from matched.

7.2.4 New Classes for 3D Product Geometry Representation

The 3D geometric descriptions in the instance features are extracted to a
neutral file and then translated to the format that can be understood by 3D Studio
MAX. Both Smalltalk and C++ are used for implementing 3D geometric

representation system.

The geometric description extraction module was implemented using
Smaiitaik. The methods for this exiraction inciude woriaGeomeiryFiieCui, etc.

The translation module has been developed using the Visual C++ 5.0
programming environment. The 3D Studio MAX package provides plug-in
application development functions. Plug-in applications are external programs
that can be integrated into existing packages such as 3D Studio MAX. The
translation module is executed from the 3D Studio MAX system, and used to
read the neutral 3D geometry description file, translate these descriptions into 3D
Studio MAX data format, and display the 3D product geometry using 3D Studio
MAX functions.

Each line in the neutral geometric description file describes a step to build
up the 3D product geometry. The translation program reads, interprets and
executes the file line by line. In 3D Studio MAX, all types of geometrical shapes
are sub-classes of class the Object. These classes are identified by their class
IDs and used for representing the geometry with different shapes. Every class
defined in 3D Studio MAX has an unique 1D. Before implementing a new class, a

new class ID has to be generated using the Class ID Generator as shown in

113
Figure 7.6. The new classes created in this research include Feature,
FeatureClassDesc, etc. The existing 3D Studio MAX classes used in the
implementation include Object, Inode, Modifier, GeomQObject, Mtl, Interface, 1Util,
IParamArray, IParamBlock, etc.

D Generator

W Class_ID(0x574¢0035, 0x35ad3edd) [

Figure 7.6: Every class in 3D Studio MAX has a unique ID which is

generated using Class ID Generator

Global variables have been defined to store the objects being created,
their names, transformation matrices, and so on. The global variables defined in
this program are shown in Figure 7.7. The major global variables and their

explanations are given in Table 7.4.

Table 7.4: Global variables and their descriptions

Global Variables | Descriptions

objPtr An array of pointers to the class Object - one for every

object in the view.

nodePtr An array of pointers to the class INode - one for every

object in the view.

mat An array of objects of class Matrix3, used during
transformations.
objName A 2-dimensional character array for storing the names of

objects generated.

objCount A counter for registering the number of objects generated.

114

B5-&3 Globals
——~ ¢ DIMain(HINSTANCE hinstDLL, ULONG fdwReason. void * [pvReserved)
. ¢ GetFeatureDesc()
. @ GetStingfint id)
i~ @ LibClassDesciint i)
'—* ¢ LibDescription()
— ¢ LibNumbesClasses(]
¢ LibVersion{)
>~ @ controlsinit
~— @ hinstance
— @ index
~— @ mat
— & obName
— @ obiPtr

Figure 7.7: Global variables used in the translation module

In 3D Studio MAX, all the plug-in applications are listed in the Ultilities
menu. On selecting the plug-in called FeatureGeometry, the standard IBM PC’s
File Open dialog-box pops up. Using this dialog box, the 3D geometric

description file can be selected for displaying.

115
Chapter 8

Development of an Industrial Application

This chapter introduces an industrial application developed using the
feature-based intelligent design system for a local manufacturing company —

Gienow Building Products Ltd.
8.1 Background of Gienow Building Products Ltd.

Gienow Building Products Ltd. is a manufacturer of quality building
products including windows and doors. In 1947, a Calgary home builder,
Bemard Gienow, started a window manufacturing company, Gienow Sash and

Door. This company has since undergone many phases of growth and mergers

waridby n&knr

with cthe zienow Constructions Ltd | Humphrey Window

compani
Franchise and Almecto. Today its operations are spread in Alberta and British
Columbia of Canada with sales and distribution centers in five cities. In its

international operations, its products reach over a dozen countries.

The product range at Gienow is very large with various types of doors and
windows. These are high quality windows and windowed doors with frames
made of wood, aluminum, and vinyl for the residential building market. The vinyl-
framed windows take an 80% share of the total manufactured windows. The

windowed doors are classified into standard doors and patio doors.

In Gienow, production of windows and doors is based upon the orders
from the customers. Due to the adoption of computer systems for organizing
production activities, product development lead-time has been reduced
considerably. In 1985, the company adopted the concept of Just-in-Time (JIT)

manufacturing [Browne90] for further improving its manufacturing efficiency.

116
A computer software system for supporting the JIT philosophy has also

been developed and used in the last 10 years. In this system, many modules
have been implemented for partially assisting various activities in the product
realization process, including product ordering, design modeling, resource
(materials, machines, and workers) allocating, production process planning,

quality control, production cost estimation, and so on.

The company has also been involved in a number of R&D projects. A
project collaborated with Alberta Research Council (ARC) was aimed at
increasing productivity, throughput and quality of the wood window facility. This
project was completed in 1992 and resulted in 22.5% increase in efficiency and

67% gain in throughput.

8.2 Objective of Developing the Feature-based Intelligent
Building Product Design System

The objective of developing the feature-based intelligent building product
design system is to automate the process of building product design, thereby
shortening product development time and efforts at Gienow. This design system
provides an environment to efficiently model building products, including
windows and doors. In this system, the building product library is modeled by
class features. Actual products are modeled as instance features, which are
generated using class features as the templates. Since attributes of instance
features are associated by a relation network, any change of attribute values can
be propagated to relevant attributes automatically using this attribute relation
network. The intelligent system is used for further improving the design
efficiency. The product geometry is represented by the 3D geometry
representation system. The design system, the geometry representation system,

and the intelligent system work in an integrated environment.

117
8.3 Implementation of the Building Product Design System

As described in the previous section, building products, including
windows and doors, are created using the feature-based design approach.
Features are described at two levels, class level and instance level, representing
standard library and actual product data respectively. The class features are
used as templates for generating instance features. Complete product
descriptions, including attributes, attribute-relations, element-features, feature-
relations, constraints, and geometry, are preserved in the feature definitions.
The intelligent system is used for automated modeling of building products. The
functions for enhanced 2D and 3D geometric representation of the building

products have also been implemented in this system.

8.3.1 Feature-based Modeling of Building Products

A class feature library has been created to represent the building
products for Gienow. Features are organized in a hierarchical data structure. A
class feature GienowWindow is defined in the category GienowApplications. This
class is the super-class feature of all the class features in the building product

design system. GienowWindow is a sub-class of FeatureGeometry.

Casement One Wide Windows is a family of windows being produced at
Gienow, as shown in Figure 8.1. A class feature, called CasementOneWide,
representing this type of windows is defined in the system. CasementOneWide
is a sub-class of GienowWindow. Different types of casement one wide windows
are modeled as sub-classes of CasementOneWide. The hierarchical data

structure of these class features is illustrated in Figure 8.2.

In the class feature CasementOneWide, a number of attributes have been
defined. These aftributes include: height, width, price, metalCiadding,

openingDirection, frameMaterial, etc. Since all the casement one wide windows

& = 17620 820" 1020 - 1220 . 6207
o% ao0.| 625 25 1025 1225 1625
S % 600 800 1000 1200 1600
S
a7
= = = = —
g8 X < . o < ZB(8
P @© o AN ~. ~o \\\ \\\\ ™M o
£ C7080-2 C8080-2 =
. - R - ;'."
o -~ , -~ =
g8(E H 13
Al ~ ~. 3’:_
: C8090-2 5
o - é-_
o =
g8 Sk
C80100-2 =
7 Jited . :3:
g [" Sle
-ﬁ- S 0\ ey g .
\ ~ %
C30120-2 C401 C 80120.2
[—’ I’ .
’ 4
i o)
r ’I {
g8 | i
) ™ | 3¢
C30150-2 C Ce0150-2 X
I", g’»;:
° 8 ‘ =le » %
o b —
= [elz §
- \\ . 3‘:
. N
\\ ‘(:‘-t
C40180-2 C70180-2 3
3% 3% 35% riZ7 5% 63
24% 2% 40% 8% 56% 64
YT Y I S I R M b e =

118

Figure 8.1: Family of casement one wide windows

119

lFeature l

FeatureGeometry

CasementOneWide

l i ,_l_ ,_l
C30120 C30150 C4080 C4090 C40120 C40200

Figure 8.2: Hierarchy of class features in this application

have similar shape, the 2D and 3D geometric descriptions of these windows are
defined in the class feature CasementOneWide. Methods to estimate the price
and to calculate geometric attributes of the windows are also defined in this

vare

ciass feature. Major atiriouies of CasemeniOneiVide are iisted in Tabie 8.1.

Table 8.1: Attributes defined in the class feature CasementOneWide

Attribute Names Default Values | Values After Computation

width 12 ¥4 inch Calculated using an attribute
relation and a method named
getWidth

height 48 % inch Calculated using an attribute
relation and a method named
getHeight

type C Set by the user, could be C, F
orP

openingDirection Left Set by the user, could be Left

or Right

120
Table 8.1: Attributes defined in the class feature CasementOneWide (cont.)

Attribute Names Default Values | Values After Computation

price $ 451.00 Calculated using an attribute
relation and a method named
getPrice

frameMaterial primedWood Set by wuser, could be
primedWood or sevilleMetal-
clad

metalGrill yes Set by user, could be yes or
no

solR1 yes Set by user, could be yes or
no

BarThick 2 Y2 inch Calculated using an attribute
reiation

glassThickness (for 3D % inch Calculated using an attribute

geometry representation) relation

color (for 2D geometry White Set by user, could be any

representation) color

To simplify feature representation, the unnecessary details should be
hidden from the users. For the casement windows, a number of constant
parameters don't need to be accessed by the users. These parameters are
defined as instance variables. A method to initialize the instance variables has
also been defined in CasementOneWide. This method is executed automatically

when an instance feature is generated.

Many types of the casement windows are available for production at
Gienow, such as C30720, C30150, C4080, C4090, C40100, C40120, and so on.

These types of windows are defined as sub-class features of the

F JClass Feature Browser

L Crenowespplic ation o= f‘ attributes
H#MotionTransfer C40180 Bl attributeRelations getHeight
; Gienow\Windows GienowWindow Elllelementfeatures drawingOn: gc from
ThreeDFeatures C40120 B featureRelations initialize
HDoorDesign C4080 | constraints
{Mechanical-Applical |C40150 | classMethods

1 Windows-Doors-De CazementCineWide pinstancehlethods
{|Feature | geometry3D

C4090 [

getPrice
| price material |
material ;= frameMaterial{?self].
type = type[?self].
ifGrill ;= metalGrill[?self].
ifSolR = solR1[?self].
price =0.
material == #primedWood ifTrue: {type = #C
ifTrue: [ifGrill = #yes
ifTrue: [ifSolR == #yes
ifTrue: [price = costPrimedWoodC + costiMetalGrillC +

Figure 8.3: Class features defined in the Building Product Design System

CasementOneWide. The instance variables defined in CasementOneWide are
inherited by its sub-class features automatically. These instance variables are
initialized with different values. A snapshot of the class feature browser with the

various window class features is shown in Figure 8.3.

The price of a window depends upon the type of the window, material
used to make the window, dimensions of the window, etc. Additional cost is
incurred for metal cladding or glass fitting. It is apparent that price of a window
can not be calculated using an attribute relation, since some non-quantitative
attributes are involved in calculation. To calculate the price of a window, an

instance method called getPrice was implemented.

122
8.3.2 Geometric Representation of Building Products

In the instance features, the 2D and 3D geometric descriptions are
preserved in different aspects. The 2D geometric descriptions of a feature are
described by an instance method, while the 3D geometric descriptions are

represented in an aspect called geometry3D.

The 2D product geometry is displayed using the 2-D geometry browser.
Figure 8.4 shows two 2D windows with left-side opening direction and right-side
opening direction. Windows and doors can be displayed against background
images. This function is provided in the 2-D geometry browser. This function is
useful for both designers and customers. For instance, matching of a new
window with an existing house can be checked by displaying the window with the

image of the house as background, as shown in Figure 8.5.

An image of the background can be selected from a rectangular area of
the computer monitor's screen and stored in the system by executing the menu
item Background — Select of the 2-D geometry browser. This background image

can be displayed in the 2-D geometry browser by executing the menu item

Left opening window Right opening window

Figure 8.4: Representation of 2D windows

123

Figure 8.5: A window shown against a background in 2D geometry
browser

Background — Display. The instance feature is displayed on top of the

background by executing the menu item Object — Draw.

In order to place the building products in desired positions, the location
attributes of the instance features should be changed using the instance feature
browser. However since it is tedious to change the locations of all the instance
features, functions to move and scale the background image have been
developed. The background image can be moved and scaled using Background
— Move and Background — Scale menu items respectively. On selecting the
scale operation, a dialog box is poped up for entering the x-scale and y-scale
values respectively. If a scale is greater than 1, the image is then enlarged,

otherwise reduced. Similarly for moving operation, both the new x and y

124
coordinates should be provided. The menu functions of the 2D geometry

browser are summarized in Table 8.2.

Table 8.2: Functions for selecting, displaying and placing a background

Menu items Functions

Background — Select Select a desired background by
specifying a rectangular area on

the computer monitor screen

Background — Display Display the background in the 2-D
geometry browser

Background — Scale — X-Scale Scale the background in x
direction

Background — Scale — Y-Scale Scale the background in vy
direction

Background — Move — X-Coordinate | Move the background in x

direction

Background — Move — Y-Coordinate | Move the background iny

direction

The 3D geometric descriptions of an instance feature are preserved in a
feature aspect called geometry3D. These geometric descriptions are defined
using built-in predicates. A 3D product geometry is created by generating
geometric primitives and applying operations to these primitives. The material
properties can also be assigned to the geometric entities. For instance, the

transparency property of the glass of a window can be defined.

The 3D geometric descriptions in instance features can be extracted into
a file. The symbolic descriptions are then translated into 3D Studio MAX format

and displayed using 3D Studio MAX. The 3D window/door model can be

i
]
|
|

Iilil
THH
("il'

Is

7

]
//
7

77171}
T

/i
7

Figure 8.6: 3D Geometric model of a window placed against a model of a

house

displayed against a model of a house to check the matching of this window/door
with the house. A snapshot of C4080 window placed against a house in 3D
Studio MAX is shown in Figure 8.6.

8.3.3 Data Relation Maintenance for Building Products

The effectiveness of data relation network for keeping the consistency of
the product data was verified by developing a door design system. In this

system, a standard door is defined as a class feature Door. A door has four

126

(A

Left Center Right

Figure 8.7: A door and its four parts

parts, defined as four element features of this class feature: top, center, left and

right, as shown in Figure 8.7.

A number of quantitative relations were defined among the attributes of
the element features of the door. The purposes of defining attribute relations are
(1) to calculate the positions of the element-features, and (2) to caicuiate the
dimensional parameters of the element features. For instance, relations are
defined among the location coordinates of the element features left and center. If
the location of the left component is modified, the relation is used to calculate
the new location of the center component. Some of the important attribute

relations defined in this example are listed in Table 8.3.

Table 8.3: Major relations among the attributes

Attribute Relations Explanations

height[?right] := height[?left] Set the height of the right component
equal to that of the left component

locY[?center] Calculate the y coordinate of the

= locY[?top] + (width[?top}/2) + center component. In this relation, dt is

dt[?self] the distance between the center

component and the top component

127

Table 8.3: Major relations among the attributes (continued)

Attribute Relations

Explanations

height{?center] := height[?left]

Set the height of the center component

equal to that of the left component

locX[?center]
= locX[?left] + width[?left] +
di[?self]

Calculate the x coordinate of the
center component. In this relation, dl is
the distance between the center

component and the top component

width[?left] := width[?right]

Width of the left component is set

equal to width of the right component

locX[?top] := locX[?center]

The x-coordinate of the top component

is equal to the x-coordinate of the

di[?self] + width[?center] +dr{?self]

center component
locX[?right] The x-coordinate of the right
= locX[?left] + width[?left] + component is the sum of the x-

coordinate of the left component,
widths of the left and

components, and the distance between

center

the right and center components

locY[?right] := locY[?center]

The right and the center components

have the same y-coordinates

locY[?left] := locY[?center]

The left and the center components

have the same y-coordinates

A number of class features are defined for each element of the door.
Different design candidates are modeled using different element feature types.
For instance, the top component of the door can have semicircular shape
represented by the class feature DoorTop or triangular shape represented by

class feature DoorTopC.

128
8.3.4 Intelligent Design of Building Products

In manual design, a human designer uses his/her knowledge to select the
class features to generate instance features and model the relations. In this
research, a rule-based inference system has been developed to conduct the
automated design. A snapshot of the Rule Base Browser with various rule-bases
defined in the system for door design is shown in Figure 8.8. A rule-base used
for the design of the center component of the door is shown in Figure 8.9. This

rule-base is explained in Figure 8.10.

i —
I fRule Base Browser

WindowArchitecture
MotionTransferRules
DoarDesiqnFules

MechanicalApplication DoorleftDifferent
i wourLen
1 DoorTop
; DoorRightDifferent

M [DoorCenterGrids
DoorRight

DoorCenter

Rule: Informing
IF (center, ?x) THEN (notify, There are 2 shapes of door centers available:
1.Grid 2. Four Squatres)

Rule: GridCenter

{F (center, ?x) & (=, gridX[?x], 0) & (question, Do you want center door with
grids) THEN (removeFeature, ?center) & (notify, A new center will replace the
existing center. The name of the instance feature should be the same asthe &
removed feature) & (generateFeature, DoorCenter, ?center) & (notify, The door
center now has grids.) -

Figure 8.8: Rule-bases defined for automatic design of door components

129

DoorCenter

Rule: Informing
IF (center, ?x) THEN (notify, There are 2 shapes of door centers available: 1.Grid 2.

Four Squares)

Rule: GridCenter

IF (center, ?x) & (=, gridX[?x], 0) & (question, Do you want center door with grids)
THEN (removeFeature, ?center) & (notify, A new center will replace the existing
center. The name of the instance feature should be the same as the removed
feature) & (generateFeature, DoorCenter, ?center) & (notify, The door center now
has grids.)

Rule: FourSquareCenter

IF (center, ?x) & (>=, gridX[?x], 0) & (question, Do you want a center door with four
squares) THEN (removeFeature, ?center) & (notify, A new center will replace the
existing center. The name of the instance feature should be the same as the
removed feature) & (generateFeature, DoorCenterB, ?center) & (notify, The door
center now has four squares.)

Rule: GridsIinXDirection1
IF (center, 7x) & (>=, width{?x], 101) & (>=, gridX[?x], 1) THEN (assignAttribute,
gridX[?x], 6)

Rule: GridsinXDirection2
IF (center, 7x) & (<=, width[?x], 100) & (>=, gridX[?x], 1) THEN (assignAttribute,
gridX[?x], 4)

Rule: GridsInYDirection1
IF (center, ?x) & (>=, height[?x], 101) & (>=, gridX[?x], 1) THEN (assignAttribute,
gridY[?x}], 7)

Ruie: GridsInYDirection2
IF (center, ?x) & (<=, height[?x], 100) & (>=, gridX[?x], 1) THEN (assignAttribute,
gridY[?x], 5)

Figure 8.9: A rule-base for design of the center component

The rules are organized in rule-bases representing the knowledge for
designing the door components. For instance, the rule-base DoorCenter
contains the rules that are used for the design of the center component of a

door. In this rule-base, rules are used for informing the user of the types of

130

DoorCenter

Rule: Informing
IF there is a element-feature called center, THEN notify that there are 2 shapes of
door centers available: 1.Grid 2. Four Squares.

Rule: GridCenter

IF there is a center and it is not of the grid type and if the designer wants a grid type

center door, THEN remove the current center, notify the user that he should provide
the same instance name, generate a grid type center and inform the designer about

the change effected.

Rule: FourSquareCenter

IF there is a center and it is not of the four square type and if the designer wants
center door of the four square type, THEN remove the current center, notify the user
that he should provide the same instance name, generate a four square type center
and inform the designer about the change effected.

Rule: GridsInXDirection
IF there is a center and it is of the grid type and its width is greater than 100, THEN
set the number of grids in x direction on the center equal to 6.

Rule: GridsInXDirection
IF there is a center and it is of the grid type and its width is less than 100, THEN set

the number of grids in x direction on the center equal to 4.

Rule: GridsInYDirection
IF there is a center and it is of the grid type and its height is greater than 100, THEN
set the number of grids in y direction on the center equal to 7.

Rule: GridsInYDirection
IF there is a center and it is of the grid type and its height is less than 100, THEN set
the number of grids in y direction on the center equal to 6.

Figure 8.10: DoorCenter rule-base in plain English language

center components available, generating instance features, and calculating
attribute values. Similarly in the rule-base DoorlLeff, rules are used to decide the
type of the left component based upon the type of the center component. When
the left and the center components are not matched, the existing left component

is replaced by the correct component through reasoning.

131
Using this system, a door is first generated with its four default

components. If the user wishes to modify the design of the door, he/she then
selects the relevant rule-bases and carries out inference. Figure 8.11 shows the
result of the door when it is first generated using the class feature as the

template.

EZ-D Geometry Browser

Figure 8.11: Appearance of the door before replacing the top

Now suppose the designer wishes to modify the top component of the
door, and selects the rule-base DoorTop as the design knowledge. During the
inference, the designer is (1) informed of the types of top components available,
and (2) questioned if he/she wishes to replace the existing top component with a

rectangular one or with a semicircular one. Suppose the semicircular top

132
component is chosen, the system then inquires about the details of the top

component design, such as the number of spikes of the semicircular top

component.

A snapshot of the 2-D geometry browser showing the door before the
replacement of top component is given in Figure 8.11. Snapshot of the 2-D
geometry browser showing the door after the replacement of the top component
is given in Figure 8.12. The center component shown in Figure 8.12 has four
squares. If the user wishes to modify the design of the center component, the

rule-bases DoorCenter and DoorCenterGrids are then selected. Since the

526 Gé&ﬁeﬁj éloﬁsel. 7

Figure 8.12: Appearance of the door after replacing the top

133
design of the top component has already been completed, the rule-base

DoorTop selected previously can be un-selected at this stage. By reasoning, the
type of the center component can be changed according to the users
preference. In this example, the center component is replaced by the one with
rectangular grids. The number of grids in the horizontal and vertical directions
are determined according to the rules GridsinXDirection1, GridsinYDirection1,

GridsinXDirection2, GridsInYDirection2, respectively.

{7~ 2-D Get;;{;ll_j; Browser

Figure 8.13: Appearance of the door after knowledge based reasoning

Next, the right and the left components of the door should be designed.

To achieve this, the rule-bases related to right and left door component design

134
are selected. Rule-bases selected for the previous inference can be un-selected

to streamline the inference process. In order to maintain the symmetry of the
door, the left and the right components should be of the same type. In the rule-
base Doorleft, rules are defined to replace the left component if it is inconsistent
with the center component. DoorRight is the rule-base for the right component
design. The design candidate generated as a result of the knowledge-based
inference is shown in Figure 8.13. Different design candidates can be generated
by selecting different rule-bases. For instance, if the user wants the left and right
components to be different from the center component, he/she should select
rule-bases DoorLeftDifferent and DoorRightDifferent, instead of DoorlLeft and
DoorRight.

135
Chapter 9

Conclusions and Future Work

In this chapter, first conclusions of this research are summarized. Future

work is then outlined.

9.1 Conclusions

The research was devoted to the development of an intelligent design
system. A prototype system was developed in which functional design can be
conducted efficiently. In this research, feature-based design approach was
employed for modeling products. Class features were defined in a library.
Product modeling was conducted by generating instance features using the class
features as templates. Geometric descriptions were a part of the feature

rnsentahcn system waa da\lo!c

titcrte TTlAw sV od .Cr

ol ass
symbolic geometric descriptions with the 3D solid geometric descriptions. A rule-
based reasoning approach was utilized for automated product modeling. An
industrial application was developed using the developed intelligent design

system for a local manufacturing company —~ Gienow Products Ltd.

The conclusions during the development of the feature-based intelligent

design system are discussed in the following sub-sections.

9.1.1 Modeling of Products using Class Features and Instance Features

In the conventional CAD systems, only geometric data are modeled in the
CAD database. In this research, features are used for modeling both geometric
and non-geometric data. In addition, different types of information, including
qualitative properties, quantitative attributes, qualitative relations among features,
quantitative relations among attributes, constraints, etc., can also be described

using the feature-based product modeiing system.

136
Class features and instance features are modeled using the object

oriented programming approach to improve the modularity of the system. The
standard components of products are modeled as class features. Actual products
are described by instance features, which are generated using class features as
their templates. Class features are organized in a hierarchical data structure, so
all the characteristics defined in a super-class are inherited by the sub-classes
automatically. When an instance feature is generated from a class feature, all the
definitions in the class feature and its super-class features are inherited by the
instance feature. The descriptions of instance features can be modified based

upon the design requirements.

The consistency of the product database is maintained using the data
dependent relation network. When part of the design data is modified, the
change is then propagated to other parts of the product descriptions using the
relations among data. This function also serves as the basis for modeling the
different product life-cycle aspects, such as design, manufacturing, maintenance,
recycle, etc., and integrating these life-cycle aspects into the same environment

by associating these life-cycle aspect descriptions using the relations.

9.1.2 Representation of Product Geometry

Geometric information is described as part of the feature definitions. Both
2D and 3D geometric descriptions are defined in class features first and then
instantiated as instance features. Because the geometric descriptions in features
are represented by attributes and facts, these descriptions form a symbolic
geometric model of the product. A special geometry representation scheme was
developed in this research for modeling the symbolic geometric model. In this
scheme, the geometry of a product is described by primitives (rectangles, circles,
cylinders, cubes, cones, etc.) and operations to them (extrude, lathe, move,

rotate, union, subtract, and so on).

To display the 3D product geometry using a conventional CAD system, a
module has been implemented to extract the symbolic geometric descriptions

137
from the feature-based design system and translate these descriptions into the

3D solid model format. In this research, 3D Studio MAX serves as the 3D solid
modeling system due to its excellent computer graphics functions. The symbolic
geometric descriptions in instance features are first extracted to a neutral file. A
3D Studio MAX plug-in system was developed using C++ to read the data in the
neutral file and translate this data into 3D Studio MAX commands to create the
3D solid geometry of the product. When the instance features for representing a
product are modified, the 3D geometry of the product can be updated

accordingly.

9.1.3 Automation of the Product Modeling Process

The product modeling process is automated by developing the rule-based
inference system in this research. Various product modeling activities, including
generating new instance features and their descriptions, modifying existing
instance feature descriptions, deleting instance features and their descriptions,
automatically updating the product data change, etc., are carried out through

rule-based reasoning.

Since the sizes of both the knowledge base in the form of rules, and the
database in the form of instance features, are large, a special inference
mechanism has been developed to improve the reasoning efficiency. In this
approach, only part of the knowledge base and database are selected and
considered during the inference. To achieve this goal, rules are organized in
groups, called rule-bases. Only the relevant rule-bases are selected as the
knowledge base. The partial database is selected by specifying an active

instance feature.

9.2 Future Work

The effectiveness of product modeling using the developed feature-based

intelligent design system has been proved by the theoretical analysis and

138
application implementation. To further improve this system, the research should

focus on the following aspects:

1. Integration of design with other product development life cycle aspects:
This research focuses on modeling the design aspect of the product life-cycle.
However, development of a product involves the activities in many different
product life-cycle aspects such as manufacturing, assembly, maintenance,
and recycling. This design system should be integrated with other product life-

cycle modeling systems in the future.

2. Improvement in system interface environment:
The system interface environment should be improved. Currently the system
interface environment consists of a number of browsers. Definitions of
features and rules, and the result of rule-based inference are coded using
text. To improve the interface environment, graphical editing functions for
defining the knowledge base and database should be introduced.

3. Improvement in 3D geomelry representation:
In this research, only the fundamental built-in predicates are developed and
implemented for modeling the 3D product geometry. More functions should
be added to improve the capability of the feature-based intelligent design
system. In the current system, only a small number of material types, such as
copper, wood, steel, etc., have been defined. More material types should be
added.

4. Improvement in intelligent system:
In order to make the intelligent system more effective, more built-in predicates
should be added. For instance, the built-in predicates to ask the user for
entering data and to print out the design result using a certain format should
also be developed in the future. In the current system, the relevant rule-bases
for conducting the inference are selected manually by the users. If a user
doesn’t have good knowledge about the knowledge base, he/she may find it

is hard to select appropriate rule-bases for modeling and developing the

139
products. Therefore meta-knowledge, the knowledge about the knowledge

base, should also be modeled in this system to help the users to select

appropriate rule-bases during the design process.

. Integration of design system with other product development systems using
agent-based distributed knowledge base and database modeling approach:

With the advances in Intemet technologies, agent-based distributed
computing methods have been developed in many computer-based design
and manufacturing systems [Maturana96]. The feature-based intelligent
design system developed in this research can serve as a design module in

the integrated agent-based product development systems.

140

References

[Armstrong82]
Armstrong, G. T., “A Study of Automatic Generation of Non-invasive NC Machine
Paths from Geometric Models,” PhD. Dissertation, Department of Mechanical

Engineering, University of Leeds, April 1982.

[Bjame94]
Bjame, S., Design and Evolution of C++, Addison - Wesley Longman, 1994.

[Browne90]
Browne, J., Harhen, J., and Shivnan, J., Production Management Systems,

Addison - Wesley, 1990.

[Buchanan78]
Buchanan, B. G. and Feigenbaum, E. A., “Dendral and Meta-Dendral,” Artificial

Intelligence, vol. 11, 1978.

[Buchanan84]
Buchanan, B. G. and Mitchell, T. M., Rule Based Expert Systems: The Mycin

Experiments, Addison - Wesley, 1984.

[Carringer86]
Carringer, R. A., “Product Definition Data Interface,” Proceedings of CIMTECH

Conference, March 1986.

[Casale85]
Casale, M. S. and Stanton, E. L., “An Overview of Analytic Solid Modeling,” /[EEE

CG & A, pp. 45-56, February 1985.

141
[Comey93]

Comey, J. and Clark, D. E. R., “Face-based Feature Recognition: Generalizing
Special Cases,” Computer Integrated Manufacturing, vol. 6, no. 1, pp. 39-50,
1993.

[Cutkosky88]

Cutkosky, M., Tenebaum, J. M., and Muller, D., “Features in Process Based
Design,” ASME Computers in Engineering Conference, ASME press pp. 557-
562, July 1988.

[Dave95]
Dave, P. and Sakurai, H. “Maximal Volume Decomposition and its Application to
Feature Recognition,” Proceedings of ASME Computers in Engineering

Conference and the Engineering Database Symposium, 1995.

[Dixon84]

Dixon, J. R. and Simmons, M. K., “Expert Systems for Engineering Design:
Standard V-Belt Drive Design as an Example of the Design-Evaluate-Redesign
Architecture,” Proceedings of ASME Computers in Engineering Conference,
August 1984.

[Dixon88]

Dixon, J. R., “Designing with Features: Building Manufacturing Knowledge into
more Intelligent CAD Systems,” Manufacturing International ‘88 Symposium on
Manufacturing Systems - Design Integration and Control, vol. 3, pp. 51 - 57, April
1988.

[Dong94]

Dong, Z., Hu, W., and Xue, D., “New Production Cost -Tolerance Models for
Tolerance Syntheis,” Journal of Engineering for Industry, Transactions of ASME,
vol. 166, pp. 199-206, 1994.

142
[Eastman79]

Eastman, C. and Weiler, K., “Geometric Modeling using Euler Operators,”
Proceedings of First Annual Conference on Computer Graphics in CAD/CAM
Systems, pp. 248-259, April 1979.

[Forest68]
Forest, A. R, “Curves and Surfaces for Computer-Aided Design,” PhD.

Dissertation, University of Cambridge, 1968.

[Gindy89]
Gindy, N. N. Z., “A Hierarchical Structure for Form Features,” International
Journal of Production Research, vol. 27, no. 12, pp. 2089-2103, 1989.

[Goldberg83]
Goldberg, J. and Robson, D., Smalltalk-80: The Language and its

Implementation, Addison Wesley, 1083,

[Grayer76]
Grayer, A. R., “A Computer Link between Design and Manufacture,” PhD.

Dissertation, University of Cambridge, UK, September 1976.

[Gregory97]
Gregory, K., Using Visual C++ 5, QUE Corporation, 1997.

[Guig4]
Gui, J. K. and Mantyla, M., “Functional Understanding of Assembly Modelling,”
Computer-Aided Design, vol. 26, no. 6, pp. 435-451, May 1994.

[Hagen85]
Hagen, H., “Geometric Spline Curves,” CAGD Journal, vol. 2, pp. 223-227, 1985.

143
[Hovart96]

Hovarth, 1., “A Workbench Architecture for Object Oriented Handling of
Features,” Proceedings of 1996 ASME Design Engineering Technical

Conferences and Computers in Engineering Conference, August 1996.

[Ishii93]

Ishii, M., Tomiyama, T., and Yoshikawa, H., “A Synthetic Reasoning Method for
Conceptual Design,” In Wozny, M. J., and Olling, G., eds., Proceedings of
Towards World Class Manufacturing, North-Holland, pp. 3-16, 1993.

[Johnson86]
Johnson, R. H., “Product Data Management With Solid Modeling,” Computer-
Aided Engineering Journal, pp. 129-132, August 1986.

[Johnson90]
Johnson, B.M. and Ruwe, M., Professional Programming in COBOL, Prentice-
Hall, 1990.

[Kim94]

Kim, Y. S., “Volumetric Feature Recognition using Convex Decomposition,”
Advances irn Feature Based Manufacturing, Elsevier Publications, pp. 39-63,
1994.

[Kremer97]
Kremer, R. C., “Constraint Graphs: A Concept Map Meta-Language,” PhD.
Dissertation, Department of Computer Science, University of Calgary, 1997.

[Krouse85]
Krouse, J. K., “Solid Modeling Catches On,” Machine Design, pp. 50-55,
February 1985.

144
[Lee85]

Lee, E. T. Y., “Some Remarks Concerning B-Splines,” CAGD Journal, vol. 2, pp.
145-149, 1985.

[Mantyla90]
Mantyla, M., “A Modeling System for Top-Down Design of Assembled Products,”

IBM Journal of Research and Development, vol. 24, no. 5, pp. 639-659, 1990.

[Marisa88]
Marisa, R., “Proposed Extensions to PADL-2,” Technical Note COMAPP, Comell

University, May 1988.

[Maturana96]
Maturana, F. and Norrie, D. H., “Multi-Agent Mediator Architecture for Distributed
Manufacturing,” Journal of Intelligent Manufacturing, vol. 7, pp. 257-270, 1996.

[McDermott82]
McDermott, J., “R1: A Rule Based Configurer of Computer Systems,” Artificial

Intelligence, vol. 19, 1982.

[Michael96]
Michael, T. P., 3D Studio MAX Fundamentals, New Riders, 1996.

[Miner85]
Miner, R. H., “A Method for the Representation and Manipulation of Geometric

Features in a Solid Model,” M. Sc. Thesis, Mechanical Engineering Department,

MIT, 1985.

[Mittal89]

Mittal, S. and Araya, A., “A Knowledge-Based Framework for Design,” In Tong,
C. and Sriram, D., eds., Aftificial Intelligence in Engineering Design vol. 1: Design
Representation and Models of Routine Design, Academic Press, pp. 273-293,
1992.

145
[Mortenson85]

Mortenson, M. E., Geometric Modeling, John Wiley, New York, 1985.

[Nau86]
Nau, D. and Gray, M., “SIPS: An Application of Hierarchical Knowledge
Clustering to Process-Planning,” ASME Winter Annual Meeting Symposium

Integrated and Intelligent Manufacturing, 1986.

[O'Grady91]
O’'Grady, P. and Young, R. E., “Issues in Concurrent Engineering Systems,’
Journal of Design and Manufacturing, vol. 1, pp. 27-34, 1991.

[Potts88]
Poits, C. and Bruns, G., “Recording the Reasons for Design Decisions,
Proceedings of 1988 IEEE International Conference on Software Engineering,

pp. 418-427, 1988.

[Putham86]
Putnam, L. K. and Subrahmanyam, P. A., “Boolean Operations on n-Dimensional
Objects,” IEEE CG & A, pp. 43-51, June 1986.

[Rich91]
Rich, E. and Knight, K., Artificial Intelligence, McGraw - Hill Inc, 1991.

[Rosenblatto1]
Rosenblatt, A. and Watson, G. F., “Concurrent Engineering,” /IEEE Spectrum,
vol. 28, no. 7, pp. 22-37, 1991.

[Shah86]

Shah, J.J. and Bhatnagar, A., “GT Coding Scheme for Sheet Metal Features,”
Technical Report, Department of Mechanical Engineering, Arizona State
University, 1986.

146
[Shah88a]

Shah, J. and Rogers, M. “Functional Requirements and Conceptual Design of
the Feature-Based Modeling System,” Computer-Aided Engineering Journal,
February 1988.

[Shah88b]

Shah, J. J., Sreevalsan, P., Rogers, M., Billo, R., Mathew, A., “Current Status of
Features Technology, Report on Task 0,” Technical Report R-88-GM-04.4,
CAM-I Inc., 1988.

[Shah89]
Shah, J., “Feature Transformations Between Application Specific Feature

Spaces,” Computer-Aided Engineering Journal, vol. 6, no. 6, 1989.

[Shah95]
Shah, J. J. and Mantyia, M., Parametric and Feature - Based CAD/CAM, John
Wiley & Sons Inc., 1995.

[Shenoy83]
Shenoy, R. S. and Patnaik, L. M., “Data Definition and Manipulation Languages
for a CAD Database,” Computer Aided Design Journal, vol. 15, no. 3, pp. 131-
134, 1983.

[Soni86]
Soni, A., “An Intelligent Mechanism Selections Consultant,” ASME Computers in

Engineering Conference, ASME Press, 1986.

[Subrag4]

Subrahmanyam, S. and Wozny, M., “An Overview of Automatic Feature
Recognition Techniques for Computer-Aided Process Planning,” Computers In
Industry, August 1994.

147
[Sutherland63]

Sutherland, 1. E., “Sketchpad: A Man-Machine Graphical Communication

System,” Proceedings of Spring Joint Computer Conference, Baltimore, 1963.

[Suzuki90]
Suzuki, H., Ando, H., and Kimura, F., “Geometrical Constraints and Reasoning

for Geometrical CAD systems,” Computers and Graphics, vol. 14, no. 2, 1990.

[Tan86]
Tan, S. T. and Yuen, M. M. F., “Integrating Solid Modeling with Finite Element
Analysis,” Computer-Aided Engineering Journal, pp. 133-137, August 1986.

[Tan87]
Tan, S. T., Yuen, M. M. F., and Hui, K. C., “Modeling Solids with Sweep

Primitives,” Computers In Mechanical Engineering (CIME) Magazine, pp. 60 -73,
September 1987.

[Tomiyama87]

Tomiyama, T. and Ten Hagen, P. J. W., “The Concept of Intelligent Integrated
Interactive CAD Systems,” CWI Report No. CS-R8717, Center for Mathematics
and Computer Science, Amsterdam, The Netherlands, 1987.

[Tumer88]
Tumer, G. and Andeson, D. C., “An Object Oriented Approach to Interactive
Feature - based Design for Quick Turnaround Manufacturing,” ASME Computers

in Engineering Conference, pp.45-49, 1988.

[Umeda92]

Umeda, Y., Tomiyama, T., and Yoshikawa, H., “A Design Methodology for Self
Maintenance Machine Based on Functional Redundancy, Design Theory and
Methodology - DTM,” ASME Press, pp. 317-324, 1992.

148
[Vickers88]

Vickers, D. L. and Swanson, K. A., “A Form Features-Centered Architecture for
Product Definition Exchange,” AUTOFACT ‘88 Conference Proceedings, pp. 25 -

37, 1988.

[Wilkinson87]
Wilkinson, D. and Hallam, R., “A Study of Product Data Transfer Using IGES,”

Computer-Aided Engineering Journal, vol. 4, no. 3, pp. 131-136, 1987.

[Wilson85]
Wilson, P. R., “Euler Formulas and Geometric Modeling,” IEEE CG & A, pp. 24 -

36, August 1985.

[Wo082]

Woo, T. C., “Feature Extraction by Volume Decomposition,” Proceedings of
Conference on CAD/CAM Technology in Mechanical Engineering, pp. 76-94,
1982.

[Xue92]
Xue, D., Takeda, H., Kiriyama, T., Tomiyama, T., and Yoshikawa, H., “An

Intelligent Integrated Interactive CAD," In Intelligent Computer-Aided Design,
Waldron, M. B., Brown, D., and Yoshikawa, H., eds., Amsterdam: North-Holland,
pp. 163-192, 1992.

[Xue93]
Xue, D. and Dong, Z., “Feature Modeling Incorporating Tolerance and

Production Process for Concurrent Design,” Concurrent Engineering: Research

and Applications, vol. 1, pp. 107-116, 1993.

149
[Xue94a]

Xue, D. and Dong, Z., “Developing a Qualitative Intelligent System for
Implementing Concurrent Engineering Design,” Journal of Intelligent
Manufacturing, vol. 5, pp. 251-267, 1994.

[Xue94b]

Xue, D. and Dong, Z., “Coding and Clustering of Design and Manufacturing
Features for Concurrent Design,” Proceedings of 1994 ASME Design
Automation Conference: Advances in Design Automation 1994, DE-vol. 69 -1,
pp. 533-545, 1994.

[Xue96]
Xue, D., Rousseau, J. H., and Dong, Z., “Joint Optimization of Performance and
Costs in Integrated Concurrent Design: Tolerance Synthesis Pant,” Engineering

Design and Automation, vol. 2, no. 1, pp. 73-89, 1996.

[Xueg7]
Xue, D., “A Multilevel Optimization Approach Considering Product Realization
Process Alternatives and Parameters for Improving Manufacturability,” Journal of

Manufacturing Systems, vol. 16, no. 5, pp. 337-351, 1997.

[Yadav98a]
Yadav, S. and Xue, D., “Feature-Based Concurrent Design For Improving
Manufacturability," Proceedings of CSME Forum Design Integraton and

Optimization Conference, vol. 3, pp. 7-14, 1998.

[Yadav98b]

Yadav, S. and Xue, D., “A Multi-level Production Scheduling Mechanism,”
Proceedings of [ASTED |International Conference on Robotics and
Manufacturing, pp. 169-172, July 1998.

150
[Zarefar86]

Zarefar, Z., Lawley, T., and Eesami, F., “PAGES: A Parallel Axis Gear Drive
Expert System,” ASME Computer in Engineering Conference, 1986.

[Zeid91]
Zeid, |., CAD/CAM Theory and Practice, McGraw-Hill Inc., 1991.

[Zweben94]
Zweben, M. and Fox, M. S., Intelligent Scheduling, Morgan Kaufmann

Publishers, 1994.

