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ABSTRACT 

This thesis examines the management of imprecision and vagueness 

in geographical databases using fuzzy sets. Several fuzzy data modelling 

concepts were implemented in a prototype forest ecological geographic 

information system (GIS). The concepts of linguistic variables and fuzzy 

numbers were applied to represent the imprecision and vagueness in 

quantitative and qualitative attributes. Three fuzzy comparison operators 

were implemented to facilitate information' retrieval with fuzzy criteria. 

Furthermore, a set of classification procedures has been developed to handle 

ecological classification with imprecise ecosystem, definitions. Polygon 

overlay and consolidation spatial operations were also implemented to 

handle fuzzy attributes. Graphical display of uncertainty information is also 

illustrated. 

This research has demonstrated that fuzzy sets provide better 

management of 'imprecise and ambiguous information than conventional 

techniques. In many natural resource databases, because much data are 

inherently fuzzy, the techniques presented in this thesis can be applied to 

enhance the performance of decision support GIS. 
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CHAPTER 1 

Introduction 

As Geographic Information Systems (GIS) assume increasingly 

important roles in planning and decision making, the quality of data becomes 

a prime concern. Quality of data directly affects the reliability of analysis 

results. However, much data in GIS, especially natural resources data, are 

inexact and sometimes error-loaded. Burrough [1986] listed many sources of 

errors in a GIS. This list is by no means exhaustive, but it reveals the extent of 

the data quality problem in GIS. The study of uncertainty in GIS deals with 

the identification, reduction, modelling and representation of 'the inexactness, 

inaccuracy and incompleteness in geographical databases. 

1.1 Some Limitations of Conventional Information Processing Techniques for 
GIS Applications 

For many years scientists and researchers have been studying different 

natural and economic phenomena using the precise tools of conventional 

mathematics [Zadeh, 1976]. Consequently, the development of computerdata 

processing and database techniques have also followed the stringent rules in 

conventional mathematics. One limitation of these techniques is that they are 

designed for modelling exact data. Attributes are assumed to be well 

represented by a single value and the domains of these attributes are assumed 

to be well-defined. These techniques work well in scientific and engineering 
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applications in which data are exact quantities. Yet, some geographical data 

are best described in qualitative or linguistic terms such as well-drained, 

describing soil drainage. Linguistic terms are imprecise symbols representing 

a range of similar values. Therefore, conventional techniques are inadequate 

for representing the vagueness in linguistic values. 

In some situations, qualitative terms are preferred even when 

quantitative information is available. For instance, it is often better to describe 

soil texture as sandy, loamy or silty than to provide the exact percentage 

contents of sand, silt and clay of a soil sample. Using conventional techniques 

one has to express the classification criteria in exact terms, for example, the 

soil texture triangle shows that if the percentage of sand is more than 70% 

sand and less than 15% clay then the sample is labelled loamy sand. This rigid 

condition does not reflect the gradual transition of the soil texture. While the 

difference between a sample with 69% sand and one with 70% sand is 

minimal, they are described by different terms. As the difference between the 

terms is a matter of degree rather than of kind, the boundary between the two 

classes should be gradual rather than clear-cut. Conventional techniques do 

not allow easy representation of this gradual transition from one class to 

another. Representing qualitative values without losing significant 

information presents a challenge to conventional techniques. 

In addition, conventional techniques are designed to analyze orderly 

or mechanistic systems. Analyzing complex and ill-defined systems using 

conventional quantitative techniques is often ineffective. For instance, the 

description of a Lower Boreal Cordilleran Ecoregion (LBC) [Corns & Annas 

1986] reads as follows: 



3 

"The LBC Ecoregion.... occurs at elevations of 800 to 1150 m, 
mainly on ground moraine of Continental origin. The 
LB C/Lip per Boreal Cordilleran (LIBC) boundary is lower in the 
moister and/or cooler parts of the zone, occurring at 900 to 1050 
m on the north slope.... On the south slopes .... the LBC/LIBC 
boundary is much higher (up to 1150 m)...." 

Translating this linguistic description into a set of precise if-then rules 

requires one to quantify the terms mainly, moister, cooler and much higher. 

Furthermore, two-valued or Boolean logical operations, which are 

fundamental to conventional techniques, are too rigid to accommodate sites 

with less-than-perfect match. This could result in many sites being 

unclassified. As expressed in the principle of incompatibility [Zadeh, 1973], the 

more complex a system, the lesser our ability to make precise and yet 

significant statements about its behavior. In fact, the ability to summarize 

information constitutes one difference between human and artificial 

intelligence (Al). To allow GIS to become more powerful, intelligent decision 

support tools for solving less structured problems, a human-like approach to 

information modelling and processing should be adapted. 

Among many theories developed from Al research, one appropriate 

theory which has been applied to the development of inexact data modelling 

and processing is the fuzzy set theory introduced by L.A. Zadeh [1965]. Fuzzy 

set theory is a mathematical theory developed to represent formally and 

consistently inexact or fuzzy information such as the ambiguity found in 

linguistic values. Borrowing from the concept of fuzzy set theory, Buckles and 

Petry [1982] proposed a fuzzy relational database (FRDB) model to incorporate 

fuzzy data within the specification of a relational database, and to develop 
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mechanisms for the manipulation of the fuzzy data. The model was designed 

to handle both non-fuzzy and fuzzy data, with non-fuzzy data being treated as 

a special case of the fuzzy representation. Since then, additional work has 

been carried out by Buckles and Petry [1983, 1984], Semankova-Leech and 

Kandel [1985], Shenoi and Melton [1989] Lui and Li [1990] to improve upon 

the original model. 

1.2 Uncertainty in Geographic Information 

One research focus in GIS that has been receiving more attention is 

the management of uncertainty [Robinson & Strahier, 1984; Robinson & 

Frank, 1985; Bédard 1987; Stoms 1987; Walsh et a! 1987; Leung, 1988; Miller et 

al, 1989; Wang et al, 1990; Sui, 1990]. The main concerns in this research area 

are collecting, tracking, encoding, modelling and reporting uncertainty in a 

GIS environment [Guptill, 1989]. The term uncertainty, has been used to refer 

to vagueness, ambiguity, generality, incompleteness, imprecision and 

inaccuracy in data values and computer models. In Al research, uncertainties 

in data and models have been important research topics to improve the 

performance of intelligent computer systems. From the AT perspective, Stoms 

[1987] summarized data uncertainties by 1) uncertainty due to variability or 

error, 2) imprecision due to vagueness and 3) incompleteness due to 

inadequate sampling frequency or missing variables. In the context of expert 

systems, uncertainty can be interpreted as uncertainty of how to combine 

multiple conditions to assert an overall strength of the antecedent part of an 

if-then-rule, uncertainty of the strength of the rules itself in asserting its 

consequence, and uncertainty in resolving conflicts between different rules or 

in assigning overall confidence when several rules of varying strength assert 
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the same conclusion. Various theories have been developed to handle both 

uncertainty in data and in reasoning. Some well studied theories are 

probability theory [Hartigan, 1983], information theory [Shannon, 1948], the 

mathematical theory of evidence [Shafer, 1976], and the fuzzy set theory 

[Zadeh, 1965]. Stoms [1987] concluded that probability theory is designed to 

handle uncertainty due to randomness. The theory of evidence is best suited 

to handle uncertainty caused by incompleteness, and fuzzy set theory was 

developed to handle uncertainty due to imprecision. Nevertheless, these 

theories can be combined to handle more intricate problems [Bouchon-

Meunier et al, 1991]. 

From the GIS perspective, Bedard [1987] provided another framework 

for the study of uncertainty. He classified uncertainty into conceptual 

uncertainty, descriptive uncertainty, locational uncertainty and meta-

uncertainty. Conceptual uncertainty refers to the fuzziness in identification of 

the observed reality, such as determining the vegetation type of an area 

according to a certain classification scheme. Descriptive uncertainty refers to 

the uncertainty in the attribute values of an observed reality. This includes 

the data uncertainty mentioned above. Locational uncertainty refers to 

uncertainty concerning spatial attributes. This aspect is unique and important 

to GIS. Meta-uncertainty refers to the uncertainty in the knowledge of the 

previous three types. All these uncertainties directly affect the performance of 

GIS. The issue of uncertainty becomes more prominent when GIS is used for 

planning and decision making. Therefore, uncertainty management should 

be a high priority in the design of decision support GIS. Recently, some 

researchers have applied fuzzy set theory in the management of geographical 
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information [Leung 1988; Robinson 1988; Burrough 1989; Sui 1990; Wang et al 

1990; Kollias & Voliotis 1991]. Their research demonstrates that fuzzy data 

modelling techniques reduce information loss and provide more flexible 

representation of geographical phenomena and relationships. A review of 

this research can be found in Section 2.6. 

1.3 Research Objectives and Thesis Organization 

The objectives of this research project are to apply fuzzy data 

management techniques to handle vagueness and imprecision in attribute 

values and to the management of uncertainty in information processing in a 

commercial vector GIS. To achieve these objectives a prototype system has 

been implemented in conjunction with a commercial vector GIS, the 

ARC/INFO software package, to evaluate the fuzzy techniques. (ARC/INFO is 

a registered trade mark of Environmental Systems Research Institute, 

Redlands California, U.S.A.). A forest ecology database was used for 

illustration purposes. 

This research project is part of the Naia Project, a forestry expert GIS 

project, currently being developed in Calgary, Alberta by Hughes Aircraft of 

Canada, Alberta Research Council, and the University of Calgary, Department 

of Geomatics Engineering. The Naia Project aims at developing a decision 

support system with expert system capability to assist foresters and related 

professionals in the management of the forest ecology. Several forestry 

management areas in Northwestern Alberta have been chosen as test areas 

for the Naia Project. Forest, soil and topographical information was provided 

by Weldwood Forestry and Canadian Forestry products (Canfor). In this 
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thesis, only part of the Can.for data set was used for the illustration of concepts 

and techniques. 

The organization of this thesis is as follows: Chapter 2 discusses the 

relevant concepts in the theory of fuzzy sets and reviews the current state of 

research in the application of fuzzy set .theory in GIS. Chapters 3 to 6 describe 

the specifics of this research. Chapter 3 describes the details of the design, 

methodology and test data of this research. Chapter 4 explains the 

representation of attribute uncertainty in a relational database. Chapter 5 

presents several fuzzy techniques for modelling and classifying ill-defined 

objects. Chapter 6 describes the application of fuzzy set theory to spatial 

operations. Conclusions and recommendations are presented in Chapter 7. 
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CHAPTER 2 

Fuzzy Set Theory and Its Application in GIS 

Inappropriate data representation is one of the many sources of 

uncertainty in GIS. Poor representation can cause misinterpretation and loss 

of information, but conventional database systems have little capability to 

represent imprecision or ambiguity in attribute values. This chapter 

introduces the concept of fuzzy sets and reviews some applications of fuzzy 

sets in data modelling and uncertainty management in GIS. 

2,1 Fuzzy Sets 

Information representation and reasoning are two fundamental 

research areas in artificial intelligence. Due to the underlying vagueness of 

knowledge and inexactness of human reasoning, two-value and multi-value 

logic are too precise and too limited to model ill-defined systems such as 

those for economic forecasting and landuse classification. In a search for better 

tools for information representation, Zadeh developed the fuzzy set theory 

[Zadeh 1965]. 

The theory of fuzzy sets is a mathematical theory developed from 

conventional set theory. It provides a formal and consistent way to represent 

and process inexact information and vague concepts. In a conventional or 

non-fuzzy set, such as the set of soil types, a sample plot must either be a 

member or not a member of a soil type. However, in a fuzzy set a sample can 
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be a partial member of a soil type. The degree of belonging of each element to 

a set is indicated by a membership grade, which is usually a real number 

ranging from 0 to 1. The higher the membership grade, the more an element 

belongs to the set. A fuzzy set is made up of a set of ordered pairs. Each pair 

consists of an element from the universe of discourse and a membership 

grade. Consider a fuzzy set for the linguistic term hilly, which can be 

expressed as a function of the percent gradient of the slopes,g: 

hilly(g): 0 if g =0% 

_g if 0%<g<35% 
35% 
1 if g≥35% 

While slopes with gradients greater than or equal to 35% are best described as 

hilly (indicated by a membership grade of 1.0), slopes with gradients between 

15% and35 % can be described as hilly to some degree. 

Fuzzy set theory incorporates conventional set theory as a special case. 

Thus the membership grade of an element in a conventional set is either 0 or 

1. The mathematical definition of a fuzzy set, A, is as follows: 

U (2.1) 

where "V x" denotes "for all x" and "I". is a separator to separate a set element 

(left) and its membership grade (right). U is the universe of discourse, x1 is an 

element of U, and 9A is a membership function of x, which maps x1 into 

A(xi) in an ordered membership set, M. If M ranges from 0 to 1, the set is 

called a normalized fuzzy set. The universe of discourse, U, is an ordinary set 
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of discrete elements and fuzzy sets are subsets of this discrete universe. Figure 

2.1 is a graphical representation of a normalized fuzzy set. 

Figure 2.1 Graphical representation of a normal fuzzy set 

The membership function of the fuzzy set A, RA, defines the degree to 

which an element belongs to the set. Membership functions are often derived 

empirically and are context dependent. Some researchers believe that the 

derivation of membership functions is crucial in fuzzy information 

processing and that the lack of simple and generally acceptable methods to 

build membership functions cause it to compare less favorably with other 

techniques [Kruse et al, 1991]. Turksen [1986] noted that membership 

functions can be determined either normatively or empirically [Turksen, 

1986]. The normative approach is commonly used for deriving membership 

functions for linguistic values because imprecisions inherent to these values 

are subjective and, thus, should be defined by the system users. However, this 

lack of objectivity sometimes raises the concern over the scientific merit of 

fuzzy set theory. The empirical approach follows the objective experimental 

procedures of the scientific methods found in measurement theory [Krantz et 
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al, 1971] but little work has been done on the empirical derivation of 

membership functions. Membership functions used in many fuzzy systems 

are based mainly on expert knowledge and/or statistics. Despite the lack of 

scientific foundation, many fuzzy systems have demonstrated satisfactory 

performance when compared with two-valued logic systems [Chatterji, 1985; 

Sui, 1990]. 

2.2 Fuzzy Set Operators 

This section provides the original definitions of some fuzzy 

operations given by Zadeh [1965]. The Min and Max operators are the basic 

tools used for the aggregation of fuzzy sets. Other operators used in this 

project are introduced at the appropriate sections. 

Let A and B be two fuzzy subsets of the universe, U: 

Inclusion: 

A is included in B if and only if V x E U 

≤ %(x) 

Equality: 

A and B are equal iff V x e U 

= 

Complement: 

Let B be the complement of A, V x E U and M = [0,1], 

9B(X) = 

(2.2) 

(2.3) 

(2.4) 
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Intersection: 

= A(x), B(x)). (2.5) 

Union: 

AUB = MaxQJ.(x),p.(x)). (2.6) 

Depending on the problem situations, other definitions of the intersection 

and union operators have been presented [Dubois & Prade, 1985; Leung, 1988]. 

However, Bellman & Giertz [1973] proved that the Min and Max operators are 

not only natural but also the only operators that possess all of the following 

properties: 

Commutative: 

XuY=YuX 

XY=YrX 

Associative: 

Xu(YuZ)=(XuY)uZ 

X(YnZ)=(XrY)r'Z 

De Morgan's Laws: 

Xu(YrZ)=(XuY)r(XuZ) 

X(YuZ)=(Xr'Y)u(XZ) 

(2.7) 

(2.8) 

(2.9) 

Non-decreasing: 

xuy(x) OR J1xy(x) cannot decrease if 1(x) or p(x) increases. (2.10) 
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Strictly increasing: 

f 'x('i) = p(x1) > 'x ) = i(x2) then 

xuy(x i) > xL)Y2 

j1xry(x1) > 1xc'y) 

Consistency: 

0 and L.(x) = 0 then t1 i.jy(x) = 0 

1 and i(x) = 1 then lixny(x) = 1 

2.3 Similarity Relations and Similarity Matrices 

(2.11) 

(2.12) 

Let x and y be arbitrary elements of a scalar domain U, S(x,y) is a 

similarity relation which exhibits the following properties [Zemankova-Leech 

and Kandel, 1985].: 

Symmetry: 

S(x,y) = S(y,x) (2.13) 

Reflexivity: 

S(x,x) = 1 (2.14) 

Max-Min Transitivity: 

S(x,z) ≥ Max y[Min(S(xi ) S(y,z))] (2.15) 

The property of symmetry ensures the degree of similarity is the same 

regardless of the order of the pair. However, in spatial analysis, there are cases 

where symmetry is inappropriate. These include migration pattern, traffic 

flow volume, and commodity flow [Leung, 1988]. Reflexivity meets the logical 
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assumption that an element is totally similar to itself. The Max-Mm 

transitivity states that the similarity between two elements x and z, S(x,z), in 

the universe of discourse should be at least as high as the lower of the S(x,y) 

and S(y,z). 

A similarity matrix can be used to express the degree of similarity 

between pairs of elements of a similarity relation. Table 2.1 shows a similarity 

matrix of soil drainage. To illustrate the concept of Max-Min transitivity 

using Table 2.1, S(Rapid,Imperfect) should be at least as high as the lower of 

S(Rapid,Well) and S(Well,Imperfect). That is, S(Rapid,Well) must be greater 

than or equal to 0.2, and one cannot assign a value smaller than 0.2 to (Rapid, 

Imperfect) even though Rapid and Imperfect share no similarities. Shenoi & 

Melton [1989] commented that Max-Min transitivity is a very restrictive 

constraint, and sometimes may be counter-intuitive for certain domains. 

Zemankova-Leech and Kandel [1985] also noted that no generally acceptable 

transitivity rules can be easily established; therefore, the Max-Min transitivity 

property is not always enforced in fuzzy database systems. 

Rapid Well Imperfect Poor 

Rapid 1.0 0.3 0.2 0.2 

Well 0.3 1.0 0.2 0.2 

Imperfect 0.2 0.2 1.0 0.3 

Poor 0.2 0.2 0.3 1.0 

Table 2.1 A similarity matrix for soil drainage. 
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2.4 The Extension Principles 

The extension principles in fuzzy set theory define the membership 

grades of the fuzzy elements when mapping from one universe to another 

[Zadeh,1975]. They are defined as follows: 

Extension Principle I: 

Let A be a discrete fuzzy set in a universe, U1, f is a mapping function 

which maps elements in A into another universe U2, then the fuzzy set B = 

f(A) in U2 is defined by: 

B = f(A) = uf(x)/1(x). (2.16) 

Example: 
Let f: x -> 4*x 

A = {3/0.8,4/1.0,5/0.91 
B = (12/0.8,16/1.0,20/0.,91 

Extension Principle II: 

Let U be a Cartesian product of universes U = U1 2 x U x ... x U n/ and 

A1, A2,.. .,A be n discrete fuzzy sets in U1,U2, . . .U, respectively. f is a mapping 

function from U to another universe V and y = f(x11x2,.. .x), then a fuzzy set B 

in 1.) is defined as: 

B=uy/(y) 

= {MaxMin{IAl(xl).... .. 

= 0 

for f1(y) #0, 

otherwise 

and f 1(y) is the set of points in U which are mapped into V by f. 

(2.17) 
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Example: 
A = 14/0.8,5/1.0,6/0.91 
C = (5/0.7,6/1.0,7/0.81 

A*C = (4*5) /Min(0.8,0.7), (4*6) /Min(0.8,1.0), (4*7) /Min(0.8,0.8), 
(5*5)/fin(1.O,O.7), (5*6)/Min(1.0,1.0), (5*7)/Mirl(1.0,0.8), 
(6*5) /Min(0.9,0.7), (6*6) /Min(0.9,1.0), (6*7) /Min(0.9,0.8) 

= (20/0.7,24/0.8,25/0.7,28/0.8,30/1.0,35/0.8, 36/0.9,42/0.8) 

2.5 The Possibility Theory 

2.5.1 Possibility versus Probability 

Probability and possibility are two related terms used to describe 

uncertainty. As Leung [1988] stated, probability theory is a tool to study 

randomness and possibility theory is the tool to study imprecision. While the 

uncertainty in probability models is caused by randomness, the uncertainty in 

possibility models is due to the incompleteness and imprecision in 

information, which prevent the drawing of indisputable conclusions. Zadeh 

[1978] noted that while probability and information theory measure the 

quantity of information, possibility and fuzzy set theory study the semantics 

of information. The difference between the two can be elucidated by the 

following example which shows the probability and possibility distribution of 

a fair die: 

1 2 3 4 5 6 

P(x) 0.167 0.167 0.167 0.167 0.167 0.167 

n(x) 0.167 0.167 0.167 0.167 0.167 0.167 
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However, if the die is loaded, the possibility of having any number is still the 

same because still there are six faces on the die, but the probability distribution 

shows that the die is loaded to give a higher occurrence of 1. 

1 2 3 4 5 6 

P(x) 0.5 0.1 0.1 0.1 0.1 0.1 

7C(X) 0.167 0.167 0.167 0.167 0.167 0.167. 

When using fuzzy sets to represent possibility functions, ir(x) is always 

expressed as a normalized fuzzy set. Therefore we have the following 

representation: 

1 2 3 4 5 6 

P(x) 0.5 0.1 0.1 0.1 0.1 0.1 

1.0 1.0 1.0 1.0 1.0 1.0 

In the example ir(x) is undoubtedly 1 for all six faces. For events which the 

outcomes are not as clear-cut as the faces on a die, the possibility can be 

expressed as any real number from 0 to 1. For instance, the possibility of a 

person being called young depends on the definition of the concept young. 

Because the transition from young to not young is gradual, 7C(x) can be 

expressed as continuous function of the age of a person. Since much of the 

information humans use for decision making is possibilistic in nature, Zadeh 

[1978] believes that possibility theory should be the framework for 

information analysis. 
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2.5.2 Randomness versus Imprecision 

Another pair of concepts worth mentioning is randomness and 

imprecision. In a mathematical sense, randomness is characterized by chaotic, 

stochastic and unpredictable behavior. Randomness is the uncertainty arising 

from the unpredictable element in a deterministic model. Fuzziness is the 

uncertainty arising from the lack of precise information. Leung [1988] 

encapsulated the two concepts precisely as follows: 

".... randomness is an uncertainty resulting directly from the 
breakdown of deterministic cause-effect relationships, and 
imprecision is an uncertainty resulting directly from the 
breakdown of the law of the excluded-middle." 

As with probability and randomness being the foundation of statistics, 

possibility and fuzziness are the foundation of the fuzzy information 

processing. Information modelling in computer systems has become more 

sophisticated and both possibility and probability theories share important 

roles in modelling uncertainty in this imperfect reality. 

Possibility theory can be expressed with the concepts and tools in 

fuzzy sets. The membership function acts as a frzzy restriction to restrain 

the values that may be assigned to x. Thus the proposition "x is A" is 

postulated to be equal to J.tA (x), indicating the possibility or the truth value of 

"x is A". Therefore in this context, 1A can be interpreted as 7c A [Zadeh, 1978]. 
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2.6 State of Current Research on Application of Fuzzy Set Theory to 

Uncertainty Management in GIS 

Research on the application of fuzzy set theory to manage uncertainty 

in geographic information is limited due to the short history of GIS. 

Nevertheless, some interesting work has been done in cartographic 

modelling, database management systems and approximate reasoning in 

expert GIS. The following is an overview of the current research on these 

topics. 

2.6.1 Modelling Fuzziness in Data 

Due to the complex nature of many natural phenomena, most 

geographic data, especially those in natural resource management, are inexact 

and context dependent. In addition, geographical data are often categorized 

into classes with qualitative values. Furthermore, because geographical data 

are usually a scaled representation of the real phenomena, they are inherently 

inexact. Converting fuzzy data to fit into the conventional exact data 

processing framework is inappropriate. 

To better understand the nature of fuzzy data, Robinson [1988] 

(following Sack et al [1983]) summarized fuzzy data models into four cases: 

nonfuzzy schema/nonfuzzy data, nonfuzzy schema/fuzzy data, fuzzy 

schema/nonfuzzy data and fuzzy schema/fuzzy data. The first case is the 

conventional database model in which domains are discrete and data values 

are exact. Boolean logic is sufficient to handle this type of data. As we will see 

in the sequel, this case can also be treated properly within a fuzzy data model 

since fuzzy set theory contains conventional set theory. Nonfuzzy 

schema/fuzzy data has discrete domains but data values cannot be captured 
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exactly. Fuzzy schema/nonfuzzy data refers to data models with inexact 

domains but where exact data values can be obtained. Fuzzy schema/fuzzy 

data is the most generalized model in which both domains and data values 

cannot be expressed exactly. Little work has been done in modelling fuzziness 

at the data level. 

Two models proposed for fuzzy schema/nonfuzzy domain are 

reviewed in Robinson's paper [1988]. The import semantic model [Baldwin & 

Zhou, 1984] can be used to store the degree of fuzziness in data values. This 

model simply attaches a column next to each attribute to store the 

corresponding membership grade (Table 2.2). 

The similarity relation model [Buckles and Petry 1982] makes use of 

the similarity matrices to represent the fuzziness between linguistic terms. 

The elements in a similarity matrix can be interpreted as the degree of 

overlap between the meanings of any two terms. Although Robinson used 

this model to represent nonfuzzy schema/fuzzy data, it seems to be more 

appropriate to represent fuzziness in schema because the similarity relation 

does not provide information on fuzziness of the individual values as those 

provided by the import semantic model, but it indicates the similarity of the 

definitions of the attribute terms. 

Most of the current research emphasizes the modelling of fuzziness 

in cartographic models rather than the fuzziness of the data themselves. One 

reason could be the lack of awareness in the importance of data modelling. 

Another reason could be that users are accustomed to absorbing uncertainty 
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in data. The classification of fuzzy data serves as a framework for further 

investigation into modelling fuzzy data in a GIS context. 

Sample ID Drainage - 

1 well 0.7 

2 imperfect 0.9 

3 well 0.8 

4 rapid 0.6 

5 rapid 1.0 

Table 2.2 Drainage represented as the Import semantic model. 

2.6.2 Fuzzy Cartographic Modelling 

Fuzzy data models have been applied to soil analysis [Burrough 1989], 

suitability analysis [Wang et al 1990], economic regionalization [Leung 1988], 

and modelling gradual change of urban land values [Sui 1990]. 

Sui [1990] studied urban land value for the city of fining in the P.R 

China. Conventional techniques classify lands by a multi-section linear 

function, in which a constant threshold is set for each section. For instance, 0 

to 500 meters from a shopping center would be classified as first class land, 501 

to 1000 meters, second class, and so on. This results in a step function, rather 

than a gradual change, in land value., To model the gradual change, Sui first 

represented the study area in raster format. He then created a set of fuzzy 

matrices, one for each attribute. The elements of each fuzzy matrix 

represented the membership grade of each pixel in each class of that attribute. 

Using the fuzzy operations, a final matrix with quantitative values showing 
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the degree of each pixel belonging to a certain category. Compared with the 

evaluation done with conventional methods, both methods gave similar 

results with respect to the general pattern, but the fuzzy technique provided 

details about the graduated evaluation. 

Another approach to a similar problem is presented in Leung [1988]. 

Leung recognized that most phenomena vary over space in a more or less 

continuous manner. Therefore, he defined a set of regionalization procedures 

using fuzzy set theory which allow for smooth transition from one region to 

another. He demonstrated the versatility of this procedure in the 

classification of climatic regions. Expressing attributes like warm and humid 

as fuzzy sets, Leung determined the fuzzy boundaries of the regions using 

fuzzy operations. The objective of regionalization is to determining the edge, 

the boundary and the core of a region. An edge is the outermost boundary of a 

region beyond which the area is not likely to be classified as the region. The 

core depicts the area of a region whose characteristics are most compatible 

with the definition of the region. The area between the core and the edge is 

the boundary. Because the location of a boundary can be fuzzy, a boundary is 

represented by a gradient rather than a line. It can be interpreted as a zone 

within which all points are more or less compatible to the characteristics of a 

region. Thus if we consider a region as a fuzzy set, the points in the core have 

a membership grade of 1.0, and all points outside the edge have a 

membership grade of 0.0. The points in the boundary zone have a 

membership value the range of 0.0 to 1.0. In the event that a precise boundary 

must be established, an a-boundary can be established by restricting the 

membership grade to a specific value, a. 
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Wang et al's suitability study [1990] used fuzzy techniques to classify a 

study area in Indonesia by its suitability for several farming activities. The 

authors noted that the physiographic characteristics of an area do not 

completely match the classification requirements, and thus fuzzy techniques 

were used. The classification technique used is a pattern recognition method 

which comprehensively takes into consideration all its characteristics and all 

the suitability classes. By representing areas as vectors in a feature space and 

the growing conditions for each crop as prototype vectors, the authors 

calculated the mathematical distances (Euclidean distance) between the 

prototype vectors and the area vectors. The greater the distance, the less 

suitable is the area for the crop being considered. Wang concluded that this 

technique reduced the loss of information and provided indications of the 

appropriateness of the classification. 

In Wang et al's research, no data uncertainty was considered. In fact, 

Boolean logic was used in the comparison of the area vectors with the 

prototype vectors. For instance, annual average temperature for class S1 is 25 

to 29 degree Celsius and for class S2 is 30 to 32 degree Celsius. If a area 

measured 29 degree, it would match S1. However, a one degree difference 

would fail to match with S1. This could be a potential problem particularly 

when average temperature is used. Using fuzzy logic in the matching process 

could provide more insight to the classification. Chapter 5 of this thesis 

discusses the use of fuzzy logic operators to perform feature matching. 

Burrough [1989] demonstrated the use of fuzzy data models to study 

soil condition in several study areas in Venezuela and Kenya. He expressed 

the. uncertainty in the eleven soil attributes as fuzzy sets. The membership 
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functions represent the soil specialists' knowledge and experience in soil 

characteristics in the study areas. Based on the membership functions, 

Burrough calculated a membership value for each attribute, which was 

interpreted as the possibility of a particular attribute value being found in a 

certain layer of a soil profile. To demonstrate the robustness of fuzzy 

operations, Burrough formulated retrieval criteria which involved all eleven 

attributes in the data set. He showed that using Boolean logic and exact 

criteria to retrieve information resulted in a futile operation. The problem 

can be visualized by overlaying eleven raster binary maps and finding their 

Intersection. Since attributes tend to cancel each other out, the final map is 

more or less blank. However, with fuzzy operations, retrieval is done by 

degree of match rather than by exact match on values. The final map showed 

degree of match of each pixel with respect to the retrieval criteria. Users can 

then decide which areas meet the criteria better. 

Burrough's work demonstrated that when queries cannot be stated 

exactly or queries are too complex, fuzzy operations provide more 

informative results than when using Boolean operations. In this example, 

only numerical attributes were used. Yet, it is not uncommon to find 

qualitative attributes in geographical databases. Handling uncertainty in 

qualitative attributes presents a greater challenge than handling quantitative 

attributes. Chapter 4 presents a detailed discussion on modelling qualitative 

uncertainty. 
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2.6.3 Fuzzy Database Management System 

A more complete prototype database management system was 

developed by Kollias and Voliotis [1991]. FRSIS, a prototype soil information 

system with fuzzy retrieval capabilities, provides formal definition and 

manipulation commands to manage incomplete and imprecise data and 

queries. In addition to common relational database functions, FRSIS provides 

some new data type definitions and fuzzy operation commands. Three data 

types can be defined in FRSIS. They are 1) normal, i.e. those provided by 

INGRES (a commercial database management system), 2) possibility 

distribution of normal type domain value, and 3) membership in a set. 

Additional manipulation commands include creation of fuzzy relations, 

definition of fuzzy sets, normalization of fuzzy sets, fuzzy retrieval, deletion, 

replacement, fuzzy qualifiers and fuzzy comparison operators. The grammar 

of these commands is described in their paper. The following is an example of 

retrieval using fuzzy conditions: 

'Retrieve the code number and the number of horizons of 
the soil profiles that are quite shallow and have been developed 
on flat alluvial terraces'. 

FRSIS performs this operation according to the definitions of quite shallow 

and flat in FRSIS. Again, the membership functions for quite shallow,flat 

and the like were defined by users. 

FRSIS was built on top of the INGRES DBMS on a UNIX platform. It 

extends the INGRES QLIEL DBMS language by incorporating a language pre-

processor to QUEL, hence, created a new DBMS language called FQLIEL. The 
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pre-processor translates all fuzzy operations in FQUEL into standard QUEL 

commands which can then be processed in INGRES. 

With the capabilities to manage incomplete and imprecise data and 

allowing users to express their subjective view on the data, FRSIS provides a 

more human-like approach to -information retrieval. Yet, to meet the needs 

of GIS users, spatial analysis and mapping capabilities must be added. One 

approach is to interface FRSIS with other software that provides these 

functions. 

2.6.4 Approximate Reasoning Using Fuzzy Logic 

Fuzzy set theory was developed with a goal to improve the 

performance of 'artificial intelligence in reasoning. Leung's [1990] research 

focus is on the application of fuzzy set theory to build an expert GIS with a 

high level of intelligence, and he proposed a framework for a rule-based 

expert GIS based on fuzzy logic. Combining fuzzy set theory with the rule 

bases, the fuzzy inference engine can perform inferences such as the 

following: - 

Major premise: If the temperature is high, then the pressure is low. 

Minor premise: The the temperature in area X is quite high. 

Approximate conclusion: The pressure in area X should be quite low. 

In rule-based systems that use Boolean logic, the production rule in 

the major premise is activated only when the database entry equals high. To 

be able to handle all possible conditions, the set of production rules must 

exhaust all possible values for the attribute temperature. This could be very 
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inefficient when there is a large set of attribute values. Furthermore, 

conventional systems cannot handle database entries with fuzzy values. In 

rule-based systems that use fuzzy logic, the production rule is triggered when 

the temperature of X is roughly equals to high. This depends on the 

definition of high and its relation to other terms describing temperature. For 

instance, very high and quite high can be considered high. The production 

rule in the major premise is sufficient to handle all these data base entries. 

Hence, approximate reasoning using fuzzy logic is a more flexible approach to 

rule-based systems. 

Nevertheless, one should note that the performance of fuzzy 

inference depends very much on the knowledge stored in the knowledge base • 

and the validity and appropriateness of the membership functions. The 

advantage of using fuzzy logic is that users are not limiting ourselves to 

finding the perfect solution but to obtaining a set of acceptable solutions. 
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CHAPTER 3 

Research Project Design and Test Data 

The objective of this research is to investigate the effectiveness of 

fuzzy set theory in the management of uncertainty in a commercial GIS 

environment. This prototype system uses fuzzy set theory-based techniques to 

handle the fuzziness in attributes, objects and operations. Fuzziness in 

attributes refers to the imprecision and vagueness in quantitative values and 

qualitative terms. Fuzziness in objects relates to the indefinite descriptions of 

the entities being studied. Fuzzy operations are operations that involve 

operands with fuzzy values. Examples are approximately equal, much less 

than and much more than. A forest ecological database has been chosen to 

illustrate these functions in this prototype system. 

3.1 Goals of the Prototype System 

This prototype system was designed as an add-on module to a 

commercial GIS which is capable of the following functions: 

1. Representing imprecise values and qualitative terms using 

fuzzy sets and similarity matrices. 

2. Modelling fuzzy entities and fuzzy attributes. 

3. Processing queries with fuzzy criteria. 
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4. Performing fuzzy ecological classification. 

5. Extending spatial operations to handle fuzzy attributes. 

The choice of a forest ecological database for this prototype system is 

appropriate because the database contains both quantitative and qualitative 

attributes which can be modelled by fuzzy sets and similarity matrices. In 

addition, because the classification scheme was derived from a limited 

number of ground sample plots, it can only serve as a rough indicator to the 

classification of ecosystem association. Fuzzy techniques surpass conventional 

techniques in handling databases with incomplete information. 

Two terms in forest ecology require formal definition. In the Field 

Guide to Forest Ecosystems of West-Central Alberta [Corns & Annas, 1986], 

ecoregions are geographical areas that have a distinctive, mature ecosystem 

plus specified edaphic variation as a result of a given regional macroclimate. 

An Ecosystem association is an abstract taxonomic unit within an ecoregion. 

It includes all land areas with the potential of supporting plant communities 

with similar successional development belonging to the same plant 

association. For each ecosystem association, a set of forest management 

guidelines is provided. This research project applies fuzzy set theory to the 

classification of forest land into ecosystem associations so that foresters can 

evaluate their management and planning activities according to the 

suggestions in the field guide. Forest ecosystem classification serves as an 

important guideline for the planning, harvesting and regeneration, release 

and tending stages of forestry management. The standardized classification 

also facilitates communication among various specialists in related fields. 
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3.2 Functions of the Prototype System 

This prototype system consists of four modules: the fuzzy attribute 

definitions module, the fuzzy query module, the ecosystem classification 

module and the fuzzy spatial operation module. The following subsections 

describe the components of a fuzzy relational database and the functions of 

the modules. 

3.2.1 The Fuzzy Relational Database Model 

This prototype system follows the concept of a Fuzzy Relational 

Database Model (FRDB) presented in Buckle & Petry [1982] and Zemankova-

Leech & Kandel [19851. The database consists of three components: the value 

database (VDB), the explanatory databases (EDB) and a set of interpretation 

rules. The VDB is the "normal" database which stores the original values of 

the attributes. The EDB stores the fuzzy attributes and their meanings in the 

fuzzy attribute dictionary. For instance, the attribute "slope" can be redefined 

as a fuzzy attribute with qualitative terms such as flat, gentle and steep. The 

meaning of these terms, i.e. the membership functions, are stored in the 

fuzzy attribute dictionary. The EDB contains a fuzzy attribute dictionary, a 

modifier dictionary and similarity matrices. The fuzzy attribute dictionary 

stores the name and the membership functions of the fuzzy attributes. The 

meanings of fuzzy attributes can be changed slightly by modifiers such as very 

and approximately. The names and the functions of these modifiers are 

stored in the modifier dictionary. The interpretation rules are algorithmic 

procedures used to compute the membership grades of the fuzzy attributes 

based on the values in the VDB. Figure 3.1 shows the components of the 

database. 
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FRDB 

VDB 

• Attribute values 
• Topological 

information 
Interpretation 

rules 

EDB 

• Fuzzy attribute 
dictionary 

• Modifier dictionary 
• Similarity matrices 

Figure 3.1 Organization of a fuzzy database. 

3.2.2 Fuzzy Attribute Definition 

The fuzzy attribute definition module was developed from the 

concept of linguistic variables [Zadeh, 1973] described in Chapter 4. This 

module allows users to define fuzzy attributes as characteristic functions 

(membership functions). Because the meaning of these qualitative terms are 

often context dependent and sometimes subjective, the system allows users to 

define and change the definitions of the terms without altering the original 

values in the database. For illustration purposes, only triangular or 

trapezoidal-shaped functions were used in this prototype system. These 

functions can be represented by at most four parameters and require less 

computation. To represent these functions in the fuzzy attribute dictionary, 

only the function parameters are stored. An example of a fuzzy attribute is 

slopes. In the Canfor data set slopes are described by three terms, fiat, 

moderate and steep. Slopes with gradients less than 30% are labelled fiat, 31% 

to 45% are labelled moderate, and over 45% are labelled steep. This is similar 

to the categorisation precdeure using conventional techniques. However, 

conventional techniques impose a clear-cut boundary between classes which 
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usually result in loss of information after categorisation. Figure 3.2 illustrate 

the difference between conventional representation and fuzzy representation 

Fuzzy techniques allow the expression the gradual transition from one term 

to another by using different shapes of characteristic functions. 

flat moderate steep 

0 30 45 

gradient (%) 

ow 

flat moderate steep 

39 45 

gradient (%) 

No-

Figure 3.2 (a) Conventional representation of slope. (b) Fuzzy set 
representation of slope. 

In addition to defining the meaning of the linguistic terms, users can 

also associate modifiers with these terms. A modifier alters the meaning of a 

term by changing the values of the parameters thus generating new 

membership functions. When defining a modifier, the user will be asked to 

input the name of the modifier and its effect on the parameters of the 

functions. 
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3.2.2 Fuzzy Query 

In conventional databases, queries are formulated with conventional 

logic operators like equal, less than, and greater than. However, there are 

times when the user wants to perform less precise queries so as to 

accommodate less-than-perfect matches or when the user does not know 

exactly what to retrieve. This system allows him/her to retrieve information 

using fuzzy criteria. For instance, in a conventional system, if the user wants 

to retrieve all areas that are approximately 800 to 900 meters in elevation, 

he/she has to provide exactly the elevation range to be' retrieved. However, 

approximately is only a measure of degree, thus this system not only retrieves 

the records that have elevation between 800 to 900 meters, but also the records 

that fall close to the range specified. The system assigns 1.0 to the degree of 

match for areas that are within the range and a smaller value to areas that are 

outside the, specified range. Users can also specify the degree of match at 

retrieval to limit the number of cases being retrieved. 

The fuzzy operators implemented in this project are approximately 

equal (-=), much less than (<<), and much greater than (>>). Each of these 

operations takes two operands: a precise value and a fuzzy value. The precise 

operand comes from the entry in the VDB, 'and the fuzzy operand comes 

from the retrieval criteria. The records retrieved are stored in a separate 

database file for further processing. 

3.2.4 Ecosystem Classification 

In forest management, forest lands are classified into ecosystem 

associations so as to facilitate management and planning. To facilitate 
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classification, a set of attributes are identified in the field guide [Corns & 

Annas, 1986]. However, due to the complexity of the ecosystem, the values of 

the characterizing attributes given in the field guide are only approximate 

values. Therefore, these associations were treated as fuzzy objects and a fuzzy 

classification procedure has been developed to perform ecosystem 

classification. Due to its imprecise definition, it is likely that a forest area will 

not match the definitions of any associations perfectly. Thus, the fuzzy 

classification techniques evaluate the degree of match of a forest to each of the 

ecosystem associations. The result of this fuzzy classification provides several 

possible interpretations with their respective membership grades. Different 

operators were used to determine the classification, and the comparison of 

the results are described in Section 5.4 and 5.5, respectively. 

To perform classification, users have first to provide the definitions of 

the ecosystem associations and these definitions are kept in a database file. 

Users then invoke the fuzzy classifier. Upon termination of the classification 

process, the results and the degree of match of each attribute will be saved in a 

separate database file for further analysis. 

3.2.5 Fuzzy Spatial Operations 

Conventional spatial operations such as the overlay and the polygon 

merging functions use Boolean logic to process the overlay or merging 

criteria. These operations can be extended to handle fuzzy attributes. In this 

prototype system, the fuzzy overlay and polygon merging functions were 

implemented as extensions to the operations provided in a commercial GIS. 

These fuzzy overlay operation propagates the membership grades of the 

attributes from two maps to the resultant map. The fuzzy merging function 
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consolidates adjacent polygons that have the same attribute value with a 

membership grade greater than or equal to a user-specified level. For instance, 

if the adjacent polygons both have sandy texture but the membership grades 

are 0.6 and 0.8, the two polygons will be merged only if the user-specified 

level is 0.5 or smaller. Detailed description of these two fuzzy spatial 

operations is presented in Chapter 6. 

3.3 Software and Hardware Requirements 

This prototype system has been implemented on a PC-386 micro-

computer. PC ARC/INFO version 3.4D was used in conjunction with dBASE 

IV database management system version 1.1 (dBASE IV is a registered 

trademark of Ashton-Tate Corporation, Torrance, California U.S.A), with PC 

ARC/INFO serves as the host system. The system is driven by a multi-level 

bar menu, which is written in ARC's Simple Macro Language (SML). Due to 

the limited programming ability of SML, all four modules are written in the 

dBASE programming language. Because this version of ARC/INFO stores 

both topological and attribute information in dBASE files, access to data files 

and topological information is straightforward. Although using the dBASE 

programming language to implement these fuzzy techniques is less efficient 

when compared with other languages like the C programming language, it 

was chosen because of the easy access to data files. Furthermore, it is also 

desirable to limit the number of software packages for implementation so as 

to maintain generality in the computing environment and to avoid interface 

problems. 
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3.4 Study Area and Sources of Data 

The study area for this research project is located approximately 120 

km south east of Grande Prairie, Alberta, Canada (Figure 3.3). A pilot project 

for ecological classification in this area was carried out by the joint effort of 

the Canfor, Forestry Canada and Alberta Research Council. The data were 

collected in the summer of 1990 using both aerial photographs and data from 

ground surveys. Statistical analyses and interpretation were performed by 

Forestry Canada. All attribute data provided are stored in dBASE format. 

Digital maps of the ecological boundaries and point samples were provided in 

Intergraph IGDS format and they were subsequently translated into PC 

ARC/INFO format. 

The attribute data file of ground survey samples contains 151 

attributes which include soil characteristics, forest cover and understory 

vegetation. Figure 3.4 shows a predictive site mapping form used for data 

collection. To reduce the complexity of the classification process, forest 

ecologists have identified several important attributes to be used in this 

prototype system. Fifty-nine samples points were assigned an ecosystem 

association. These samples were used in the fuzzy classification procedure to 

establish membership functions and to evaluate the classification results 

generated by different fuzzy operators. 

3.5 Evaluation of the Prototype System 

The nature of this research is to demonstrate the usefulness of fuzzy 

sets in the management of fuzziness in attribute, objects and operations. In 

this prototype system, little consideration was given to the storage and 
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processing efficiency of the system. The main concern is to evaluate the 

effectiveness of fuzzy techniques over conventional techniques. To show that 

fuzzy techniques are effective tools for managing uncertainty, the difference 

between conventional techniques and fuzzy techniques are compared in 

various sections of this thesis. The objective is to show that in many 

situations, fuzzy techniques provide more flexibility than conventional 

techniques in a natural resource database such as the forest ecological database 

used in this thesis. 
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Figure 3.3 Location of the study area. 
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Figure 3.4 Predictive site mapping form used for field data collection [Corns and Annas, 1986]. w 
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CHAPTER 4 

Storage and Retrieval of Fuzzy Data 

Miller et al [1989] noted that uncertainty reduction and absorption are 

two common treatments for data uncertainty in geographical databases. 

Reducing uncertainty in data is the ideal treatment. However, it is often 

impractical or physically impossible to obtain precise data. Uncertainty 

absorption assumes data in the databases are in their best possible quality, and 

users are left to absorb any unexplained errors. These two treatments are by 

no means the best treatments. A more reasonable approach is to present to 

the users the available information on data uncertainty so as to allow users 

to make decisions based on the reliability of the data. This chapter presents 

the concepts of linguistic variables and fuzzy numbers, which are appropriate 

to model imprecision in qualitative and quantitative data, respectively [Boy & 

Kuss, 1986]. Tools for manipulating fuzzy data in a relational database are also 

discussed. 

4.1 The Concept of Linguistic Variables 

Linguistic variables are well-defined data structures developed from 

the fuzzy set theory. They differ from numerical variables in that they contain 

linguistic terms rather than numerical values. Also linguistic variables are 

associated with syntactical and semantic rules. A linguistic variable is 

characterized by a quintuple (X,T(X),U,G,M). X is the name of the variable; 
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T(X) is called the term-set of X, that is, the set of linguistic values of X. Each 

linguistic value is a fuzzy set ranging over a universe of discourse U. G is a set 

of syntactic rules for generating the term-set, and M is the semantic rule for 

each term in the term-set. For example, to represent the depth of organic soil 

as a linguistic variable, the linguistic variable Organic thickness as is defined 

as follows: 

X = Organic thickness 

T(X) = (thin, thick, very thin, very thick, not thin and not thick,  

U: Base variable: depth 
Range : 0 to 200 cm 

G: Atomic term: (thin, thick} 
Modifier : (very, not} 
Syntax 

gi = Modifier(atomic term) or atomic terms 
g2 = Modifier(T) or T 

M: Semantics 

thin(depth): 

1 if depth < P2 
P3-depth if P2 ≤ depth < P3 
P3-P2 

0 if depth ≥P3 
P1 = 0, P2 = 20, P3 = 30 

thick@ePt 

0 if depth < P1 
P1+depth if P1:5 depth < P2 
P2-Pi 

1 if depth ≥P2 

} 

P1 = 25, P2=70, P3=200 

Very(t) : P1-5, P2-5, P3-5 
P1+10; P2+10, P3+10 

Not(t) : 1 - 

if t= thin 
if t = thick 
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The linguistic variable Organic thickness is defined by a base variable 

called depth, which is a numeric variable with value ranging from 0 to 200 

cm. The term-set T(X) contains the valid terms for Organic thickness. T(X), in 

this case, is an infinite set as explained below. Atomic terms in a term-set are 

the terms that function as single units. Here thin and thick are two units of 

Organic thickness. The meanings of these units are defined by the 

membership functions p.hfl(depth) and LhCk(depth). The syntactic rule gi 

allows a modifier to precede an atomic term to form a composite term. Rule 

g2 further allows a modifier to precede a composite term. By recursively 

applying rule g2, an infinite term-set can be generated. The meaning of the 

composite terms are computed by applying the effect of the modifiers to the 

membership functions of the atomic terms. For example, the modifier very 

shifts the membership function of thin 5 cm to the left, and the membership 

function of thick 10 cm to the right. P1, P2, and P3 are parameters of the 

membership functions as shown in Figure 4.1. 

A linguistic variable is called a structured linguistic variable if T(X) 

and M can be characterized algorithmically. This implies that a structured 

linguistic variable relies on algorithmic procedures to generate the term-set 

and to compute the meaning for each term. Organic thickness is a structured 

linguistic variable. Some qualitative attributes, such as vegetation groups or 

moisture regime, cannot be easily expressed in terms of a discrete measurable 

base variable. Therefore, it is difficult to define the semantics as mathematical 

functions. Subjective assessments are usually used to assign the membership 

grade for each database entry [Zadeh 1975]. Variables of this type are referred to 

as unstructured linguistic variables. 
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depth (cm) 

70 

Figure 4.1 Graphical representation of Organic thickness. 

4.2. Database Representation of Semantics 

4.2.1 Structured Linguistic Variables 

To represent a structured linguistic variable in a "relational database, 

the semantics must be represented in the form of relational tables. One 

approach is described in Zemankova-Leech & Kandel [1985]. Here the 

semantics are stored as a look-up table (Table 4.la). From the table, a site with 

22 cm of organic material is assigned to thin with a membership grade of 0.8. 

Look-up tables are suitable for linguistic variables with small term-sets and 

from discrete universes. For structured semantics which can be characterized 

by a few parameters, the parameters can be stored in a relational table (Table 

4.lb) and the membership grades computed during processing. 
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(a) relation thin: 

CM 

20 1.0 

22 0.8 

24 0.6 

26 0.4 

28 0.2 

30 0.0 

(b) 

Term p1 p2 p3. 
thin 0 10 30 

thick 25 - 70 200 

Table 4.1 (a) A semantic look-up table. (b)A semantic function table. 

4.2.2 Unstructured Linguistic Variables 

For unstructured linguistic variables, the import semantic model 

[Baldwin & Zhou, 1984] can be used to store the membership grades. This 

model simply attaches a column next to each linguistic variable for storing 

the corresponding membership grade (Table 4.2). Because this type of 

linguistic variable lacks well defined semantics, subjective opinion and/or 

numerical methods are used to determine the membership grade. 

The import semantic model only provides information on the 

compatibility of the numerical values with the linguistic terms. To represent 

the fuzziness between the linguistic terms, we use the similarity relation 

model [Buckles and Petry 1982]. Table 4.3 shows a similarity matrix of the 
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linguistic variable Drainage. The elements in the matrix indicate the degree of 

overlap between two terms. For instance, the overlap between well-drained 

(W) and imperfect (I) is 0.1, indicating a slight overlap in the meanings of the 

two terms. In a query which requires consideration of all well-drained sites 

one will have to include some of the imperfect plots. Similarity matrices, in 

another sense, define the search domain for retrieval of unstructured 

variables. 

Sample Drainage 

1 well 0.7 
2 imperfect 0.9 
3 well 0.8 
4 rapid 0.6 
5 rapid 1.0 

Table 4.2 Drainage represented as the import semantic structure. 

Drainage: 

VR R W MW! P VP 
VR 1.00 0.30 0.10 0.00 0.00 0.00 0.00 
R 0.30 1.00 0.30 0.10 0.00 0.00 0.00 
W 0.10 0.30 1.00 0.30 0.10 0.00 0.00 
MW 0.00 0.10 0.30 1.00 0.30 0.10 0.00 
I 0.00 0.00 0.10 0.30 1.00 0.30 0.10 
P 0.00 0.00 0.00 0.10 0.30 1.00 0.30 
VP 0.00 0.00 0.00 0.00 0.10 0.30 1.00 

Table 4.3 A similarity matrix for Drainage. 
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4.3 Fuzzy Numbers 

Based on the fuzzy set theory, a fuzzy number can be described as a 

normal fuzzy subset in the real number space. In addition to being a 

quantitative measurement, it includes a qualitative valuation described by 

the function ji(x). A fuzzy number is represented as a fuzzy set characterized 

by a membership function. Figure 4.2 shows a graphical representation of a 

triangle fuzzy number. Each number has an expected value and two values to 

define the upper (a2a) and lower (a1a) bounds. The expected value, E(a), has a 

membership grade of 1, while the bounding values has a membership grade 

of alpha (a). This is similar to the concept of a confidence interval in statistics. 

However, a confidence interval always has a preset significance level (e.g. 

cx=O.05). A fuzzy number goes beyond being just a confidence interval because 

it is defined at all alpha levels from 0 to 1. 

al(0) al(a) aa) 92(0) 

X 

Figure 4.2. Graphical representation of a fuzzy number. 

Fuzzy numbers can be classified by the shape of the membership 

function. If a fuzzy number is characterized by a triangular membership 
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function, it is called a triangular fuzzy number (TFN), and it requires three 

parameters (Figure 4.3) to define the membership function. Another 

common shape is the trapezium (TzFN), which is defined by four parameters. 

An important property of fuzzy numbers is their closure under linear 

combinations, that is, only fuzzy numbers of the same type can be operated 

on, and the resultant value will also be of the same type of fuzzy number. 

This simplifies the computation and makes it possible to carry a small 

number of parameters [Kaufmann and Gupta, 1985]. 

In some cases, numerical attributes are better represented as fuzzy 

numbers when the values represent averages of the measurement within a 

specific area rather than precise measurements. Examples are the density of 

crown closure of a forest and the depth of organic soil of a particular soil type. 

P1 P3 P4 

Figure 4.3. Triangular and trapezoidal fuzzy numbers. 

4.3.1 Fuzzy Arithmetic 

P7 

The definition of fuzzy arithmetic came soon after the introduction of 

fuzzy set theory and fuzzy numbers. Fuzzy arithmetic is considered an 
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extension to the classical arithmetic because it augments the arithmetic 

operators to handle the extra, information provided by fuzzy numbers. 

Compared with classical arithmetic, fuzzy arithmetic is a more expressive tool 

because real world phenomena are rarely as exact as most mathematical 

models assume. With fuzzy arithmetic, the degree of fuzziness of the 

operands can be represented and propagated onto the resultant values in a 

formal manner. In addition, as shown in Figure 4.2, the presumption level, cx, 

can be varied in each operation, providing analysts with an extra parameter to 

control the degree of fuzziness they are willing to absorb. The basic fuzzy 

arithmetic operators are defined as follows: 

Given two triangular fuzzy numbers A(a1a, a2c), B(b1a, b2(x) in the real 

number space, evaluated at all alpha level: 

Addition: 

Aa + Ba= C{a1a + b1a, a2a + b2a} 

Subtraction: 

Ac' - Ba= C{a1a - b2a, a2 - b1 } 

Multiplication: 
AO'* Ba= C{a1 0'*  b1 a2a * b2a} 

Division: 

Aa / Ba= C{a1(x ' '2' a 2 a / b1a} 

Multiplication by a constant C: 

A° * D= C{a1a * D, a2a * D} 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 



49 

Fuzzy arithmetic operators are not implemented in this prototype 

system because few numerical operations are required in this research project. 

However, a good example of the application of fuzzy arithmetic can be found 

in Bardossy et al [1989]. Bardossy presented a fuzzy kriging technique for 

predicting soil liner permeability from imprecise data points. This technique 

allows analysts to incorporate fuzzy data points into the kriging process when 

not enough good data points are available to perform normal kriging. The 

authors concluded that fuzzy arithmetic can be used to incorporate imprecise 

data in a geo-statistical analysis, and the example of permeability field 

prediction for a soil liner is a typical problem where imprecise data is 

available and should be utilized. 

4.4 Fuzzy Logical Operations 

The conventional logical operators such as greater than, less than and 

equal take precise values as operands. In fuzzy comparison, three situations 

can occur: 1) both operands are precise, 2) one operand is precise and one is 

fuzzy, and 3) both operands are fuzzy. The first case can be handled by 

conventional operators. Because the latter two cases involve fuzzy sets, the 

conventional logical operators must be modified. These extended logical 

operators return the degree of truth (T) of the comparison. Equation 4.6, 4,7 

and 4.8 are the extended logical operators developed to handle case 2. In the 

equations, fv and pv stand for fuzzy value and precise value respectively. 

Approximately equal: 

fv -= pv: T = fv (pv ) (4.6) 
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Fuzzy less than: 

pv <<fv: T - 

Fuzzy greater than: 

(4.7) 

PV 

S 
-00 

pv >> fv: T=  (4.8) 

Equation 4.6 simply computes the membership grade of pv in the fuzzy set fv. 

Equation 4.7 computes the proportion of the area under the membership 

function of fv up to but not including the value of pv. If pv equals the 

expected value of Lv, E(fv), then the truth value equals 0.5. The further away 

pv from E(fv) the higher the truth value. The reverse applies to the less than 

operator. Figure 4.4 graphically illustrates these operations. These operators 

have been implemented in this prototype system. 

To extend the logical operators to handle two fuzzy operands. The 

concept of degree of coincidence [Lui & Li, 1990] is introduced. The degree of 

coincidence of A with respect to B is: 

a(A,B) - 

5 min ((x), 
(4.9) 

which is the proportion of A in B. The definitions of thesethree operators are 
defined as follows: 
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it 

(c) 

fv 

pv 

pv 

pv 

Figure 4.4 Graphical illustration of the fuzzy comparison operators. (a) 
Approximately equal, (b) fuzzy less than, (c) fuzzy greater than. 
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Approximately equal: 

f1 -= T = co(f11f2) 

Much less than: 

f1 <<s: T = 

Much greater than: 
f1 >> f2 : T = MGT, ),E(f2)) 

E(x) is the expected value of a fuzzy set and MLT and MGT are fuzzy sets. 

Depending on the applications, these functions can be designed to fit 

particular scenarios. Liu and Li [1990] suggested the following function for 

modelling the much greater than operation: 

= 0 - if x 

= [1+c(y-x) 211 if x> y (4.13) 

Since most comparisons in this research project involve one fuzzy operand 

and one precise operand, only equations 4.6, 4.7, 4.8 were implemented in the 

current prototype system.' 

4.5 Fuzzy Retrievals 

An amazing aspect of human reasoning is its ability to process a 

considerable amount of vague information and yet make precise and 

important decisions. Zadeh [1984] asserted that fuzzy logic is a more realistic 

tool to provide computers with this human-like reasoning capability than 

two-valued or multi-valued logic. The reason being that most human 

reasoning processes are imprecise and that fuzzy logic is oriented towards the 
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processing of fuzzy information. The use of linguistic variables facilitates both 

fuzzy retrieval as well as approximate reasoning, which are considered a 

more human-like approach to information processing [Zadeh, 1984]. Without 

leaving the scope of this thesis, only the fuzzy retrieval techniques in a 

relational database are presented. 

4.5.1 Lexical Matching and Semantic Matching 

Conventional retrieval procedures perform what is called lexical 

matching. Lexical matching matches the retrieval criteria with the value in 

the database. For instance, in a conventional database, qualitative terms are 

stored as lexical symbols. To retrieve all areas with thick to very thick organic 

soil, the system matches the word thick and very thick with the database 

entries and retrieve records that match the word exactly. On the other hand, 

fuzzy retrieval performs semantic matching. In semantic matching, semantic 

functions of the terms in the retrieval criteria are compared with the 

semantic functions or exact values of the attributes in the database. This is 

similar to the fuzzy operations presented in Section 4.4. The users can also 

limit the set of records being retrieved by setting the acceptable degree of 

match for a particular query. 

4.6 Comparison of Conventional and Fuzzy Retrieval 

To demonstrate the differences between fuzzy retrieval and 

conventional retrieval, several examples are presented in this section. 

1) In conventional systems, to retrieve all areas that are facing South, 

the user has to specify the range of degrees that he/she would consider as 
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'South. To be exact, South denotes 180 degrees from North. However, one can 

also define South in the range from 90 to 270 degrees from North. In a fuzzy 

system, the user can define south as a triangular membership function 

ranging from 90 to 270 with the expected value at 180 degree (Figure 4.5). 

Table 4.4 shows the results of these retrievals. It shows that using the most 

exact query, only four records were retrieved. Both the second and third 

methods (column 2 and 3) retrieved the 'same set of records, yet fuzzy 

retrieval provides more information than the conventional query. 

270 

Figure 4.5 The characteristic function of South. 

2) To illustrate the robustness of fuzzy comparison operators, a query 

was submitted to retrieve all polygons that are much lower than 1150 meters 

in elevation. Such an operation cannot be easily achieved in conventional 

systems unless a threshold, say 1000 meters, is provided. In fuzzy retrieval, a 

fuzzy number 1150 was declared and the fuzzy less than operator (<<) was 

used in the query. Table 4.5 is a partial listing of the query result. It compares 

the records retrieved by conventional method and fuzzy method. Using fuzzy 

retrieval, the farther away from 1150 meters, the greater the membership 
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grade. Not only are more records being retrieved, but the fuzzy technique 

provides the membership grades of each record so that the user can decide 

which records are really required. 

ID ASPECT 
180 

degrees 
90 to 270 
degrees 

South 

28 180 x x 1.00 
48 260 x 0.11 
50' 225 x 0.50 
84 225 x 0.50 
95 240 x 0.33 
96 225 x 0.50 
111 95 x 0.06 
171 210 x 0.60 
177 180 x x 

' 

1.00 
178 180 x x 1.00 
185 180 x x 1.00 
186 160 x 0.78 

Table 4.4. Records retrieved by query 1, 'x indicates record retrieved. 

3) To demonstrate the propagation of uncertainty in retrieval with a 

compound condition, consider the following query: 

Retrieve records with drainage -= Imperfect (cf = 1.0) and Organic 
thickness >> 10 cm (cf = 0.6) 

In the query, the confidence factor (cf) for each attribute can be specified. The 

system first retrieved all records with imperfect drainage, then those records 

with organic thickness greater than 10 cm and with membership a grade 

greater than 0.6 were retrieved. The system propagated the uncertainty with 

the Min operator4tT(x) in Table 4.6 represents the propagated uncertainty 

associated with each record. 
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Fuzzy retrievals are particularly useful in GIS because of the 

imprecise and the continuous nature of geographical information. When 

compared with the conventional technique, fuzzy retrieval provides more 

information to the GIS users. As noted before, fuzzy information processing 

does not attempt to provide the user with the ideal solution but rather to 

supply him/her with possible solutions. Therefore, a well designed fuzzy 

decision support GIS will provide more detailed information to assist the 

analysts and policy makers to make important decisions. 

ID Elev. Elev. <1000 

48 1012 0.92 
73 899 x 1.00 
81 1021 0.90 

84 1006 0.93 
95 1010 0.92 

103 1021 0.90 
106 968 x 0.97 

111 930 0.99 
112 768 x 1.00 

129 1021 0.90 
130 1006 0.93 

133 1000 0.93 
134 1000 0.93 
136 991 x 0.94 
138 957 x 0.98 
150 920 x 1.00 

Table 4.5 Partial listing of records much less than 1150 meters. 
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ID DR gDR OT 
OT 

28 I 1.0 0.00 
50 I 1.0 15 0.75 0.75 
81 I 1.0 20 0.89 0.89 
84 I 1.0 15 0.75 0.75 
89 I 1.0 0.00 
150 I 1.0 0.00 
155 I 1.0 20 0.89 0.89 
156 I 1.0 40 1.00 1.00 
171 I 1.0 0.00 

177 I 1.0 17 0.81 0.81 
27 12 0.64 0.00 
72 20 0.89 0.00 

Table 4.6 partial listing of a compound fuzzy query. 
DR=drainage, I=imperfect. ,.LOR=membership grade for DR. OT=Organic thickness in 

cm4l.OT=membership grade for OT. pT= propagated membership grade. 
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CHAPTER 5 

Modelling and Classifying Fuzzy Objects 

Many GIS applications deal with classifications of natural or socio-

economic phenomena or objects. These phenomena are sometimes abstract 

concepts like ecological regions or wild animal habitats. In this prototype 

system these phenomena and concepts are referred to as objects. These objects 

must be represented realistically in the computer system for further 

processing. The more realistic the object models, the less uncertainty will be 

introduced in the modelling process and the more effective is the GIS. As GIS 

are used for repositories of information as well as decision support tools, 

realistic object modelling is of prime importance. This chapter introduces the 

concept of linguistic modelling and compares different fuzzy set aggregation 

operators for classifying fuzzy objects. 

5.1 Abstract Concepts versus Computer Models 

Many commercial GIS use conventional relational database tools for 

data management. Because of the complexity of some phenomena and the 

abstraction of many geographic concepts, realistic representation in these GIS 

is not easily achievable. Conventional relational database techniques are 

based on Boolean logic, and the law of the excluded middle makes modelling 
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non-mutually exclusive concepts impossible. However, many concepts in 

geographical analyses cannot be easily represented by a few attributes, 

especially when the domains are continuous. Ecoregions are examples 

because the transition from one ecoregion to another is usually gradual rather 

than abrupt. Thus, no mutually-exclusive boundaries can be easily drawn 

between two regions. 

5.2 The Fuzzy Set Approach to Object Modelling 

The fuzzy-algorithmic approach to object modelling was presented. by 

Zadeh [1973 1975, 1976]. Zadeh called this the linguistic approach because 

objects are described by sentences which consist of linguistic variables joined 

together by fuzzy connectives. This approach can be considered an extension 

to the concept of linguistic variables discussed in Chapter Four. To illustrate, 

soil type A can be modelled as a fuzzy object if it is described by fuzzy 

attributes as follows: 

"fresh soils with sandy or loamy sand parent material" 

which can be translated into a formal representation: 

Soil type A:: Moisture—regime(Fresh) and (texture(sandy or loamy--sand)). 

Where moisture—regime and texture are linguistic variables previously 

defined in the system, and dry,fresh, sandy and loamy sand are terms of these 

variables. And and or are fuzzy connectives which connect the attributes to 

form the definition of Soil type A. 
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Zadeh's linguistic approach [1976] defines an object by a set of atomic 

questions. An atomic question, Q, is a question containing only one 

constituent. An atomic question has an object-set, X, the body of the question, 

B, which is the label of a fuzzy set, and the answer-set, A. Q can be denoted by 

Q(X,B,A). The following is an example of an atOmic question: 

Q: "Is sample #2 dominated by white spruce?" 

X. All samples in the data set. 

B: dominated by white spruce. 

A: A truth value in the range of 0 to 1. 

The body of this question is a fuzzy set denoting the percentage cover of white 

spruce in the sample plot. The answer-set A can be a set of truth values in the 

range of 0 to 1, or linguistic terms like true, undecided and false. 

An object is defined by a composition of atomic questions. Putting the 

questions in an analytic representation [Zadeh, 1976], an object can be 

described as: 

Objectx =B1 1 2 2. * • B • ... n-i n B (5.1) 

B. is the bodies of Q1, *i are connecting operators, and n is the number of 

atomic questions. To evaluate whether an object, y, belongs to Object, the 

following function is used: 

Object x = t(Q1(y)) • t(Q2(y)) 2 n-i t(Q(y)) (5.2) 

t(Q(y)) is the truth value for atomic question i when applied to y, and • is 

the connecting operator to combine the truth values. 
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5.3 Representation of Fuzzy Ecosystem Associations 

The Field Guide to Forest Ecosystems of West-Central Alberta [Corns 

& Annas, 1986] has described the following four ecosystems in that area: the 

Boreal Mixedwood ecoregion (BMW), the Lower Boreal Cordillearn ecoregion 

(LBC), the Upper Boreal Cordilleran ecoregion (UBC) and the Subalpine 

ecoregion (SA). These ecoregions -are further subdivided into ecosystem 

associations (EA). Ground survey in the vicinity of the study area was carried 

out in the summer of 1990. Among the 247 sample plots, 59 were located 

inside our study area (Figure 3.4). Based on these 59 samples fourteen EA 

were identified, covering the LBC and UBC ecosystems. These fourteen EA 

were modelled with the linguistic approach. 

Forest ecologists identified these nine attributes as indicating features 

for the EA: elevation, aspect, thickness of organic material, soil drainage, soil 

texture, percentage covers of white spruce, black spruce, lodgepole pine and 

poplar. These tree species are considered indicator species for the EA. All 

attributes except soil drainage and texture are numerical attributes. To 

illustrate the modelling concepts without involving complicated procedures, 

all attributes were assumed independent. Figure 5.2 shows the attribute 

values for an EA called the Lower Boreal Cordilleran association 1 (LBC 1). 

The values in the table were obtained from the field guide [Corns & Annas, 

1986] and from statistics of the sample data. These values were represented as 

fuzzy sets. Numerical attributes in Figure 5.2 were represented by triangular 

or trapezodial-shaped characteristic functions and qualitative attributes were 

stored as a look-up tables. Examples of these representation are given in Table 

5.1 and 5.2. 
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To illustrate, according to the field guide, the LBC 1 association has an 

elevation range of 850 to 1150 meters. Since the range for the LBC ecoregion is 

between 500 to 1150 meters, the possibility of finding LBC 1 outside the 

specified range is acknowledged by extending the possibility function to cover 

this range. Thus a trapezoidal-shaped function was used. For other numerical 

attributes, triangular-shaped characteristic functions were used, with the 

given values as the expected values (peak of the triangles). The fuzziness in 

these numerical variables were derived from the frequency distribution of the 

attributes. For discrete qualitative attributes, i.e. soil texture and drainage, 

discrete possibility scores are used to represent the possibility distribution. In a 

relational database, a table was created for each attribute and stored the 

possibility distribution functions by the EA. Table 5.1 and 5.2 show examples• 

of the representation of elevation and drainage as relational tables. 

5.4 Classification of Ecosystem Associations 

The fuzzy classification procedure involves three steps: feature 

evaluation, pattern matching and categorisation [Oden & Lopes, 1982]. 

Feature evaluation determines how well an attribute value fits the values 

given, in the object definition. Pattern matching combines the information 

obtained from feature evaluation to assess the overall fitness of the instance 

to the object. Categorisation uses the information in pattern matching to 

determine the category or categories of the instance. Figure 5.1 shows a flow 

chart of this process. Two fuzzy pattern matching approaches are evaluated in 

the sequel. They are the fuzzy propositional approach and the distance 

approach. These two approaches differ in the interpretation of the feature 

information as well as the operators used to aggregate fuzzy sets. The fuzzy 
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propositional approach is presented in Oden & Lopes [1982] and the distance 

approach is based on a modified version of that described in Wang et al [1990]. 

The comparison of classification results generated by the two methods are 

given in Section 5.5. 

Translate verbal definitions 
into possibility distributions 

Feature evaluation 

Pattern matching 

Categorisation 

Figure 5.1 The fuzzy classification procedure. 
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Species 
%white Spruce 
%black Spruce 
%lodgepole Pine 
%poplar 

Elevation 
Aspect 
Drainage 
Texture 
Organic Thickness 

-2% 
-7% 
-18% 
-0% 
850 to 1150 meters 
Mostly North 
Moderate well to imperfect 
Clay loam 
-17 cm 

Figure 5.2. Linguistic descriptions of LBC 1. "-"denotes a fuzzy quantity. 

EA P1 P2 P3 P4 

LBC1 500.00 850.00 1150.00 1150.00 

LBC2 500.00 650.00 910.00 1150.00 

LBC3 500.00 740.00 1150.00 1150.00 

LBC4a 500.00 670.00 1070.00 1150.00 

LBC4b 500.00 800.00 1140.00 1150.00 

LBC4c 500.00 710.00 1010.00 1150.00 

LBC5b 500.00 780.00 1060.00 1150.00 

LBC5c 500.00 520.00 1050.00 1150.00 

LBC7 500.00 800.00 1200.00 1200.00 

LBC9 500.00 670.00 950.00 1150.00 

LBC10 500.00 600.00 1180.00 1180.00 

UBC2 900.00 1000.00 1290.00 1500.00 

UBC3 900.00 980.00 1460.00 1500.00 

UBC4 900.00 930.00 - 1370.00 1500.00 

Table 5.1 Possibility distribution functions for elevation range for all EA. 
P1, P2, P3, P4 are parameters defining the possibility distribution function. 
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TERM SDY SlY FLMY CLMY CLY UNM ORG UNDO 

LBC1 0.24 0.52 0.76 1.00 0.00 0.24 0.00 0.24 

LBC2 0.07 0.21 0.33 1.00 0.00 0.07 0.00 0.07 

LBC3 0.00 0.33 0.33 1.00 0.08 0.22 0.00 0.22 

LBC4a 0.00 0.39 0.39 0.58 1.00 0.07 0.00 0.19 

LBC4b 0.34 0.56 1.00 0.77 0.11 0.34 0.00 0.34 

LBC4c 0.00 0.00 0.50 0.33 1.00 . 0.17 0.00 0.17 

LBC5b 0.26 0.50 1.00 0.74 0.26 0.26 0.00 0.26 

LBC5c 0.15 1.00 0.35 1.00 1.00 0.15 0.00 0.15 

LBC7 0.00 0.21 0.61 1.00 0.82 0.21 0.00 0.21 

LBC9 0.00 0.00 0.50 0.17 1.00 0.17 0.17 0.17 

LBC10 0.07 0.21 0.33 1.00 0.00 0.07 0.00 0.07 

UBC2 0.12 0.76 0.50 1.00 0.24 0.12 0.12 0.12 

UBC3 0.05 0.20 1.00 0.25 0.20 0.05 0.00 0.05 

UBC4 0.13 0.13 0.64 0.64 1.00 0.13 0.00 0.13 

Table 5.2 Possibility distribution of texture for all EA. 
SDY=sandy, SIY=silty,FLMY=Fairly loamy, CLMY = clay loamy, CLY=clay, 

UNM = undetermined, ORG=organic, UNDO = not observed. 



66 
5.4.1 Feature Evaluation 

Section 5.2 presented an approach to modelling complex concepts by a 

set of atomic questions. For each attribute listed in Figure 5.2, an atomic 

question is formed: 

Is white spruce dominant in the location of sample x? 
Is black spruce absent in sample X? 
Is lodgepole pine dominant in sample x? 
Is poplar absent in sample x? 
Does sample x fall within 850 to 1150 meters in elevation? 
Does sample x faces North? 
Does sample x have well-drained to imperfectly drained soil? 
Does sample x have 3 to 4 inches of organic material? 

This set of questions evaluates whether an instance . matches the 

description of LBC 1. Since there are fourteen EA, fourteen sets of questions 

were derived. The feature evaluation process determines the truth values or 

possibility, it(x), of these atomic questions. Using Boolean logic the answers to 

these questions are either yes or no. With fuzzy sets, the answers are truth 

values in the range of 0 to 1, with 0 representing a definite NO and 1 

representing a definite YES. Table 5.3 shows the result of sample # 73 after the 

feature evaluation process. The values shown in the table are truth values of 

individual attributes being evaluated for the fourteen EA. 
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EA SW SB PL P0 DCF OT ELEV DR ASP 

LBC1 1.00 0.91 1.00 1.00 0.48 0.00 1.00 1.00 1.00 

LBC2 0.00 0.00 0.00 0.38 0.79 1.00 1.00 0.50 0.30 

LBC3 1.00 0.40 0.50 0.83 0.67 0.60 1.00 0.50 1.00 

LBC4a 0.00 0.00 0.00 1.00 0.61 0.95 1.00 0.50 0.00 

LBC4b 1.00 0.00 0.50 0.00 0.44 0.00 1.00 1.00 0.00 

LBC4c 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.50 

LBC5b 1.00 0.00 0.20 0.00 0.50 0.50 1.00 1.00 0.00 

LBC5c 1.00 0.00 0.00 0.00 0.00 0.50 1.00 1.00 0.00 

LBC7 1.00 0.00 0.00 0.00 0.79 1.00 0.50 0.50 0.00 

LBC9 0.00 0.00 0.15 0.00 1.00 0.95 1.00 0.00 0.00 

LBC1O 0.00 0.00 0.00 0.00 0.79 0.95 1.00 0.50 0.00 

UBC2 0.00 0.00 0.00 0.00 0.24 0.92 0.00 1.00 0.00 

UBC3 1.00 1.00 0.75 0.00 0.80 0.60 0.00 0.50 1.00 

UBC4 1.00 0.00 0.00' 0.00 0.87 0.00 0.00 0.50 0.00 

Table 5.3 Result of pattern matching for sample #73. 

5.4.2 Pattern Matching 

5.4.2.1 Pattern Matching using Fuzzy Proposition 

The fuzzy propositional approach evaluates the degree of match of 

the proposition and an instance. Lopes & Oden [1982] noted that fuzzy 

proposition combines both the semantic network representation and the 

logical structures which allows the expression of continuity in many natural 

concepts. Using the fuzzy propositional approach, each object is described by a 

formal proposition such as the follows: 
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LBC1:: White spruce(-2%) • Black spruce (-7%) • Lodgepole 
pine(-18%) • Poplar (-6%) • Elevation (850 to 1150) • Aspect 
(Mostly N) • Soil drainage(Mod. well to Imperfect) • Texture 
(Clay loam) • Organic Thickness (17 cm) 

• is a connective for combining all truth values to derive at the 

possibility for the conclusion Contrary to conventional set theory, no well 

defined operators exist for fuzzy sets. Criteria for selecting the appropriate 

operator depends on the problem situation. In much of the research on 

uncertainty propagation, the triangular norms (t-norms) and conorms (t-

conorms) are often used [Dubois & Prade, 1985; Buckley [1990]; Kruse et al, 

1991]. 

A t-norm, T, is a mapping function T:[0,1]x[0,1]->[0,1] which satisfies the 

following axioms: 

1. T(a,b) = T(b,a); (5.3) 

2. T(0,0) = 0, T(a,1) = a; (5.4) 

3. T(a,b) ≤ T(c,d) if a:5 c and b ≤d and (5.5) 

4. T(a,T(b,c)) = T(T(a,b),c). (5.6) 

A t-conorm, C, is a mapping function C:[0,1]x[0,1]->.[0,1] which satisfies 

the following axioms: 

1. C(a,b) = C(b,a); (5.7) 

2. C(1,1) = 1, C(a,0) = a; (5.8) 

3. C(a,b) ≤ C(c,d) if a ≤ c and b:5 d and (5.9) 

4. C(a,C(b,c)) = C(C(a,b),c). (5.10) 
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Property 1 ensures that the order of evaluation does not affect the final result. 

Property 2 reflects the intersection (t-norm) or union (t-conorm) operations. 

Property 3 ensures monotonicity of the function and property 4 allows the 

extension of the function to more than two arguments. Kruse et al [1991] 

pointed out that, for a rule based system, the t-norms can be applied to 

combine the certainty of the premise of a production rule with the certainty of 

a rule. The t-conorms, on the other hand, can be used to combine the 

certainties of different rules to obtain the certainty of the conclusion. 

Therefore, the t-conorms can be used in this classification process to obtain 

the certainty of pattern matching. 

Buckley [1990] reviewed three sets of t-norms and t-conorms. They are 

the Max and Min operators, the probabilistic AND (PAND) and OR (POR), the 

Lukasiewicz AND (LAND) and OR (LOR) operators. The definition of these 

three operators are as follows: 

Min and Max operators: 

Min(a,b) = a if b> a; b if b <a 

Max(a,b) = a if a > b; b if a <b (5.11) 

LAND and LOR operators: 

LAND(a,b) = Max(a+b-1,0) 

LOR(a,b) = Min(a+b,1) (5.12) 

PAND and POR operators 

PAND(a,b) = a*b 

POR(a,b) = a+b-ab (5.13) 
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These operators satisfy the inequalities 

LAND(a,b) ≤ PAND(a,b) ≤ Min(a,b) 

Max(a,b) ≤ POR(a,b) ≤ LOR(a,b) (5.14) 

These three t-conorms were used to aggregate the possibilities and the results 

are presented in section 5.5. 

5.4.2.2 Pattern Matching using Semantic Distances 

The semantic distance approach evaluates the difference in the 

semantics of two terms. It is similar to the semantic matching process 

presented in section 4.5.1. Wang et al [1990] applied this method to perform 

suitability analysis. Wang et al created prototype vectors describing the best 

conditions for growing several crops. The prototype vectors contain the 

representative values for characteristic attributes. Each area was also 

represented by a feature vector and the Euclidean distance between two 

vectors was used to evaluate the suitability of each crop being grown in the 

area. Nevertheless, in Wang's research, no fuzzy attributes were involved. 

Applying this method to evaluate fuzzy ecosystem association requires some 

modifications. 

Fourteen prototype vectors containing fuzzy attributes were created. 

The semantic distance, D, between a sample plot's feature vector and an EA 

prototype vector was computed by aggregating the semantic distance of of 

individual attribute, d. Several methods for computing distances between two 

vectors were presented in Lui and Li [1990]. They are: 
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the Hamming distance: 

n 

D(A,B) = 1  I (J.1(xj)-j.t(xi)) I (5.15) 
M 

the Euclidean distance: 

D(A,B) = (A(xi)- B(xi))2 (5.16) 

the Chebyshev's distance: 

D(A,B) = Max I I (5.17) 

1<i<n 

Where n is the number of features used for pattern matching. A restriction 

must be added to handle the situation when Ar'B = 0. Therefore, 

If Ar'B= 0, then D(A,B) = n. (5.18) 

Examining equations 5.11, 5.12, 5.15 and 5.17, one will note that the 

Hamming distance and the Chebyshev's distance correspond to the LOR and 

the Max operations, respectively. The two sets of equations only differ in the 

range of the resultant values. In this research, equations 5.15, 5.16 and 5.17 

cannot be directly applied because this problem requires the computation of 

distance between a precise value (the sample plot's attribute values) and a 

fuzzy value (the EA definition). The modified versions of equations 5.15, 5.16, 

5.17 become: 

the Hamming distance: 

D(EA,x) = 1 1 (1 - (5.19) 
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the Euclidean distance: 

D(EA,x) = 1EA(xO)2 

the Chebyshev's distance: 

D(EA,x) = Max 1(1 - J.LEA(xi)) I 

1<i<n 

(5.20) 

(5.21) 

These equations were used to compute the semantic distances between EA, 

the ecosystem association, and x, the sample plots being considered. 

11 

5.4.3 Categorisation 

From the pattern matching results, one can identify the EA 

assignment for each sample plot by examining the truth values or the 

semantic distances. Nevertheless, the absolute scores do not indicate the 

relationship among all the possible EA assignments for each sample plot. To 

illustrate, Table 5.4 shows the pattern matching results for sample # 125 and # 

133. Based on the highest absolute scores, both plots were assigned to LBC 7, 

which matched the experts' assignment. From the table, one can also see that 

the difference between the first two assignments for #125 is greater than that 

for # 133, but without standardized scores, it is difficult to compare the 

appropriateness of the assignment. Therefore, a relative score, R, is 

introduced. R is an assessment of the object's degree of belonging to each 

candidate category relative to that for all the other possible categories. 

Adopting the definition from Oden & Lopes [1982] and Wang et al [1990], R(x) 

is defined as: • 
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S(EA1(x)) 

C 

E S(EA1(x)) 
i=1 

(5.22) 

where c is the number of classes that x can be classified to belong to. The 

numerator is the similarity score for sample plot x and EA and the 

denominator is the summation of the similarity of EA that sample plot x 

could be classified into. S(EA(x)) is the similarity measure between sample 

plot x and EA, and is computed by equation 5.23. 

S(EA(x)) = 1 - D(EA.,x) (5.23) 

S(EA1(x)) can be replaced by t(EA(x)) if the propositional approach is used. 

The rationale behind this relative measure, as stated by Oden & Lopes [1982], 

is that not being in one category should count in favor of it being in another 

category. 

ID EA RD R Ueb Ham Euci LOR POR 

125 LBC7 0.12 0.10 1.00 1.61 0.84 0.81 0.57 

LBC3 0.07 0.06 1.00 2.82 1.54 0.68 0.51 

LBC9 0.07 0.06 1.00 3.05 1.58 0.65 0.50 

133 LBC7 0.07 0.06 1.00 3.71 1.81 0.58 0.46 

LBC5b 0.06 0.05 1.00 4.5 1.94 0.05 0.41 

LBC3 0.06 0.06 1.00 4.55 1.86 0.49 0.40 

Table 5.4 Partial listing of classification result for #125 and #133. 
RD= relative measure of Ham. dist., R = relative measure for LOR. 
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5.5 Results and Discussion 

Both the fuzzy propositional and distance approaches were used to 

classify the 59 sample plots (Figure 3.4) into fourteen EA. For comparison 

purposes, the operators described in Sections 5.4.2.1 and 5.4.2.2 were used to 

aggregate the truth values or the semantic distances, respectively. While 

conventional techniques aim at finding the most appropriate EA for each 

sample plot, the fuzzy techniques provide a set of possible classifications. The 

EA with the highest R was considered the most appropriate EA for the sample 

plots. Depending on the situation, one can also consider the next few most 

appropriate EA for particular application. 

Table 5.5 presents classification results generated by different 

operators. These results were compared with the original EA provided by the 

forest ecologists. The first column represents the highest R which matches the 

experts' assignment. The second and third columns represent the second and 

third highest R which match the experts' assignment. Note that in this 

classification both the Max operator and the Chebyshev's distance failed to 

classify. The Max (and Mm) operator is called a non-interactive operator 

[Leung, 1988] because a high truth value or semantic distance for one attribute 

does not compensate for a low value for another attribute. In this 

classification procedure, a perfect match of any one attribute resulted in a 

perfect match for the EA being evaluated. Intuitively this is not correct. In this 

case, because among the nine attributes there are always some attributes with 

truth value equal to 1, the Max operator will only register 1.0 as the 

"aggregated value". Thus, the "aggregated" truth values are almost always the 

same. Despite Bellman's [1973] argument on the appropriateness of the Max 
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and Mm operators as the only natural, and in some situations the only 

possible operators to model conjunction and disjunction of fuzzy sets, the 

non-interactive nature of the Max (and Mm) operator does not perform well 

in these types of problems. In fact, based on empirical studies, Dubois and 

Prade [1985] and other authors [Thöel et al, 1979] commented that the Mm 

operator does not always reflect users' attitude when aggregating truth values. 

In this exercise, it shows that the Max operator also is ineffective in the 

assignment of EA. 

The classification result showed that the four operators basically 

generate the same results despite the difference in their numerical values, i.e. 

the order of relative similarity is the same although the distances or the truth 

values do not demonstrate similar difference in magnitude. 

Table 5.7 shows a confusion matrix which compares the experts' EA 

assignment with the fuzzy classification. The former is presented on the 

column and the latter is presented on the row. The numbers in the diagonal 

of the matrix indicate the number of cases that matched the experts' 

assignment. Since fuzzy techniques were used, the top three EA assigned by 

the system were used for comparison. If any of the first three assignment 

matched the experts' assignment, it is considered a match. Summing up the 

numbers on the diagonal gives the percentage of correct assignment. Forty-

nine of the 59 cases or 81% of the cases were matched correctly. 

Numbers off the diagonal are mismatched cases Unfortunately, 

experts were unavailable to examine the mismatched cases. Several reasons 

could have contributed to the failure of these cases. First, some EA such as the 

LBC3 and UBC 3 are basically identical associations except for their elevations. 
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If the sample sites are located in the fuzzy boundary of the two regions, it 

could be difficult to decide the actual EA. Arbitrary assignment could have 

been given. Second, in this research, experts suggested only nine attributes 

for prototype system testing. Compared to the 151 attributes used in the 

original assignment, it is not surprising to have some mismatched cases. 

Third, the experts noted that subjectivity involved in the original 

classification could have contributed to the mismatches. Last, the choice of 

membership functions and fuzzy connectives could have significant 

implication on the classification results. However, the application of fuzzy 

sets to ecological classification is relatively new and little experience on the 

derivation of membership functions and the selection of fuzzy aggregation 

operators is available. The extra information provided by the fuzzy 

classification procedures provided insight into the classification. For instance, 

Table 5.6 shows the classification for sample #47 and #131, which are both 

classified as LBC3 by ecologists and the fuzzy classifiers. For sample #47, both 

the hamming distance and the Euclidean distance show that LBC3 is about 

half the distance to the definition vector than UBC3. Compare to sample 

#131, where the difference in distance between LBC3 and LBC5b is only 14%. 

This suggests that sample #47 is a more distinct LBC3 than sample #131. In 

addition, the Hamming distance for #47 is 1.47 and 2.38 for 131. This again 

shows that sample #47 matches the definition of LBC3 better than 131. The 

truth values LOR and FOR endorse the conclusion. Since the truth values are 

expressed on a standardized scale, they provide a better indication on the 

degree of match than using the distances. 
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Method 1st 2nd 3rd 4+ 

LOR 29 16 8 6 
POR 29 16 8 6 
Max -  - - - 

Hamming 29 16 8 6 
Euclidean 28 17 8 6 
heb - - - - 

Table 5.5 Classification results using Fuzzy Proposition and Distances 
approach. 

LBC3 #47 

EA Qieb Hamm Euclid LOR FOR 

LBC3 1.00 1.47 0.84 0.83 0.58 
UBC3 1.00 2.95 1.61 0.67 0.50 
LBC4c 1.00 3.41 1.66 0.61 0.48 

LBC3 #131 

EA Cheb Hamm Euclid LOR FOR 

LBC3 1.00 2.38 1.21 0.73 0.53 
LBC5b 1.00 2.76 1.48 0.69 0.51 
LBC4b 1.00 3.34 1.59 0.62 0.48 

Table 5.6 Truth values and distances of two LBC3 plots. 
EA=ecosystem association, Cheb=Chebyshev's distance, Hamm--Hamming distance, 

Euclid=Euclidean distance, LOR=Lukasiewicz OR, POR=Probability OR. 
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Experts' Assignment 
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1 

4 

1 

12 

0 

4 

5 

2 

3 

13 

2 

1 

1 

10 

1 

3 5 4 3 11 2 1 1 6 1 59 

Table 5.7 Confusion matrix of classification results. 
L=LBC, U = UBC, flL= Total 
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CHAPTER 6 

Fuzzy Spatial Operations 

One advantage of GIS over paper maps is their convenience in 

manipulating, analysis and displaying information. With a fuzzy database, 

some spatial operations can be extended to work with fuzzy data. Among 

many spatial operations in a GIS, the overlay and polygon consolidation 

functions are the two most used operations. The overlay function allows 

users to combine information from different maps of the same scale onto one 

map. The polygon consolidation or the dissolve function simplifies maps by 

merging adjacent polygons with the same attribute values together. In the 

ARC/INFO GIS software, there are three overlay functions: Identity, Intersect, 

and Union. Identity overlays points, lines or polygons on polygons and keeps 

all input map or coverage features. (A coverage is an ARC/INFO term for a 

digital version of a single map together with attribute and topological 

information.) Intersect overlays points, lines and polygons but keeps only 

features that fall within areas that are common to both coverages. Union 

overlays polygons and keeps all areas in both coverages. Despite their 

differences in the operations in the spatial domain, the attributes are 

managed in the same manner, i.e. the resultant attribute table contains both 

topological information and attributes values from the two input coverages. 

The dissolve function in ARC/INFO eliminates the boundary between two 

polygons that have the same attribute values. The resultant attribute table 
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contains new topological information as well as the values of the attribute 

used for merging. In this prototype system, these functions are modified to 

handle uncertainty propagation. 

6.1 The Fuzzy Overlay Functions 

The fuzzy overlay function allows users to overlay two coverages and 

to specify the operator to propagate the uncertainty of the attributes. Because 

an ARC/INFO overlay function only generates geometric intersections and 

copies the 'attribute values from the two input coverages onto the resultant 

coverage, the propagation of attribute uncertainty has to be done separately in 

the database module. In this system, fuzzy attributes in the attribute table are 

accompanied by their membership grades, which are treated as an indicator to 

the certainty of the attribute (Table 6.1). The higher the membership grade, 

the higher the certainty. The fuzzy overlay function first performs an 

ARC/INFO overlay and then switches into the database module to calculate 

the propagated uncertainty. In this prototype system only the AND and OR 

operators are implemented. Figure 6.1 shows the input screen for the fuzzy 

overlay function. The user has to provide the input, overlay and output 

coverage names as required by the normal ARC/INFO overlay functions. In 

addition, the user has to specify which attributes will be propagated to the 

output coverage and how the uncertainty should be propagated. The AND 

and OR operators are implemented using the Max and Min operations. To 

overlay the forest coverage with the soil coverage, the overlay operation 

propagates the uncertainties of SP5O (the dominant species in the forest 

cover), and TYPE (the soil type) using the AND operator. Table 6.2 shows a 

partial listing of the polygon attribute table after the overlay operation. The 
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column OPOSS indicates the propagated uncertainty. Some columns in the 

polygon attribute table have been deleted for clarity of presentation. 

(a) 

AREA PERIMETER FCCLIP_ FCCLIP_ID SP5O PSP5O 

590728.50 5683.40 2 1 FL 0.80 

26350.27 777.08 3 2 PL 0.60 

498084.10 386.42 4 3 SW 0.80 

389.95 8.77 5 4 FL 0.80 

179157.50 2338.26 6 5 SW 0.50 

452904.20 4179.47 7 6 SW 0.80 

1132191.00 9806.21 8 7 SB 0.70 

428275.50 4495.43 9 8 SW 0.40 

136903.30 2702.70 10 9 FL 0.80 

19884.88 - 676.66 11 10 FL 0.70 

(b) 

AREA PERIMETER SCCLIP_ SCCLIP_ID TYPE PTYPE 

2624024.00 12424.69 2 1 EDS2 0.90 

550968.00 8197.86 3 2 BKM1 0.80 

32209.48 732.90 4 3 BKM1 0.60 

27935.42 780.66 5 4 BMK2 0.80 

156540.70 1594.69 6 5 BKM2 0.90 

Table 6.1 Partial listing of polygon attribute files for (a) forest cover (b) soil 
type. SP5O = species with more than 50% coverage. FSP5O = certainty of SP5O. TYPE = 

soil groups, PTYPE = certainty of TYPE. 



82 

Fuzzy Overlay 

Ihput Coverage 
Overlay Coverage 
Output Coverage 
Field 1 
Operator 
Field 2 

Identity 

FCCLIP 
SCCLIP 
OVERLAY? 
TYPE 
:AND 
:SP5O 

Intersect Union CANCEL 

Figure 6.1 Input screen for the fuzzy overlay function. 

 I 

AREA PERIM. SPSO PSP5O TYPE PTYPE OPOSS 

35186.65 940.97 PL 0.80 EDS2 0.90 0.80 
424417.40 4061.37 PL 0.80 BKM1 0.80 0.80 
32209.48 732.90 PL 0.80 BKM1 . 0.60 0.60 
23677.91 713.75 PL 0.60 BKM1 0.80 0.60 
28053.02 734.91 PL 0.80 BKM1 0.80 0.80 

267535.60 2433.19 Sw 0.80 BKM1 0.80 0.80 
230549.00 3652.87 SW 0.80 EDS2 0.90 0.80 

389.95 88.77 PL 0.80 EDS2 0.90 0.80 
162544.80 2208.63 SW 0.50 EDS2 0.90 0.50 

Table 6.2 Partial listing of a PAT after the fuzzy overlay operation. 

6.2 The Fuzzy Dissolve Function 

The polygon consolidation function is often used to simplify the 

coverage after analysis. A simplified coverage not only enhances visual 

interpretation but also improves storage and processing efficiencies. The 

dissolve function in ARC/INFO merges neighbouring polygons with equal 

values for one or more selected attributes. This operation is extended to 

handle consolidation with fuzzy attributes. Figure 6.3 shows a small area of 

the forest coverage with the species and the certainty scores. When 
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performing the fuzzy dissolve function, the user has to specify the attributes 

for merging and the minimum level of certainty to be considered in 

dissolving boundaries. 

Figure 6.2 shows the input screen of the fuzzy dissolve function. The 

user is asked to supply the input and output coverage names. Only adjacent 

polygons with the same attribute value and the same or higher alpha level 

will be merged. If alpha is set to 0.0, the fuzzy dissolve operation is equivalent 

to the standard ARC/INFO dissolve function. Figure 6.4 shows the forest 

coverage after the fuzzy dissolve operation. Note that the certainty values for 

merged polygons are set to the specified alpha level to indicate the minimum 

confidence level for the polygons. 

Fuzzy Dissolve 

Input Coverage :FCCLIP 
Output Coverage :DISOLVE5 
Merge Field :SP5O 
Alpha level :0.7 

Process CANCEL 

Figure 6.2 Input screen for the fuzzy dissolve function. 
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Figure 6.3 Clipped area of the forest coverage. 

Figure 6.4 Forest coverage after the fuzzy dissolve operation. 
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6.3 The Display of Uncertainty Information 

Graphical display of geographical information is an essential element 

in GIS. In this system, because uncertainty information is treated as ordinary 

attributes in the polygon attribute file, they can be manipulated as any other 

attribute. To achieve effective presentation, three options are provided to 

display attribute uncertainty. Option one uses the identify command in 

ARC/INFOts ARCPLOT to allow the user to obtain the certainty value of an 

individual polygon with the cursor. Figure 6.5 shows the screen after the 

execution of the identify option on the a portion of the forest coverage: The 

attribute value and the certainty value are displayed in the dialogue box on 

top of the screen. Option two allows the user to view the distribution of 

uncertainty by a selected attribute value. Figure 6.6 displays the distribution of 

certainty for white spruce being the dominant species in the forest coverage. 

Option three allows users to identify all polygons of a particular tree species 

with a minimum certainty value. The result is shown in Figure 6.7. 
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Figure 6.5 Computer screen showing the execution of the identify operation. 
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Figure 6.6 Computer screen showing the uncertainty of white spruce. 
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Figure 6.7 Computer screen showing the polygons dominated by lodgepole 
pine with alpha = 0.3. 

6.4 Implementation Considerations 

PC ARC/INFO and dBase IV provide sufficient programming 

functions to implement the basic fuzzy spatial operations. Although not very 

efficient, these fuzzy spatial operations are not difficult to implement. PC 

ARC/INFO's overlay functions and dissolve function operate on the spatial 

domain only. Users are left to handle the attribute separately from the 

database. This allows the prototype system to store and manipulate 

uncertainty scores as ordinary attributes. Because the interface between dBase 

IV and PC ARC/INFO has been built in the ARC shell, access to database is 

available. This has facilitated the prototype system implementation 

Although PC ARC/INFO has a relatively limited macro language, 

SML has provided useful tools to develop the menu user interface. The 
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menu creation functions enable fast development of friendly and effective 

user interface. These functions are indispensable tools for system 

prototyping. 

The ARC/PLOT module in PC ARC/INFO provides sufficient color 

and symbols for the display of uncertainty information. It also allows users to 

modify color palette and shade symbols with simple commands. The creation 

of a continuous scale of shades of green (Figure 6.6) involved a few simple 

commands, which can be stored in a macro program for execution and future 

reference. 

The major difficulties encountered in the implementation of these 

fuzzy spatial operations in PC ARC/INFO are the limited programming 

capabilities of SML and the inefficient access to the database from SML. These 

cause the system to switch back and forth between ARC and dBase, displaying 

the dBase copyright message every time the program accesses the database. In 

addition, dBase runs extremely slowly inside the PC ARC/INFO shell. This 

slowed down the classification process significantly. Therefore, the 

classification function is programmed to run both inside and outside of the 

shell. For large processes (more than 50 polygons) the classification process 

should be run outside the shell. In addition, because dBase cannot be accessed 

through the ARCPLOT module, database search cannot be efficiently 

performed unless one leaves ARCPLOT. The display options could be 

improved if database access were more efficient. To illustrate, in the database 

the classification results were stored in a table as shown in Table' 6.3. If the 

user wants to view all the polygons that could be assigned to ci, regardless of 

the alpha level, the system should search all three columns and display all 



89 

four polygons. Nevertheless, due to the limited access to the database from 

ARCPLOT, the current display options can only select polygons by the most 

possible class, i.e. Al, and only polygon 1 would be displayed. It should be 

noted that all these limitations exist in PC ARC/INFO and dBase only. 

ARC/INFO running on the workstation platforms can be linked to different 

database management systems which have a smoother interface between the 

two software packages. Furthermore, the workstation version of ARC/INFO 

has a more flexible macro language (Arc Macro Language or AML) which 

provides more efficient access to the database. 

polygon Al Al poss. A2 A2 poss. A3 A3 poss. 

1 ci 0.8 c5 0.4 c3 0.1 

2 c4 0.6 c2 0.2 ci 0.1 

3 c2 0.6 ci 0.3 c2 0.1 

4 c2 0.7 c3 0.5 ci 0.2 

Table 6.3 Example of a fuzzy attribute with multiple assignment. 
A1=first assignment, A2=sëcond assignment, A3= third assignment. 
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CHAPTER 7 

Conclusions and Recommendations 

7.1 Conclusions 

This thesis introduces the theory of fuzzy sets and applies several 

fuzzy data management techniques to handle uncertainty due to vagueness 

and imprecision. Although vagueness and imprecision in quantitative and 

qualitative data represent only one of many sources of uncertainty identified 

in GIS, they are by no means negligible. This thesis has concentrated on the 

management of this aspect of uncertainty in GIS and has shown that fuzzy 

techniques can be applied to handle fuzziness in data, conceptual objects and 

operations in a forest ecological databases. 

1) Research into the application of fuzzy set theory in GIS has 

demonstrated that fuzzy techniques allow the representation of continuity in 

cartographic modelling [Sul, 1990], reduce information loss [Wang et al., 1990] 

and provide superior performance over conventional techniques in data 

retrieval and processing [Robinson, 1984; Burrough, 1989]. This research 

project has also showed that fuzzy sets permit flexible and realistic 

representations of the subjectivity and vagueness in qualitative terms, 

imprecision in quantitative values as well as ill-defined concepts. Thus, fuzzy 

set-based techniques should be considered desirable tools in decision supports 

GIS. 
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2) At present, no commercial GIS software provides fuzzy set-based 

tools to its users. The prototype system developed in this research project has 

provided some insights into the incorporation of such techniques in a 

commercial GIS software. In general, any GIS package that interfaces with a 

database management system which has programming capability will be able 

to implement some fuzzy set-based techniques. The dBASE W programming 

•language and the SML macro language provide sufficient tools to achieve the 

goals listed in Section 3.1. Although dBASE IV and SML are not the best 

available database management system to implement these fuzzy techniques, 

they do have some functions which are useful for implementing these 

procedures. Examples are the Max and Min functions, and the flexible 

indexed search function for quick access to look-up tables. On the other hand, 

the limited programming capability and database access of SML complicated 

the implementation. This has caused PC ARC/INFO to be a less favourable 

choice for the practical implementation of a fuzzy logic-based system. 

3) The main concerns in the implementation of fuzzy set-based 

techniques are storage and processing efficiency. Simulating fuzzy logic in a 

Boolean logic-based environment can be effective but not efficient. To utilize 

fully the power of fuzzy logic, hardware and software should be redesigned 

[Zadeh, 1984]. In this project, only a small data set was used for 

demonstration, and the processing time is still acceptable. The results show 

however that for a realistic GIS application with large data sets (e.g. several 

thousand polygons), the computation load may be very high and may result 

in unacceptably slow performance. In addition, as most GIS are already , 

suffering from information overload, the extra information available in the 
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fuzzy environment will add to storage and processing requirements of GIS. 

This would indicate that implementors must consider the most efficient 

possible internal integration of the fuzzy logic processes, and the use of fast 

powerful processors. This would probably preclude effective implementation 

on current ttPCt' technology. 

4) The biggest concern in implementing a fuzzy system is the 

formulation of the membership functions. As many researchers have 

commented, the need to develop some general guidelines for the derivation 

of membership functions should be addressed in order to increase the 

credibility of fuzzy systems. Turksen [1986] noted two approaches to 

determine membership functions. The normative approach is suited for 

deriving membership functions that are inherently subjective. An example is 

linguistic terms of human languages. The empirical approach follows the 

objective experimental procedures of the scientific methods in measurement 

theory used in mathematical psychology, but little work has been published 

on this subject. Like other studies, the membership functions in this research 

were derived by the forest ecologists based on published information [Corns & 

Annas, 1986] and statistics on field data. Though not all the membership 

functions were derived objectively, many of them are supported by the 

published data and descriptive statistics. Therefore, subjectivity has only 

minor influence on this prototype system. 
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7.2 Recommendations for Future Research 

1) As noted by many fuzzy set researchers, one urgent need in the 

future research is to develop some general guide-lines for the formulation of 

the membership functions. Although fuzzy sets can be used to express 

subjective interpretations, objective formulation should be used whenever 

available. It would be interesting and useful to derive some frequently used 

membership functions for certain applications. For instance, semantics for 

soil drainage and texture should be relatively standardized. In fact many of 

these commonly used scales are published. An example is the soil texture 

triangle. Deriving a generally accepted fuzzy representation such as a fuzzified 

soil texture triangle will be useful in the development of fuzzy systems. 

2) Another research recommendation is to apply these concepts to 

manage spatial uncertainty. Spatial uncertainty is unique to GIS and 

relatively little research has been carried out to model its uncertainty. A 

more comprehensive research topic is to study and model the combined effect 

of spatial and attribute uncertainty. In many instances, spatial and attribute 

uncertainty are dependent of each other. For instance, the boundary between 

two distinctly different soil types can be determined more accurately than that 

of two similar soil types. The combination of spatial and attribute uncertainty 

will provide the user with sufficient information to assess the reliability of 

geographical databases. 

3) The third research recommendation is to extend this prototype 

system with fuzzy reasoning ability. The concepts of linguistic variables and 

fuzzy concept modelling were developed to facilitate human-like reasoning 

in a computer environment. With these concepts already implemented, it is 
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reasonable to fully utilize these structures to increase the intelligence of the 

system. Zadeh [1976] believes that fuzzy set theory and the associated concepts 

in the right direction to develop a more human-like system. 

4) The implementation of fuzzy data management techniques as an 

add-on module in a commercial vector GIS such as PC ARC/INFO may not be 

the best approach for building a fuzzy logic-based GIS. This is because a fuzzy 

system requires much more computational power and extra storage. At 

present, most commercial GIS are already suffering from slow processing and 

information overload. Using the macro languages provided by the GIS 

software or database management systems requires an extra level of 

interpretation and drastically slow down the process of fuzzy operations. An 

alternative is to implement the fuzzy operations as built-in functions. This 

will require redesigning of the GIS to allow optimal incorporation fuzzy 

operations. Effort should be directed to investigate the incorporation of fuzzy 

operations as built-in functions in GIS. 
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