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ABSTRACT 

A new concept for ambiguity resolution is introduced. Past techniques determined each 

ambiguity separately regardless of the assumed integers of the other ambiguities. These 

techniques considered only the partial relationship among ambiguity parameters themselves, 

and treated these ambiguities as fixed only if their correct values were known. In this study, 

the search ranges are determined recursively and are related to each other. To determine the 

uncertainty range of an ambiguity parameter, the effect of an assumed integer on other 

ambiguities is fully taken into account by constraining the ambiguities into integers. These 

constrained integers may be correct or incorrect. However, the incorrect integers are 

rejected later. All observations from the initial to the current epoch are taken into account by 

a least-squares filter. Furthermore, an index of the possible inability to fix ambiguities is 

used. Therefore, the full search of all possible integer ambiguities is not required and the 

computation time is dramatically reduced. Analysis of experimental results shows 

significant improvements in the time of ambiguity search and the number of epochs 

required to resolve the ambiguities. The reliability of the ambiguity resolution is also 

improved. 
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CHAPTER 1 INTRODUCTION 

1.1 Global Positioning System (GPS) and Ambiguity Resolution 

The Naystar Global Positioning System is being developed primarily for the military forces 

of the North Atlantic Treaty Organization (NATO) for world-wide, real time positioning 

and continuous navigation. The initial intention of GPS was mainly for navigation of the 

US military. Due to the tremendous potential of the system and the latest improvements in 

receiver technology, a growing community is using GPS for a variety of civilian 

applications (navigation, geodetic positioning, etc.) [Wells et al., 1987]. 

Many applications require an accuracy no more than 1 m, e.g., navigation in open sea, en-

route aircraft navigation, and fleet monitoring [Trimble Navigation, 1989]. However, as 

will be discussed later, sub-metre and even centimetre-level accuracy is required in many 

applications. 

To achieve centimetre-level accuracy, carrier phase measurements have to be used. The 

carrier phase measurement is the most precise positioning signal obtainable from GPS. 

The measurement can be converted into a precise distance between the receiver and the 

satellite. The position of the receiver can then be computed using the distances from the 

receiver to different GPS satellites. However, a receiver can measure only the fractional 

part of the phase and its variation over time. There is a constant unknown, called initial-

cycle ambiguity (simply called ambiguity), in every phase measurement. This ambiguity 

has to be resolved before the carrier phase measurement becomes an accurate geometric 
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range between the receiver and the satellite. Once all the phase ambiguities are resolved 

correctly, accurate positioning at the centimetre-level will be readily achievable using at 

least four satellites. 

Double-difference observations between satellites and two receivers are often used. In this 

case, one receiver acts as a base station (or sometimes called a reference or monitor 

station). The position of the other receiver (also called remote station or rover) with respect 

to the base station can then be determined. The corresponding ambiguity parameter is also 

double-differenced but it is still called the ambiguity. 

1.2 Applications of Precise GPS Positioning 

Ambiguity resolution is very important for many applications of instantaneous precise 

positioning. The determination of the ambiguity parameters while the remote receiver is 

moving is called on-the-fly (OTF) ambiguity resolution. It is also very important for many 

static surveying projects where only a short period of occupation on the station is allowed. 

In the following, some existing and potential applications are outlined. 

For many geodetic applications, centimetre-level accuracy can be achieved by occupying a 

site for an extended period of time without integer ambiguity resolution. However, this 

accuracy is difficult when prolonged occupation is impossible and ambiguity parameters are 

not resolved. 

If ambiguities can be resolved within a few minutes, or even a few seconds, the 

productivity of surveying can be improved significantly. If on-the-fly ambiguity resolution 

can be achieved correctly before setting up a GPS antenna, then only one epoch of 

observations is sufficient to get positioning accuracy to the 2 cm level. This can be 

especially useful for surveying where fast positioning is very important. Even for 
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prolonged occupation of a site, the resolution of ambiguities will always improve the 

accuracy of positioning. 

As GPS receivers are becoming more affordable, GPS surveying may be extensively used 

and form the basis for efficient land information systems. GPS will provide many services 

to the general public. Precise positioning with GPS will be used in precise geodetic 

surveying, deformation surveys, surveys for detecting and monitoring tectonic movements, 

geodynamics, etc. [Wells et al., 1987]. 

Ambiguity resolution is also required in attitude and heading determination using GPS. In 

these applications, at least two or more antennas must be mounted on a platform (car, ship, 

plane, etc.). If ambiguities between any two antennas can be resolved, the vectors between 

antennas can be determined at the centimetre-level. The heading and attitude can then be 

derived from relative positions of these antennas [Cohen and Parkinson, 1991; Cannon and 

Haverland 1993; Lu et al., 1994]. At least one baseline is needed to determine heading and 

at least two baseline vectors are needed to determine the attitude. 

GPS antennas and receivers can also be mounted on a spacecraft so that position and 

attitude information of the spacecraft can be derived [Brock et al., 1994]. Possible 

applications include altimetry satellites, remote sensing satellites, communication satellites, 

space ships, etc. 

In airborne photogrammetry, if GPS units are mounted at both the ground and on-board the 

aircraft, precise positions of the camera at each exposure time can be determined if the 

ambiguities are resolved. Therefore, the number of conventional ground control points can 

be reduced or even completely eliminated [Hintz and Zhao, 1989; Cannon, 1991]. 

Similarly, GPS precise positioning can be applied to airborne remote sensing [Schwarz et 
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al., 1994]. Lachapelle et al. [1994] also experimented with precise aircraft-to-aircraft 

positioning. 

For aircraft navigation, high accuracy is required for landing, especially for automatic 

landings. Precision GPS may help in reducing risk during the landing[Davis, 1993]. 

In marine applications, precise GPS can be used to monitor ocean tides, position the points 

on the sea floor (sea floor geodesy), verify satellite altimetry, determine water levels 

[Lachapelle et al. 1994c], study sea level variations, and assist with dredging operations 

[Lachapelle et al. 1993bj 

Precise kinematic differential GPS will also be useful in navigating agricultural vehicles. It 

can play a role in the distribution of work, navigation of the harvesters, and the guidance of 

tractors, Lachapelle et al. [1994b]. 

1.3 Previous Studies 

Different strategies can be applied to fix ambiguity parameters. A combined strategy is 

often used. The next sub-section describes techniques in terms of different positioning 

arrangements. In the second sub-section, ambiguity resolutions in terms of data processing 

techniques are introduced. In the final sub-section, major developments in the ambiguity 

search are presented. 

1.3.1 Ambiguity Resolution by Arrangement of Occupation 

1.3.1.1 Semi-Kinematic Positioning 

In semi-kinematic positioning, the remote receiver first rests on a static point. It starts 

moving once ambiguities are resolved[Cannon, 1990]. 
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One method to resolve ambiguities is prolonged occupation over a static point. This is the 

oldest method of GPS surveying. After the remote site has been occupied for an prolonged 

period of time, the satellite geometry changes. The changed geometry leads to precise 

positioning and accurate estimation of real valued ambiguity parameters (called float 

ambiguities). Here, the float ambiguity parameters converge and can be rounded off to 

integers, provided the distance between the reference and the remote station is relatively 

short. These integers are, therefore, regarded as the correct values. 

The disadvantage of this method is its low productivity. Because the geometry of a 

receiver with respect to the GPS satellites changes slowly, long occupation times are 

required so that float ambiguities converge to the correct integer values. 

A known precise station can also be used to speed up the ambiguity resolution. Here, the 

remote antenna is first mounted on a point whose relative position with respect to the 

reference is precisely known. Therefore, the carrier phase ambiguities can almost be 

computed directly from just a few epochs of observations as long as the effect of errors is 

well below one cycle of wavelength. Once ambiguities are resolved, the antenna can be 

transfered to a moving platform or other survey points. The requirement of a precise 

position is the limitation of this method because obtaining a precise position is often 

difficult. 

All cycle slips must be recovered for the entire kinematic positioning process. To fix the 

cycle slips of single frequency observations, at least four satellites should be free from 

cycle slips, otherwise the remote antenna has to go back to a static point. In many cases, it 

is difficult to start from a fixed point. A short baseline is often used to reduce the effect of 

un-modeled errors and speed up the ambiguity resolution. 
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1.3.1.2 Antenna Swapping 

This technique was first introduced by Remondi [1986]; see also [Hofmann-Wellenhof and 

Remondi, 1988]. To describe this technique, two antennas are labeled as 1 and 2, and two 

stations are labeled as A and B. First, the antenna 1 is mounted at station A and antenna 2 

is mounted at station B. Their locations are then exchanged (Figure 1.1). After 

simultaneously observing at both stations, antenna 1 is moved to station B, and antenna 2 

is moved to station A. Two groups of double difference observations are then obtained. 

Before Swapping 

Antenna 2 

Antenna 2 

Antenna 1 

After Swapping 

Figure 1.1 Concept of Antenna Swapping 

It is assumed that, before antenna swapping, the double difference phase observation is: 

ii ii ii 
LIVØ AB LWP AB +ALWNAB , 

where, 

A 70 AB, ifl7p AB, and AVN AB are double difference phase, geometric distance, and 
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ambiguity respectively between satellites i and j, and between stations A and B. 

After antenna swapping, the double difference observation can be expressed as: 

L1VØ'B =VP'B+LWN'BA. . (1.2) 

If no cycle slips occur during the antenna swapping, the following relationship holds true: 

4VN' =-L1VNB 

Equation (1.2) then becomes 

AVb'B = A VPABVNAB 

By adding equations (1.1) and (1.4), the following can be obtained: 

L1VØ' +zVB =1WPAB +LWP AB 

(1.3) 

(1.4) 

(1.5) 

On the other hand, by subtracting equation (1.1) from equation (1.4), the following can be 

obtained: 

4VØ' AB AV0AB=AV7P'AB -AVpAB+ 2AVNABA' (1.6) 

Since equation (1.5) contains no ambiguities, the precise vector between the two stations 

can be determined precisely by using only a few pairs of observations before and after 

antenna swapping. Once the position is known, the real valued ambiguities can be 

computed directly from equation (1.6). Since these values are very precise, rounding to the 

nearest integers will normally result in the correct integer ambiguities. 

1.3.1.3 Kinematic Rapid Positioning Forming a Closed Loop 

In this method, the remote unit starts at a point, and then moves to other points of interest. 

At each occupation, the collection of just one or a few epochs is necessary. After the 

satellite geometry changes significantly, the receiver returns to the start point. This 

changed geometry causes a higher constraint in ambiguity resolution and makes the 

resolution easier. After ambiguity resolution, the precise positioning of other observed 
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points on the closed loop can be determined. A suitable method is still necessary to resolve 

the ambiguities. The disadvantage of this method is the difficulty in guaranteeing 

continuous phase lock [Kleusberg, 1990]. 

All the methods described above suffer from a common problem, the difficulty in 

maintaining phase lock. Therefore, operational flexibility is restricted. As a result, points 

would have to be close together throughout the survey mission to guarantee a fast recovery 

if satellite signals are occasionally lost. 

1.3.1.4 Rapid Static GPS Surveying 

In this surveying model, each point is occupied for only a short period of time to speed up 

productivity. Due to the short period of the time, float estimation of the ambiguities may 

not converge to integer values. Therefore, an ambiguity search method or precise range 

information should be applied [Kleusberg, 1990]. 

1.3.1.5 Multiple Occupations of the Same Point 

This technique requires re-occupation of points but the continuous tracking during any two 

consecutive occupations is not required. However, the time gap between two occupations 

should be large enough to guarantee sufficient geometry in ambiguity resolution. If all the 

points can be re-occupied in an orderly manner, for example, if the re-occupation occurs in 

the same order as the previous one, then this method can improve the productivity of many 

positioning tasks. This method is also called pseudo-kinematic surveying [Kleusberg, 

1990]. The float estimated ambiguities normally do not converge to integers and a proper 

ambiguity search method is still required in this method. 
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1.3.2 Ambiguity Resolution Methods in Terms of Data Processing Techniques 

1.3.2.1 Classical Convergence of Real Estimated Ambiguity Parameters 

One of the earliest ambiguity resolution methods used was to estimate float ambiguities and 

the float estimations are rounded to the integers if they are close to integers [Langley et al. 

1984]. As discussed in Section 1, prolonged occupation on a static point is required so that 

the changed satellite geometry results in more effective integer ambiguity convergence. 

When coordinates are determined very accurately, the real estimated ambiguities may be 

accurate enough to be rounded to integers. Once the correct ambiguities are obtained, the 

positioning accuracy can be further improved. 

The classical method of rounding to the nearest integers has been improved by many 

authors. Blewitt [1989] processed undifferenced data, and then formed double-difference 

ambiguities. His basic assumption was that when some of the ambiguities converge to 

their correct integers, they can be removed from the estimation; therefore, the geometry of 

the remaining ambiguities becomes stronger. The variance-covariance matrix was used to 

select the best determined ambiguity, according to his optimal double-difference 

transformation. He also used precise code measurements to assist ambiguity resolution. 

The most likely fixed ambiguity was resolved and removed from the estimation. Then, the 

next most likely fixed ambiguity was sought. His criterion of the most likely fixed 

ambiguity was based on subjective statistics and is only good if some ambiguities converge 

to the correct integers. Otherwise, an incorrect ambiguity will be selected without trying 

other alternatives. Dong and Bock [1989] proposed a technique for ambiguity resolution in 

a network. In this technique, the ambiguities of a few baselines converge at first, and then 
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ambiguities for other baselines converges sequentially. However, this technique offers no 

help for rapid static and kinematic positioning of a single baseline. 

Talbot's approach [1991] is similar to that proposed by Blewitt. The difference is that he 

tried ambiguity resolution epoch by epoch, sequentially. He also did not use subjective 

statistics to fix an ambiguity into an integer when it did not converge to an integer with high 

confidence; he assumed that some of the ambiguity parameters should converge to integers 

first. 

In static applications, it takes a long time before any real estimated ambiguities converge to 

integers. Therefore, the method is not suitable for detailed precise surveying where many 

points are to be occupied, or in other areas where only a short period of occupation is 

allowed. Therefore, an effective ambiguity search algorithm is still very important. 

1.3.2.2 The Combination of Different Observations and the Use of Precise Code 

As will be discussed in Chapter 2, GPS has two primary radio carrier frequencies, namely, 

Li and L2. The two fundamental types of GPS observations are carrier phase and code 

measurements. From these observations, linear combinations between observations of the 

same type can be formed to resolve ambiguities. These linear combinations are mostly 

used to reduce, or even eliminate certain biases, or to increase the wavelength of the 

combined observation [WUbbena, 1989}. The following criteria are normally considered in 

forming a combined observation, 

• integer ambiguities, 

• reasonably large wavelength to help ambiguity fixing, 

• low ionosphere influence, 

• limited observation noise. 
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Two important linear combinations useful for ambiguity resolution are the wide and narrow 

lane combinations [Wübbena, 1989]. The wide lane observation is formed by subtracting 

the Li observation from the L2 observation and the narrow lane observation is formed by 

adding the Li and L2 observations. Note that the unit of measurement when forming wide 

and narrow lane observations is cycles. The advantage of the wide lane observable are its 

long wavelength (=86 cm, which is 4.5 times larger than Li wave) which is favorable for 

ambiguity resolution. The advantage of the narrow lane observable is its low noise level 

(about half of Li or L2). However, the wavelength of the narrow lane observable is only 

about half of that of Li. If potential ambiguities of both wide and narrow lanes can be 

resolved, the potential ambiguities for individual frequencies can be resolved using an 

even-odd condition [Seeber, 1993]. 

This property was further exploited by WUbbena [1989] in a technique called extra-

widelaning. Besides wide and narrow lanes, WUbbena used a smoothed narrow lane 

pseudorange and ionospheric delay combination. The phase measurements were also used 

to derive the narrow lane ambiguities. Obviously, the method can not be applied to single 

frequency observations. 

The measurement of very precise code (cf. Chapter 2) can facilitate ambiguity resolution. 

If the pseudorange can be measured to a precision of 10 to 40 cm, this will allow ambiguity 

determination to occur more rapidly [Euler and Goad, 1991], [Cannon and Lachapelle, 

1992], [Lachapelle et al. i993a]. However, the availability of P-code receivers is reserved 

for military users and are not available to the general public. Although the precision C/A 

receivers are available they are still affected by relatively high noise, such as multipath 

signals and ionospheric delay. As a result of this noise, the uncertainty ranges for 

ambiguity parameters are substantially increased. 
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The fact that many receivers based on single frequency and wide correlator are still being 

used demands good search method to resolve ambiguities. Even for dual frequency and 

narrow correlator receivers, float ambiguities may not close to their correct integers and a 

search scheme is needed to resolve integer ambiguities. 

1.3.3 Methods Based on Ambiguity Search 

As will be shown in Section 3.1, prolonged occupation over a single point is often 

difficult, and the float ambiguities can not be rounded to their nearest integer values. Here 

ambiguity search techniques may be required to get centimetre-level precise positions. 

Various methods have been developed for OTF ambiguity resolution. The search process 

for integer ambiguities is performed by applying certain validation and rejection criteria to 

the estimated ambiguities or positions. The methods developed for OTF can also be 

applied for rapid static position, multiple-occupation, and so on. 

One of the search criteria for ambiguity-fixing is based on the minimization of the sum of 

the squared observation residuals (simply called sum of residuals). The ambiguity set that 

minimizes the sum is fixed as the correct one. Other insurance measures are often taken to 

make the results more reliable, such as the ratio test [Abidin, 1991; Lu et al. 1994. 

Many ambiguity search algorithms are available to minimize the sum of squared residuals. 

A simple technique is to search through all the possible integer ambiguity sets in the 

uncertainty ranges. However, such a method consumes enormous computation time, even 

for a minimal 1 m uncertainty in the position components. 
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Loomis [1989] used a bank of Kalman filters, each of corresponding to a set of potential 

ambiguities. Unfortunately, the technique did not work well. The technique did take into 

account the dependence between ambiguity parameters and was computationally intensive. 

Hwang [1989], in a variation of the Loomis approach, recognized that three ambiguities 

were sufficient to solve the problem. He simply picked the three ambiguities that 

independently converged the most quickly. 

Cohen and Parkinson [1991] and Brown [19921 have also proposed that an OTF ambiguity 

resolution technique be used specifically for attitude determination of a moving platform 

using GPS carrier observations. However, the technique cannot be generalized. 

Abidin [1991] has proposed an integrated strategy for OTF ambiguity resolution. 

However, many of the criteria he used almost overlap. As a result, the technique can have 

only marginal improvement. 

Frei and Beutler [1990] proposed the Fast Ambiguity Resolution Approach (FARA). The 

major characteristic in this approach is that the differences of any two ambiguities in a 

potential ambiguity set should be included in the corresponding confidence regions of their 

real estimation. However, the improvement in the computation time is not significant over 

the full search method, because, when a set of ambiguities is satisfied in their confidence 

regions, the difference of any two ambiguities from the set only marginally exceeds the 

confidence region. 

Hatch [1991] proposed an elegant, yet relatively simple approach. Instead of searching 

through all the possible integer ambiguity sets, he divided the ambiguity parameters into 

two groups: primary ambiguities (typically three ambiguities); and the secondary 

ambiguities. Only the primary ambiguities are fully searched. For each set of the primary 
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ambiguities, there is a unique set of secondary ambiguities. Therefore, the search 

dimension is smaller and the computation time is significantly shorter than the full search 

approach. 

Hatch's method also involves a modified sequential least-squares technique. It searches 

through all possible integer ambiguity sets at the first epoch. In subsequent epochs, those 

which do. not fit with the data are rejected until only one ambiguity set (or only a few sets) 

is left. Then, if the ratio test (the second largest sum of squared residuals divided by the 

minimum sum) exceeds a certain threshold, the ambiguity set corresponding to the 

minimum is accepted. 

Hatch's method is one of the most popular algorithms. However, the ambiguity 

determination for secondary satellites is not very reliable, and there is the possibility of 

excluding the correct set of ambiguities at the first epoch. This will be especially true if the 

geometry of the primarily satellites is poor and non-random errors, such as multipath 

biases, are large. 

Landau and Euler [1992] employ an optimized Cholesky decomposition algorithm (herein, 

it is simply called Landau and Euler's approach). However, the method is still slow for 

real time applications, when the uncertainty region is large, or when the data collection rate 

is higher than 1 Hz. Furthermore, the time required for ambiguity search is much higher 

during the initial epochs. 

Ober [1993], Teunissen [1993], and Teunissen et al. [1994] applied a lattice transformation 

[Dieter, 1975, Pohst and Zassenhaus, 1989] on the integer ambiguity parameters. This 

application is called Z-transformation by the authors. This transformation is advantageous 

when dual frequency observations are used without explicitly forming widelane 
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observations. By applying the integer transformation on the ambiguity parameters, the 

correlation between estimated ambiguity parameters is greatly reduced when strong 

correlation exists between estimated ambiguity parameters. Although the technique will 

decrease the computational effort in some specific cases, it has no impact on the 

observation period required to resolve the ambiguities nor on the reliability of the solution. 

An ambiguity resolution method similar to the one described by Chen [1993], and further 

developed in this thesis, was presented by Landau and Vollath [1994]. Although a 

different formulation is used, the same cbncepts as proposed by Chen [1993] are utilized. 

Another criterion for ambiguity-fixing is the Ambiguity Function Method (AFM) as first 

described by Counselman and Gourevitch [1981] for static positioning. Mader [1992] 

applied the technique for OTF ambiguity resolution. However, the AFM is nearly identical 

to the minimization of the sum, if all the cycle slips are properly handled. The equivalence 

was discussed by Lachapelle et al. [1992b]. Therefore, only methods related to the 

minimization of the sum of residuals will be compared with the method developed in this 

thesis. 

1.4 The Scope of the Research 

As discussed previously, there is an increasing demand for rapid static and kinematic 

surveying. Even for conventional static surveying, ambiguity resolution will always 

increase the accuracy of GPS positioning. The key to precise and rapid static surveying is 

ambiguity resolution. 

The exact determination of the ambiguities is a crucial issue for precise GPS positioning 

and navigation. As will be discussed in the next chapter, the solution of these integer 

ambiguities is not an easy task. It is limited by various error sources and their patterns, the 
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satellite geometry with respect to the receiver's antenna, and the limitations of ambiguity 

resolution techniques currently available. 

While significant research has been conducted in the area of ambiguity resolution, many 

problems still remain. Three of the most notable problems are computational speed, 

observation time required to resolve the ambiguities, and reliability. Unfortunately, 

techniques for efficient and reliable ambiguity resolution are not yet satisfactory, especially 

in rapid and kinematic positioning. 

The objective of this research is to improve integer ambiguity resolution. The following 

factors should be considered for an ambiguity resolution algorithm: 

It should be fast enough to be installed in the most common applications. 

It can be applied to both the static and kinematic environments. 

It should be fast enough for both initial search and subsequent searches. 

It should be reliable. 

With the above objectives, this dissertation is outlined as follows: 

Chapter 2 describes basic GPS observables, error sources, and the effect of the errors on 

the positioning. Methods on reducing or even eliminating these effects are discussed. 

Chapter 3 provides the background of least-squares filtering and develops formulas that can 

be applied in ambiguity searching. 

Chapter 4 presents the method proposed by the author, namely the Fast Ambiguity Search 

Filter (FASF). The fundamental concepts of FASF are developed in the chapter. To 

implement these concepts, the least-squares filtering technique is used. 
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Chapter 5 examines four sets of experimental data which are used to test the effectiveness 

of FASF and its least-squares implementation. The data sets originate from land, marine, 

and air experiments of GPS. The computational efficiency, the observation time required 

to resolve ambiguities, and the repeated ambiguity resolutions are presented. The 

comparisons with the results from FLYKIN'93 (a software initially developed according 

to a modified Hatch's method) are also shown. 

The final chapter makes conclusions and suggestions for further developments. 
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CHAPTER 2 GPS OBSERVABLES AND ERROR 

SOURCES 

Various errors in observations affect position accuracy and also affect the ambiguity 

resolution. Following the description of GPS observations in Section 2.1, the handling of 

biases in GPS observations is discussed. The effect of selective availability is briefly 

discussed in Section 2.3. 

2.1 GPS Observations 

Three different types of positioning information can be extracted from the signals of a GPS 

satellite, namely: code (pseudorange), carrier phase, and phase rate (also called Doppler 

frequency). 

2. 1.1 Code Measurement (Pseudorange  

A pseudorange is the measurement of the time shift required to align a replica of the GPS 

PRN code, generated in a GPS receiver, with the code transmitted from a GPS satellite. If 

the receiver clock is fully synchronized with the GPS time, then the time delay between the 

transmission and the reception is exactly the travel time of the signal. This delay can be 

converted into the travel distance of PRN signals between the satellite and the receiver's 

antenna. However, since satellite and receiver clocks are not synchronized, the range 

determined in this procedure contains a clock error. The range is, therefore, referred to as 

the pseudorange. Two types of code are available for GPS signals: P-code (Y-code) and 

C/A code [Wells et al. 1987]. 
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The pseudorange equation can be written as: 

P(t) = p(t) + dorb + C {dt(t) - dT(t)} + d10(t) + d0 (t) + EP 

where, 

p(t) is the code measurement in metres, 

p(t) is the distance from the satellite to the receiver in metres, 

d0 j, is the orbital error in metres, 

c is the speed of light in metres/second, 

dt(t) is the bias of the satellite clock in seconds, 

dT(c) is the bias of the receiver clock in seconds, 

dtrop(t) is the bias of the tropospheric delay in metres, 

d0 (t) is the bias of the ionospheric delay in metres, and 

EP is the measurement noise in metres. 

In the ambiguity search procedure, the role of the code measurement is to determine the 

search space. 

2.1.2 Carrier Beat Phase Measurement 

The carrier phase can also be measured by beating the received Doppler-shifted satellite 

carrier with a signal of constant frequency generated in a GPS receiver. The carrier 

transmitted by a satellite can be extracted either by complete knowledge of the Pseudo-

random Codes (C/A-code or P-code), or by codeless signal processing techniques, such as 

squaring, or cross-correlation. Since a receiver can only measure the fractional part of the 

beat carrier phase, the integer number of whole wavelengths in every phase measurement is 

unknown. This integer number is called initial carrier phase ambiguity. If the initial phase 

ambiguity could be resolved reliably, the phase would be used as the most accurate distance 

measurement from a GPS satellite. 



20 

The carrier phase equation can be written as: 

ON = —A 0(t) = p(i) + dorb + C {dt(t) - dT(t)} + dtrop(t) - d0 (t) +A N + 

where, 

P(t) is the carrier phase measurement in metres, 

0(t) is the carrier phase measurement in cycles, 

A is the carrier wavelength in metres, 

N is the integer carrier phase ambiguity, and 

eo is the measurement noise in metres. 

The definitions of the other symbols are the same as in the pseudorange observation. 

Double-difference observations are often used. That is, the observations are first 

differenced between different satellites. Then, these differenced observations are further 

differenced between the receivers. The advantage of the double difference is that it greatly 

reduces or eliminates the effects of many errors discussed in Section 2. 

2.1.3 Doppler Measurement 

A Doppler measurement is the measurement of the instantaneous rate of the GPS carrier 

phase, i.e., the instantaneous Doppler frequency shift of the incoming carrier. The shift is 

caused by the relative motion between the receiver and the satellite. The major role of the 

Doppler measurement is in velocity estimation. In kinematic positioning, it can also be 

used for roughly detecting and estimating cycle slips (cf. 2.2.9). 

2.2 Error Sources in GPS Positioning 

Noise and biases in GPS positioning can be grouped into three categories: station 

dependent biases, observation dependent biases, and satellite dependent biases [Wells et al. 
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19871. Station dependent biases are errors in the base station coordinates and in the 

receiver clock. Observation dependent biases include the signal propagation delays in the 

ionosphere and troposphere, carrier phase cycle slips, receiver measurement noise, and 

multipath. Satellite dependent biases cover errors in the satellite orbit and satellite clock 

biases. 

2.2.1 Measurement Noise 

Typical pseudorange measurement resolution is approximately 1 in on a C/A-code and 

0.3 m on a P-code. Currently, many receivers can achieve higher accuracy. For example, 

the NovAtel GPSCardTM use a technique called Narrow CorrelatorTM in the receiver Delay 

Lock Loops (DLLs) [Van Dierendonck et al. 1992]. This technique allows GPS receivers 

to measure the pseudorange at 10 cm noise level on C/A code. 

The carrier phase can be measured with millimetre or sub-millimetre precision. The 

measurement error tends to decrease as the number of observations increases. However, 

other error sources, such as multipath, are normally much larger than the measurement 

noise (cf. 2.2.8). In looking at the issue of measurement quality, what is important is the 

stability of the phase measurements. If a receiver has frequent cycle slips, even worse, half 

cycle slips and abnormal observations, ambiguity resolution will be very difficult. 

2.2.2 Orbital Biases 

Orbital errors result from the uncertainties in the orbital information. These uncertainties 

are due to the accuracy limitations associated with the predicted nature of the broadcast 

ephemeris and the SA policy instituted by the DoD (see section 2.3). Tests have shown 

that the orbital error is generally 10 to 50 metres. Under Selective Availability (SA, cf. 

2.3), the orbital errors can exceed 100 metres in extreme cases [FRNP, 1990]. Since most 
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users derive the positions of GPS satellites from the broadcast ephemeris, the uncertainties 

of the broadcast ephemeris result in errors in positioning. 

The orbital error can be greatly reduced in relative positioning by differencing observations 

between receivers. However, the residual orbital bias increases as the baseline length 

creases. Therefore, a more effective way to handle orbital bias for a long baseline 

positioning is to use post-processed precise orbits. Precise orbits require an extensive 

monitoring network, complicated force modeling and parameter designing [Chen, 1991, 

Delikaraoglou et al. 1990]. These orbits are currently not available for real time 

applications. 

The effect of the orbital error is as follows, [VanIck et al. 1985]: 

db=drb/p, (2.1) 

where, 

db is the error in the baseline, 

b is the length of the baseline, 

dr is the orbital error, and 

p is the satellite-receiver range. 

The effect of the orbital errors on relative positioning is given in Table 2.1. 

Equation (2.1) implies a considerable approximation. A geometry analysis by Chen and 

Langley [1990] has shown that the popular belief that the above estimation is pessimistic is 

not always true. In the case of poor geometry in a GPS satellite configuration, the error 

could be larger than shown in the above equation. This is especially true if only a few 

epochs of observations are used and the number of tracked satellites is limited. However, 

if many redundant satellites are tracked or if a prolonged period of observation on a 
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stationary point is carried out, the orbital errors will tend to reduce by averaging. Only in 

this case, equation (2.1) can be regarded as a pessimistic estimation. Therefore, equation 

(2.1) should be used with caution and only for rough estimation. Nevertheless, the 

equation is convenient. 

Table 2.1 Effect of the Orbital Error on Relative 
Positioning 

Orbital Error (m) 
Relative Accuracy (ppm) 

(Assumed p=20,000 km) 

100 5 

20 1 

2 0.1 

If the orbital error is 20 m and the baseline length is 10 km, the corresponding bias in a 

double difference phase observation is estimated at one centimetre. That is comparable to 

multipath effect. Over a longer baseline, the effect of the orbit will increase and the 

ambiguity resolution will be more difficult. Orbital error is one of the major factors that 

limit the length of the baseline on which ambiguities can be resolved. 

2.2.3 Error in Base Station Coordinates 

In differential positioning, the uncertainty of the reference coordinates with respect to the 

WGS-84 coordinate system will directly propagate to the estimated coordinates of the 

remote station. The uncertainty has a reduced impact on relative positions (i.e., reduced 

effect on the coordinate differences between the remote and the base station). The effect is 

similar to those of orbits, but it is more systematic [Chen and Langley, 1990]. For its 

effect to be comparable or less than orbital errors, the accuracy of reference coordinates 
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should be better than that of the orbits. For example, if broadcast ephemeris of 20 m are 

used, the accuracy of the reference station should be better than 20 m. 

2.2.4 Satellite Clock Bias 

The satellite clock bias is the time offset of the satellite clock with respect to GPS time. For 

civilian users, the clock effect mostly comes from Selective Availability (SA, cf. 2.3). 

Because the difference in the signal emission times from a satellite to two receivers is small, 

the drift of the satellite clock in the period is negligible. Therefore, the effect of the bias is 

almost completely removed in double difference observations as stated earlier. The higher 

order terms of a satellite clock offset are negligible in double difference observations. The 

residual effect of the satellite clock offsets can be neglected in the ambiguity resolution. 

2.2.5 Receiver Clock Bias 

The receiver clock bias is the offset of the receiver clock time with respect to GPS time. 

Although a GPS receiver is supposed to synchronize itself to GPS time at the start of 

observations, the synchronization is not perfect. Furthermore, the receiver clock will drift 

after synchronization. However, in double difference observations, just as with satellite 

clock bias, receiver clock bias can be almost completely removed. The effect of the 

receiver clock offset and drift on the ambiguity resolution can be ignored for most 

receivers. 

2.2.6 Ionospheric Effect 

The ionospheric effect is caused by interference of free electrons when GPS signals pass 

through the upper layer of the atmosphere. The effect on range may vary from more than 
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150 m (at midday, during period of maximum sunspot activity, with the satellite near the 

horizon of the observer) to less than 5 m, (at night, during the period of minimum sunspot 

activity, with the satellite at the zenith) [Wells et al. 1987]. For GPS carrier frequencies, 

the ionospheric effect is dispersive, meaning that the amount of ionospheric delay depends 

on frequency. The dispersive nature of the ionospheric effect can be used as an advantage. 

For example, for dual frequency GPS phase observations, a linear combination can be 

formed to eliminate most of the ionospheric effect. However, in this case, the integer 

ambiguity resolution is difficult to achieve from this ionosphere-free combination alone. 

The ambiguities are generally estimated as real value. 

Ionospheric correction coefficients from the broadcast message can remove only 50% of 

the ionospheric delay at mid-latitudes [Wells et al. 1987]. Recently, attempts have been 

made to model the ionospheric effect with polynomials from the difference between the 

phase and code measurements. Cohen et al. [1992] used a first order spherical harmonics 

function. Qiu [1993] and Qiu et al. [1994] used third order polynomials. However, these 

modelling attempts are not accurate enough to be suitable in ambiguity resolution. 

Over short baselines below 10 km, the effect of the ionosphere tends to cancel out between 

the two receivers. Over long baselines, the ionospheric effect increases as the baseline 

length increases. As a result, the ionospheric effect limits the length of a baseline on which 

integer ambiguities can be resolved. 

2.2.7 Tropospheric Effect 

The tropospheric effect is the propagation delay caused by the refraction of a GPS signal in 

the lower atmosphere and is independent of the GPS carrier frequency. To account for this 

delay, a tropospheric model has been used. Hopfield's tropospheric model is a popular 
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one [Hopfield, 1971]. However, studies have shown that other models may be better at 

low elevations [Janes et al. 1990]. 

The un-modeled tropospheric effect is strongly correlated over a short distance between the 

reference and the remote if the height difference of the two stations is small. However, 

when the separation distance or height difference is large, local atmospheric conditions will 

be more different and the correlation becomes weaker. Consequently, adequate modeling 

remains difficult, especially for the wet delay component. 

Surface meteorological data is not accurate to represent atmospheric conditions along the 

signal path. To get more accurate data, The water vapor content of the atmosphere along 

the propagation path can be measured with water vapor radiometers. However, the 

instruments are very elaborate and expensive and can only be used in major projects. 

A parameter estimation approach can be used to model the tropospheric effect. That is to 

say, a nuisance parameter for each station per observation window is designated for the 

tropospheric delay [Chen, 1991]. However, in kinematic positioning, estimation of the 

scale factor will over-parameterize the state model and make the ambiguity resolution more 

difficult due to the limited number of observations. 

As with orbital and ionospheric effects, un-modeled tropospheric effects also limit the 

length of the baseline on which integer ambiguities can be resolved. 

2,2.8, Multipath 

Multipath means that reflected signals also reach the antenna in addition to the direct signal. 

Multipath propagation is almost inevitable for most GPS applications due to all possible 

reflectors, such as streets, buildings, water, and observing platforms. 
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Multipath error affects both pseudorange and carrier phase measurements. The amount of 

multipath for a code observation is much larger than that for a carrier phase. Traditionally, 

the pseudorange multipath can reach up to one chip length of the PRN code (293 m for the 

C/A code, and 29.3 m for the P code), while carrier phase multipath is less than 25% for 

the carrier wavelength [Georgiadou and Kleusberg, 1988]. However, in most cases, 

observed multipath from C/A code receivers is less than 20m. NovAtelts patented Narrow 

Correlatofm technique usually reduces the multipath effect on the C/A to submetre levels 

[Van Dierendonck et al. 19921. New development on code multipath reduction techniques 

has been conducted by van Nee [van Nee and Siereveld, 1993]. 

Multipath is proportional to the ratio of the direct signal power to the reflected signal 

power. Typically, in static observations, multipath is non-Gaussian in nature and shows 

sinusoidal oscillations with periods of a few minutes. In kinematic mode, multipath 

appears more random, due to vehicle movement and environmental change. In a strong 

multipath environment, the required observation time in the field may have to increase 

significantly to correctly resolve the satellite carrier phase ambiguities. 

For surveying, sites of low multipath can often be chosen. However, for kinematic 

positioning, the environment may be difficult to control. Choker-rings, absorbing material 

near the antenna or ground plates may reduce the effect of multipath. Special receiver 

antenna design and firmware may also help. In principle, another method that can help 

reduce the effect of multipath is to model this effect when the relative locations with respect 

to the reflecting objects and the reflection index are known [Georgiadou and Kleusberg, 

1988]. However, it is almost impossible for most users due to complicated nature of the 

reflecting objects. 
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For most applications, the multipath effect is independent of the length of the baseline. 

Multipath is a major error source for differential positioning of short baselines. For static 

positioning, the effect of the multipath tends to be reduced. When multipath is strong, it 

will take a substantially longer time to resolve the ambiguities since the multipath effect 

varies slowly over time. This is especially true when strong multipath is combined with 

limited number of satellites and unfavorable satellite geometry. 

2.2.9 Cycle Slips, 

Cycle slips occur if the receiver loses phase lock on the satellite signal. This may be caused 

by external or internal factors. 

The examples of external factors include: 

• obstructions, e.g., buildings, trees, 

• high signal noise, in particular caused by multipath and ionospheric scintillation, 

• low satellite elevation, causing low signal strength, 

• antenna inclination in kinematic application (airplane, ship). 

The examples of internal factors include: 

• weak signals, partly caused by signal interference, 

• signal processing method used. 

In many applications, especially for static positioning, cycle slips pose no problem, since 

the prediction errors of the observations are normally well below one cycle. The triple 

difference, i.e., the difference of the double difference observations between two 

consecutive epochs, is used to detect and eliminate cycle slips. The measurement of the 
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phase rate can also be used to compute the cycle slips if the errors of the integrated values 

of Doppler are less than half a cycle [Cannon, 1991]. 

Cycle slips may pose a difficulty for precise kinematic positioning. Neither the prediction 

method nor triple differencing can be used where the error in the predicted position is larger 

than half a cycle. The Doppler measurement may detect large cycle slips, but do little to 

eliminate them since the speed between two consecutive measurements is often not 

uniform. 

If four or more satellites are free of cycle slips, the cycle slips for the remaining satellites 

can be computed easily. However, it will be difficult to fix cycle slips if the number of 

satellites without cycle slips is less than four. If cycle slips cannot be fixed, the ambiguities 

should be resolved again. 

The integration of an additional sensor, for example, the integration of an inertial sensor 

package, can help to bridge gaps caused by cycle slips. The integration can be used to 

predict GPS measurements. However, the prediction is only good for a very short time 

(i.e., a few seconds) and most inertial systems will drift more than one cycle after several 

seconds [Cannon, 1991]. In addition, an inertial system is too expensive for most users. 

2.3 Selective Availability and Anti-Spooling 

Since GPS is a military navigation system and is the primary responsibility of the US 

Department of Defense (DoD), GPS has to meet the national security interests of the United 

States. Accordingly, access to the total system accuracy by the national and international 

civil community is limited. 

The service available to the civil community is called Standard Positioning Service (SPS); 

the service available to authorized users, mainly military, is called the Precise Positioning 
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Service (PPS). Under the current policy of Federal Radio Navigation Plan, the accuracy 

available to SPS provides 100 m of 2D-RMS; PPS provides 10 to 20 metres in three 

dimensions [FRNP, 1990]. 

Anti-Spoofing (AS) entails the encryption of P-code, or in other words, the use of a 

protected code named Y-code. Only authorized users have the means to access the P-code 

while AS is activated. Selective Availability (SA) degrades both broadcast ephemeris and 

satellite clocks, and thus, introduces errors in measurements. As a result, SA is especially 

bad for single point positioning. However, for double differencing positioning, the effects 

of SA are almost completely removed since double differencing significantly reduces the 

effect of SA. 
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CHAPTER 3 LEAST-SQUARES AND KALMAN 

FILTERING 

This chapter takes a look of the filtering technique from the least-squares estimation. 

Starting with classical least-squares estimation, the least-squares filtering is derived from 

the least-square estimation. It is also shown here that least-squares filtering is equivalent to 

Kalman filtering. Finally, parameter removal is discussed concerning cases in which some 

estimated parameters become perfectly known. The parameter removal technique discussed 

is equivalent to the technique that treat the parameters as known values from the beginning. 

3. 1 The Problem of Least-squares Estimation 

3.1.1 Definition of the Problem 

Observations are made to derive certain parameters. However, observations often contain 

biases and errors. To reduce the effect of the errors and assess the accuracy of the 

solution, redundancy is required. That is, more than the minimum number of observations 

is required to determine the estimated parameters. These observations must be adjusted so 

that the solution will be consistent with these adjusted observations. To adjust 

observations and to obtain the desired parameters, the method of least-squares estimation is 

often used. In least-squares estimation, parameters and corrected observations are derived 

by minimizing the weighted sum of the squared residuals. This process is subject to certain 

constraints among the observations and estimated parameters. 
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Suppose that the mathematical relation between the observation vector 1 and the unknown 

parameter vector x is: 

1 =f(x)+s, (3.1) 

where, 

e is the unknown observation noise. 

Then, the least-squares estimation of x is to seek a vector2 ( X, where, X is a real 

space) such that 

(1 - P (1 -f()) = min, (3.2) 

where, 

P is the a-priori weighting matrix of the observations. 

Note that the symbol, A  over a vector is referred to as the corresponding least-squares 

estimate throughout this thesis. 

Here, the a-priori information is also regarded as a quasi-observation. The constraints in a 

space could be regarded as a sub-space where the solutions should belong to. The solution 

space could be discrete (such as cycle ambiguities in GPS carrier phase measurements), or 

continuous (as for coordinates or velocities), or mixed. 

Generally, the solution may not necessarily be unique. However, in many applications, 

such as, surveying and navigation, a problem is often designed in such a way that only a 

unique solution can be derived from the least-squares estimation process. The uniqueness 

is determined by the geometry of observations (including a-priori information), the 

variance-covariance matrix of the observations, and the constraints. 
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3.1.2 Constrained Adjustment with Unknown Parameters 

Assuming the n-dimensional observation vector as 1 with variance-covariance matrix C1, 

where the observations here also include the a-priori information, the constraints are then 

described by a system of m equations such that: 

f(x, 1 + r) = 0, (3.3a) 

where, 

x is the unknown parameter vector to be estimated, and 

r is the correction on observation 1. 

The above equation can be linearized as follows: 

A S +Br +w =0, (3.3b) 

where, 

A = df is the design matrix with respect to the unknown parameter vector, ax o, 

B =11 is the design matrix with respect to the observation vector, 
di Xo,l 

W f(xo,l) is the misciosure vector, 

Xo is the vector of approximate value of x, 

S is the correction on the approximate value vector of x, i.e., x = Xo +6, and 

r is the residual vector. 

Using the minimum criterion (3.2), the solution of the least-squares estimation for S and r 

becomes: 

S = AT W 1 A' ATM 1 w , (3.4a) 

=C1BTMl(AS +w) ,and (3.4b) 

M =BCIBT . (3.4c) 

The variance-covariance matrices corresponding to the above estimation are: 
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C = [ATM 1 A] -1 , and (3.5a) 

CA = C1 BT M 1B C1 C1 BT M 1A C ATM 1B C1 (3.5b) 

A 

[Kraldwsky, 1990]. Note that S is the variation from approximate state vector which has 

no weighting in the adjustment. The a-priori information is included in observation vector. 

Therefore, 

CA = C. (3.6) 

The a posteriori variance factor can be computed as: 

.2 =/'TC1 1r /(m-u). (3.7) 

The formula for the computation of rATC(Jr can be derived as: 

T Cl P = wT M 4w - T c , (3.8) 

where, 

m is the number of constraints, and 

u is the number of unknown parameters. 

3.1.3 Parametric Adjustment 

When B = -I, where, I is the unit matrix, the estimation in Section 3.1.2 becomes a 

parametric adjustment. The formulas then become: 

A 

S =[ATCj'A]lATC1'w 

A 
r 

'-8 

A 
(A (5 + w) 

= [AT C1 1 A]4 , 

CA =C1ACAT, 

a =C1 1P/(m-u) 

= (W T C11w - TCA-1 5)/(m-u). 

(3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 

(3.9e) 
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3.1.4 Conditional Adjustment 

When A is a null matrix, the estimation in Section 3.1.2 becomes a conditional adjustment, 

that is, 

=C1BTM lw 

M =BC1BT, 

CAr =C1BTM 1BC1, 

C'1 = C1- C', , and 

A2 AT A a=rC1 4  rim. 

The formula for the computation of r"1'C1 4 r  be derived as: 

r'TC1 l r'' =wTM l w. 

The above formulas will be used to derive a filter in the following sections. 

3.2 From Least-squares to Kalman Filtering 

(3.lOa) 

(3.10b) 

(3.10c) 

(3.10d) 

(3.10e) 

(3.lOf) 

The problem of least-squares filtering is illustrated in Fig. 3.1 for kinematic satellite 

positioning. The position, velocity, and other parameters (denoted as xk+1) are to be 

estimated at epoch k+1 from the observation vector lk+1 and its variance-covariance matrix 

Clkl. Supposing that r/+1 is the correction to Ik+1, the relationship between the lk+1 and 

xk+1 is defined by the prediction model: 

1k+ 1 + rj + 1 = 1 tk+ i) . (3.11) 

The relationship between xk+1 and xk is defined by the prediction model, or transition 

model: 

xk+1 = 9(x, tk+1, tk) + k+1,k, (3.12) 
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where, 

ek+1,k is the uncertainty of the model, and its variance-covariance matrix is Cek+1,k. 

UM 

Other 
Information  

I Observation Model 
XkIkCk Vk+1,+1F 7c+1, tk+j) =0 

Receiver 

Observations 
61, Clkl 

Transition Model Xk+llk, Ckl 1k 
xk+i = g(xk, tk+1, tk) +e/+1,fc , Cgk+1,k 0 

* 
Update 

Positions 

Xk+llk+1, C klIkl 

Figure 3.1 Problem of Kinematic Positioning in GPS 

The question now is how to estimate the system parameter vector, xk+1, with all 

information up to the current epoch, k+1. The problem was first solved by Kalman [1960] 

and is, therefore, called Kalman Filtering. In this section, the least-squares estimation 

technique described in the previous section is applied to derive the equivalent formulas. 

The advantage of this approach is that many available formulas in the least-squares 

adjustments can be used. 

The problem is solved in two steps. In the first step, the current state vector is computed 

using equation (3.12) and its variance-covariance matrix is also computed. In the second 

step, both the predicted a-priori and direct observations are used to derive the state vector. 

This step is called updating. 
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At the first epoch, the updated value is computed from the a-priori and direct observations. 

All updated values of the state vectors at subsequent epochs are computed from predicted 

and direct observations. 

3.2.1 Prediction of the State Vector 

Assuming that ak/k is the updated value for state vector xk, xk/k is computed from all the 

information up to epoch k. The predicted value for the state vector xk+1, namely, xk+1/k, 

is computed from .'k/k using equation (3.12): 

A A 
Xk+ 1/k = g(xk/k,tk+1, k) + 8k-i-1,k 

where, the expected value of k+1,k is regarded as zero. 

(3.13) 

In order to obtain the variance-covariance matrix, the kinematic prediction model is 

linearized as: 

Xk+1/k = øk+l ,k(xk/k - xk0) +gk+1,k (xk0, tk+1, tk) + k+1,k, (3.14) 

where, 

øk+ 1,k - dgk+"klxko , and 
dXk 

xk0 is the point of expansion in the Taylor's series and normally takes the value of 

A 
Xk/k.. 

By using the law of error propagation, the variance-covariance matrix of the predicted state 

vector, C2k 1/k' can be computed as: 

Cx'k+l/k = øk+ 1,k CxAk/k 0k+1 ,k + Cek+1,k. (3. 15) 

3.2.2 Updating Using a Parametric Adjustment 

The observation equation can be linearized as: 
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r, i4 =A+i Sk-i-1+Wk+1, (3.16) 

where, 

 A 

Ak+1 - aXk+1 Xk+1/k, 

Wk+1 =fk+1(xA k+1/k, tk+1) lk+1 , and 

ôk+1 is the correction to the predicted value ,k+1/k. 

The estimated parameters are included in 8k +1/k +1. 

In the next two sections, the updating of the state vector will be discussed. 

The observation equation corresponding to the a-priori state vector is: 

rxk+llk = (3.17) 

By combining equations (3.16) and (3.17) into one, the following equation system can be 

obtained: 

r =A 5k+1 + W, 

with a variance-covariance matrix of 

where, 

cl= 

fCA 0 
Xk+1/k 
0 C1 

k+1 

r = (rxk+ Ilk) 
' 

A =(k+l)' 

W =(k+1)• 

(3.18) 

(3.19) 

(3.20) 

By applying the parametric adjustment formulas from Section 3.1.3, the following 

estimation can be obtained: 
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A 

= AT C1 4 A 1 AT C1 4 w, 
A 

A 
+ 6k-i-1/k+1 

A 
Xk+i/k+i = 

CA 
Xk+i/k+1 

A 
Xk+i/k- [AT C, A]4 ATCii w ,and 

= [AT C11A]1. (3.21) 

Note that here/k+1 means that the values are obtained using the information up to epoch 

k+1. 

By placing equations (3.19) and (3.20) into equation (3.21), the following can be derived: 

Xk+1/k-i-1 =Xk+i/k - [Ckl/k +Ak+lT Cik Ak+1] 1 Ak+1T C ik ii wk+1 

= Xk+i/k - K Wk+1, (3.22a) 

CA k+  = [Ci/k' + Ak+1T Clkl' Ak+1]', (3.22b) 

where, 

K = [CA -i +Ak+1TClk iAh1Ak+1Clkl Xk+1/k 
(3.22c) 

Comparing with Bayes expression of Kalman filtering in Krakiwsky [1990], the two 
A 

expressions are equivalent. Here, wk+1 is equivalent to (wk+1 + Ak+1 c5k+ Ilk ) in Bayes 

expression. This can be done by the linear expansion of Taylor's series with wk+i at an 

approximate value of the current state vector xk+1. However, this is not necessary here, 

since all linearization can be made at the predicted value of the state vector. 

3.2.3 Updating Using Conditional Adjustment 

The least-squares filtering expression can also be derived from the conditional adjustment. 

The observations are the same as in the last sub-section. However, the constraint equations 

can be reformatted as: 

Br +w =0, (3.23) 
where, 
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r = Irk+11 Sk+1 

W Wk+1, 

B = (Ak+1, -1), and (3.24) 

C1 is the same as in equation (3.19). 

From the equations of the conditional adjustment, the least-squares estimation is: 

=C,BTM lw 

M =BC1BT, 

C? = C1 BT M 1B C1, and 

C/l=ClC/'r 

(3.25a) 

(3.25b) 

(3.25c) 

By placing equation (3.24) into equations (3.25a) and (3.25c), the following can be 

obtained: 

A A A 

Xk+1/k+1 = Xk+1/k +6k+1/k+1 
_A 
- Xk+l/k - CA Ak+1T {Ak+1 CA 1-1Ak+1T +Clk WJ 

Xk+ 1/Ic / 

A 
Xk+1/k - K Wk+l, and 

Ck+1/k+1 = C k/k+1 - K Ak+1CXAk 1/k 

where, 

K = CA A'c+l [Ak+1 Cxk i/k Ak+1 + C lkl]'. Xk+1/k  

(3.26) 

(3.27) 

(3.28) 

By comparing the above with the results from Krakiwsky [1990], the above expressions 

are equivalent to Kalman Filtering except for the term, wk+1. In the formulas given by 

Krakiwsky, the linearization is at a value other than the predicted one, while here, it is at 

the predicted value. 
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3.3 Parameter Removal and Transformation of Normal Equations 

During filtering, some estimated constant parameters may become perfectly known without 

biases and noise such as the ambiguity parameters in GPS. To determine these parameters 

as if they were perfectly known from the beginning, we want to find a rigorous filter 

solution. The following discusses a method that transforms estimated constants in filtering 

to deterministic constants. For convenience, this process is called parameter removal. 

To introduce the method for parameter removal, the parametric adjustment method is used. 

For simplicity in this discussion, all subscripts related to epochs are dropped off. All 

estimated values are referred to having used all information up to the current epoch. 

The state vector is partitioned into two parts: one part corresponds to the constant 

unknowns and the other part corresponds to remaining unknown. Similarly, the design 

matrix, normal matrix, and normal equation are all partitioned accordingly. 

Theorem. If the normal equations of a kinematic system at any epoch are: 

Pxx &x +PxyS"y — u,, 

Pyxt "X +Pyy .Y' = Uy, 

where, 

A 
Y is the constant part of the unknowns in the state vector, 

is the remaining part of the state vector, 

ex and are the variation of and from their approximate values, X0, y. 

(3.29a) 

(3.29b) 

Then, if y becomes a constant known, denoted Yc' the normal equation 3.29 becomes: 

Pxx 3X/\/Y = Ux/y, 

and the weighted sum of the residual squares becomes: 

(3.30) 
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Q1 = £2 + (Yc 9)TP (Yc- .9), (3.31) 

where, 

Uxty = U - 'xy (Yc - Yo), 

'yy = 'yy-yx1 V  XX l ' V xy' 

.9 is the float estimation from equation (3.29), 

xA i is the estimation of x corresponding to the known value of y, 

(3.32) 

£2 is the weighted sum of squared residuals while treating y as the estimated 

parameter vectors, and 

is the weighted sum of residuals while treating y as a vector of known 

constants. 

The proof of the same theorem with parametric adjustment is included in the Appendix. 

Another method to prove the theorem is to use the conditional adjustment method, where, y 

is constrained to the integer values. 
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CHAPTER 4 FAST AMBIGUITY SEARCH 

FILTER: THE CONCEPT AND ITS 

IMPLEMENTATION 

In this section, basic concepts for ambiguity resolution, Fast Ambiguity Search Filter 

(FASF), are described, followed by a special recursive sequential search algorithm. Then, 

the least-squares method to implement FASF is discussed. The observation equations are 

given in Section 4.2 with the prediction model following. Finally, the least-squares 

implementation of FASF is discussed. 

4.1 Development of the Concept of FASF 

FASF uses a least-squares filter, a special ambiguity searching process where ambiguities 

are searched at every epoch until they are fixed, and an index is used to exit the search 

process without completing full search. 

In the current implementation of FASF, the number of potential solutions is used as the 

index to exit the ambiguity search. An attempt is made to fix the ambiguities if the total 

number of potential ambiguity sets from the search is less than a certain threshold. If the 

number is one, the ambiguity set is regarded as the correct one. Otherwise, other tests are 

carried out, such as the ratio test of the sum of squared residuals: the second minimum 

divided by the minimum. If the ratio is larger than the specified threshold, the one with the 

minimum Q (the weighted sum of the squared residuals) is regarded as the correct 

ambiguity set. However, if the radio test fails, the ambiguities are estimated as real values. 
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Since the full search of potential ambiguities is avoided with FASF, only a relatively small 

amount of computation time is needed for ambiguity searching. Consequently, the 

computational efficiency is significantly improved. 

The threshold on the number of potential solutions affects computational efficiency. The 

smaller the threshold, the less the computation is required. However, a small threshold 

requires a longer observation period before ambiguity resolution is made. From the tests 

described in Chapter 5, the threshold of ten works reasonably well. However, this value is 

by no mean an optimal one and should be investigated further. 

A least-squares filter, the equivalent of a Kalman filter obtained by applying least-squares 

theory, is used in FASF and is illustrated in Figure 4.1. In this method, the process noise 

corresponding to the ambiguity parameters from one epoch to the next is zero. The 

ambiguities are searched at every epoch, starting from the first epoch, until they can be 

fixed. Once the ambiguities can be fixed correctly, they are regarded as known integers. 

The principle of FASF can also be used for static positioning by assigning the noise of 

predicted positions as zero; in this case, the velocity components are also zero and are not 

included in the state vector. As will be discussed in section 4.4, the biases in the GPS 

observations are strongly correlated over the time. Adding processing noise in the 

estimated ambiguities may partially compensate the impact of the correlation. However, the 

exact impact should be further investigated. 



Figure 4.1 Flowchart of Fast Ambiguity Search Filter 
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In all previous scheme, the value of an ambiguity parameter could be treated as known only 

if it was correct, or all potential ambiguity sets have to be fully searched. In the paper by 

Blewitt [1989], ambiguity parameters converge sequentially in a static application. His 

main assumption is that by arranging the sequence of ambiguity parameters, at least one of 

the estimated ambiguity parameters will converge to correct integer in terms of a probability 

level he designed. Once the ambiguities are known values, they can be removed from the 

estimation. He also used precise code and wide lane ambiguities. The assumption of the 

convergence may be the case for some static positionings, especially when precise code 

measurements are also used and the observation period is long enough. However, in many 

applications, especially in kinematic applications, the convergence can not be guaranteed. 

The estimation often converges to incorrect values due to various systematic biases. 

4.1.1 Search Algorithm 

One of the important characteristics of FASF is the ambiguity search procedure. Here, 

ambiguities are arranged in a series The search range of each ambiguity is determined 
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recursively and sequentially by updating constraints. To compute the search range of an 

ambiguity parameter in the series, the presumed integer ambiguities on the left of this series 

(assuming the ambiguities are arranged from the left to the right) are regarded as known. 

Here, a recursive procedure can be applied and the constraints are updated in computing the 

uncertainty range for ambiguities from N1 to N. This concept is called the Recursive 

computation of the Search Range for the ambiguities (RCSR), or updating of the 

constraints. 

Assuming the ambiguity series as N1, N2, N3, ..., N,, the search ranges for the 

ambiguities are computed from N1 to N, where, n is the number of ambiguity parameters. 

The search range of possible integers for ambiguity Ni is computed for each specific 

integer set of ambiguities Ni, N2, ..., N1..1. In computing the search range, the values of 

N1, N2, ..., N1.1 are treated as correct, while Ni, N1+1, N1+2, ..., N, are treated as 

estimated parameters. 

Note that the search range of Ni should be equal to the maximum uncertainty range of the 

real estimation of Ni. It can be expressed as: 

XNIJN1 N2, ..., NI-l'in ≤ Ni ≤ XNI/Nl N2, ..., Ni-Imax  (4.1) 

where, 

XNj/N, N2, ..., Ni-Imin is the minimum possible value of Ni if the integer values of 

N1, N2, ..., N1..1 are correct, and 

XNj/N, N2, ..., Ni-lm' is the maximum possible value of Ni if the integer values of 

N1, N2, ..., N1..1 are correct. 

Of course, to compute the search range of Ni, each potential integer set of ambiguities 

N1, N2, ..., N1..1 should also be included in the corresponding ranges derived from the 

same principle described here. Since N1 is the first in the series, its maximum uncertainty 
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is derived from the float solution without fixing any ambiguities to possible integer values. 

All integer sets falling into these ranges should be included. 

Not all integer ambiguity sets will be included in these search ranges. However, the correct 

solution will be included if the search ranges of possible ambiguities are computed 

properly. Incorrect sets of ambiguities may also be included in the search ranges due to 

insufficient geometry, the effect of noise, and poor initial a-priori information, though the 

incorrect solutions normally have a higher chance of being rejected in the RCSR. 

However, as observations and geometry accumulate, only the correct solution will continue 

to satisfy these search ranges. In the case of good geometry, low noise, and good a-priori 

information, it is possible to determine the ambiguities in a few epochs (even one epoch). 

However, for single frequency observations, it will normally be rare that ambiguities will 

be resolved in one epoch except in some very favorable conditions, such as a large number 

of satellites, very small biases and low noise in the phase and pseudorange observations, 

and special satellite configurations. 

4.1.2 Search Algorithm Based on RCSR 

To explain the basic concept of FASF in more detail, a search process based on the RCSR 

can be designed. The search is a procedure of multi-level loops as described below: 

Loop 1: Compute the search range for ambiguity N1. 

1. The search range for N1 is computed without constraining any ambiguities to integers. 

The correct value of N1 is one of the integers in this range if the search range is 

computed properly. 

2. For each possible integer of in the search range of N1, search for possible integer 

values of other ambiguities. That is, go to the deeper loops for other ambiguities. 
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3. Exit the search loop when all the possible integers of N1 have been searched. 

Loop 2: Compute the search range for N2 

1. Corresponding to each constraint of N1 to a possible integer, the range of all the 

possible integers for N2 is computed as if the constrained value of NI was a correct 

integer value of Ni. When Ni is a correct value, the correct N2 will be included in the 

range and deeper loops can be carried forward. 

2. If no integer is in the range of N2, go back to loop NI and search the next possible 

integer of N1. 

3. Go to upper loop level, loop N1, if all the possible integers have been searched. 

Loop 3: Compute search range for N3 

1. Similarly, for each constraint of Ni and N2 to their integers, compute the search range 

for N3. The specific integer pair of Ni and N2 is treated as correct values in the range 

computation. When the integer pair of N1 and N2 is correct, the correct value of N3 

will be included in the search range. 

2. For the integer pair of N1 and N2, if no integer is available in the computed range of 

N3, continue to search for the next available integer pair of Nj and N2 (the next step in 

loops N1 and N2). 

3. Go to the upper loop, loop N2, if all the possible integers of N3 have been searched. 

Loop i: Compute the search range of N 

1. Again similarly, compute the search range of all possible integers of Ni corresponding 

to each set of constrained integer values for N1,. The specific integers of 

ambiguities N1,...,N11 are correct values in the range computation. 

2. If the integer set for Ni,.. .,N..i is correct and the search range is appropriate, the 

correct integer of Ni will be included in the search range and the deeper loop can be 

carried forwards. If no integer is available in the computed range of Nicorresponding 
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to a specific set of Ni,.. .,N.j, search the next available integer set of Ni,.. .,N..j 

(i.e., the next step in loops Ni,...,Ni). 

3. Go to upper level of loop (i.e. N1) if all the possible integers of Nihave been 

searched. 

Loop 1+1 to Loop n-i: Similar to the above. 

Loop n: Compute the search range of for N 

1. Compute the search range for Nn corresponding to each integer set of Ni, ..., 

2. If no integer is in the search range of N, go back to loop N..i and search the next 

possible integer of Nn-1. 

3. Go to the upper loop level, loop Ni, if all the possible integers of N have been 

searched. 

Loop Nn is the deepest loop in the ambiguity search. Therefore, a full set of integer 

ambiguities is obtained for each possible integer of N. That is, a possible ambiguity set 

can be obtained by putting together the integer ambiguities of different loops since each 

loop is related to an ambiguity parameter. Therefore, the possible number of integers for 

ambiguity Nn in this loop is added to the total number of potential solutions. 

Whenever the accumulated number is larger than a certain threshold, for example, one, 

four, ten, etc., depending on the circumstances, it becomes apparent that fixing ambiguities 

may not be possible. At this time, the search process stops and the ambiguities are 

estimated as real numbers. The number of potential ambiguity sets is used as an index of 

possible inabilities to fix the ambiguities. The use of the index is justified because the 

greater the number of potential solutions available, the less likely the correct ambiguity 

resolution will be retained. 
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4.1.3 Size of Search Windows 

The second cause of the reduced computation of FASF is the window size for each 

ambiguity. As described earlier, in a traditional approach, the window sizes of individual 

ambiguities are unrelated to one another, except in Hatch's algorithm where the values of 

the secondary ambiguity parameters are almost uniquely determined by the values of the 

primary ambiguities. However, by using the RCSR concept presented here, the search 

windows of ambiguity parameters are related to each other. As a result, sequential 

updating of constraints normally makes subsequent uncertainty ranges smaller and smaller. 

The difference in the window sizes is illustrated in Figure 4.2. For convenience, in this 

figure, the window sizes of different ambiguity parameters in the full search method are 

assumed to be constant and the ambiguity parameters are arranged in the same order for the 

different methods. 

Figure 4.2 Illustration of Window Sizes for Three Different Approaches 

Although the search windows for the first epoch are the same for the full search in Landau 

and Euler's approach, the latter uses an optimized Cholesky decomposition algorithm to 

compute Q. As demonstrated in Landau and Euler [1992], there is a significant 

computational difference between the two approaches. 
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By using the RCSR concept, the decrease in window size is dependent on the correlation 

between the ambiguity parameters. In applying RCSR, the steepness of window size 

relative to ambiguities will increase as the number of observations increases and geometry 

changes. 

The window sizes for RCSR are smaller than for the full search or for Landau and Euler's 

approach. The window sizes for the primary satellites in RCSR are smaller than for 

Hatch's method. Actually, it is not necessary to keep the concept of the primary and the 

secondary ambiguities in RCSR. The concept is described here only for comparison with 

Hatch's method. However, for secondary ambiguities, the window sizes of RCSR can be 

smaller or larger than for Hatch's method. In Hatch's method, there is a unique set of 

windows for the secondary ambiguities [Hatch, 1991]; in the RCSR concept, there may be 

none or more than one set of secondary ambiguities for a specific integer set of primary 

ambiguities. 

4.1.4 Validation of the New Concept 

With the intent of validating the RCSR concept, the following theorem is first presented: 

RCSR Theorem: 

If the set of potential ambiguity solutions is: 

Nn = { (N1,.., N, ...N), 

while for each Ni(1=1,.., n), 

(xN1/N1N2 

(4.2) 

where, 

≤ Ni ≤ XNj/N1N2 . / max r) Ni € Ii) 
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XN1 INi, N2, ..., 
Nl..lmm is the minimum possible value of Ni if the integer values of 

N1, N2, ..., N1..1 are correct, 

XN1 /N1, N2, ..., 
Nl..lma is the maximum possible value of Ni if the integer values of 

N1, N2, ..., N1..1 are correct 

Il is one dimensional integer space and ci is logical 'and'. 

Note that XNj/N1, N2, ..., Ni-i mm and XNI/N1, N2, ..., Ni-i max should be formulated in a 

way that when the values of N1,.., N11 are correct, the correct value of Ni' will be 

included between them; 

Then, the correct ambiguity set is included in N. 

The theorem shows that when the uncertainty ranges are properly computed, the correct 

values of ambiguities are always included in the potential ambiguity sets by using any 

recursive method based on the RCSR. 

The following is the prove of the theorem: 

When n =1, Nn becomes N1 = { N, (xNlmifl ≤ N1 ≤ xNlmax) N1 r= 11). From 

the definition, the correct ambiguity, solution should be one of the sets from N1. 

Therefore, the theorem is true when n =1. 

If we can further prove true for n =k+l under the condition of being true for n = k, it 

becomes true. 

Assuming that the theorem is true for n =k, the potential ambiguity set defined in the 

theorem is denoted as N 'k• According to the assumption, the correct ambiguity set 

should be inside N 'k Denoting the correct values of the first k ambiguity parameters 

as N'1, N'2, N'k, from the definition of the maximum uncertainty in the theorem, 

the correct value of ambiguity Nk+1 will be included between xNk+1IN'l N'2, ..., N1km 
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and XNk+1IN'l, N'2, ..., Nkmax corresponding to ambiguity values, N'1, N'2, ..., N'j,. 

This correct value is designated as N'k+l. 

Therefore, N'1, N', N'k, N'k+l are the correct values of N1, N2.., N, ...Nk+1, 

i.e., the correct values of N1, N2,.., N, ..., Nk+1 are included in the theorem for n 

=k +1 if the correct values of N1, N2, ..., Nj, are included for n = k. 

According to the theory of mathematical induction, it can be concluded that the theorem 

is true. 

Although RCSR is rigorous, the difficulty in this method is the determination of the 

uncertainty range due to the complex nature of noise. On the one hand, the range should be 

large enough to include the correct solution when other assumed integer ambiguity 

parameters are held fixed. On the other hand, the range should not be exaggerated. If the 

range is too large, more incorrect solutions will be included, and the discrimination 

between the correct solution and incorrect ones will be more difficult. If the uncertainty 

ranges are not properly computed, the correct solution may not be included in N. If that 

happens, the ambiguity resolution will fail. Many methods are possible to compute the 

search ranges. As a first effort, a least-squares method to compute the search range is 

described in section 4.3. 

4.2 Filter Scheme 

In this section, the least-squares filter is applied to implement the basic ideas previously 

described. Following the general double difference observation equations, the prediction 

of the state vector is described and the adjustment algorithm is applied. The adjustment 

algorithm applied is equivalent to the standard Kalman filter [Chapter 3]. 
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4.2.1 Observation Equations 

The vector form of double difference UPS observations after the various corrections have 

been applied can be written as: 

4Vlph 

LWlpsr 

=4Vp +2,/SVN+4Veh, 

—i.tVp +1AVpsr, (4.3) 

where, 

LtVlph is the vector of double difference phase observations in metres, 

LWlpsr is the vector of the double difference pseudorange observations in metres, 

VP is the vector of double differenced geometric propagation distances from the 

satellites to the receivers, in metres, 

is the whole wavelength of the carrier, Li, L2, or the wavelength of a linear 

combination of dual frequency observations. However, for squaring 

type receivers [Wells et al. 1987], it is the half of the carrier wavelength, in 

metres, and 

A Vspj and A VSpsr are residual vectors in metres. 

After linearization, equation (4.3) can be written as: 

r=ASx+w, (4.4) 

where, 

'7 P' r = -I 1 is the residual vector. The variance-covariance matrix of the 
LA VSpsr J 

observations is denoted as Cj, 

8x is the correction to the approximated state vector, 

A is the partial derivatives of the observations with respect to the state vector (called 

the first order design matrix), and 

w is the misclosure after linearization. 



55 

To obtain the solution of 6x, the weighted parametric least-squares adjustment can be 

applied. The normal equation is: 

P82=u, (4.5) 

where, 

&Q is the least-squares estimation using all information up to the current epoch, and 

u =AT Cf1 w + Cj 1 ox0, 

P =ATCflA+CTX) 1, (4.6) 

where, 

Ox0 is the variation of the a-priori state vector from the point where the linearization is 

made, and 

CX) is the variance-covariance matrix of x0. 

For the combined solution of the phase and code, 

AT C1 1A = AphT Cph 1 Aph + ApsrT Cpsr 1 Apsr, 

AT C(1 W = AphT Cph 1 Wph + ApsrT Cpsr 1 Wpsr, 

where, 

Aph, Cph, and Wph correspond to the phase observable, and 

Apsr, Cpsr, and Wpsr correspond to the pseudorange observable. 

For the code only solution, 

AT C1 1 A = ApsrT Cpsr 1 and 

AT C1 1 W = ApsrT Cpsr' Wpsr. 

For the phase only solution, 

AT Cl1 A = ApsrT Cpsr 1 Apsr, and 

(4.7) 

(4.8) 

AT CI -1 W = AphT Cph 1Wph. (4.9) 

If there is no a-priori information, equation (4.6) becomes: 
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u =ATC(iw ,and 

P =ATC(1A . (4.10) 

In a kinematic application, the observation equation can be linearized around the a-priori 

state vector. Then, equation (4.6) is reduced to: 

u =ATCf'w ,and 

P = AT CI-1 A + Cj (4.11) 

The state vector normally includes position, velocity, and ambiguity parameters. The 

ambiguity parameters are not included in the state vector if no phase observations are used 

or if ambiguity parameters are fixed. 

Since only the difference between ambiguity parameters will affect the observation equation 

(4.3), the ambiguity parameters are defined as the differences between a specific satellite 

and all other satellites. The differences are defined in a way such that each double 

difference ambiguity in equation (4.3) can be uniquely and linearly combined by these 

parameters. 

The components of the design matrix are listed in Table 4.1, assuming that the double 

difference observations are made with respect to the first satellite. 

The variance-covariance matrix for the double difference phase or the code observations is: 

21...1 
12 1 

. ] , 

(4.12) 

11...2 

where, 

CO 
is the a-priori variance for undifferenced observations, and 

can be inverted by the general method. However, the inversion can be computed 

simply using the following formula: 
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n/(n+l) -1/(n±1) ... -1/(n+1) 
C-1=1/2o-1 -1/(n+1) n/(n+l) ... -1/(n+1) 

-1/(n+1) -1/(n+1) .. n /(n+ l) 

(4.13) 

In kinematic positioning, the a-priori state vector is normally computed from the estimated 

state vector of the previous epoch by using a prediction model (see next sub-section). 

Table 4.1 Partial Derivatives with Respect to the Components of the State Vector. 
(Assuming the double difference are made with respect to 1'st satellite) 

Observable Pseudorange Carrier phase 

With 

respect to 

coordinates 

ra17— 
a2T 

LanT_ 

where, 

ai = U1R - U0R, 

i =1,2,..,n. (Assumed n +1 satellites available). 

U1R and uOR are unit vectors from satellite i and 0 to the remote station. 

With 
respect to 
velocity 

A special case if the first satellite is the reference satellite and 
the order of the satellites is the same as the order of the 

With ambiguity parameters: 

respectto 

ambiguities 10 ... 0 
(Only if 0 0 ... 1 

ambiguities If not, each element at row i and column] is: 

are 

estimated) 
where, 

2. is the wavelength, 
- f 1,ifi andj are referred to the same satellites 

3 - 1.0, otherwise 

n is the number of the double difference observations 
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4.2.2 Prediction of the State Vector 

Assuming that the state vector contains the coordinates, velocities, and ambiguity 

parameters, the predicted state vector is then: 
A l r 

A jA I IA rxck+1/kxcklk + + XVk/k (tk•1 - tk)] rSCk+1/kl 

Xk+1/k = I XV/.1// J I = I XVk/k 
1A I IA 
LXflk+1/kJ LXflk/k to 

r I (dt I) 0 rxck/k 1 reCk+1/kl 
=1 0 I Olvk/k Vk+1/kI 
Lo 0 I Lxnk/kJ [0 ] 

= [0 I 0 k/k + k•1/k 

1 (dt 1) 0 1 reCk4.1/k] 

Lo 0 IJ to 

where, 

(4.14) 

xk+1/k is the state vector at epoch k+1, estimated from all the information up to epoch 

k (i.e., the predicted state vector at epoch k+1), 

xck+1/k, xvk+1/k, and 'xnk+l/k are the components Ofk+1/k for the coordinates, 

velocity, and the ambiguity parameters correspondingly, 

A A A 
xck/k, xvk/k, and xnk/k are the state vectors at epoch k estimated from the information 

up to epoch k, and 

Eck+1/k and svk+1/k are the noise of the prediction model on the coordinate and velocity 

vectors. 

From the law of error propagation, the variance-covariance ofk+1/k is: 

I (dt 1) 01 r I 0 0 1 I CSck+1/k Cecvk+1/k 0 

Ck+1/k = 0 1 0 (dt 1) 1 0 + C&vk+1/kT Cevk+1/k 0 
10 01] Lo oii[ 0 0 
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r I (dt I) 0 Cck/k Ccvk/k Ccnk/k I I 0 0 

= I 0 1 0 Ccvk/kT Cvk/k Cvnk/k (dt l) I 0 
L 0 0 1 J Ccnk/kT Cvnk/kT Cnk/k L 0 0 i 

Cscj+i/i CEcvk+1/k 0 

+ I Cecv + /j" C2vk+1/k 0 

L 0 0 0 

Cck/k +dt (CcvklkT+Ccvk/k)+dt2Cvklk 

= (Ccvk/k +dt Cvk/k)T 

LCcnk/kT+dt Cvnk/kT 

[Cck+ 1/k CeCvk+1/k 0 1 
1 Cecvj+i/jT Cevk+1/k 0 

Lo 0 oJ 

Ccvk/k +dt Cvk/k 

Cvk/k 

Cvnk/kT 

Ccnk/k +dtCvnk/k 

Cvnk/k 

Cnk/k I 
(4.15) 

where, 

I is the unit matrix, 

dt is the time difference between epochs k+1 and k, 

Cck/k, Ccvk/k, Ccnk/k, Cvk/k, Cvnk/k, Cnk/k are the components of the variance-

covariance matrix corresponding to the estimated state vectork/k, and 

CCck+1/k, Cavk+1/k, and Csvk+1/k are the variance-covariance matrices of the 

prediction noise for coordinates and velocity. 

If the velocity is not included in the state vector, all components corresponding to the 

velocity become null. The same happens if the ambiguity parameters are not included. 

4.3 Computation of the Uncertainty Range Using Least-Squares 

In the previous sections, a specific method to compute the search range was not mentioned. 

In this section, a least-squares filter is applied to compute the search range. The predicted 
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state vector and the direct GPS observations are all regarded as observables in the 

estimation process. 

When the cycle ambiguity parameters are estimated as real values, the system of normal 

equations can then be derived using the parametric adjustment method as follows (Section 

4.2.1): 

PCC  +PCN&QN = uc,and 

NC SXC + PNN SXN = 11N, (4.16) 

where, 

(5xN is the estimated correction of the ambiguity parameters to be estimated as the 

real values, 

82c is the estimated correction of the other parameters, 

Pcc PCN NC' and PNN are the sub-matrices of the normal matrix partitioned 

corresponding to xc and XN, and 

uc and UN are the constant terms in the normal equations. 

By eliminating the parameter from the second part of equation (4.16), the following 

equation can be obtained: 

where, 

PNN SXN =, (4.17) 

NN = NN - NC 'CC 1 1'CN' and 

UN = UN - NC 1'CC UC. (4.18) 

Assuming that ambiguities N1, N2.., N11 have been assigned integer values, denoted as 

NJ, a least-squares solution is now required for N, ..., Nn while treating N1, N2.., N1.j 

as known values. 
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A tree of filters can be used. Each filter corresponds to each different set of ambiguity 

values. However, such an approach will complicate programming and computation. A 

simpler solution is to convert the solution of equation (4.17) to an equivalent solution of 

partially fixed ambiguities using the parameter removal theorem discussed in the last 

chapter. 

To get the filter solution when ambiguities N1, N2, ..., N1..1 are treated as known 

integers, the normal equations are partitioned before ambiguity fixing. That is, the full float 

estimated ambiguity parameters are partitioned into two parts, one corresponding to 

A A A 
Ni, N2.., N1..1, denoted as SXNa (the vector form of SxN1, ...,SxNj..1); the other 

corresponding to N, ..., N, , denoted as S2Nb (the vector form of &Ni, . . . 

equation (4.17) can be partitioned like the partition in equation (4.16): 

PNaa &AXNa + Nab SXNb = UNa, and 

Then, 

Nba &XANa + PNbb ôXNb = UNb, (4.19) 

where, 

Naa, Nab, Nba, and Nbb are the sub-matrices of the normal matrix (NN) 

partitioned corresponding to &Na and c5xNb, and 

t1Na and AuNb are the constant terms in the partitioned normal equations. 

Note: In the above equations, all ambiguity parameters are estimated as real. 

When XNa becomes known, denoted as NI, values of Ni, ..., N. are denoted as &A NbINI 

N2 NI.i• According to the theorem in Chapter 3, when XNa is treated as the fixed value 

vector, the corresponding normal equation after eliminating the non-ambiguity parameters 

becomes: 

Nbb SXNb/Ni, N2, ..., Nj-i = UNb - 15Nba (NI - XNa0), (4.20) 
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where, 

XNa° is the approximate value that SXNa is referred to. 

Therefore, the float estimation of remaining ambiguity parameters is: 

SXNb/Nl, N2, ..., NI-1 = 1Nbb (AUNb - '5Nba (NI - XNa°)). 

The corresponding variance-covariance matrix is PNbb . 

(4.21) 

From equation (4.19), the float estimation of &Qj, without fixing any ambiguity, is: 

4äXNb = PNbb 1 (uNb - Nba SXNa). (4.22) 

By differencing between equations (4.21) and (4.22), the following can be obtained: 

cäxNb/Ni, N2, ..,, Nj-i - 'SXNb = Nbb 1 tNba Ox - (NI - XNa0)). 

A A 
Since XNa = SXNa + XNa°, the above equation becomes: 

SxNb/Nl N2, ..., Nj-i - SXNb = Nbb 1 Nba (Na - Nj). 

That is, 

A A 

XNb/N1, N2, ..., Ni-i - xNb .PNbb 1 1Nba (Na _N 1). 

(4.23) 

(4.24) 

(4.25) 

Also since only the float estimation of Ni is of concern, only the first element of 

SXNb/N1N2N1.i is to be computed. That is, 

XNi/N1, N2, ..., Nj-i XNj + a1 T (2iia - Nj), 

where, 

ai T = 1 'st row of (PNbb 1 Nba) 

= 1'st row of (Ppj 1) PNba 

(4.26) 

The variance of the estimated &NbIN1 N2 Nj..i corresponds to the elements of the first row 

and the first column °Nbb4 multiplied by the variance factor (a0 ). That is, 



63 

CxNi = 0 0 [Pj,r]j. (4.27) 

As seen, only the first row of Nbb1 needs to be computed. 

After the float solution and its variance is obtained, the maximum uncertainty range for 

possible integer values of xNi can be computed as: 

≤ XNj/N1, N2, ... Ni-1 - aXN /Nl, N2, ..., Ni-1 ≤N1 

XNj/N 1, N2, ... Ni-1 + aXNlINl N2, ..., Ni-1' 

where, 

(4.28) 

is the expansion factor from the standard deviation to the maximum possible 
uncertainty. 

Since both aj and XNI/N a 1, N2, ..., Ni-i are independent on the values of N1, N2, 

N1..1, both can be computed outside the search loops. Theoretically, 4 can be related to 

a probability level if the noises in the GPS observations are uncorrelated in the time 

domain. However, this is not always true. The noise of a GPS observable is correlated 

from epoch to epoch and the form of the correlation is unknown. Therefore, the 

probability level based on the assumption of independent observations is not suitable here. 

For the first ambiguity, N1, xN1 and aXN1 are computed without fixing any other 

ambiguities. 

As the uncertainty range is linearly proportional to both the a-priori standard deviation of 

the observation and the expansion factor, the increase or decrease of the expansion factor 

can also be equivalently achieved by the same amount of the increase or decrease in the 

expansion factor. However, this increase or decrease will make the a-priori standard 

deviation deviate from the actual level of the noise and the biases. Therefore, it is better to 

keep a-priori standard deviation close to the actual value and adjust the expansion factor so 
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that the correct ambiguities will be included in all range checks described in equation 

(4.28). 

According to the parameter removal theorem in Chapter 3, the weighted sum of the squared 

residuals can be computed as: 

/XN=NF = Q + (NF - XN)T FNN (NF - (4.29) 

where, 

NF is the potential solution of the full ambiguity set, 

Q/XN =NF is the adjusted £2 corresponding to fixed ambiguity values, 

XN is the float ambiguity vector from the least-squares estimation, and 

£2 is the sum of the squared residuals while all ambiguity parameters are estimated 

as real values. 

4.4 Expansion Factor 

The presumption for the standard deviation of the float ambiguities is that the noise in the 

observation should be uncorrelated from epoch to epoch. In this ideal case, equation 

(4.28) can be explained by a statistical confidence interval [Vanfck and Krakiwsky, 1987]. 

Assuming that the observation error is Gaussian distributed and uncorrelated over the time, 

in order to achieve a probability level of 1-a so that a correct solution is included as a 

potential solution satisfying equation (4.28), the expansion factor in the equation can be 

expressed as: 

1-a/(2n), (4.30) 

where, 

1-a /(2 n) is the expansion factor of individual two-tailed statistical test with the 



65 

significant level of a/n, and 

n is the number of ambiguities. 

With six ambiguity parameters, and the confidence level of 0.99, the expansion factor will 

be 3.765. Similarly, the expansion factors 3 and 15 correspond to confidence levels of 

0.984 and .99999999 for six ambiguities. 

In many cases, there is a strong correlation between the errors from different epochs. The 

standard deviations derived from least-squares may not be able to represent the 

uncertainties correctly in many cases. This correlation makes the estimated standard 

deviation too optimistic. Typically, a value between 3 and 15 is used for the least-squares 

FASF. The exact value is dependent on the correlation over time. If the correlation is large 

and only a small value of the expansion factor is used, the correct ambiguities are most 

likely to be excluded from the search ranges. Therefore, if the correlation level is 

unknown, a conservative value of 15 is recommended. However, if the biases in the 

observations are small and a large expansion factor is used, it will take longer. 

The following two simplified examples may help to understand the problem better. The 

correct values in the examples are zeros and are supposed to be unknown; the measured 

values are 0.00 + noise; there are 401 measurements. The purpose in presenting these 

problems is to derive the correct integer value from equation (4.28). 

Example 1: Pure white noise. The a-priori standard deviation of the measurement error is 

=1.00 (Figure 4.3). The value from the least-squares estimation is -0.025 with the 

standard deviation of /20=0.05 (from the a-priori standard deviation). With a confidence 

level of .99, the expansion factor is 3.765. By applying equation (3.32), the search range 
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is from -0.214 to 0.164. The only integer value included is zero. In this case, the correct 

value is obtained. 

4 

1) 

0 
I I 

100 200 300 400 

Epochs 

Figure 4.3 White noise 

The adjusted value is 1.0. With a confidence level of .99, the search range is from 0.811 

to 1.189. Only the incorrect solution is included. 

Example 2: Constant noise with value of one (see Figure 4.4). The a-priori standard 

deviation is a=1. 

4 

0 100 200 300 400 
Epochs 

Figure 4.4 Constant Noise 
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For the strongly correlated observations from epoch to epoch, the standard deviation from 

the least-squares estimation for the partially assumed ambiguities is too optimistic. This 

problem can be partially considered by the proper selection of the expansion factor in 

converting the standard deviation to the maximum possible error for the float estimation. 

However, the difficulty here is that this expansion factor is highly dependent on the 

correlation of errors in the observations. The exact relationship between the correlation and 

the expansion factor is also unknown. Furthermore, no current models exist on the 

relationship between the correlation and the environment. The selection of a universal 

value is still a problem to be solved. The correlation coupled with the geometry makes the 

estimated standard deviation even more complicated. The relationship between the 

geometry, error pattern, success rate, and time required to resolve ambiguities also needs to 

be further investigated. Under strongly correlated observation noise, the longer the period 

of the observations for the float solution, the more serious the distortion. 

The least-squares FASF will work fine where only a few epochs of observations are 

needed to resolve ambiguities since the distortion of standard deviation will be serious only 

when extensive observations are accumulated. For example, in the case of favorable 

geometry, the FASF should be good even if there is strong correlation in the observations 

from epoch to epoch. Also, for dual frequency receivers, where the wide lane ambiguities 

can be formed either explicitly or implicitly, FASF will also work properly because of the 

relatively small size of the search range in terms of cycles. 
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CHAPTER 5 TESTING AND ANALYSIS OF 

FASF 

The theoretical advantage of FASF is tested with four data sets. One of the data sets is 

static, but processed as if it were kinematic. The other three sets are kinematic data from 

land, air, and sea experiments. Some of the kinematic data have previously been used for 

ambiguity resolutions based on a modified Hatch's algorithm. All these data sets are 

analyzed using a program developed by the author based on the FASF concept and its least-

squares implementation. The results of these analyses are presented here in the 

comparison with previous results. 

The static data set is analyzed in Section 5.1; the land kinematic experiment is analyzed in 

Section 5.2; the air experiment is presented in Section 5.3; the marine data is examined in 

Section 5.4. The threshold of maximum number of potential solutions (Chapter 4) is taken 

as ten in all the analysis. 

5.1 Kinematic Analysis of Static Data 

5.1.1 Description of Test Data 

The experiment was conducted on February 12, 1993, on the Springbank Test Range, 

using NovAtel Li GPSCardTM (model 951R) units. In this analysis, a static data over a 

short baseline was used. 
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Although the code observations of the NovAtel GPSCardTM are very precise (Cannon and 

Lachapelle, 1992), this analysis is intended to demonstrate only the computational 

advantage of FASF and thus, the code observations are not used. The inclusion of code 

measurements will be discussed in later sections. 

5.1.2 Data Analysis  

A 486/50 PC was used for the data reduction. The characteristics of the data processing are 

listed in Table 5.1. The standard deviation Uph was assigned arbitrarily. 

Table 5.1 The specifications of Data Processing Characteristics 

of initial c of prediction 
state for x  
33m 3m 

of the 
prediction for v 

3m/s 

Oph 

1.5 cm 

Mask angle 

10 degrees 

The computation time versus the number of epochs is shown in Figure 5.1. The short 

vertical lines represent the time required to search the integer ambiguities. The time needed 

for ambiguity searching is either zero or 0.06 second. The zero time is caused by the 

resolution of the PC system time. 

A 
1.0— 

U) 

0.5 

:9 0.06 

11111111 III 1111111 J1 III 1111 IIIIIIIIIlIIIIII luill II liii liii II 111111111111 00 
0 100 200 300 

Epochs 
Figure 5.1 Computation Time for Epoch by Epoch Ambiguity Search 
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A comparison of the computation time with other methods is shown in Table 5.2. As 

shown, FASF has a clear advantage in terms of computational time. The time required for 

Landau and Euler's method is an optimistic estimation. At the initial search epochs, the 

time required in Landau and Euler's method is much longer than the values presented here. 

Table 5.2 Computation Time: FASF vs. Others 
(six Satellites, 486/50 Computer) 

** 

range in 
cycles 

methods 

FASF 

Landau & Euler 

Hatch 

Full search 

±10 ±50 ±500 

0.06s 

0.1* 

0.2** 

9x10*** 

0.06s 0.06s  

1.5* 71* 

39** 3x104** 

3x105*** 3x1010*** 

Estimated from Landau and Euler's paper, [1992]. The time required for the window of ±500 in their 
method was projected from the titne required for the windows of ±10 and ±50. The computation 
formula is 1.5*(W/50)l.68, where, W is the size of the window. 
The time for the window of ±50 was experienced by Lu [1993], using the 1993 version of 
FLYKIN[Lachape1le et al. 1993]. The other two values were computed by 30*(W/50)3. 
The time for the full search method was computed by the time required for Hatch's method multiplied 
by (2*Wy 3, where, n was the number of the ambiguity parameters. 

The variations from the FASF solution in height are depicted in Figure 5.2. As seen, 

before the ambiguities are fixed, the float solution deviates by as much as 10 m. However, 

after correctly fixing the ambiguities, the deviation becomes much smaller. The 

convergence time, the time required to resolve ambiguities, is about 1100 seconds. As 

stated previously, no code measurements were used in this analysis. The standard 

variation of the a-priori coordinates is 33 metres. That could be improved if code 

information was used. 

The variations of the updated heights using the fixed ambiguity parameters from the OTF 

solution are shown in Figure 5.3. No systematic errors larger than 1.5 cm are evident. 

The small deviations are mostly caused by carrier phase multipath. A constant value of 
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1184.39 m has been subtracted from the height in Figures 5.2 and 5.3. The plots in these 

figures are thinned out by a factor of five. The same was also applied to the carrier phase 

residuals in Figure 5.4. Similarly in Figure 5.4, there is no noticeable long term systematic 

effect. The small periodic variations are mostly caused by multipath effects. 
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Figure 5.4 Residuals of Phase Observations using the Fixed Ambiguities 

5.2 Kinematic Land Testing 

5.2.1 Description of the Experimental Data 

The data was obtained on Aug. 25, 1992, on the Springbank Test Range, located 20 km 

west of Calgary. The experiment was originally intended to compare P-code and C/A-code 

Li Narrow CorrelatorTM spacing receiver technologies to resolve ambiguities using Hatch's 

method [Lachapelle et al. 1993a]. In this analysis, only a portion of the Li data between 

GPS times of 260218 and 261193 seconds is used. The receivers were all NovAtel 

GPSCardsTM (Model 951R) and antennas were geodetic type (Model 50 1) with choker-ring 

groundplanes. 

The remote unit was mounted on a vehicle travelling at speeds of up to 70 km h1. The 

distance between the reference station and the vehicle did not exceed a few kilometres (see 

Figure 5.5). A static initialization at the control points was performed at the start and end 

of the 15-minute trial to assess independently the correctness of the solutions. The return 

to the original point was also used as a check on the ambiguity solution. 
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Figure 5.5 Trajectory of the Moving Unit (after Lachapelle et al. [1993]) 

As indicated in the figure, trees located near the corner of the L-shaped trajectory created a 

multipath signal on the nearby highway. The period of the most multipath effect was 

between the GPS time of 260528 and 260758 seconds (see Lachapelle et al. [1993a] for the 

details). Seven satellites were available during the experiment and the PDOP was less than 

three. 

5.2.2 Analysis of Results 

The accuracy of the initial coordinates of the moving unit was set at 3m (1). The process 

noise of the moving vehicle, error of the predicted position and velocity, was set at 3 m 

(i(y) for the positioning components, and 3 ms-1 for the velocity components. Observation 

noise was set at 1.8 cm (la), the value previously used by Lachapelle et al. [1993a], and an 

expansion factor of three was used. The masking angle was set at 10° and the original data 

was collected at the rate of 1 Hz. 

The observation time required for FASF ambiguity resolution OTF was investigated by 

conducting numerous computational trials on the kinematic portion of the data, each one 
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shifted in time by 10 s. The number of epochs required for each trial is shown in Figure 

5.6. In the period corresponding to the strong multipath interference, significantly more 

epochs are required to resolve the cycle ambiguities. The statistics of such trials are 

summarized in Table 5.3. A comparison with a previous analysis using a modified 

Hatch's method by Lachapelle et al. [1993a] is summarized in Table 5.4. Two groups are 

listed, one was under the effect of the trees (i.e., between GPS times of 260528 and 

260758 seconds); the other was clear from the trees. The number of trials, number of 

identical solutions, success rate (number of identical trials divided by total trials), and 

average epochs required for the success trials are listed. As seen, a substantial 

improvement is achieved with FASF. The impact of carrier phase multipath caused by 

trees on convergence time is still significant but much less than in the case of the least-

squares search technique. 
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Table 5.3 Summary of the Ambiguity Resolution Using the FASF Method 

Multipath 

clear 

trees 

1.8cm 

1.8cm 

Number 
of Trials 

72 

24 

Average Epochs 
Required 

11 

18 

Success 
Rate  

100% 

100% 

Table 5.4 Statistics of the Repeated Ambiguity Solutions Based on Hatch's 
Method [Lachapelle et al., 1993a]. 

Multipath &V 
Number of 

Trials 
Average Epochs 

Required 
Success 
Rate 

clear 

tree 

1.8cm 

1.8cm 

43 

30 

106 

500 

100% 

100% 

It should be pointed out that substantially more trials have been obtained in this analysis 

than those in Lachapelle et al. {1993aJ. However, the same data was used. In the analysis 

by Lachapelle et al.[1993a], ambiguity solutions could not be obtained close to the end of 

the session when Hatch's least-squares method was used. These trials were not counted in 

Table 5.3. However, the ambiguity resolutions were still obtained at the very end of the 

session by using FASF. Another differenâe in the analysis is that the number of trials 

under the effect of trees is less than those in Lachapelle et al. [1993a]. 

Static ambiguity resolution was also made using the data at the beginning of the session. 

As expected, the same ambiguity resolution was obtained as those from kinematic 

solutions. The misciosure between the positions of the start and the end epochs was also 

compared. The misciosure was at millimetre level in both height and horizontal 

components. 
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Figure 5.7 Residuals of Double Difference Phase Observations 

Using the fixed ambiguities from OTF solution, the whole data set was reprocessed. The 

residuals of double difference phase measurements are shown in Figure 5.7. The residuals 

obtained from the estimation process grow to about 10 mm during the trajectory segment 

affected by trees. The fact that no long term trend is affecting the residuals shows fairly 

reliably that the correct ambiguity solution has been obtained. The periodic variations were 

mostly caused by multipath interference. The high frequency variation at the millimetre 

level was caused by the observation noise. The residuals of the C/A code measurements 

are shown in Figure 5.8. Most of the residuals are clearly below 1 m. 
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5.3 Airborne Testing 

Data obtained with a pair of dual frequency Trimble 4000SSE receivers operating in 

P-code mode was used in this case. The data was provided by GeoSURV Inc., of Ottawa, 

and was collected in the Muskoka area of Ontario in Spring of 1993. The station, located at 

an airport, was used as the base station for data analysis here. At the start, the distance 

from the base station was up to 66 km and the height was up to 2.5 km (Figures 5.9). The 

plane traveled at a speed of 80 m/s with occasional rates of up to 104 m/s (Figure 5.10). 

The data between GPS time of 60914 and 65000 seconds, at GPS week 696, are analyzed 

here. 

The number of the visible satellites was usually seven (Figure 5.11). Towards the end of 

the period, the number dropped to six and five. The number was less than five at some 

periods and thus the ambiguity resolutions were not possible. The infinite PDOPs (Figure 

5.12) [Wells et al., 1987] correspond to the time that less than four satellites were 
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available. The elevations of the observed satellites during this period are plotted in Figure 

5.13. 
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Figure 5.13 The Elevation of Observed Satellites with a Mask Angle of 10 
Degrees 

The wide lane combination of phase observations (L1-L2) was used. The mask angle was 

ten degrees. The noise level was set at 2.8 cm for the double difference widelane phase 

observable (1) and the expansion factor of three was used. 

As in the case of the land test, the observation time required for ambiguity resolution OTF 

was investigated by conducting numerous computational trials, each one shifted in time by 

10 s. The statistics of such trials are summarized in Table 5.5. The number of epochs 

required for resolution during each trial is shown in Figure 5.15. The wrong and correct 

solutions are shown separately. Overall, the success rate was about 79%. The same data 

was processed using FLYKINTm based on modified Hatch's least-squares method [Sun, 
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1994]. The results of this analysis are listed in Table 5.6. As seen, significantly more 

epochs were required to resolve ambiguities and furthermore, the success rate was lower. 

Table 5.5 Statistics of the Ambiguity Resolution Using FASF 

6LV Number 
of Trails 

Percentage Number of 
Epochs Required 

Success Trials 2.8 cm 274 79% 2.7 

Wrong Trials 2.8 cm 77 21% 7.7 

Table 5.6 Repeated Ambiguity Search Using Hatch's Method 

Type of 
Solution 

Number 
of Trails 

Percentage Number of 
Epochs Required 

Success Trials 2.8 cm 183 53.8% 61.377 

Wrong Trials 2.8 cm 157 45.2% 258.433 

The distance of the aircraft from the base station and its height are superimposed on the 

number of epochs (Figure 5.14) thereby showing the correlation between the number of 

epochs required for ambiguity resolution with the distance and height of the aircraft. As 

seen, most failures were at high altitude and further away from the base station. At high 

altitude, the effect of the un-modeled troposphere can not be reduced since the troposphere 

effects between the aircraft and the base station are different. Similarly, the ionospheric 

effect will increase when the distance and the height increase. The relatively lower number 

of the satellites during the later part also contributes to the wrong ambiguity resolution. 

Some of the failures were also caused by abnormal data such as half cycle slips. 

The double difference phase residuals are shown in Figure 5.15. Most of the residuals are 

below 5 cm. The spikes at some epochs are caused by unresolved cycle slips. When cycle 

slips occurred and could not be fixed, the data from that epoch was not used and the 

ambiguity search was re-initialized. Nonetheless, the residuals are still shown. Then. 

Residuals as large as 9 cm between the GPS time of 62311 and 62412 seconds were 
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caused by the erroneous fixing of cycle slips. The residual variations of the C/A code 

measurements are shown in Figure 5.16. Most of the residuals are below 1.5 m. 
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The same data was also processed with the a-priori standard deviation at 3 cm. In this 

case, the success rate was improved from 79% to 85%. This indicates that the standard a-

priori weighting used in this processing was not optimal. 

5.4 Marine Experiment 

A marine experiment was conducted by The University of Calgary and the Canadian 

Hydrographic Service (Pacific Region) in early September 1992 in the Sidney, B.C., area 

(see Figure 5.17) using a 12-rn launch (Figure 5.18) [Lachapelle et al., 1993b]. Six 

satellites were available, and the PDOP varied between 1.9 and 2.6. The distance between 

the shore unit and the launch ranged from 10 to 24 km, and the speed ranged between 18 to 

27 km h-1 during the trial. The roll and pitch angles did not exceed five degrees. 

Three GPSCard' sensors were mounted on the launch. Both code and carrier phase data 

were recorded at a data rate of 2 Hz using PC laptops. The distances among the three 

GPSCardTm units were measured with an accuracy of about 1 cm as shown in 

Figure 5.18. These distances will be used later to independently check the double 



83 

difference carrier phase ambiguities estimated between the shore antenna and each one of 

the three launch-based GPSCardTm antennas. 

Figure 5.17 Launch Track Observed in the Marine Experiment in Sidney, B.C. Area 
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Figure 5.18 GPS Antenna Configuration on Launch 
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All the GPSCardTM antennas were equipped with choker-ring groundplanes except for one 

antenna on the survey launch. The use of such groundplanes has proven effective in 

minimizing multipath effects during previous experiments [Cannon and Lachapelle, 1992]. 

In this case, however, their use appears to make little difference on code multipath as 

shown by Lachapelle et al., 1993b. 

A 40-minute data set previously used by Lachapelle et al. [1993'] is analyzed here. The 

analysis includes three parts: (1) the ambiguity search statistics; (2) the residuals; and (3) 

the distances between antennas. The data rate is 2 Hz. Both code and phase observables 

are used for the processing of this data. The mask angle is set at 10 degrees. 

As in the previous analysis, the data was repeatedly processed. Several quasi-independent 

solutions were thus obtained. The results are summarized in Table 5.7. The previous 

analysis by Lachapelle et al. [1993b] is summarized in Table 5.8. As seen, the 

improvement is not as good as in the previous two cases. The results for antennas 2 and 3 

are better when FASF is used, but the results for antenna 1 are about the same. 

Table 5.7 Repeated Ambiguity Resolution (FASF) 

Receivers v Number 
of Trials 

Success 
Rate 

Average 
Period 

Required 

GPS CardTM No. 1 
(choker-ring) 1.8 cm 25 100% 1044 

GPSCardTM No. 2 
(no choker-ring) 1.8 cm 17 100% 836 

GPS CardTM No. 3 
(choker-ring) 1.8 cm 31 100% 700 

The residuals from Figures 5.19 to 5.24 (thinned out by a factor of ten) were computed 

using fixed ambiguities. As seen, no phase residuals were larger than 1.5 cm. Most of 

residuals were caused by the effect of multipath. Random variations at the millimetre level 

were caused by receiver measurement noises. It is not evident that antenna 2, without 
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choker-rings has a larger multipath effect, because antenna 2 was at the highest point on the 

launch. Antennas 1 and 3 are at lower positions, but they were equipped with choker-

rings, and these choker-rings balanced out the effect of the relatively unfavorable multipath 

conditions. The differences in the number of epochs required to resolve ambiguities could 

also be caused by small differences in the error patterns among the receivers. 

Table 5.8 Repeated Ambiguity Resolution (Hatch's Least-squares Method) 

Receivers 
(max) 

Number 
of Trials 

Success 
rate 

Average 
Period 
Required 

GPS CardTM No. 1 
(choker-ring) 1.8 cm 9 100% 1032s 

GPS CardTM No. 2 
(no choker-ring) 1.8 cm 7 100% 1825s 
GPSCardTM No. 3 
(choker-ring) 1.8 cm 7 100% 1146s 
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Figure 5.19 Double Difference Carrier Phase Residuals for Antenna 1 (Choker-ring 
Ground Planes at both the Reference and Launch). 

Comparing with the performance on the land and air, the improvement under the water 

environment is limited The following factors contribute to this limit in improvement. (1) 

The multipath effect. Multipath under sea environment seems to have a longer period, and 
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it cannot be filtered out by the method developed here. (2) Fewer satellites. In the 

previous case, nominally seven satellites were observed; while in this case, only six 

satellites were observed; (3) Other biases, such as, orbital errors, ionosphere, and 

troposphere. As compared with the previous two sections, there are larger residuals for 

both carrier phase and code measurements because of a greater distance relative to the 

wavelength. 
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Figure 5.20 Double Difference C/A Code Residuals for Antenna 1 (Choker-ring Ground 

Planes at both the Reference and Launch). 
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Figure 5.23 Double Difference Carrier Phase Residuals for Antenna 3 (Choker-ring 
Ground Planes at both the Reference and Launch). 

The independent distance measurements between the antennas on board the vessel were 

also used to check ambiguity resolution. The differences between the computed distances 

from the GPS and the direct measurements are shown in Figure 5.24. Apart from a small 

constant of about 1 cm, there is no systematic deviation. The small constant values are 

caused by differences in measurement centers between the two types of distances. The 
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distance measurements are referred to the base of the antennas, while the distances from 

GPS are between the phase centers. Other causes of the deviations were the multipath 

interference and the measurement errors in the distances. 
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Figure 5.24 Double Difference C/A Code Residuals for Antenna 3 (Choker-ring 
Ground Planes at both the Reference and Launch). 
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5.5 Correlation Analysis of Land and Marine Tests 

As discussed previously, the standard deviations of float ambiguities from least-squares 

may not reflect the actual uncertainties due to the correlation of the noise under some 

environmental effects. These correlations were partly responsible for the long period of 

observations required to resolve ambiguities in the marine test. As a result of the 

correlation, the standard deviation from the least-squares was too optimistic. To 

compensate this effect, a much larger expansion factor was used for the marine data 

analysis. That is, the expansion factor was three in the land test, while it was fifteen in the 

marine test. As a result, it took significantly more time to resolve ambiguities in the marine 

case than in the land case. 

In this section, the numerical analysis of the correlations for the land and marine tests will 

be presented. The Fourier analysis of the correlation will also be shown. 

Figure 5.26 shows the correlation of the double difference residuals for satellite pair 26 and 

23 in the land test and Figures 5. 27 to 5.29 are the correlations for satellite pair 23 and 3 in 

the marine test. As seen, in the land case, the correlation quickly decreased and fluctuated 

between -0.4 and 0.4 after 25 seconds. The effect of mixed positive and negative 
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Figure 5.26 Correlation of the Phase Residuals for SY 26-23 for Land Test 
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correlations will mostly be canceled out over the time. However, in the marine case, the 

correlation decreased much more slowly. The effect of this correlation can not be canceled 

out over a short period. 
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Figure 5.27 Correlation of the Phase Residuals for SV 23-3 for Marine Test (Antenna 1) 
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Figure 5.28 Correlation of the Phase Residuals for SV 23-3 for Marine Test (Antenna 2) 
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Figure 5.29 Correlation of the Phase Residuals for SY 23-3 for Marine Test (Antenna 3) 

The Fourier analysis of the phase residuals in the land test is shown in Figure 5.30 and the 

Fourier analysis for the marine test is shown in Figures 5.31 to 5.33. It should be noted 

that to show the Fourier spectrums clearly at the same scale for both the land and marine 

tests, the spectrums for f=0 (the constant component) and f=0.001 Hz are not shown for 

the marine tests. Instead, only the numerical values for the Fourier spectrums are shown in 

the Figures. In the marine case, there are large spectrums for frequencies between 0 and 

0.001 Hz caused by the orbital errors. They cannot be averaged out by the least-squares 

method within short periods. In the land case, all the spectrums are smaller than 8 Hz. 

It is these low frequency biases in the marine tests that caused the strong correlation 

demonstrated in Figures 5.27 to 5.29. As a result, the search ranges became larger and 

more observations were required to resolve ambiguities. Besides the low frequency 

multipath effect, these low frequencies were mainly caused by the orbital errors which 

could be in the period of hours due to the relatively larger separation between the rover and 

the monitor. The spectrums for three antennas in the marine show only small differences. 

The differences in ambiguity resolution time were likely caused by the random nature of the 

noise. 
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Both land and marine tests show that there are spectrums below 1.7 Hz at all frequencies. 

These spectrums were caused by the white noise and can be easily represented in the 

standard deviation from the least-squares estimation. The spectrums at 0.16 to 0.17 Hz for 

the land test are short terms with periods between five and seven seconds) which can also 

be averaged out by the least-squares estimation. These spectrums were responsible for the 

fluctuated correlation in Figure 5.26. They are much smaller as compared with the 

spectrums at low frequencies in the marine test. 
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Figure 5.30 Fourier Spectrums of the Phase Residuals for SV 26-23 for Land Test 
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The results presented in this chapter have shown that FASF reduces both computation and 

observation times required for ambiguity resolution OTF as compared with the least-

squares search method. Both land and airborne testings have shown significant 

improvement. However, marine testing did not show much improvement, primarily 

because of the relatively stronger systematic errors. 
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CHAPTER 6 CONCLUSIONS AND 

RECOMMENDATIONS 

A new concept for ambiguity resolution is developed. In the past, the search range of each 

ambiguity was determined separately, regardless of the assumed integers of the other 

ambiguities. The relationship between potentially fixed ambiguities was not fully 

considered. In FASF, the search ranges are determined recursively and are related to each 

other. To determine the uncertainty range of an ambiguity parameter, the effect of an 

assumed integer on others is fully taken into account. The geometry information is 

exploited more effectively by constraining ambiguities to the possible integer values in the 

range computation. Therefore, less observation time is required to resolve ambiguities. 

A threshold to exit ambiguity search is used. Ambiguity resolution is not made until there 

is a higher chance of ambiguity fixing. Therefore, unnecessary search is avoided and the 

computation can be dramatically reduced. Currently, the maximum number of the potential 

solutions is used as the threshold. This is justified because the greater the number of 

potential ambiguity sets, the more likely the ambiguity resolution fails. 

The computational improvement comes from two aspects; one is the recursive computation 

of the search range (RCSR); the other is the threshold to exit the search process as stated 

previously. RCSR makes the search range sequentially smaller as more ambiguities are 

treated as fixed in the ambiguity series. 

Another characteristic is that all observations, from the initial to the current epoch, are taken 

into account by a least-squares filter (or Kalman Filter). Another advantage of the least-

squares filtering is the tolerance to large isolated errors. A method based on the epoch by 
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epoch rejection of incorrect solutions, such as Hatch's least-squares method, will be very 

sensitive to any unexpected large error at any single epoch. That is, any error larger than 

the pre-specified threshold in any single epoch will risk rejecting the correct solution. 

While this method tends to smooth out random errors, it can not reduce any systematic 

biases. That is especially true if it combines with poor satellite geometry and small number 

of satellites. 

Since the method is computationally fast, it can be applied in real time. For example, in 

rapid static surveying, ambiguities can be searched in real time. Therefore, GPS data can 

be collected until ambiguities are fixed. This will be useful in many kinematic 

environments where a high data collection rate is required. In attitude determination 

systems where ambiguity search is a serious burden because multi-baselines have to be 

searched, the fast ambiguity resolution method will have a clear computational advantage. 

As a first attempt to implement FASF, variances from the least-squares estimation were 

used to compute the search ranges. However, other problems remain to be resolved, as 

will be discussed in the following. 

The effect of the systematic biases on ambiguity resolution should be investigated further, 

including multipath, troposphere, ionosphere, and orbits. While in some cases, the method 

works well, in other cases, it does not. Mostly, it is caused by the computation of the 

standard deviation for the partially fixed ambiguities from least-squares estimation. The 

presumption is that the noise in the obsetvation should be uncorrelated from epoch to 

epoch. However, in many cases, there is a strong correlation between the errors from 

different epochs. This correlation makes the estimated standard deviation too optimistic. It 

can be partially considered by proper selection of the expansion factor that converts the 

standard deviation to the maximum possible error in the float estimation. However, the 
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difficulty is that this expansion factor is highly dependent on correlation. The exact 

relationship between the correlation and the expansion factor and the relationship between 

the correlation and the environments should be studied. The relationship between the 

geometry, error pattern, success rate, and time required to resolve ambiguity also needs to 

be further investigated. 

Most of the results are compared with Hatch's least-squares methods. Comparison with 

other methods should be carried out. Also more research should be carried out to test the 

effectiveness of the method under different environments. 

The least-squares implementation of FASF will work fine where only a few epochs of 

observations are needed to resolve ambiguities since the distortion of standard deviation 

will be serious only when extensive observations are accumulated. For example, in the 

case of favorable geometry, the least-squares implementation of FASF should be good 

even if there is strong correlation in the observations from epoch to epoch. Also, for dual 

frequency receivers, where the wide lane ambiguities can be formed either explicitly or 

implicitly, FASF will also work properly because of the relatively small size of the search 

range in terms of the number of cycles. 

For post mission processing, precise orbits can be used. That will be very useful for a 

longer baseline. A better tropospheric model should be used to take into account the height 

effect. An ionospheric model should be considered when the distance or height between 

the reference and remote is large. 

Cycle slips also need to be properly handled. When the cycle slips can not be fixed 

exactly, new ambiguity parameters have to be introduced. 
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APPENDIX PROOF OF THE PARAMETER 

REMOVAL THEOREM 

The thereom of parameter removal (Chapter 3) can be proven using the parametric 

adjustment theorem as follows: 

Proof of the Normal Equations  

The observation equations are described by 

1 +r =f(x,y), (1) 

with the weight of the observation as P1. If the constant parameter y is treated as 

unknown, the linearized observation equations can be described as: 

r =[Ax, AY] SXl +w , (2) 
1(5y-

where, 

Ax dl' 
dX XXo' 

df 
A dy yyo' 

W =f(x0, YO) , 

where, Xo and yo are the approximated values of x and y, 

and the normal equations are: 

[PXX PXI 1  IY A U x] 

yx yy ,j Uy 
(3a) 
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where, 

1 r AxTPjA x AT P1A 
LPyxPyy j=L AyTp iAx ATP 1A 

fUx 

Lu 
rAT p1 W i 
[A NT P1 w] ,and 

I5xI Ic5x 
I I is the least-squared estimation of I 
L6yJ LÔY 

If y becomes the known constants, then the linearized observation equations become 

where, 

(3b) 

r/y = A oX + W/y, (4) 

W/y =f(x0,yo) +Ay(y-yo) 

= W +Ay (Yc - yo). (4b) 

Here, equation (2) and 4a are assumed to be linearized at the same values. Then, the 

corresponding normal equations are in the form of 

1xx S/y ux/y, 

where, 

(5) 

xx = AT P, Ax  and 

Ux/y = AxT P1 W/y. (6) 

Comparing with equation (3b), we know that Pxx = P,. Inserting equations (4b) into 

(6), the following can be obtained: 

Ux/y = AT Pi [w +A (Yc -y)] 

U ATP1Ay(yy0), 

- 1tx Pxy(YcYo)• 

Therefore, equations (3.30) and (3.32) are true. 

(7) 



107 

Proof of Q 

A 
r/y W/y +A6/ 

W +Ay (Yc -Y0)+Ax /y 

W +Ay(yc9y0 +9) +Ax (3/y +) 

=W 

=(w +Aw +A oy) + [A(yc -y)A  +Ax (Ox/y- oxA )] 

P+[A(y c -$)+A(S/)] 

Q/y = rAlYTp1f 

= P +[Ay(yc $) + A (8/y 5) ]}TP1 {P +[A (Yc $) +A(5./y - 

çTp1p 8)]TP1P 

+ [Ay (Yc 9)+Ax( /y )JTPl (Ay (YcYA)+Ax( /y )1. 

In the above formula, 

(8) 

[A(yc -$)+A(/- 5)]Tp1P 

- 3)T , (Yc $)T I [A A]T P1 P 

Inserting P = w +A & + $ into the above, we obtain: 

[AxAy]T P1P 

= [Ax A ]T P1 W + [Ax Ay]TPi [A AI Ii 

=-[uxI ir1 P P II,A IO. (9) 
Uy L yx yyJLOyJ 

Therefore, 

Q/y Tp1 

PTP1P+ (yc $)TAyTP1Ay(yc9) 

+(yc$)T AyT Pi A(ô/- &)+(- 6)TA Tp1 A (Yc -9) 
+(S/ S≤)TATPiAx (5xAly  ) 
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(Yc 9)TP Yc -.9) + (yc .. $)Tpy (/y - ) 
A r A A -A'r A 

+ (X/y -Ox)' Pxy (Yc - y) + (X/y -ox)' p. (X/y -ox) (10) 

However, from equations (3.30) and (3.32), /y = P,j 1 [u - P, (Yc - y)]; and from 

equation (3.29), = P, 1 [U - p, 9j. Therefore, 

c/y - = Pxx1 Pxy (Yc - Yo - 

- 1 A =-Px P,(yc -y). 

Inserting the above equation into equation (10), the following can be obtained: 

Q/y 71'P1+ (yc -.9)TPyy (yc -.9) 

- - 9)7' P yx Pj 1 P (Yc —9) 
TPlP.f.(yc .$)T [P -Pyx Pxi' Pxyl (Yc —9) 

=71'Pj+(yc-.9)T Pyy (yc -9) 

Therefore the theorem is true. 

(12) 


