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ABSTRACT 

Existing methods for determining magnetic field distributions in saturated synchronous 

machines are either inaccurate or very complex and computer intensive. 

This research models the field distribution as a function of a position dependent, MMF 

independent reluctance in series with a position independent, MMF dependent reluctance. 

A flux density model is developed using field data collected from a specially modified 

synchronous machine. Computed fields from this model are used to compute steady state 

torque and operating curves. 

Reasonable results are obtained, given the simplicity of the model. Average error in 

computed torque is 8% for all excitation conditions. The error in computed torque for any 

excitation condition can be compensated for. 

Because of its simplicity and minimal computing requirements this model can be used 

in synchronous machine simulations where very high accuracy is not required. 
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CHAPTER 1 

INTRODUCTION 

1.0 CHAPTER OBJECTIVES 

I) Describe the importance and difficulties of transient analysis of synchronous 

machines, and the scope of my research in this area. 

ii) Describe the nature and limitations of several magnetic design and modelling 

methods used for rotating machines. 

Ili) Define the problem statement, research goal, and the initial solution proposal. 

iv) Outline the remainder of this document. 

1.1 TRANSIENT ANALYSIS OF SYNCHRONOUS MACHINES 

No-one can argue with the very important role which synchronous machines play in 

our society by providing electrical power which sustains our way of life, and by driving very 

large mechanical loads (typically 5000 HP and above). In order to properly predict and 

analyze their use, we must not only be able to determine their steady state operation, but 

also their behaviour under electrical and mechanical transient conditions (start-up, fault 

conditions, sudden load changes, etc.). Given the high cost of these installations, and the 

key role they play in the power distribution systems and industrial processes they serve, 

we must ensure that they can endure these transient conditions to avoid facing potential 

life threatening and/or economically severe consequences. As an example of the 

importance of transient analysis, Ojo/Lipo [1] describe the potential for mechanical failure 

in a synchronous motor drive application: 
it During the starting interval, the transient currents generate double slip 

frequency pulsating torques. In a complex mechanical drive application, 
the mechanical system can have numerous resonance frequencies lying 
between zero and twice the supply frequency. If these resonance 
frequencies coincide with the pulsating torque frequency of the motor, 
severe torsional oscillations can result which can lead to coupling shearing 
and shaft breakage. 

Numerous authors have incorporated the effects of saturation into machine models. 

Some examples include Slemon [2] in 1971 who modified existing circuit models by 

introducing nonlinear shunt inductors to the basic synchronous reactance model and then 

successfully applied this model to predict steady state operating conditions; and 
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Piriou/Abdel-Razek [3], in 1983, who used finite element analysis to precalculate 

inductance elements (expressing them as functions of rotor position, armature reaction, 

and field current) in the steady state equations for a salient pole synchronous machine 

under saturated conditions. Ramshaw/Xie [4,5], from 1984 to 1986, modified Kron's 

matrix formulations to account for magnetic saturation under steady state and transient 

conditions by using "static" and "dynamic" permeances. 

Recent developments in the area of transient analysis of synchronous machines 

depend heavily on finite element analysis techniques to predict magnetic field distributions. 

Krefta/Wasynczuk [6] developed a state model representation which predicts elements 

of the state equation coefficient matrix using finite element field modelling. Under linear, 

non-salient conditions, these elements are constant throughout a transient simulation. The 

full transient solution is found by performing a finite element solution once to find the 

elements, then time-stepping through an integration algorithm subject to the initial and 

boundary conditions of the problem. Under salient and/or saturation conditions, the 

elements must be recomputed at each time step due to changes in conductivity and 

reluctivity in many of the iodes. This method is elegant and powerful due to the versatility 

of the state model, but requires lots of computing time and advanced integration 

algorithms which take advantage of the sparsity of some of the matrices. 

In 1989, Ojo/Lipo [1] developed new circuit models (similar to Slemon's [2]) which 

used finite element modelled parameters. This technique was quite successful in 

obtaining accurate results with less computational effort than the state model approach. 

This is because parameter characteristic curves are precomputed for a given machine 

using finite element modelling, and once computed are then useful for all types of 

transient studies - the circuit models accounting for the different operating and boundary 

conditions for each study. 

1.2 RESEARCH SCOPE 

This research primarily addresses one aspect of the overall transient analysis problem 

for salient pole synchronous machines: predicting air gap magnetic flux density 

distributions under all possible operating conditions, which basically amounts to 

varying levels of saturation in different regions of the machine. Although I developed and 

tested the air gap flux density distribution model to provide an alternative to the finite 

element methods now used in transient studies, due to time constraints I was unable to 
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carry the work past steady state torque and voltage predictions. The results are very 

promising at this point, and I hope that myself or others will be able to extend the model's 

development to its full potential: a fast, simple, and accurate replacement for finite element 

modelling within transient solution techniques such as those used in references [1] and 

[6]. 

1.3 MAGNETIC DESIGN AND MODELLING METHODS 

This section briefly describes the techniques used to predict machine fields and 

account for.non -ideal ities such as fringing (due to salient poles or teeth) and iron 

saturation. These techniques are applicable to all of the major machine categories (AC 

induction, DC, and synchronous), since all possess similar magnetic structures. The 

objective of this section is to provide background information for the justification of the 

problem statement at the start of section 1.4. 

1.3.1 The Magnetic Circuit Concept 

The magnetic circuit concept is described in practically all basic electric machine 

textbooks, an example being Fitzgerald M. 

Ampere's Circuital Law, 

fH-dR = Ni =  

can be reduced for a simple iron geometry to 

= Ni = (1.2), 

where is the mean path length in the iron, and H0 is the field intensity in the iron path. 

The relationship 

reduces to 

0 = f,,B-dA 

= BA 

(1.3) 

(1.4), 

when all of the flux lines are assumed normal to, and contained in, the iron path's cross-

section. Here A0 is the cross-sectional area of the iron path, B0 is the flux density, and 
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' is the total flux in the iron path. 

For linear conditions in the iron, g, =p, ii,= constant (i = core permeability, it,. = 

relative permeability, and t0 is the permeability of free space), and the relation 

B=pH (1.5) 

reduces to 

= 

Equations (1.2), (1.4), and (1.6) can be solved to give 

.= N i = 0CC RC 

(1.6). 

(1.7), 

where R0=4/j.t0A0 is the core reluctance, analogous to resistance in an electric circuit. 

For iron and iron-air geometries which may be sectioned into volumes of uniform length, 

cross-section, and permeability, series and parallel circuits can be drawn with a reluctance 

assigned to each volume. Flux, cJ, is analogous to current, and Ni or .9(the mmf in A-

turns) is analogous to a voltage source. The magnetic circuit equations can then be 

solved in the same fashion as electric circuit equations to find the unknown variables. 

Because of the analogy between the magnetic field equations and basic electric circuit 

equations, the engineer can readily understand and apply this method. However, it has 

inherent limitations due to the simplifying assumptions which were made to get equations 

(1.2),(1.4),(1.6), and (1.7). Flux fringing occurs when flux travels from one iron surface 

through an air gap to another iron surface (as in the case of armature teeth, or a salient 

pole structure) and it is difficult to define what A. to use. ji,, is never really constant, even 

in low mmf regions of the B-H saturation curve. Its deviation from a constant value 

increases as mmf levels increase and the iron enters saturation (to economically use the 

iron in a machine, saturation occurs in some regions of the magnetic circuit even during 

normal operating conditions). A further problem proceeds from the rotating machine 

designer's need for accurate, detailed knowledge of the field distribution in the airgap in 

order to predict the torque and induced emf of the machine. This method not only has 

difficulty with fringing and saturation, but does not provide high resolution or accuracy 

since it depends on relatively coarse sectioning of the iron structure. 
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Despite these major drawbacks, the magnetic circuit approach gives a great deal of 

qualitative insight into the magnetic behaviour of a structure, and serves as a helpful tool 

in the area of machine design and analysis. 

1.3.2 Applying the Magnetic Circuit Concept 

Many references describe rotating machine design as being a very complex task. The 

designer must optimize the electrical, magnetic, mechanical, and thermal aspects of the 

design while meeting performance specifications, minimizing costs, and satisfying 

manufacturing constraints. Frequently, all of this work needs to be done under time 

pressure. My focus, of course, is upon the magnetic aspects of the design, but it is 

important to note that the final magnetic design is optimized by considering all of the 

above factors. 

Until recently, a primary method for performing magnetic design involved using 

subjective estimates of saturation effects, flux leakage, and fringing (around salient poles, 

teeth, etc.) in conjunction with the magnetic circuit approach. These estimates were 

based on past measurements, empirical correlations, rules-of-thumb, the designer's 

personal experience, and theoretical approximations from the work of F.W. Carter [8] and 

others. Without these estimates it would have been impossible to reasonably predict the 

performance of the finished machine. It has only been within the last few years, with the 

proliferation of finite element analysis programs, that reliance upon these estimates has 

been reduced. However, this does not render these estimates obsolete, rather, they now 

provide a means of checking and interpreting the results of finite element solutions. The 

aim of this section is to briefly outline some of these estimates. 

Detailed descriptions of magnetic designs using some of the above estimates may be 

found in Moullin [9] (estimate of field amp-turns required for a DC machine design), 

Walker [10] (estimate of field amp-turns for a salient pole synchronous generator), and 

Alger [11] (estimate of magnetizing current for an induction motor). 

In 1900, Carter first published a paper using a geometrical transformation technique 

known as Schwarz's Transformation to solve the two dimensional Laplace equation in the 

air gap of a magnetic circuit 
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a2Q   
+ =0 

ax2 a? 
(1.8), 

where Q is the scalar magnetic potential (defined only at points where there is no current 

density), and x and y are Cartesian coordinates (see Hayt [12]). 

Basically, Schwartz's Transform permits us to simplify the geometry of the iron 

structure of the magnetic circuit before we attempt to solve the airgap magnetic field. For 

example, a scalar equipotential pole face can be mapped onto a scalar equipotential line. 

Regions of the transformed structure are assigned scalar magnetic potentials 

corresponding to their scalar magnetic potentials in the original iron structure. The flux 

and scalar potential distributions are then solved, in general form, subject to these scalar 

potentials. The general flux distribution is then inverse transformed, and its constants are 

determined in order to give a scalar equipotential curve which fits, as closely as possible, 

the outline of the original scalar equipotential boundary (in this case, the outline of the 

pole face). This procedure is quite lengthy, and is also recursive since the transforming 

equation needs to be selected in a trial and error fashion to get the best fitting scalar 

equipotential solution for the original scalar equipotential boundaries in the problem. 

There are two major problems with using this method for routine design and analysis: 

I) lengthy, complex, trial and error mathematical manipulations are required, even for 

very simplified iron structures, and 

ii) saturation effects are not considered, scalar equipotential surfaces are assumed 

to be on the surface of the iron. This assumption requires infinite iron 

permeability. Under saturated conditions the scalar equipotential surfaces will not 

necessarily coincide with the iron boundary. 

However, for very simple situations, assuming infinite iron permeability, Carter was 

able to present the results of his work in a form suitable for direct inclusion in the 

magnetic circuit method. He did this by creating factors, known as Carter coefficients, 

which adjust air gap widths under salient pole faces, over teeth, etc., to account for flux 

fringing. The adjusted width for the air gap is then used to compute the reluctance of the 

air gap. In most machine structures fringing is a result of several non-idealities (eg: 

salient poles, teeth, and ventilation ducts) and the coefficient for each non-ideality 
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multiplies the previous one(s). Each coefficient is computed using a formula which 

contains constants corresponding to iron structure dimensions, and a factor which is 

determined from a chart where the factor is plotted as a function of iron structure 

dimensions. Formulas exist for many different structures, some introducing non-idealities 

such as a wider pole shoe than pole core, rounded pole corners, and chamfered pole 

faces. Refer to [9] for a more thorough treatment. 

In addition to Carter's coefficients, designers have other rules-of-thumb which allow 

them to make their magnetic circuit calculation more accurate. A couple of examples are 

listed below: 

i) For teeth on the rotor, if the slots are rectangular, then the top of the tooth is wider 

than its root. Rather than using the width of the tooth at its middle to estimate the 

total cross-sectional area of iron in the teeth, the width about two-thirds of the way 

down the tooth is used. This rule reduces the net tooth area, increases its 

reluctance, and increases its mmf drop. This gives a better approximation of tooth 

saturation than taking the tooth width mid-way. The reason for this is that it 

compensates for the effects of slot leakage flux and the high degree of saturation 

at the root of the tooth. 

ii) To account for leakage flux in the pole windings (assuming the poles are on the 

stator), the ratio (air gap flux + leakage flux)/(air gap flux) is set equal to 1.2. This 

increases the mmf drop in the yoke and pole cores, which carry both the air gap 

and the leakage fluxes. 

In order to estimate the amp-turns for the field windings, an air gap flux/pole level is 

assumed which will produce rated winding induced voltage at rated speed. A reluctance 

is defined for each distinct cross-section of the main magnetic flux path. Distinct cross-

sections typically include the yoke, pole cores, pole shoes, air gap, teeth, and rotor core. 

As required, each reluctance is modified using the methods mentioned above, and the flux 

in each reluctance is assigned. The total mmf is then computed using the magnetic circuit 

approach. 

Moullin [9] suggests that errors with this method are +1-10%. Uncertainty exists in the 

estimated mmf due to a number of reasons: 

i) The dimensions of the actual air gap may not be accurate, especially in small 

machines. These may be due to an eccentric rotor, or gaps between the 



8 

machined surfaces of the yoke and pole core at their joint. 

ii) An inaccurate knowledge of the iron properties, effects of laminations, or 

inhomogeneities in the steel due to casting. 

iii) Manufacturing defects, or errors in workmanship. 

iv) The magnetic history of the iron (hysteresis effects). 

Some errors in the assumptions of the magnetic circuit model are present, but most 

of these will be negligible since they are a small percentage error in a small percentage 

of the total mmf drop (the mmf drops in the air gap and saturated teeth dominate). 

The most significant region of saturation is in the teeth. In the example worked out 

in MouHin [9], for a 300 kW DC generator on open circuit with rated speed and 1.13 p.u. 

voltage, the mmf drops in the air gap and the teeth were 38% and 36%, respectively, of 

the total mmf. The significance of this, in terms of my research into machine saturation, 

is that my first priority for saturation modelling is to address the saturation in the teeth. 

1.3.3 Graphical Methods 

Numerous authors have developed methods of sketching magnetic field distributions 

by hand. Many have developed methods for use in air gap regions where the current 

density is zero, but fewer address the problem of regions, such as within field pole 

windings, where the current density is not zero. 

Stevenson/Park [13] developed a method for hand plotting magnetic flux lines in both 

current and non-current carrying regions using "lines of no work" in current carrying 

regions, and "scalar magnetic equipotential" lines in non-current carrying regions. In order 

to understand the method they used, it is helpful to define some of their key terms: "scalar 

magnetic equipotential lines", "lines of no work", "kernels", and "flux tubes". 

"Scalar magnetic equipotentials", or "scalar magnetic equipotential lines", were terms 

already used in the previous discussion of Carter's method. These are simply contours 

along which the scalar magnetic potential, L2, remains constant. In regions where the 

current density J* 0, the scalar magnetic potential is not defined (see Hayt [12] p. 271), 

so in these regions the concept Stevenson and Park used in place of scalar equipotential 

lines was "lines of no work". 

What is the difference between a line of no work and a scalar magnetic equipotential 

line? Moving from a to b along a line of no work in the current carrying region of Figure 

1.1, the integral 
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Figure 1.1: Magnetic Field Distribution Around a Current Carrying Conductor 
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fa b H-d (1.9), 

equals 0. This is because H•dQ equals 0 at all points along the integration path since H, 

and therefore 1, is normal to the integration path at all points' between a and b. The 

name "line of no work" is coined because this integral is equal to the work done against 

the magnetic field in transporting a unit pole from point a to point b, which in this case 

equals 0. However, if we move from point c to point d, the integral does not equal 0 and 

this path is not a line of no work. Consider evaluating the integral along the path from 

point e to point fin the non-current carrying region (air). In this case, the above integral 

is defined as Q f (the scalar magnetic potential between e and f). 92,, will equal zero since 

the integration path is along an equipotential line, and the flux is normal to every point 

along that line. Similar to the path from points c and d in the current carrying region, the 

path from points p to h is not an equipotential. Both scalar magnetic equipotential lines 

and lines of no work intersect flux lines at right angles within their respective regions. At 

the conductor-air interface, the scalar magnetic equipotential line becomes a line of no 

work. 

Stevenson and Park also identified a "kernel" or "point of indifference" existing 

somewhere within the current carrying region. At this point, all of the lines of no work 

converge. The total current carried by the region is divided into equal portions by this 

kernel, the lines of no work, and the physical boundary of the current carrying region. 

Refer to the current carrying conductor of circular cross-section shown in Figure 1.1. All 

of the lines of flux are concentric with the centre of the conductor, and all of the lines of 

no work (within the conductor) and equipotentials (outside the conductor) are radially 

directed out from the centre of the conductor (therefore they intersect the flux lines at right 

angles). In this situation, the kernel coincides with the centre of the conductor, and the 

total current is divided up into equal portions. Each portion is bounded by the kernel, the 

lines of no work, and the outer surface of the conductor. For field coils around a field 

pole, the kernel normally does not coincide with the geometric centre of the coils. 

As identified in Figure 1. 1, a "flux tube" is the region enclosed between two successive 

sketched flux lines, with an assumed depth of 1.0 unit. Therefore, the area of a flux tube 

is equal to its sketched width. Formulas for computing , B, H, etc. are found in reference 
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[13]. 

With these terms defined, let us look at the method itself. In short, the graphical 

method of plotting the field is done by trial and error, but experience with the method and 

knowledge of the expected solution can greatly accelerate the process, especially near 

the beginning. The outline of the iron structure is drawn, and scalar magnetic 

equipotentials are assigned to the outline of each of the identifiable boundaries. Major 

scalar equipotential contours and flux lines are drawn in regions where the field shape is 

well known, for example, in the centre of the air gap. Then, scalar magnetic equipotentials, 

lines of no work, and flux lines are drawn in all regions subject to the following criteria 

(refer to [13] for full details and some time-saving rules-of-thumb): 

i) all flux lines must cross scalar magnetic equipotentials and lines of no work at right 

angles, 

ii) flux lines enter the iron at right angles (for infinite permeability), 

iii) all rectangles in air are curvilinear squares, (1/a) = 1.0, where I is the length of the 

flux tube between successive scalar magnetic equipotentials, and a is the distance 

between successive flux lines (the width of a flux tube), and 

iv) inside the current carrying region, Va < 1.0 and Va equals the ratio of current 

enclosed by the flux tube, the two successive lines of no work, and the kernel; to 

the current enclosed by the border of the region, the two successive lines of no 

work, and the kernel. 

If the sketch does not meet these conditions, the violating sections are resketched. 

The correct final solution is the one where the reluctance of the structure is minimized 

(i.e., the flux/pole is maximized). In Figure 1.1, the equipotentials are not drawn to meet 

the conditions in rules iii and iv in order to avoid cluttering the figure. About 41 radial 

equipotentials/lines of no work would be required to do this. 

Stevenson/Park [13] provide full details of the theoretical development of this graphical 

method. They also use it to establish boundary conditions for analytical solutions for 

some simple problems. In order to do this, they represent the hand sketched solution 

obtained for a difficult boundary of the problem region as a Fourier series function. This 

Fourier series can then be manipulated algebraically when solving the total solution 

analytically. 

Wieseman [14] wrote a supplementary paper to [13], where he applied the graphical 
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method to various situations of practical interest for a salient pole synchronous machine. 

For example, the effects of slots were determined, and the results presented in the same 

form as the results from Carter's method (see section 1.3.2). The two methods gave 

practically the same results. One of the main advantages of the graphical method over 

Carter's method is that fairly complex geometries can be tackled (under the assumption 

of infinite iron permeability) without mathematical complexity. Wieseman also computed 

pole fluxes for a salient field pole, and determined the first and third flux harmonics, similar 

to some of the work I have done in my research. 

The advantages of this method are that it can provide a high level of detail, and it 

provides a good picture of the overall field distribution in the air and within the copper 

regions. The difficulties are: 

i) the process is subject to human error: it is unlikely the designer can properly check 

the entire solution region, and the hand measurements required to do the checking 

are subject to error; 

ii) to obtain higher accuracy, more man-hours and therefore more money are 

required, the accuracy is limited by the size of the sketch and the skill of the 

designer; 

iii) finite permeability and saturation are not considered; and 

iv) the method is not automatable for use in transient studies. 

13.4 Permeance Distributions 

Doherty/Nickle [15] used permeance distributions (P(0)'s) to compute radial flux 

density distributions (Br(0)'S) from armature reaction mmf distributions (.9(0)'s) using the 

formula 

Br (0)P(0).?(0) (1.10), 

where e is the angular position in the air gap. Permeance distributions were derived from 
graphically determined Br(0)'S and assumed .7 (0)'s using equation (1.10) (the assumed 

.7 (0)'s are required to graphically determine the Br(0)'S). Doherty and Nickle then used 

Fourier components of these permeance distributions, combined with Fourier components 

of armature reaction mmf, to compute Fourier components of air gap flux density, which 

they then used to determine the Fourier components of air gap winding voltages. 

For an arbitrary salient pole iron structure and winding distribution the following 



13 

method can be used to predict Br(e) in the air gap, for different mmf conditions, based on 

only one field plot: 

i) using graphical sketching (section 1.3.3), or some other method, determine Bro(e) 

(the radial flux density distribution corresponding to the zero order mmf harmonic) 

under infinite iron permeability conditions with a constant valued mmf distribution 

around the air gap (. (0) = the zero order mmf harmonic = constant). 

ii) Compute P0(0) = Bro(0)/ (0) where P0(9) is the permeance distribution for the 

zero order mmf harmonic. 

iii) For a uniform air gap machine, Doherty and Nickle derived the following formula: 

P(0)= fl7rØ(fl7r) 
.r. 

where P(0) is the permeance distribution of the n order mmf harmonic (P(0) = 

a constant for a uniform air gap machine), n is the order of the space harmonic of 

the mmf distribution on the armature surface (n> 0), g is the radial length of the 

air gap which is constant for a uniform air gap machine, and v is the fundamental 

pole pitch. 

The significance of this formula, which was derived analytically, is that the 

permeance distribution is different for each mmf harmonic order. Therefore, under 

linear conditions, the total Br(0) is the sum of the Brn(0)'S for each mmf harmonic, 

each of which, in turn, is the product P(0).9 (0). In general, the P(e)'s 

determined from cosine and sine mmf distributions of the same order are different, 

but Doherty and Nickle demonstrated that for practical purposes they may be 

considered equal. 

To extend this formula to a salient pole structure, Doherty and Nickle 

introduced the concept of an equivalent air gap. The equivalent air gap of a 

salient pole machine is computed from its P0(0) (determined in step ii above) 

according to the following formula: 

- L"o(0)]max  
g (0) g(0) - P0(0) 

(1.12), 

where geqv(0) is the equivalent air gap at any point for a salient pole machine, 
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gmn(0) is the minimum air gap of the machine, which is at the same position as 

[P0(0)] max which is the maximum value of P0(U). geqv(0) is then substituted into 

equation (1.11) to give: 

P(0) M fl7r coth (fl2reqv(e)) (1.13). 

Equation (1 .13) wilithen give the permeance distribution for any mmf harmonic 

for a salient pole machine. P(e)'s derived using this method, when compared with 

those determined directly from graphic plots done for each different mmf harmonic, 

were found to be in good agreement. 

iv) Assuming linearity, Br(9) is then found from the sum of all n harmonics of Brn(0) 

where Br,n(8) = P(8) (0) as follows: 

Br (6)P0(0)(0) + P1(0)(0) + P2(0)(0) + • • (114) 

In this equation, P0(e),P1(0),P2(e), etc. are each representable as a Fourier 

series since these functions are periodic. .9; (0), .9 (8), 9 (8), etc. are the 

coefficients of the mmf distribution's Fourier series (there will, in general, be both 

cosine and sine coefficients, but the permeance coefficient will be approximately 

the same for each of the cosine and sine coefficients of the same order). The 

mmf distribution's Fourier series is determined from the winding cross-section. 

In [15], Doherty and Nickle did not provide any quantitative experimental confirmation 

of the accuracy of the above method for Br(0) determination, but only provided pictures 

of analogous iron filing distributions. 

The advantages of this method are: 

i) the permeance distributions are readily expressed With Fourier series, therefore 

lending themselves easily to computer calculation (an advantage which, 

unfortunately, Doherty and Nickle were unable to exploit back in 1926). However, 

with Fourier series, they were able to generalize Blondel's two reaction salient pole 

synchronous machine theory, and obtain valuable insights into the relative 

importance of the different mmf harmonics during steady state operation. 

ii) it is mathematically simple to understand and implement. 

The problems associated with this method are: 
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i) finite permeability and saturation is neglected, and 

ii) we must do at least one flux plot under infinite permeability conditions in order to 

determine P0(0). 

1.3.5 Integral Methods 

Computerized implementation of the two dimensional Biot-Savart Law can be used to 

solve magnetic fields. The Biot-Savart Law is given below: 

B = 11  ffR [yu-xu ]JdR 
2ir r2 

(1.15), 

where r is the distance from a current carrying point to the point of interest, U,, is the unit 

vector in the x direction, u,, is the unit vector in the y direction, J is the z component of 

current density, R defines the region of integration (usually the current carrying conductor 

cross-section), and dR is a differential element of that region. The Biot-Savart Law 

expresses the magnetic flux density at one point in space as the sum of the flux 

contributions of all of the current carrying elements in the solution region. This integral 

is discretized and evaluated at each point in the solution region independently. Hoole [16, 

pp. 111-135] gives a complete discussion of this approach. 

The advantage of this method is that, for simple problems of high symmetry and 

uniform permeability, closed-form solutions can be obtained. 

The problems with this method are as follows: 

i) special consideration must be given to points within the conductors where rdrops 

to 0. 

ii) Modifications must be made to the Biot-Savart Law for inhomogeneous regions. 

These techniques, known as the "magnetization vector" and "boundary integral" 

methods are elaborated on in [16]. Matrix inversions in these methods are time 

consuming since the matrices are generally not symmetric or sparse. 

iii) It is difficult to make general purpose computer programs which can handle 

complicated and/or detailed structures (eg: a salient pole machine with teeth). 

1.3.6 Finite Difference Methods 

In general, for long machine lengths where flux variations in the axial (z) direction can 

be neglected, the two-dimensional steady state magnetic field is governed by the following 
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quasi- Poisson ian equation in rectangular coordinates: 

a i 8A 3, i 0A (1.16), 

where jt. = ji0 in air, ji = in the windings, t J.t1 0n in the iron (jJ iron is subject to 

saturation and is therefore a function of Ar), A z is the z component of the vector magnetic 

potential A, and J is the z component of the current density vector J (J is equal to 0 

everywhere except in the windings). Equation 1.16 is valid in all regions of the machine, 

both in air and in iron, in saturated and non-saturated conditions, and in current carrying 

and non-current carrying regions. 

For practical machine structures we cannot analytically solve this equation. The finite 

difference method is a numerical solution method which solves for A z at a large number 

of points. A full discussion of this method is found in Hoole [16, pp. 73-109, 135-158] and 

Trutt/Erdelyi/Jackson [17]. The basic method is as follows: 

I) divide up the entire solution region with rectangular grids. Finer grids are required 

near material interfaces and small or irregular features. Areas where the flux 

distribution is not expected to be drastically changing may use a coarser grid. Use 

symmetry to limit the size of the region and reduce the grid size. Material 

interlaces should coincide with grid lines. 

ii) Define the boundary conditions (Neumann, where the normal derivative of the 

magnetic vector potential with respect to the boundary is zero; and Dirichlet, where 

the magnetic vector potential is known and is usually a constant). 

iii) Use algebraic interpolating equations to approximate the partial derivatives of 

equation 1.16 at each node (a node is the junction of two grid lines). Nodes where 

boundary conditions are defined and/or material interfaces exist require different 

approximating equations than nodes in the middle of homogeneous regions. 

iv) Solve the complete set of approximating equations simultaneously, in a fashion 

analogous to a circuit network solution, for the magnetic vector potential at each 

node. If the problem is small and linear, routine matrix inversion may be done (for 

example, Gaussian row reduction). If the problem is large, and/or saturation is 

occurring at some of the nodes, special non-linear matrix inversion procedures 
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must be used. References [16] and [17] use a technique known as "alternating 

successive overrelaxation", where an initial guess must be input at each node and 

the program recursively computes magnetic vector potentials and node 

permeabilities. If the initial guess is close enough, the difference between solutions 

for successive iterations will converge to within an acceptable error. This process 

is speeded up by using properly chosen acceleration and deceleration factors. 

Burtness/Ahamed/Erdelyi [18] used the finite difference method to predict detailed 

magnetic fields in a saturated DC machine at no load. The finite difference method was 

the first to provide a full picture of the magnetic flux distribution in both the air gap and 

machine iron. 

Coleman/Sarma/Erdelyi [19] used the finite difference method to model a saturated 

salient pole alternator. This machine had only 8 poles, so, to avoid errors due to 

curvature, the authors used rectangular coordinate grids for some sections of the machine, 

polar coordinate grids for others, and tied the different grids together with interpolating 

functions. 

Fuchs/Erdelyi [20] used the finite difference method to model a large hydrogenerator, 

and used the computer generated field solution to compute the steady state direct and 

quadrature axis magnetizing reactances. This work bridged the gap between the finite 

difference model and steady state circuit models. 

The advantages of the finite difference method are as follows: 

i) the approximation equations and solution method, though algebraically involved, 

are straightforward to derive and implement. 

ii) The solution process is fully computerized, and output plots can be computer 

generated. 

iii) Greater accuracy and detail can be obtained with this method than with any other 

method I have described so far. The ultimate limit of accuracy is dependent upon 

the available computing resources, the designer's available time and ability to 

properly define the grid system, and the program efficiency. The designer has full 

knowledge of the field and saturation conditions in all regions of the machine 

structure. 

The problems with the finite difference method are as follows: 

i) large variations in permeability from region to region (as in an iron-air interface) 
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slows convergence and reduces accuracy (see [18,19] and Chari/Silvester [21]). 

ii) Sometimes oscillation or divergence occurs in the matrix solution if the initial guess 

is poor, or if errors are made in the selection of acceleration or deceleration 

factors. 

iii) Complicated programming is required to handle boundary conditions, material 

interfaces, regions of high field gradient, and small or rounded parts. Even with 

advanced procedures, such as graded meshes and false boundaries, accuracy is 

lower than in simple, homogeneous regions. Also, these programming 

requirements make it difficult to write general purpose software. 

iv) Computing effort is high since, typically, several thousand nodes must be solved. 

Efficient memory storage algorithms that take advantage of symmetry and sparsity 

are required. 

1.3.7 Finite Element Methods 

Curren.tly, finite element analysis is the most widely used method for computing two 

dimensional magnetic fields in rotating machines. According to Hoole [16, pp. 237-286] 

the concept of finite elements was first used in 1941, in the area of structural analysis, 

where a continuum of material was replaced with a lattice-work of steel struts. By 1956, 

this method was developed to a degree where it would be recognized as finite element 

analysis by today's standards. Finite element analysis was introduced into the electrical 

engineering area in 1967 by Winslow, under the name "finite differences for triangles"; but 

Silvester, starting in 1969, pioneered its use by applying it to many different electrical 

engineering magnetic field problems. 

The following is a general description of the basics of the finite element approach: 

i) divide the solution region into elements. These elements can be of any size or 

orientation, but they should be properly fitted so that all elements contain only one 

type of material and the outline of the material interfaces is accurately traced out 

by the edges and corners of the elements. Finer elements may be used in regions 

of high field gradient, or where more accuracy or detail is required. The completed 

network of elements is known as a "mesh". In most electrical engineering 

applications triangular element shapes are used since they can be arranged with 

great flexibility, and simple expressions can be derived for their trial functions (see 

ii below). 



19 

Computational effort is reduced by choosing the smallest solution region 

possible by considering the symmetry and boundary conditions of the problem. 

Postulate a trial function. A trial function is a function which represents the 

variable being solved for (in this case A) in the quasi- Poisson ian equation (1.16). 

A separate trial function is defined for each element. As a simple example, for a 

triangular element shape, the selected trial function may be a first order polynomial 

with two free parameters. These free parameters are coefficients that are selected 

through some optimization criterion (see iii below) or boundary conditions (see iv 

below) to cause the trial function in each element to optimally approximate the 

actual AZ within each element. The variables and parameters of the trial function 

must be expressed in terms of coordinates uniquely defined by the nodes, 

dimensions, and shape of the element (eg: Cartesian coordinates are replaced 

with triangular coordinates for a triangular element). 

There is a trade-off between the simplicity of the trial functions and the size 

and layout of the elements, and this trade-off becomes apparent when fine detail 

is required. If finer elements are used, simpler trial functions may be used. In 

order to tell if the trial functions and element layout are correct, we can look at the 

"roughness" of the field solution in a detailed area. In the correct solution, there 

should not be any large changes of slope (or kinks) in the field lines when crossing 

the border between successive elements (except at those material interfaces 

where a drastic change of permeability occurs). In the finite element solution, if 

these kinks do occur between elements of the same or similar permeability (giving 

the appearance of "roughness" in the plotted flux line), then the trial functions 

and/or the element sizes need to be changed until the roughness is smoothed out, 

bringing the approximated solution into better agreement with the actual solution. 

The reason why using a different trial function may help is as follows: the free 

parameters of the trial functions in each of the elements are optimally chosen to 

match the actual field solution. If the element size is large, but the trial function's 

shape is similar to the shape of the actual field solution in that element, then the 

optimization procedure will adjust the free parameters to give the trial function a 

good fit within that element. If the permeability of successive elements changes 

little and the trial functions in all of these elements are the same, then the trial 
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functions in the successive elements will all have good fits, and the flux plot will 

be smooth and accurate. 

The reason why using a smaller element size may help is as follows: if we 

have a relatively large element with a very simple trial function (eg: a straight line), 

and if the actual field has a significant curvature within this element, then the 

simple trial function does not have enough free parameters which can be adjusted 

to give a good approximation to the actual field. If, however, several small 

elements are used in place of this large one, then the simple trial function can give 

a better fit because It spans a smaller interval. In other words, a large number of 

short, straight lines can better approximate a twisting curve than a small number 

of long, straight lines. 

iii) Select an Optimization Criterion. This is necessary to determine the free 

parameters of the trial functions in all of the elements. As an example, a 

commonly used approach is the variational optimization technique, based on the 

principles of calculus of variations. The stored energy In the magnetic field is 

minimized by extremizing the energy functional of the magnetic vector potential, 

as given below: 

= ff {!l[VA ]2 - JZAZ}dR 
F? 2 lL 

(1.17), 

where £e[AJ is the energy functional of the magnetic vector potential A. Other 

optimization methods exist, such as the least-square error criterion. See Hoole 

[16, pp. 287-311] for more detail. 

iv) Solve the matrix equations derived using the optimization criterion. To use the 

energy functional to solve a two dimensional field problem, (1.17) must first be 

expressed in terms of triangular coordinates and matrices. Then, in order to 

minimize the energy functional, the matrix derivative of the functional is set equal 

to zero, and the resulting matrix equation is solved. Boundary conditions are also 

introduced during this process: Dirichlet conditions are specified, but Neumann 

conditions can be neglected since the optimization procedure naturally satisfies 

them. Refer to Hoole [16] for details of this procedure. 
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The derivations and matrix manipulation of sections iii and iv are lengthy and complex; 

but, if properly programmed, are versatile. The complexity of the derivations largely 

depends on the selection of trial functions and optimization criteria. Additional 

complication is encountered when dealing with saturation phenomena in the iron, requiring 

recursive procedures. The B-H curve can be modelled using one or more of several 

different formulas. Many other advanced topics are covered in Hoole [16]. 

One of the earliest references to using the finite element method for machine field 

analysis was Chari/Silvester [21], in 1971. Here the authors applied first order triangular 

finite elements (first order polynomial trial functions with triangular elements) to a round 

rotor turboaltemator. A complete set of factory tests was predicted with an error, in all 

cases, of less than 1% from actual test values. In order to model saturation, a Newton-

Raphson iteration technique was used which converged in 6 to 8 passes. The initial 

estimate for the Newton-Raphson technique was determined using a less sophisticated 

convergence technique known as the chord method. 

The authors claimed that, for comparable results, the finite element method required 

about a tenth of the computing time required for a finite difference solution, largely due to 

the much smaller number of elements required with the finite element method than nodes 

required in the finite difference method. Since that early paper, Silvester has gone on to 

develop many more advanced techniques. 

Hybrid finite elements can also be used, an example of which is Abdel-Razek [22], in 

1981. An air gap "macro-element", in which an analytical field calculation was conducted, 

was used in place of finite elements in the air gap. Conventional elements were used in 

the rotor and stator iron, and these elements were spliced to the air gap macro-element 

through interpolating functions. This procedure was developed to improve computing 

times and accuracy for transient analysis studies. The problem they were addressing was 

that, as time elapsed, the rotation of the rotor with respect to the stator distorted the air 

gap elements, causing inaccurate field solutions. Until this work was done, this problem 

was normally handled by having the program frequently redraw the air gap mesh. This 

greatly increased the computing time. 

Piriou/Abdel-Razek [3] used finite element analysis to precalculate inductance values 

in the steady state equations for a saturated salient pole machine. 

Jian-She [23] used finite element analysis to determine the effects of saturation on 
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Blondel's two reaction circuit model parameters. 

KreftalWasynczuk [6] derived a finite element based state model to predict transient 

operating conditions. 

The advantages of the finite element method are as follows: 

I) modem PC based finite element programs have sophisticated pre- and post-

processing capabilities, graphics, and user interfaces which keep the user from 

getting bogged down in mathematical and programming complexities, and 

automates the tedious finite element mesh preparation procedures needed to 

handle detailed rotating machine problems. These simple (to use) and accurate 

computer simulation programs give the machine designer more opportunity to 

eliminate design flaws before the expensive and time consuming prototype stage. 

This means reduced cost and product development time. Some packages' output 

is compatible with CAD and computer controlled manufacturing systems, which 

further improves the quality of the finished product and shortens development and 

production schedules [24]. 

ii) Saturation in the machine iron can be accounted for. 

iii) No restriction is imposed on the density of mesh elements, so areas requiring 

detailed solution (such as air gaps or teeth) can have finer resolution, while areas 

of less interest (such as the stator backiron) can have coarser elements. This 

makes efficient use of the computing resources. 

iv) Boundary conditions are easily introduced without affecting the accuracy of the 

solution. 

v) Gives the full field solution in all regions of the machine. 

vi) Accuracy is limited only by mesh construction and computing resources. 

The problems with the finite element method are as follows: 

i) derivation and programming of the finite element equations is complex and 

lengthy, requiring advanced mathematical and computer programming skills in 

order to develop a simple, fast, and accurate software package. This is, of course, 

reflected in the price of the software. 

ii) Computing times and memory storage must be reduced through sophisticated data 

storage and computational algorithms (see Hoole [16, pp.195-235]). Hardware 

platforms must be reasonably powerful: a fast 386 PC, or SUN Workstation is 
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required for many of the simplest packages [24]. The most complex ones require 

supercomputing facilities. 

iii) Using the finite element method in transient studies is accurate, but since a 

complete field solution is required at every time step, computing a full transient 

response for a saturated salient pole synchronous machine can be a slow process 

due to its computational intensity. This justifies the development of a faster 

process for computing the fields for transient analysis. 

1.4 PROBLEM STATEMENT, RESEARCH GOAL, INITIAL PROPOSAL, AND 

OUTLINE 

Based on the background information provided in section 1.3, we are now in a position 

to write our problem statement. The magnetic circuit approach, Carter's coefficients, rules 

of thumb, and graphical methods mentioned in section 1.3 are very useful for manual 

design and provide qualitative insight, but they are neither very accurate (especially when 

saturation is present), nor computerized. Therefore, they cannot play a significant role in 

transient analysis in machines. Analytical methods are generally not able to handle 

complex geometries, however, the boundary integral method is emerging as a competitor 

of finite element analysis for three dimensional problems, since the boundary integral 

method permits us to reduce the dimensionality of the problem by one (Hoole [16, pp. 6-

7]). The finite difference method was largely ignored after the success of finite element 

methods became apparent. It is too computationally intensive, general purpose software 

cannot be written using it, and it is less accurate in some regions than the finite element 

method. The finite element method is the most accurate and best developed method we 

have, but it is slow in transient studies since it is computationally intensive and performs 

a complete solution at each time step. We need a simpler and faster method. 

Therefore, the problem statement for this research is as follows: 

PROBLEM STATEMENT 

The existing method for performing transient analysis on rotating 

machines is unsatisfactory since it uses a finite element solution at 

each time step. This is computationally intensive and therefore 

involves long computation times and/or high cost. 

The goal of this research, addressing the above problem statement, is as follows: 
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RESEARCH GOAL 

To develop an alternative magnetic field solution method which will 

be much less computationally intensive than a finite element solution, 

but will still provide acceptable accuracy under all foreseeable steady 

state and transient conditions, including magnetic saturation. 

My supervisor, Dr. T.H. Barton, felt that the classical field modelling work which had 

been published in the 1920's and 1930's (in references such as Stevenson/Park [13]) had 

the potential, if combined with today's personal computing power and his following initial 

proposal, to help me fulfill this research goal. 

INITIAL PROPOSAL 

Model the air gap magnetic flux distribution as a function of a 

position dependent, mmf independent reluctance in series with a 

position independent, mmf dependent reluctance. 

The reasoning behind this proposal can be seen from the results mentioned at the end 

of section 1.3.2. Moullin (see reference [9]) used the magnetic circuit approach, Carter's 

coefficients, and rules of thumb to determine that at 1.13 p.u. open circuit voltage, the 

mmf drop due to saturation in the teeth of a 300 kW DC generator was 36% of the total, 

while that of the air gap was 38%. The mmf drop in the teeth is mostly due to saturation, 

since at 0.38 p.u. voltage, the mmf drop in the teeth is only 0.4% of the total. Tooth 

saturation effects were found to be the most significant of the saturation effects, since 

other regions of the machine iron did not have nearly the same increase in mmf drop: the 

second most saturated region was in the poles, whose portion of the total mmf drop goes 

from 1.5% at 0.38 p.u. voltage to 14.8% at 1.13 p.u. voltage. 

If we wanted to characterize this type of magnetic behaviour with discrete reluctance 

components (using the magnetic circuit concept), we could approximate the reluctance of 

the entire magnetic circuit, R, with two reluctances in series. 

The first of the two reluctances in series, Rb , would be constant valued, and would, 

itself, be the sum of the reluctances of the air gap, Rair, which is not subject to saturation; 

plus the constant reluctance of the machine iron, R11 , which represents the iron in its 

linear region of operation. Rb, by definition, will not change even when the machine iron 

is in saturation. 

The second of the two reluctances in series, R t, would represent the increase in the 
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total reluctance of the magnetic circuit due to saturation (primarily in the teeth; but also, 

to some degree, in the other iron parts). 

Looking at it another way, if the total reluctance of the machine iron, were defined 

in the normal way, it would increase as the saturation in the iron increases; but what I 

have done is split Rron into two parts: the linear (constant) portion, R111, (which is added to 

the air gap reluctance, Rair); and the difference between 'ron and R1, being left to be 

characterized independently. 

The equations below summarize this: 

where 

and 

Riron 

+ R1 + Rt 

= Rba. + Rt 

Riron = R iln + Rt 

(1.18), 

(1.19), 

Rbase = R. + R lin (1.20). 

One of the weaknesses with the magnetic circuit approach, however, is that Rb and 

are gross parameters, not giving any information at all about the details of the radial 

flux density distribution (Br(9)) in the air gap. 9 is the angular position in the air gap. 

Detailed knowledge of the flux density distribution is necessary to determine all of the 

torque and induced voltages in the machine. 

In order to obtain this distribution, Rba must be defined in terms of its distribution 

around the air gap of the machine, Rb Q(0). Rb(9) will be strongly affected by saliency 

and the shape of the pole face. The effect of armature teeth on Br(0) and Rb (0) will be 

apparent if we consider their distributions around the air gap at different cross-sections 

along the length of the rotor. However, since armature teeth are normally skewed, Br(0)'S 

harmonics due to the teeth (say, the 15th and higher) are largely smoothed out and their 

effects upon torque and induced voltage are negligible (see Moullin [9, p. 267]). 

R is expected to be a function of the applied mmf in the magnetic circuit because 
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of the saturation characteristic of the iron (the applied mmf, itself, is current and position 

dependent). R 1 will also be position dependent due to pole saliency and the damper bar 

slots in the pole faces. Therefore R 1 = R(.97 0), where .91s the position dependent 

mmf applied by the currents in the windings. 

A major part of this research concerns characterizing Rb (0) and R(9 0) for use 

1w a in the field prediction model, and determining if it is valid to consider R(.9 0) to be 

independent of position. In other words, is R(9 0) 

OUTLINE 

The remainder of this document can be broken down in the following manner: 

Chapter 2: 

This chapter describes the equipment and procedures used to gather the experimental 

data: 

i) the measurement requirements for developing and testing the flux density 

distribution model; 

ii) the specially modified salient pole synchronous motor, and the instrumentation 

systems used to measure magnetic field distributions; 

iii) the PC based data acquisition system, and the measurement procedures used to 

collect and store the magnetic field distributions; and 

iv) some typical measurement results. 

Chapter 3: 

This chapter describes how Rb(0) and R(.9) are characterized: 

i) details of the strategy for finding Rb e(0) and R(9), 

ii) averaging of Br(0) distributions, 

iii) determining armature mmf distributions and Rba (0), and 

iv) determining field mmf distributions and  

Chapter 4: 

This chapter describes development and testing of the Br(0) distribution program: 

i) assumptions used in the program, 

ii) comparison of program results to measured Br(0) distributions, and 

iii) potential modifications. 
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Chapter 5: 

This chapter describes how the Br(0) distribution program is used to predict steady 

state torque, and evaluates its performance: 

i) summary of torque calculation methods and selection of the flux linkage approach, 

ii) integration of torque calculation into the Br(0) distribution program, and 

iii) comparison of computed and measured steady state torques. 

Chapter 6: 

This chapter describes how the Br(0) distribution program is used to predict steady 

state phase voltages: 

i) using the flux linkage voltage calculation in conjunction with D-Q axis theory, 

ii) comparison of computed voltage distributions from measured and modelled 8r(9) 

distributions, and 

iii) results of computer prediction of steady state operating characteristics. 

Chapter 7: 

This chapter draws conclusions and identifies possible future work: 

i) effectiveness of the Br(e) distribution program for steady state analysis, and 

ii) extension of the Br(e) distribution program to transient analysis. 
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CHAPTER 2 

EQUIPMENT AND MEASUREMENT SYSTEM 

2.0 CHAPTER OBJECTIVES 

I) Describe the measurement requirements for developing and testing the flux density 

distribution model, and how the equipment and measurement system satisfies 

these requirements. 

ii) Describe the specially modified synchronous motor, and its instrumentation. 

iii) Describe the personal computer (PC) based data acquisition system, and the 

measurement procedures used to collect and process radial flux density 

distribution data. 

iv) Present data from actual measurement runs and comment on its main features. 

2.1 MEASUREMENT REQUIREMENTS 

2.1.1 The Proposal's Requirements 

In Chapter 1, we saw that we will need to find Rb(8) and ). In order to 

characterize them from experiments, we need to have a basic mathematical definition for 

them which relates them to quantities we can measure experimentally. We can attempt 

a simplistic derivation based on the Ohm's Law analogy used in the magnetic circuit 

approach (see section 1.3.1). The equation 

(2.1); 

is valid for a magnetic field path having uniform cross-section, and large, constant, and 

uniform permeability (which permits us to neglect leakage flux). 

In an actual salient pole machine, all of these assumptions are violated. Further, 

equation 2.1 does not provide any detail of the distribution of magnetic flux density, B, 

which is critical for predicting the machine's behaviour. In an actual machine B is a 

function of angular position due to saliency, chamfered pole faces, and teeth. B will also 

vary with radial position. Due to the saturation characteristic of the iron, B is also a 

function of the applied mmf, .9 in the magnetic circuit (the applied mmf is also a function 

of position). Due to the effects of slot skewing in the armature, the teeth are in a different 
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angular position at each axial position (contour) along the armature surface, therefore B 

is also a function of the axial depth z. End effects also cause a variation with axial depth. 

As a result of all these factors affecting B, in terms of funötional notation B may be 

expressed as B(O,,z,.9). 

Since B(O,rz,.7) is a function of so many variables, a model using a single, constant 

magnetic circuit reluctance value is insufficient to determine B(9,r,z,9). However, if we 

approximate the actual machine magnetic circuit with a large number of narrow cross-

section parallel magnetic circuits, we can expect to get a better prediction of B(e,r,z,9). 

If we take an infinite number of parallel circuits, we can express equation 2.1 in 

continuous form as: 

R(O,r,z,) - 7(O,r) ,z 
B(Or,z,2) 

Equation 2.2 suggests that R(O,r,z,.9) can be determined from: 

i) a knowledge of the mmf distribution (in equation 2.2 it is expressed explicitly in 

terms of its position dependence). The mmf distribution can be determined from 

the winding distributions and magnetic structure of the machine. 

ii) The flux density distribution in the magnetic circuit, which is available from 

measurements. 

The original definition of reluctance given in equation 1.18 can be expanded as 

follows: 

R(O,r,zy) = R 56 (O,r,z) + R(O,r,z) (2.3). 

In equation 2.3, R is expressed in terms of Rbs, and R at. Since R will be determined from 

steps i and ii above, Rba,, and R at can then be characterized. In order to use the 

proposed method of Chapter 1, Rbase must be characterized as a function of 0 only. In 

order to do this, we will always work with a constant radius, r, just above the surface of 

the rotor in the air gap; and we will use averaged data runs along the length of the rotor 

to eliminate variation with z. This automatically eliminates dependence upon rand z in 

The proposal calls for Rst to be dependent only upon mmf. Therefore, R's 

dependence upon 0 is neglected and R 1 is characterized as a function of .9 only. 

Chapter 3 discusses the characterization of Rbas, and R at in detail. 
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The continuous form of the magnetic circuit equation, equation 2.2, provides the 

mathematical basis for my flux density distribution model. My approach to developing it 

can be summarized in the following two steps (note that all of the functional notation has 

been dropped for simplicity): 

i) with known 's and B 's, R is found for different operating conditions using 

equation 2.2. Rba and R, ,t are characterized from R using equation 2.3. 

ii) With known 9's and a characterized Rb and R is determined for different 

operating conditions using equation 2.3. B's for these conditions are calculated 

using equation 2.4 below: 

B(O,r,z,7) = 
P (O,r,z,) 

Step ii is merely the reverse of step i, and equation 2,4 is simply equation 2.2 rearranged. 

This chapter and Chapter 3 deal with step i, the remaining chapters with step ii. The 

effects of neglecting various parameters in Rba and R,,t are examined in Chapter 3. The 

validity of using equation 2.4 to predict magnetic field distributions from known .9 's and 

the characterized Rb and R t under variable operating conditions are demonstrated in 

chapters 4 and 5. Since there is no rigorous mathematical proof for equations 2.2 or 2.4 

(both having been derived from approximate equations in the first place), I depend entirely 

on measurements to determine their validity and accuracy. Measured B distribution and 

torque data will be compared to modelled data for the same conditions. 

In equations 2.2 and 2.4, B is used instead of , so that the units of R are no longer 

amp-tums/Wb, but rather amp-turnslWb/m2. This means that R is not the same as the 

"reluctance" of the conventional magnetic circuit method, but could instead be called a 

"reluctance density distribution", a "reluctance distribution" or a "reluctance wave". From 

this point on, in this document, any of these terms will mean the continuous distribution 

of reluctance as a function of angular position, as defined by equation 2.2, unless I 

indicate otherwise. The reasons I changed this definition are to simplify the computation 

of R and simplify the comparison of modelled and experimental results. My experimental 

equipment determines B data directly, so the conversion from B data to for computing 

R, and converting modelled Vs back to B's for comparison with experimental data give 

no additional insights and increase computing requirements. 

(2.4). 
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Based upon the previous description of how the proposed flux density distribution 

model will be developed and tested, it is obvious that being able to determine B 

distributions is necessary to both development and testing. 

2.1.2 Available Methods for Determining B Distributions 

In Chapter 1, we found that analytical methods such as Schwarz's transformation were 

very mathematically involved, and were restricted to infinite permeabilities and very simple 

geometries. Application of the Blot-Savart Law was subject to similar restrictions, although 

by using some elaborate techniques it can handle regions of finite permeability. To 

practically simulate real machines with complicating factors such as teeth, damper bar 

slots, salient poles, and saturation, a finite element analysis program is required. This 

method provides complete field solutions for all points within the machine structure, which 

helps us to identify local regions of saturation within the teeth or in parts having narrow 

cross-sections. Unfortunately a finite element package was not available during the 

course of my research. If it had been, it would have provided me with all the B 

distributions I needed to conduct my research. However, I would still need to make 

experimental verification. Instead I used a specially modified salient pole synchronous 

motor with a radial flux density measurement probe and a torque transducer. All of the 

measurements made on this motor were under static conditions (no rotation). DC currents 

were circulated in the windings to simulate balanced steady state conditions. This 

equipment allowed me to develop and test the B distribution model. Details of the motor, 

its instrumentation, and its measurement conditions are provided in section 2.2, and 

details of the PC based data acquisitIon system are provided in section 2.3. 

This experimental set-up (see Figure 2.1) allowed me to collect data for the radial 

component of magnetic flux density in the air gap. I obtained this data using a Hall effect 

flux density probe which was attached to a rotating disk. The disk's axis was concentric 

with the shaft of the motor, which was mounted vertically with its top end bell removed. 

The probe was at the end of a long, narrow shaft which descended from the disk into the 

air gap of the motor. As the disk rotates, the instrumentation and data acquisition system 

collect data for all angular positions, O's, in the air gap. The vertical position of the probe 

can be adjusted to any contour depth, z, along the length of the rotor (armature). 

However, the radial position, r, of the probe in the air gap cannot be adjusted. This is 

because the probe shaft holder is set at a fixed radius on the disk. The radial position of 
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the probe was set to keep the probe as close as possible to the rotor surface to ensure 

that the magnetic flux lines were normal to the Hall effect crystal's surface. 

2.1.3 Suitability of the Experimental Equipment for Developing and Testing the B 

Distribution Model 

In this section I will show that the air gap radial flux density data collected by my 

experimental equipment is suitable for developing and testing the B distribution model. 

A major restriction in using the magnetic circuit approach, equations 2.2 and 2.4, 

comes from the fact that the magnetic flux is a vector quantity, B. The magnetic circuit 

approach assumes that the direction of B is always normal to the cross-section of the 

magnetic circuit. Therefore, in order for the magnetic circuit approach to predict the 

correct B (the magnitude of B), the cross-section of the magnetic circuit must always be 

normal to the direction of B. If I extend the magnetic circuit idea to model a complex 

geometry, I require a large number of parallel magnetic circuits. However, the 

requirement for B to be normal to each magnetic circuit's cross-section still holds. When 

I extend this approach to the continuous case (as defined by equations 2.2 and 2.4), B 

must be normal, at every point, to the cross-section on which I want to define B, R, and 

Only a small subset of all possible cross-sections in the magnetic field region satisfy 

this normality condition. Even fewer satisfy this normality condition and also permit us to 

define B, R, and .?over their entire length. The air gap region of the machine is one 

place where this can be done. Chapter 3 discusses the mmf distribution in the air gap, 

so I will now describe the conditions under which normality can be assumed in the air gap, 

and show that my Hall effect probe always measures this normal (radial) field. 

It is vital that the probe is always normal to the air gap field. When collecting data 

using the Hall effect probe, it is rotated around the air gap of the motor at a constant 

depth. If B is normal to the traced path at all points, then Br (the radial component of B) 

is equal to the magnitude of B at all points as well. If the Hall effect probe is oriented to 

measure Br data directly, this measured data can be used in equations 2.2 and 2.4 

directly. 

For B to be approximately normal to the traced path at all points along its length, the 

flux density probe must rotate around the air gap in close proximity to the surface of the 

armature. This restriction can be readily seen by examining the boundary conditions at 
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an iron-air interface (see Hoole [16, p. 11]). For interfaces free of current densities, 

Br1 = Br,2 

and H0,1 = H012 (2.6); 

where Br1 and Br2 are the radial components of magnetic flux density in materials 1 and 

2 respectively; and H01 and H0,2 are the tangential components of magnetic field intensity 

in those materials. For linear conditions, equation 2.6 may be expressed as 

BOO - B8,2 

Ili P2 

where B0,1 and B0,2 are the tangential components of magnetic flux density, and It, and l,2 

are the permeabilities. Let material 1 be air and material 2 be iron, and let the 

permeability of the iron go to infinity. Equation 2.7 then says that goes to zero, and 

that the magnetic flux density in the air possesses only a radial component (which is 

normal to the iron-air interface). For typical machine steel operating in the linear region, 

g2 may be about 300 times that of air (Hayt [12, p. 509]). Therefore, B0,1 will be about 

11300(h of B0,2, which is still a very small quantity. Under heavy saturation conditions, the 

effect upon the tangential components of the field is the same as if ji2 decreases. B01 may 

be around 11100th of B0,2, depending upon the shape of the saturation curve (see reference 

[17, p. 16] for an example curve). Special irons can make the normality assumption even 

more valid. Silicon iron has a ji which is about 3500 times that of air, making the value 

of B0,1 vanishingly small (Hayt [12, p. 509]). 

These interface conditions are only valid at the interface, but since the flux lines are 

smooth curves in air, normality or near normality extends some distance into the air gap. 

With my experimental salient pole machine, for angular positions beneath the pole faces, 

normality may be assumed at any point in the air gap between the pole face and the 

armature face. In regions close to the neutral axis (where lines of flux are forced to curve 

the most), the normality condition is probably still valid at distances up to an air gap width 

from the armature surface (the air gap width is defined as the minimum radial clearance 
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between the pole face and the armature face). See reference [20] for some typical plots. 

Slots can cause a deviation from normality since the lines of flux spread apart above the 

slot in order to enter the tops and sides of the teeth. However, the angular deviation from 

normality is small, say within 50 to 10° mechanical, until you get right beside the teeth (see 

reference [20]). If the angular deviation of the Hall effect crystal surface's normal from the 

field vector is even as high as 100 mechanical, then the error is only about 1.5% due to 

the dot product relationship between the normal and the field. My measurement 

equipment keeps the probe within 1 mm of the armature surface, yet still above the tooth 

tops. Since the air gap width (as previously defined) is 3.2 mm, and since the deviation 

from normality over the slots is small where the probe is measuring, then the collected 

data will meet the normality requirement. It will then be suitable for direct use in equations 

2.2 and 2.4. Figure 2.4 in Section 2.4 is an example of a measured data run. 

Another factor affecting the measurements, which I will address in Chapter 3 and 

Appendix B, is slot skewing. In my machine, the armature slots do not run parallel to the 

axis of the machine, but are skewed by a small angle. This results in a different flux 

density distribution at every axial position, z, along the machine length since the angular 

position of all of the tooth tops is shifted by a small amount with every small change in z. 

Figure 2.5 in Section 2.4 shows this effect. 

Using B, to determine the air gap torque and the induced winding emf in rotating 

machines is part of the classic approach. To predict these quantities, Moullin [9, pp. 5-15, 

38-39] and other authors use B, in the air gap, and the general flux linkage torque and 

voltage equations. These equations are given below as: 

T-IP OP 
ao 

and 
at 

Here Tis the induced torque and E is the induced emf for a single turn coil. b is the flux 

linking the coil, and i is the current flowing in the coil. See Appendix B for the derivation 

of the expanded forms-of these equations which I used for the multiple turn windings in 

my machine. 
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In order to make the mathematics tractable linearity is normally assumed in the 

references, and the effects of saturation upon Br are neglected. Equations 2.8 and 2.9 

(and their expanded forms) are valid under both linear and saturation conditions because 

they require only Br's actual values in the air gap. In other words, saturation effects may 

complicate how we determine Br, but once we have it, equations 2.8 and 2.9 can be used 

in exactly the same way as if no saturation were present. Therefore, in order to model 

the effects of saturation in the machine, all I need to do is properly characterize the effects 

of saturation upon Br, and the correct torque and voltage quantities will be found using 

equations 2.8 and 2.9. 

Intuitively, since all of the torque that the machine produces is transmitted from the 

stator, through the magnetic field, and into the rotor; it would seem reasonable that this 

torque could be determined from a knowledge of the magnetic field in the air gap. 

Equation 2.8, as well as other formulations such as Maxwell's Tensor (see reference [22] 

and equation 5.6), are means of determining rotor torque from this information. In order 

to satisfy the power balance in the windings, the electrical power entering the windings 

has to equal the mechanical power exerted by the windings on the machine iron, or vice 

versa. Equations 2.8 and 2.9 satisfy this power balance condition when applied to the 

same winding under the same time varying field conditions (caused by rotational motion 

of the winding through the field). 

In summary, the experimental equipment I have will permit me to develop and test the 

B distribution model as follows: 

I) I will be able to characterize the R distributions by using the experimental data in 

equation 2.2. This will permit me to use the reverse process, equation 2.4, to 

develop the B distribution model. 

ii) I will be able to check the shape of the B distributions computed using my model 

with the experimental data for the same conditions. 

iii) Since my experimental equipment can measure the stationary shaft torque of the 

machine, I can use these torque measurements to check the calculated torque 

from my B distribution model and equation 2.8. 
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2.2 EXPERIMENTAL MOTOR, INSTRUMENTATION, AND MEASUREMENT 

CONDITIONS 

2.2.1 Experimental Motor 

Figure 2.1, back in section 2.1.2, is a schematic cross-section of the specially modified 

salient pole synchronous motor used for data collection. 

One end bell was removed from the motor, and it was mounted vertically onto a frame. 

On the top end there is a rotating disk, concentric with the motor shaft, which supports the 

flux probe. This disk is rotated using a small auxiliary single-phase synchronous (constant 

speed) motor. On the bottom end, the shaft is coupled to a torque transducer, and the 

other end of the torque transducer is coupled to a disk/worm gear combination. This gear 

configuration permits a small auxiliary DC motor to rotate the rotor to any desired angular 

position, but prevents the rotor from rotating because of induced electromagnetic torques. 

The ratings for the machine are found in Fahmy/Browne/Silvester/Barton [25]. It is a 

three phase, four pole synchronous motor rated at 440 volts, 14.5 amps, 10 HP, 0.8 pf 

lead, 1800 rpm. The salient poles are on the stator, and each has, a 1068 turn field 

excitation winding. Each pole face has 5 copper damper bars, connected as a squirrel 

cage. The three-phase armature windings are embedded in a 48 slot rotor, and the slots 

are skewed by one slot pitch over the length of the rotor. The armature core length is 

17.3 cm, the rotor diameter is 20.85 cm, and the stator bore is 21.49 cm. The minimum 

air gap is 3.2 mm. The face of the pole shoe is chamfered, starting at 390 electrical from 

the pole centre-line and increasing linearly until the air gap is 7.94 mm, at which point 

there is a rounded corner. 

2.2.2 Instrumentation and Auxiliary Systems 

The Hall effect probe is key to measuring the radial distribution of magnetic flux 

density, Br. It consists of a Hall effect crystal at the tip of a 45.7 cm long aluminum shaft 

of thin, rectangular cross-section. Electrical output from this probe is fed into a 

gaussmeter, which provides an analog gauge reading and 0 to 1 volt analog voltage 

output proportional to Br. The active crystal area is about 1.8 mm in diameter, and the 

measured B. is averaged over this area. The basic principle behind the Hall effect probe 

(see reference [26]) is that with a current flowing in the crystal, a force will be exerted on 

the moving charges if magnetic flux density is applied at right angles to the current flow. 

The equation governing this force is: 
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F= qvxB (2.10), 

where F is the force exerted on a particle, q is the particle charge, v is the particle 

velocity, and B is the magnetic flux density vector normal to the Hall effect crystal. The 

average magnitude of this vector on the crystal surface is Br, which I use in my 

measurements. 

F will cause the moving charges to be deflected in a direction normal to both the 

current flow and B, causing charge separation in the crystal. Electrostatic forces act in 

a direction which opposes this charge separation. The two forces eventually balance each 

other and a stable voltage difference can be measured across the crystal. This voltage 

difference is detected, amplified, and scaled by the gaussmeter. During probe rotation, 

the measured Br distribution is slowly changing, but the response time of the 

measurement system is fast enough that no dynamic error is introduced. 

The Hall effect probe is very fragile, which eliminates the possibility of using it in the 

air gap of an actual rotating machine. This is the reason why the experimental machine 

has been specially mounted and only static measurements can be collected. 

Two potentiometers are available which give output voltages proportional to the probe 

position and the rotor position. The only potientiometer I used in my research was the 

one for probe position, since my flux density readings were always taken with the rotor 

fixed and the probe slowly rotating around the air gap under the power of its drive motor. 

While the probe travelled, the probe position potentiometer output voltage was sampled 

simultaneously with the flux density reading at a rate of about 10.0 Hz. Visual gauges are 

also present on the equipment which give these positions in mechanical degrees. Both 

visual gauges were extensively used to correlate data runs. 

The torque transducer/torque meter provided an analog voltage output proportional to 

torque on the machine shaft. This data was especially useful for Chapter 5. A 60 Hz AC 

signal is applied to the windings of a primary coil. The core of the coil is a thin walled 

steel tube (about 1 mm wall thickness) which transmits the full torque of the rotor to the 

fixed frame. If there is no torque on the tube, then the voltage of a secondary coil (also 

wrapped around the tube) will be in phase with the voltage of the primary coil. The two 

voltages are compared using a phase detector, and a 0 torque reference voltage is given. 

As electromagnetic torque is applied to the rotor, it is transmitted through the torque tube, 
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the phase of the secondary coil changes with respect to the primary, and the phase 

detector output voltage changes in proportion to the rotor torque. 

A description of the inaccuracies in these instrument systems, and how they were 

handled, is given in Appendix A. 

2.2.3 Using Static Measurements 

Although the motor is no longer operable, the static field measurements we can obtain 

from it still represent the field conditions present under steady state operating conditions. 

Under balanced steady state conditions the fundamental armature mmf distribution, 

caused by the time fundamentals of the three phase currents, remains fixed with respect 

to the field poles (see references [7, pp. 146-150], Langsdorf [27, pp. 199-218], and 

Appendix C). 

The higher harmonics of armature mmf, caused by both the winding shape (space 

harmonics) and the time harmonics of current, rotate at various speeds with respect to the 

field poles. However, the magnitude of these harmonics is inversely proportional to their 

harmonic order, and the armature reaction mmf's magnitude is small relative to the field 

mmf's magnitude under normal operating conditions. Therefore, unless very high 

accuracy is required, the higher order space and time harmonics are normally neglected 

and only the fundamental is considered. This assumption will be checked and confirmed 

in Chapter 3. 

Since the armature windings' fundamental mmf distribution remains fixed in space 

(relative to the field poles) under steady state conditions, I can easily establish static field 

measurement conditions which closely resemble the magnetic fields present under 

balanced steady state operating conditions. Terminations for the windings of each of the 

three armature phases and the field are accessible, so I can connect and energize them 

to simulate different operating conditions. 

For no load conditions, steady state conditions are simulated by simply exciting the 

field windings with DC current. No armature current flows. The no load terminal voltage 

for the machine would be induced in the windings if the machine were actually rotating. 

Under load conditions, balanced three phase currents exist in the armature windings. 

Space superposition of the individual phase winding mmf's caused by the phase currents, 

combined with the armature's rotation with respect to the field poles, creates the resultant 

armature mmf wave. For balanced steady state operation, the resultant mmf distribution 
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(neglecting harmonics) has a constant magnitude and angular position relative to the field 

poles. In order to create a flux distribution corresponding to this situation, I can pass DC 

currents through both the armature windings and the field windings. The experimental DC 

current level in the field windings can be whatever the operating conditions require. 

However, in order to choose the proper current levels in the armature phases, the 

experimental DC current magnitudes in the armature phases must be set equal to the 

instantaneous current values which occur in a balanced three phase winding set for some 

paint in time during the AC cycle. Neglecting the effects of harmonics, the armature mmf 

distribution is constant in time and space (relative to the field poles) during the entire 

cycle, and I can select a point in the cycle which makes connecting and energizing the 

windings as simple as possible. 

For most points in the cycle, because each instantaneous phase current has a 

different value, it is impossible to obtain the proper experimental DC currents in all three 

phases without using a separate DC voltage source to energize each phase (I did not 

have enough equipment to do this). If we consider the point in time when the phase a 

current is equal to twice the phase b and c currents, it would be possible to use just one 

voltage source by connecting the phase a winding in series with the phase b and c 

windings in parallel. Unfortunately, since the resistances of the windings are not exactly 

equal, the currents in the phase b and c windings are not equal, which is required to 

simulate balanced conditions. 

However, consider the point in time when the instantaneous current in one phase, say 

phase c, is zero. Then, since Kirchoff's current law specifies that the sum of the three 

phase currents entering the neutral equals zero, the phase currents in phases a and b 

must be equal in magnitude and opposite in direction. This point in the cycle can be 

easily simulated by connecting phases a and b in series and letting phase c remain 

unconnected, as shown in Figure 2.2. A single voltage source can be used, and the 

difference between phase resistances is inconsequential since no parallel connections are 

involved. This is the connection I used for simulating all loaded conditions. 

It is necessary to define a relation between the AC rms phase currents and the 

experimental DC currents in order to know what experimental DC current to pass through 

the windings when simulating the actual loaded machine. Let a balanced three phase 

circuit have instantaneous phase currents defined by: 
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Ic = 

V4ms 

0 

(2.12). 

Since the instantaneous magnitude at this point in time equals the experimental DC 

current magnitude in the windings ('Dc)' then 

'DC = (2.13). 

The windings must be connected so that current flows in the positive direction for 

phase a, and in the negative direction for phase b as shown in Figure 2.2. The DC 

voltage source shown in Figure 2.2, V0 , has a variable magnitude so that the current 

level in the windings can be changed. It was implemented using an autotransformer, full 

wave diode rectifier, and resistive load bank, all connected in series. 

By exciting the a and b field windings as shown in Figure 2.2, and by manually 

positioning the armature reaction mmf axis at some angular position relative to the centres 

of the field poles, a constant torque is induced in the rotor. This constant torque, 

measured under static conditions, is equal to the steady state developed (air gap) torque 

since the flux distribution in the machine, neglecting harmonics, is the same in both cases 

(see Moullin [9, pp. 5-6]). If this were a cylindrical stator machine, this static torque would 

be proportional to the sine of the angular difference between the field pole axis and the 

armature reaction mmf axis, and would reach a maximum when this angle is about 900 

electrical. See equation 5.3. For a salient-pole machine the maximum torque is slightly 

higher than that of a cylindrical stator machine (all other factors being equal) due to the 

effects of the salient poles on the flux distribution, but this maximum torque occurs at a 

somewhat smaller angular difference (see Figure 5.2 and equation 5.4). Chapter 5 

discusses the torque characteristic of the experimental machine in more detail. The net 

shaft torque delivered to the load from the rotating motor would be slightly less than the 

air gap torque due to hysteresis, eddy current, bearing friction, and windage losses. 
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Finite element analysis methods, which are successfully used in both steady state and 

transient simulations, also use static field solutions (see [21] and [6]). For the transient 

case, a static field solution is performed at each time step. The success of this approach 

argues the acceptability of using static field and torque measurements in steady state (as 

well as transient) simulations. 

The measurements I can obtain from my experimental machine can just as easily be 

computed using finite' elements. Therefore, the procedure I am developing to obtain a flux 

density prediction model using this measured data could also be followed using finite 

element generated data. Similarly, the torque measurements I obtain from my machine 

can be obtained from finite element simulation. In a sense, I am using measurements 

from an actual machine in place of a finite element computer program. If my modelling 

procedure is successful using experimental data, it should be successful with finite 

element generated data. 

The machine I am using has features common to synchronous machines of all sizes, such 

as salient poles, chamfered pole faces, damper windings, and tooth skewing. If I am 

successful with modelling this machine, other machines of similar or less complexity can 

probably be handled as well. 

In conclusion then, the experimental data I can collect with this machine and its 

associated instrumentation should be satisfactory for developing and testing my flux 

distribution model. Using a static machine in place of a rotating machine is not a 

drawback when simulating steady state machines, and the model developed to predict the 

static or steady state field conditions can also be applied to transient studies. 

2.3 THE DATA ACQUISITION SYSTEM 

2.3.1 General Description 

Large volumes of data needed to be collected, stored, analyzed, and displayed during 

the course of this research. For every operating condition under investigation, 10 

contours, each consisting of 1600 flux density vs. position points were collected and 

averaged to smooth out the effects of teeth and skewing. In order to do this in a 

reasonable period of time, I used a commercial personal computer (PC) based data 

acquisition system. The system consists of a general purpose I/O board which plugs into 

an expansion slot of my PC, a terminal block, and data acquisition program development 

software. This software consisted of a collection of drivers for running the I/O board, disk 
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drives, and monitor of the PC. These drivers are used by calling Quickbasic or C 

language subroutines. 

2.3.2 Application of the Data Acquisition System 

Figure 2.3 is a block diagram which describes how I applied the commercial PC based 

data acquisition system in my research. 

The procedure for collecting data for a given contour is as follows: 

i) Set up the rotor angular position, probe depth, field current, armature winding 

connections and current levels appropriate for the operating condition under study. 

All instrument ranges are set to the most sensitive range possible without 

overranging. 

ii) The probe's initial starting angle, number of points to be sampled, instrument 

range setting data (scaling factors), and probe temperature conditions are entered 

into the program from the keyboard. This information is represented by the arrow 

numbered "1 "in Figure 2.3. 

iii) The signal to start sampling data (probe angular position and flux density readings) 

is entered on the keyboard, a few seconds later the probe drive motor is manually 

switched on. The probe rotates slightly more than 3600 mechanical around the air 

gap in about 150 seconds, after which it is stopped by limit switches. The 

computer stops sampling a few seconds after the probe stops rotating. The extra 

data collected at the start and stop is removed from the data later by the averaging 

program referred to in Chapter 3. The commands from the PC to the I/O board 

are represented by the arrow numbered "2" in Figure 2.3. 

iv) Sampled data is sent from the I/O board to computer memory during the sampling 

process. This stored data is handled as binary data arrays in the user written data 

acquisition program. Once sampling is completed, the binary arrays are converted 

to decimal format, and scaled using the range data entered in step ii. After this 

is done, the data is displayed on the monitor. If it is acceptable, then it is written 

to a standard DOS compatible ASCII file for use in other programs. This process 

is represented by the arrows numbered "3" in Figure 2.3. 

v) If the data is acceptable then the probe depth, or any other variable, is changed 

and the next run is started. If not, then the error is corrected and the run is 

repeated. 
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2.3.3 Advantages of Using Data Acquisition 

I required large numbers of data points for accurate field resolution, and for numerical 

integration in my Fourier analysis program. This data acquisition system easily sampled 

at a high enough rate to give me that accuracy. It also allowed me to zoom in on fine 

details in the field (see Figure 2.5 as an example). By immediately producing ASCII files, 

the inaccurate and time consuming process of digitizing flux plots, say from an analog 

chart recorder, is eliminated. Further, any analysis program which can access data files 

can access this data. Routinely, I used this data in my own Fortran 77 programs and in 

a simple spreadsheet program. By using a simple indexing system, I retrieved data 

quickly from among hundreds of different data runs. 

2.4 TYPICAL DATA RUNS 

Figure 2.4 shows two typical raw data runs at different probe depths V's). The 18.8 

cm probe depth is about half way down the rotor length, the 12.0 cm probe depth is near 

one end of the rotor. The main features of interest are listed below: 

I) For the 18.8 cm case, the flux density wave is periodic, repeating itself every 3600 

electrical or every 180° mechanical. Therefore, it is suitable for Fourier series 

representation. Fourier analysis results will be shown in Chapter 3. 

ii) For the 18.8 cm case, the shape of the positive half-wave is identical to the shape 

of the negative half-wave, except for the sign change. This means that there are 

no even order harmonics present in its Fourier series. 

iii) For the 12.0 cm case, the symmetries that were present in the 18.8 cm case are 

lost. This is because of end effects. In this machine, the total rotor length is 17.3 

cm. End effects disappear at distances greater than about 1.7 cm from each end 

of the rotor, therefore the air gap field may be simplified to a two dimensional 

problem along about 80% of the rotor's length. 

iv) The rotor teeth and slots have a pronounced effect upon the flux density 

distribution. The flux density is higher, of course, where a tooth is present, and 

lower where a slot is present. Reference [25] shows results from finite element 

analysis simulation of the fields in this machine. The computer produced flux 

density plots for similar excitation conditions show the dips corresponding to slots 

to be much deeper than those plotted here (two to three times as deep in some 

cases). The simulations show that for decreasing r's (as you get closer to the 
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rotor surface) the radial flux density distribution increases over the teeth and 

decreases over the slots. This is because as you approach the rotor surface, the 

lines of flux crowd toward the tops of the teeth. Once the radius is less than the 

tops of the rotor teeth, the radial flux density in the slots gets very small since 

most of the flux lines which have made it into the slot head toward the sides of the 

teeth. It is impossible to exactly control the radial position of the probe in the air 

gap, so similar data cannot be obtained experimentally. The averaging effect 

caused by the finite width of the Hall effect crystal also reduces the depth of the 

dips. 

v) Tiny perturbations exist in the measured field data. These are especially obvious 

in regions above the teeth. Sharp "glitches" result from noise in the measurement 

channel, and the number of glitches vanes from data run to data run. Small, 

rounded bumps, however, are faithful to the actual field shape (and are confirmed 

in the computer simulations). In the interpolar regions where the field slope is 

changing rapidly, the noise effects are still present, but less visible in the plot. The 

error level caused by noise depends on the quantization levels, analog voltage 

ranges, and noise characteristics of the instrumentation and I/O board. Appendix 

A discusses this problem in more detail. These noise errors are not significant 

since, as we will see in Chapter 3, most of my work will use averaged data runs, 

therefore the random effects of noise are smoothed out. 

vi) The shape of the wave form deviates considerably from a pure sinusoid. It will be 

shown that, due to the effects of slot skewing (see Appendix B) and the armature 

winding space distribution (see Chapter 6), the induced voltage in the windings is 

much more sinusoidal. 

Figure 2.5 is an enlarged view of the flux density distribution directly beneath the 

centre of the first pole for three different probe depths. The rotor position is constant for 

all three data runs. The flux density over the same tooth is indicated by an 'A' in each of 

the three runs. Due to the skewing of the rotor teeth, this tooth's flux changes angular 

position by 7.5° mechanical over the length of the rotor (the difference between depths 

of 13.7 and 23.9 cm is only about 50 since the distance between these two depths is only 
about 0.667 of the rotor length, the actual end depths (12.0 cm and 27.3 cm) are not 

shown because they are subject to end effects). 
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Figure 2.5: Effects of Rotor Slot Skewing on Flux Density Distributions, Field 
Current = 1 A, Probe Depth = 13.7, 18.8, and 23.9 cm 
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Figure 2.6: Effects of Saturation on Flux Density Distributions, 
Field Current = 1 A and 4 A, Probe Depth = 18.8 cm 

Figure 2.6 shows the flux density distribution under one pole. The rotor position and 

the probe depth are constant for both runs, but one data run has a field current of 1.0 

Amp (0.5 p.u.), and the other has a field current of 4.0 Amps (2.0 p.u.). I have also 

shown the positions of the damper bars in the pole shoe. Due to the saturation 

characteristic of the machine iron, if we quadruple the field current, as shown here, we do 

not get four times the original flux per pole, but somewhere around 2.25 times. The 

assumption of linearity is clearly not true. Also, due to the geometry of the iron structure, 

saturation effects are not uniformly distributed. This is obvious from the varying flux levels 

over the teeth. 



51 

CHAPTER 3 

RELUCTANCE WAVE CHARACTERIZATION 

3.0 CHAPTER OBJECTIVES 

I) Outline the strategy for characterizing Rb and R.t for use in the flux density 

distribution model. 

ii) Determine the justification for, and limitations of, using the averaged flux density, 

B, distributions. 

iii) Determine the theoretical averaged armature magnetomotive force (MMF or-9) 

wave, and check it against experimental results. 

iv) Determine Rb under linear conditions. 

v) Determine the field MMF wave. 

vi) Determine R,,t from saturated conditions. 

3.1 STRATEGY FOR FINDING AND 

Using equations 2.2 and 2.3, the Rb and R,,t distributions can be characterized if the 

.7and B distributions are known. From equation 1.20, Rb may be found under linear 

conditions in the iron. From equation 1.18, Rmt is the difference between R and Rb 

under saturated conditions. Saturation occurs as the MMF increases, so it is natural to 

try to describe R,,t as a function of MMF. The following is an outline of the strategy used 

to characterize Rba,, and R: 

i) Determine what B and .7 to use. B will be shown to be the averaged flux 

density, B,,9, over the length of the rotor, and .7 will be the equivalent rotor MMF 

that produces Bayg. The .7 distribution in the air gap can be determined for the 

armature (rotor) conductor distribution from theory, but will need to be checked. 

.7 is a function of the coil distributions, the number of conductors in each coil, and 

the current in the phase windings. Jr cannot be determined theoretically for the 

field windings for three reasons. First, they are set back on the field poles; 

second, the field pole shape affects the distribution of flux (and therefore the 

distribution of MMF); and third, there is an MMF drop in the pole iron between the 

windings and the air gap. .9 for the armature windings is known, but since large 

currents are needed in the armature windings in order to produce a substantial 
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MMF in the air gap, the armature MMF can only be used to excite the machine 

iron for linear conditions. Since large numbers of data runs are required, and a 

long cooling time between runs is necessary for high armature currents, using 

armature MMF to create heavily saturated conditions is not practical. Therefore, 

armature MMF can be used to determine Rb directly, but not R at. The field MMF 

drives the machine into saturation with much lower currents, so once it is 

determined it can be used to find 

Determine Rb. Under armature MMF excitation only, measure Bag. The 

theoretical MMF distribution for the machine is flat-topped for a 22.5° mechanical 

span centred on the positive and negative peaks (axes) of the wave (this is for the 

a and -b winding excitation conditions referred to in section 2.2.3). To be cautious, 

a 100 mechanical span ("segment") was used. 10° mechanical is slightly greater 

than one slot pitch for this machine, which is 7.5° mechanical. The rotor angular 

position was varied through 90° mechanical (180° electrical) in 7.5° mechanical 

increments so that there would be overlap from segment to segment. The 

armature current level is held constant for all segments. For each segment Ba vg 

was determined, and Rbaw was found using equation 2.3 (R is 0 since these 

measurements were for linear conditions). Rb for the entire air gap was thus 

obtained. In the overlapping portions of successive segments, the computed Rb 

data was averaged. Continuity from segment to segment was checked, and will 

be discussed later in this chapter. 

The Rb distribution determined in this fashion is the inverse of the zero order 

MMF's permeance distribution (see section 1.3.4) used by Doherty and Nickle [15]. 

Both distributions are found for constant MMF conditions. 

Once Rb is found, then the armature a and -b MMF wave can be "back 

calculated" using equation 2.2, and compared with the theoretical. Phase 

superposition of three phases can be checked, and the effects of time and space 

harmonics on armature MMF can be determined. 

With Rb known, field MMF only can be applied at a level which gives 

approximately the same peak Bag as for the measurements in step ii (to give 

approximately the same linear conditions as in step ii). Bag is then measured, and 

the field MMF wave can be back calculated using equation 2.2. This field MMF 

wave is assumed to retain its shape, but be proportional to field current. 
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iv) With a known field MMF, increase the field current so that various levels of 

saturation occur in the machine iron. R,,t may then be found using equation 2.3 

since the field MMF, Bavg, R, and Rb are known. Rst may be characterized as 

a function of MMF. Since Rst is also a function of position, error will be introduced 

by neglecting this position dependence. 

V) With Rb, Rst, the armature MMF, and the field MMF known, the B model is 

ready to be implemented (Chapter 4). All the waves are periodic so they may be 

expressed as Fourier series in the computer program. The armature and field 

MMF waves will be added at each angular position in the air gap to produce a total 

air gap MMF. 

3.2 DEVELOPMENT OF THE RELUCTANCE WAVE MODEL 

3.2.1 Using Averaged Flux Density Distributions 

In order to compute re!uctances, equation 2.2 requires known B and .9distributions 

in the air gap. This section examines what B to use. 

Appendix B discusses the assumptions made in using averaged B distributions. An 

averaged B distribution is found by measuring the radial air gap flux density distribution, 

as a function of angular position, at a number of different depths. The radial position of 

the probe is the same at all depths. The rotor position is the same for all depths. The 

averaged B distribution is then found by computing the average B value across all ten 

depths for the same angular position. The formula for this computation, implicit to 

equation B.13, is stated explicitly as 

'7 

{B(8)]avg = - B,.(O,Z1) (3.1), 

where 0 is used in place of 4 since cot = 0 for static measurements. n is the number of 

contours and equals 10 in my research. z is the depth or axial position of contour I. 

Equation 3.1 is computed using an averaging program. For each averaged B distribution 

ten 1600 point files are averaged. 

Appendix B describes the errors introduced by using averaged B distributions. 

Essentially, we are neglecting the effects of the skewing of the coil sides upon flux 

linkage, torque, and voltage computations. This error is neglected because of the 

complexity that would be introduced by accounting for skewing, the diminishing importance 
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of flux density harmonics with increasing order, and the smoothing effect of the Hall effect 

crystal. Every contour would have to be modelled individually if the general equation 

(equation B.3) were used, resulting in a ten-fold increase in characterization work and 

computing time. Smoothing from the Hall effect crystal eliminates sharp features and the 

higher order harmonics in the measured B distribution data before it is averaged (see 

section 2.4). 

By averaging over the full rotor length we also incorporate the end effects into the 

averaged B distribution. 

Based on the findings of Appendix B, and the reasons just mentioned, the averaged 

B distribution defined by equation 3.1 should be adequate for all of my research needs. 

Further investigation is outside of the scope of this research. 

As an example of the results of averaging, consider Figure 3.1. This plot compares 

the unaveraged (raw) data for a contour depth of 18.8 cm (midway along the rotor length) 

with the averaged data for all ten contours. Both are for a field current of 0.5 p.u. (1.0 A). 

By averaging, the effects of teeth and measurement noise are largely removed (Appendix 

B contains a detailed Fourier analysis comparing these two Waveforms). 

As the field current is increased, position dependent saturation effects cause distortion 

of the field shape which becomes apparent when averaging is performed. In Figure 2.6, 

the effects of saturation are apparent, but variations in the flux distribution due to the teeth 

make it difficult to see how saturation varies with angular position. Averaging allows this 

to be determined. Figure 3.2 shows how the positionally dependent saturation effects 

(caused by the pole shape and damper bar slots) cause increased distortion of the field 

shape as field MMF increases. The field current varies from 0.25 p.u. (0.5 A) to 3.0 p.u. 

(6.0 A). Also readily apparent is the non-linearity of the machine iron since at high current 

levels the flux increase is no longer proportional to the current increase. 

3.2.2 Using Averaged MMF Distributions 

Equation 2.2 also requires a known MMF (.9) distribution, which will be effective at 

all points for which we have defined B. Since we measure B in the air gap at a radius just 

outside of the rotor surface, the MMF distribution must be defined there as well. This 

section determines the averaged theoretical MMF distribution for the armature conductors. 

Defining .9 for the armature windings on the rotor may be done using equation 1.1, 

repeated here 
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Figure 3.1: Comparison of UnaveragedFlux Density Data (Depth = 18.8 cm, solid) 
to Averaged Data (dashed), Field Current = 0.5 p.u. 

H-df = Ni =  

This is the approach used in Fitzgerald [7, pp. 131-133] and Langsdorf [27, pp. 171-172]. 

Under the assumption of negligible MMF drop in the iron, the MMF in the air gap may 

be calculated using equation 3.2. If a cross-section of the machine in Figure 3.3a is 

considered, the MMF distribution of the rotor may be considered to be equal to the current 
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Figure 3.2: Effects of Saturation Upon Averaged Flux Density Data, 
Field Current = 0.25 to .3.0 p.u. 

enclosed within a closed path which goes across the air gap twice. When using the 

magnetic circuit concept, this closed path should coincide with actual lines of flux. The 

integration path, like the lines of flux in the air gap, should be drawn straight across the 

air gap when the air gap is small (or at least normal to both the rotor and stator surfaces 

if not). 

Each coil side in Figure 3.3a contains N conductors, and each conductor has I 

amperes flowing in it. For path a-b-c-a the enclosed current is ONi amp-turns, for path 
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Figure 3.3: Theoretical Computation of MMF Distributions 

a-b-d-a it is 1 Ni amp-turns, and for path a-b-e-a it is 2N1 amp-turns (which is the 

maximum value of the MMF wave). This theoretical MMF wave is shown in developed 

form in Figure 3.3b. As the angular position, 8, passes every current carrying coil side 

there is a step in the theoretical MMF wave. The height of each step is equal to the 

current carried by the coil side. As 8 increases, the paths start enclosing coil sides with 

current in the opposite sense, the steps become negative, and the net enclosed amp-turns 

reduces. As we make a complete revolution, we see that the MMF wave is periodic. Zero 

crossings occur at the mid-points of each phase band (a group of coil sides, all from the 
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same phase, in successive slots). The maximum positive and negative values occur 900 

electrical from the zero crossings. 

The theoretical armature MMF distribution for this machine is directly proportional to 

the number of conductors per coil and the current in each conductor. The MMF waves 

for more complex coil distributions are developed in the same fashion as in Figure 3.3. 

Generally the number of steps is greater, there are two coil sides per slot, and the number 

of coil sides of the same phase in each slot can be different due to partial pitch windings. 

For the rotor of my machine, the armature coil sides are separated by 7.5° 

mechanical. There are two coil sides per slot and 48 slots on the rotor. No further 

information was available on this machine, but the following assumptions and conventions 

were made when developing the theoretical MMF wave for my machine: 

i) The coil pitch is 11/12. Normally the coil pitch should be easily seen from the 

end turns, but the experimental machine's end turns were encapsulated in a thick 

resin coating, the surface of which was darkened and partially coated with old 

insulating tape fibres. This made it impossible to trace the paths of individual end 

turns without physically penetrating the resin and risking damage to the coils. 

A partial coil pitch is commonly used to make the armature MMF wave more 

sinusoidal. My machine is 4 pole, three phase, and has 48 slots. If the coil pitch 

were full, then each phase band would occupy 4 slots with 2 coil sides per slot. 

By using a partial coil pitch, the phase band is distributed over 5 slots. The middle 

three slots each contain two coil sides from, say, phase a only. One of the end 

slots will have one coil side from phase a and one from phase b, and the other 

end slot will have one coil side from phase a and one from phase c. 

ii) The number of conductors per coil side, N, will be set equal to one for now. 

Later in this chapter N will be found to be about 9. As long as N retains the same 

value, the determination of reluctance and MMF waves are all normalized with 

respect to N. The reluctance and MMF waves plotted in this chapter and Chapter 

4 are all for N equal to 1, the actual numerical values of these waves can be found 

by multiplying the plotted results by 9. N had to be determined in order to properly 

compute torque in Chapter 5 and voltage in Chapter 6. 

iii) The polarity of the armature MMF wave is reversed to that assigned by the 

right hand rule (as shown in figures 3.3a and 3.3b). This is in order to be 
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consistent with the field MMF wave (to be found later in this chapter). The 

armature and field MMF waves will need to be added numerically in the air gap 

when the model is developed, so a positive armature MMF value should produce 

flux density in the same direction as a positive field MMF value. This positive 

MMF direction causes flux to pass from the stator into the rotor. 

iv) For the armature current conditions mentioned in section 2.2.3 the magnitudes 

of current in the a and b phases are the same, but phase c current is zero. The 

phase b current is also negative at that point in time. By having positive current 

in phase a and negative current in phase b in combination with the spatial 

distributions of the coil sides bf the two phases, the MMF waves of the phase a 

and b windings acting alone superimpose to give a single, larger MMF wave than 

for one phase alone. For simplicity, I will refer to this resultant wave as the a and 

-b MMF wave. I performed many of my experimental measurements with the a 

and -b MMF wave. 

The theoretical a and -b MMF wave for a contour mid-way along the rotor length is 

shown by the stepped distribution in Figure 3.4. 

Appendix B states that when we use averaged B distributions and neglect skewing we 

should use an averaged or equivalent MMF distribution for the rotor. The dashed, smooth 

waveform shown in Figure 3.4 is the averaged MMF distribution taken from 10 waveforms 

like the one shown by the stepped distribution in Figure 3.4. Each stepped waveform is 

shifted to the appropriate angular position for its contour depth along the rotor, then all ten 

shifted waveforms are averaged. The smoothed waveform has substantially smaller 

harmonics than the stepped waveform for orders above 13. 

Experimentally, the angular coordinate of the centre of the a and -b MMF axis was 

found as follows: 

i) The a and -b windings were excited with a current which was small enough to 

ensure linearity (1.0 p.u.). 

ii) The average B distribution was determined for some rotor angular position, and 

the fundamental of this B distribution was determined. 

iii) If the fundamental of the a and -b MMF distribution's B distribution coincided 

with the centre line of a pole face, then the angular position of the rotor was such 

as to cause the a and -b MMF distribution's axis to be on the centre line of the 
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Figure 3.4: Theoretical Centre Contour (solid) and Averaged Theoretical MMF 
(dashed) Distributions for Phases A and -B Excited 

pole face. If not, a new rotor angular position was tried. 

For my machine, the rotor gauge reading which satisfied step iii was 35° mechanical. 

Therefore, the position of the a and -b armature mmf wave with respect to the centreline 

of my reference field pole, er, was always e, = rotorg - 35, where rotorg is the rotor 

position gauge reading in mechanical degrees. 

Because the coil pitch is assumed, the stepped distribution shown in Figure 3.4 may 

not be exact. If the coil pitch is full, the sloping sides of the averaged distribution will be 
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steeper and the constant portions at the top and bottom will be wider. The averaged 

distribution for the 11/12 pitch case has a constant portion which is 22.5° mechanical 

wide. By considering a range less than 22.5° mechanical (at first I used 15, and later I 

used 100 mechanical) centred on the axis of the MMF wave, the value of MMF over this 

range can be assumed constant. 

By using the averaged B distribution over this range, found using an MMF level that 

ensures linear conditions in the machine iron (1.0 p.u. armature current), equation 2.2 can 

be used to compute R. For linear conditions, R is equal to Rb. Once the Rb 

distribution for the entire air gap has been found, then the experimental a and -b MMF 

wave can be found by multiplying the experimental B and Rb. Then the theoretical a 

and -b MMF wave can be compared to the experimental one. 

In Figure 3.3 the MMF wave is drawn for a cylindrical stator, and negligible MMF drop 

in the iron. This is not valid for saturated conditions. Why not? H and dQ vary at all 

positions in the machine iron and in the air gap, especially under saturation, even though 

the integral of their dot product on any closed path always satisfies the right hand side of 

equation 3.2. For simplicity, select an integration path where dQ always coincides with H 

(by following a flux line) and assume this path does not change with changing MMF. 

Under linear conditions, as current increases, H (the magnitude of H) will increase 

proportionally at all points along the integration path. However, since Band Hare related, 

by the non-linear saturation curve in the iron, B will not increase linearly due to the iron 

saturation. Therefore, as we try to increase B by increasing the current, H in the iron 

increases faster than H in the air gap, and the fraction of the right hand side of equation 

3.2 that goes toward producing B in the iron increases. An MMF drop will occur between 

the coils and the air gap. Therefore, if we have defined an MMF wave in the air gap 

under linear conditions, and we assume the air gap permeability to remain constant, under 

saturated conditions the air gap MMF wave will be less than proportional to winding 

current since B in the air gap will be less than proportional to winding current. The 

assumption of linearity (and superposition) of the MMF wave in the air gap (where we are 

doing our modelling), key to the magnetic circuit approach, is therefore invalid under 

saturation conditions. However, we can define the MMF wave in the air gap to be linear 

if we account for the saturation effects upon B by using an MMF dependent air gap 

permeability or reluctance instead of a constant air gap reluctance. 
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By assuming that linearity (as well as superposition) is valid for the MMF waves, we 

transfer the responsibility of characterizing how salient poles and saturation affect the B 

distribution entirely to Rb and R t. A general test of these assumptions will come in 

Chapter 4, when compound excitation (both the field and armature windings being excited 

at the same time) is modelled. Since all we can measure is B, it will be difficult to prove 

if errors in the computed field distributions are caused by errors in the MMF linearity 

assumptions, or from the reluctance characterizations, or both. However, potential 

sources of error will be identified as we characterize Rb and which appear to explain 

the errors in the computed field distributions. This will leave the linearity and 

superposition assumptions for MMF unchallenged. 

3.2.3 Characterizing R 0 

Under linear conditions, equation 2.3 reduces to 

R=R base 

since is assumed to be zero. Rb. will be an unchanging distribution which 

incorporates the effects of the air gap and the machine iron (including salient poles) for 

linear conditions. From Figure 3.2, we can estimate what flux density levels we can go 

to before we get into non-linear conditions. For flux density levels corresponding to afield 

current of less than 0.75 p.u. (1.5 A), the machine iron should be linear. Since we must 

use armature MMF to characterize Rb, we must use an armature current which ensures 

linearity. In this machine, 1.0 p.u. (18 A) of a and -b excitation current gives 

approximately the same peak B (under the centre of the field pole) as 0.5 p.u. (1 A) field 

current, which is known to be in the linear region. Therefore, 1.0 p.u. armature current 

was passed through the a and -b windings when characterizing Rb . 

A series of averaged B distributions was collected with the a and -b MMF axis rotated 

by successive 7.5° mechanical steps. For each B distribution, the MMF was assumed 

constant over the middle 150 mechanical of the MMF half-wave (each of these 150 

mechanical wide regions is called a segment). Equation 2.2, R =.R' /B, was computed 

for each segment. Since the successive segments were rotated by 7•50 mechanical, there 

was a 50% overlap from segment to segment. This allowed me to compare the 

reluctances from successive segments for the same angular position. 

The first characteristic which was tested was whether or not the segments' 150 
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mechanical width was too large. I expected Rba,, to be constant under the central portion 

of the pole face where the pole face's cross-section was circular, the air gap width was 

constant, and there are no hinging effects due to saliency. Since the MMF wave is 

assumed to be constant over the segment, the reluctance wave is directly proportional to 

the inverse of the B wave. 
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Figure 3.5: Effect of 15 Mechanical Degree Segment Width Upon FL, Calculation 

Figures 3.5 and 3.6 compare the results from using 15° mechanical and 200 

mechanical segments. Each figure has three successive reluctance segments, the 

leftmost range (indicated by an A) is centred on the field pole axis, the second (B) is 
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Figure 3.6: Effect of 20 Mechanical Degree Segment Width Upon !L Calculation 

centred 7.5° mechanical from the field pole axis, and the third (C) is centred 15° 

mechanical from the field pole axis. The vertical lines which drop to zero are simply the 

limits of each segment, and are put there for clarity. 

In Figure 3.5 the 15° mechanical acceptance range has a nearly constant A wave for 

both segments A and B, and over the left half of segment C. Only at the very ends of 

each segment is there deviation from a constant value. The point on segment C where 

the R wave starts steadily increasing is exactly where the chamfer starts on the pole shoe. 

In Figure 3.6, the 20° mechanical segment is too wide because the ends of all of the 



65 

segments curve upward. Consequently, the centre position of segment B gives a different 

R value than the right end of segment A at the same angular position. If the segment 

widths are made smaller, this error will not result. In order to avoid any error whatsoever, 

a 100 mechanical segment width was used to define Rb. 

The second characteristic which was investigated was the sensitivity of Rb to the 

magnetic history of the iron. This effect is apparent when working at low excitation levels, 

and results from the hysteresis characteristic of the iron. The first series of reluctance 

segments covered a range of rotor angles from 0° to 180° electrical or 0° to 90° 

mechanical (from the +D axis to the -D axis, where the +D axis is the centreline of my 

reference North field pole and the -D axis is the centreline of the next South field pole in 

a clockwise direction). Figure 3.10 shows the mechanical angular positions of the +D, -D, 

+Q, and -Q axes. While covering a 90° mechanical span my reluctance program 

calculated Rba,, for all 360° mechanical of the air gap since it computed the Rb for four 

constant valued MMF segments at once. However, the reluctance waves of the first and 

last segments in the series were not the same, even though they were for the same 

angular positions. The reluctance for the last segment was higher than the reluctance of 

the first segment over the entire segment width. Apparently, the field poles were used to 

being magnetized in one direction, and to reverse magnetize them using the armature 

MMF (which was done with the last segment in the series) gave higher Rbaw results. 

In order to eliminate this hysteresis effect I started the reluctance segment series at 

the -Q axis (a point 90° electrical or 45° mechanical counterclockwise from the reference 

North field pole) and ended at the +Q axis (a point 90° electrical or 45° mechanical 

clockwise from the reference North field pole). Over this span I used the a and -b MMF 

wave of the same polarity as the field pole between the -Q and +Q axes. This produced 

more consistent results. 

A comparison of the Rbaw values from the -Q to the -D axis is shown in Figure 3.7. 

Case A is the Rb distribution determined by taking segments from pole centre (+D axis) 

to pole centre (-D axis). This was the first series that was taken and it was here that the 

hysteresis effect was detected. Case B is determined by taking them from the +Q 

interpolar axis to the -Q interpolar axis with the armature MMF magnetizing the field poles 

in their normal sense. Case C is the same as Case B, but a large DC current was 

manually applied to the field windings, first in one direction, then in the opposite direction 

several times. The final DC current was in the normal operating sense. This process, 
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Figure 3.7: Comparison of R Waves for Different Magnetic Histories 

135 

which I called "magnetic resetting" ensured that there were no hysteresis anomalies in the 

magnetic circuit from previous experiments. It was with the machine magnetically reset 

that Rbaw was finally characterized. The hysteresis effects are noticeable, with Case A 

being about 7% higher than Case C below the field pole, and 14% higher in some spots 

in the quadrature axis region. 

Even at these low excitation levels, the linearity assumption is not totally correct. The 

assumption of ji being constant for iron is only an approximation and should be used with 

discretion. 
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Figure 3.8: Comparison of Typical Overlapping Reluctance Segments 

The third characteristic which was investigated was the difference in reluctances in the 

overlap between consecutive segments. Below the pole face, the average error between 

the overlapping portions is about 1.7% and is fairly consistent. In the interpolar regions 

the error can vary from 4 to 9% with higher errors occurring in later segments in the 

series. Detail of the typical overlap between consecutive segments is shown in Figure 

3.8. 

These errors are from three sources: 

I) Less smoothing effect is present in the interpolar regions' averaged B data. This 
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results in a rougher reluctance wave in the interpolar regions. There is less 

smoothing here because the unaveraged B distribution in the interpolar regions 

has a high slope, and where there is a slot there is a wide dip in the distribution 

followed by a flat region. When averaging over a tooth pitch, these wide dips and 

flat spots, being on a sloping distribution, do not smooth out as readily as the dips 

under the pole faces. The averaged B distribution then has some roughness left 

in it. 

Higher percentage error occurs for later segments in the series. The effects of 

hysteresis caused by partial reverse excitation of the field poles (when the MMF 

axes are centred on the quadrature axes) lead to increased error (about 4% more) 

in the overlapping sections of successive segments on one side of the pole, 

relative to the other side. This can be partially corrected by magnetically resetting 

the machine iron between measurements for successive segments, but 

dissymmetry still exists in the B distributions. 

Another source of error between successive, overlapping Rb segments is from 

fringirg in the B distribution. Regardless of which side of the pole you are on, 

when the overlap between successive segments is compared, the segment with 

the higher reluctance (for the same angular position) is the one whose MMF axis 

is closer to the pole centre line. Figure 3.8 is an example: segment A is higher 

than segment B in the overlapping region. The MMF distribution is constant over 

the segment width, and remains the same in the overlapping regions for both 

segments. However, in order for the Rb values to differ for the same position, 

the B distribution must have a different magnitude for the same angular position 

from one segment to the next. The magnetic circuit modelling approach proposal 

in this research simply offers no means of modelling this behaviour. Under linear 

conditions, it would say that since you have the same MMF values at the same 

angular position then you should have the same B value and the same Rb value. 

Therefore, in order to predict this fringing behaviour, the entire field region (or 

symmetrical portions of it) should be modelled using finite element analysis. This 

error is most significant in the interpolar regions (about 4%). Some of the flux that 

would have gone from the rotor into the field pole is going into the stator backiron 

directly thus complicating the field solution. When successive segments are 
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compared under the field poles this error drops to about 1.7% implying that these 

fringing effects are not as significant here. 

By averaging the two successive segments where they overlap (as shown by the 

averaged segment in Figure 3.8), a reasonably continuous Rba,, waveform can be 

assembled as shown in Figure 3.9. Rb can be expressed by using a Fourier series. By 

truncating the series after 30 terms, any remaining glitches are smoothed out. The Rb 

distribution contains both odd and even harmonics since there is no half-wave symmetry. 

Rbaw has minimum constant reluctance below the constant air gap portions of the pole 

faces, and this reluctance starts increasing below the chamfered portions of the pole 

faces. It then increases significantly in the interpolar regions. 

Rb has now been determined. It will be assumed to be constant, regardless of MMF 

level. It essentially models the effects of the pole face and pole saliency under linear 

conditions. 

The shape of Rb is similar to the inverse of the zero order MMF's permeance 

distribution shown in Doherty/Nickle [15, p. 916]. Differences between the two may be 

because Doherty/Nickle did not include finite iron permeability, and differing pole shapes. 

Doherty/Nickle also considered the permeance distributions for each specific MMF 

harmonic separately. 

3.2.4 Determining and Using the Experimental Armature MMF Wave 

Now that Rbas, has been found, equation 2.2 can be used to back calculate the full a 

and -b MMF wave under linear conditions for comparison with the theoretical one. 

Figure 3.10 shows results for back calculated MMF waves. These MMF waves are 

superimposed upon the Rb wave. Three cases are considered. Case A is for the a and 

-b MMF axis centred on the direct axis. Case B is when it is centred on the +Q axis, and 

Case C is when it is centred on the -Q axis. The magnitude of the MMF waves are all 

normalized with N= 1, and the armature currentis 1.0 p.u. (18 A). The B data used is 

the same B data for those cases that were used in determining Rb, so all we have done 

is use equation 2.2 in reverse to find MMF. 

Concentrating on Case A first, we can see that beneath the pole, the MMF shape is 

smooth, and very much like the theoretical averaged one shown in Figure 3.4 (a more 

detailed comparison shall be made later). In the quadrature axis regions (on the flanks 

of the MMF wave), the MMF wave has a step-like characteristic. This is because the 
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averaged B distribution is rougher in the quadrature axis regions, and Rb possesses 

small bumps at the joints between consecutive segments. In reality, this stepped part 

should be a straight line. 

Cases B and C confirm the effect of quadrature axis roughness in the averaged B and 

Rba,, distributions, since they also have rough peaks in the same angular positions as the 

rough flanks of Case A. Under the poles, however, the MMF waves have very smooth 

sides, in agreement with the theoretical averaged MMF wave in Figure 3.4. In both cases 

B and C, the sides of the armature MMF wave beneath field poles which have the same 

field MMF polarity as the armature MMF wave are higher than the sides where the 

armature MMF wave's polarity is opposed to the field MMF's polarity. This is evidently 

due to hysteresis effects, as mentioned in section 3.2.3. 

In order to obtain a better picture of what the actual MMF wave is like, the quadrature 

axis roughness and hysteresis effects need to be removed. Two approaches were tried. 

The first was to shift the two quadrature axis MMF waves onto the direct axis and average 

them. The second was to take the well defined portion of the Case A MMF wave (under 

the poles) and splice it to the position shifted smooth sides of the case B and C MMF 

waves (these were also, originally, from positions under the poles). The second approach, 

splicing, was better than the first since the averaging approach still left the roughness in 

the axis region of the MMF wave. The resulting spliced MMF wave is compared with the 

averaged theoretical MMF wave (of Figure 3.4) in Figure 3.11. 

The spliced MMF distribution appears to be closer to a sinusoid than the theoretical 

one. Fourier analysis shows that the theoretical one has a fundamental which is 3.86% 

higher than the spliced case, and all of the spliced case's higher harmonics are much 

smaller. The highest one for the theoretical case is the 5th with a magnitude about 3% of 

its fundamental. The highest harmonic for the spliced case is the 5th, with a magnitude 

about 1.08% of its fundamental. In much of the literature the simplifying assumption of 

a sinusoidal MMF wave is used. Apparently, based on my measurements, this is not a 

bad assumption. 

In order to use the spliced a and -b MMF distribution for modelling purposes, it can 

be expressed in terms of Fourier components. The total a and -b MMF is simply the sum 

of these components. The general formula for computing the a and -b armature MMF at 

any point is 
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(statorg) = Jjrx / x sin [(2 xJ x statorg) + Of 

+ (2xjx(mtorg-35))] 
(3.4), 

where 9(statorg) is the a and -b armature MMF distribution at angular location statorg. 

statorg is the stator gauge reading on the experimental machine in mechanical degrees 

(or radians). This is the angular position coordinate present on the horizontal axes of all 

of the figures so far (for example, see Figure 3.11). statorg ranges from 00 to 3600 

mechanical. Each term in the sine function is in electrical degrees, so (2 x j x statorg) goes 

through 720° electrical, or 2 full cycles, as the rotor physically rotates 360° mechanical. 

j is the harmonic order, mis themaximum order used in the approximation (for modelling 

purposes m only needed to be 15). 6 is the phase angle (in electrical degrees or radians) 

and .is the magnitude of each component. These are output from my Fourier analysis 

program. rotorg is the rotor gauge reading on the experimental machine in mechanical 

degrees or radians. As mentioned earlier, rotorg - 35 (in mechanical degrees) Is the 

angular position of the a and -b MMF axis with respect to the centre line of the reference 

North pole (+D axis). / is the experimentally applied DC current flowing through the a and 

-b windings. 

With the spliced a and -b MMF wave now known, and expressible using equation 3.4, 

Rba,e can be determined from fewer B distributions by making the segment width greater. 

Rather than using 12 averaged runs of 100 mechanical segment width stepped by 750 

mechanical, I was able to fully characterize Rba,, using only three. This greatly speeded 

up the process of determining the effects of saturation upon R since several reluctance 

waves had to be computed for different current levels. 

A number of trials with varying acceptance widths and varying MMF wave orientations 

were performed. If the acceptance widths were too wide, divide by zero problems started 

to occur as the B distribution approached zero. The best solution was to use three 

segments, one centred on the +D axis with a width of 55° mechanical, one centred on the 

+0 axis with a width of 40° mechanical, and one centred on the -Q axis with a width of 

40° mechanical. Both quadrature axis reluctance waves were averaged to eliminate 

roughness and hysteresis effects. The rms error in the Rb wave computed this way, as 

compared to the one computed using twelve 10° mechanical segments, is 2.8%. The 
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results are shown in Figure 3.12. 

Success in determining Rb with the experimental armature MMF wave shows that 

if the armature MMF wave is known, Rb can be determined with fewer data runs by 

using wider segments. Direct use of the theoretical armature MMF wave, or even just a 

sinusoid, could also be attempted. Since the harmonics in the armature MMF wave are 

small relative to the fundamental, little error should be present in an Rb wave determined 

using the theoretical armature MMF wave or just the fundamental of the armature MMF 

wave. 

Superposition of the MMF waves of the rotor windings for linear conditions can also 

be checked. Refer to Figure 3.13. With the a and -b MMF wave centred on the +D axis, 

and 1.6 p.u. armature current, the resulting MMF wave is determined using equation 2.2. 

Next, with the rotor in the same position, 1.0 p.u. armature current is passed through the 

a winding only. The same is then done for the -b winding only. When the MMF waves 

for a alone and -b alone are numerically added, the result is practically identical to the 

case when a and -b are excited simultaneously. The principle of superposition appears 

to hold. 

I constructed a spliced single phase MMF wave in the same manner as for the spliced 

a and -b MMF wave of Figure 3.11. The resulting single phase MMF wave is shown in 

Figure 3.14. 

The harmonics of the single phase MMF wave are substantially higher than for the a 

and -b MMF wave. However, when the a only and -b only single phase MMF's are added, 

the harmonic level becomes similar to that for the a and -b MMF wave. The third 

harmonic, present in the single phase MMF wave, goes to zero when the two single phase 

MMF's are added. This is due to the spatial arrangement of the single phase windings. 

With the single phase MMF's now determined they can be used in the model along 

with three phase currents. We are no longer restricted to the experimental a and -b MMF 

wave for one instant in time. All of our static experiments must use the a and -b MMF 

wave because of equipment limitations, however. 

The a only and -b only single phase spliced MMF waves are added and compared to 

the a and -b spliced MMF wave for the same point in time (armature current is 1.0 p.u.). 

The result is shown in Figure 3.15. 

The summed single phase MMF's in Figure 3.15 are not quite equal to the a and -b 
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MMF. This is due to the nonlinearity of the iron. The single phase MMF's, for the same 

current, are about half the magnitude of the a and -b MMF. As will be shown later in this 

chapter, under the lower MMF conditions present when only the single phase windings are 

excited, A actually increases. When the single phase MMF waves were calculated R was 

assumed to be constant. Therefore, the lower value of B, caused by a higher R and not 

a lower MMF, appears to give a lower value of MMF than what linearity would dictate. 
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Figure 3.16: Comparison of Armature MMF's, rotorg = 35°, 42.5°, 50°, and 57.5° 
mechanical 

Under steady state conditions, Langsdorf [27, pp 200-218] demonstrates that the 
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space harmonics of the phase MMF's, the time harmonics of current, and the rotor rotation 

combine to create a variety of MMF harmonics rotating both forwards and backwards with 

respect to the rotor at various fractions of the synchronous speed. By considering only 

the time fundamental of current, and a three phase balanced system (the mis values of 

the phase currents are related to the 1.0 p.u. (18 A) experimental DC value by equation 

2.13), the effect of the space harmonics of the three phases' MMF's (as time progresses 

and the rotor rotates) can be calculated. These results for four different rotor positions 

(four different points in time) are shown in Figure 3.16. 

The MMF axis (and the fundamental of MMF) always remains centred on the same 

angular position, in agreement with the references quoted in section 2.2.3. The variation 

at any one point over the course of a cycle is ± 5 amp-turns (± 3.6% of the peak). 

Therefore, the error introduced by using spliced MMF's, or even theoretical MMF waves, 

is small relative to the harmonic variation. On the other hand, the harmonic variation itself 

can often be neglected when considering its effects on torque or voltage since the 

armature MMF wave is normally dwarfed by the field MMF wave. However, for conditions 

where the armature current becomes very large (for example, under short circuit 

conditions) the armature MMF wave can become comparable In magnitude to the field 

MMF wave, in which case harmonics should not be neglected. 

In order to limit the scope of this research, the flux distribution, torque, and voltage 

models will not consider the effects of space and time harmonics, although as just shown 

here, this can be easily done. Either the a and -b MMF wave or the superimposed a only 

and -b only MMF wave will be used in the models for consistency with the experimental 

measurements. 

3.2.5 Determination of Field MMF 

Moullin [9, p. 254] gives examples of field shapes that can be used to approximate the 

field shape under a salient pole (see Figure 3.17). One is a trapezoid, and the other is 

constant in the centre but with a sin' function representing the sides. The latter function 

has more rounded corners and 'a smooth curve which approaches the neutral axis 

tangentially. In Figure 3.17 B is the maximum value of the flux density distribution. 

Under the conditions of a uniform air gap and infinite permeability, the MMF waves for 

the salient poles would be proportional to the flux distributions shown in Figure 3.17. 

However, since we have salient, chamfered poles, we do not have a uniform air gap. Also 
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Figure 3.17: Trapezoidal and sin  Approximations to Flux Distributions Under a 
Salient Pole 

infinite permeability is a questionable assumption. 

We can compute the field MMF in much the same way as we back calculated the 

experimental a and -b MMF for the armature, under the assumption that Rb remains 

constant for both the armature and field MMF. R should be constant if the peak value 

of the B distribution under field excitation equals the peak value of the B distribution under 

a and -b armature MMF excitation, the a and -b armature MMF excitation level is the one 

used to determine and the armature MMF axis is centred on the field pole. Figure 

3.18 compares the B distributions for field current levels of 0.5 p.u. (1.0 A) and 0.75 p.u. 

(1.5 A) with that for 1.0 p.u. (18 A) a and -b armature MMF excitation. From Figure 3.18, 

field B distribution data for a field current level between 0.5 and 0.75 p.u. should be used 

to compute the field MMF distribution. I will examine both the 0.5 and 0.75 p.u. cases to 
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Figure 3.18: Comparison of B Distributions for Field Current Only (0.5 and 0.75 
p.u.) and Armature A and -B Only (1 p.u..) 

determine how sensitive the field MMF distribution is to the field current level. 

In Figure 3.19 I have plotted the resultant field MMF waves for these two cases. Both 

cases used the Rb wave shown in Figure 3.9 and are computed using equation 2.2. In 

Case A, the field current is 0.75 p.u. (1.5 A). Notice the roughness on the flatter portion 

of the wave. The roughness is present due to the products of the slight imperfections in 

Rb, and the larger imperfections in B (even though averaging largely removes all of the 

tooth effects, a small amount is still present). This roughness is also present on the flanks 
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of the field MMF wave, although it is less visible due to the wave's steep slope in those 

regions. Case B is for 0.5 p.u. (1.0 A) field current. Its peak value is 1/1.44 times that 

of the 0.75 p.u. case. This suggests that the field MMF is directly proportional to current 

for linear conditions since the small deviation from 1/1.5 is likely due to saturation. 

If the air gap were uniform, the field MMF would produce a B distribution similar to the 

trapezoidal case of Figure 3.17. 

The field MMF wave in the air gap is not expected to maintain a constant shape and 

remain proportional to field current under saturated conditions, but these assumptions will 

be made for modelling purposes. R at will take care of any deviation from linearity. 

Now that we know the shape of the field MMF wave for linear conditions, we can 

estimate the number of conductors per coil, N, as mentioned earlier in the armature MMF 

section. Consider the flux density distributions at the centre of the pole face of Figure 

3.18. When the flux density distribution (at the pole centre) for the field winding is equal 

to the flux density distribution from the armature winding (a and -b excitation) then, since 

Rb is constant and the two MMF waves are nearly flat at the centre of the poles, the 

peaks of the two MMF waves are numerically equal. Consider the integration path (for 

equation 3.2) shown in Figure 3.20. The total field current enclosed in the integration path 

for these conditions equals (1068)(2)(1.15)(1) amps. 1068 is the number of turns in each 

field coil, the 2 is present because there are 2 field coil sides enclosed, each having 1068 

turn sides. The (1.15)(1) is the approximate field current required to give the same B 

values at the centre of the pole face as the 18 amp a and -b case. The required current 

in the armature windings for the same B value at the centre of the pole face is 

(1 6)(N)(1 8), where 16 is the total number of armature coil sides enclosed in the integration 

path (from both the a and -b windings), N is the unknown number of conductors in each 

coil, and 18 amps is the DC current level in each conductor. Solving for N we get N 

8.53. Either 8 or 9 conductors per coil can be used. In Chapter 5 I used 9 because it 

gave better computed torque results. 

By determining N as 9, the absolute magnitude of the a and -b armature MMF wave, 

Rb, Rwt, and the field MMF wave will all be increased by a factor of 9 from the N = 1 

assumed in all of the plots shown in this chapter. The modelled B distributions shown in 

Chapter 4 used N = 1, and are all unaffected by whatever N is used, as long as the MMF 

and reluctance waves are all based on the same N. Chapters 5 and 6 use N = 9, since 



86 

F 

- 
/ INTEGRATION 

p 
J PATH 

S. 

. 

Figure 3.20: Integration Path for Determining N 

both the torque and voltage prediction models are directly proportional to N. 

Because of its trapezoidal shape, the harmonic content of the field MMF wave is much 

higher than for the a and -b armature MMF wave. For a field current of 0.5 p.u. (1 A) the 

harmonic distribution is shown in Figure 3.21. The field MMF's 3 rd harmonic is 21.4% and 

the 5th harmonic is 5.4% of the fundamental. Due to the shape of the reluctance wave, 

however, the corresponding B distribution's 3d harmonic is only 2.7% and 5th harmonic is 

increased to 10.6% of the fundamental. 

The pole arc to pole pitch ratio for the trapezoidal field MMF distribution in Figure 3.19 
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Figure 3.21: Harmonic Content of Field MMF Wave, Field Current = 0.5 p.u. 

is 0.7. The physical pole arc to pole pitch ratio of the machine is also 0.7. Walker [10, 

pp. 82, 117-118] recommends this ratio be 0.7 also. If it is too large (greater than 0.75) 

then there will be too much leakage flux and too high a fluxf density in the pole body. If 

it is too small (less than 0.67) then there is inadequate overhang to support the field coil. 

Walker also mentions that the curvature of the pole shoe should be less than that of the 

stator (or, in our case, more than that of the stator) in order to reduce harmonics in the 

flux density distribution and, in turn, in the induced voltage. 
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Figure 3.19 suggests that a trapezoid with the width of its constant portion equal to the 

pole arc width is a good approximation to the field MMF. Its height should be set equal 

to (number of field tums)(2)(field current)/2 where the 2 in the denominator accounts for 

the integration path crossing two air gaps. 

3.2.6 Characterizing R, 

Now that the field MMF distribution is known, we can characterize R's dependence 

upon MMF levels. Equation 2.3 is repeated here 

R=Rb. +R 

Until this point we always worked with a constant MMF level in the armature and field 

windings. H then equaled Rb. Now we will attempt to determine how much H deviates 

from Rbs, under saturated conditions, and characterize the difference between Rand Rb 

with 

Some deviation of H with MMF level can be determined using just the armature MMF 

wave, but because the armature MMF wave requires about 18 times as much current to 

equal the magnitude of the field MMF wave, we will concentrate our efforts on using the 

field MMF to characterize 

Figure 3.22 shows the variation of the A wave in the polar region with different 

armature current levels. For low MMF's (the 0.5 and 0.75 p.u. cases) R decreases with 

increasing MMF. A plot of the changing H value under the pole face as a function of 

armature current is shown in Figure 3.23. This is due to the non-linearity of the B-H 

characteristic of the iron. A behaves as if it were inversely proportional to i, the iron 

permeability. p. is the slope of the B-H curve shown in Figure 3.24 since B = iiH. For low 

and high H levels p. is small and R is large. When H is in the range for which the B-H 

curve is considered linear, p. is large and R is small. This is consistent with the shape of 

the R vs. armature current curve in Figure 3.23. 

At high MMF levels A starts to lose its shape due to saturation effects. In the 2.0 p.u. 

case of Figure 3.22 (roughly the same MMF level as for 1.0 p.u. field current conditions) 

the effect of damper bar slots is visible. Saturation causes R to vary more at some points 

than at others. This is why Rst is both a function of MMF level and position. In 

accordance with the initial proposal, and in order to keep the scope of this research 

reasonable, we will assume Rst to be a function of MMF only and we will disregard its 
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Figure 3.22: Comparison of R Waves for Armature Current from 0.5 to 2.0 p.u. 

variation with angular position. 

Figure 3.25 shows the variation of R with field current levels from 0.25 to 3 p.u. The 

R wave is distorted due to saturation. 

The R wave for the 2 p.u. armature current case in Figure 3.22 and the R wave for 

the 1.0 p.u. field current case from Figure 3.25, both for approximately the same peak 

MMF levels, are compared in Figure 3.26. The effects of saturation upon R are slightly 

different for the armature and field MMF waves. Under linear conditions, however, R has 

the same shape for both the armature and field MM F's. For very low field MMF's R does 
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not appear to increase as it does for low armature MMF's. Additional data would have to 

be collected to see if a point exists where R does start to increase under very low field 

MMF's. Since I am concentrating on modelling the machine for overexcited conditions, 

this work is outside of my scope. 

By neglecting the position dependence of the saturation effects can be found from 

the large number of different R vs. MMF values in the curve families shown in Figure 3.25. 

These R curve families were found using only one averaged B data set for each field 

current level, but with an 80° mechanical segment width. This substantially reduced the 

number of data runs which needed to be collected as compared to using only 100 

mechanical segment widths. Field excitation was able to give me significantly higher MMF 

levels than armature excitation given my equipment, voltage level, and heating constraints. 

Therefore I was able to characterize R more extensively than I would be able to with 

armature excitation alone. 

Using a spreadsheet program I made plots of normalized R versus MMF for each 

2.5° mechanical step over a 39° mechanical range covering half of one peak of the R 
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wave. These are shown in Figures 3.27a, b, and c. The remaining 7 sections of the R 

wave are symmetric. Normalized Rst was determined by rearranging equation 2.3 to get 

and then dividing this by Rb as shown by 

R(O,9) - Rbwe  
=  

RbM  

where Rbaw is assumed to be unchanging with MMF, and was based on 1.0 p.u. a and -b 

armature MMF excitation (linear conditions). R,,t is assumed to be normalized R 1 from 

this point on, unless mentioned otherwise. 

R is characterized as a function of the absolute value of MMF since the R versus 

MMF data, from which R,,t is determined, has both positive and negative values of MMF. 

When is approximated with a polynomial, the absolute value of MMF is used as the 

independent variable. However, for simplicity I will refer to as a function of MMF. 

R is negative under very low MMF conditions since the B-H curve is non-linear under 

these conditions. If the B-H curve were truly linear under low MMF conditions, then 
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Figure 3.25: Comparison of R Waves for Field Current from 0.25 to 3.0 p.u. 

80 

would be constant and equal to 0 throughout the linear region. R 1 is 0 when R = R b aw 

since we have defined it this way (when R equals R Q, equation 3.5 is zero). Rst 

increases as MMF increases, and its derivative also increases as MMF increases. This 

behaviour can be approximated with a second order polynomial. 

The plots in Figure 3.27 show the variation of normalized R 1 with position. It is 

possible to maintain the position dependence of R by using an approximating polynomial 

for each curve in Figure 3.27. However, in order to avoid discontinuities at the boundaries 

beween the angular regions where each polynomial is valid, some sort of smoothing 
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functions would need to be introduced. 

An alternative could be to take the Fourier series of the R waves or of the R 1 

waveform at each MMF level. Each harmonic magnitude and phase could be plotted as 

a function of the average half-wave MMF and an approximating function could be used 

for each magnitude and phase function. 

Characterizing Rat as a function of both position and MMF is difficult and outside my 

research scope. Instead, the position variation of R at can be ignored and all of the points 
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Figure 3.27: Plots of Normalized R,. vs. MMF for Varying Angular Positions in 
Mechanical Degrees 
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Figure 3.28: Scatter Plot of Normalized R,d as a Function of MMF Only, With Least 
Squares Approximating Quadratic Equation 

in Figure 3.27 can be shown as one scatter plot, as in Figure 3.28. A simple minimum 

least squares error approximation (Burden, Faires, and Reynolds [29, pp. 323-325]) can 

be used to fit a quadratic equation to the data. This best fit quadratic is also plotted in 

Figure 3.28. Even though the direct position dependence of is neglected, the MMF 

waves themselves are still position dependent, so R,,t in the air gap will vary with position 

since the MMF wave varies with position. 

A Fortran program was written which calculated the normalized R values, the 
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corresponding MMF, and the least square error quadratic equation coefficients for all the 

data at uniform positions throughout the R waves of all different field current levels. The 

resulting best fit second order polynomial for normalized which is plotted in Figure 

3.28, is 

- 0.14098 + O.0010569(0) 
+ 1.289786 6(9(0)) 2 

where .7(0) is the position dependent MMF. Assuming linearity and superposition holds 

for the MMF waves, .7 (8 ) will be the sum of the armature and field MMF waves in the 
air gap. 

The total reluctance, used in equations 2.2 and 2.3, may be found by rearranging 

equation 3.5 

R(O,9) (1 + 

(3.6), 

(3.7). 

Equation 3.6 may be substituted into equation 3.7. When this is done, R will increase 

similarly to that shown in Figure 3.25 as the field MMF increases. However, the prominent 

fluctuations in the experimentally determined R due to the damper bar slots will not be 

present. Rather than doing this extra work here, these effects will be noticeable when 

comparing the experimental versus computed B distributions in Chapter 4. 
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CHAPTER 4 

THE AIR GAP FLUX DENSITY MODEL 

4.0 CHAPTER OBJECTIVES 

I) Describe the B distribution modelling program. 

fl) Compare experimental and modelled B distributions for field excitation only, 

armature excitation only, and compound excitation with different rotor positions. 

Ili) Describe potential improvements and modifications to the model. 

4.1 DESCRIPTION OF THE B DISTRIBUTION PROGRAM 

4.1.1 The B Distribution Model 

Using equation 2.4 and equation 3.7, the equation for the B distribution in the air gap 

can be expressed as: 

B(0) =   

[1 + (9(8))] R (0) (4.1), 

where 8 is the angular position in the air gap. .7(8) is the MMF in the air gap at the 

angular position 6. If superposition holds, then 7(0) will be the sum of the rotor MMF 

and the field, pole MMF at that position. Both of these MMF's can be expressed as 

Fourier series, as was mentioned in Chapter 3. Rb(0) was also determined in Chapter 

3, and can be expressed as a Fourier series. R(.7 (0)) was characterized as a 

quadratic function of .7 (0), see equation 3.6. Ultimately, since .9 is a function of 0, 

R(.9') will also vary with 0. However, R at also has its own direct dependence upon 0 

as seen by the effects of the damper bar slots on R in Figure 3.25. This direct 

dependence is neglected in determining equation 3.6. When equation 3.6 is inserted into 

equation 4.1 for R at we get 

B(O,.9).'  .9(0)  
[0.85902 + 0.001056 (.7(0)) + 1.289780 6 (.7(0) )2] R (0) 

(4.2). 

Equation 4.2 is the basis for the B distribution model. Per Chapter 3, B(0,.7) is the 

average radial flux density distribution in the air gap. 
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4.1.2 Static Versus Steady State Conditions 

A,program was written which computes the flux density using equation 4.2 for static 

conditions. Static conditions are computed because my measurement equipment can only 

measure average flux density distributions for static conditions and I want to compare the 

measured and computed results. All of the space harmonics of MMF and B are present 

under static conditions, but since all of the currents are DC and there is no rotation, these 

space harmonics are time invariant. 

To extend this B distribution model to the steady state case see the General Torque 

and Voltage Computation Algorithm in Appendix B. There rotation is introduced, 0 

becomes 4) where 4) = 0 + cot, and provision is made for all the effects of space and time 
harmonics. Some preliminary comments on extending the model to the transient case are 

also made there. 

In Chapters 5 and 6 I will use this B distribution model to compute steady state torque 

and voltage under the assumption that the static B distribution is the same as the steady 

state B distribution. The effects of time and space harmonics are neglected. 

4.1.3 Program Structure 

Inputs to the program are the DC field current level, the DC armature current level, 

and the rotor angular position. Fourier series magnitudes and phases, as well as R's 

coefficients, are preassigned in the program, but could be read in as inputs. These 

magnitudes and phases are used to represent the field pole MMF, the armature MMF for 

a and -b windings excited, and Rb. Equation 3.4 shows how the armature MMF is 

computed at each angular point, 0. 0 data is computed and stored in an array. The third 

term in the sine function of equation 3.4 is required since the rotor position can be varied 

in the experimental machine. The equations for the field MMF and Rb are similar, 

except that the rotor position variation term is not necessary. The MMF waves for the 

field and armature windings are proportional to the DC field current and the DC armature 

current respectively. The field and armature MMF's are added together at each angular 

position to give the .9(e) in equation 4.2 (superposition is assumed). Once .7(0) and 

Rb(0) are calculated, B(0,,7) is calculated from equation 4.2. 0 and B values are 

written to an output file. Later revisions of the program superimposed single phase a and 

single phase -b MMF's. 
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4.2 B DISTRIBUTION PROGRAM RESULTS 

4.2.1 Field Excitation Only 

Figure 4.1 shows two cases of experimental versus computed average B distribution 

results. 

Case A compares measured and computed B's for field current of 0.5 p.u., Case B 

is for 3.0 p.u.. For Case A there is very little error at any point. For Case B the distortion 

in the measured B distribution under the poles is not present in the computed case since 

the position dependence of Rsat is not considered. However, the average flux per pole 

appears to be close for the measured and computed data. Our Rst model appears to be 

successfully accounting for the effects of saturation in a "bulk" manner. Precise flux per 

pole error calculations will be done on the compound excitation cases later in this chapter. 

There is a small deviation on the flanks of the flux distribution. This will contribute to 

phase error in computed voltage and magnitude error in computed torque. 

4.2.2 Armature Excitation Only 

Figure 4.2 shows two cases of experimental versus computed B distributions. 

Both cases are for the a and -b armature MMF axis lined up on the direct axis. Case 

A is for 1 p.u. armature current, and Case B is for 2 p.u.. In both cases the measured 

and computed B distributions are in good agreement. In the worst case, the computed 

B distributions have a slightly smaller peak (5.2% low for Case A and 4.1% low for Case 

B) than the measured B distributions. This is likely due to the armature MMF based R 

being different from the field MMF based R as shown in Figure 3.26. Consequently, our 

characterization is the source of the error. 

Figure 4.3 shows a single case where the armature current is 1 p.u. and the armature 

a and -b MMF axis is centred on the quadrature axis. The shape seems to be well 

modelled, and the worst error is where the calculated peak is 9% lower than the 

measured. 

4.2.3 Compound Excitation 

Figures 4.4a to e are five cases where both the field and armature a and -b windings 

are excited. The field winding is carrying 1 p.u. and the armature is carrying 2 p.u. 

current. In Figure 4.4a, both MMF's are in phase on the direct axis. This would be the 

approximate field condition for an alternator supplying 90 electrical degree leading current, 

or a motor drawing 90 electrical degree lagging current. However, the B distributions in 
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Figures 4.4a to e are not set up to correspond to actual operating conditions. Rather, the 

rotor position is varied under constant field and armature excitation in order to find 

weaknesses in the B distribution model. See Appendix C for an explanation of the internal 

power factor angle W. 

The error in flux per pole is a good indicator of what error will exist in both the torque 

and voltage calculated from this B model. In Moullin [9, pp. 7-15], formulas are derived 

(using the cutting of flux rules mentioned in Appendix B) for torque and voltage which 

express both of them as being directly proportional to the total flux per pole. The results 

found in Figure 4.4 will manifest themselves in torque errors in Chapter 5. 

Since the general shapes of the modelled and measured waves are consistent, the 

superposition assumption does not appear to cause any significant error. It is difficult to 

tell how much error is introduced by this assumption, but it is likely small since errors due 

to the characterization of appear to account for the error' in the predicted fields. 

In Figures 4.4a and b, the assumption of being independent of position, and the 

inconsistency between Rat for field MMF and armature MMF appear to lead to too high 

of a computed flux per pole. 

In Figure 4.4c, we start to underestimate the flux per pole. Error is not only introduced 

due to the damper bar slots, but also the flanks of the B distribution are in error. Fringing 

and hysteresis effects in the B distribution which we encountered in section 3.2.3 cannot 

be accounted for by the magnetic circuit modelling technique proposed in this research. 

It is likely that this same fringing effect is causing the error in the flanks of the B 

distribution. A further source of error may be our characterization of R t. In Figure 3.28, 

at all MMF levels the actual value of R 1 deviates from the approximating quadratic. The 

amount of this deviation depends upon position however. 

In Figures 4.4d and e the armature MMF opposes the field MMF (both are about the 

same magnitude). The peak flux density level in Figures 4.4a, b, and c are about 0.6 

Wb/m2 or higher. In Figure 4.4d it is only about 0.4 Wb/m2, and in Figure 4.4e it is about 

0.15 Wb/m2. The computer model underestimates the flux per pole by as much as 20% 

in Figure 4.4e. The actual magnitude of the error is still the same for these cases as it 

is for Figure 4.4a. In Figure 4.4a, 5% of 0.6 Wb/m2 is 0.03 Wb/m2. In Figure 4.4e, 20% 

of 0.15 Wb/m2 is also 0.03 Wb/m2. Even though the percentage error in the computed flux 

per pole is larger, it seems worse in Figure 4.4e because the flux per pole is much 
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smaller. The negative consequences of a large percentage error in a small quantity are 

minimized because the quantity is small. 

The deviation of the actual position dependent R at from the approximating quadratic 

probably contributes to the error. Another possible source of error is the nonlinearity in 

R at very low MMF's, as discussed in section 3.2.6, which causes the armature MMF 

based reluctance wave of Figure 3.22 to increase as MMF decreases. 

In Figure 4.4e, the field and armature MMF's directly oppose each other, and since 

they have comparable magnitudes their sum is quite small. If the MMF values are small 

enough that the R values start to increase, then the B values will start to deviate from 

what R's approximating quadratic would dictate. R.t was characterized using only field 

MMF data and no increasing R with decreasing MMF behaviour was noted as in the 

armature MMF case. This does not mean that this behaviour does not exist for the field 

MMF wave, but we did not take the field MMF to a low enough level to check. 

When we let .9(0) become small, equation 4.2 can be reduced to 

B(O,9)   
0.85902 R (0) (4.3) 

since the coefficient in front of .9(e) is small, and (.7(8))2 is very small. Equation 4.2 

becomes linear for low MMF conditions. If the true R deviates from linearity for the 

reasons described in the preceding paragraph, and our computer model is predicting a 

linear relationship between B and . then we will see error between the measured and 

computed B distributions. In Figure 4.4e, we see that where the net MMF1s relatively 

high (relative to Figure 4.4e's MMF levels) the experimental B distribution is greater than 

the computed. Where it is lower, the computed values exceed the measured. There is 

a cross-over point somewhere in between. For total MMF's of 50 A-turns or lower we can 

expect to see greater errors. This is an arbitrary figure since I have not investigated this 

low MMF behaviour in detail since that is outside of my scope. 

The MMF orientation for Figure 4.4e (the armature MMF directly opposing the field 

MMF) is the same as for a generator under short circuit conditions (lagging p.f.) or for a 

motor when it is operating as a synchronous condenser (leading p.f.). But for both 

situations the control system will boost the field current to a level substantially higher than 

the 1 p.u. field current used in Figure 4.4e. For a generator under short circuit this will 
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maintain a high induced winding voltage and a high short circuit current which guarantees 

breaker activation. For a motor the high induced winding voltage is required to limit the 

armature current because the applied terminal voltage is constant. Therefore, the high 

error in flux per pole for Figure 4.4e is normally not encountered in practical machines 

under short circuit or stedy state conditions. 

4.3 POTENTIAL IMPROVEMENTS AND MODIFICATIONS 

As mentioned earlier, the B model can be extended to the steady state case including 

space and time harmonics, and eventually to the transient case, per the General Torque 

and Voltage Algorithm in Appendix B. 

Damper windings can be added by determining their MMF wave and adding it to the 

armature and field MMF waves. This would be essential for accurate transient analysis. 

Fourier coefficients and phases for armature MMF, field MMF, and Rb can be read 

in from input files allowing modelling of different machines. The procedure for determining 

the theoretical MMF waves for the armature or field can be performed by the program 

based on constructional features of the machine (slot pitch, slot skew, number of 

conductors per coil side, pole pitch to pole arc ratio, etc.). 

Air gap torque and voltage computation will be added in Chapters 5 and 6. 

Finite element generated MMF, Rb, and R., data can be used instead of obtaining 

them from measurements. This would be required in order to simulate designs prior to 

production, or operational machines. As mentioned in Chapter 2, rather than having to 

use time consuming finite element analysis in transient analysis programs my model can 

potentially be used to predict the B distributions in these programs. 
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CHAPTER 5 

THE TORQUE MODEL 

5.0 CHAPTER OBJECTIVES 

I) Describe various torque computation methods. 

ii) Justify the selection of the flux linkage method from among these methods. 

iii) Describe the torque computation algorithm. 

iv) Compare measured and computed torques to evaluate the success of the flux 

density and torque models. 

5.1 TORQUE COMPUTATION METHODS 

A number of different torque computation methods are found in the literature. This 

section compares several different methods and shows that the flux linkage torque method 

is most suited for use with my flux density model. 

5.1.1 Coenergy Derivations 

Fitzgerald [7, pp. 155-165] computes torque using the coenergy method for linear 

conditions in a cylindrical rotor machine. The coenergy stored in the magnetic field may 

be determined using either position dependent inductances or magnetic circuit 

considerations. 

For a material of constant permeability, t, the coenergy is expressed as 

Wld = Iv 1.12 dv (5.1), 

where WId is the magnetic coenergy, and H is the magnetic field strength at each point 

in the magnetic field volume V. 

The coenergy for a linear cylindrical rotor machine can be expressed as a function of 

the armature () and field (is) currents, and the mechanical angular position in the air gap 
(Om). The torque can be derived from this coenergy function through the relation 

T- 31 ld(0m , is, 1r) (5.2). 

a 0 

A number of equations for torque can be derived, each being expressed in terms of 

different combinations of the stator MMF wave magnitude, the rotor MMF wave 
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magnitude, the vector sum of their magnitudes, or the total flux per pole. An example is 

= (P)2 srS1fl 
(5.3), 

where P is the number of poles, , is the total resultant flux per pole, .9 is the 

magnitude of the rotor MMF wave, and 8, is the electrical space angle between the rotor 

MMF wave axis and the axis of the vector sum of the rotor and stator MMF waves 

(sinusoidal MMF and flux shapes are assumed). 

The essential result for all these equations, however, is that the torque is proportional 

to the stator and rotor field magnitudes and the sine of the electrical space angle between 

their magnetic axes. 

Hoole [16, p.354] comments on the use of the coenergy approach as well. The 

coenergy can be computed for the entire solution region (from a finite element solution) 

for two points in time, where the change in angular position of the rotor over the time 

increment is small. Equation 5.2 can be approximated and the torque determined. 

I cannot use the coenergy method with my flux density model. First, equation 5.3 is 

only valid for linear conditions in a cylindrical rotor machine. And second, I do not have 

a full field solution for which I can compute the coenergy. Even if I could assume that 

only the air gap needs to be modelled, I still have a complex air gap shape in my salient 

pole machine for which I only know the flux distribution at a radius just outside of the rotor. 

5.1.2 Torque from Circuit Models 

In section 2.2.3 reference is made to the steady state torque for a salient pole 

machine under linear conditions. The formulas given in many references (Kingsley [7, pp. 

345-349], Doherty/Nickle [15], LangsdorI [27, p.502]) are derived from the D-Q axis model 

(from the Blondel Two-Reaction Method) discussed in Appendix C. These references 

express the mechanical power (which is proportional to torque) in the form given below: 

P = VEsin(ö) + V2 (XdT -  XqT) sin(28) 
XdT 2XdTX T 

Here V may be the terminal voltage of the machine, or it may be some fixed bus voltage. 

E is the no load induced voltage in the machine windings. Winding resistance is 

neglected for simplicity. S is the electrical phase angle between Vand E. XJr is the sum 

X,d + Xa+ X.,ti, where Xrd is the direct axis magnetizing reactance and Xa is the winding 
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leakage reactance as defined in Appendix C. Both of these reactances are characteristics 

of the machine. XbUS is typically the bus reactance between the fixed voltage V and the 

machine terminals. It is zero if the fixed voltage is assumed to be at the machine 

terminals. XT is the sum )çq+ )ç+ XbUS, where )gq is the quadrature axis magnetizing 

reactance as defined in Appendix C. Since my focus is on modelling the machine's 

internal magnetic field and torque behaviour, XbUS can be ignored. Xa is necessary for 

determining terminal conditions, as mentioned in Appendix C, but for static simulations it 

can be neglected as well. With these simplifications, and the conventions established in 

the phasor diagram of Figure C.1, I can rewrite the last equation as follows: 

E Ef Sill ((3) + (ci - q) sin(2 8) (5.4) 

2X,.X q 

where Ea is the magnitude of the induced phase a winding emf under loaded conditions 

(created by and in phase with the fundamental of the resulting air gap flux distribution 

under load). E1 is the magnitude of the induced phase a winding emf under no load 

conditions (created by and in phase with the fundamental of the air gap flux distribution 

under unloaded conditions). 6 is the electrical phase angle between Ea and Ef. It is also 

the displacement angle (in electrical degrees) of the axis of the fundamental of the loaded 

flux distribution from the axis of the fundamental of the unloaded flux distribution. 6 is 

called the internal torque angle or the internal power angle. 

If the machine did not have salient poles Xd would equal X1q and the second term of 

equation 5.4 would disappear. For a constant E (under linear conditions this is arranged 

by holding the field current constant) and a constant Ea, the power and torque would be 

proportional to sin(6). The peak torque would be at 6 = 900 electrical. 

Once saliency is introduced the second term of equation 5.4 comes into effect (for a 

salient pole machine ) is greater than )çq). For constant Ea the torque produced by the 

second term (known as the "reluctance torque") is proportional to sin(26). The reason why 

this term is called the reluctance torque is because it represents the magnetic attraction 

of the rotor to the salient poles when the field is unexcited. Therefore, it is not dependent 

on the field current at all. The shape of the reluctance torque waveform for varying 6's 

around the air gap is the same as if a permanent bar magnet were installed in place of 

the rotor. This magnet would attempt to align its poles with any of the salient poles (field 
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current being zero). The torque on the magnet would be zero (and statically stable) when 

the magnet's axis is aligned with the poles. The torque would increase in magnitude as 

6 increases until it reaches a maximum when 6 is 450 electrical from the pole axis, then 

it would decrease to 0 when 6 was 900 electrical. The torque sense for 6 from 0° to 90° 

electrical was always to draw the magnet back toward the pole axis where 6 was 0° 

electrical. When 6 increases past 90° electrical the torque starts to increase again, but 

this time the torque sense is directed toward the next pole where 6 is 180° electrical. In 

other words, the reluctance torque sense is always in the direction which draws the 

permanent magnet towards the nearest field pole, regardless of that field pole's magnetic 

polarity. The angular frequency is twice that of the cylindrical torque. Figure 5.1 shows 

the cylindrical torque term, the reluctance torque term, and the sum of the two (equation 

5.4). This is for linear conditions. 

The reluctance torque term is substantially smaller than the cylindrical torque term. 

The total torque (the sum of the cylindrical and reluctance torque terms) is noticeably 

skewed relative to the cylindrical torque. It also has a higher peak torque. 

The effects of saturation, the space harmonics of flux (caused by distributed windings, 

teeth, and saliency), and time harmonics of current will cause the machine characteristics 

to deviate from those of Figure 5.1. Although it is not appropriate to pursue it at this point, 

the following computations could be done to determine how saturation affects the static 

torque (T) vs. 6 characteristic: 

I) For a constant field current, I, of 0.5 p.u. (linear conditions) compute a Tvs. 6 

curve (refer to Appendix C for an example of similar calculations using the models 

developed in this research). For afixed terminal voltage (t'), select the magnitude 

and phase of the armature current (Ia) for a particular power level. Using the 

preprocessing program compute the desired magnitude and phase of Ea. The 

instantaneous phase a current (Ia) can be found using equation 2.13 and 'a• Using 

the computer model the rotor angular position (rotorg) which gives the desired 

magnitude and phase of Ea can be found through trial and error. Using the same 

4 and rotorg, and by setting 'a equal to zero, the computer model can be used to 
determine the magnitude and phase of E. The internal torque angle, 6, is the 

phase difference between Ea and E. The torque computed from the computer 

model when Ea was found is plotted against S. Change the power level by 
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Figure 5.1: Comparison of Cylindrical, Reluctance, and Total Torque vs. Internal 
Torque Angle, 6. Linear Conditions. 

changing 'a and compute the next point. The magnitude of Ea and 4 must be 
constant from point to point. For linear conditions will be constant if If is 
constant. Continue until the entire Tvs. 6 curve is defined. If a power level is too 

high for a constant 4 and any 6, then the power level is above the Tvs. 6 curve 
for this 4 and a lower power level will have to be used. The values of )cd and X rq 
at every point on the Tvs. 6 curve can be found from the postprocessing program. 

ii) A theoretical Tvs. 8 curve can be found for the machine using equation 5.4. In 
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order to do this )gd and Xrq will need to be determined for linear conditions. The 

best magnetization condition to do this is when the field current is low, the 

armature current is low, and the armature MMF axis is directed onto the 

quadrature axis. This will ensure that there is no saturation occurring in the iron. 

Using the linear values of 'cd and )cq found in this way, and the constant 

magnitudes of Ea and E from step i, the theoretical T vs. S curve for the same 

conditions as step i can be found and compared with the modelled curve of step 

iii) Repeat step i with 4 = 3.0 p.u.. 

iv) Repeat step ii with the same and used in step ii, but use the constant 

magnitudes of Ea and E1 from step iii. 

v) Plot the four Tvs. S curves from steps ito iv on the same graph for comparison. 

5.1.3 Direct Force Computation Using the Maxwell Stress Method 

Carpenter [30] and Hoole [16, pp. 352-354] use the following formula for computing 

the force vector, F, on a non-current carrying magnetic material in two dimensions: 

F ff - ji, [H - HJ u dS + ff 1-4 Ut dS (5.5), 

where the region of integration is a contour (in air) surrounding the part (in this case a 

rotor), H is the normal component to the contour, H Is the tangential component to the 

contour, and u,, and ut are the normal and tangential unit vectors respectively. 

When applied to a cylindrical rotor, equation 5.5 can be simplified to give 

2P2 T= r  f B Bt dO (5.6), 
uo o 

where P is the number of poles, r is the radius of a circular contour in the air gap 

surrounding the rotor, I is the rotor length, and B and B are the normal and tangential 

components of flux density. Equation 5.6 is known as Maxwell's Tensor (see Abdel-Razek 

[22]). 

Equation 5.6 is readily adapted to finite element methods, but is not suitable for my 

reluctance model method. The geometry of the contour coincides with that of my model, 

but B is unknown. If the air gap were wide enough beneath the poles, B could be 

measured using the flux probe, but this is not the case. B would also have to be 
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predicted using the reluctance model. The advantage of using equations 5.5 or 5.6 is that 

they are independent of saturation effects in the iron, depending solely upon the field in 

the air gap. The field in the air gap, however, is heavily dependent upon the saturation 

conditions in the machine iron. 

5.1.4 The Flux Linkage Method 

The flux linkage method, though not providing a detailed picture of the forces and 

torques acting within the machine iron (important information for mechanical design), is 

well suited for calculating net air gap torque with my flux density model. 

The flux linkage equations originated from Oersted's and Faraday's experiments in the 

early 1800's (see Langsdorf [31]). They relate the induced torque and voltage to the 

current and the rate of change of flux linking a coil with respect to angular position or time. 

Their basic form is given in equations 2.8 and 2.9. Their application to computing torque 

and voltage in electric machines is discussed In references [9, pp. 38, 88-90] and [31]. 

In Appendix B I have fully derived the flux linkage torque equation for use with my 

machine and model. Equation B.16 was implemented in the computer model. Refer to 

Appendix B for details. 

The reasons why the flux linkage approach was used in my model are: 

I) It is simple to implement and understand. 

ii) It can -be used to compute the torque and voltage contributions from each coil side 

or coil independently, and from all of the coils on the rotor cumulatively. 

iii) The same approach, with only a minor change in the formula's constants, can be 

used to compute both torque and voltage. Air gap power balance on each coil, 

and for the armature phases as a whole, is assured. 

iv) No simplifying assumptions about coil layouts need to be made since each coil can 

be treated independently. Breadth factors, pitch factors, and phasor notation are 

not needed since the computer can rapidly sum the torque and voltage on all of 

the coils (this is consistent with what is physically happening in the machine). The 

constructional features of the windings (number of conductors per coil, coil 

position, etc.) can be easily changed by changing values in various arrays. The 

algorithm is very flexible. 

v) The flux density distribution data used by the flux linkage equations is directly 

available from the flux density model and measurements. Saturation needs to be 
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accounted for only in the flux density distribution model. The flux linkage 

equations themselves are independent of the machine's magnetic saturation level 

and can be used for any flux density distribution under any magnetic conditions in 

the machine. The effects of saturation upon torque and voltage induction is a 

result of the effects of saturation on the flux distribution only, not because of any 

direct effect of saturation on the torque or voltage equations themselves. 

5.2 THE TORQUE COMPUTATION ALGORITHM 

Torque computation for static conditions (see section 2.2.3) has been implemented 

according to Appendix B. Actual steady state conditions, including the full effects of MMF 

space harmonics and current time harmonics can be easily implemented according to the 

General Torque and Voltage Algorithm of Appendix B, but due to time restrictions this was 

not carried out. This can be done as future work. Simulating static conditions is adequate 

for evaluating the initial proposal. 

The static flux density distribution is computed per Chapter 4, then, since the coil 

distribution and the armature current levels are known, the static torque may be computed. 

The static torque is not exactly the same as the steady state torque, except for the one 

point in time during the AC cycle (twice during each rotor rotation) when cot= -irl6 

(neglecting time harmonics of current). At this point in time, all of the superimposed 

phase winding MMF's combine to give the a and -b armature MMF distribution which is 

used in the B distribution model and the experimental equipment. All of the space 

harmonics of field and armature MMF are considered for this one point in time. 

The effects of space harmonics were shown to be small relative to the armature MMF 

wave (see section 3.2.4, Figure 3.16). The armature MMF wave, in turn, is small relative 

to the field MMF wave under normal operating conditions. If the effects of current 

harmonics are assumed to be small as well, then, under normal operating conditions, the 

steady state torque will not vary greatly from the static torque since the armature MMF 

wave will be substantially fixed in space relative to the field poles. Under short circuit 

conditions (for a generator), or very high load conditions (for a motor), the armature MMF 

wave and its harmonics may no longer be small relative to the field MMF wave. This may 

lead to torque pulsations and shaft damage. Further work should be done in this area to 

see what harmonics need to be considered when analyzing these conditions. 

Appendix B also mentions some potential considerations for implementing a transient 
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model. 

5.3 MEASURED VS. COMPUTED TORQUE RESULTS 

The torque measurement approach was already discussed in section 2.2.2. Error 

estimates are found in Appendix A. The estimated torque measurement error (due to 

hand calibration) is ±3 N-rn (±0.076 p.u.). 

Field current, armature current, and torque levels for the measurements and their 

corresponding computer simulations go well beyond rated. This is done to check the 

model's accuracy in highly saturated conditions. Many of these conditions would not be 

encountered except during transient behaviour. 

As mentioned in section 5.2, the measurements and simulations are for static 

conditions. 

Figure 5.2 compares measured and modelled results for linear and saturated 

conditions. For high current levels, saturation effects cannot be removed from the 

measured cases, but they can be removed in the computer model by setting R, tequal 

to zero. This is done to demonstrate how much error would be present if the torque were 

predicted with a linear computer model, as compared to the measured torque and the 

computer model incorporating saturation. In Figure 5.2 the armature a and -b MMF axis 

is kept on the quadrature axis. Armature current is Increased with field current as a 

parameter. Since the armature MMF is small relative to the field MMF and it is centred 

on the quadrature axis, saturation effects due to increasing armature current are not 

significant and each torque vs. armature current curve is nearly a straight line. However, 

as the field current increases the slope of these curves does not increase as quickly for 

the measured and modelled (with saturation) cases as it does for the linear modelled 

case. As a result, the linearity assumption leads to a noticeable torque error for field 

currents greater than 0.5 p.u.. The curves for the 2.0 p.u. and 3.0 p.u. linear cases go off 

scale since their error is so large. Beyond 6 p.u. torque they continue to climb with the 

same slope as their visible portions below 6 p.u. torque. The saturated model appears 

to give good torque results for all combinations of field and armature current levels when 

the a and -b MMF wave is centred on the quadrature axis. In Chapter 3 the number of 

conductors per coil side was estimated to be 9. This appears to be substantially correct, 

otherwise the slope of the torque vs. armature current curves would not be the same for 

the measured and computed cases. 



120 

T
o
r
q
u
e
 i
n 
p.

u.
 

6.. 

5-

4-

3-

2.. 

1.. 

/ 3.0 

/ 
Measured ,/ 
Computed, w/Sat. / / 

- - - - Computed, Linear ,/ / 
/ 

Figure 5.2: 

I J. 

II II 
I / I , 

I I 

II 
/ I 

"I 

I, 

/ 
/ 

01 
/ 0 

/ 
/ 

// - / 
/ 

I I 
.5 1 1.5 

Armature Current In p.u. 

2.0 

0-1 
lo 

3.0 

2.0 

1.0 

1.0 

- h=0.5p.u. 

2 

Measured, Computed (Linear), and Computed (with Saturation) Torque 
vs. Armature Current, Field Current as a Parameter. Armature A and 
—B MMF Axis on 0 Axis (ji = 00 elec.). 

The internal power factor angle, xV, is explained in Appendix C. I am using it in these 

figures in order to be consistent with the D-Q axis theory of Appendix C. V is the location 

of the centre of the armature MMF axis with respect to the quadrature axis. It is linearly 

related to the experimental machine's rotor gauge reading, rotorg, through equation C.5. 

Figures 5.3a to d compare the saturated model's torque results with measured results 

for all armature a and -b MMF wave orientations (i's). Field and armature currents are 

given as parameters. In each figure, as armature current increases, so does the Tvs. iV 
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curve. As in the compound excitation flux plots shown in Figure 4.4, not all of these 

combinations of field and armature current levels and V's will be encountered during 

normal operation. Many will be found only during transient conditions or not at all. The 

primary purpose of Figure 5.3 is to determine the accuracy of the flux and torque 

prediction models for static conditions. Accuracy in field, torque, and voltage prediction 

for steady state or transient conditions should be checked as future work. However, as 

mentioned in section 2.2.3, static field solutions are already successfully used in transient 

simulations. 

Though the curves shown in Figures 5.3a to d display some reluctance torque effects 

(as mentioned in section 5.2.2), they are not for the same conditions as the Tvs. 8 curves 

shown in Figure 5.1. Those curves are for constant Ea, E, X, and X. All of those rq 

assumptions, except for constant E when / is assumed constant, are violated in Figure 

5.3. Perhaps for the 0.5 p.u. field current case we can say that Xrd and )cq are constant, 

but for each Tvs. , curve 'a is held constant and xV and Ea are allowed to vary. For a T 

vs. 8 curve Ea is held constant and 'a and c are allowed to vary. 

The skewing in the Tvs. xV curve due to reluctance torque effects is less visible for 2.0 

p.u. and higher field currents (Figures 5.3c and d). In Chapter 6 the constant power factor 

curves and V-curves were computed. For each operating point on those curves the 

values of ) and )çq were computed. For operating points corresponding to points in the 

Tvs. c curves for 2.0 p.u. field current and higher the computed values of )(d dropped 

substantially to values equal to or even lower than )çq. Under such heavily saturated 

conditions the saturation levels within the poles can become so high that the reluctance 

torque effects are eliminated and the machine behaves like a cylindrical pole machine. 

For example, for one point during unity power factor operation the torque is 0.729 p.u., I 

= 0.655 .U., 'a = 0.5 p.u., N' = 9•40 elec., 6 = 8.6° elec., Xd = 9.88 92, and X. = 5.25 Q. 

For another point during unity power factor operation the torque is 7.3 p.u., 4 = 3.3 p.u., 

'a = 6.07 p.u., N' = -64.8° elec., 6= 28.07° elec., 'cd = 3.43 ≤, and Xq = 3.65 Q. Both Xpj 

and ) decrease due to saturation, but 'cd was affected much more. Xrq was not affected 

as severely because it is dominated by the large interpolar air space. 

The major error trends are as follows: 

i) The average error magnitude for all of the computed data points in Figure 5.3 is 

7.96% (excluding the 0 torque points). 
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ii) At rated conditions (I, = 1.0 P.U., 'a = 1.0 p.u., 0.8 pf leading) the computed torque 

is 6.7% below the measured. 

iii) For xV < -450 elec. and I ≤ 1.0 p.u. the torque errors are up to 20% low. This is the 

worst region. Its magnetic field conditions correspond to Figure 4.4e, where the 

flux per pole was also found to be 20% low. The errors in the computed field 

result in errors in the computed torque as well. As explained in Chapter 4, 

characterization, fringing, and hysteresis contribute to this error. Fortunately, as 

explained in Chapter 4, we do not operate our machines in this excitation state 

under steady state or transient conditions. 

iv) For i, < -450 elec. and 4> 1.0 p.u. the torque errors are no more than 5% low. 
v) For -45 :5 450 elec. (the quadrature axis region) the error is generally less than 

±5%. 

vi) For xV > 450 elec. and 4 ≤ 2 p.u. the torque errors are up to 10% high. This is 

consistent with the error in computed flux per pole for the similar excitation 

conditions shown in Figure 4.4a. The primary sources of error in this case are 

R's inability to account for damper bars, and fringing effects leading to error on 

the flanks of the flux density distribution. 

Considering the simplicity of the modelling approach used, we appear to have done 

a reasonable job of predicting the fields and torque for all practical operating conditions. 

Since we have been successful at excitation levels well beyond rated conditions, there is 

potential for using this modelling approach for transient simulations. 

Since the regions and magnitudes of error in flux per pole and torque computation are 

known, further work can be done to compensate for these errors. Introducing positional 

variation for R at, as mentioned in Chapter 4, will help correct for the damper bar errors 

mentioned in point vi above. For the other errors, a potential correction method may be 

to adjust the input currents depending upon iji's position in order to give the correct torque 

value at the proper current level (in other words, bending the computed Tvs. Ni curves in 

Figure 5.3 to match the experimental curves). 

One application of this torque computation model could be determining torque angle 

swings under step load changes. 
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CHAPTER 6 

THE VOLTAGE MODEL 

6.0 CHAPTER OBJECTIVES 

I) Describe the use of the flux linkage voltage calculation with the flux density model. 

ii) Compare computed voltage distributions based on measured and modelled flux 

density data. 

iii) Present modelled constant power factor curves and V-curves for steady state 

conditions. 

6.1 FLUX LINKAGE VOLTAGE COMPUTATION 

Flux linkage voltage computation (based in equation 2.9) follows easily once flux 

linkage torque computation has been implemented. This is because the positions of the 

coil sides and N/JO are used to determine the torque, and this information is also 

necessary to compute the voltage. Unlike induced torque, which is produced even under 

static conditions if current is flowing in the coil sides, induced voltage only exists if 'ITht 

is not equal to zero and may exist even if no current flows in the coil (no load conditions). 

For simplicity, I assume that a'iiat can be broken into W DO x aeiat where aeit 
equals the constant steady state synchronous speed o. I neglect time variation of flux 

under steady state conditions due to armature MMF space harmonics and armature 

current time harmonics by assuming that the static flux distribution which is used to 

compute torque for one point in time during the AC cycle (at= -ir/6) remains unchanged 

during the whole AC cycle. In order to compute a voltage waveform for an entire AC 

cycle, all that my computer model does (assuming an unchanging flux density distribution) 

is rotate the coil sides through the flux density distribution at synchronous speed and 

compute the sum of all of the instantaneous voltage contributions for each coil side at 

each new angular position. Since the rotor's speed is assumed to remain at synchronous 

speed, the size of the time steps in the AC voltage vs. time waveform and the angular 

position steps of the rotor are linearly related constants. Since the machine has four 

poles, the rotor will rotate through 3600 mechanical in the same period of time as the 

voltage goes through 720° electrical. 

These assumptions are not necessary if the General Torque and Voltage Algorithm 
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given in Appendix B is implemented. It would take into account any irregularities in rotor 

speed, harmonics, etc. As with computed torque, the error introduced by neglecting these 

complications when computing voltage should be small. 

Equation B.17 in Appendix B expresses the general flux linkage voltage equation 

(equation 2.9) in terms of machine dimensions. Appendix B also describes the voltage 

computing model in more detail. 

Appendix C describes how to apply the voltage computing model under D-Q axis 

theory. Pre- and postprocessing programs are used to perform phasor computations. An 

example of trial and error calculations for computing a point on a steady state motor 

V-curve is given. 

The flux density, torque, and voltage models were all combined into one Fortran 

program. The inputs to this program are the instantaneous value of the armature current, 

'a (determined from the mis phase current using equation 2.13); the field current level, If, 

and the angular position of the a and -b armature MMF axis, rotorg. rotorg is related to 

the internal power factor angle, tic, by equation C.5. ic is the phase delay between the 

phase a current phasor and the induced no load phase a voltage E. 

Once 'a' /f, and rotorg are specified, the program computes the air gap field distribution 

incorporating the effects of armature reaction and saturation. Then the static torque is 

computed (once rotorg is specified then the position of all of the coil sides is known) as 

shown in Chapter 5. Then two cycles of the phase a voltage are computed by 

time/position stepping through one complete mechanical revolution assuming the air gap 

field remains unchanged throughout this time period. 

The outputs from the computer program include: 

i) The computed field distribution for wt = -ir/6. 

ii) A file giving the position of the coil sides at (ot= -ir/6. This is the point in the cycle 

for which the static torque is computed. This point was selected in order to 

compare computed versus measured field and torque results. This is also the first 

point on the computed voltage waveform. The remaining points on the voltage 

waveform are obtained by changing the positions of the coil sides by small steps 

until the rotor has rotated one complete revolution (two AC supply cycles). Torque 

is not computed for these points but easily could be. 

iii) The air gap torque at cat = -ir/6. For a motor this is greater than the shaft torque 
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by the amount required to overcome hysteresis, eddy current, windage, and 

bearing friction losses. 

iv) The rms magnitude and phase of the induced phase a voltage, Ea. Its phase 

angle, cx, is expressed relative to the phase a current fundamental. The phase a 

current fundamental is used as a reference phasor for the machine model because 

the phase a current peaks at the point in time when the three phase armature 

MMF wave axis coincides (in space) with the phase a winding's MMF axis. 

v) The Ea vs. cot waveform. The range of cot is 7200 electrical. 

In order to use the computer program to simulate actual static (or steady state) 

operating conditions, a preprocessing program computes the desired Ea based on the 

phase a line to neutral terminal voltage for the motor (V,), the armature winding resistance 

(Ra), the armature winding leakage reactance (Xa), the phase a line current ('a), equation 

0.1, and the constraints of the type of operating curve to be computed. Through a trial 

and error process (a good candidate for automation in the future), the model is run with 

trial values of I, and rotorg until the desired Ea (both in magnitude and phase) is computed 

by the model. The no load phase a induced emf, E, can be computed once the desired 

Ea is obtained by using the same values of I and rotorg that gave the desired Ea and 

letting 'a equal zero. Once the magnitude and phase of both Ea and E are known, 8, I 

(the component of load current in phase 'with E1), 'd (the component of load current in 

quadrature with E1), Xq and Xd may be found from the D-Q axis theory phasor diagram 

(Figure C.1.b). This is handled by a postprocessing program. As mentioned earlier, 

Appendix C contains a detailed example where a point on the zero shaft power V-curve 

(shown in Figure 6.3) is determined. 

Generating conditions can also be handled. See Appendix C. 

Since my experimental machine cannot rotate I cannot provide experimental 

confirmation of the results presented in this chapter. However, by computing steady state 

results using the computer model and D-Q axis theory, I have laid the foundation for future 

operating machine simulations. Air gap power balances (where electrical power delivered 

to the air gap (3Ealacos((x)) should equal mechanical power delivered to the rotor (Tco)) are 

within 2% for all excitation conditions. Therefore, voltage errors should be consistent with 

the torque errors described in Chapter 5. The voltage error manifests itself as a 

magnitude and/or a phase error. 
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The 2% error is present because o'nly the fundamental of voltage is used in the air gap 

power balance. If all of the voltage harmonics were considered, there would be much less 

error. Since this error is so small, the effects of harmonics can be considered to be very 

small indeed. 

6.2 COMPUTED VOLTAGE WAVEFORMS 

Figure 6.1 compares computed voltage waveforms based on measured and computed 

flux density data. The measured and computed flux density distributions from which the 

voltage is computed are shown in Figure 4.4c. 

The following waveforms are shown in Figure 6.1: 

i) The reference phase a current, 'a 'a is 2 p.u. and it peaks on cot = 00 electrical. 

ii) The induced phase a voltage under load (computed from measured flux density 

data), Ea,meas. The rms magnitude of Eams is 1.333 p.u. (338.65 volts) and it leads 

'a by 24.87° electrical (cc = 24.87° electrical). 

iii) The induced phase a voltage under load (computed from modelled flux density 

data), Ea,comp. The rms magnitude of Eacomp is 1.305 p.u. (331.45 volts) and its cc 

is 18.1° electrical. 

iv) The induced phase a voltage under no load (computed from modelled flux density 

data), E mp. The rms magnitude of E mp is 1.360 p.u. (345.42 volts), and its cx 

is -2.38° electrical. Under no load conditions, (x w. The assumed ijc = 0 is slightly 
off as a result of small measurement errors which occurred when rotorg was first 

defined. 

The following features are apparent from Figure 6.1: 

i) Eameas has some roughness which is caused by the effect of damper bar slots on 

the measured flux density distribution. The normalized 5d to 9th harmonic 

components present in the measured flux density distribution are substantially 

reduced in the corresponding Eameas distribution. Compare the second and third 

columns of Table 6.1. After the gth harmonic, the harmonic levels are very low 

(due to the smoothing effect of the finite width Hall element) and no trend can be 

seen. However, if these higher harmonics were present in the data they would be 

reduced as well. This is one reason why averaged flux density distributions can 

be used, because higher harmonics of voltage and torque are "filtered out" by the 

distributed, fractional pitch windings. The Eams waveform is much closer in shape 
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to a sinusoid than the flux density waveform. 

ii) Ea,comp and ,comp are smoother than Ea,moas because their flux density data is 

smoother. The same filtering effect, caused by the distributed, fractional pitch 

windings, is present as may be seen by comparing columns 4 and 5 of Table 6.1. 

Table 6.1: Normalized Harmonic Content of Flux Density and Voltage 

Distributions from Figure 6.1 

Harmonic 

Order 

n 

Ba,nmeas Ea,nmeas Ba,n,comp Ea,n,mp 81,n,comp Efncomp 
Ba.imeas E i,meas Ba,i,comp Ea,I,C0MP Bi,i, mp ,1,comp 

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

3 0.1899 0.1169 0.2113 0.1312 0.0131 0.0073 

5 0.0813 0.0161 0.1089 0.0154 0.0988 0.0129 

7 0.0335 0.0029 0.0343 0.0077 0.0324 0.0039 

9 0.0288 0.0037 0.0096 0.0047 0.0019 0.0044 

11 0.0043 0.0056 0.0020 0.0058 0.0012 0.0043 

13 0.0078 0.0058 0.0046 0.0055 0.0027 0.0044 

15 0.0140 0.0059 0.0121 0.0064 0.0108 0.0054 

17 0.0095 0.0055 0.0047 0.0055 0.0033 0.0042 

19 0.0080 0.0067 0.0051 0.0055 0.0039 0.0042 

21 0.0015 0.0061 0.0038 0.0078 0.0029 0.0060 

iii) Ef,comp has a higher fundamental than either Ea,meas or Ea,comp, even though ,comp' 

waveform has a smaller peak magnitude. This is because Et.comp'S waveform is 

much wider than E,ms'S or Ea,comp'S. The significant quadrature axis oriented 
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armature reaction MMF (which has about the same peak magnitude as the field 

MMF) causes a drastic change in the shape of the loaded flux density distribution 

from the no load flux density distribution. The third harmonic of the flux density 

distribution for the loaded case (column 4) is far greater than for the unloaded 

case (column 6). The ratio of the absolute magnitude of the unloaded third 

harmonic to the loaded third harmonic is 6.4%. The corresponding voltage ratio 

for the third harmonic is 5.8%. It is this much larger third harmonic component in 

the loaded flux density and voltage waveforms which causes them to be thinner 

than for unloaded conditions. Harmonics higher than the third are not affected as 

significantly. 

iv) The electrical power based on the modelled flux density data is 2.54% higher than 

that based on the measured flux density data. This considers the magnitude and 

phase ((z) of the induced voltage fundamental only. The error in electrical power 

caused by the difference in (x's (4.8%) is partially offset by the difference in 

magnitudes (-2.1%). The corresponding torque (mechanical power) is 4.1% 

higher, which is larger than the electrical power difference of 2.54%. This is 

because the torque computation considers all of the flux harmonics. 

Distributed partial pitch windings reduce the magnitude of higher order harmonics, thus 

smoothing the voltage waveform and making it closer to a sine wave. A valuable future 

study would be to compute the voltage using a single, concentrated winding in the 

computer program, and compare the harmonics from this winding to those of Table 6.1. 

The reduction in harmonics could be compared to those predicted from breadth (Ic), pitch 

(Ic), and winding (I) factors. See Langsdorf [27, pp. 182-189] and Kingsley [7, pp. 543-

550]. As mentioned in Appendix B, the effects of tooth skewing could also be 

investigated. This could be done in conjunction with the study on iç and K,,. 

6.3 MODELLED STEADY STATE CONDITIONS 

Figure 6.2 is the open circuit line to neutral terminal voltage curve for the synchronous 

machine run as an unloaded generator. The speed is constant at 1.0 p.u. (1800 RPM). 

The effects of saturation are apparent throughout the curve. The initial slope at the origin 

is the slope of the air gap line for linear conditions. Saturation effects cause the no load 

voltage to be much lower than the air gap line. The shape of this curve is consistent with 

published results. See Kingsley [7, p. 320]. 
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In the computer model, 4 is increased in steps, 'a = 0, and rotorg can be anything. 

Only the fundamental magnitude is needed. The no load curve is unaffected by the time 

harmonics of armature current and the space harmonics of the armature MMF wave since 

there is no armature reaction. 

Figure 6.3 compares the motor's constant power factor curves for a power factor of 

0.8 lead, 1.0, and 0.8 lag, and the no load V-curve (zero power factor). Detailed 

computation for a typical point on the no load V-curve is given in Appendix C. Points on 

the constant power factor curves are computed in a similar manner, but power factor is 
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held constant instead of developed shaft power. 
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The no load V-curve for zero power factor leading corresponds to a synchronous 

condenser. High field currents are required to compensate for the armature MMF which 

opposes the field MMF. If we operated in the leading power factor region with rated field 

and twice rated armature current (a point which is not obtainable in Figure 6.3), then we 

would have error in the computed flux per pole of up to 20%. However, this problem is 

not encountered in a real operating machine because the control system forces the field 
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current to increase well beyond rated in order to limit the armature current. Under these 

conditions the torque is very small because the net flux distribution is symmetric on the 

pole. The net flux is large in order for Ea to have a large enough magnitude to offset 'i 

and restrict the armature current to a reasonable level. The field solution is expected to 

be reasonably accurate (and therefore, so should Figure 6.3) under these conditions since 

the net MMF is large. 

For future work, compare these results with ones from a linear model, and an actual 

operating machine. For an operating machine Rb, Rsat, and the other parameters of the 

flux density model could be determined using finite element analysis. 

The shape of these curves agrees with published results. See Langsdorf [27, p. 499]. 

For additional future work, characterize the effects of saturation upon ) and )ç. I 
expect that both would decrease as saturation increases. However, as mentioned in 

Chapter 5, Xrd will decrease much faster than )cq due to saturation in the field poles. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.0 CHAPTER OBJECTIVES 

I) Summarize the major conclusions of this research. 

fl) Identify areas of future work. 

7.1 CONCLUSIONS 

i) The significance of synchronous machines and our ability to predict their 

behaviour under transient conditions is currently an important area of research. 

Existing methods of determining magnetic fields in synchronous machines have 

one or more of the following problems: 

• inaccurate 

• dependent upon infinite permeability in the iron 

• mathematically complex 

• computationally intensive 

The finite element method, the -method most widely used today, can provide 

extensive and accurate magnetic field information for any operating condition, but 

has heavy computing requirements. 

ii) A new magnetic field model was proposed and developed based on the 

magnetic circuit approach. Magnetic field data from an experimental machine was 

successfully used to develop this model. Measurements and corresponding 

modelled results were for static conditions. Inaccuracies in the flux density 

measurements were caused by the finite width of the Hall effect crystal which 

caused smoothing of the measured data (attenuating harmonics in the unaveraged 

flux density data past the 9th order). 

iii) Averaged flux density distributions were used because they had negligible error 

and they greatly simplified the modelling process by smoothing out the effects of 

individual teeth. 

iv) Rbs, was successfully determined for linear conditions. Errors affecting it were 

roughness in the quadrature axis region of the averaged flux density data, 

hysteresis, and fringing effects. These errors also complicated the determination 



136 

of the MMF wave, and resulted in errors in the computed flux density distribution. 

Rb's shape was consistent with permeance curves developed by Doherty/Nickle 

[15]. Rba,, is constant under the middle of the field poles where the air gap is 

uniform, increases gradually under the chamfered portion, and is substantially 

higher in the interpolar regions due to the large air gap between the salient poles. 

Rb was approximated using Fourier series in the computer model. 

V) The experimentally determined armature MMF wave is more sinusoidal than 

the theoretical one. 

The variation in the armature MMF due to harmonics is large (±3.6% of the 

peak) relative to the difference between the theoretical and experimental armature 

MMF waves. Therefore, either the theoretical or the experimental armature MMF 

wave can be used to determine Rbaw over a broad segment width. However, the 

armature MMF wave is normally small compared to the field MMF wave. 

Therefore the effects of the armature MMF's space (and time) harmonics can be 

neglected except for conditions where the armature current is excessively large. 

The armature MMF wave is proportional to the armature current and the 

number of conductors per coil. It's shape was approximated using a Fourier 

series. 

vi) The experimentally determined field MMF wave is approximately trapezoidal. 

The width of its constant portion is equal to the pole arc, and its amplitude is equal 

to the field winding Amp-turns. The field winding MMF wave is proportional to field 

current and was approximated with a Fourier series. 

vii) Armature and field MMF superposition holds under linear conditions. In order 

to construct a flux density model, this superposition is assumed to hold in the air 

gap under saturated conditions as well. Accounting for the effects of saturation 

then becomes the responsibility of R at. This assumption did not cause any 

noticeable error, since the errors in the modelled flux density distribution can be 

attributed to quadrature axis roughness in the flux density wave, hysteresis, 

fringing, R's characterization, and ignoring the direct position dependence of R at 

(due to damper bar slots and the shape of the pole shoe). 

viii) Normalized R 1 was characterized using a best fit quadratic equation. This 

quadratic is a function of the sum of the armature and field MMF's at each point 
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in the air gap. 

From measurements, R,,t was found to be directly position dependent due to 

saturation effects caused by the damper bar slots and the pole shoe shape. For 

simplicity this direct dependence was neglected. For high MMF levels under a 

pole face, the distortion in the measured flux density wave caused by the damper 

bar slots and pole shoe shape is not present in the computed flux density wave. 

This causes some error when the torque and voltage are determined from the 

computed flux density wave. 

At very low MMF levels, due to non-linearity in the B-H characteristic which 

R's quadratic fails to account for, errors occur in the computed flux density wave, 

torque, and voltage. These conditions are encountered when the armature MMF 

is large (comparable in magnitude to the field MMF) and directly opposes the field 

MMF. This corresponds to short circuit conditions for a generator or 900 leading 

power factor conditions for a motor (synchronous condenser). Fortunately, these 

conditions are not encountered in operating machines because the field current is 

boosted in order to maintain the induced winding voltage. In a generator this will 

sustain the terminal voltage leading to a high short circuit current and ensuring 

breaker operation. In a motor this limits the armature current to a reasonable level 

under constant terminal voltage conditions. 

is slightly different under armature and field excitation, due to its position 

dependence. This may also add to the flux density, torque, and voltage errors. 

ix) As a result of quadrature axis roughness in the flux density wave, hysteresis, 

fringing, the neglected position dependence of R t, and the simple nature of R's 

characterization, error occurs in the computed flux per pole. These errors are 

dependent upon the excitation conditions in the machine (orientation of the 

armature MMF wave axis, field current level, and armature current level). These 

errors in computed flux per pole can be summarized as follows: 

• For 450 < x :5 900 elec. (armature MMF on +D axis, additive to field 

MMF):5 to 10% high. 

• For -45° ≤ V :5 450 elec. (armature MMF on Q axis): ±5%. 

• For -90° ≤ jc < 450 elec. (armature MMF on -D axis, opposed to 

field MMF): up to 20% low when the armature MMF and the field 
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MMF are the same magnitude; up to 5% low when the armature 

MMF magnitude is less than half the field MMF magnitude. 

These flux per pole errors cause corresponding torque errors of similar 

magnitude. The average magnitude of torque error for all conditions is 8%. The 

20% low flux per pole and torque errors for the third set of conditions just 

mentioned are not normally encountered due to the field current being boosted per 

conclusion viii. 

X) Torque was successfully computed using the flux linkage approach. The 

effects of saturation and salient poles are apparent in the measured and computed 

torques. For linear conditions, the Tvs. ijc curve is skewed toward the direct axis 

pole. Under highly saturated conditions this skewing disappears. The saturation 

in the poles causes )cdtO drop more rapidly than )gq until they become comparable 

in magnitude. Under these conditions the salient machine torque characteristic 

becomes similar to a cylindrical machine torque characteristic. 

xi) Voltage was successfully computed using the flux linkage approach. Power 

balance confirms the link between the torque and voltage computation methods. 

The distributed, partial pitch windings reduce the effects of higher harmonics of flux 

upon the induced voltage, making the induced voltage more sinusoidal. Steady 

state operating curves were predicted by combining the developed computer 

model with D-Q axis theory. The results need experimental verification, but their 

general shape agrees with the references. 

xii) The flux density, flux linkage torque, and flux linkage voltage models provide 

a simple, fast, and reasonably accurate means of predicting steady state 

behaviour, well beyond linear conditions. They also have the potential to replace 

finite element solutions during the time-stepped transient solution process. 

However, finite element simulation is still required to initially develop the flux 

density model for a machine that has not yet been built or from which experimental 

data cannot be collected. The research goal has been met, and the initial 

proposal has been shown to provide reasonable results. Its accuracy is not 

expected to be as high as the finite element approach, but the savings in 

computing time during long simulations, and its simplicity, are advantages over 

using finite elements. Since errors in the computed torque have been fully 
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identified, correcting functions can be developed to compensate for this error, 

leading to improved accuracy in transient studies. 

7.2 FUTURE WORK 

i) Use a finite element package to develop the flux density model instead of 

measurements. Compare results from the two. The finite element package can 

compute deep, sharp drops in flux density over the slots which the Hall effect 

crystal averages over (thus reducing their apparent depth). The nature of the 

saturation within the pole iron and in other regions of the machine can also be 

found, leading to a better understanding of the sources and magnitudes of the 

errors in the flux density model. 

ii) Compare predicted steady state operating curves with and without saturation. 

Determine the effects of saturation upon 'cd and.. 
iii) Compare modelled and measured steady state operating curves for an actual 

machine. The model can be developed using a finite element package. 

IV) Develop correction functions for the torque error. These functions can adjust 

the input currents to give the correct torque output depending upon XV and the 

current levels. 

V) Determine the computed Tvs: 8 characteristic for my experimental machine 

using the method described in section 5.1.2. Compare the results from the linear 

and saturated models. 

vi) Automate the process of determining standard steady state operating curves, 

such as Figure 6.3. 

vii) Implement the General Torque and Voltage Algorithm in Appendix B. 

Determine the full effects of space and time harmonics on torque and voltage. 

Consider normal conditions, and the case where armature reaction is very large. 

Determine the reduction in accuracy caused by modelling with fewer MMF 

harmonics. 

viii) Attempt to determine as a function of both MMF and position. 

ix) Per Appendix B, compare the results of flux linkage, torque, and voltage 

computations done by neglecting skewing and taking a vertical average (as done 

in this research), and the sum of slices method based on equations B.4 and B. 10. 

The difference is not expected to be great due to the small magnitude of the 
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higher flux harmonics and the smoothing effects of the tooth skewing and 

distributed, partial pitch windings. 

X) Investigate the reduction in voltage harmonics due to distributed, partial pitch 

windings, compare with the classical breadth and pitch factors. 

A) Extend the General Torque and Voltage Computation Algorithm in Appendix 

B to transient conditions. Possibly use a state model approach for solving the 

system equations. Add the MMF waves of the damper windings. Compare the 

transient model using this method with the finite element based method and actual 

machine tests. Compare on a time-step by time-step basis, and compare total 

computing times. 

xii) Combine the flux density, torque, and voltage models with finite element 

software and state modelling in order to solve for steady state and transient 

conditions. The whole process of determining MMF waves, Rbas, waves, and 

can be automated. Inputs to the program would be construction data (machine 

dimensions, coil locations, etc.). These could even be entered from a CAD 

package. Armature and field MMF waves would then be computed, a finite 

element mesh automatically generated, and finite element solutions could be used 

to determine Rba,, and R.t. Using a state model, the program could then be used 

to perform standard and specialized steady state and transient studies. The user 

could select standard studies or curves from a library which the program would 

then perform or compute automatically. 
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APPENDIX A 

EXPERIMENTAL INACCURACIES 

Table A.1: Summary of Experimental Inaccuracies 

Source and Magnitude of Inaccuracy Correction 

Inaccuracies in flux density measurement 
instrumentation (per manufacturer's spec.'s): 
probe: ±1%, 
gaussmeter instrument: ±0.25%, 
gaussmeter internal calibration: ±0.3%, 
gaussmeter internal noise: ±0.00316%, 
A/D converter quantization error: ±0.0488%, 
ND converter noise: ±0.0488% 
Total: ±1.65% 

No improvement possible without replacing 
equipment. 

Inaccuracy due to temperature sensitivity of 
probe (machine iron and probe heat up due 
to I2R losses in windings). 

Temperature effects were corrected, when 
necessary, using the manufacturer's 
formula. High temperatures were avoided 
by permitting the motor to cool down for 
several minutes between data runs. This 
also prevented the winding insulation from 
being damaged. 

Inaccuracies in probe position potentiometer 
readings: 
Visual gauge reading: ±0.137%, 
ND quantization error ±0.0488%, 
ND noise error: ±0.0488%, 
Total: ±0.235% 

Negligible. 

Random spikes in gaussmeter analog 
voltage output. Suspected cause is elevator 
motor switching affecting the AC distribution 
in the building. 

Immediately after each data run was 
finished, the data was displayed on the 
monitor. If visible spikes were found, the 
data run was performed again. Small 
spikes could be detected and/or averaged 
out using the averaging program from 
Chapter 3. 

The Hall effect element averages the flux 
density distribution over a width of about 
0.07". At a sample rate of 10.0 Hz, this 
corresponds to 4 sample points. The 
resolution of the measured distribution is 
reduced due to the inherent smoothing in 
the element. Sharp features such as the 
dips in flux density between the teeth are 
not as prominent (see reference [25]). 

The Hall effect element width cannot be 
changed. Even though the field is 
smoothed over 4 data points, the 10.0 Hz 
sample rate is not reduced in order to keep 
as much resolution as possible, and provide 
enough points for numerical integration 
programs. The reduction in the prominence 
of the flux density dips between the teeth is 
not critical since these features are 
smoothed out by the averaging program of 
Chapter 3. 
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Table A.1: Summary of Experimental Inaccuracies 

Source and Magnitude of Inaccuracy Correction 

The Hall effect element is manually adjusted 
so that its normal is parallel to the radial air 
gap field. This can introduce a small error. 

This manual adjustment is made while the 
probe is above the centre of a tooth top, 
and while a field is present. The probe 
orientation is adjusted so that the flux 
density reading from the probe is 
maximized. It was observed that the flux 
density reading is not very sensitive to the 
probe orientation, as long as the element 
normal is within a few degrees of the field 
direction. The component of field density 
which is normal to the element is 
proportional to cos(8), where 6 is the angle 
between the element normal and the flux 
density vector. Cos(9) remains close to 1.0 
as 9 deviates from 0 degrees by small 
amounts, and therefore the normal 
component does not change significantly. 

Probe position potentiometer voltage range 
drifts outside of allowable A/D range due to 
accidental adjustment of the calibration dial, 

The full scale range of the probe position 
potentiometer was routinely checked and 
readjusted if necessary. 

Resolution of B distribution data depends 
upon the sampling rate, 

The optimum sample rate was 10.0 Hz, 
yielding 1600 points per file. If the sample 
rate was lower, then some resolution of the 
flux density dips between the teeth was lost. 
If the sample rate is too high, then the 
change in the quantized probe position 
potentiometer output voltage is less than 1 
LSB, and probe position errors occur. The 
resulting flux density plot looks ragged since 
some position data points are less than their 
predecessors. This suggests that the probe 
is rotating backwards, which is not the case. 

Visual gauge readings were accurate to 
about 0.5 of their smallest graduation. 

No correction possible. 

The current would drop in the windings over 
the course of a single data run, or over 
several data runs. This was caused by 
increasing winding resistance due to l2R 
heating. 

The current value was set immediately 
before and checked immediately after each 
data run. For very high current runs, the 
current was stopped for several minutes 
between runs to give the motor time to cool 
down, and avoid insulation failure. 
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Table A.1: Summary of Experimental Inaccuracies 

Source and Magnitude of Inaccuracy Correction 

Slippage in the worm/disk gear combination 
resulted in changes in rotor position when 
magnetic torque was exerted on the rotor. 
This caused the rotor angular position to 
deviate from the desired position by up to 
about 7 mechanical degrees. 

When a data run was to be taken where 
both the field and armature windings were 
going to be excited, a torque wrench was 
used to manually "pre-torque" the shaft and 
eliminate any slippage in the gears. Then, 
when the magnetic torque was applied to 
the rotor, there was no slippage in the gears 
and the rotor stayed in the desired position. 

The torque transducer and phase detector 
were calibrated by manually applying a 
known torque to the shaft using a dial 
torque wrench and a custom made 
extension arm. The estimated error in this 
procedure is about ±3 N-rn at all torque 
values. 

The average of at least three trials for the 
same calibration point was used to offset 
human error. 

Under very high magnetic torque conditions, 
the torque tube was overloaded, causing it 
to twist. This caused the torque 
measurement system to become non-linear, 
and permitted the rotor position to change 
by up to 1.5 mechanical degrees from the 
desired position. 

Under these conditions, the torque wrench 
was used to apply a known torque in 
opposition to the magnetic torque. This 
permitted the torque measurement system 
to fall back into linear operation. The total 
magnetic torque was then taken as the sum 
of the linear measured torque from the 
measurement system, plus the known 
opposing torque applied by the torque 
wrench. This confirmed the non-linear 
operation of the torque measurement 
system, and gave reasonably accurate 
results. The change in rotor position 
caused by the twist in the torque tube had a 
negligible effect on the magnetic torque. 
Further, any rotor slippage that did exist 
soon disappeared once an opposing torque 
was applied using the torque wrench. 
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APPENDIX B 

FLUX LINKAGE, TORQUE, AND VOLTAGE 

CALCULATION 

This appendix derives the flux linkage, torque, and voltage formulas used in Chapters 

5 and 6 of this document. 

FLUX LINKAGE 

Consider the cylindrical surface in the air gap of the machine which coincides with the 

outer dimensions of the machine rotor, as shown in Figure B.1. 

z=h 

z=O 

Oi 

Figure 8.1: Rotor Flux Integration Surface 

Assuming all of the flux is normal to the sides of the rotor cylinder, the total flux, D, 

entering region R is 
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f B, (O z) rdO d (B.1), 

where r is the outside radius of the rotor, 0 is the angular position on the rotor surface, 

and z is the vertical position along the rotor. The flux linking a coil is equal to the net flux 

entering the rotor surface between the two lines defining the sides of that coil (see Note 

1 later in this appendix). For a coil embedded in skewed slots, equation B.1 can be 

computed over three subregions, Ri, R2, and R3, as shown in Figure B.1. The bottom 

left corner of the coil is defined by the angular position 0, the top right corner by 02, the 

skewing angle is xV (in mechanical radians), and the total rotor height is h. Equation B.1 

is expressed in terms of these variables as 

h h 
(0 + r) (001) 

= f f Br (Oz) rdzdO + 
01 0 

(02- #') Ii 

f f Br(O,z)rdzdO + 
(0,+r) 0 

02 h 

Br (Oz) rdzdO 
(2 - *) 

If no skewing is present, the first and third terms of equation B.2 will disappear. In 

order to account for the variation of Br(0,Z ) in the z direction, equation B.2 can be 
approximated by a summation of short slices in the z direction, where Br(O,z) is assumed 

to remain constant with z over the height of each slice. Clearly, if a large number of slices 

(a large n) is used, then this approximation can be very accurate. For the i th slice, 

equation B.2 becomes 
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(.- " 4h, 0 4h, ;- Oi) 

I 
h1,, 

Br(0,Z,)rdzd0 + 

liv 

f Br(0,z,)rdzdo+ 
h11 

hpj 

I I 
(6,-,) (4h18 4h1 

0&r 4hi) , .-  

where 

and 

Br(0,Zi) rdzd0 

(13.3), 

(13.4), 

(13.5), 

(13.6), 

(13.7), 

(B.8), 

= li2,, (13.9). 

At this point we can introduce rotational motion by performing a change of variables. 

Let 0 become 0 + cot, and 4 = 0 + cot. 4. is the angular position with respect to the stator, 

and, since in my machine the fundamental component of the air gap field is stationary with 

respect to the stator, 4 is also the angular position against which the air gap field is 

measured or computed. cot is the steady state time varying angular position of the rotor, 

and in the case of my machine, it is also the time varying angular position of the armature 

conductors with respect to the air gap field. These values are shown in Figure B.2. After 

changing the integration variable and limits we get 
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Figure B.2: Definition of Time Varying Angular Coordinates 

(O,,+ '1+c.t) 

= f Li(#_ Wt) _-!?i811_h11] B(çi1,Z,)rd + 

(01,1+0t) nuh 
(°v- '1+c() 

I [hz, h11] Br (#,z,) rd,j, + (13.10). 
,+ Wt) 

(OW c.f) 
Aft, f [hz, 1((at)+O&011 ,.Ah,] Br(#,z,)rd# 

(0,-.,+c,t) 011 

As goes to zero (neglecting skewing), the first and third terms disappear and we 

have 

(02+ WO 

= f (h_ h111] Br(#,Zi)Td# 
(O1+Wt) 

In my research all of the slices are the same thickness, therefore 

(13.11). 
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[21 — ,J - - n , or 1= -n 

where h is the total rotor height (length), and n is the number of contour intervals and is 

equal to 10 in my research. Using equations B.4, B.11, and B.12, the total time varying 

flux linkage in the coil can be expressed as 

(02+ot) 

rh f [1E Br(b,Zj)Jd# 
(01+cot) I=l 

(O+ c.t) 

.rh f [Br(#)lavgd 
(O + t) 

(B.13). 

The approximations made in the process leading to equation B. 13 were to neglect the 

skewing of the coil sides, and use a finite number of averages (these averages are taken 

vertically along the rotor height (length)). 

As the harmonic order of the flux density distribution increases, the error in the 

computed flux linkages due to each harmonic increases if the effect of skewing is 

neglected. This error leads to the computed flux linkage due to each harmonic being 

higher than the actual value (see the worked example at the end of this appendix). In 

turn, the computed voltage and torque due to the higher harmonics is higher than the 

actual value. However, as shown in Chapter 3, the magnitudes of the higher harmonics 

of flux density also decrease as their orders increase (this is true for both averaged and 

unaveraged data). Since the error caused by neglecting skewing is greatest for the 

highest order harmonics, whose magnitudes are also the smallest, the resulting error in 

torque and voltage is minimized. 

Results from the averaging process also point out the insignificance of the higher 

harmonics, as shown in Chapter 3. Compared to unaveraged data (data for any given 

contour), averaging dramatically reduces the magnitude (and therefore the importance) 

of the higher harmonics. In turn, the small higher harmonics will have little effect upon 

induced torque or voltage. Therefore, by averaging, we offset the error we have 

introduced by neglecting skewing (skewing and averaging amount to the same result as 

far as voltage and torque are concerned). Due to distributed, partial pitch windings, the 

effects of harmonics are reduced even more (as far as torque and voltage are concerned). 
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SeeChapter 6. 

A full study of the error introduced by neglecting skewing (computing the flux linkage 

using a vertically averaged flux density distribution (equation B.13) instead of the more 

exact sum of slices method (equations B.4 and B.1 0)) would determine the error incurred 

by using equation B.1 3. This would best be done by comparing the induced voltages and 

torques from the two methods. However, this would add significantly to the scope of my, 

research, with little additional insight, so I will not pursue it further. Classic references such 

as Moullin [9] and Langsdorf [27] are quite satisfied with using the averaged flux 

distribution approach. This is because of the substantial smoothing in the voltage 

waveforms caused by skewing of the rotor teeth. This skewing substantially reduces the 

net effect of the higher order flux density harmonics (which are present in any given 

contour) upon the voltage. 

Since the flux density distribution model will be developed from [B1(4 )]a 

measurements, and will be used to predict [8r(4 )]avg as well, the actual skewed rotor 

should be (conceptually) replaced with an equivalent rotor of non-skewed construction. 

All coil positions should be those which would give an mmf distribution which is 

appropriate for the measured (or computed) [Br(4 )] avg and reluctance distributions 

(symmetry can be used to determine the exact location of the equivalent coils). Averaged 

(and therefore smooth) mmf distributions from these equivalent coil positions should be 

used rather than the stepped mmf distribution found at any particular contour along the 

rotor. The equivalent length of a coil side is the height (or length) of the rotor, h. The 

equivalent radius, r, is the air gap radius where [Br(4 )]avg is measured or computed. This 

is approximately the outside radius of the rotor. 

INDUCED TORQUE" 

The torque induced on a coil can be found from equation 2.8. The coil torque, T 1(üt 

is a position (or time) varying quantity as defined below: 

T,11 (øt) = Ni(t) diI'(t) (13.14), 

where / (t) is the current flowing in each conductor of the coil, N is the number of 

conductors in the coil, and 'J(cot) is the position or time varying flux linking the coil, as 

computed using equation B.13. Substituting equation B.13 into B.14 and applying the 

Fundamental Theorem of Integral Calculus (Swokowski [28, p.252], see Note 2) we get 
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T 1 (t) = Nrhi(t)(EBr(O2+ cat) Ja - (Br(Oi+Cl)t)] g) (B.15). 

A physical interpretation of equation B.15 is that the net change in flux in the coil 

consists of the flux lines cut by both the leading and the trailing sides of the coil. This is 

the origin of the "cutting of flux" equations for voltage (e = B°v) and torque (T = But) 

used frequently in the literature. These equations are valid, when properly interpreted for 

a coil, even though the sides of the coil are embedded in slots and only see a very weak 

field. They are valid because they find their origin in the flux linkage equations for torque 

(equation 2.8) and voltage (equation 2.9) (Fitzgerald [7, p.152], Moullin [9, pp. 39, 302-

311 ]). Equation B.15 (and its counterpart for voltage in the next section) allows us to 

compute the torque (and voltage) without computing the flux linkage. Therefore, no 

integrations need to be performed. The key information we need are the constants and 

a knowledge of the flux density distribution. Further, since none of the constants in 

equation B.15 change with the saturation conditions in the machine, the only way in which 

saturation will affect equation B.15 is through changes in the flux density distribution. By 

properly determining the flux density distribution under whatever operating conditions are 

present (even saturation) and feeding that density distribution into the portion of the 

computer model which computes the induced torque and voltage, we can develop the 

torque and voltage computation sections of the program independently by considering only 

the basic coil distributions in the rotor (armature), phase current variation with time (for 

torque computation), and rotating speed (for voltage computation). The factors affecting 

the flux distribution (field mmf distribution, armature reaction mmf distribution, and the 

reluctance distribution) are used to determine the flux density distribution at any point in 

time. Unlike methods such as inductance matrices or circuit models, this approach 

provides us with a very good picture of the actual physical mechanisms producing the 

electrical (terminal) and mechanical (shaft) behaviour of the machine. 

Equation B.15 can be used to compute the total rotor torque by simply summing the 

individual contributions from each coil as follows 
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q m 

T r(G)t) > !k(t)NrhE ((Br(O(2Ik)+(J)t)1g - 

k=1 1=1 
(B.16), 

[Br(O(1j.k) + (I)t)1 Q] 

where m is the number of coils in a phase winding, q is the number of phases in the 

machine, cot is the displaced angular position of the rotor relative to the stator reference 

at time t = 0, 9(1J,k) is the angular position of side 1 of coil j of phase k at time t = 0 (the 

rotor angular reference (e = 0) is in line with the stator angular reference (4) = 0) at time 

t= 0), and 0(2,,k) is the angular position of side 2 of the same coil. 

By utilizing equation B. 16 in the computer model, the distribution and pitch of the coils 

is automatically considered in determining torque and voltage. In the classical theory, 

breadth factors (accounting for the coils in the windings being distributed over some 

angular range in the armature slots) and pitch factors (accounting for fractional pitch 

windings) are used in the voltage and torque equations. 

Under balanced steady state conditions, the sinusoidal, phase displaced currents, 

combine with the angular displacement and constant rotating speed of the phase windings 

to produce a constant torque (neglecting current time harmonics and winding space 

harmonics). 

INDUCED VOLTAGE 

Equation 2.9 can be used to determine the induced voltage in the phases by modifying 

it as follows: 

o = - N1 dO -- = N- 1  
dt WO W t- dq 

where d/dt is the time rate of change of the rotor angular position with respect to the 

stator reference (to be used for transient analysis), and co is the angular velocity of the 

rotor under steady state conditions. Proceeding similarly to the torque computation, the 

induced phase voltage for steady state conditions may be computed using 
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M 

ek(øt) NrhE[[Br(O(2jk)+ot)]a 
.1=1 

LBr(O(2ik)+C)o)]avg ], for k= 1-.q (B.17). 

GENERAL TORQUE AND VOLTAGE COMPUTATION ALGORITHM 

The steps involved in computing the induced rotor torque and winding voltages can 

be summarized as follows: 

i) N (the number of conductors per coil), r (the rotor outside radius), h (the rotor or 

equivalent coil side length), P (the number of poles), and co (the steady state 

angular velocity) are stored in memory. 9(ljk) and 8(2,j,k) are determined from the 

rotor constructional features, and are expressed with respect to the rotor angular 

reference (0=0). These are stored in the first column of a two dimensional array. 

The direction of positive current flow can be indicated by a or "-1" in the 

second column. One side of a coil will have one sense, the other side will have 

the opposite sense. The phase rotation (a,b,c), the locations of the phase 

windings around the rotor (armature), and the positive mmf axis direction for each 

phase winding are known. Therefore the direction of rotor rotation and the 

direction of current flow in each coil side is known for some instant in time (say, 

the point in time when phase a current peaks). The torque sense on the coil can 

be found from F = if < B which tells us the force direction on the coil side. The 

torque sense will oppose rotation for generator action, and support rotation for 

motor action. Since power balance must exist in the coil, the product of 

instantaneous torque and instantaneous angular velocity must numerically equal 

the product of instantaneous induced voltage and instantaneous current (for all 

three phases). By defining the product of positive rotational direction and positive 

torque as producing positive mechanical power or motoring action, then since the 

current sense is also known in the coil, the induced voltage sense can be 

determined. When the machine is motoring the power flow is into the machine, 

therefore the instantaneous line voltage in phase a must be greater than the 

instantaneous phase a induced voltage in order to cause instantaneous phase 
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current to flow into the machine (neglecting leakage reactance). Therefore the 

senses of all of the machine variables are defined, and the proper sense of the 

induced winding voltage can be selected to satisfy air gap power balance and line 

terminal conventions by simply putting a positive or negative sign in front of 

equation B.17 (the induced voltage formula). 

ii) Read in the field current and rms phase current (for the fundamental only). If 

desired, harmonics can be introduced as well. 

iii) At time t = 0, the 0 = 0 reference for the rotor is in line with the = 0 reference 

for the stator. The equations can be generalized if this is not the case by adding 

the angular difference between them at t= 0 to each argument in equations B.16 

or B.17. 

iv) Compute the rotor position with respect to the stator for each time t. For steady 

state conditions this value is cot (assuming the conditions of step iii are met). 

v) Compute the instantaneous phase currents at time t, with or without harmonics. 

vi) Using the rotor position, phase currents, and the field current, compute the 

average air gap flux density distribution, [Br(4)] avg, using the model. 

vii) Compute Tr,,t,(coo using equation B.16 and ek(ot using equation B.17. In my 

research programs, I only computed [Br(4)]a for the point in time corresponding 

to the static measurement conditions in my experimental machine. ej#oo was 

computed assuming the air gap field remained unchanged throughout the complete 

supply cycle. (ut) only needed to be calculated for phase a due to phase 

symmetry. Some error is introduced in this approach, since the space harmonics 

of the armature mmf wave are neglected, but as shown in Chapter 3, this error is 

very small since the harmonic distortion of the armature mmf wave over the course 

of a cycle is small relative to the armature mmf wave, and the armature mmf wave 

itself is quite small next to the dominating field mmf wave (under normal operating 

conditions). 

viii) Store the rotor torque and induced winding voltages as functions of tin an array. 

ix) Increment time, t = t + At until a full AC power supply cycle is completed, or until 

adequate torque and voltage data has been computed. 

x) Return to step iv if more torque and voltage calculations are necessary, or else go 

to step A. 
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A) Write rotor torque and induced phase voltages to output files. 

xii) End. 

Under transient conditions, the field current, the phase currents, and co are all time 

varying. Under steady state conditions, they can be treated as constants or analytically 

expressible quantities. However, in order to handle them under transient conditions, they 

need to be computed at each time step, using some iterative state variable procedure 

such as that used with the finite element solution method given in Krefta/Wasynczuk [6]. 

The torque will be affected by the rotor inertia, bearing friction, and. windage. Eddy 

currents and hysteresis loss should also be included if possible. The mrnf waves due to 

the induced currents in the damper windings will need to be added. Extension of this 

algorithm to the transient case will require a great deal more time and testing, but should 

be pursued as future work. 

NOTE 1 

This note shows that the flux linking a coil is equal to the net flux entering an angular 

portion of the cylindrical rotor surface bounded by the ends of the rotor and the 

intersection of the rotor cylindrical surface with the coil sides. 

The flux lines entering the ends of the rotor are neglected here, because 

measurements show that they become very small relative to those normal to the 

cylindrical rotor surface. In Figure 2.4, the radial air gap flux density drops significantly 

within 10% of the rotor length at either end of the rotor. Also, the coil geometry for the 

end turns is very complex. Flux linkage in the end turns will be treated as part of the 

leakage flux in Appendix C. 

Gauss's Law for a magnetic field, 

f B-dS = 0 (B.18) 
(see Hayt [12, p.268]), states that all flux lines entering a closed surface must leave that 

closed surface. Consider the case of a coil of arbitrary pitch mounted in slots on a rotor, 

and whose sides are shown in plan view as points a and b in Figure B.3. Gauss's Law 

tells us that the net flux linking the coil (through surface 2) equals the net flux entering the 

rotor surface between points a and b (through surface 1) as shown below 

f B-dS = 0 = f B'dS + f B•dS 
surface  surface  

(B.19), 
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where surface 1 is over the rotor surface between points a and b (the locations of the coil 

sides) in Figure B.3, and surface 2 is the plane enclosed by the coil. 

rotor outline 

I 
I 
I 

I' 

b 

a 

Figure B.3: Cross-Section of Rotor Surfaces Showing Integration Regions 

Since the normal flux density distribution is known everywhere over the rotor's 

cylindrical surface (either through measurement or by computation), and the normal 

component is the only component (as proven in Chapter 2), the flux linking the coil 

through surface 2 can be computed by integrating the radial flux density over surface 1. 

By defining the integral over surface 1 in terms of cylindrical coordinates, and since we 

have defined the integral over surface 2 to be the net flux linking the coil, equation 8.19 

may be rearranged to give 

8b h 

1V"kVCO1= f Bn(Oir)dSffBr(0)rdOdz 
surtac2 60 

(8.20), 

where h is the height or length of the rotor, Oa is the angular position of point a, 0b is the 

angular position of point b, ris the rotor radius, Br(0) is the flux density distribution normal 

to the rotor surface, and B(0,,) is the flux density distribution normal to the plane 
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enclosed by the coil sides (variation with z is neglected for simplicity). The difficult job of 

defining the limits of the first integral and B(O,i) is avoided by using the second integral. 

It is important to note that Br(0) is defined as positive for flux entering surface 1, and 

B(0,6 is positive for flux exiting surface 2 (in Figure B.3, this is the flux passing from right 

to left through surface 2). 

NOTE 2 

This note outlines the steps required to simplify the coil torque equation, B.14, to give 

equation B.15. Given equation B.14, the derivative of the coil flux linkage can be 

expressed as 

(O,+ c.t) 

-(rhf (Br()1avg d€P) 
(61+øt) 

(13.21), 

by substituting B.13 into B.14. Ignoring the constants rand h (because they can simply 

be moved out of the derivative), B.21 can be expressed as 

-A- f [ Br (0) lavg dO) 1(02 + 0 t) - (f [Br (fP) ]am det1)) (13.22). 

According to the Fundamental Theorem of Integral Calculus (Swokowski [28, p. 252]), the 

derivative of the integral of a function evaluated at a point is simply the value of that 

function at that point, therefore B.22 can be expressed as 

[Br(O2+øt)1 g - [Br(Oi+ wt) ]vg 

This result agrees with Moullin [9, p. 9]. 

WORKED EXAMPLE 

Consider using equation B.1 0, for a thin slice of the rotor length, to determine the total 

flux linked by a skewed coil. Coil skewing is considered in this example, but the variation 

of Br with z is neglected (otherwise, an integration would have to be performed for every 

slice). Assume the flux distribution can be expressed in terms of stator angular position 

as Br(4) = Bmcos(4). Consider the Ph slice as covering the entire rotor length, therefore 

I = 1 and n = 1. In my machine, , = 750 mechanical or ir/24 mechanical radians. Ah1 = 

h (the rotor length) since h11 = 0 and h2,1 = h. The coil is full pitch, so 011 = 0 and 021 = 7U-

(13.23). 
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Substituting these values into equation B.10 we get 

(r•cat) 

= rBM.  f cos ()[-L(- cat) ]do) + 
øt Vr 

(ir-+t) 

( f cos(#)[h]d) + 
('+ot) 

(r+c,,t) 

( I Cos ()[i-(2r- 40 + 
VI 

(B.24). 

When this integral is evaluated, the result is 

O(wt) = 2 rB h  sin ) sin (of) (13.25). 
01 

In the limit, as xV approaches 0, sin(NJ)/W approaches 1, the effect of skewing disappears, 

and equation B.25 reduces to 

cli(ot) = 2rBhsin(ot) (13.26). 

Using equation B.25, the term sin(w)/j, is carried into both the induced torque and induced 

voltage equations as well: 

T 1 (cat) = Ni(t) 2 rB, h  Stfl (VI) cos (of) 
VI 

and 

(B.27), 

e (of) = No 2 rBmax h  sin (0,) cos (of) (13.28). 
01 

When xV approaches 0, B.27 and 6.28 reduce to classical textbook answers (see [7, p. 

152]). Langsdorf [27, p. 194] describes the term sin(W)/AV as a breadth factor which is used 

to account for skewing. He has determined this breadth factor for various harmonics of 

air gap flux density. For the n th harmonic, sin(V)/V becomes sin(n'qc)/(ny). i is in 

mechanical radians. This breadth factor causes the harmonics of flux density to contribute 

less to the voltage or torque as their order increases. In essence, this results in a 
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substantial reduction of the tooth ripple in the coil voltage or torque waveform, since the 

higher harmonics of flux cause this ripple. This is desirable in order to reduce interference 

with telephone circuits. This smoothing helps justify the use of averaged flux density runs 

instead of developing a reluctance model for each contour. This effect is summarized 

below in Table B.1 for xv = 7.5° mechanical. 

Table B.1: Effect of Skewing on Flux Linkage 

Harmonic Order, n sin(niii)I(nis) 

1 0.9972 

3 0.9745 

5 0.9301 

7 0.8658 

9 0.7842 

11 0.6886 

13 0.5826 

15 0.4705 

17 0.3565 

19 0.2448 

21 0.1392 

Just how significant are the flux density distribution harmonics? In Table B.2, the 

harmonic content of the flux density distributions for three different cases are compared. 

All three cases are with the field windings excited with 0.5 p.u. (1 A). Case A is 

unaveraged (raw) data for a single contour at about the middle of the rotor (depth = 18.8 

cm). Case B is averaged over 10 contours, with the first and last contours affected by 

end effects. Case C is averaged over 8 contours, with the first and last contours 

neglected. The reason why Case C is introduced is simply to show how the end effects 



162 

affect the averaged flux density distribution. The data for cases A and B are shown in 

Figure 3.1 in Chapter 3. When averaging is done, the effects of teeth and measurement 

noise are largely smoothed out. 

From the Fourier analysis in Table B.2 we note the following features: 

i) The even harmonics are negligible (noise levels only). 

ii) The triplen is negligible. 

iii) End effects cause a reduction in the fundamental by about 6%. We are trying to 

represent a three dimensional field with a two dimensional averaged field. This 

work would be difficult to do even with finite element analysis. Experimental proof, 

through torque measurements, will serve as the best support for using averaging. 

By incorporating the end effects into the average, I expect we are getting a much 

closer estimate of the flux linkages than by neglecting them. 

iv) The main harmonics are the 51h and 7th Anything past that is 1% or less of the 

fundamental. 

v) The higher harmonics remain negligible for all cases. There is no visible trend 

toward their reduction as averaging is introduced. Under highly saturated 

conditions (not shown here) some of the harmonics increase due to the effects of 

damper bar slots and pole saturation. The reason why the higher harmonics are 

so small is likely due to the smoothing done by the Hall effect crystal. Any 

detailed study of the effects of skewing and averaging would require finite element 

analysis. However, based on the results of Table B.1, their effects upon torque 

and voltage should be negligible. 



Table B.2: Comparison of Measured Flux Density Harmonics 

ORDER 

n 

FLUX DENSITY MAGNITUDE, B 

(Wb/m2) 

NORMALIZED MAGNITUDE, B lB1 

CASE  CASE B CASE C CASE A CASE B CASE C 

1 0.3395 0.31962 0.3411 1.0 1.0 1.0 

3 0.007617 0.008553 0.007904 0.0224 0.02675 0.02317 

5 0.03602 0.03382 0.03646 0.1061 0.10579 0.1069 

7 0.01236 0.011562 0.0124 0.0364 0.03617 0.0364 

9 0.000458 0.000192 0.00027 0.00135 0.0006 0.000792 

11 0.000146 0.000315 0.000175 0.00043 0.000985 0.000512 

13 0.001583 0.001092 0.001422 0.00466 0.00342 0.00417 

15 0.003219 0.003648 0.003595 0.009482 0.01141 0.01054 

17 0.001624 0.000868 0.001153 0.004784 0.00272 0.00338 

19 0.001353 0.001502 0.001566 0.003985 0.004698 0.00459 

21 0.001261 0.000776 0.000914 0.003714 0.00243 0.00268 
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APPENDIX C 

APPLICATION OF D-Q AXIS THEORY TO THE 

COMPUTER MODEL 

CONVENTIONS AND PHYSICAL BEHAVIOUR IN STEADY STATE OPERATION 

What are the conditions of the magnetic fields within a salient pole machine under 

different steady state conditions? For simplicity, consider phase a of the two pole 

machine shown in Figure 0.1. The MMF axis of the field windings is indicated by the 

space vector F in Figure C.la. F is fixed in space (centred on the field poles) and its 

magnitude is proportional to the field current. To avoid congestion, the distributed, partial 

pitch phase a winding (which sits in slots in the rotor) is represented by a concentrated, 

single turn, full pitch coil side on the outside of the rotor. The ends of the coil sides that 

are nearest to the reader are shown in the plane of the page. The ends of the coil sides 

that are farthest from the reader are not visible, but are located directly below the visible 

ends (below the plane of the page). The far ends of the diametrically opposed coil sides 

are connected via the end turns. For a generator, the near ends may be connected to a 

load, in which case the complex impedance of the load will determine the relationship 

between the terminal voltage and current. For a motor, the near ends are normally 

connected to a fixed bus voltage. 

The polarity marks for current are shown inside the coil side cross-section. An "x" 

represents current going into the page and a dot represents current coming out of the 

page. For induced winding voltage a "+" polarity mark beside the coil side represents a 

higher voltage potential than a "-'i which appears on the opposite coil side. When a 0•11 

voltage polarity occurs beside a coil side with an "x" current polarity then, for that instant 

of time, the induced winding voltage opposes the current flow. This is the case (ignoring 

inductive effects) for the majority of a motoring cycle. If a "+" voltage polarity and a dot 

current polarity occur together then the induced winding voltage aids the current flow. 

This is the case for the majority of a generating cycle. 

Induced voltage can exist when induced current does not. This is the open circuit 

condition for a generator. 

The positive MMF axis of the phase a armature winding is indicated by the space 
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Figure C.la: Magnetic Field Conditions 
F = MMF axis of field windings, 

fixed in space 
A = MMF axis of phase a winding 
(0 = angular velocity, shown in 

+ direction 
T= torque, shown in + direction, 

for motoring conditions 
= internal torque or power 

angle 
Brm = axis of fundamental of net flux 

distribution under load 
, is positive for lagging internal 
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Figure C.lb: Phase a Phasor Diagram, 
Motoring Conditions, Current 
Lagging Induced No-Load Voltage 
Note: not to scale 
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Figure C.lc: Circuit Diagram, 
Motoring Conditions 

Figure C.1: Magnetic Field Conditions, Phasor Diagram, and Circuit Diagram for 
a Two Pole, Salient Pole Motor 
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vector A in Figure C.la. Its magnitude is proportional to the instantaneous phase a 

current. Its direction is defined opposite to the right hand rule in order to be consistent 

with my convention that the positive MMF axis produces flux that passes from the stator 

into the rotor. The stator (field winding) positive MMF direction is defined by the right 

hand rule, as normal. 

Under balanced, steady state conditions (neglecting time and space harmonics) the 

MMF's of the three phases superimpose to give a constant magnitude resultant MMF 

which is fixed in space and whose axis is always in the direction indicated by A. See 

references [7, pp. 146-150] and [27, pp. 199-218]. For the point in time when the 

instantaneous current in phase a is a maximum, the phase a MMF axis coincides with A, 

and the axis of the sum of the phase b and c MMF's also coincides with A. The 

combined phase a, b, and cMMF waves are greater than for any one phase. 

The angular position of A is determined by the internal power factor angle IV. i is zero 

when A is on the +Q axis as shown in Figure C.la. The reason why this convention is 

used will become apparent when we examine the two reaction phasor diagram (Figure 

C.lb). 

The polarity of the induced voltage in a coil side may be determined from u x B where 

u is the velocity of the coil side and B is the flux density at the position of the coil (it is 

assumed constant over the entire length of the coil). See Hayt [12, pp. 350-352]. If the 

coil side is assumed to be moving sideways through the field (which, neglecting slot 

skewing, is always the case in a machine) then the resultant of u x B points towards the 

end of the coil side which is at the highest potential. For the conditions shown in Figure 

0.1 a, the voltage in the coil side beneath the South pole will be higher at the end near the 

reader than at its far end. For the coil side beneath the North pole, the voltage at the 

near end is lower than at the far end. The total voltage in the coil is the sum of these two 

coil side voltages, and the contribution from the end turns is negligible. The coil voltage 

opposes the current flowing through it, so the machine is acting as a motor. 

The torque sense is always such that A and F will try to align so as to minimize the 

reluctance (or maximize the stored energy) of the magnetic field system. In Figure C.la, 

the torque direction is clockwise, which aids rotor rotation (motoring). 

The induced voltage phasor in the phase a winding is E. 

When there is no load, A is zero, and Ea equals E1 where E1 is the no load induced 
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voltage phasor. When a mechanical load is applied to the motor shaft (or a current is 

drawn from the generator terminals) the A space vector is established (after a brief 

transient period) at an angle of xV. The combination of A and F will produce a net air gap 

field (the axis of which is represented by the space vector B) which satisfies the torque 

requirements of the shaft load (plus any friction, eddy current, and hysteresis losses). 

BflM will be situated somewhere between F and A. For a linear, cylindrical geometry 

machine F and A can be added vectorially to determine the direction of BflM. For a salient 

pole machine, even under linear conditions, this cannot be done due to the widely varying 

air gap dimensions. However, the flux density model of Chapter 4 can provide us with this 

information, even under heavily saturated conditions. Once the flux density distribution 

is known then the direction of Bnt can also be found since it is the angular position of the 

peak of the fundamental of the net flux density distribution. 

Fortunately, we do not have to go to all the trouble of determining the angular position 

of Bw  every time we wish to analyze the steady state operation of the machine. This is 

because the magnitude and phase angle of Ea (which is critical for determining the 

electrical behaviour of the machine under load) can be determined directly from the net 

flux density distribution (see Appendix B and Chapter 6). Since the relation between the 

net flux density distribution and the induced winding voltage waveform under load (Ea 

being the fundamental of this waveform) is linear (as defined by equation B.17), the 

magnitude of Ea will be directly proportional to the fundamental of the net flux density 

distribution. Since the phase a winding is symmetric, the phase difference between E 

and E1 will equal (for a two pole machine) the space angular displacement of BflM from F. 

In Figure C.lb, the fundamental phasors E and E are shown. The angle of 

displacement between them is 6, the internal torque or power angle. This angle is also 

shown in Figure C. 1 a, between F and For a loaded condition E does not physically 

exist in the machine, but Blondel's Two Reaction method uses it as a reference for 

calculating Ea. 

For motoring conditions, Ea opposes the constant terminal voltage, Va, thus limiting the 

phase current, 'a' in the winding. The physical quantities which determine the current flow 

in the phase a winding are the winding resistance, Ra, and the winding leakage reactance, 

Xa. For my machine Ra is 0.542 c. This was determined by direct measurement, with 

temperature correction to 60°C. Xa was estimated to be 1.908 Q, and is the sum of the 
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slot leakage reactance (computed using a formula in Langsdorf [27, pp. 45, 301-303]) and 

the end turn leakage (computed using a formula in Alger [32]). It is not critical that I use 

very accurate values in my simulations since I cannot compare the simulated data with 

measured data. However, I included them to demonstrate how to incorporate them into 

the simulations. 

Va, 'a' and Ea are related by 

Va = Ea + ta(1?a+IXa)  

This phasor relationship is shown in the phasor diagram (Figure C.lb), and inthe circuit 

diagram (Figure C.lc). Equation C.1 is the basis for my preprocessing program. 

The external power factor angle, p, is the phase angle between J and V1, and can be 

measured at the machine terminals. It is an input to the preprocessing program, and is 

often constrained by the type of steady state operating curve which you are computing (for 

example, a constant power factor curve). 

• x, the phase angle between Ea and 'a, is output directly by the computer program. 

When rotorg (or c) is chosen, the position of A is set. Since the waveform of I peaks 

when the MMF axis of phase a is on A, all points on the time varying 'a waveform have 

a direct correspondence to the angular position of the rotor, and the positions of all of the 

coil sides throughout the AC cycle are known. Regardless of the magnitudes of the field 

or armature currents, for a fixed rotorg (or ii,) the phase of I (relative to rotor position) will 

not change. This makes 1. a good reference phasor. However, for a fixed rotorg (or 'i') 

the magnitude and phase of Ea changes depending upon the net flux density distribution. 

Ea can be computed throughout the AC cycle because the coil side positions are known 

throughout the AC cycle. Since these coil side positions also have a direct 

correspondence to the rotor position and to the phase of 'a' the phase shift of Ea from 'a' 

x, can be computed. In order to construct a meaningful phasor diagram for steady state 

conditions, such as that shown in Figure C.1 b, rotorg (or 'qi) must be held constant. This 

is not a problem since a fixed position for A is one of the fundamental assumptions in 

steady state analysis. 

The internal torque or power angle, 8, is the phase angle between Ea and E. This is 

also the torque angle used in equation 5.4. 6 for any steady state condition can be found 

from the computer model using the following steps: 
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i) Find the desired magnitude and phase (cx) of Ea for this steady state operating 

condition using the preprocessing program (this computation is subject to the 

constraints of the type of operating curve you are trying to determine). V, l, and 

(p must be fixed in order to determine the desired Ea. With the magnitude of Ia 

fixed, the remaining free inputs to the computer model are the magnitude of the 

field current (Ii) and the position of A (rotorg or Ni). 

ii) 4 and rotorg (or iji) are selected on a trial and error basis in order to obtain a 
computer model output Ea with the same magnitude and phase as the desired Ea. 

iii) By letting the magnitude of Ia go to zero and holding rotorg (or Ni) and I 

constant, E1 can be found from the computer model. Under no load conditions, Ea 

equals Ef. 

The assumed value of Ni can alsobe checked under no load conditions since cx (output 

by the program) should equal Ni under no load. N' the internal power factor angle, is the 

angular position of A and the phase angle between Ia and E1. It is affected by the external 

power factor angle, p, the torque angle, ö, and the Ra + jX drop. 

For motoring conditions, when ijc is positive (as shown in Figure C.lb) Ia lags E1 and 

A helps the field pole MMF. When Ni is negative Ia leads E1 and A opposes the field pole 

MMF. When Ni is zero, A is on the +Q axis. See Langsdorf [27, pp. 194-199, 419-426]. 

A, when Ni is zero, is fully directed into producing flux on the +Q axis. In this case, 

Ia = 'q' where 'q is the quadrature axis magnetizing current. 'q is defined to be in phase 

with Ef for the following reason: if 'q peaks when E1 peaks, then, when they peak, the 

centre of the phase a winding will be under the centre of the field pole. The phase a MMF 

axis (in quadrature with the centre of the phase a winding) will be centred on the +Q axis. 

The relation between the magnitudes of 'q and Ia is = /.COs(W)-

When Ni is 900 electrical, A is in line with F, and Iq = 0. In this case Ia = 'd' where 'd 

is the direct axis magnetizing current. 'd is defined to be in phase quadrature with Ef, and 

'd peaks when E1 is zero. At this point in time, the centre of the phase a winding is 

located in quadrature to the field poles, and the phase a MMF is centred on the +D axis. 

The relation between the magnitudes of 1d and Ia is 'd = IaS1t1(Ni) 

The phasor sum of 'd and Iq is In. 'd and 1q are shown in Figure C.lb. 

When N' is -.90° electrical, A opposes F, and this corresponds to a purely leading 

internal power factor condition for a motor. When Ni is 90° electrical, A adds to F, and this 
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corresponds to a purely lagging internal power factor condition for a motor. 

By the way in which 'd and 'q have been defined, 'd always represents the component 

of load current that produces direct axis magnetization. 'q always produces quadrature 

axis magnetization. 

In two reaction theory, linear conditions are assumed. The quadrature () and direct 

cd) axis reactances, 1q' and 'd are used to determine the difference in Ea and Ef caused 

by armature reaction. The phasor equation expressing this is: 

Ea = l'qq J'd'cd + Ef  

This equation is embodied in the phasor diagram, Figure C.1 b. It formed the basis for my 

postprocessing program. 

ç, is greater than )çq because of the higher inductance on the direct axis caused by 

the salient poles. The quadrature axis is dominated by the interpolar air gap. For linear 

conditions 'cd and X q can be computed based on machine construction, but this is a very 

laborious task (see Langsdorf [27, pp. 435-453]). Saturation conditions cannot be 

accounted for using this method. 

My computer model determines Ea and E1 directly without using )gd, X, 'd' and 'q• 

However, I wrote the postprocessing program which computes these values (using known 

l, E, and E1 inputs) so that I could determine the effects of saturation upon Xq and 'd 

Under saturated (and even linear) conditions both of them vary substantially. Over the 

course of the steady state conditions simulated in Figure 6.3, )cd varied from 23.44 to 

2.7 c≥, with lower values occurring under high direct axis MMF conditions. Xq varied from 
5.67 to 3.65 92. Often, when Xrd was low, so was Xrq. With this kind of variation in ) and 

cq, it is obvious why the linear theory, which assumes that both are constant, is 

inadequate for predicting saturated conditions. 

Langsdorf [27, pp. 468-470] discusses the transition from generating to motoring 

action. When switching, the machine will go through a brief transient period where the 

rotor slows with respect to synchronous speed. The result is that slightly different steady 

state equations and conventions are used for a generator and a motor. Figure 0.2 gives 

the magnetic field conditions for a generator. The equations for the phasor diagram, 

Figure C.2b, are: 
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Figure C.2a: Magnetic Field Conditions 
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Figure C.2b: Phase a Phasor Diagram, 
Generating Conditions, Current 
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Note: not to scale 
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Figure C.2c: Circuit Diagram, 
Generating Conditions 

Figure C.2: Magnetic Field Conditions, Phasor Diagram, and Circuit Diagram for 
a Two Pole, Salient Pole Generator 



and 

Ea = Va + la(Ra+JXa) 

Ef = JlqX.q+ 'Ad +Ea 

The conventions used in the circuit diagrams and the reference position of XV have 

been changed. The flux density, torque, and voltage models were developed based on 

motoring conditions, however their programs were used successfully for generating 

conditions as well. Equations 0.3 and 0.4 are used for pre- and postprocessing. The 

output E1 (or Ef) must be phase shifted by 1800 electrical for a generator, as does V1. 

Because of the new convention for iii, if i is negative (as shown in Figure 0.2) A adds to 

F. This corresponds to a leading internal power factor condition. If ic is positive, A 

opposes F. This corresponds to a lagging internal power factor condition (similar to a 

short circuit at the generator terminals). Also, the relation between i and rotorg is 

affected (see equation 0.5 later). 

COMPUTATION PROCEDURES FOR A NO LOAD V-CURVE 

Details of the flux density, torque, and voltage computation models are given in 

Appendix B. Static conditions are assumed. Harmonics are neglected. E1 is computed 

by simulating rotor rotation through the static field. Two full AC cycles are computed for 

one mechanical revolution. 

The computation procedures I will describe should be automated in the future. These 

were done by hand to identify any anomalies. None were found. 

The procedure for obtaining a single steady state point on the no load V-curve shown 

in Figure 6.3 is as follows: 

i) All points on the V-curve are for constant V1 and output shaft power. Since 

rotational speed is constant, shaft torque is constant. The magnitude of Va is 1.0 

p.0 (254 Volts rms). Output power and shaft torque are both zero. I,, q, c, and 

4 all need to be defined for the one point in question. The V-curve is plotted with 
4 as the independent variable and 'a as the dependent variable. For simplicity, the 
mechanical and core losses in the machine are assumed to be constant at 1.4 HP. 

This is the developed power at the air gap. Armature winding losses are 

neglected. I and cp are selected to give 1.4 HP with the given V1 (using air gap 
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power = 3Valacos(p)). The magnitude of l is selected at a convenient level to 

ensure that enough points are calculated to give a good V-curve. With V, I, 

Ra, and Xa all known, the preprocessing program (based on equation 0.1) is used 

to determine the desired Ea. 

ii) With the magnitude of Ia known, compute the instantaneous value of armature 

current corresponding to 0t= -irl6 using equation 2.13. Through trial and error, 

select I and rotorg so that the computer model outputs a magnitude and phase for 

Ea that matches the desired Ea. rotorg (the rotor gauge reading on the 

experimental equipment in mechanical degrees) is related to IV (in electrical 

degrees) through the following equation: 

Vf = 2 (rotorg +1O) (0.5). 

For the generator conventions of Figure 0.2, you must subtract 1800 electrical 

from equation 0.5. 

iii) Once the 4 and rotorg are found which give the desired magnitude and phase 
of Ea, the armature current can be set equal to zero with I and rotorg held 

constant. Under these conditions, Ea = E1. 5 can be determined from their phase 

difference. iV can be checked since it is the phase shift of E1 from I under no load 

conditions. The postprocessing program (based on equation 0.2) can then be 

used to find 'd' 'q' Xrd, and Xfq. Computed torque and power from the computer 

model are usually in excellent agreement with the desired torque and power levels. 

SAMPLE CALCULATION 

Details of the calculations for one point on the no load V-curve are shown in Table 

0.1. 



Table C.1: Sample Trial and Error Steady State Computation of a Point on the No Load V-Curve 

Initial Conditions: 

V1=254L0°V, 

Desired Ea = 

I=21.75 

Ea Z cx = 294.4 

L83.7°A, p.f. 

Z -86.87° V, 

=0.11 leading, 

Air gap torque 

ia=26.6A 

= 5.57 N-m, Air gap power = 1.4 HP, 1800 RPM 

TRIAL # W 

(electrical 

degrees) 

INPUTS TO THE COMPUTER MODEL OUTPUTS FROM THE COMPUTER 

MODEL 

COMMENT 

rotoig 

(mechanical 

degrees) 

I 

(Amps) (Amps) 

Air Gap 

Torque 

(N-m) 

Ea 

(Volts) 

° 

(electrical 

degrees) 

1 -86.0 -53.0 2.95 26.6 5.43 297.7 -87.10 In terms of 

phase 

2 85.8 52.9 2.95 26.6 6.10 297.8 86.84 reference: 

3 -85.8 -52.9 2.92 26.6 6.07 293.9 -86.82 
E = 293.9 

L-3.12° 

4 -85.8 -52.9 2.92 0 0 421.8 -87.96 
E,=421.8 

L-4.26° 
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Notes on the sample calculation: 

i) Since this point was in the middle of a long series of points being calculated 

for the V-curve we started with a good first trial and convergence was fast. When 

starting fresh, up to 8 or 9 trials may be needed. 

ii) Changes in rotorg or V usually affect the phaseof Ea most significantly. 

iii) Changes in / usually affect the magnitude of E1 most significantly. 

iv) The difference in the air gap torque is because the computer model takes into 

account the flux harmonics, but the torque from the electrical input power 

calculation only considers the fundamental of the induced winding voltage 

waveform. 

V) E1 is found after Ea has been found by simply dropping 'a to zero and holding 

everything else constant. Because this is a leading power factor condition in a 

motor, A and F largely oppose each other. When the armature reaction current 

(1.5 p.u.) is dropped, the no load voltage is very high since the field current is 1.46 

p.u.. The internal torque angle, 6, is very small (-86.82° - (-87.96°) = 1.14° 

electrical). The small developed torque overcomes the 1.4 HP worth of core and 

friction losses to give 0 net shaft torque. 

vi) A small error (about 2° electrical) exists between w determined using equation 
C.5 and rotorg, and ic determined from the computer model. This is likely due to 

experimental error in determining the reference axis of rotorg. 

vii) Equation 0.2 (the postprocessing program) was used to compute the following 

D-Q axis parameters for the case shown in Table 0.1: 

Iq = 0.77 Z 4.26° A 

Xrd = 5.89 92 

)cq = 7.55 92 

Saturation on the direct axis has forced 'cd to be less than ). 


