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Abstract 

It is the aim of this paper to investigate the suitability of applying functional data 

analysis (FDA) methods to the study of foot orthotics data, provided by an exper-

iment designed to assess the effect of shoe inserts on some relevant kinematic and 

kinetic variables. 

After a brief introduction, the following chapters provide data analysis that con-

sists of several procedures commonly adapted to FDA. First, we prepare the data 

for functional representation and proper data display, involving smoothing and reg-

istration techniques. Second, this data preparation is followed by some conventional 

statistical methods. These are basic t-tests, variance analysis and correlation coef-

ficient analysis. Third, again, a functional counterpart of a method in multivariate 

data analysis - principal components analysis - is employed to explore data varia-

tion. 

With sufficiency of the data set, we are able to draw some conclusive results 

using the proposed FDA methods above; the definite outcomes in turn assure the 

suitability of FDA application on such data. 
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Chapter 1 

Introduction 

Functional data analysis (FDA) is a recently active area. There are growing numbers 

of scientific and research fields in which data are collected through a process naturally 

described as functional; for example, each observation y,, i = 1, ..., N, is a function. 

Historically, FDA goes back at least to the attempts of Gauss and Legendre to 

estimate comet trajectories [RS2]. Today, with sophisticated monitoring and imaging 

equipment used in medicine, seismology, meteorology, and so on, massive data sets 

can easily be scanned in the form of curves, forming sets of functional data. More 

precisely, the observations of individuals at different time points are recorded. For 

example, a weather station generates monthly data (temperature, precipitation) that 

are real functions of one variable - time. In another example, the temperature profile 

across the whole country at a particular time of the day is a real function of two 

variables - longitude and latitude. The defining quality of functional data is that 

they consist of functions. Functions are usually estimated from discrete data by 

smoothing techniques. 

What is the difference between longitudinal data analysis and FDA? The main 

difference between these is in the dimensionality of the data vector, though such 

a distinction is not always clear. The dimensionality in functional data analysis is 

usually much higher, and hence smoothing techniques are needed. In addition, FDA 

tends to give a critical role to one or more derivatives. 

FDA has the same fundamental aims as those of more conventional statistics: 

1 
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to address problems that are responsive to statistical consideration and analysis; to 

work out ways of displaying data that highlight interesting and significant features; 

to explore variability and average characteristics, and so on. What sort of data may 

be considered as functional data? In some cases, functional data can be obtained by 

interpolating their original observations from longitudinal data, quantities observed 

as they evolve through time. Non-stationary time series data are appropriate for 

FDA most commonly [RD]. However, functional data come in many other forms. 

Here is the beauty of FDA: each new functional dataset offers new challenges and 

opens a door to explore new ideas and techniques. 

The field of functional data analysis is still in its early development, and the 

boundaries between functional data analysis and other aspects of statistics are vague. 

A fundamental assumption in FDA is that observed data functions are single entities. 

In practice, however, very often - by the nature of digital technology - functional 

data are recorded in a discrete manner. 

The data set, foot orthotics data, in this thesis is provided by the Human Perfor-

mance Laboratory at University of Calgary. It came from the study of the effect of 

several types of shoe inserts on relevant biomechanical variables during the human 

gait cycle. Even if the raw data exhibit a certain amount of roughness, it seems 

reasonable to assume that the human gait is a continuous process. Orthotics data 

are functional in the sense of being representable by smooth functions. Functional 

data analysis is a set of methods for the analysis of samples of curves, and our data 

are natural candidates for such analysis. The main aim of this thesis is to investigate 

the suitability of functional data analysis approaches to analyzing the data set. 

The first task of FDA is to transform the raw discrete values into true functional 
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form since the foot orthotics data were obtained discretely. Chapter 2 reviews some 

techniques for smoothing, including basis function expansion and roughness penalty 

methods. Due to both timing and magnitude differences seen in the sampled func-

tions, transforming functions by transforming their arguments - which is called reg-

istration - becomes the other subject of this chapter. After preliminary smoothing 

and registration steps, we perform data analysis in Chapter 3, which applies clas-

sical summary statistics used in functional form in FDA, such as pointwise t-tests 

and correlation functions. Chapter 4 introduces the principal components analysis 

of functional data to continue the data analysis. This is a key exploratory method, 

which gives us the tools to observe the main features characterizing functions. It 

was the first method considered by early literature on FDA. 

The data set used in this dissertation is adequate, and even with subjective 

variability, some outcomes are still conclusive. Hence, it shows that the methods 

proposed here have considerable promise for data of this type. 



Chapter 2 

First Steps in Functional Data Analysis 

In this chapter, we first discuss the ideas of data smoothing which are the techniques 

for converting raw functional data into true functional form. This is followed by 

an essential preliminary to functional data analysis, the registration or alignment 

of salient curve features. Finally, we take a close look at the data with which this 

dissertation is concerned and process the data to prepare them for further analysis. 

2.1 Representing functional data as smooth functions 

Smoothing methods can aid in data analysis in two important ways. First, they 

are able to highlight the underlying structure in the data. Second, due to being 

free from rigid parametric distribution assumptions, they can provide both flexible 

and robust analysis [Si2]. Moreover, in any exploratory analysis, we should not 

underemphasize the importance of looking at the data. Smoothing methods provide 

a way of meeting this end desirably - often even the simplest graphical smoothing 

methods will highlight important structure clearly. 

2.1.1 Usage of smoothing methods 

Functional data analysis concerns an observed data function as a whole as being 

a datum instead of a sequence of single observations. In practice, functional data 

are usually observed and recorded discretely. Assuming that a set of discretely 

4 
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observed values, Yji, •••) Yin) is a functional datum for replication j, we should first 

convert the y values to a real function, x (t), where t is an argument ranging over an 

arbitrary interval r. The process may involve interpolation or smoothing, depending 

on whether the discrete values are observed errorless. 

Smoothness implies a certain degree of derivatives, and smoothing converts raw 

data into true smooth and continuous functional form. The discrete raw data are 

supposed to have functional form, but they are usually imposed with observational 

error or noise. We write 

Yj = x (ti) + e, (2.1) 

where ej denotes the error term and results as a roughness to the raw data. Therefore, 

as an efficient approximation technique, smoothing is required to filter out the noise 

of raw data in order to obtain a better functional representation. 

Now we turn to a discussion of various smoothing methods designed for direct 

observational error. One particular class of methods, based on roughness penalties, 

plays a particular role in our development of functional data analysis methods. Before 

introducing roughness penalties in Section 2.1.3, we briefly discuss linear regression 

first. 

Linear regression is one of the oldest and most widely used statistical techniques 

[GS]. The natural way to view linear regression is as a method fitting a model of the 

form 

y=a+bt+error (2.2) 

to the observed data. It is natural to draw a straight line to emphasize linear trend 

when there exists the linear relationship between the design variable t and the re-
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sponse variable y. However, there are many data sets where it is clearly inappropriate 

to fit a straight line to the model of the form (2.2) and where a model of the form 

y = g (t) + error (2.3) 

is called for, where g is a curve of some sort. If g is a polynomial, this approach is 

called polynomial regression. The disadvantages for this approach are that individual 

observations can exert an influence on remote parts of the curve, and that the model 

elaboration implicit in increasing the polynomial degree happens in discrete steps 

and cannot be controlled continuously. 

Due to the drawbacks of the two previous approaches, a more flexible approach 

is required. 

2.1.2 Basis expansion approach 

The basis expansion method is one of the most familiar smoothing procedures, and 

its basic philosophy is to represent a function by a linear combination of K known 

basis functions Ok, 

X (t) -Ckk(t), (2.4) 

where ck are the coefficients of the expansion. The number K of basis functions 

controls the degree to which the data yj are smoothed. When K = n, the coefficients 

Ck are chosen to yield x (ti) = yj for each j, and thus an exact interpolation is 

generated. 

The linear smoother, x (t), can be obtained once we determine ck by minimizing 
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the least squares criterion 

n ( K 

j=1 k=1 

(2.5) 

The choice of basis functions is important, and there is no good universal basis. 

The type of basis functions should be chosen so that their characteristics match those 

of the functions being estimated. Therefore, we can choose the basis by observing the 

raw data. One of the basis choices, Fourier series, is useful for periodic or extremely 

stable functions. For example, for data such as the Canadian annual temperature 

data in the book by Ramsay and Silverman [RS2], Fourier expansion is an appropriate 

choice. The other types of basis are such as polynomial bases, wavelet bases, and 

the most common one, B-splines. 

B-splines 

The inability for Fourier and polynomial bases to accommodate local features led to 

the development of polynomial splines. B-splines is one of the most popular kind. 

A B-spline basis is defined by a set of knots, and our strategy is to place a knot 

at each time point corresponding to an observation. B-splines are constructed from 

polynomial pieces, joined at certain values of x, the knots [EM]. Once the knots are 

given, it is easy to compute the B-splines recursively for any desired degree of the 

polynomial. 

In practice, B-splines are a set of special spline functions that can be used to 

construct piece-wise polynomials by computing the appropriate linear combination. 

Computational convenience is derived from the fact that any B-spline basis function 

is nonzero over at most m (order of B-spline) adjacent intervals. Consider as an 

illustration the very common case where the order m is 4 for all polynomials, so that 
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the degree of each polynomial is m - 1 = 3. That is, the polynomials, and therefore 

the B-splines are cubic. 

It is recommended to choose a B-spline basis for any function that is not periodic 

and that has no other restriction on its shape [RS3]. 

2.1.3 Roughness penalties 

The task of smoothing is not merely fitting the data, but also capturing a slowly 

changing trend hidden by the local variation in the curve. The roughness penalty or 

regularization is a method to quantify the rapid local variation of x and to make an 

optimal trade-off between regularity and goodness of fit of the curve. In its simplest 

form, the roughness penalty approach relaxes the model assumptions in classical 

linear regression along lines a little different from polynomial regression. 

Given a curve x defined on an interval [a, b], there are many different ways of 

measuring how "rough" or "wiggly" the curve x is. An intuitively appealing way of 

measuring the roughness of a twice-differentiable curve x is to calculate its integrated 

squared second derivative. This estimates the total curvature in x. Consequently, 

high values of 

f. 
can be expected to result from highly variable functions due to their large second 

derivatives. Then, we use 

n 

S(x,)) = 

b 

{x" ()}2 ds (2.6) 

b 

{y - x (t)}2 + I {x" (s)}2 ds (2.7) 
Ja 

to define the penalized residual sum of squares. Our estimate of the function x is 

obtained by minimizing S (x, A) over the space of functions x. 
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As a smoothing parameter, A measures the rate of exchange between fit to the 

data and and variability of the function x, as quantified by the first term of Equa-

tion (2.7) and by Expression (2.6), respectively. The penalty, measured by the second 

term of Equation (2.7), controls the size of the second derivative of x (t), i.e. the 

curvature of the derivative x' (s). That is, as A - 00, the fitted curve x approaches 

the standard linear regression to the observed data. On the other hand, as A - p 

the penalty matters less and less, and the smoothing function will pass as closely as 

any curve x can to the actual data. That is, the curve x approaches an interpolant to 

the data. Ramsay and Li [RL] recommend that one should penalize with a derivative 

two orders higher than the highest derivative required in the model. 

2.1.4 Choosing the key parameters 

Once the type of basis function is chosen, the involved parameter values are yet left 

to be decided. These include the number of knots and their positions, number and 

order of the basis functions, and value of the smoothing parameter A. Each of these 

parameters plays a role in governing the degree of smoothness and fitness of the 

estimated curve. The choice of knots has been a subject of much research: too many 

knots lead to over-fitting of the data; too few knots lead to under-fitting. Friedman 

and Silverman [FS] suggested to begin with a dense set of knots, and then eliminate 

unneeded knots by an algorithmic procedure similar to variable selection techniues 

used in multiple regression. Where do we position the knots? Knots could be either 

equally or unequally spaced. When we need to account for the varying amount of 

curvature or local roughness, the latter is used. For the foot orthotics data set, knot 

positions are evenly spaced, approximately between every five time points. We use 



10 

25 order 6 B-splines. We choose 25 because this is judged sufficient to capture the 

complexity of the function curves, and we choose order 6 because it allows modeling 

of higher derivatives of the data. 

A major problem of any smoothing technique is the choice of the optimal amount 

of smoothing; therefore, the choice of the smoothness parameter A is a delicate mat-

ter. The many methods discussed in the nonparametric regression literature tend 

to be based on the assumption that it is only the characteristics of x (t) that mat-

ter, but it is known that stable estimation of derivatives requires more smoothing. 

Moreover, most of these methods assume that observational error is independently 

and identically distributed, but the indications of substantial serial correlation have 

been noted in many studies of orthotics data. Smoothing parameter A can either be 

chosen by the inspection of smoothness, or by an automatic procedure such as gener-

alized cross-validation (Gay). Unfortunately, according to Ramsay and Bock [RB], 

methods like cross-validation are known to be highly sensitive to correlational struc-

ture in these errors. They also experimented with calibrating the smoothing process 

on simulated data, using some parametric models and a realistic observational error 

structure. However, these models are probably too smooth, and this calibration pro-

cess tends to over-smooth the data. Finally, we tend to agree with Chaudhury and 

Marron [CM] that the best strategy is to view the data over a range of A to see what 

features emerge at various smoothness levels. By varying the smoothing parameter, 

features of the data that arise on different "scales" can be obtained by a subjective 

choice. Moreover, in exploratory analysis designed to hint at what might be seen 

in future data sets with more information, it may be better to be less conservative 

than otherwise. In the present context, we have found it satisfactory to choose the 



11 

smaller values of A that still provide a smooth and interpretable estimate of x (t). 

2.1.5 Examples 

Figure 2.1 plots the knee external rotation moment (Variable 6) for one subject with 

medial posting (Condition 2). The raw data points are shown as the circles. The solid 

line is constructed by connecting all the observed values, the circles, and thus is an 

interpolation function with zero residual sum of squares. The dashed line represents 

a smoothed curve with nonzero residual sum of squares, but its smoothness shows 

clearer data pattern and less local variation. 
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Figure 2.1: Interpolated and smoothed curves for the raw data. 
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The effect of choosing different values for the smoothing parameter A is seen in 

Figure 2.2. The solid curve, with A as zero, shows the largest amount of goodness-

of-fit. This amount decreases with increasing value of A, resulting in more and more 

smoothness. For smoothing our data, A is set to be in the range of (10-8, 10-6) for 

the rough curve, depending on different variables. 
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Figure 2.2: Effect of different values of the smoothing parameter. 
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The effect of different roughness penalty integrands at fixed A is shown in Fig-

ure 2.3. Roughness of the curve in the top panel is measured by using the integral 

of the square of its second derivative. The curves in the middle and bottom pan-

els result from penalizing the third and fifth derivative function, respectively. It is 

obvious that the latter two show more and more extensive smoothness. 

5 . 
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0.8 1.0 

0.0 0.2 0.4 time 0.6 0.8 1.0 

Figure 2.3: Roughness penalty: effect of three levels of order of derivative. 
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2.2 Foot orthotics data 

The shoe orthotics data were provided by A. Muendermann of the Human Perfor-

mance Laboratory at the University of Calgary. Several kinematic and kinetic factors 

have been suggested to increase a runner's risk for injuries. It has been speculated 

that foot orthotics can be used to reduce injury-related complaints or even to prevent 

running injuries by affecting these factors. Therefore, the objective of the experiment 

is to quantify the effects of posting and custom-molding of foot orthotics on lower 

extremity kinematics and kinetics during running. 

Twenty-one volunteers participated in this study. Data for Subject 1 were ex-

cluded due to technical errors in the analog data. All subjects had neither history of 

lower extremity injuries nor had previously worn foot orthotics. Kinematic and ki-

netic data were accessed during nine sessions over a three-week period. In each of the 

nine sessions, each subject performed twelve running trials (12 trials was designed 

for the experiment; however, some sessions have fewer trials due to unavailability, 

and several sessions have 13 trials.) for each of the four insert conditions as follows: 

Condition 1: control 

Condition 2: medial posting 

Condition 3: custom-molding 

Condition 4: combination of medial posting and custom-molding 

The four insert conditions were tested in randomized order. All subjects ran 

the same distance for each condition, and thus uncontrolled effects of mileage in 

foot orthotics on the outcome of this investigation were eliminated. The angle, force 
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and moment curves of the three-dimensional lower extremity kinematics and kinetics 

were collected for a single step normalized to touch-down and toe-off resulting in 101 

data points per curve per trial. The variables of interest are: 

Variable 1: foot inversion 

Variable 2: foot inversion velocity 

Variable 3: tibia rotation (ankle) 

Variable 4: ankle inversion moment 

Variable 5: knee adduction moment 

Variable 6: knee external rotation moment 

Variable 7: knee adduction angle 

Variable 8: tibia rotation (knee) 

Variable 9: vertical loading rate 

Variable 10: vertical ground reaction force 

Variable 11: flexion moment ankle 

Variable 12: flexion moment knee 

Variable 13: ankle flexion angle 

Variable 14: knee flexion angle 

Variable 15: tibia rotation velocity (ankle) 

Suggested by Muendermann [Mu], the variables in bold are studied more pro-

foundly. 

Now, before processing our data, we should look at the raw data to get an ini-

tial impression. Figure 2.4 plots the raw data for foot inversion for two subjects 
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(Subjects 6 and 12) in the same session with all four conditions. All the treatment 

conditions differ from the control condition in some ways. Most obviously, me-

dial posting (Condition 2) and custom-molding (Condition 3) vary considerably, but 

custom molding (Condition 3) and the combination of medial posting and custom-

molding (Condition 4) are similar. Figure 2.5 shows foot inversion with posting 

condition in all nine sessions for one subject. Apparently, trials within sessions look 

more alike than trials between sessions. These impressions are consistent with what 

Muendermann [Mu] stated in her thesis. 



18 

Condition 1 
5 

0 

-5 

-10 

-15 

-20 

-25 

Condition 3 

Condition 1 

Condition 3 
5 

0• 

-5 

-10 - 

-15 

-20 

-25 - 

Condition 2 

Condition 4 

Condition 2 

Condition 4 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

time time 

Figure 2.4: Raw data for foot inversion (Variable 1) with all conditions in one 
session for Subject 6 (top 4) and Subject 12 (bottom 4). 
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Figure 2.5: Raw data for foot inversion (Variable 1) with posting condition for 
Subject 6. 
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2.3 Data processing 

Before analyzing our data, we need to clean up the data in the sense of transforming 

the discretely obtained data to functional form, performing some smoothing, and 

removing the phase variation in order to align the amplitude variation. To prepare 

the data for analysis, we follow the preparation steps introduced by Araki [Ar]: 

Step 1: Transform the raw data to functional form 

Step 2: Register the functional data among trials 

Step 3: Reduce the dimension of functional data 

Step 4: Register the summary functions 

Transform the raw data 

According to Muendermann [Mu], within-day repeatability is greater than between-

day repeatability for kinematic and kinetic data. Figure 2.5 supports this statement. 

To assess this statement, one can compare within-session and between-session vari-

ability. Figure 2.6 illustrates such a comparison for one subject with one condition 

in Variable 1. Nine plain solid lines are cross-sectional standard deviation curves of 

each session. The bold solid line presents the cross-sectional average of those nine 

plain solid lines, while the dashed line presents the cross-sectional standard devia-

tion curve over all trials from nine sessions. The dashed line's being higher than the 

bold solid line exhibits that between-session variability is greater than within-session 

variability. This is also the case for the other subjects, conditions and variables. 

Due to this fact, one should analyze the data within session in order to retain as 
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much power as possible, but data analysis becomes a more complicated and time 

consuming matter. For such a trade-off situation, we might effect a compromise, a 

suboptimal choice of combining trials of all sessions for further analysis, ignoring less 

repeatability between sessions. Before making such a choice, it is still necessary to 

detect whether there is session effect or not. 
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Figure 2.6: Comparison of variability between sessions and within sessions for 
Subject 6 with Condition 2 in foot inversion (Variable 1). 
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Figure 2.7 plots cross-sectional mean curves of each of nine sessions to show the 

ranks of them for one subject with Condition 2 in Variable 1. It does not seem that 

there is obvious session trend within these curves, neither does any of other unshown 

plots for other subjects, conditions or variables. Further, as a formal measure of 

the visual impression of a lack of session effect, we performed Binomial tests on 

the ranks of these nine curves at time points 0.1, 0.3, 0.5, 0.7 and 0.9, separately. 

The corresponding p-values of each test at a different time point are around 0.73 

or higher; also, they are insignificant for other subjects, conditions and variables. 

Hence, we can conclude that no session effect exists, meaning that we can combine 

all sessions in processing the data. 
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Now, we can start the normal first task, which is to smooth the raw data so 

as to obtain the functional form. As previously mentioned, choosing the values of 

smoothing parameters is quite important, and it depends mainly on the features 

of the raw data and how much detailed information we want to keep. Ideally, one 

should do smoothing on the raw data for each variable, each condition, each subject 

and each trial. The functional data need to be registered later, and registration 

requires iteration, which is extremely time consuming in S-PLUS. Although the 

language Matlab can do a faster job at registration, we chose S-PLUS because of 

our familiarity with it. Due to the concern of time issue, we decided to process a 

randomly selected sample of 25 out of 108 trials (when there is no missing session or 

trial) per subject, per condition and per variable. The size of the random sample, 

25, is deemed to be adequate to keep a reasonable amount of information, through 

our visualizing the rough plots of some summary statistics such as mean curves of 

the sample and all the trials. 

By looking at the raw data of different variables, one should use appropriate 

parameter values according to the features shown from different variables while per-

forming smoothing on them. For variables having too "wiggly" curves, more smooth-

ness is required to present a clearer trend. We applied the penalized B-spline basis 

expansion method to the sample data. According to Araki [Ar], it is proper to use 

the 25 B-spline basis functions of order 6 on all the variables. Figure 2.8 compares 

the raw data to the smoothed data for Variable 1 of one subject, and it is evident 

that these basis functions closely resemble in shape the raw data trials. 
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Figure 2.8: Effect of B-spline smoothing for foot inversion (Variable 1) with 
control condition. Top: raw data. Bottom: smoothed data with A = 10-6 and 
order = 6. 

For different variables, the amount of smoothness required varies according to 

the features exhibited in the variable. Figure 2.9 shows the raw and smoothed data 

for Variable 2. Obviously, there is more difference between raw and smoothed data 

shown in this figure than in the previous figure. Because the raw data of Variable 2 

are more "wiggly" than those of Variable 1, the amount of smoothness imposed on 

Variable 2 is greater than that for Variable 1 to make adequately representative 

functions. 
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Figure 2,9: Effect of B-spline smoothing for foot inversion velocity (Variable 2) 
with control condition. Top: raw data. Bottom: smoothed data. 

Register sample curves 

At this stage, all the data are represented in functional form. As in any data analysis, 

the important aims for the orthotics data are to estimate the average features of each 

foot orthotics, and to get an impression of their variability across variables. These 

tasks are straightforward for univariate and multivariate data. However, Figure 2.10 

(top) illustrates a challenge that commonly occurs with functional data. The problem 

is that the human gait curves exhibit two types of variability. The first type, called 
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amplitude variability, pertains to merely the intensity of particular features such as 

the peak in knee external rotation moment (Variable 6), ignoring their timings. The 

other type, called phase variability, as opposed to the first type, is the variation in the 

timings of salient curve features without considering their sizes. Before undertaking 

nearly any analysis, it is essential for us to separate these two types of variation so 

that features such as "bump" occur at roughly the same "time" for all curves. The 

technique involves a curve registration process which removes phase variation from 

the data. 

The phase variation does not disappear, though; it is captured by a transforma-

tion of time t, which we call a time warping function. The following is one way to 

express the curve registration problem formally. Let h (t) be a transformation of 

time t for curve i, x. We assume there exists a standard interval [0, T0] over which 

the argument t ranges, while the values of h (t) range over xi's interval [0, Ti]. There 

are constraints h (0) = 0 and h (T0) = T needed to be satisfied. Thus, h (t) maps 

the standard interval [0, To] to xis interval [0, Ti]. The general registration task is 

to estimate such an hi for each curve x1 so that the de-warped components xi can 

be studied separately [RL]. 

This general registration method involves using the entire curve, rather than just 

the location of certain features. Although more technical, the method is completely 

automatic, and is especially handy when features are hard to identify in certain curves 

and/or a large number of curves has to be processed. The effect of this method is 

shown at the bottom of Figure 2.10. As we can see, the curves, which have several 

extreme features, are expanded or shrunk to make the horizontal difference as small 

as possible. 
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Figure 2.10: Effect of registration on knee external rotation moment (Vari-
able 6), Condition 3, Subject 3. Top: unregistered data. Bottom: registered 
data. The heavy solid lines are the cross-sectional means, and the bottom one 
is a better summary of the curves than the top one. 

There are other methods for registering curves. One called marker or landmark 

registration, requires the identification of the location of a number of visible features, 

such as peaks or valleys, in each curve to be registered. This method is easy to use 

and understand. However, it can present some problems. Marker events may be 

missing from certain curves; landmark identification will be a time-consuming and 
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tedious exercise when large number of curves are to be registered. 

The simple time shifting method is one of the others. It simply aligns all curves 

at one single target time point, ignoring other interested features. This method can 

be applied when dealing with cyclic data, but in practice, it is inappropriate to use 

it for most data. 

Reduce the dimension of functional data 

The original raw data set is presented as a six-dimensional array of dimensions (20, 9, 

12) 4, 15, 101) representing (subject, session, trial, condition, variable, time). Com-

bining all sessions results in a reduction of session dimension, and the dimension of 

the time variable is reduced by forming smoothed and registered time functions in-

stead of keeping discrete time values. Furthermore, the resulting 25 sample functions 

can be summarized as a single function by taking their mean function, and thus the 

trial dimension is eliminated. 

It is particularly convenient to take the mean instead of the median for cal-

culations while using a basis expansion method to estimate functions. The same 

basis functions with the mean coefficient matrix can be used to construct the mean 

function in a basis expansion. 

The calculation for the median function in terms of basis expansion functions is 

not as straightforward as for the mean function. Although in general the median 

is more robust than the mean, the sample size we use is large enough to make the 

mean quite representative. 
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Register the summary functions 

There are 80 summary functions (20 subjects x 4 conditions) for each variable re-

sulted from the above steps. Before any statistical method is applied for data analy-

sis, a second registration may be needed to synchronize the summary functions. This 

second registration could be over conditions or subjects, depending on which one is 

to be compared. For example, in order to compare different conditions, the regis-

tration may be performed over subjects. Figure 2.11 plots mean functions of four 

conditions separately for each subject, and it illustrates that subjective variability is 

greater than condition variability for both Variables 1 and 4. 
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Figure 2.11: (a) Subject and condition variation for foot inversion (Variable 1): 
Subjects 12 to 21. Solid line: C1(Condition 1); dotted: C2; dot-dashed: C3; 
dashed: C4. 
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Chapter 3 

Data Analysis 

In the previous chapter, we have outlined the procedure for preparing the foot or-

thotics data for analysis. The classical summary statistics can be used on functional 

data. Our goal is to investigate whether there are differences between the effects of 

shoe insert conditions. If there are, we need to investigate how the conditions differ. 

Some standard statistical methods are introduced in this chapter to help us reach 

the goal. 

3.1 Functional paired t-test 

To achieve the goal addressed above, for simplicity, we first consider the ordinary 

paired t-test to compare two conditions. 

There are several naive approaches to handling this kind of testing problem. The 

first naive approach is to treat each sample curve as a long multivariate vector, 

and then use a multivariate technique such as Hotelling's T2 test. However, this 

approach has two serious drawbacks: it completely ignores the continuity of the 

values assigned at neighboring time points, and the dimensionality is typically much 

larger than the sample size [FL]. The second naive approach in common practice 

is to locate the maximum value or maximum slope of the response curve, and then 

perform a t-test on that value [Ar]. This approach results in loss of information 

because only one single value, instead of all the values contained in the response 
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curve, is used. Functional data analysis uses the entire curve or at least a union of 

intervals of interest to yield a more powerful overall testing procedure. An objective 

of this section is to propose a simple and powerful approach to properly combine the 

test statistics at different time points to obtain an overall test. This is then extended 

to the comparison of multiple groups of curves. 

A large body of literature on longitudinal data analysis has developed various 

useful testing procedures (e.g., Diggle et al. [DL]; Hand and Crowder [HC]; Schmid 

[Sc]). The procedures can also be applicable to our functional data analysis setting. 

They usually treat longitudinal data as a multivariate vector and do not incorporate 

a dimensionality-reduction technique. For functional data analysis, the dimension-

ality is high, and hence dimensionality-reduction techniques are required. Although 

powerful for analyzing longitudinal data, traditional tests for high-dimensional prob-

lems need some tuning. Faraway [Fa] proposed smoothing on the functional data first 

and then using traditional analysis of variance (ANOVA). 

According to Muendermann [Mu], the effects of posting (Condition 2) on most 

kinematic variables are significant and consistent across subjects. However, she also 

points out that these effects seem to be only present during the first half of the stance 

phase as maximum absolute foot inversion is significantly reduced, but posting does 

not affect foot inversion during the second half of the stance phase. Therefore, for 

the functional t-test, we chose foot inversion (Variable 1) and control and posting 

(Conditions 1 and 2) to verify the statement of Muendermann. At this stage, the 

data at hand were processed by the procedure outlined in Chapter 2 as follows. For 

a given subject with Condition 1 and Condition 2, 25 smoothed sample curves for 

each condition were registered, and a mean function over these registered curves 
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was obtained. Therefore, there are two sample mean functions resulting from the 

above step for the given subject. Furthermore, the mean difference function can 

be achieved as Ydif (t) = (t) - (t). Repeating this procedure for all subjects 

turns out twenty such functions, and they are plotted in the top panel of Figure 3.1. 

These functions were then registered over subjects (see Figure 3.1, bottom). Finally, 

the curves were discretized evenly by a grid of 101 points that are equal to those in 

the data. We chose such an evenly spaced discretization because it is simple and it 

captures all the essential features of interest in the curves. 
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Figure 3.1: Mean difference curves. Top: unregistered. Bottom: registered. 
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A functional paired t-test (sample size n = 20) is then performed at each of the 

101 time points on the response values from all the subjects. This process yields 

101 resulting observed t-scores and corresponding p-values, which are plotted versus 

time in Figure 3.2. We use one-sided p-values based on what is seen from Figure 3.1 

and Muendermann's statement about posting's (Condition 2) significantly reducing 

foot inversion. To see if there is reduction between the responses of two conditions, 

one can measure the proportion of those p-values below a specified criterion such as 

0.05 within the whole time interval. What is seen from Figure 3.2 is generally in 

agreement with Muendermann's finding that the effect of posting on foot inversion is 

significant during the first half of stance phase. This figure shows that posting affects 

foot inversion significantly for the time interval (0.1, 0.7). The one-sided p-value is 

less than the significance level 82% of the time. 
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In the above procedure we used a paired t-test across subjects comparing each 

subject's mean curves (over 25 trials) under the two conditions. In addition, we can 

perform a t-test analysis separately for each subject, resulting in twenty separate 

p-value curves. For a given subject, at each time point there are 25 values for 

each condition. An ordinary two-sample t-test yields the corresponding p-value. We 

assume equal population variances for the two conditions and therefore use the pooled 

sample variance s since, as shown in Figure 3.3, the pooled variance functions vary 

considerably over time. 
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Figure 3.3: Pooled variance functions. 
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The mean difference functions from the upper panel of Figure 3.1 and their corre-

sponding +2 standard deviation functions (dot-dashed lines) are shown in Figure 3.4. 

All subjects differ in Condition 1 and Condition 2 in most of the stance phase. Also, 

the direction of the difference is consistent, except for Subject 11. The ordinary two-

sample t-test results in 101 pointwise p-values corresponding to each time point, and 

these are smoothed again. The percentage in Figure 3.5 represents the proportion 

of the interval for which the p-value is less than 0.05. Such a percentage for each 

subject is plotted in Figure 3.6, and it shows that 17 of 20 subjects have percent-

age exceeding 40%. For the remaining three subjects, there's not much difference 

between Condition 1 and Condition 2. 
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3.2 Correlation analysis 

Earlier studies found small and frequently not significant differences in kinematic 

variables when comparing different orthotics conditions [SC, NK]. In order to verify 

this finding, we carry out pointwise correlation analysis of two variables for each 

subject. 
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Foot inversion (Variable 1) and ankle inversion moment (Variable 4) are studied 

as responses because McClay [Mc] speculated that increased inversion moment at 

the ankle joint may be related to increased magnitude of foot inversion. In addition, 

due to the result that posting significantly reduces Variables 1 and 4 from Muender-

mann [Mu], we select control and posting (Conditions 1 and 2) for comparison. The 

bivariate data consist of 25 pairs of observed functions (xi, y). The way in which 

these depend on one another can be measured by the pointwise sample correlation 

function 

cov{X(t), Y(t)}  
corrx,y (t1) = 

-./var{X(t)}var{Y(t)}' 

where cov{X(t) , Y(t)} is the covariance function 

K 

cov{X(t),Y(t)} = (K - 1)' {xk(t) - (t)}{yk(t) - 

(3.1) 

k 

and k E {1,... , 25}, i E {1,... , 101}. For each subject, the sample pointwise 

correlation function is computed as follows: first, for every trial, the two response 

functions are converted to 101 discrete values, equally spaced at the data time points; 

second, the correlation corrx,y (ti) is computed at each t, using Equation (3.1); 

third, the correlation function is smoothed. The correlation functions obtained from 

the above steps for all subjects are shown in Figure 3.7. Disappointingly, there 

is no general trend seen in these correlation functions, which indicates that the 

pointwise sample correlation function is not a useful discriminant for comparing a 

bivariate response for different conditions. Figure 3.8 basically carries the same 

signal, presenting the correlation functions for two more variable response pairs for 

the first ten subjects. Again, it is hard to discriminate the correlations between three 

combinations. 
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Integrated squared correlation function 

The previous two figures only allow us to visually interpret the sample correlation 

functions. In order to provide a summary measure, Araki [Ar] proposed the inte-

grated coefficient of determination (ICOD), which is equivalently defined as a uni-

formly averaged pointwise coefficient of determination, 

(1/T) f p(t) dt. 

p(t) can be estimated by the sample correlation r(t). 

Comparison of conditions 

Now, we investigate the usefulness of the integrated coefficient of determination 

for comparing control and posting (Conditions 1 and 2) with a bivariate response. 

Variables 1 and 4 are used with respect to the ICOD primarily due to the finding in 

McClay [Mc] mentioned above. The two sets of ICOD values are plotted in Figure 3.9. 

Both of them are very close to zero, meaning that Variables 1 and 4 are essentially 

uncorrelated for both conditions. Also, due to the random trend shown by these 

two sets of ICOD, we conclude that ICOD is not an efficient measure in the sense of 

discriminating conditions. A two-sided paired t-test on the 20 pairs of ICOD values 

is performed and results in a p-value of 0.1131, indicating insignificant difference 

between these two conditions. This is consistent to the result of a Wilcoxon signed 

rank test, which gives a p-value of 0.1893. 
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Chapter 4 

Functional Principal Components Analysis 

The analysis considered previously gives a glimpse of ways in which the variability 

of our functional data set is interesting, but there is a need for more detailed and 

sophisticated ways of investigating variability. One of the ways is functional principal 

components analysis (FPCA), and it is the major theme of this dissertation. 

There are several reasons to consider the FPCA technique. First, after smoothing 

and registering the data, we want to explore further to see the functional features 

of variability, no matter whether these features are surprising or not. It is also 

necessary to indicate the complexity of the data, in the sense of finding types of 

curves and their characteristics. Principal components analysis meets these ends 

desirably. Perhaps due to these reasons, this technique was considered in the early 

literature on classical functional data analysis (FDA) as the first choice. Second, 

the covariance structure can be detected by principal components analysis in a more 

informative way, and it overcomes the common problem that it is difficult to interpret 

the variance-covariance and correlation functions in the classical multivariate case. 

In this section, we first introduce the PCA in multivariate statistics. With the 

usual questions about how classical PCA works in the functional context, we then 

discuss the modifications for FPCA. When applying FPCA in the foot orthotics data, 

we start with a univariate manner and then go on to its extension to the bivariate 

case. 
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4.1 PCA for classical multivariate data 

Johnson and Wichern [JW] demonstrate the basic philosophy of principal compo-

nents analysis as follows: to use a few uncorrelated linear combinations of the cor-

related response variables to explain their variance-covariance structure. The linear 

combinations are supposed to provide some useful interpretation themselves, and it 

is most useful if relatively few linear combinations explain most of the variability. 

Therefore, PGA's general objectives are twofold - data reduction and interpretation. 

It is a central concept of PCA in multivariate analysis to consider the linear 

combinations of variable values, 

i=1,•• ,N, (4.1) 

where { f } is an uncorrelated set of linear combinations of the observed values Xj of 

the jth variable with weighting coefficients ,8. The value of the linear combination 

f, is called principal component score, and it helps in describing what the linear 

combination or principal component means in the sense of variation characteristics 

of replicates. The weighting coefficients are chosen so as to highlight the components 

of variation in the data. The following steps demonstrate how principal components 

analysis can be defined through sets of normalized weights that maximize variation 

in the linear combinations f: 

1. Find the first principal component, which was the weight vector = , 

for the linear combination fil with maximum mean square 
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subject to the normalization constraint 

= iiiii = 1. 

This step motivates identifying the most important mode of variation in the variables. 

It is convenient to restrict attention to the weight vectors of unit length because 

there is a problem of indeterminacy in the sense that N-' Ei f1 could otherwise be 

increased arbitrarily. 

2. Find successive weight vectors as follows: for the mth step, a new weight 

vector is computed for new values fi, with maximum mean square again, subject 

to the constraint R. 112 = 1 and the m - 1 additional constraint(s) 

CjkCjrn (Ck,Cm) = 0, 

Using these steps, we are investigating the most important modes of variation again, 

but the amount of variation declines on each step because the weights defining the 

variation are required to be orthogonal to those from previous steps. In this way, 

we see a new component of variation at each step. Usually, the number of these 

steps carried out need not be up to the number of variables, p, since we expect that 

the first few principal components account for most of the total variability, and thus 

comprise most of the information in the data. 

The weight vectors defined by the above procedure are eigenvectors of the sample 

covariance matrix. 

k <rn. (4.2) 



52 

4.2 Defining PCA for functional data 

How does PCA carry over to FPCA? Instead of using variable values x, FPCA 

computes the linear combination' fj of function values xi (s), and fi denotes the ith 

principal component of the variable function over continuous values indexed by s. 

Integration over s, rather than summation over j in Equation (4.1), is then used to 

define the ith principal component 

f=f(s)x(s)ds= (4.3) 

where 3 (s) is a weighting function here. The counterpart of the normalized weight 

vector 6j is then (s), called the normalized weight function. As for multivariate 

PCA, the weight functions (s) are also required to satisfy the same kind of con-

straints mentioned in Section 4.1. However, this time the notation R11  called the 

unit sum of squares in classical PCA, is used to denote the squared norm f (s)2ds of 
the function c(s). Meanwhile, the orthogonality constraints (k, ) in Equation (4.2) 

now denote 

fek(S)fl(S)dS—O, 
In FPCA, we use the sample covariance function v (s, t) to replace the covariance 

matrix for classical multivariate data. We write 

v (s, t) = N' ) {x (s) - (s)} {x (t) 

where (.) is the mean function of x (.). 

The operation, in PCA, of finding eigenvalue-eigenvector pairs of the sample 

covariance matrix is replaced, in FPCA, by solving the eigenequation 

fv (s, t) • (t) dt = (v(s,.),e) = 
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where the integration term is a covariance operator, 

= f v (s, t) • (t) dt. 

Therefore, the eigenequation can be written as 

V=p. 

(4.4) 

(4.5) 

Eigenanalysis problems always concern the maximum number of different eigenvalue-

eigenvector pairs. This number in multivariate eigenanalysis is equal to the rank of 

V, which is also the number of principal components limited by the number of vari-

ables, p. However, in the functional context, the counterpart of p is the number of 

function values. The number of "principal components" is thus infinite. As long as 

the functions xi are linearly independent, the rank of the covariance operator V is 

N - 1. due to the subtraction of the mean function t from N values. 

4.3 Computational methods for functional PCA 

Ramsay and Silverman [RS2, Chapter 6] illustrate two methods for solving the 

eigenequation problem above. One approach uses basis expansions in the estima-

tion of the functional principal component curves. It works with a small number of 

parameters equal to the number of basis functions. The other approach, called the 

discretization method, was first introduced by Rao [Ral, Ra2] and Tucker [Tu]. This 

method, essentially classical in nature, is simply to discretize the function curves to 

a fine grid of time points equally spaced in interval 'r. Then, one can find a solution 

to the eigenequation Vu = Au with N eigenvectors u. The eigenvectors u are then 

converted to eigenfunctions by using any convenient interpolation method. Further, 
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smoothing with basis expansions is applied to the resulting eigenfunctions. Finally, 

Equation (4.3) is used to compute principal component scores. 

The discretization approach is more convenient in S-PLUS, even though there is 

computational disadvantage in treating a large matrix. We used the discretization 

method for the foot orthotics data. 

4.4 Applying functional PCA to our data 

In this section, we apply functional PCA, using the method described in Section 4.3, 

on the foot orthotics data for both subjective variability and condition variability, 

separately. We first consider univariate functional PCA with one variable at a time. 

Foot inversion and ankle inversion moment (Variables 1 and 4) are used separately. 

The data functions were estimated by B-spline functions using the same parameters 

as in the preliminary steps in Chapter 2 and in the eigenfunction estimation. 

4.4.1 Subject variation 

Although our main purpose is to detect the variability between conditions, it is 

worthwhile to explore subjective variability. For each subject, the 25 registered sam-

ple curves for control (Condition 1) are summarized with the mean function. Twenty 

summary mean functions for all the subjects are obtained and then registered again 

to the mean function of these twenty. Figure 4.1 presents such registered mean func-

tions for Variables 1 and 4, respectively. 
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Figure 4.1: Registered mean functions for all subjects. Top: Variable 1. Bot-
tom: Variable 4. 

Plotting principal components as perturbations of the mean 

Just as in classical multivariate analysis, the weight functions commonly have phys-

ical meanings. A discussion on PCA of the data obtained from the study of human 

gait was developed by Rice and Silverman {RS4}. Figure 4.2 displays the first two 

smoothed weight functions for Variable 1 in the left panels. The percentages indi-

cate the amount of variation accounted for, and the first two PCs account for 83.4% 

of the total variation. Each weight function has the task of defining the most im-

portant mode of variation in the curves subject to each mode being orthogonal to 
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those modes defined on previous steps. Note that the weight functions are defined 

only to within a sign change. Although the first weight function for Variable 1. is 

positive for the entire time interval, the weight emphasizes the beginning and end 

of the stance phase. This means that the greatest variation between subjects will 

be found by heavily weighting the two ends, with only a light contribution from the 

middle phase of the step. The second weight function 2 highlights the central phase 

at about time 0.2 to 0.7, and weights negatively for the remaining phase after time 

0.7. 
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Figure 4.2: Univariate FPCA for subjective variation: Condition 1, Variable 1, 
all 20 subjects. Left: smoothed weight functions. Right: mean functions with 
offset curves. 

Interpreting the principal components is sometimes challenging, particularly for 

the latter PCs due to the increased complexity in the weight structure. We now 

consider techniques for understanding them. One way of interpreting the first prin-

cipal component (PCi), for example, is to examine a plot of the overall mean curve 

and two curves (offset curves) obtained by adding and subtracting a multiple of the 
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weight function for PCi, the counterpart of the loadings in classical PCA [Sil]. Es-

sentially, this shows the effects of PCi on the "average" case. Subsequent principal 

components are interpreted in the same way. 

The right panels of Figure 4.2 separately show such plots for the first two PCs 

of Variable 1. In each case, the solid curve is the overall mean function, and the 

dotted and dashed curves show the effects of adding and subtracting a multiple of 

each corresponding weight function (plotted in the left panels), respectively. The 

effect of the first PC is approximately to add or subtract a relatively small constant 

to the mean function between time 0.2 to 0.6, which means that the mean response 

of all subjects is uniformly affected for this time interval. For the remaining stance 

phase, the offset curves indicate more and more departures from the mean function 

close to the two ends. The second principal component explains 24.1% of the total 

variation. We note that its effect is confined at about time 0.7, showing similar and 

then opposite effect with different magnitude to that of the first component for stance 

phase before 0.7 and after, respectively. The third and fouth principal components 

account for only 9.7% and 4.1% of total variation, respectively, and are considered 

negligible; therefore, they are not shown in the figure. 

Similarly, the same settings for Variable 4 are plotted in Figure 4.3. Just like the 

first weight function for Variable 1, for Variable 4 is positive for the entire interval, 

but emphasizes the central rather than the two ends of the stance phase. A strong 

mode of variation, 91.1%, is explained by the first component. At the time interval of 

(0.2, 0.7), the variation is large and becomes the maximum at the peak, reflecting a 

great amount of subjective variability. The second component contributes ignorable 

mode of variation, but it is interesting to note that the weight function has negative 
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influence for intervals (0, 0.2) and (0.5, 0.6) and positive influence for intervals (0.2, 

0.5) and (0.6, 0.9). This suggests that the component represents a contrast effect on 

roughly every other quarter of the entire stance phase. 
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Figure 4.3: Univariate FPCA for subjective variation: Condition 1, Variable 4, 
all 20 subjects. Left: smoothed weight functions. Right: mean functions with 
offset curves. 

Figure 4.4 compares Variable 1 and Variable 4 in one plot. This plot makes it 

easy to detect the interesting findings of PCs for these two variables. As we saw in 
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their corresponding weight functions, PC! for each variable emphasizes the stance 

phase in entirely different intervals. Also, for Variable 4, Pci strongly dominates 

over P02, while for Variable i, contributions between PCI. and P02 are less different 

than for Variable 4. 
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Figure 4.4: Univariate FPCA for subjective variation: Condition 1, all 20 
subjects. Left: Variable I.. Right: Variable 4. 
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Plotting principal component scores 

Examining the scores fj, is also an important aspect of PCA. Although principal 

components are uncorrelated, their scatter plots sometimes reveal important struc-

tures in the data other than linear correlation. Figure 4.5 is such a scatter plot of 

the PC scores. Each subject is plotted as a circle, with subject number identified 

to the extreme values. The first two PC scores for Variable 1 reveal that there are 

two roughly distinct groups of the subjects, located on the two sides of the vertical 

line, separately. The highest score for PCi and lowest score for PC2 both go to 

Subject 15. For Variable 4, Subject 12 has the highest PCI. score but lowest PC2 

score. There is a distinct group centering at the average scores of PCi and PC2. 

Therefore, we conclude that Variable 1 is better than Variable 4 in terms of discrim-

inating between subjects. 
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4.4.2 Condition variation 

In the above section, we investigated the variability due to twenty subjects for one 

condition. In this section, we investigate the more important problem of variability 

due to conditions for both within subject and across subjects. 
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Plotting weight functions 

In Figure 4.6, we plot the weight functions for the first two principal components, 

separately for Variable 1 and Variable 4, using Subject 4. For the first PC, the 

weight functions for both variables have positive effect for most stance phase, and 

emphasize intervals (0.3, 1) and (0.2, 0.8) for Variable 1 and Variable 4, respectively. 

The greatest variability between conditions will be found by heavily weighting at 

about time 0.7 for Variable 1 (63.1% of total variation), and time 0.5 for Variable 4 

(98.4% of total variation). For the second PC, e2 for Variable 1 consists of a positive 

contribution for the interval (0.1, 0.7) and a negative contribution for the two ends, 

defining a second mode that accounts for 34.7% of the total variation. The second PC 

for Variable 4 only explains tiny portion (1.2%) of the total variation and is therefore 

negligible. Nevertheless, one thing draws our attention - its structure. Again, this 

structure suggests a contrast effect represented by this component, similar to what 

is seen in the lower left panel of Figure 4.3. 
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Figure 4.6: Univariate weight functions for condition variation: Subject 4, all 
4 conditions. Left: Variable 1. Right: Variable 4. 

Figure 4.7 illustrates the same thing as Figure 4.6 does, but for condition variation 

across subjects. The first PCs for both variables explain most of the variation, with 

the weight functions emphasizing the interval before time 0.8 for Variable 1 and the 

central interval for Variable 4. The weight structure of PC2 is more complicated 
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for both variables. The most obvious feature is that P02 heavily weights at a short 

interval close to the end of the stance phase for both variables. 
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Figure 4.7: Univariate weight functions for condition variation: 4 conditions, 
each across all subjects. Left: Variable 1. Right: Variable 4. 
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Finally, we compare condition variability within subject to across subjects. Ex-

cept PCi for Variable 4, the shapes of other weight function curves in Figure 4.6 

look quite different from the corresponding ones in Figure 4.7. This is also true for 

plots like Figure 4.6 for other subjects (not shown), but the shapes differ in various 

ways. This is due to a certain amount of subjective variability. However, for most 

subjects, the weight function curves of PCi for Variable 4 are very similar. This 

indicates that for the most important mode of variation, the four conditions differ 

in a consistent way for most subjects in Variable 4. 

Plotting principal component scores 

Figure 4.8 plots PCi scores against PC2 scores for Subject 4. For Variable 1, PCi 

discriminates Condition 4 from the others, while PC2 discriminates Condition 2 from 

the others. For Variable 4, Condition 1 is distinct. 
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Figure 4.9 plots the PC scores for all the individual subjects and the ones across 

subjects. For both variables, most scores are near their means. For the scores across 

subjects, we notice that the highest PCi score goes to Condition 2 for Variable 1 

and to Condition 1 for Variable 4. Nevertheless, it is hard to distinguish any condi-

tion group. In conclusion, neither of these two variables is a good discriminant for 

identifying conditions when plotting principal component scores. 
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4.5 Bivariate functional PCA 

Investigating the concurrent variation of more than one response function is also 

of interest. For example, we want to know how two or more variables in the foot 

orthotics data vary mutually. In the bivariate case, a typical principal component 

weight function is now defined by (A , B) I, where and 6B denote the variation 

in two different variables. To compose two weight functions together, the weighted 

linear combination in Equation (4.1) becomes 

fi = (A,l) + (4.6) 

The next task is to elicit the solutions of the eigenequation system (see Equa-

tion (4.5)) as we carried out in the univariate analysis. To solve this system, we 

write 

fVAA(S, t)(t)dt + f VAB(S, t)(t)dt = 

fVBB(S, t)(t)dt + f VA(S, t)(t)dt = 

where v is defined as the cross-covariance function here. In practice, we first con-

duct this calculation by discretizing each response function, x and x, and then 

concatenate the resulting vectors to form a single long vector. This is done for each 

i, and a classical PCA is performed on the resulting system. Finally, the resulting 

principal component weight vectors are separated into the parts corresponding to x' 

and x, representing those two variables. The divided weight vectors are expanded 

by employing the same basis functions as used in the univariate case. 
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Visualizing the results on our data 

We want to study how two variables behave jointly in both subjective and condition 

variation cases. Figure 4.10 plots the bivariate (Variables 1 and 4) principal compo-

nent weight functions for subjective variability. This figure shows that the first PCs 

in both variables are almost identical to those of the univariate case (see Figure 4.2 

and Figure 4.3). Pci accounts for 60.6% of the total variation, while P02 accounts 

for 20.1%. 
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Figure 4.10: Bivariate PC weight functions for subjective variation: Condi-
tion 1, all subjects. Left: Variable 1. Right: Variable 4. 
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Figure 4.11 illustrates the bivariate PCA for condition variation across subjects. 

Again, the shapes of weight function curves for PCi in both variables are very similar 

to those of the univariate analysis (see Figure 4.7). The first two PCs explain 81.4% 

and 17.7% of the total variation, separately. For both PCs, Variable 1 contributes 

much more variation than Variable 4 does. 
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Figure 4.11: Bivariate PC weight functions for condition variation: 4 condi-
tions, each across all subjects. Left: Variable 1. Right: Variable 4. 
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As for the univariate case, we plot the second bivariate PC scores against the 

first ones in Figure 4.12. As in Figure 4.9, Condition 2 and Condition 1 differ from 

the other conditions for Variable 1 and Variable 4, respectively. 
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In the bivariate case, the optimal way to exhibit the outcome relies upon the 

particular context. For cases like the gait data in Ramsay and Silverman [RS2], it 

is adequate to display individual weight vectors separately. One other approach to 

demonstrating principal components in the bivariate case is considered especially 

effective. This approach is to plot the two variables against each other for one 

PC at a time [RS2]. For observations obtained in an equally spaced interval, the 

positions of the mean function values (xA (t) , x5 (t)) are first plotted in the (x, y) 

plane, indicated by symbols like dots. Then, each dot is connected to the point 

(xA (t) + C (t) , xB (t) + C (t)) by an arrow. The constant C is chosen arbitrar-

ily. 

Figure 4.13 illustrates such a technique for the case of condition variability across 

subjects. In the Variable 1 - Variable 4 plane, the mean cycle displays the general 

configuration of the the gait cycle. Now, one can explain the principal component 

effect of variation using this illustration. In the upper panel, most arrows are ap-

proximately in the x-direction. As we have already seen from Figure 4. 11, this means 

that Variable 1 has more effect of variation than Variable 4. Due to the strong posi-

tive effect from Variable 4 at its peak, which is roughly located at the interval (0.35, 

0.5), those arrows are pulled to the North-East direction. In the last 20% of the 

cycle, arrows point to the left on the x-axis because PCi of Variable 1 has negative 

effect of variation at that interval. Moreover, the second PC demonstrates a similar 

situation. Again, Variable 1 shows stronger effect, weighting heavily during the first 

half of the cycle. Arrows at the interval (0.7, 0.95) point to the y-direction because 

of stronger mode contributed from Variable 4. 
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The extension to the multivariate case is possible when more than two variables 

of interest are considered. To do this, one simply concatenates more function vectors 

to an even longer single vector. Of course, we might encounter even more difficulty 

in visualizing and interpreting the results than what we faced in the univariate and 

bivariate cases. 

4.6 Extended PCA usage and other approaches 

Ramsay and Silverman [RS2, Chapter 8] addressed explicit types of variation in an 

extraordinary way to make FPCA more discriminating and informative. They used 

the temperature data as illustration, assessing a small shift of time for each tem-

perature record and investigating its variation. The record-to-record temperature 

variability then becomes more recognizable. Furthermore, an approach called prin-

cipal differential analysis was introduced in a later chapter. There, they brought up 

the question of how to incorporate derivative information in examining components 

of variation. 

One of the other approaches to functional PCA, called regularized principal com-

ponents analysis, incorporates techniques of smoothing or regularization into FPCA 

itself [RS2, Chapter 7]. This method processes data in a different order from that of 

the approach discussed above. Instead of smoothing the raw data first, it keeps the 

data unsmoothed before applying ordinary PCA. Smoothing with roughness penalty 

approach is then performed on the principal component weight function. Ramsay 

and Silverman claim that the differences between these two methods depend on the 

degree of smoothing applied to the data and to the principal component functions. 
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However, the method using smoothed principal components is weakly consistent with 

the method of estimated eigenvalues and eigenfunctions as used in this thesis [PS]. 



Chapter 5 

Discussion and Conclusions 

The purpose of this dissertation is to apply functional data analysis (FDA) methods 

to empirically determining the effect of foot orthotics on several relevant biomechani-

cal variables. Even with some amount of subjective variability, the data are sufficient 

to allow us to achieve some conclusive results. 

Results from cross-sectional t-tests over all subjects for comparison of Conditions 

1. and 2 have shown significant difference. We found that it is particularly useful to 

measure the proportion of the corresponding p-values below a specified critical value. 

Further, it was recommended by Araki [Ar] to investigate the locations of parts of 

the stance phase discriminated by that critical value. Then, pointwise t-tests were 

considered for within-subject comparison of those two conditions. For most subjects, 

there is a time interval over which the response differs significantly. 

The correlation between certain variables is also of study interest. A pointwise 

correlation function between two variables for each subject was adopted for the anal-

ysis. No obvious general pattern has been shown; instead, it reflects quite an amount 

of subject-to-subject variability. This is also true for some other variable pairs. The 

integrated coefficient of determination, ICOD, was proposed to compare a bivariate 

response for two conditions. No evidence of difference was speculated. Although 

the method used for correlation analysis here employs the whole curve information, 

which is better than using only a single value such as the global maximum, it might 

be better to divide the whole interval to several sections depending upon regions 
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showing strong local features. Moreover, due to not being able to capture the shape 

the of correlation function, ICOE is still not an optimal statistic for this situation. 

In addition, one might explore a better measure for multivariate functional data, 

instead of correlation for bivariate data. 

We applied principal components analysis (PCA) to explore both subject vari-

ability and condition variability, after transforming our data to functional form and 

registering them to a better display. For both univariate and bivariate analysis, 

weight functions 6 (s) were derived to define the most important mode of variation 

in the curves; in addition, the scores fi were examined and plotted to identify distinct 

conditions or groups of subjects. Extending bivariate FPCA to the multivariate case 

is as simple as bivariate FPCA itself, but data interpretation will be more challeng-

ing. 

This thesis provides evidence that there is difference between some of the tested 

foot orthotics (Conditions 1 and 2) for the variable (Variable 1) analyzed. How-

ever, there are insignificant findings in the correlation analysis. This suggests that 

stronger instruments are required for this analysis. Also, the certain amount of sub-

jective variability is one thing that causes undesired results. Here are several avenues 

suggested for future research. First, one should take account of greater within-day 

repeatability; that is to analyze the data within session instead of across sessions. 

This way allows us to keep more statistical power. Second, due to the time issue 

regarding the registration process, we did not use the whole set of data. Rather, only 

a sample of 25 was used per subject. Again, it is a suboptimal method that forces 

the loss of power. 

The intention of this dissertation is to provide a general framework of how we can 
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apply FDA on such types of data. The existing statistical technology is not quite 

sufficient for FDA; therefore, the field of FDA offers many challenges and research 

opportunities. We hope that this study will motivate additional research in this area 

and add some new knowledge to this field. 
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