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Abstract: Shadows from buildings, terrain, and other elevated features represent lost and/or impaired 
data values that hinder the quality of optical images acquired under all but the most diffuse illumination 
conditions. This is particularly problematic in high-spatial-resolution imagery acquired from unmanned 
aerial vehicles (UAVs), which generally operate very close to the ground. However, the flexibility and low 
cost of re-deployment of the platform also presents opportunities, which we capitalize on in a new 
workflow designed to eliminate shadows from UAV-based orthomosaics. Our straightforward, three-step 
procedure relies on images acquired from two different UAV flights, where illumination conditions 
produce diverging shadow orientations: one before solar noon and another after. From this multi-
temporal image stack, we first identify and then eliminate shadows from individual orthophoto 
components, then construct the final orthomosaic using a feature-matching strategy with the commercial 
software package Photoscan. The utility of our strategy is demonstrated over a treed-wetland study site 
in northwestern Alberta, Canada: a complex scene containing wide variety of shadows, which our 
workflow effectively eliminated. While shadow-reduced orthomosaics are generally less useful for 
feature-identification tasks that rely on the shadow element of image interpretation, they create a 
superior foundation for most other image-processing routines, including classification and change-
detection. 

1. Introduction  

Reflected sunlight is the source of illumination for the vast majority of Earth-observation instruments that 
are operating in the visible and near-infrared portions of the electromagnetic spectrum. As a result, 
shadows from clouds, trees, buildings, and other elevated features are present in most such imagery. 
While shadows can play a key role in image interpretation (e.g. Lillesand et al. 2008) and object detection 
(e.g. Tong et al. 2013), they are most often viewed as noise: regions impaired data or no data that hinder 
a broad range of image-processing routines (Saha et al. 2005; Li et al. 2014). While shadows are present 
in optical data acquired from all platforms (ground, airborne, and satellites), they are perhaps most 
problematic in high-spatial-resolution airborne imagery (Liu and Yamazaki 2012), such as those collected 
from unmanned aerial vehicles (UAVs).  

Most authors deal with shadows using a two-step procedure: detection and compensation (Li et al. 2014). 
Shadow-detection techniques range from simple image-thresholding (Shu and Freeman 1990; Dare 2005) 
to complex 3-D modeling (Rau et al. 2002), are commonly encountered in the literature. However, the 
compensation step remains problematic (Shahtahmassebi et al. 2013), leading many researchers to simply 
exclude shadowed portions of an image from further analysis (e.g. Zhang et al. 2014; Zhu and Woodcock 
2014; Dare 2005; Li et al. 2005).  
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Surfaces within the extent of shadows are either not detected or have an impaired signal due of low levels 
of illumination. Compensation strategies developed to recover data under shadows generally fall into one 
of three broad categories (Shahtahmassebi et al. 2013):  

(i) Interpolation, by which missing data is filled in using adjacent pixels (e.g. Zhang et al. 
2012);  

(ii) Enhancement, wherein ‘darkened’ data is radiometrically adjusted to reveal what was lost 
(e.g. Wu et al. 2012); and  

(iii) Replacement, by which missing data is acquired from an alternative source (Rau et al. 
2002).  

Interpolation and enhancement are functional, but rely on methods that may generalize or misrepresent 
missing data (Lillesand et al. 2008). Replacement is generally more reliable (Rau et al. 2002), but relies on 
multi-temporal data that may pose challenges related to geometric mismatch (Dare 2005), radiometric 
mismatch (Roy et al. 2008), and additional project costs (Gotez et al. 2003).    

In recent years, UAVs have emerged as popular platforms for a wide variety of remote-sensing 
applications, including environmental monitoring, emergency management, resource operations, 
inspections, filmography, and photography (Pajares 2015), due to their relative ease-of-use, low operating 
costs, and potential to generate very high-resolution imagery (Colomina and Molina 2014). This sharp 
increase in high-density data, combined with easily accessed structure-from-motion (SfM) algorithms for 
extracting 3D surface models, has greatly enhanced our capacity to generate high-resolution 
orthomosaics (Colomina and Molina 2014). While shadows are a prominent and often-troublesome 
feature of UAV-derived orthomosaics (e.g. Lovitt et al. 2017), the flexibility of the platform provides 
unique opportunities for integrating the multitemporal data required by replacement-type shadow-
compensation algorithms. In this paper, we propose a new UAV-based data collection and processing 
workflow designed to produce seamless, shadow-free orthomosaics.  We demonstrate our techniques 
over a vegetated study area in northwestern Alberta, Canada.  

2. Workflow   

Our workflow for reducing shadow in UAV-based orthomosaics is comprised of three stages: (i) image 
acquisition, (ii) shadow detection, and (iii) shadow-masked orthomosaicking (Figure 1).  Each of these 
stages is described below. 



 

Figure 1: A workflow for creating shadow-reduced orthomosaics from two-pass UAV photography.   

2.1 Image Acquisition 

Our workflow calls for two sets of UAV photographs to be collected during a single image acquisition: one 
flight before solar noon and a second flight after.  In both cases, flight parameters should be set to deliver 
a minimum of 80% end-lap and 60% side-lap among flight lines, as per standard UAV stereo-coverage 
protocols (Zarco-Tejada et al. 2014). A pair of image sets acquired in this fashion maximizes the chance 
that any given patch of ground will be imaged under direct-light conditions. While shadows before solar 
noon may tend to obscure features to the west of vertical objects (trees, buildings, elevated terrain, etc.), 
these same shadows after solar noon will fall to the east. Under ideal conditions, both flights can be 
acquired within hours of each other on the same day, minimizing unwanted phenological, environmental, 
and atmospheric effects.  The actual timing of the data collections (within a given day) might vary 
depending on the geographic location of the study site and the date of the year on which the data will be 
collected. Online available tools like the SunCalc (SunCalc 2018) can be used to estimate the position of 
the sun, and the size and the direction of the shadow at different times of the day for a given location 
(study site).  

2.2 Shadow Detection 

Shadows from the pre-noon and post-noon flights are identified and masked using a two-step procedure. 
First, each of the individual photos are orthorectified using an existing 3-D surface model. Such surfaces 
are routinely available using SfM workflows available in a variety of commercial and open-source software 
packages. The large amounts of overlap amongst UAV flight lines will deliver a photo stack with numerous 
individual orthophotos available throughout the area of interest (AOI): some acquired before solar noon 
and others after. In the second step, the values of individual pixels in the photo stack are assessed to 
identify and mask out shadows. To assist with this, we use a blank mosaic image covering the entire AOI. 
For each mosaic pixel, the corresponding pixels from individual candidate photos are examined for 
shadows (Figure 2). We calculate the mean DN values of each individual pixel throughout the stack: those 
below the mean are classified as shadow and removed from further consideration (Figure 3). 



 

Figure 2: A diagram displaying a simple conceptual model for identifying overlapping pixels from individual orthophotos. 

 

Figure 3: An example of a portion of the study area (left), with an image (right) displaying shadow of the elevated objects 
within the same area identified by our algorithm.  

 



2.3. Orthomosaicking  

The shadow-masked images (morning and afternoon scenes together) are used to generate the final 
orthomosaic of the study area. We use Agisoft Photoscan to perform this task, but other SfM software 
packages could also be employed. Photoscan first aligns the photos by searching for common reference 
points among overlapping photos. The software then uses X, Y, and Z values from each ground control 
point, along with the camera positions (recorded automatically during the data collection), to generate 
and geolocate a dense point cloud. Next, the software builds a mesh that represents the 3D surface of the 
study area, based on the point cloud. Finally, the mesh and associated RGB values from the photos are 
used to create digital orthophotography. Since shadow-affected pixels have been masked during the 
shadow-detection phase, they do not appear in the final orthomosaic. While straightforward, our 
workflow produces very effective results. 

3.0 Case Study  

We demonstrated our workflow in a study area located approximately 40 km north of Peace River in the 
Canadian province of Alberta, between 56°21’32’’ N and 56°21’58” N Latitudes and 116°47’37” W and 
116°47’58” W Longitudes (Figure 4). The site covers about 42 ha, and is classified as a treed bog: a wetland 
environment where the climate is generally dry enough to permit the presence of trees. Black spruce 
(Picea mariana) is the dominant tree species in the study area, with Labrador tea (Rhododendron 
groelandicum) and cranberry (Oxycoccus microcarpus) comprising most of the shrubby understory. This 
complex mix of vegetation creates shadows of varied sizes and shapes under all but the most diffuse light 
conditions. Aside from natural vegetation, the area also contains a variety of linear-disturbance features 
which are visible in Figure 4, including seismic lines (small linear corridors used for sub-surface mapping 
and petroleum exploration), a pipeline, and a mineral-filled road that roughly bisects the site from north 
to south.  



 

Figure 4: Location and overview of the study area in Northwestern Alberta, Canada. 

UAV data were collected on July 13, 2016 under direct-light conditions. Flight parameters were set to 
deliver imagery with 80% forewardlap, 60% sidelap, and 2-cm ground-sample distance. We flew twice 
that day: once before solar noon (between 11:00 and 12:00 PM) when shadows were directed towards 
west, then again after solar noon (between 1:30 and 2:30 PM), when shadows were directed towards 
east.  

For georeferencing purpose, a set of four 25-by-25 cm ground control points (GCPs; Figure 4) were 
distributed across the site in locations that were visible to the sky. Their positions (X, Y, and Z) were 
measured using real-time kinematic global navigation satellite system (RTK GNSS) equipment with sub-
centimeter accuracy. 

To evaluate the performance of our workflow, we compared a shadow-reduced orthomosaic to a 
traditional one obtained from a single flight. A qualitative assessment of the corresponding data products 
reveals the visual efficiency with which shadows have been eliminated (Figure 5), to the point where some 



ground features (trees, for example) are difficult to identify without their corresponding shadows. The 
performance of the workflow was confirmed with a quantitative assessment, wherein we classified the 
raw orthomosaic into two classes – shadow and other – using an unsupervised (K-Means) decision rule. 
An assessment of the accuracy of this classification was performed using randomly selected shadow (70 
nos.) and other class sample points (70 nos.). The reported classification accuracy was 96% with a kappa 
of 0.91. According to our classification, 22.3% of the study area was covered by shadow in the raw 
orthomosaic.  From a visual assessment, a complete lack of shadow was observed on the shadow treated 
orthomosaic. The following sections briefly describe how the shadow-treated orthomosaic performed 
under different conditions.   

 

Figure 5: A visual comparison of shadow-reduced (right) and raw (left) orthomosaics of scenes within the study area. 



3.1 Seamless Performance of the Orthomosaic 

We inspected shadow-treated orthomosaics for seams or other unwanted side-effects of our workflow in 
two locations: (i) at the edge of former shadows, and (ii) at the border of individual photos. At the edge 
of former shadows, we observed consistently smooth and seamless blends, with no hard boundaries or 
other unwanted artefacts. For example, Figures 6 display areas of ground vegetation surface objects that 
were obscured by shadow in the raw orthomosaic (Figure 6A) but are clearly and seamlessly visible in the 
shadow-treated orthomosaic (Figure 6B). The same is true of more complex situations, such as the 
previously obscured equipment and ground features (Figure 6C) that are fully and seamlessly visible 
following shadow treatment (Figure 6D). No signed of unwanted degradation were noted.  

 

Figure 6: Example of seamless performance of shadow treated orthomosaic under shadows. 

The border of individual photos was another area of potential concern. In general, we found both the raw 
orthomosaic and the shadow-treated orthomosaic to display seamless borders at the edge of individual 
photos (Figure 7). However, when it was not possible to collect two adjacent image under similar lighting 
conditions, the shadow-treated orthomosaic was observed to perform better than the original 
orthomosaic. Figure 8 shows such an example, where one of the photo was captured under diffuse-light 
conditions with no hard shadow (sun temporarily obscured by a cloud), and the adjacent photo was 



captured under direct sunlight with hard shadows of elevated objects on the ground. When the shadow 
was not treated, a clear radiometric difference was observed (Figure 8A). Conversely, the shadow-treated 
orthomosaic was able to produce a visually seamless mosaic of the same area (Figure 8B). This might be 
because the dynamic data range of a photo with hard shadow is much larger than that of the adjacent 
photo that is captured under diffuse-light conditions, making it difficult for the radiometric normalization 
algorithm to fit them to a similar data range. On the other hand, when the shadow is masked out (in case 
of shadow-treated orthomosaic) the dynamic data range of the photo with hard shadow narrows, and 
become more similar to a photo that is captured under diffuse-light conditions. Thus, it becomes easier 
to radiometrically normalize such photos to one another.  

 

Figure 7: A comparison of seamless performance between the raw orthomosaic (bottom) and the shadow-treated 
orthomosaic (top) at photo borders. The red dashed lines display photo borderlines. A seamless blend between photos is 

observed in both orthomosaics. 



 

Figure 8: A comparison of performance between the raw orthomosaic and the shadow-treated orthomosaic, when data is 
collected under varying light conditions. The shadow-treated orthomosaic (right) displays better radiometric matching than 

the raw orthomosaic (left). 

3.2 Complex Shadows 

In areas where the canopy was very dense, a complex mixture of shadow made it difficult to observe the 
ground even when the data was collected at two different times of the day. In cases like this, the sides of 
elevated objects (e.g., trees) often replaced the ground in the shadow-treated orthomosaic (Figure 9). 
This problem could be minimized by decreasing the FOV (field of view), increasing overlaps, and/or 
masking out a certain percent of the input photos along the edges.  



 

Figure 9: The performance of the shadow-treated orthomosaic degrades somewhat when the ground is never visible from an 
aerial platform, despite time of day. 

4.0 Summary 

Compensating for shadows using multi-temporal imagery is normally constrained by three main factors: 
(i) geometric mismatch, (ii) radiometric mismatch, and (iii) cost. Our workflow using multi-flight UAV data 
minimizes the influence of all three factors. For example, image mosaicking is traditionally performed 
using a superimposing method (Rahman et al. 2013), based on geometric location of individual pixels 
within the photos or scenes. This strategy focuses geometric distortion (caused primarily by errors in the 
GCPs and georeferencing model) along seam lines. By contrast, the high overlap (60-90%) delivered by 
UAV flights permits the use of a feature-matching mosaicking strategy. Feature matching identifies 
distinct features within the photos and uses their relative location to warp and mosaic them together. As 
a result, the final product is seamless.  

Compensation for shadows using multitemporal imagery is usually done with historical data, with images 
acquired from a different date. Consequently, the radiometry among image dates is expected to vary due 
to phenological changes, varied sun-surface-sensor geometry, and environmental conditions, making it 
difficult to produce a seamless mosaic. In contrast, UAV platforms are able to collect data quickly and 
repeatedly, delivering data with similar illumination conditions and same-day target status.  

It is perhaps unfair to compare the cost of piloted aircraft or satellite platforms to that of a UAV. However, 
the negligible set-up and operating cost of a UAV system allows for rapid, repetitive, and on-demand data 
collection to meet the needs of producing high-quality, shadow-free orthomosaics.  

Our straightforward workflow capitalizes on the strengths and flexibility of the UAV platform, and is 
capable of detecting and reliably compensating for shadows across a vegetated study area. We 
characterize the shadow in our study area as complex, since their size, shape, and orientation varies 
abruptly. We look forward to future applications of this workflow to other natural and urban settings.  
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