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Abstract the means by which it is found are rarely the subject of
- ! _ ~analysis. In this paper an opposite view is taken: com-
Thinning can be defined as the act of identifying pyter resources are cheap, and will be expended without
those pixels belonging to an object that are essential forgonsideration if the result is a high quality skeleton. We
communicating the object’s shape. Most vision || also take some care to define the nature of the skel-

often does not yield an ideal skeleton. For example, sin-he results.

gle pixel irregularities can produce gross changes in an
otherwise simple skeleton. Many of the more recent . ‘ ,

thinning algorithms were designed with an eye on the2' Defmmg Skeletal

clock: the speed of the algorithm is improved, while  pgssibly the first definition of a skeleton is that of
often leaving the basic principles alone. Here. a thin- Bjum [5] in defining themedial axis functiofMAF).

ning strategy is proposed that is based on a definition ofrhe MAF treats all boundary pixels as point sources of
a ‘skeletal pixel’ as being one that is as far from the 3 wave front. Each of these pixels excites its neighbors
object outline as possible while maintaining basic con- with a delay time proportional to distance, so that they
nectivity properties.. The basic idea is that a skeleton istoo become part of the wave front. The wave passes
a global property of a binary object, and that the bound-through each point only once, and when two waves

ary should be used to locate the skeletal pixels. meet they cancel each other, producing a ‘corner’. The
medial axis(MA) is the locus of the corners, and forms
1. Introduction the skeleton (Blum sayme of symmetiyof the object.

) o ) The MAF uses both time and space information, and
The generation of a digital skeleton is often one of c3n pe inverted to give back the original picture. It is
the first processing st_eps taken by a computer ViSiO”possibIe to implement but is difficult, common art
system when attempting to extract features from aninyolying various approximations usually involving the
object in an image. A skeleton is presumed to represenjjstance function on a discrete grid. This is reasonable
the shape of the object in a relatively small number of enough when applied to a raster image.
pixels, all of which are, in some senseructural and The survey of the literature on thinning and related

the value of the skeleton: the position, orientation and _ A skeleton is a set of pixels

length of the line segments of the skeleton are repr sen- _ pixels in a skeleton are: 1 connected at ends, 2 con-

tative of those of the lines of which the image is com- nected at internal at internal points and 3+ connected at

posed. This simplifies the task of characterizing the points of intersection.

components of the line image. o - General shape of thick object must be retained by
Unfortunately no generally agreed upon definition of jig skeleton.

Plummer [11], Haralick [20], and a host of others. Of . The skeleton of one object should be one connected
the literally hundreds of papers on the subject of thin- get of pixels.

implementation of a variation on an existing thinning g5

method, where the novel aspects are related to the per- Elements implicit to definitions of skeleton include:



object boundaries as possible. with the following properties:
- A skeletal pixel is connected to at least one other, - All pixels lie within perpendicular distance d of a
unless the skeleton consists of exactly one pixel. discrete curve C, which does not have any loops (i.e. is
- A line crossing the object boundary as a perpendic-simple). The minimum distance between C and any
ular will cross the skeleton exactly once before crossingboundary pixel is d/2.

another boundary, unless (a) too close to a point where - The value of d is much smaller than the length of

lines meet, or (b) too close to the end of a line. the curve C.
As an example, a simple object and its human com- - The direction associated with each boundary pixel
puted skeleton is: is approximately the same as that of the nearest point on
C.

This definition would include most digital lines and
curves, either thick or thin, as digital bandsdigital
band segment a subset of a digital band obtained by
slicing the band at two places in a direction perpendicu-
lar to C at those places. This relaxes property two above
so that the length of the curve C over the segment must
be simply greater than 2d.

A stubis a digital band segment where there are con-
kstraints placed on the changes in direction undergone by
C. In particular, over the segment: (1) the direction may
be constant (linear stub), or (2) the direction may repre-
sent either a convex or concave curve (but not both)
having an identifiable, if approximate, center and radius
of curvature. Finally, thekeleton of a stuls the set of
pixels obtained by using the center pixel of each slice
across the stroke in a direction perpendicular to C. For
example, in the case of a linear stroke these pixels
should comprise the principal axis.

where grey represents a boundary pixel and a blac
pixel is a skeletal pixel. The skeleton above satisfies all
of the discussed properties, and while a six year old
human could draw it there are very few (if any) thin-
ning algorithms that could. In most cases, humans per
form thinning by computing a medial axi®m a
preferred direction.The center pixel found by slicing
the object perpendicular to the stroke is chosen as skel
etal wherever possible. This produces:

Now our approach to skeletonization can be clari-

Slice fied. Given a line image to be thinned we hypothesize

. that it can be broken down into a set of stubs that have
Slice —p ¢ been concatenated so that their boundaries form a con-
tinuous digital curve. These each have a clearly defined

skeleton, and the first draft of the overall skeleton (the
W skeletal sketch) is simply the collected skeletons of all
of the stubs. The skeleton may be complete at this

point, although it is unlikely. The problem is that it is
which is purely computational. There is also a percep_not possible to accurately determine the stubs compris-

tual aspect, which involves closing the gaps in the skel-Nd the object - some stubs are too short for this given
eton and extending the lines to the ends. This aspect calf!at the image is discrete. It is often possible to fit hun-
perhaps only be approximated on a computer. Thedreds of different stub combinations to a given object.
direction in which to slice the object is that direction

which is perpendicular to the stroke, and this may not4. Use of a Force Field

be perpendicular to the boundary at all points. Non-

local information is needed to perform this operation The goal here is to find a method for locating skeletal

properly. In computer vision applications the skeleton pixels n a_dlgltal b"’“?d that W'". allso be useful as an
approximation for objects consisting of concatenated

of an object is extracted, and used to locate strokesb q our idea i h I of the back
What is being proposed here is to reverse this process and segments. Our idea is to have all of the back-

strokes are located and used to generate the skeletonsfJround pixels which gre adjacent to the-boun.dary actas
if they exerted al/r~ force on the object pixels. The

.. skeletal pixels will lie in areas having the ridges of this
3. Definitions force field, and these areas can be located by finding

We define aligital bandas a set of connected pixels where the directions of the force vectors change signifi-
cantly.



The algorithm first locates the background pixels ;
having at least one object pixel as a neighbor and marks /
them. These will be assumed to exert a repulsive ‘force’ 7
on all object pixels: the nearer the object pixel is to the S /
boundary the greater is the force acting on it. This force Q Q \ 2 ) Q
field is mapped by subdividing the region into small /
squares and determining the force acting on the vertices Q /
of the squaresThe skeleton lies within those squares L/
where the forces acting on the corners act in opposite Q /
directions.Those squares containing skeletal areas are Ve
further subdivided, and the location of the skeletal area Q @ @
is recursively refined as far as necessary or possible. 3 ,

The change in the direction of the force is found by Q 1 - \/@
computing the dot product of each pair of force vectors SN

on corners of the square regions:
d; =1 O O G@
2 T2 E}3 @ \\\

dy = 1, Oy QQQQ\@\

If any one of g, d, or & is negative then the region

o compute the force vector at sach pixel location is_ISIDI€ Pixel is accumulated at each object
P P pixel not on the boundary.

time consuming. For each object pixel a straight line is gjyision can be used to refine the positions of the skele-
drawn to all marked pixels on the object outline. Lines (5| 4reas. From any end points of the skeleton found in
passing through the background are discarded, as illusghe previous stage, we consider growing this skeletal
trated in Figure 1, , ang for each of the remaining lines ajing ynil it hits another skeleton or an edge. If it hits
vector with lengthl/ ™ and direction from the outline jsaif the loop grown thereby is deleted.
pixel t_o the _object pixel is added to the force vector at  The getails of the growing process are relatively sim-
that pixel.(Figure 2). _ _ ple. First, a queue to hold the points to be grown is
This is done for all object pixels. Then recursive sub- yefined. All of the end points of the current stubs are
placed into the queue as potential starting points for the

o
1

Figure 2 - A vector sum of forces from &ac

OO0 @/ growth process. Then points are removed from the
o X .2 @ gueue one at a time and tested to see if growth is possi-
0000000 ble; if so, it is added to the skeleton and the new skele-
eX X ) .g@ =X X X&) tal point is added to the queue if it, too, is a potential
C00FO 2003 starting point.
e X ) .Q@ 200D To grow from a point P, the point must satisfy two
00000002 conditions. P must have exactly one or two 8-connected
O 8 8 gg\é@ neighbors that are skeletal pixels, and if it has two such

neighbors then these must be adjacent to each other.
The preferred direction of growth is through these

© Pixels exerting a force neighbors towards P and beyond to the next pixel.
@ ‘Invisible’ pixels There will be three candidate pixels, and the one of
these having the smallest force magnitude is ‘grown
@ Object pixels into’: it is added to the skeleton, and placed on the
queue for further growth steps. The growing process
& Pixel under consideration will stop when the growth front hits an edge or other

Figure 1 - Computing the force at a given  part of the skeleton.
pixel. Only some of the background pixels At a sub-pixel level the growth process first attempts
exert a force (visible ones). to find new skeletal pixels at double the previous reso-



lution. Using the stub endpoints the regions to be length along the boundary. This becomes:
refined are identified, and forces are computed for each
pixel at the new resolution - resolution doubles each

time. Then the dot products are computed as before, _ 4y
looking for zero crossings. When located, a zero cross- F(X,Y) - (01 (W T ) ( _ W))
ing becomes a skeletal pixel at the current resolution y) ly

and also marks all containing pixels at lower resolutions
as skeletal. The refinement can be continued at higher Now, any of the dot products referred to previously
resolutions until no change is seen; then the growth pro-.5, pe written as:
cess continues at the original resolution in the original
way (minimal force path). Figure 4 illustrates this.

This certainly approximates the set of skeletal pixels ¢ = E 16y (y+ dy %
S for a digital band. For example, assume an infinitely PomwEy) (y-w) (wry+dy (y+dy-w
long, straight band along the X axis, having wigti
Then the boundaries of the band are the lireg and
y=-w. Then the force acting on the po{rty)would be:

All that we need to know is when this expression is
negative. Since -w+dy <y < w-dy we know that y-w
and y+dy-w are negative and that w+y and w+y+dy are

9] (o) positive, the sign of the dot product is the sign of
Ll |—2 y(y+dy). Solving this quadratic reveals that it is nega-
F(xy) = J’ ———3d|X + J' _3dlx tive only between 0 and -dy. Thus,
—°°|L1| —°°|L2| g1 if —-dy<y<0

C pdx dy =
(x v dx dy D0 otherwise

where L = (x-l, y-w), L, = (x-I, w+y), andl is the
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Figure 3 - (a) The original image. (b) Skeleton, level 0 (zero crossings). (c) A sub-pixel section of a gap in the
level O skeleton. (d) The level 1 skeleton. (e) Sub-pixel force magnitudes in a gap in the level 1 skeleton.
() The final skeleton with all gaps filled in.



Figure 4 - Sample images thinned using the . . ) i
force based algorithm. Figure 4 - Sample images thinned using the

Zhang-Suen algorithm.

Asd hes 0 this b
S dy approaches IS becomes This research has been supported by the National

0l y=0 Sciences and Engineering Research Council of Canada.

Cxy) =1 .
0 otherwise
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