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Abstract
Thinning can be defined as the act of identifying

those pixels belonging to an object that are essential for
communicating the object’s shape. Most vision
researchers would agree that the medial axis transform
often does not yield an ideal skeleton. For example, sin-
gle pixel irregularities can produce gross changes in an
otherwise simple skeleton. Many of the more recent
thinning algorithms were designed with an eye on the
clock: the speed of the algorithm is improved, while
often leaving the basic principles alone. Here. a thin-
ning strategy is proposed that is based on a definition of
a ‘skeletal pixel’ as being one that is as far from the
object outline as possible while maintaining basic con-
nectivity properties.. The basic idea is that a skeleton is
a global property of a binary object, and that the bound-
ary should be used to locate the skeletal pixels.

1. Introduction
The generation of a digital skeleton is often one of

the first processing steps taken by a computer vision
system when attempting to extract features from an
object in an image. A skeleton is presumed to represent
the shape of the object in a relatively small number of
pixels, all of which are, in some sense,structural and
therefore necessary. In line images the skeleton conveys
all of the information found in the original, wherein lies
the value of the skeleton: the position, orientation and
length of the line segments of the skeleton are repr sen-
tative of those of the lines of which the image is com-
posed. This simplifies the task of characterizing the
components of the line image.

Unfortunately no generally agreed upon definition of
a digital skeleton exists, as pointed out by Davies and
Plummer [11], Haralick [20], and a host of others. Of
the literally hundreds of papers on the subject of thin-
ning in print, the vast majority are concerned with the
implementation of a variation on an existing thinning
method, where the novel aspects are related to the per-
formace of the algorithm. The quality of the skeleton or

the means by which it is found are rarely the subject of
analysis. In this paper an opposite view is taken: com-
puter resources are cheap, and will be expended without
consideration if the result is a high quality skeleton. We
will also take some care to define the nature of the skel-
eton before one is created, and will attempt to quantify
the results.

2. Defining ‘Skeletal’
Possibly the first definition of a skeleton is that of

Blum [5] in defining themedial axis function (MAF).
The MAF treats all boundary pixels as point sources of
a wave front. Each of these pixels excites its neighbors
with a delay time proportional to distance, so that they
too become part of the wave front. The wave passes
through each point only once, and when two waves
meet they cancel each other, producing a ‘corner’. The
medial axis (MA) is the locus of the corners, and forms
the skeleton (Blum saysline of symmetry) of the object.
The MAF uses both time and space information, and
can be inverted to give back the original picture. It is
possible to implement but is difficult, common art
involving various approximations usually involving the
distance function on a discrete grid. This is reasonable
enough when applied to a raster image.

The survey of the literature on thinning and related
issues has led to a short list of generally agreed upon
properties of the digital skeleton:

- A skeleton is a set of pixels
- Pixels in a skeleton are: 1 connected at ends, 2 con-

nected at internal at internal points and 3+ connected at
points of intersection.

- General shape of thick object must be retained by
its skeleton.

- Topology must remain constant.
- The skeleton of one object should be one connected

set of pixels.
- The skeleton must not contain any background pix-

els.
Elements implicit to definitions of skeleton include:
- Skeletal pixels are in some sense as far from the



object boundaries as possible.
- A skeletal pixel is connected to at least one other,

unless the skeleton consists of exactly one pixel.
- A line crossing the object boundary as a perpendic-

ular will cross the skeleton exactly once before crossing
another boundary, unless (a) too close to a point where
lines meet, or (b) too close to the end of a line.

As an example, a simple object and its human com-
puted skeleton is:

where grey represents a boundary pixel and a black
pixel is a skeletal pixel. The skeleton above satisfies all
of the discussed properties, and while a six year old
human could draw it there are very few (if any) thin-
ning algorithms that could. In most cases, humans per-
form thinning by computing a medial axisin a
preferred direction. The center pixel found by slicing
the object perpendicular to the stroke is chosen as skel-
etal wherever possible. This produces:

which is purely computational. There is also a percep-
tual aspect, which involves closing the gaps in the skel-
eton and extending the lines to the ends. This aspect can
perhaps only be approximated on a computer. The
direction in which to slice the object is that direction
which is perpendicular to the stroke, and this may not
be perpendicular to the boundary at all points. Non-
local information is needed to perform this operation
properly. In computer vision applications the skeleton
of an object is extracted, and used to locate strokes.
What is being proposed here is to reverse this process:
strokes are located and used to generate the skeletons.

3. Definitions
We define adigital band as a set of connected pixels

Slice

Slice

with the following properties:
- All pixels lie within perpendicular distance d of a

discrete curve C, which does not have any loops (i.e. is
simple). The minimum distance between C and any
boundary pixel is d/2.

- The value of d is much smaller than the length of
the curve C.

- The direction associated with each boundary pixel
is approximately the same as that of the nearest point on
C.

This definition would include most digital lines and
curves, either thick or thin, as digital bands. Adigital
band segment is a subset of a digital band obtained by
slicing the band at two places in a direction perpendicu-
lar to C at those places. This relaxes property two above
so that the length of the curve C over the segment must
be simply greater than 2d.

A stub is a digital band segment where there are con-
straints placed on the changes in direction undergone by
C. In particular, over the segment: (1) the direction may
be constant (linear stub), or (2) the direction may repre-
sent either a convex or concave curve (but not both)
having an identifiable, if approximate, center and radius
of curvature. Finally, the skeleton of a stub is the set of
pixels obtained by using the center pixel of each slice
across the stroke in a direction perpendicular to C. For
example, in the case of a linear stroke these pixels
should comprise the principal axis.

Now our approach to skeletonization can be clari-
fied. Given a line image to be thinned we hypothesize
that it can be broken down into a set of stubs that have
been concatenated so that their boundaries form a con-
tinuous digital curve. These each have a clearly defined
skeleton, and the first draft of the overall skeleton (the
skeletal sketch) is simply the collected skeletons of all
of the stubs. The skeleton may be complete at this
point, although it is unlikely. The problem is that it is
not possible to accurately determine the stubs compris-
ing the object - some stubs are too short for this given
that the image is discrete. It is often possible to fit hun-
dreds of different stub combinations to a given object.

4. Use of a Force Field
The goal here is to find a method for locating skeletal

pixels in a digital band that will also be useful as an
approximation for objects consisting of concatenated
band segments. Our idea is to have all of the back-
ground pixels which are adjacent to the boundary act as
if they exerted a  force on the object pixels. The
skeletal pixels will lie in areas having the ridges of this
force field, and these areas can be located by finding
where the directions of the force vectors change signifi-
cantly.
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The algorithm first locates the background pixels
having at least one object pixel as a neighbor and marks
them. These will be assumed to exert a repulsive ‘force’
on all object pixels: the nearer the object pixel is to the
boundary the greater is the force acting on it. This force
field is mapped by subdividing the region into small
squares and determining the force acting on the vertices
of the squares.The skeleton lies within those squares
where the forces acting on the corners act in opposite
directions. Those squares containing skeletal areas are
further subdivided, and the location of the skeletal area
is recursively refined as far as necessary or possible.

The change in the direction of the force is found by
computing the dot product of each pair of force vectors
on corners of the square regions:

If any one of d1, d2 or d3 is negative then the region
involved contains some skeletal area.

To compute the force vector at each pixel location is
time consuming. For each object pixel a straight line is
drawn to all marked pixels on the object outline. Lines
passing through the background are discarded, as illus-
trated in Figure 1, , and for each of the remaining lines a
vector with length and direction from the outline
pixel to the object pixel is added to the force vector at
that pixel.(Figure 2).

This is done for all object pixels. Then recursive sub-

d1 f1 f2⋅=

d2 f2 f3⋅=

d3 f1 f4⋅=
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Pixels exerting a force

Object pixels

Pixel under consideration

‘Invisible’ pixels

Figure 1 - Computing the force at a given
pixel. Only some of the background pixels
exert a force (visible ones).

division can be used to refine the positions of the skele-
tal areas. From any end points of the skeleton found in
the previous stage, we consider growing this skeletal
line until it hits another skeleton or an edge. If it hits
itself, the loop grown thereby is deleted.

The details of the growing process are relatively sim-
ple. First, a queue to hold the points to be grown is
defined. All of the end points of the current stubs are
placed into the queue as potential starting points for the
growth process. Then points are removed from the
queue one at a time and tested to see if growth is possi-
ble; if so, it is added to the skeleton and the new skele-
tal point is added to the queue if it, too, is a potential
starting point.

To grow from a point P, the point must satisfy two
conditions. P must have exactly one or two 8-connected
neighbors that are skeletal pixels, and if it has two such
neighbors then these must be adjacent to each other.
The preferred direction of growth is through these
neighbors towards P and beyond to the next pixel.
There will be three candidate pixels, and the one of
these having the smallest force magnitude is ‘grown
into’: it is added to the skeleton, and placed on the
queue for further growth steps. The growing process
will stop when the growth front hits an edge or other
part of the skeleton.

At a sub-pixel level the growth process first attempts
to find new skeletal pixels at double the previous reso-
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Figure 2 - A vector sum of forces from each
visible pixel is accumulated at each object
pixel not on the boundary.



lution. Using the stub endpoints the regions to be
refined are identified, and forces are computed for each
pixel at the new resolution - resolution doubles each
time. Then the dot products are computed as before,
looking for zero crossings. When located, a zero cross-
ing becomes a skeletal pixel at the current resolution
and also marks all containing pixels at lower resolutions
as skeletal. The refinement can be continued at higher
resolutions until no change is seen; then the growth pro-
cess continues at the original resolution in the original
way (minimal force path). Figure 4 illustrates this.

This certainly approximates the set of skeletal pixels
S for a digital band. For example, assume an infinitely
long, straight band along the X axis, having width2w.
Then the boundaries of the band are the linesy=w and
y=-w. Then the force acting on the point (x,y) would be:

where L1 = (x-l, y-w), L2 = (x-l, w+y), and l is the
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length along the boundary. This becomes:

Now, any of the dot products referred to previously
can be written as:

All that we need to know is when this expression is
negative. Since -w+dy < y < w-dy we know that y-w
and y+dy-w are negative and that w+y and w+y+dy are
positive, the sign of the dot product is the sign of
y(y+dy). Solving this quadratic reveals that it is nega-
tive only between 0 and -dy. Thus,

F x y( , ) 0 4y
w y+( ) y w–( )

---------------------------------------( , )=

di
16y y dy+( )

w y+( ) y w–( ) w y dy+ +( ) y dy w–+( )
-------------------------------------------------------------------------------------------------------- 

 =

C x y dx dy, , ,( )
1 if dy y 0< <–

0 otherwise
=

1.59 0.63 0.29 0.12
1.60 0.65 0.30 0.13
1.63 0.69 0.30 0.14
1.68 0.73 0.32 0.13
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Figure 3 - (a) The original image. (b) Skeleton, level 0 (zero crossings). (c) A sub-pixel section of a gap in the
level 0 skeleton. (d) The level 1 skeleton. (e) Sub-pixel force magnitudes in a gap in the level 1 skeleton.
(f) The final skeleton with all gaps filled in.



As dy approaches 0 this becomes

which means that the X axis is the skeleton, as was sus-
pected. This demonstration holds for infinitely long
straight lines in any orientation and having any width.
The application of this method to real figures is based
on three assumptions. First, that what is true for infi-
nitely long lines is approximately true for shorter (and
curved) ones. Second, that a figure can be considered to
be a collection of concatenated digital band segments.
And finally, that intersections can be represented by
multiple bands, one for each crossing line. From the
results so far these assumptions appear to be at least
approximately true.

The force based thinning method has been imple-
mented and tested on a number of images, both artificial
and scanned, some of which appear in Figure 3. The
results in all cases are either promising or excellent.
Simply for a comparison, the same figures have been
thinned by the commonly used Zhang-Suen algorithm
[24], and appear in Figure 4.

5. Results and Conclusions
We have proposed a definition of a skeleton, and

have devised a working thinning algorithm based on
that definition. The sample images are among a large
number that have been used to test the force based thin-
ning method. The sub-pixel accurate skeletons provide
substantially more information about the geometry of
the object, and while the algorithm is slow, a parallel
version is significantly faster. We feel that the quality of
the skeletons is often worth the execution time penalty.

C x y,( )
1 y 0=

0 otherwise
=

Figure 4 - Sample images thinned using the
force based algorithm.
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