Preface

This manual documents the Tipc inter-process communication protocol, which supports the
implementation of Virtual Time [Jeflerson 85| systems. Tipc can be used to write distributed simulations,
as well as, other distributed applications. Tipc was developed in the Jade environment [Jade 85], and, to a
large extent, depends on Jade.

This document should be self-contained in that a user shouldn’t have to refer to other sources of
information to get a Tipc program to run. However, if you are interested in the implementation of Tipc,
see [Xiao et al. 86]. The original plan for the implementation of Tipe is presented in [Cleary et al. 85]
A discussion of potential optimisations in the implementations appear in [West et al.87].

For those who know the Jade IPC protocol (Jipc), Tipe was designed to mimic Jipc as closely as
possible. Tipc can be viewed as Jipc augmented with facilities for handling time. Specifically, Tipc has a
few extra parameters to some subroutine calls and an asynchronous send primitive. Currently, Tipc is

accessible only from the C programming language. Preliminary ideas for a prolog version are described in
[Li & Unger 87].

In section Omne, there is an introduction to Tipc. In section Two, we present a simple example
system - a multi-process version of Conway’s Game of Life. In sections Three to Seven, there is detailed
documentation of the Tipc subroutine package. In sections Eight and Nine, we explain how to get a Tipe
program to run and describe some utility programs that make the Tipe programmer’s life a little easier.
Finally, section Ten provides a concise summary of all the Tipe calls and constants.



1. Basic Concepts Of Tipc

The Time Warp Inter-Process Communication protocol (Tipe, pronounced ”tipsy”) is the foundation
on which distributed simulations, or, in general, Virtual Time systems are constructed. Tipc handles the
lower-level details of inter-process communication, freeing the application using it from dependencies on
particular machines and communication networks. A distributed system that uses Tipc can thus be
changed to use a different configuration of machines with minimal effort. Tipe also handles the
synchronization of time across a distributed, asynchronous application.

Machines, processes, and messages.

Tipc views the world as consisting of processes which send each other messages. A process has
certain data areas associated with it (global variables, stack, dynamically allocated memory); it is
executing a program (which other processes may be executing also); it has a program counter that
indicates what instruction that program is currently executing. The Tipc notion of a process is quite
similar to the notion of a process in Unix.

A message is a packet of data that is transferred between processes. In a pure Tipc system, these
message packets are the only way processes communicate. In particular, there is no shared memory
between Tipc processes, even those on the same machine.

One may think of a process as having its own processor to execute its instructions. Usually this will
not be the case; a single processor will be time-shared among several processes. Each Tipc process executes
on a particular machine. Typically, each of these machines will have only a single processor, but there
might be more if it is completely invisible to a program that there are more than one. Which machine a
process executes on is of some significance to the Tipc programmer, since it may affect the facilities
available to the program and probably affects the cost of communicating with other processes (local
communication is almost always cheaper than communication between machines). The way one process
talks to another process via Tipc is the same regardless of what machine it is on, however.

Tipc messages are moderate-sized collections of data (up to a few hundred bytes). Each item of data
in a message is typed - identified as being an integer, a character, or whatever. This allows Tipe to
automatically convert data representations when messages are passed between different machines. Typing
of message items also allows monitoring tools to print the contents of messages intelligibly and provides a
check on programming errors.

Protocol for passing messages.

The basic message interaction in Tipc is: one process sends a message to another, the destination
process receives the message, and later replies with another message. The process that sends the message
is blocked until the reply comes back. A process is said to be blocked when it does not execute any further
instructions until an event it is waiting for occurs. A process that tries to receive a message is blocked
until a message arrives, unless one was already waiting. A process never blocks when it replies.

Tipc also has an asynchronous send. When a process sends a message to another using the
asynchronous send, the sender is not blocked awaiting the reply, but continues executing. The receiver of
an asynchronous send message does not reply to the sender.



There are several variations on this general pattern. A process may elect to receive a message from a
particular process, in which case it is blocked until such a message arrives, or it may instead elect to
receive a message from any process. It is also possible for a process to ask to receive a message from some
process or any process without being blocked if no such message is pending. Finally, it is possible to wait
to receive a message for a certain period of time. If no message has arrived in that time, the process is
allowed to continue execution.

Time management.

In a Virtual Time system, processes are synchronized on the basis of time. That is, if a process
interacts with another process, their interaction must occur at the same time. For this purpose, every Tipc
process has a time value associated with it called its local virtual time (LVT). Each process can increment
or interrogate its own LVT whenever it chooses. To ensure that when processes interact, they interact at
the same moment of time, i.e., their LVTs are equal when they interact, much activity invisible to the
programmer occasionally needs to be done. This activity is usually of no concern to the Tipe programmer.

Determining when to advance the LVT of a process is an important design decision when building a
Tipc application. Each process must advance its LVT often enough so that all processes proceed more or
less together in time. This loose synchronization can be stretched too far if a process goes much further
ahead in time, or lags too far behind in time compared to the other processes in the system. The design of
the application system should tend to minimize situations where this occurs.

Process creation and destruction.

Tipe contains primitives that allow a process to create another process to run on the same or
another machine. It also lets a process kill another process on the same or another machine.

A process may also be "created” as far as Tipc is concerned when a non-Tipc process (e.g., an

ordinary Unix process) becomes a process known to Tipc and thereby capable of message interactions with
other Tipc processes.

Finding processes.

Every Tipc process has a process id, which must be known in order to send messages to it, kill it,
request to receive a message from it, etc. Process ids are unique among machines and through time.
There are several ways one process can acquire the id of another process.

One method of locating a process is via process names. These are assigned when the process is
created or becomes known to Tipc. A process can find out about another process by searching for it by
this name. The search may be restricted to the same machine as the searcher or may be directed to some
other particular machine.

A process that asks to receive a message from any process will be informed of the process id of the
sender when a message is received. It may use this id when replying or for any other purpose.

Processes can find out the id of their parent, if they have been created by a Tipc process. Processes
that create other processes are informed of the new processes’ ids.



Finally, one process can give a process id to another process as a data item in a message.

In order to allow independent development projects to co-exist, Tipc processes are grouped into Tipc
systems. Processes in one Tipc system cannot affect processes in another system. In particular, the
facilities for finding a process by name restrict the search to processes in one Tipe system.

Handling of failure situations.

Many "failure” conditions can arise in a distributed system. These include "permanent” events such
as a machine going down, a network ceasing to transmit, or a process terminating abnormally, as well as
“temporary” conditions such as a network transmit collision. Tipc handles some of these conditions;
others are left for the application to handle if it wishes.

A Tipc program is expected to assume that messages that it sends are actually delivered to the
destination machine. Tipc itself will arrange for the necessary acknowledgements and retransmissions. Of
course, if the destination machine or intervening network is very busy, Tipc may eventually give up
trying to transmit the message. Currently, this can cause the sender to hang.

If the process to which a Tipc process sends is dead or if it dies before it returns a reply, either
normally or because of some error, the process waiting for a reply will be informed of this. However, if the
machine on which the process runs crashes, the sender will generally hang.

The support of Virtual Time in a way invisible to the application program requires the use of a
limited storage area. This area will overflow if the application program is trying to make too many Tipc
calls at the same local virtual time. If overflow is detected, the process will terminate.

To summarize, Tipc currently handles errors in application software and ”soft” hardware errors, but
software and hardware crashes of entire machines or networks can cause applications to hang, though the
Tipc implementation itself will not crash as a result of problems with another machine.



2. The Tipc Version of Conway’s Game of Life.

Conway’s game of Life is a grid of automata that, starting from an initial configuration, undergo
state changes (known as generations) until a stable configuration is attained. A cell in this grid can be in
one of two states: alive or dead. In a generation, if a cell is alive and two or three of its neighbours are
alive, it continues living in the next generation. If it is alive and less than two of its neighbours are alive,
then it dies for lack of company. If it is alive and more than three of its neighbours are alive, then it dies
from overcrowding. If it is dead, it requires exactly three alive neighbours to join the living. The initial
configuration of alive cells therefore determines the following generations. This example makes each cell a
separate Tipc process. The C source code for the Tipe solution is presented in Figures 1 and 2. Figure 1
presents the code for the process that creates all the cells of the game. Figure 2 contains the code that
each lifecell executes.

One notable feature of this version of the game of Life is that the grid wraps around: the ”outside”
neighbours of cells along an edge are cells from the opposite edge of the grid. For example, on a four by
four grid, the cell at row 4, column 4 has neighbours, in row major order: <3,3>, <3 4> <3,1>,
<4,3>, <4,1>, <13>, <14>, <1,1>.

In the version of the game of Life presented here, generations are equated with time quanta, i.e.,
when a process moves to the next generation, it increases its LVT by one unit. Each cell is informed of
the identities of its eight neighbours at start up; they are the only processes that it communicates with. A
cell operates as follows: if it is alive, it sends messages to its eight neighbours, using the asynchronous
send primitive eight times. If not, it doesn’t. Then the cell goes into a maybe-receive loop, receiving
messages from its neighbours, if there are any to be received. As soon as a maybe-receive is not successful,
i.e., returns NO_PROCESS, the cell assumes that all messages that could have been sent to it in that
generation have arrived, and counts the number of messages it received. If it received three messages, or
if it was already alive and it received two messages, it decides that it is alive. Otherwise, it decides that
it is dead. Then it goes back to the top of its loop.

The only restriction on Tipc processes is that the first thing they must do is either call t_initialize or
t_enter_system. This is involved with setting up the invisible storage area described in section 1. If either
of these two calls is not made at the very beginning of a Tipc process, inexplicable errors may result.

Parallelism is obtained in two places here. First, if a cell is not alive, it doesn’t send any messages,
although it does increment its time. Therefore, it can charge ahead in time. If it is still dead in the next
generation, then it has saved itself eight messages. Second, it does not have to receive messages from all
eight neighbours in a generation - it only receives messages from those processes that are alive. This is a
significant saving in message passing costs. A nice thing about Tipc is that it lets processes run in a
loosely coupled fashion, so that the programmer has less synchronization to worry about. We have
observed that protocols for various problems are simple and even elegant when programmed in Tipe.



/* Life - the startup process for the game of life. It creates all the
lifecells and distributes neighbour ids to each, then goes away.

To run: 1. Start the underlying system
2. Start life, which will start the lifecells and then exit.

*/

1 #include <stdio.h>

2 #include <tipc.h>

3 #define ROWS 4

4 j#define COLS 4

5 #define BORN ((1>0 && i<=3 && j==1)?"1":"0") /* for 4X4 */
6 static t_process_id cell[ROWS] [COLUMNS];

7 static char cell _name[8];

8 static int column_left, current_column, column_right;

9 static int row_above, current_row, row_below;

10 main()
11 { int 1,3;

12 t_enter_system(637,"1life", 0); /* This must be the very first call made */
13 for (1=0; i<ROWS; i++

14  for (j=0: 3}<COLUMNS; j++{
15 { sprintf(cell_name,"cell¥1d¥%1d", 1i,]):

16 sprintf(row,"¥1d",1);

17 sprintf(col, "%1d",3);

18 if (i==

19 { cellfi][J] = t_createm process (0, "vaxb", cell_name,

20 "/userb/srdg/slind/tw/src/test-suite/game/lifecell”,

21 BORN, 0) ;

22 }

23 else if (i==3 && j==3)

24 { cell[1][j] = t_createm process (0, "vaxd", cell_name,

%2 " user/srdg/slind/tw/test/lifecell”,BORN,0) ;

27 else

28 { cell[i][j] = t_createm process(0,"vaxc",cell_name,

29 "/user/srdg/slind/tw/test/lifecel1",BORN,0);

30

31 ) ¥

32 for (i=0; i<ROWS; i++) /* For each cell, tell it who its eight neighbours are */

33 for (j=0; j<COLUMNS; j+*£

34 { row_above = bimod(i-1,ROWS);

35 current_row = i;

36 row_below = bimod(i+1,ROWS);

37 left_column = bimod(j-1, COLUMNS) ;

38 current_column = j;

39 right_column = bimod(j+1, COLUMNS);

40 t_clear();

41 t_putp cell%rov_above} left_column]);

42 t_putp (cell [row_above] [current_column]) ;

43 t_putp cell[row_above][right_column]}:

44 t_putp cell{current_row]}left_column )

45 t_asend(cell[i] [j]): * The limited size of message buffers requires 2 sends to */
/* transmit all the information */

46 t_putp cell[current_rowl[right_column]);

47 t_putp (cell[row_below] [left_column}) ;

48 t_putp (cell [row_below] [current_column]);

49 t_putp (cell [row_below] [right_column]);

50 t_asend(cell[i] []]):

51 }

52 t_exit():

53

/* bimod is a two dimensional modulus operator */

54 static int bimod(no,max)

S5
56
57
58
59

int no,max;

{ if ((no+1)==0) return(max-1);
else if (no==max) return 0;
else return no;

}

FIGURE 1 - The Startup Process for the Game of Life.



/* t_lifecell - cell for game of life.

Gets created by life program and runs

/* Must ?e very first call made */
*/

t_getp():
neighbor[i] = t_getp():

Alive or Dead

/* Get process ids of neighbours */

/* Time quanta are generations */

/* If alive, tell neighbours *

/* Find out how many of them are alive */

éO_PROCESS)) break;

}
if ((counter==3) || (counter==2 && life_state==ALIVE)) life_state = ALIVE;

forever.

*/

1 #include <tipc.h>

2 #define ALIVE 1

3 #define DEAD 0

4 t_process_id neighbor[8];

5 t_process_1id pid;

6 main(argc,argv)

7 int argc;

8 char **argv;

9 { int life_state, counter, i;
10 t_initialize():;

11 1life_state = atoi(argv[3])

12 ¢ receive(t_parent process())
13 for (1=0; i<4; i++) neighbor[i]
14 t receive(t_parent rocess());
15 for (i =4; 1<8; 1«'?

16 while (1)

17 { t_advance_time (1 :

18 if (life_state==, IVE)

19 { for (i=0; i<8; i++) t_asend_null(neighbor[i]);
20

21 counter = 0;

22 for (i=0; 1<8; i++)

23 { pid = t_maybe receive_any
24 if (t. same;process(pid T
25 counter += 1;

26

27

28 else life_state = DEAD;

29 )

30 }

FIGURE 2 - Cell for the GCame of Life



3. Message-passing Procedures.

In this section we describe how to send messages to other processes, how to receive messages, and
how to reply to those messages that have been received.

To send a message, one must specify to whom it is to be sent and what the content of the message
is. A process id is used in specifying the destination of a message. The following section discusses process
ids and how one can get them. We will assume here that messages can be constructed and stored in a
message buffer and that the contents of a message residing in a message buffer can be examined. The

message-passing procedures operate on such a message buffer. Section 6 describes how to construct
messages.

This message buffer is "hidden” - it does not explicitly appear as a parameter of the procedures.
Usually, the same buffer is used for all message-passing (and buffer manipulation) procedures. Specifying

it explicitly in each call would be tedious. Instead, these routines operate with whatever is the ”current”
buffer.

Basic message-passing routines.

The basic pattern of message passing in Tipc is the send-receive-reply sequence. A process sends a
message to another and is then blocked from executing. The process to which the message is sent
eventually receives the message, performs whatever computation is required, and returns the reply, which
causes the sender to resume execution. If the second process were to try to receive the message before it
was sent by the first process, the second process would be blocked until the message arrived.

t_send(to)
t_process_id to;

The message in the current buffer is sent to the process identified
by the parameter. The caller is then blocked until a reply arrives.
When the caller resumes execution, the current bufler will contain
the reply.

t_send_null(to)
t_process_id to;

An empty message is sent to the process identified by the parameter.
The caller is then blocked until a reply arrives. When the caller
resumes execution, the current buffer will contain the reply.

t_process_id t_receive_any()

This routine causes the caller to be blocked until a message is sent
to it by any other process. On return, the current buffer will
contain the message received and the id of the process that sent the
message will be the return value of the call. If more than one
message is pending at the time t_receive_any is called, the message
received will be the one with earlest virtual send time.



t_process_id t_receive(from)
t_process_id from;

This routine blocks the caller until a message arrives from

the process identified by its argument. On return the current buffer
will contain the message received and the id of the process that
sent the message will be the return value of the call.

t_reply(from)
t_process_id from;

This procedure sends the contents of the current buffer as a reply
to the process identified by the argument. This call will not block
the caller, and unblocks the process to which the reply is directed.

t_reply_null(from)
t_process_id from;

This procedure sends an empty message buffer as a reply to the
process identified by the argument; the current message buffer is
not disturbed. This call will not block the caller, and unblocks the
process to which the reply is directed.

Note that one is not required to reply to a message before receiving another one, nor is it required to
reply to them in the order they were received. In fact, one is not required to reply to a message at all, but
in that case, the sending process will be blocked forever.

Since Tipc was designed to help distributed systems run faster by allowing processes to spend more
of their time running in parallel, there is an asynchronous send primitive. Using it, a process can send a
message to another process and then continue execution, rather than waiting for a reply before continuing.
The receiving process does not reply to a message sent with this primitive.

t_asend(to)
t_process_id to;

The message in the current buffer is sent to the process identified
by the parameter. The caller is not blocked waiting on a reply.
After this call, the current message buffer is empty.

t_asend_null(to)
t_process_id to;

An empty message is sent to the process identified by the parameter.
The current message buffer remains unchanged after the call. The
caller is not blocked awaiting a reply.

There arise situations where one is willing to wait for a message, but only for a certain length of
time, after which other processing should be done. Tipe provides three routines for this. The first two are
non-blocking counterparts to the receive and receive_any primitives; the last performs a function mid-way
between that of a receive_any and the non-blocking version of receive_any.



t_process_id t_maybe_receive_any()

Like t_receive_any, except that it never blocks. Instead, it
returns T_NO_PROCESS if no message with virtual send time less than
the current LVT is pending.

t_process_id t_maybe_receive(from)
t_process_id from;

Like t_receive, except that T_NO_PROCESS is returned without
blocking if no message with virtual send time less than the current
LVT is pending from the argument process.

t_process_id t_receive_any_pre(time)
int time;

This routine waits for any message for the amount of time passed as
the parameter. If there is no message when that time has passed, the
routine quits with the caller’s LVT advanced and the message buffer
empty; the returned Tipc process id will be that of the caller. This
routine returns the sender’s process id if there is a message

available in that time period, else it returns the caller’s process

id (this can be used to determine if a message has been received).



4. Getting and Manipulating Process Ids.

Before a Tipc process can communicate with other Tipc processes, it must acquire the process id of
the process it wishes to talk with. A process id uniquely identifies a Tipc process. No process on any
machine at any time in the present, past, or future can have a process id the same as some other
process’s. This section explains the concept of a process id and how to search for a process to obtain its
process id.

Nature of a process id.

A process id contains four components: the process name, the machine name, the system number,
and a unique identifier.

Every Tipc process has a ‘process name‘. Process names are strings of between zero and
J_MAX PROCESS_NAME (currently 14) characters. Unlike process ids, process names are not unique -
any number of processes may have the same name. The name of a Tipc process is assigned when it is
created (or becomes a Tipe process if it started life as a non-Tipc process). The process name cannot
change during the life of the process.

A Tipe process runs on a particular ‘machine‘. These machines also have names, which are strings of
from zero to J_MAX MACHINE_NAME characters (currently this limit is four). Machine names are
unique.

To allow a number of users to develop Tipc systems on the same set of machines simultaneously,
Tipe processes are assigned to ‘Tipc systems’. Systems are identified by integers. Processes in different
Tipe systems cannot talk to one another or affect each other in any other way (via Tipc). An exception to
this is system 1, which is used for server processes that must be accessible to any process.

These three attributes of a process - its name, the machine it runs on, and the Tipe system it resides
in - together with one additional datum added for uniqueness, combine to form a process id. If you have a
process id, you can obtain any of these attributes (except the extra unique datum). However, you may not
do so directly by looking at the bits in a process id. Process ids are stored in some format decided by the
Tipe implementor. The format is subject to change at any time. You must instead use the procedures
provided for enquiring about these attributes. Similarly, you may only obtain process ids by use of the
supplied functions.

A special process id value, represented by the symbol J_NO_PROCESS, exists to provide something
for functions to return when they can’t find a process. It is also occasionally convenient for an application
to use this value as a "null” process. It is not really the id of anything; you can’t send messages to it.

To declare a variable that can hold a process id in C, use the t_process_id” type, e.g.:

t_process_id printer_server;

You may assign to process id variables, pass them as parameters, and return them as function
values. You may not try to see what they really are internally.

Process ids are obtained when: one Tipc process creates another; a Tipc process receives a message
from another Tipc process; a search for a process is successful; and when a process id is extracted from a
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message buffer. There is also a routine that allows a Tipc process to find out its own process id.

Searching for a process.

A Tipe process may search for another Tipc process on its machine, or on another machine,
provided that the other machine is known to Tipe. If the searched-for process does not yet exist, the caller
can either decide to wait until it does exist, or continue execution. Searches are made by name - each
search call takes a name and returns a process id, if it returns. Searches are confined to the Tipc system
of the caller.

t_process_id t_search_locally(process_name)
char *process_name;

This function looks for a process with the given name on the same
machine as the caller and with a virtual start time (start_time) no
later than the caller’s current LVT. If no such process exists at

the virtual time this call is made, it returns T_NO_PROCESS. The
search is confined to processes in the same Tipc system as the
caller.

t_process_id t_searchw_locally(process_name)
char *process_name;

This function is the same as t_search_locally except it waits until
the named process comes to exist. On return, the caller’s LVT will
be the searched-for process’s start time if the caller’s LVT at the
time of the call was earlier than the start time.

t_process_id t_search_machine(machine_name,process_name)
char *machine_name;
char *process_name;

This function looks for a process with the given name on the
specified machine. If no such process exists at the time (LVT) that
this call is made, T_NO_PROCESS will be returned. The search is
confined to the caller’s system.

t_process_id t_searchw_machine(machine_name,process_name)
char *machine_name;
char *process_name;

The function is the same as t_search_machine, except that it waits
until the named process comes to exist on the specified machine. On
return, the caller’s LVT will be the searched-for process’s start

time if the caller’s LVT at the time of the call was earlier than

the start time.
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Other routines for process ids.

The following all deal with process ids in some way or another. There are routines for process
identification, some for system identification, and some for extracting information from a process id.

t_process_id t_this_process()

This routine returns the Tipc process id of the caller, if the
caller is in a Tipc system. If not, the call will fail.

t_process_id t_parent_process()

This routine returns the Tipc process id of the caller’s parent.
Both the caller and the parent must be Tipc processes. The caller
must have been created by a Tipc process.

int t_same_process(pid1,pid2)
t_process_id pidl,pid2;

This routine tells if two Tipc process ids refer to the same process.
int t_this_system()

This routine returns the number of the Tipc system that the caller
inhabits.

int t_system(pid)
t_process_id pid;

This routine returns the number of the Tipc system that the argument
inhabits.

char *t_machine_name(pid,machine)
t_process_id pid;
char machine[T_MAX_MACHINE_NAME+1];

This routine returns the name of the machine that the process
identified by the first parameter inhabits. This routine requires
that a second parameter be passed. This is space for the machine
name to be written to. Otherwise, the Tipc kernel would have to
allocate space itself and worry about garbage collection.

char *t_process_name(pid,name)
t_process_id pid;
char name[T_MAX_PROCESS_NAME+1];

This routine returns the name of the Tipc process identified by the
first parameter. As for t_machine_name, the second parameter must be
the address of a block of space to write the name to.
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5. Process Creation and Termination.

Tipc systems are dynamic, that is, processes can begin executing or die as the rest of the system
runs. There are two ways for a process to begin running - it can be created by another process, or it may
be started up from the Unix shell. To maintain Virtual Time semantics, the created process is required to
start at a local virtual time at least as large as that of the creating process. Similarly, if a process started
by the user tries to enter the system at a time less than that of all currently executing Tipc processes, it
will not be allowed to run.

A Tipc process can also stop being a member of a Tipc system, either by voluntarily leaving the
system, or by being killed by another Tipc process.

t_process_id t_create_process(time,name,program,arg,...,0)
int time;
char *name;
char *program;
char *arg,...;

This call creates a new Tipc process on the same machine and in the
same system as the caller, with the name given as the second
parameter. The new process will run the program whose object code is
contained in the file named by the third parameter. The program will
be passed the arguments given as fifth and following parameters (at
most nine arguments). The creation time (or start time of the new
process) will be the LVT at which the call is made plus the time
passed as the first parameter. The id of the new process is returned

as the return value.

The first parameter is the time interval between the current LVT
when this procedure is called and the LVT at which the new process
will start. If time is zero, the new process will start at the LVT
equal to the caller’s current LVT.

t_process_id t_create _process_shared(time,name,proc,axg,...0)
int time;
char *name;
void (*proc)();
char *arg,...;

This call creates a new Tipc process on the same machine and in the
same system as the caller. The new process executes the procedure
passed as the second parameter rather than loading and executing a
new program.

t_process_id t_createm _process(time,machine,name,program,arg,...,0)
int time;
char *machine;
char *name;
char *program;
char *arg,...;
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This routine is the same as t_create_process, except the new process
is created on the machine given as the second parameter.

There are two ways to become a Tipc process - by entering into the system, or by being created by
another Tipe process and then initializing. In either case, if a process is going to become a Tipc process, it
must call the appropriate routine as the very first thing that it does.

void t_enter_system(no,name,time)
int no,time;
char *name;

This routine is called from a non-Tipe process. If it succeeds, the
calling process will be a process in the Tipc system whose number is
given as the first parameter, with the name specified as the second
parameter. The time that the calling process starts is given by the
third parameter. If the time given is less than the current GVT or
there are already too many processes, this call will fail and the
caller dies immediately. It is very important that this call be the
first thing done in the code for a Tipc process.

void t_initialize()

This routine is called from a process that been created by another

Tipe process. If there are too many processes on the same machine
(maximum 30 including some system processes), the calling process
will die. It is very important that this call be the first thing

done in the code for a Tipc process.

There is an idiosyncracy shared by all Tipc processes which are created by another process, i.e.,
those that must do a t_initialize: they do not have stdin, stderr, or stdout. Therefore, input and output in
these processes is not possible through the predefined Unix files. It is up to the ingenuity of the Tipc
programmer to find a way around this limitation.

Once a Tipc process has finished its processing, it must inform the system that it is going to stop.
There are two routines provided for this.

void t_exit()

This procedure should be called at the end of a Tipe process. By
calling this procedure, the Tipc package can be informed of the
termination of the caller and apply proper procedures for cleaning
things up.

void t_leave_system()
With this routine, the caller signifies that it no longer wants to

be a Tipe process. After the call, the caller will no longer be in
the Tipc system, although it will be able to continue executing.
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A Tipe process may kill another Tipc process in the same system and on the same machine with the
call

void t_kill_process(pid)
t_process_id pid;

This routine kills the Tipc process identified by the parameter,
provided that the target of the kill is in the same Tipc system as
the caller, and on the same machine. Under Unix, it is not possible
to kill a process in this way unless the caller has the same user id
as the process to be killed, or is the super user.
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6. Manipulating Message Buffers.

A Tipc message buffer is used to hold a message received from another process while the program is
examining it or to contain a message destined for some other process while it is under construction.

Declaring and using message buffers.

Message buffers in Tipc are an "abstract data type,” like process ids. You should access a message
buffer only with the routines supplied in the Tipc library, not by trying to look into it directly. The C
type "t_message_buffer” is defined in <tipc.h>> for use in Tipe programs. One can declare (and allocate
space for) a message buffer by a statement such as

t_message_buffer pending_req;

Before such a message buffer can be used, it must be initialized with the t_clear procedure described
below. Failure to do so may result in random results.

Often, however, it is not necessary for a Tipc program to declare any message buffers, because a
message buffer is automatically allocated by Tipc at initialization and used unless the program switches
usage to a message buffer it has declared itself.

Many Tipc procedures interact with a message buffer, but few of them take a buffer as a parameter.
Instead, they use the current buffer. Initially, the current buffer is the one automatically allocated by
Tipe. A program may use the following routines to change this:

void t_use_buff(buffer)
t_message_buffer *buffer;

This call changes the current buffer to the one whose address is
given as the parameter. This does not change the contents of either
the new or the old current buffer.

t_message_buffer *t_current_buff()
This function returns a pointer to the current buffer.
Buffers may be copied with the following procedure:
void t_copy_buff(from,to)
t_message_buffer *from;
t_message_buffer *to;
Copies the contents of the buffer whose address is given first to
the buffer whose address is given second. This procedure copies only

relevant portions of the buffer, and so may be faster than simply
assigning one message buffer variable to another.
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Message items.

A message consists of a number of items. Each item has a type, such as "integer,” and a particular
value of that type. Types are represented by symbols of C type ”t_item_type,” as follows:

T_INT Integer in the range -2°31 to +231-1.

T_CHAR Character (7-bit ASCII).

T_STRING String of ASCII characters other than NUL.

T_BLOCK Block of 8-bit bytes.

T_FLOAT Floating-point number (precision and exponent range undefined).
T_ATOM Small integer in the range 0 to 255.

T_PROCESS Tipc process id (including T_NO_PROCESS).

An additional symbol, T_END, of type t_item_type is defined to represent the end of a message
buffer.

The "atom” type is intended for use in building representations of higher-level data structures. It
should not be used in place of the integer type, nor is there any efficiency reason to wish to do so.

The ability to send Tipc process ids in messages is an important mechanism by which processes may
find out about other processes.

When messages are sent between unlike machines, Tipc automatically converts the items to the
destination machine’s internal representation.

A message may contain up to T_MAX_DATA bytes of data (this will be a few hundred). Items take
a variable amount of space, from one byte for the integers zero and one to an indefinite number for strings
and byte blocks. The exact amount of space taken by an item depends on details of the Tipe
implementation not known to the application program (and subject to change).

Putting items in a message buffer.

To begin putting items in the current message buffer, a program can call the following routine:

void t_clear()

This routine sets the current message buffer to contain no items.
This routine must be called to initialize a message buffer allocated
by the application program before its first use.

After calling t_clear, the program may put items in the buffer using the following set of routines.
Each call of one of these routines appends an item to the end of the buffer. If insufficient space exists in
the message buffer for the item, an error results, and the caller is suspended until either it gets rolled back
and reprocesses the buffer properly, or GVT passes through the LVT of the caller.

void t_puti(i)
int i;

Puts an integer item in the current buffer.
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void t_pute(c)
char ¢;

Puts a character in the current buffer. Note that only ASCII
characters are allowed (i.e., characters with codes 0 to 127).

void t_putf(f)
double f;

Puts a floating-point item in the current buffer.

void t_puta(a)
unsigned char a;

Puts a small integer into the buffer (range 0 to 255).

void t_putp(p)
t_process_id p;

Puts a Tipc process id in the buffer. It is legal to pass
T_NO_PROCESS.

t_puts(s)
char *s;

Puts a string in the current buffer. The string is terminated by a
null character. Hence strings cannot contain null. The zero-length
string is legal.

t_putb(b,n)
char *b;
int n;

Puts a block of bytes in the current buffer. The number of bytes in
the block is given as the second parameter; the start address of the
block as the first parameter. Zero-length byte blocks are allowed.

Getting items from a message buffer.

To start looking at a message buffer, a program may call the routine

void t_reset()

This procedure sets the "read pointer” for the message buffer to the
beginning, causing the next "get” from the buffer to apply to the
first item.

Following a call of t_reset, the program may extract the values of items in the buffer with the
following procedures. Successive calls look at successive items in the buffer. An error occurs if the next
item in the buffer is not of the type corresponding to the particular ” get” call made. An error also occurs
if one of these routines is called when the read pointer is at the end of the buffer.
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int t_geti()

Returns the value of the next item in the buffer, which must be an
integer.

char t_gete()

Returns the value of the next item in the current buffer, which must
be a character.

double t_getf()

Returns the floating-point value next in the buffer. Theoretically,
the value returned may have to be reduced in precision from that
held in the buffer, or an exponent overflow or underflow condition
might arise. At present, however, the floating-point formats on all
the machines used by Jade have the same precision and exponent
range, so this doesn’t happen.

unsigned char t_geta()

Returns the next item in the current buffer, which must be an ”atom”
item.

t_process_id t_getp()

Returns the process id, which must be next in the buffer. May return
T_NO_PROCESS. No guarantees are made by Tipc that this process id
makes sense in any way; the process that sent the message being
examined could have buggered things up.

void t_gets(s,])
char *s;
int 1;

The next item in the current buffer must be a string. This call
extracts that string and stores it at the address passed as the

first parameter, with a null at the end. The second parameter is the
amount of space that the caller has allocated at that address. If
the string in the buffer is too long to store in this space, an

error is generated. Note that since a null is used to terminate the
string, the maximum length string that may be returned is one less
than the value of the second parameter.

int t_getb(b,1)
char *b;
int 1;

The next item must be a byte block. This block will be stored
starting at the address passed as the first parameter. The length of
the block stored will be returned as the value of this procedure.

The second parameter should be the amount of space allocated by the
caller for the block. If the actual size of the block exceeds this,
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the block will not be stored, but instead an error will be raised.

The next two procedures are useful when the program examining the message does not know the
types or sizes of the items:

t_item_type t_next_item_type()

Returns T_INT, T_CHAR, T_FLOAT, T_ATOM, T_PROCESS, T_STRING, or
T_BLOCK to indicate the type of the next item in the current buffer,

or it returns T_END if there is no next item. The read pointer is

not advanced by this call.

int t_next_item_size()
The next item in the buffer must be a string or byte block. This
procedure returns the size of the string or block. The size returned
for a string includes the null-terminating byte.
Implicit resetting and clearing of the buffer.
A message bufler has associated with it a mode, which is either "get” or "put”. Calling t_clear sets a
buffer to "put” mode; calling t_reset sets it to "get” mode. If a t_getX (or t_next_item_X) procedure is
called when the buffer is in ”put” mode, an automatic reset is performed, just as if t_reset had been

called. If a t_putX procedure is called when the buffer is in "get” mode, an automatic clear is done, just
as if t_clear has been called.

This means that one may put some items in a buffer and then look at them without calling t_reset
between these two operations. One may also start putting new items in the buffer after having looked at
the old items without explicitly calling t_clear.

The message-passing routines that put a received message in the current buffer also reset the buffer
to allow immediate examination of it with t_getX calls.

This all means that, if one wishes, one may avoid calling t_reset and t_clear explicitly in almost all
circumstances.

Mark and restore operations.
A program may save its current position in a message buffer with a procedure to mark” the current
position and restore to that point at a later time.
void t_mark()
This call saves the current read or write position of the buffer.
void t_restore()

This call sets the read or write pointer to the marked position. If
the buffer is in ”put” mode, any items after the marked position are
discarded.



-90-

A clear or reset, either explicit or implicit, sets the ”marked” position to the beginning of the buffer. Note
that each message buffer has its own independent mark position. This facility is most useful in

eliminating items from a buffer when it is found that the sequence of which they were a part would not
completely fit in the buffer.
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7. Manipulating Virtual Times.

LVT and GVT are maintained or computed inside the Tipec package. The user process can never

directly alter them, only refer to them by value or pass them as parameters to the Tipc level (which is
able to change them).

int t_get_time()
This call returns the current LVT of the caller.

void t_advance_time(time)
int time;

This is the only function that the user process can use to advance
the LVT. The time parameter is taken to be the interval that the
user process wants to advance its LVT by.

void t_wait_for_gvt()

The caller is blocked until GVT advances. This routine is designed
specifically for those processes that cannot be allowed to

rollback, therefore the use of this routine must be restricted. A
process that calls this routine may only receive messages. Usually
it is not allowed to send messages. In other words, such a process
acts like a sink.

Note: The restriction mentioned above has been relaxed as a result
of recent changes. User processes using this routine may now send
messages out, but we recommend following the restriction.
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8. Running Tipc Programs.

Tipc is implemented as a library of routines linked with your program, which either directly perform
the Tipc functions or interface to the underlying support system. We describe in this section how you get
access to the Tipc routines and how your program uses them. Later sections describe the individual
routines in detail.

Compiling and running your programs.
You should be able to compile a C program that uses Tipc as follows:
cc prog.c -ltipc -o prog
Of course, more complex commands would be used if the program had more than one source file.
Just make sure to include the ”-ltipc” library in the final link stage. The file prog.c would contain the
line
#include <tipc.h>

at the beginning. In general, all source files that refer to Tipc entities must include this file.

Before you can run your Tipc program, you must start up the underlying Tipc system. There are
some system utilities, described in the next section, that enable you to start up the underlying system
over a collection of machines, find out what processes are running over those machines, and clean up the
underlying system when you are done. Once the underlying system is started, you can run your Tipc
programs.

Usually, you will have several programs that interact via Tipe. These should all be compiled
independently. If the programs are all set up to enter a Tipc system themselves, they may then be run
under Unix by a command such as

progl a b ¢ & progl d e f & prog2 & prog3 x & prog3 y &
In the above example there are three programs and five processes. Two of the programs are run twice with
different arguments. Alternatively, you could write the system so that all but one of the processes are
created from other Tipc processes. In that case the command to start the system would be simply
start_prog &
The object files for the other processes would still have to exist of course, so that start_prog could create

them with a j_create_process call.

Naming conventions.

The Tipe include file, <tipc.h>>, contains declarations of the constants, types, and routines that
make up the Tipc interface. The symbols for these all begin with either ”t_" or *T_”. This (we hope)
ensures that they do not conflict with symbols in your program, with Unix library routines, or with other
library routines.
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The include file also contains some symbols beginning with ”_t_” or ”_T_” and the names of the
fields within the structures representing Tipc types. You are not supposed to know about this
information. If you write a program that refers to these "secret” symbols or directly references the fields
of Tipc structures, it will likely cease working some fine morning when the Tipe implementation changes.
You are also discouraged from using the actual values of Tipc constants rather than their symbols.



- 924 -

9. System support utilities.

In its current implementation, Tipc interacts with a support system of processes. These processes
must be running before the Tipc program will run. There are utility programs for starting this system of
processes, for obtaining a list of all processes in a Tipc system over all machines of interest, and for
terminating all processes in a Tipc system, over all machines of interest.

Starting the underlying system.

The startup program for the underlying system is called str. It attempts to create the gvt_control
process and the local_control processes. These, taken together, form the underlying support system for
Tipe. There is one gvt_control process per Tipc system, and one local_control process per machine. The
str program looks for the object code for the gvt_control and local control processes in the private jades
directory in the user’s home directory. For more details see the Jade manual on remote creation of Jipe
processes (Volume 1, Chapter 1, section C.10, page 41). More specifically, if you had a program that ran
on machines a, b, and ¢, you would need to inter the object code for the local_control process in the
private jades directory on all three machines, and inter the gvt_control program in the private jades
directory on one of the three machines. The object code for the local_control and gvt_control processes
can be copied from /usr/local/jade/bin/local_control and /usr/local/jade/bin/gvt_control.

The str program requires the Tipc system number in which the program will run, the user id, the
user’s password, and a list of machines that the Tipc program will run on. The str program assumes that
the user_id and password are consistent on all machines. Also, it creates the gvt_control process on the
first machine in the argument list. Str is called as follows (the plus sign postfix means "one or more”):

str <{sys> <user_id> <passwd> <machine>+

The preferred method of using the str program is to enclose it in a shell script and limit access to
the shell script to yourself. This will prevent people from ascertaining your password.

Finding out about the Tipec system.

The information program for Tipe is called jsr. It prints out the process names of all Tipc processes
in the specified Tipc system on all machines supplied on the command line. It is not as informative as the
Jipe utility s, in that it doesn’t print out what call is being made by each Tipc process, but it is still
helpful in determining if processes have actually been created on other machines. Jsr is called as follows:

Jsr <sys> <machine>+

Terminating the Tipc system.

Once you have finished running your Tipc system, or if a previous run has gotten hung up, the Tipc
cleanup program, krill, should be run. The krill (it stands for "kill remote”) program kills all Tipe
processes in the specified system on all machines supplied on the command line. The invocation of this
command is the same as that of the str command and the same remarks apply - it assumes that the
password and user_id are consistent over all machines supplied in the argument list.

krill <sys> <user_id> <passwd> <machine>+
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10. Tipc Summary Sheet.

Tipc data types and constants.

t_message_bufler
t_process_id
t_item_type
T_NO_PROCESS

T_MAX_PROCESS_NAME
T_MAX_MACHINE_NAME

Message item types.

T_END
T_INT
T_CHAR
T_STRING
T_BLOCK
T_FLOAT
T_ATOM
T_PROCESS

Communication.

void t_send(to)
t_process_id to;

void t_send_null(to)
t_process_id to;

void t_asend(to)
t_process_id to;

void t_asend_null(to)
t_process_id to;

t_process_id t_receive_any()

A t_process_id signifying no Tipc process

End of message

Integer

Character

Character string

Block of 8-bit bytes
Floating-point value

Byte with conventional meaning
Process identification

Send message in current buffer, wait for reply
Process to send to

Send empty message, wait for reply
Process to send to

Send message in current buffer, do not wait for reply
Process to send to

Send empty message, do not wait for reply
Process to send to

Wait for message from any process

t_process_id t_maybe_receive_any() Accept message from any process if there is one
t_process_id t_receive_any_pre(time) Hold until time expires or message arrives
int time; Amount of time the call spans

t_process_id t_receive(from)

t_process_id from;

Wait for message from process
Process to wait for message frm

t_process_id t_maybe_receive(from) Accept message from process, if there is one

t_process_id from;

void t_reply(from)

Process to check for message from

Reply to a received message



t_process_id from;
void t_reply_null(from)
t_process_id from;
Searching.

t_process_id t_search_locally(name)
char *name;

t_process_id t_searchw_locally(name)
char *name;

t_process_id t_search_machine(m,n)
char *m;

char *n;

t_process_id t_searchw_machine(m,n)
char *m;

char *n;

Buffers.

void t_use_bufl(b)
t_message_buffer *b;

t_message_buffer *t_current_buff()
void t_copy_buff(b1,b2)
t_message_buffer *b1;
t_message_buffer *b2;

void t_clear()

void t_reset()

void t_mark()

void t_restore()

void t_puti(i)
int i;
void t_pute(c)

char ¢;

void t_putf(f)
double f;

void t_puta(a)
unsigned char a;
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Sending process

Reply with an empty buffer to a received message
Sending process

Search for local process
Name of process

Search for local process, wait for it to exist
Name of process

Search for process on a machine
Name of machine
Name of process
Search for process on machine, wait for it to exist

Name of machine
Name of process

Change current message buffer
The new current message buffer

Return pointer to current buffer
Copy buffer contents
Buffer to copy data from
Buffer to copy data to
Make the current buffer empty
Set current buffer’s read pointer to beginning
Mark present spot in current buffer

Restore current buffer to marked spot

Put INT item into current buffer

Put CHAR item into current buffer

Put FLOAT item into current buffer

Put ATOM item into current buffer
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void t_puts(s) Put STRING item into current buffer

char *s;

void t_putb(b,l) Put BLOCK item into current buffer

char *b; Beginning address of block

int 1, Length of block

void t_putp(p) Put PROCESS item into current buffer
t_process_id p;

int t_geti() Get INT item from current buffer

char t_gete() Get CHAR item from current buffer

double t_getf() Get FLOAT item from current buffer

unsigned char t_geta() Get ATOM item from current buffer

void t_gets(s,l) Get STRING item from current buffer

char *s; Address to store string

int ; Number of bytes allocated at s

int t_getb(b,1) Get BLOCK item from current buffer, return length
char *b; Address to store block

int 1; Number of bytes allocated at b

t_process_id t_getp() Get PROCESS item from current buffer
t_item_type t_next_item_type() Type of next item in current buffer

int t_next_item_size() Size of next item in current buffer (STRING or BLOCK)

Obtaining information about processes.

int t_same_process(pl,p2) Tells if two process ids refer to the same process
t_process_id pl,p2;

char *t_machine_name(pid,mach) Return machine process is on
t_process_id pid; Process id

char mach[T_MAX_MACHINE_NAME+1]; Place to store machine name
char *t_process_name(pid,name) Return name of process
t_process_id pid; Process id

char name[T_MAX_PROCESS_NAME+1}; Place to store process name

int t_system(pid) Return system number of process
t_process_id pid; Process id

t_process_id t_this_process() Return process id of caller

int t_this_system() Return system number of caller



t_process_id t_parent_process()

System entry, exit, creation, etc.

void t_initialize()

void t_enter_system(system,name,time)
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Return parent process of caller

Initialize process created from Tipc

Enter a Tipc system

int system; System to enter
char *name; Process name
int time; Time of entry
t_process_id t_create_process(time,name,file arg, ... , 0)

Create a process, return child’s process id
int time; Time that child comes to exist
char *name; Name of child
char *file; Absolute pathname of program of child
char *arg; Unix-style program arguments, zero at end
t_process_id t_createm_process(time,mach,name,file,arg, ... , 0)

Create a process on specified machine, return child’s pid
int time; Time that child comes to exist

char *mach;

cahr *name;

char *file;

char *arg;

void t_exit()

void t_leave_system()
void t_kill_process(pid)
t_process_id pid;
Time.

int t_get_time()

void t_advance_time(time)
nt time;

void t_wait_for_gvt()

Machine to create child on

Name of child

Absolute pathname of program of child

Unix-style program arguments, zero at end
Leave a Tipc system and terminate the caller

Leave a Tipc system

Kill another Tipc process
Id of process to kill

Return local virtual time of caller

Advance local virtual time of caller
Amount to advance lvt

Caller waits until global virtual time advances
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