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ABSTRACT

The rapid increase in the availability of data, contributed by the full-scale development of
multi-platform and multi-sensor data acquisition systems, demands a rapid, accurate and
highly automated information processing and analysis strategy. This is a great challenge
that is being faced in the geomatics industry. Mobile mapping technology represents a new
trend towards integrated data acquisition. With the enormous data volume collected by

mobile mapping systems, rapid and accurate information extraction becomes a critical

issue.

The principal objective of the research endeavors to improve the capability and exploit the
potential of effective and efficient information extraction from terrestrial mobile mapping
image sequences. Extensive exploration of the combined technology of computational
vision and digital photogrammetry forms the basis of the methodology used in this research.
The emphasis has been placed on automation as well as accuracy of the approaches to

object measurement and feature extraction using mobile image sequences.

The dissertation consists of two parts. In the first part, an overview of mobile mapping
technology is provided, visual motion analysis of mobile mapping image sequences is
addressed, and quantitative geometric analysis of mobile mapping imaging systems is
conducted. In the second part, three automated approaches to information processing using
mobile mapping image sequences are developed and evaluated. Three approaches are,

object measurement based on multiple image matching, road centerline reconstruction using



“shape from image sequences”, and vertical line feature extraction based on feature
detection and correspondence. A large number of tests are carried out to evaluate the
approaches in terms of reliability, accuracy and efficiency. The proposed approaches have
been implemented and used as core modules in ImagExpert, a software package for

automatic processing of mobile mapping images.
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CHAPTER 1

INTRODUCTION

“One of the principal objects of theoretical research in any department of knowledge
is to find the point of view from which the subject appears in its greatest simplicity.”

---- J.W. Gibbs

1.1 Multi-Platform/Multi-Sensor Integrated Data Acquisition

It has been demonstrated that mapping science has been steadily stepped into a digital
mapping era. The core technologies of remote sensing, photogrammetry, geographic
information systems (GIS) and spatial positioning are becoming fully integrated, resulting
in the tremendous expansion and rapid growth of the mapping markets. Modern digital
mapping technology is characterized by the capabilities of multi-discipline combination,

multi-platform compensation, multi-sensor integration and multi-data fusion.

The multi-platform, and multi-sensor integrated technology have established a trend
towards spatial data acquisition. Multi-sensor systems can be mounted on various
platforms, such as satellites, aircrafts or helicopters, land-based vehicles, water-based
vessels, and even hand-carried by individual surveyors. As a result, every vehicle or

individual surveyor becomes a potential data collector, responsible for globally integrated



2
data acquisition. The recent development of land-based mobile mapping systems represents

a typical application of this integrated technology.

1.2 Background Information on Mobile Mapping Systems

Photo-Logging

In the 1970’s, many highway departments had been using the so-called photo-logging
technology to monitor pavement performance, signing, maintenance effectiveness,
encroachments, etc. These services are usually required at intervals of about two years.
Often 35-mm film cameras were used to capture photos through the windshield of a van-
type vehicle. An inertial device (e.g., gyroscopes and accelerometers) and a wheel counter
were employed to determine the instantaneous positions of the captured photographs.
Consequently, each photo was stamped with time and geographic position information.
These photos were stored mainly as a pictorial record of highway performance, and
investigated, usually using a back-screen projector at about a 10:1 enlargement. Due to the
rather poor accuracy of vehicle positioning and only a single camera configuration in these
systems, the functionality of 3-D object measurement was not available. However, the use

of consecutive photos to achieve 3-D measurement was possible (Birge, 1985).



Video-Logging

With the advent of the Global Positioning System (GPS) technology in the late 1980’s, the
vehicle navigation capability has been greatly enhanced. GPS technology, along with video
imaging technology, motivated the development of video-logging systems. Video-logging
systems offer a fast and low-cost approach to highway inventory (Lapucha, 1990; Schwarz
et al., 1990). The collected video images can be georeferenced with respect to a global
coordinate system by using continuous GPS navigation and positioning techniques. The
turn-around time of data processing is reduced since no film processing is involved.
Furthermore, the digitally georeferenced video data allow quick retrieval and effective
management of the image data collected. The capability of interpretation of highway video
data is also strengthened through the use of image processing technology. Video-logging
has become a widely accepted and utilized method in most departments of transportation.
Visual recording and feature documenting along road corridors remain the major purpose of

these kinds of systems.

Mobile Mapping

The development of mobile mapping systems from video-logging systems was realized by

the early efforts of the Center for Mapping, The Ohio State University (GPSVan™ system),
U.S.A; GEOSPAN Corp. (GeoVAN™ system), U.S.A; and the joint venture of The
University of Calgary and GEOFIT Inc. (VISAT™ system), Canada (Bossler et al., 1991

and Schwarz et al.,, 1993b). A common feature of these systems is that more than one
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camera is mounted on the mobile platform, offering the capability of stereo imaging for 3-D
data acquisition. Accurate georeferencing of the digital imagery collected has been
accomplished by advanced navigation and positioning techniques. Multiple navigation
sensors, GPS, Inertial Navigation System (INS) and dead-reckoning (DR), are fully
combined for direct georeferencing. The ground control required for traditional mapping is
largely eliminated, thus, leading to the innovative concept of “mobile mapping”. Centimeter
accuracy of vehicle positioning is achieved, and meter or sub-meter 3-D coordinate

accuracy of objects derived from the georeferenced image sequences are available.

New types of cameras with fully digital, high resolution and large sensor capabilities are
commercially available and can be applied in mobile mapping systems. Another advantage
of mobile mapping systems is that the data link to a geospatial database is easy and
straightforward. The collected geometric and attribute information can be directly used to
build and update a database. With the development of fast communication and image
compression technologies, real-time image data link from a field mobile mapping system to
an office GIS can be realized. Furthermore, such data can be disseminated and accessed
through a widely distributed internet. The fusion of image, vector feature and base map data
could be dealt with in a multi-media GIS. There is no doubt that mobile mapping systems

define a new generation of modern digital mapping system family.

Tablel.1 provides an overview of video-logging and mobile mapping systems (Bossler et
al., 1991; Chapman and Baker, 1996; El-Sheimy and Schwarz, 1993; He, 1996; Hock et al.,

1995; Li, 1997; Mekuria, 1995; Pottle, 1995). Most systems integrate multiple navigation
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and mapping sensors, such as GPS, INS, DR, gyro, barometer, CCD camera, Laser. Among

them, GPS and CCD cameras are currently the principal navigation and mapping sensors,

respectively.

Table 1.1 Overview of Video-Logging and Mobile Mapping Systems

Geofit inc., Canada

System Developer/Researcher Navigation sensors | Mapping sensors
ARAN Roadware Corp., Ontario, Accelerometers/IMU/ | 1 VHS, 2 CCD, Laser
Canada DGPS
DGI Data Chromatics, Inc., USA GPS 1 video camera
Geografix | Geografix sys., Singapore GPS/DR 3 video cameras
GeoVAN GeoSpan Corp., USA GPS/DR 10 VHS, voice recorder
GIM NAVSYS Corp., CO, USA WA-DGPS/IMU 1 CCD
GPSVan | The Ohio State University, GPS/Gyro/wheel 2 CCD, voice recorder
Columbus, OH, USA counter
GPSVision | Lambda Tech. Int. Inc., USA GPS, INS 2 Color CCD, optical disc
KiSS Univ. of Bundeswher Munich | GPS/IMU/Inclination 1 SVHS, 2 BW CCD, voice
and GeoDigital, Germany Odometer/Barometer | recorder
ON-SIGHT | TransMap Corp., OH, USA GPS/INS 4 color CCD
RGIAS Rowe Surveying and Engg, GPS Video, Laser
Inc., Alabama, USA
TruckMAP | John E. Chance and GPS/multi-antenna Laser range finder, 1 video
Associate, Inc., LA, USA gyro/WA-DGPS camera
VISAT The Univ. of Calgary and GPS/INS/ABS 8 BW CCD, 1 color SVHS
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This research is based on the mobile mapping system, VISAT (Video imaging system, an
Inertial navigation system, and the NavStar Global SATellite System), jointly developed by
the University of Calgary and Geofit Inc., Laval, Quebec. A detailed introduction to the

VISAT™ system will be given in Chapter 2.

1.3 Motivations for the Research

1.3.1 An Engineering Point of View

In general, there are three fundamental issues towards mobile mapping technology:

I.  Accurate and reliable georeferencing of image sequences captured from a mobile
mapping vehicle,

2. Rapid and accurate information extraction from georeferenced image sequences,
and

3. Complete representation and efficient management of the spatial and attribute

information collected.

The development of the advanced navigation capability is a key to unlocking the full
potential of mobile mapping systems. It is recognized that accurate and reliable

georeferencing relies on integrated navigation techniques. The integration of GPS with
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other navigation sensors, such as INS and DR, has defined a trend for mobile mapping
georeferencing. The research work has been extensively conducted by Goad (1991),

Schwarz et al. (1993a), and Wei and Schwarz (1990).

Although GIS is considered to be a tool for representation, management, retrieval, and
storage of the large amount of data collected by mobile mapping systems, an efficient
database engine must be designed to handle the sequential stream of information. Object-
oriented data representation and network-based data dissemination are very suitable for
these types of input (Chen et al., 1995; Kucera and Graves, 1995; Milne et al., 1993). The
recent research work on building an object-oriented 3-D GIS using mobile mapping data

can be found in Qian (1996).

Since a huge volume of image data has been collected by mobile mapping systems, rapid
and accurate extraction of features of interest from image data is highly required during
post-mission processing. The low efficiency of manual feature extraction is not compatible
with rapid data acquisition by mobile mapping systems. It is also one of the major
impediments in the development of on-line mapping or real-time mapping systems. For
these reasons, the emphasis of this research is placed on the development of methods for
automatic, and accurate object measurement and feature extraction using mobile mapping

image sequences.



1.3.2 A Scientific Point of View

The world is essentially dynamic. The mobility of the human visual system plays a key role
in sensing and observing objects in our dynamic 3-D environment. Consequently, the
development of visual motion analysis, dynamic vision, image sequence analysis and
mobile robot technologies has been pursued in computer vision research. Mobile mapping
systems provide a perfect experimental platform to research and application of visual

motion theory and methodologies.

Photogrammetry has long been recognized as an efficient large-area surveying technology.
The exploration of information from an image/photo sequence captured in a strip or a block
form characterizes photogrammetry. Mobility of aerial imaging enables photogrammetry to
generate a strip- or block-based terrain model simultaneously, with the use of sophisticated

photogrammetric block triangulation techniques.

With improvements in electronic imaging technology, video/digital cameras hare being
used by photogrammetrists as a substitute for conventional film-based optical cameras.
Applications of video/digital signal based photogrammetry, “video-grammetry” (Gruen and
Streilein, 1994), are dramatically increasing. A typical example of video-grammetry

application is mobile mapping.

Photogrammetry and computer vision are closely related disciplines with different goals. In

recent years, they have naturally grown toward each other (Forstner, 1993; Strat, 1994).
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Computer vision practitioners seek to develop algorithms for automatic information extraction
from imagery, while photogrammetrists are concerned with obtaining accurate measurements
from imagery. A certain amount of duplication is important because a deep understanding of the
concepts is best gained through personal involvement. Joint research will provide the cross-
fertilization that enables both communities to leverage the fruits of related work. Therefore,
research on automatic and accurate information extraction from mobile mapping image
sequences will be of considerable interest to both the computer vision and photogrammetric

communities.

1.4 Overview of Previous Research Work

The development of mobile mapping systems is at an early stage of commercialization. The
main efforts of research and development have been placed on improvement of quality and
reliability of image georeferencing. Although automated information extraction from
mobile mapping images is of considerable importance, not much work has been done in this
area. Only two research groups, one at Ohio State University (OSU) and one at the
University of Calgary (UC) have been reported on the development of these techniques.
However, the related techniques of automatic information extraction from image sequences
have been extensively researched, especially in the areas of mobile robotics, autonomous

vehicle navigation and intelligent transportation systems.
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1.4.1 Object Measurement

The main task of mobile mapping systems is to map objects from images into a spatial
coordinate system. The objects could be footprints of houses, street edges, centerlines,
curbs, lane markers, manholes, culverts, fire hydrants, traffic signs, telephone booths,
electric poles, etc. In order to calculate the 3-D coordinates of an object from images, at
least two conjugate points in the images need to be determined. The OSU group (He and
Novak, 1993) applied the image matching technique to automate such an object
measurement procedure. Since the orientation parameters of the cameras are known, the
corresponding epipolar lines in a stereo image pair can be computed. Once a point in the
left image is measured manually, the corresponding point in the right image can be
determined by using the epipolar-line based image matching method. The area-based cross-

correlation criterion was used in OSU group’s image matching method.

The UC group (Xin, 1995) proposed a two-stage matching strategy for object measurement.
Firstly, an image matching method similar to OSU’s was applied to find the match point at
a coarse level, and then the least squares image matching method (Baltsavias, 1991) was
used to find the precise match. In order to improve the reliability of image matching, Xin
(1995) employed edge features to constrain the matching results. If a point measured in the
left image is on an image edge, the corresponding point in the right image should be on an
image edge too. Thus, an edge detection algorithm has to be executed before image

matching. However, this constraint is sensitive to the reliability and accuracy of the results
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of edge detection. This is a typical “chicken and egg” problem, often encountered in

computer vision research.

Further improvement of the 3-D coordinate accuracy of object measurement was researched
by Li et al. (1996) and Zou (1996). Their work focused on the use of multiple images to
perform photogrammetric triangulation. Their results demonstrated that the final 3-D
coordinate accuracy can be greatly improved if multiple corresponding points in image
sequences can be used. It is required that multinocular point correspondence be established

first.

In fact, multiple images covering the same object are available in the VISAT mobile
mapping system, that is, multiple corresponding points can be identified in the image
sequences. The use of such redundant image information would be valuable not only for
enhancing the reliability of image matching, but also for increasing the 3-D coordinate
accuracy of photogrammetric triangulation. Thus, multiple-image-based object

measurement needs to be investigated. This is one of the major tasks in this thesis research.

1.4.2 Road Centerline Reconstruction

The management of vehicles and infrastructure requires a high-quality and up-to-date road-
related spatial information system. Road centerline information has been extensively used
to generate road network information systems. Such information can also be used to derive

road inspection parameters such as the longitudinal profile and surface deformation, which
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are important indicators for road maintenance. The acquisition of up-to-date road centerline

data using conventional field survey is fairly difficult due to the cost and logistical reasons.

Since the image features of road centerlines are relatively distinctive, it is expected that
automatic reconstruction of road centerlines from mobile mapping images can be realized.
The first trial was performed by He and Novak (1992). They applied two methods to
automate the reconstruction of road centerlines from a stereo image pair. The first one relies
on the definition of the centerline by a certain pattern, e.g., by a bright line. Once the
defined patterns are detected, they are approximated by an analytical function. The second
one permits the user to define a starting point of a centerline on the screen. A line following
algorithm is then employed to trace this centerline from the bottom to the top of the image
until it disappears. Xin (1995) implemented a similar method in the VISAT system. He
tested three line following algorithms, namely direction-matrix-based line following, least
squares line following, and polynomial edge fitting. However, none of them performed
superior than the others. It is observed that these methods can only detect and reconstruct
the centerlines on the basis of a stereo image pair. The capability of continuous

reconstruction of road centerlines from a complete image sequence is limited.

Road based visual navigation was an active research area in mobile robotics and
autonomous vehicle navigation. Many algorithms have been developed in this area
(Dickmanns and Zapp, 1986; Dickinson and Davis, 1990; Thorpe et al., 1988; Waxman et
al., 1987). The goal of this research is to identify clues of roads from images so that the

vehicle can be manoeuvred in the right path. This goal is different from ours since we are
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concerned with accurate 3-D object reconstruction rather than 2-D object identification. The
imaging system configuration is also different from that of mobile mapping systems, in
which high-accuracy georeferencing components are used, so that the captured images can
be georeferenced and the objects of interest from images can be mapped. However, the
results of research on mobile robotics and autonomous vehicle navigation are valuable to
our research. As we shall see, an innovative approach based on a state-of-the-art theory,
deformable models, is developed to address the issue of automatic and continuous

reconstruction of road centerlines from long image sequences.

1.4.3 Feature Extraction and Object Recognition

It is understood that the two processes of feature extraction and object recognition have to
be combined in order to identify objects automatically. Without sufficient knowledge about
objects, object recognition results can never be reliable. Some research work have been
conducted to attempt to identify some specific objects, e.g., road signs, using image
sequences. He and Novak (1992) have published their results on the detection of mile
makers from mobile mapping images. The focus was placed on the recognition of numbers
appearing on mile-maker images. Geiselmann and Hahn (1994) developed a strategy of
identification and location of simple objects (i.e. stop signs). Firstly, mathematical
morphology-based operations were applied to detect the region of interest. Then affine-
invariant features were extracted and employed to identify the simple shapes of objects.
Priese et al. (1994) and Sheng et al. (1994) both presented their own methods for traffic

sign recognition. Color information was mainly used in their methods for object
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classification. It is recognized that automatic object recognition using image sequences has

a long way to go. The reliable recognition of even simple objects is still challenging us.

It is found that, during the post-mission processing of the mobile mapping images, it is easy
for a human operator to recognize an object from images, but it takes much time on
browsing image sequences to find and locate the objects of interest. In this thesis, a semi-
automatic approach to extract vertical line features is developed to assist the user to locate
the objects of interest from image sequences. This is a novel idea on improving the

efficiency of object measurement using feature extraction.

1.5 Objectives of the Research

This research serves as an on-going work to further development of information processing
for the VISAT mobile mapping system. Both automation and accuracy of the information
extraction methods are emphasized. The combination of computational motion vision and
digital photogrammetry technologies is the principal methodology used throughout the
thesis research. Great efforts have been placed on the development and employment of
constraints from the mobile mapping system for design and implementation of the reliable
information extraction methods. It is believed that the use of constraints is a key to the
success of automation. The following constraints are derived and extensively applied to the

proposed and developed approaches:



15
(1) Stereoscopic and sequential imaging geometry constraint: multinocular vision
methods and stereo-motion image analysis techniques can be applied by using this

constraint.

(2) Image geo-referencing constraint: rigorous epipolar line information and a direct
image-to-scene transformation are available, since all the images have been geo-

referenced in a global coordinate system.

(3)Known vehicle ego-motion constraint: the viewer’s motion trajectory is determined
by using GPS/INS navigation technology. This information can be used to develop

and optimize a road-network based information collection approach.

Three automated approaches are investigated and developed:

e Multiple-image-based semi-automatic object measurement,
e automatic and continuous reconstruction of road centerlines from long image
sequences, and

* semi-automatic extraction of vertical line features from stereo image sequences.

It is excepted that the developed approaches are of practical value to enhance the capability

of information processing for mobile mapping applications.
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1.6 Organization of the Dissertation

The dissertation basically consists of two parts. In the first part (Chapters | to 4), problem
identification, an overview of mobile mapping technology, visual motion analysis of image
sequences, and geometric analysis of the mobile imaging system are addressed. The major
contributions of this dissertation are represented in the second part (Chapters 5 to 8). Three
automated approaches to object measurement, road reconstruction, and vertical feature
extraction from mobile mapping image sequences are proposed and developed. The outline

of each chapter is described below.

Following the introduction in Chapter 1, an overview of VISAT mobile mapping
technology is given in Chapter 2. The concept of multi-sensor integrated mapping is
discussed. The system configuration of the VISAT system and the characteristics of the

VISAT images are described.

In Chapter 3, the general methodology of visual motion analysis of image sequences is
addressed. The approaches to short-range and long-range visual motion processing are
briefly reviewed. We are essentially dealing with the issue of long-range image sequence
analysis with known ego-motion. However, we are more concerned with feature
correspondence under known motion parameters, rather than reconstruction of motion
parameters of viewers or objects. A further understanding of terrestrial image sequences
also proceeds in this chapter. The ground plane constraint and some useful geometric

inferences from georeferenced image sequences are derived. It is understood that a
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successfully automated visual analysis algorithm is based on the understanding of imaging

geometry and the development of valid vision constraints.

Geometric analysis of mobile mapping imaging system is conducted in Chapter 4. A
detailed analysis of the errors from the terrestrial stereo imaging system is performed. This
work serves as a guideline to the development of accurate and reliable algorithms for object
measurement and feature extraction from mobile mapping images. It is indicated from the
results of geometric analysis that the use of multiple images for object measurement is

necessary, if high-accuracy results of object measurement are required.

In Chapter 5, a semi-automatic approach to object measurement is proposed. Multiple
image matching and multiple-baseline-based photogrammetric intersection methods are
used to accomplish the measurement process. The approach can be used to measure any
object of interest with increased 3-D coordinate accuracy and reliability. The human
operator is required to give only one point in one image. The rest of the work on the
determination of corresponding points in the multiple images will be automatically carried

out by the computer.

In Chapter 6, a robust approach to automatic and continuous reconstruction of road
centerlines from long image sequences is proposed. The closely coupled bottom-up and top-
down scheme, physically-based 3-D snake theory, and sophisticated feature extraction and
image matching techniques are developed. The various tests demonstrate that the approach

functions reliably under different road scene and image conditions. The approach is able to
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generate a road network of centerlines directly from a long sequence of stereoscopic

images.

In Chapter 7, an approach to semi-automatic extraction of vertical line features is developed
and investigated. The approach is designed as a tool to find and locate important vertical
line features, such as light poles and traffic signs. from image sequences. A cooperative
human-computer interaction scheme is developed to implement this tool. The experiments
show that the developed approach is able to assist the user in performing vertical object
identification and location. The time-consuming work of image browsing and object
searching from the large amount of image data can be reduced. It is also worth mentioning
that this research forms the basis to the development of vision based vehicle navigation,

calibration and quality control.

Conclusions based on the thesis research and recommendations for further work are given

in Chapter 8.
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CHAPTER 2

OVERVIEW OF VISAT MOBILE MAPPING TECHNOLOGY

2.1 Conceptual Modeling

Mobile mapping systems represent a significant advance in multi-sensor integrated digital
mapping technology, which provides an innovative path towards rapid and cost-effective
collection of high-quality and up-to-date spatial information (Bossler et al., 1991; Li et al.,
1994b; Novak, 1995; and Schwarz et al.,, 1993b). The development of mobile mapping
systems is promoted by the use of multi-sensor integration technology. In general, we

classify the sensors into three categories:

(1) Absolute orientation sensors
- Environment-dependent external positioning sensors: GPS, radio navigation system,
and Loran-C
- Self-contained inertial positioning sensors: INS, dead-reckoning systems, gyroscopes,

accelerators, compasses, odometers, and barometers

(2) Relative orientation sensors
- Passive imaging sensors: Video and digital cameras

- Active imaging sensors: Laser range finders or scanners, and Radar (SAR)
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(3) Attribute collection sensors
- Passive imaging sensors: video/digital, BW/Color frame cameras, multi-
spectrum/hyper-spectrum push-broom scanners
- Active imaging sensors: SAR, Laser range finders or scanners, and pavement sensors
- Manual recording: voice recording and touch-screen recording

- Others: temperature, air pressure, gravity gauges

Absolute orientation sensors are platform-oriented. They are used to determine the absolute
locations of the mobile mapping platform, for instance, a van-type vehicle, with respect to a
global coordinate system, e.g., WGS-84. On the other hand, relative orientation sensors provide
the positional information of objects relative to the platform in a local coordinate system. Both
relative orientation sensors and attribute collection sensors are feature-oriented, and many have
capabilities of providing both orientation and attribute information, such as imaging cameras and

laser range finders/scanners.

One of the very important concepts of mobile mapping systems is direct-georeferencing. The
conceptual layout of direct georeferencing is shown in Figure 2.1. Direct-georeferencing refers
to the use of absolute orientation sensors to determine the exterior orientation of the sensors
without using ground control points and photogrammetric block triangulation. For example, if a
camera sensor is used, any captured image can be “stamped” with the georeferencing
parameters, namely three positional parameters and three attitude parameters by using absolute
orientation sensors (GPS/INS). As a result, 3-D reconstruction using stereo images becomes

straightforward, since the exterior orientation parameters of each image are available. Direct
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georeferencing greatly facilitates the mapping procedure. The rapid turn-around time of data

processing and reduced cost of ground control surveys are very beneficial.

I S

.,

“Vehicle-oriented | ; Feature-oriented
absolute positioning| ; S relative positioning
sensors: GPS' sensors: camera
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A global coord. system (=) A local coord. system (=) Objects of interest

Figure 2.1 The concept of direct georeferencing

2.2 VISAT Mobile Mapping System

The VISAT mobile mapping system has been developed at The University of Calgary in
cooperation with Geofit, Inc. The project began November, 1992, and the first
demonstration was given in July, 1993. During 1993-1994, the prototype system was
developed and the production system was available in 1995. The VISAT has evolved from

a 3-camera system to a S5-camera system, and is currently an 8-camera system.
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The overall objective of the VISAT project was to develop a precise mobile mapping
system for road inventory and general GIS data acquisition, which would be capable of
providing an absolute positioning accuracy of 0.3 m and a relative accuracy of 0.1 m for

object points within a 30 m corridor, at vehicle speeds of 50-60 km per hour.

S-VHS Camelzl GPS Antenna

INS System

8 CCD Cameras

Figure 2.2 VISAT system

The van-based VISAT system is shown in Figure 2.2. This system consists of a strapdown
INS system, two L1/L2 GPS receivers, a cluster of B/W CCD cameras, an Antilock-
Braking System (ABS), an image control unit, and a color S-VHS camera. The function of
each component can be subdivided into primary and secondary functions (Schwarz and El-

Sheimy, 1996). In terms of primary functions, the cameras provide 3D positioning with
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respect to the VISAT vehicle reference, which in most cases is the perspective center of one
of the cameras. The position of this reference with respect to the existing control is
determined by differential GPS techniques, while the camera attitude information is given
by the INS. The ABS system will trigger the camera at constant distance intervals using the
VISAT controller trigger channel. In terms of secondary functions, the cameras provide
redundant image information of the objects, i.e., more than two images of the same object
are available. The GPS is used to control INS drift errors, while the INS is used to bridge
GPS outages, correct GPS cycle slips, and perform precise interpolation between GPS

fixes. The ABS data can be used to update the INS data in case of GPS signal blockage.

The road-related spatial data can be acquired very efficiently through the on-line
synchronization of GPS, INS, ABS, and image data. The georeferencing parameters of the
moving VISAT reference can then be obtained after processing the DGPS/INS inputs.
Locations of objects of interest in the road corridor with respect to the VISAT reference are
determined during the post-mission processing, using two or more georeferenced images.
The information extracted can be directly used to update or generate GIS databases. For
more detailed information on the VISAT system, one can refer to (El-Sheimy, 1996b; Li, et

al., 1994a and 1994b, Schwarz et al., 1993b; Schwarz and El-Sheimy, 1996).
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2.3 VISAT Imagery

The imaging component of the VISAT consists of eight COHU 4980 video cameras, each
with a resolution of 640 x 480 pixels. The technical specifications of the camera are given
in Table 2.1. The cameras are housed in a pressurized case and mounted inside two fixed-
base towers on top of the van. The details of hardware implementation of the imaging
component in terms of synchronization, image transfer rate and buffer memory

management, etc., can be found in Schwarz, et al., (1994) and EI-Sheimy (1996b).

Table 2.1 Technical specifications of the COHU 4980 and 4912 CCD cameras

(RS 170 standard)

Parameters Specifications

Image area 6.4 x 4.8 mm

Imager type IT CCD with on-chip microlenses

Cell Size 8.4 x 9.8 micrometers

Resolution 768 x 494 pixels

Field of view 43° (H) and 37° (V)

Electronic shutter Eight options: 1/50 ~ 1/10 000 second

Synchronization Genlock, Crystal Lock, Asynchronous Reset, H&V
Drive, Internal clock: 28.6363 MHz




25

This thesis research is based on the image data collected from the VISAT prototype system.
The images were captured by COHU 4912 cameras at a vehicle operating speed of about
50-60 kmv/h, with the camera shutter speed of 1/1000 second, and image capture rate of 0.4
second. Under these circumstances, most objects in the road corridor appear in at least three

image pairs.

It is noted that, in the design of the imaging component, the choice of imaging parameters,
such as the baseline B, the focal length f, the overlap degree «, the field of view angle o,
and camera types (pixel spacing §, sensing area L, and related camera features), has to be
taken into account in order to achieve the best performance. The detailed analysis of
parameter selection relative to imaging performance and accuracy will be given in Chapter

4.

2.4 Applications of Mobile Mapping Systems

It is very costly that the use of traditional surveys to update GIS databases, to complement
missed data, and to add new geometric or attribute data to databases. Mobile mapping is an
innovative technology towards low-cost, fast, precise and high-quality data acquisition. Its
potential applications appear to be limitless (Bossler et al., 1991). Typical applications

include:

¢ Digital mapping of roads and railways,



e  Surveying of pipelines, water and sewer systems (e.g., manholes),

e Surveying and tracking the evolution of distribution networks (e.g., transformers,
power lines, telephone lines, street light poles),

e Inventory of structures and infrastructures (e.g., pavements, sidewalks, bridges,
buildings),

e Data collection for the generation of a transportation database (e.g., centerlines, road
signs, traffic signs, mile markers, pavement conditions), and

e  Data collection for creating E-9-1-1 information systems (e.g., phone booths).

It is worth mentioning that Intelligent Transportation Systems (ITS) is a closely related area
of research on mobile mapping systems. On one hand, there are a number of common
problems encountered in both areas. On the other hand, mobile mapping systems are
sometimes considered as a portion of ITS research, since a major application of mobile
mapping systems is transportation data acquisition. For more detailed information on ITS,

please refer to Appendix C.



CHAPTER 3

VISUAL MOTION ANALYSIS

OF MOBILE MAPPING IMAGE SEQUENCES

In recent years, the computer vision community has extensively addressed the
computational aspects of visual motion analysis. This chapter examines the general
methodology in visual motion studies. We attempt to identify our problem under the
framework of visual motion analysis, so that the well-developed methods and the
accumulated experience can be utilized for our task. It is also understood that the way to
resolving an ill-posed vision problem is to exploit any possible sources of constraints. With
a thorough understanding of the properties of terrestrial imaging geometry, we are able to
develop application-specific constraints. In this reason, visual inference between image and

space is addressed.

3.1 Visual Motion Analysis Methodology

3.1.1 Basic Issues in Visual Motion Analysis

In principle, the study of visual motion analysis, or, motion and structure from image

sequences, consists of two basic issues:
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1. Determining image optical flow and/or feature correspondences from image
sequences, and
2. Estimating motion and structure parameters using the determined optical flow

and/or feature correspondences.

In mobile mapping systems, the captured image sequences have been georeferenced by
using GPS/INS integrated positioning techniques. The orientation parameters of each
camera exposure center are determined with respect to a global coordinate system, i.e., the
motion is known. By using techniques of photogrammetric intersection, the computation of
3-D object coordinates is very straightforward. However, conjugate points need to be
identified, that is, point (feature) correspondence needs to be established. Therefore, our
research emphasis will be placed on the first issue — determination of correspondences from

image sequences.

In fact, the photogrammetry community has been paid a great amount of attention to the
second issue. The research resuits from computer vision studies not only enhance the
understanding of projective geometry and algebraic geometry, but also extend and enrich
photogrammetric theories and methods, for example, video-grammetry. Some of the
concepts, theories and methods derived by computer vision groups have been investigated
by photogrammetrists and applied in photogrammetric applications, such as quality control,

camera calibration, sensor navigation and object reconstruction. Reviews of references on
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algorithms for estimation of motion/structure parameters from image sequences have been

provided by Aggarwal and Nandhakumar (1988), and Huang and Netravali (1994).

3.1.2 Short Range vs. Long Range (Continuous vs. Discrete) Motion Analysis

Generally, there are two complementary classifications of schemes to compute visual
motion. The first classifies according to the spatio-temporal range over which methods are
applicable, analogous to the human visual system: (1) short range motion (continuous)
process and long range motion (discrete) process. The second classification distinguishes
between the fundamentally different processes involved: (2) optical flow and
correspondence. In fact, the optical flow scheme, which uses image gradients to derive
image motion, is intrinsically of short range, while correspondence or similarity matching

schemes can be of short range or long range.

In terms of short range motion analysis, images are taken at video rate. Thus the emphasis is
generally placed on the estimation of the optical flow field between two successive frames,
or on the direct use of the spatio-temporal derivatives of the image brightness
(Negahdaripour and Horn, 1987; and Subbarao, 1988). These observations must also be
combined with a measure of the camera velocity (instead of camera displacement) to

determine the 3-D structure of objects.

In long range motion analysis, images are acquired at larger time intervals, and a large

camera displacement is observed. Since the image motion of the features is “large”
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compared to the temporal sampling rate, the eye has to solve the correspondence problem,
i.e., it has to establish which feature at one time instant corresponds to which feature at the
next time instant. Therefore, in long range motion analysis, a set of relatively sparse,
distinguishable two-dimensional features, such as points, straight lines, curved lines,
corners and regions, in the successive images is first extracted (Cox and Hingorani, 1996;
Faugeras, 1993; and Zhang et al., 1996). Secondly, feature correspondences are established
between consecutive features, and finally, the 3-D structure of the object and its relative
motion with respect to the camera can be determined based on the motion of these features.
It is worth mentioning that most of the research for long range motion analysis has
concentrated on determining motion estimation and feature correspondences over a short

image sequence (two to three images).

In general, if the scene has many easily identifiable feature points or lines, the discrete
approach based on feature correspondence is suitable. If the surfaces in the scene are
smooth and have no texture, then the continuous approach based on intensity derivatives is
better. However, robust and accurate computation of feature correspondence and optical
flow still remains a difficult problem. The optical flow field is often corrupted by image
noise or occlusion, leading to generally poor and unstable results in the 3-D reconstruction.
Feature correspondence also easily fails in areas where either the distortion is large, or the
occlusion occurs. Hybrid approaches combining both feature correspondence and optical
flow would be a way to alleviate the above problems (Baker et al., 1994; Hanna and

Okamoto, 1993; and Navab and Zhang,1994).
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Figure 3.1 Differential image
(a) the image captured at time t (left camera); (b) the image captured at time t-1 (left
camera); and (c) the differential image = | image (a) — image (b) |

It is observed that optical flow field based approach is not suitable for the VISAT images,
since the image capture interval is about 0.4 second and the camera movement between the
imaging intervals is too large of the order of 6-10 meters (see Section 2.3). An example of a

differential image computed using two consecutive images is shown in Figure 3.1



32

(differential image value = | image(a) value — image(b) value I). It can be seen that the
displacements of the corresponding features are fairly large, implying that the optical flow

algorithm will not be reliable in our case.

Intuitively, our research falls in the category of long range motion analysis. However,
compared to the processing of monocular image sequences commonly addressed in the
literature, we are dealing with binocular image sequences. This redundant image
information allows us to develop more robust algorithms for processing of image
sequences. In this research, feature correspondence and image matching techniques are
mainly used in the proposed methods. There are a number of good references available with
reviews of techniques for feature correspondence and image matching (Baltsavias, 1991;
Barnard and Fischler, 1982; Dhond and Aggarwal, 1989; Forstner, 1993; Gruen, 1994,
Jones, 1997, and Lemmens, 1988). In Appendix D, a very brief but systematic overview of

these techniques is presented.

3.1.3 Visual Motion Analysis with Known Ego-Motion

Vision analysis with known ego-motion refers to motion analysis under known dynamics of
the camera (observer). In fact, known ego-motion analysis forms the basis of an active
vision system. Under the condition of known ego-motion, the 3-D reconstruction problem
can be solved more efficiently. This fact has motivated some investigations in recent studies

(Aloimonos et al., 1988; Bajcsy, 1988). On the other hand, accurate geometric constraints,
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such as the epipolar line constraint, are also available, resulting in a more robust realization

of feature correspondences.

In the VISAT system, the kinematic trajectory of the vehicle can be determined with a high
accuracy of 5-15 cm, and the camera dynamics can be examined rigorously by using the
GPS/INS georeferencing technique (Schwarz and El-Sheimy, 1996). As a result, visual
analysis can be conducted under the constraint of known ego-motion. It will be seen that
this constraint is very valuable for automating and optimizing a reliable procedure for

object measurement and feature extraction.

3.1.4 Active Vision

A very important advance in the theoretical framework of computer vision is the concept of
active vision, proposed by Aloimonos et al. (1988). Active vision represents a behaviorism
school, which is directly opposite to Marr’s theory of vision, a recovery school (Marr,

1982).

There is a noncontroversial observation that vision is an underconstrained problem. Thus
the main goal of vision work is to find and develop constraints. However, rather than
focusing on narrow sources of constraints, mostly oversimplified constraints such as
smoothness constraints widely used in the recovery school, it is argued that one must
exploit constraints from all possible sources and incorporate them systematically. The basic

idea of active vision is the introduction of a new source of constraints arising from the
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internal architecture of the system itself and the iteration of its components, such as
observer-based constraints, e.g., the sensor and/or the computer (Jolion, 1994). Under the
constraint that the active observer moves with known motion, a unique solution is
available, resulting in a well-posed formulation of the problem. Moreover, the knowledge

of these viewpoints of the active observer increases the robustness to noise.

The known motion of the observer can be determined by the use of advanced navigation
technology. In this context, an imaging sensor mounted on a mobile mapping system could
be treated as an active observer. Accordingly, we may state that mobile mapping systems
provide an industry platform for research on active vision. On the other hand, the newly
developed theories and methodologies of active vision offer us an invaluable tool to tackle

the challenge of automation in mobile mapping systems.

3.1.5 Animate Vision

It is argued that the active observer above defined is not truly active, but only a moving
observer. Vision is not perception but a perception-action cycle. This is leading to another
vision framework known as animate vision (Bajcsy, 1988; Ballard, 1991). “We do not see,
we look™ represents the philosophy of this school. Under this framework, the process of
vision is not considered alone, but as part of a global mechanism of an intelligent system,

including cognition and motor processing.
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Current research work aims at developing active vision systems with great visual abilities,
such as control of ocular parameters (e.g., aperture and focus), spatially-varying sensing,
and gaze control (Abbott and Ahuja, 1990; Burt, 1988; and Sandini and Tistarelli, 1990).
The control of the viewing parameters gives a stable and robust means for visual
perception. The control of ocular parameters allows the system to maintain a suitable image
quality against the degradations that often occur during the acquisition process. The control
of gaze is commonly used in binocular camera heads (Ballard, 1991; Pahlavan and
Ekhlund, 1992). This mechanism, called vergence, consists of bringing and maintaining the
two camera axes at a specified spatial target position, fixation point. This permits the

simplification of the correspondence problem.

Animate vision further facilitates the computational process regarding 2-D correspondence
and 3-D reconstruction to a large extent. It is the author’s belief that animate vision theory
and methodology will make a profound impact on the design and development of a new

generation of mobile mapping systems, intelligent data acquisition systems.
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3.2 Visual Inference between Image and Space

3.2.1 Ground Plane Constraint (GPC)

Since the vehicle is moving on ground level, and the objects to be surveyed also lie on the
ground, the information is very useful for the purpose of a qualitative visual analysis.
Generally speaking, the ground plane constraint holds if the following three assumptions
can be made: (i) the ground is locally planar over the path which the camera traverses; (ii)
the camera is rigidly fixed to a vehicle, so that it undergoes all translations and rotations in
a plane parallel to the ground plane; and (iii) the camera is aligned with the ground plane

such that the x-axis in the image plane is parallel to the ground plane (see Figure 3.2).

The use of the ground plane constraint can be found in many publications. Gatson and
Lazano-Perez (1984), for instance, used the GPC to simplify the interpretation tree search in
recognizing objects from range data; Mundy and Heller (1990) applied the known unit
normal vector of the ground plane to limit the possible orientations of an object model. Tan
(1993) and Kasprzak (1995) used the GPC to simplify pose estimation of moving objects.
For a more general camera model of motion under GPC, one can refer to Wiles and Brady
(1996). Under the ground plane constraint, the transformation relationship between 2-D

image plane to 3-D object space becomes a plane to plane mapping problem.
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3.2.1.1 A Direct Image-Space Transformation under GPC

The definition of the coordinate system and its associated notions are shown in Figure 3.2,
where object points are restricted to the ground plane and represented as P(X, Y, 0). The
camera downward angle is T, the camera height with respect to the ground plane is H, and

the focal length is f. The transformation between the image coordinates (x, y) and the space

coordinates (X, Y, Z) can be derived as follows:

x_Cp _ Vy + f? (3.1)
X CP H/cos(90°—t+pf) '

4Z
Camera moving
direction

P(X.Y.0)

Figure 3.2 Image to ground plane transformation

Therefore,
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_ xH /cos(90° — 7+ fB)
fytan? B+1

X

=xHcos i/ f(sintcosf —coszsin i)

(3.2)
= xH/f{ sint —costan f3),

where, y/f = tanf . Similarly,

Y = Htan(90°-t +[ )

—H ctgt+ylf
l-ctgz(y/ f)

=chosz +ysinz
fsint—ycosT

(3.3)
Considering the image coordinates of the principal points and scale factors of the camera,

the transformation relationship can then be represented as

(x-x0)px = Xf(sint —cosztan )/ H ,

Ysinz—Hcos1
(y-Yo)py = it - ) . (3.4)
Hsinz+Ycos1t

Once the camera downward angle t, the camera height H, focal length f, and the image

measurements (x,y), are known, the object coordinates (X,Y) on the ground can be

determined. Since the parameters involved in the above transformation, T, H, and f, are
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easily obtained, this transformation equation is of great value in many practical
applications. Essentially, this principle has been applied in many video-logging systems in
which often only one camera is mounted. This transformation allows the one-camera
system to have the capability of 3-D measurements when the accuracy requirement is not

strict.

3.2.1.2 Ground Plane Equation

As illustrated in Figure 3.3, using a viewer-centered coordinate system, the coordinate

values of the camera center C and the nadir point N are, respectively,

C:x=0y=012z=0,

N:x=0,y=-Hcost ,z=-Hsint .

The normal vector of the ground plane can then be represented by

n = CN = (0, -HcosT , - Hsint ). (3.5)

A general plane equation in space is

Ax+By+Cz+D=0, n=(A,B,C) (3.6)

Substituting Eq. (3.5) into the above equation, we have



-yHcost - zHsint +D =0. (3.7)

After solving for D by using the point N, on the ground plane, the final ground plane

equation in image coordinates is obtained as

ycosT + zsintT - H =0. (3.8)
image
plane
2 f y
/ C T

optical axis

H

ground plane | N

Figure 3.3 Establishment of a ground plane equation

3.2.2 3-D to 2-D Inference

Considering a 3-D line [ represented by its direction cosines, the line consists of the set of

points

I=(X,Y,Z)"=a+A b. (3.9)
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The line passes through the point a=(ay, a3, a j)T. and has direction cosine vector b=(b,, b,,

b3)T, which is assumed to be of unit length, i.e.,

bl+bs +bs? = I. (3.10)

VP is the projection of a point which is on the line and is infinitely far away from the center

of the lens. Using a simple pinhole model, the VP(xp, y.,) can be derived as

a, +Ab b
wp = = lim Bl Wbt B N
X = fX/Z l_mfa3+/1b3 be
a, +Ab b
w=fY/Z=lim, [T _ % (3.11
Yo =Y YTy fb3 )

Therefore, all parallel 3-D lines which have non-zero slope (b;20) along the optical axis

have perspective projections which meet at the same point, called the vanishing point, on

the perspective projection image plane.

3.2.2.2 Determination of the Vanishing Line (VL)

Assuming a vector pointing at any VP from the perspective center C is represented as I(b;,

bz, b3), and the normal n to the ground plane is known, since these two vectors are

perpendicular to each other, we have



l-n=0. (3.12)

Substituting Eq. (3.5) into the above equation,

bg(-HCOS‘L’) +b3(-HSin’l') =0,

b2/ b; = -tant. (3.13)

By examining Eq. (3.11), the VL corresponding to the ground plane is

Y = Yy = flb2/b;) = -ftant (3.14)

Therefore, the VL can be determined once fand 7 are obtained. The camera downward

angle can also be estimated with a known VP or VL.

3.2.3 2-D to 2-D Inference

Given two image lines which are parallel in space, the position of the corresponding VP can

be determined.

Given one image line and the known VL, the position of the corresponding VP can also be

determined by computation of the intersection point of these two lines in image.
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If given two pairs of image lines which are parallel in space, respectively, the corresponding

two VPs can be determined, as well the VL equation can be formed by these two VPs.

3.2.4 2-D to 3-D Inference

3.2.4.1 Determination of the Direction of A Group of Parallel Lines in Space

If a VP position is obtained, the direction cosines of the corresponding parallel lines in
space whose perspective projections meet at this VP can be inferred. Examining Equations
(3.10) and (3.11), three independent equations result in a unique solution of a direction

cosine vector with a unit length:

(bi, bz, b3) = (1/3) 5% +¥ e + f2 ) (Xum Yup - (3.15)

3.2.4.2 Determination of the Normal Vector of the Ground Plane

If a VP position is known as V;(u;,v,, f), the vector CV, , which is (u;,vy, f), is perpendicular

to the normal n(A,B,C) of the ground plane. Thus, we have

(upvp, in=0,

WA+ viB+fC=0= wX+vY+f=0. (3.16)
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The above equation means that the normal vector is constrained on a line in space. If two

VPs are known, the normal of the ground plane is determined by

n= (ul,VI,ﬂX(uz,VZ,ﬂ

i Jj k
= oy = ((vi-v2)f, (u2- wp)f, (uva- uzvy) )
u, v, f

=( 0, (uz2- w;)f, (uj-uz)v,

where v; = v, in our case. The normalized vector of n is

n={( INus- u,l\/f2 +v? ) (0, (us- wr)f, (uj-uzjv ).

3.2.5 An Example of Qualitative Image Measurements

3.2.5.1 Determination of the Vanishing Point VP

(3.17)

(3.18)

As shown in Figure 3.4 of a pair of stereo images, the corresponding vanishing point to the

road centerlines can be determined by using the intersection of road centerlines based on the

2-D t02-D inference. The image coordinates of these two VPs are V, (233, 207) on the left

image and Vg (215,178) on the right image, respectively. If the VP of a group of spatially

parallel lines is available, the VP can be used as a constraint to derive the corresponding

image lines. As demonstrated in Figure 3.4, if line | and line 2 are used to determine the
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VP, one of the end points of line 3 can then be fixed, thus reducing the search space of line

3 to a certain degree.

Figure 3.4 Qualitative image measurement

3.2.5.2 Estimation of the Camera Downward Angle T

By using Eq. (3.14), the camera downward angle can be estimated. Table 3.1 gives the
calibrated parameters of this pair of cameras. Inserting the related parameters into Eq.

(3.14), we have

7 (left) = tan™ (240.8 - 207)/682 = 2.84°

T (right) = tan™ (222.5 - 178)/680 = 3.74° .
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The computed angle T is quite close to the design value of 2.5° (the true angle T with

respect to the ground is not available).

Table 3.1 Qualitative image measurements

Parameters Left image Right image
Principal point coordinates (247.4, 240.8) (244.8, 222.5)
Focal length 682 pixels 680 pixels
Camera height 2.15 meters 2.18 meters
Scale factor Px=1 Py =-0.82
Image coordinates A (356, 322) (252, 291)
Image coordinates B (385, 351) (261, 320)

3.2.5.3 Computation of the Coordinates of Ground Plane Points (X, Y)

In order to evaluate the accuracy of results computed using the direct image-space

transformation (Equations (3.2) and (3.3)), a comparison with the results computed using

the rigorous photogrammetric intersection is performed. Since the local coordinate system

is used in the direct transformation relationship, we use the relative differences of the length

computation to compare the results. As shown in Figure 3.4, the image coordinates of the

two end points A and B of the lane marker are measured and provided in Table 3.1. The

length, D = IABI, of the dashed centerline marker can then be computed using Equations

(3.2) and (3.3), considering the scale factors,
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= DI (direct image-space transformation based on the left image measurements): 2.83 m

= D2 (direct image-space transformation based on the right image measurements): 2.85 m.

Using the photogrammetric intersection, the result is

* D3 (photogrammetric intersection based the stereo image measurements): 3.03 m.

Therefore, the relative accuracy is about 6.3%, according to the above results. It shows that
the direct transformation expression derived in Section 3.2.1 can be applied as a

measurement tool when the rigorous photogrammetric expression cannot be formulated.

The advantage of the use of the direct image-space transformation is that some simple 3-D
computations can be conducted using monocular images instead of stereo images. In fact,
GPC-based image measurements have been widely used in many robotic vision

applications, as well as some video-logging systems.

3.3 Chapter Summary

We are essentially dealing with the issue of long range image sequence analysis with known
ego-motion. We are more concerned with feature correspondence under known motion
parameters, than reconstruction of motion parameters of viewers or objects. Therefore,

feature correspondence and image matching techniques are the main tools to automate our
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data processing. The recently proposed concepts of active vision and animate vision are
making a profound impact on vision related research, and also are very valuable to the

development of mobile mapping systems.

Visual inference between image and space was addressed in the second part of this chapter.
A direct image-space transformation equation under GPC was derived. This equation can
be applied to compute the geometric shape of objects at ground level. A number of imaging
parameters can also be estimated using image and/or space clues. In fact, these qualitative
inference methods can be used in video-logging systems as an effective measurement tool
for mapping when stereo images are not available. As we shall see, the constraints and
parameters derived here can also be employed to improve the reliability of the automatic

algorithms developed in this research.
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CHAPTER 4

GEOMETRIC ANALYSIS OF

MOBILE MAPPING IMAGING SYSTEMS

This chapter presents a quantitative analysis of positioning accuracies by considering
different imaging geometry conditions and system calibration errors, independent of the
error contribution of the georeferencing component. The work servers as a guideline to

develop accurate image measurement and object reconstruction methods.

4.1 Introduction

The errors limiting the accuracy of a mobile mapping system arise from two major sources:
the positioning errors of a mobile vehicle coordinate frame with respect to a global
coordinate frame, and the positioning errors of object point coordinates with respect to a
vehicle coordinate frame. In addition, it is worth mentioning that time synchronization
among the system components (e.g., GPS receiver, INS unit and CCD cameras) also
introduces an error which has to be considered in the implementation of a mobile mapping
system. It is estimated that this error is limited within 1-2 msec, thus yielding a positioning
error of less than 4 cm at a vehicle speed of 60 km per hour (Schwarz and El-Sheimy,
1996). For a more detailed discussion about system performance and error analysis of the

GPS/INS georeferencing component, the reader is referred to the references (El-Sheimy et
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al., 1995; Schwarz and El-Sheimy, 1996). The following issues are addressed in this

chapter:

(1) Based on the established error models, the along-track, across-track and total error
distributions are addressed. Both the worst-case absolute accuracy and the achievable
relative and relative-range accuracy are estimated.

(2) Error contributions of imaging system geometric parameters (focal length, baseline
length, field of view, degree of image overlap and camera sensing area) are systematically
examined. A method to optimally configure image parameters is proposed and a tradeoff of

these parameters is discussed.

For the sake of completeness, quantitative error models of the effects of imaging system
calibration errors on the positioning accuracy of object point coordinates are also addressed.
The error budget for system calibration is determined thereafter. These research results are

attached in Appendix E for interested readers.

4.2 Error Modeling of a Normal Case Stereo Imaging System

A pinhole camera model is used in modeling the error of a normal case stereo imaging
system, so that camera lens distortion and other optical non-linearities can be ignored. It
assumes the lens to be a point through which all incoming rays of light pass and focus

perfectly on all points in the camera’s field of view. In the normal case of stereo imaging
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(Figure 4.1), the two camera axes are parallel to each other and perpendicular to the
baseline. The relationships between the object point coordinates X, Y and Z of an object
point and the image coordinates of its corresponding points (x;, z;) and (xg 2zz) can be

formulated as:

P(X.Y,Z)

Figure 4.1 A normal case of a stereo imaging system

Y=Bf/p
X = (xL+xR)B/2p = (XL+XR)Y/2f
Z=(z1+2r)B/2p = (z1+28)Y / 2f

P = XX, (4.1)

where p is the x-parallax, and B is the baseline of camera separation. The range and heading

angle of the object point are defined to be

H = sqri(X>+ Y’ +2%) = sqri((x,+x)°+(zi+2r)+4f )) B/ 2p

0 =tan’(X/Y) = tan '( (x,+xr) 7 2f ). (4.2)
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The differential relationships of Eq. (4.1) can be represented as:

dY = -(Bf/p®) dp = -(Y/B)Y/f) dp
dX = -(Y/B) Y/ )(xc+xp)2f)dp + (172)(Y/dx +(1/2)(Y/dxe
dZ = -(Y/B) Y/ )(ze+zr)2f)dp+ (12 Y/f)dzL+(1/2 Y/ dzg

dp = de - de . (43)

Substituting k;= Y/B, k2= Y/f, and converting the above equations into the relationships of

the mean squared errors, we obtain :

my=* kiksm, (4.4.1)
my =%t sqrt (k,zkzz( (xi+xr)/2f) 2 m,,2+ kzzmxz ) (4.4.2)
mz =2t sqrt (k/'k?((ze+20)2) % mp*+ ki’m?) (4.4.3)
my= 2 mpq . (4.4.4)

where m,, represents the mean squared error of image coordinate measurements and its
value depends upon the pixel spacing & of the cameras. The coefficient k; indicates the

distance-to-baseline ratio, and k; the imaging scale.

Assuming that the camera’s field of view is ¢, the maximum coordinate range in the x-

direction of the image space is
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max | ((x,+xg)2f)| £ tan (@ 72). (4.5)

Since the cameras are mounted on the top of a land vehicle in most terrestrial mobile
mapping systems, the height of each camera exposure station is about 2m, i. e., H=2m in
Figure 4.1. Therefore, the variation in the Z-direction of object space can be assumed to be

restricted to 1Z,, | = 2.5 mm, which results in the range of the image z-coordinates

((zL+2R)2f) £ Zpu/Y . (4.6)

By examining Eq. (4.4), the following parameters are considered as major factors
influencing imaging system performance and accuracy: the distance (Y) between camera
exposure station and object point, the baseline length (B), the focal length (f), and the

mean squared error of image parallax measurements (m,).

4.3 Estimated Positioning Accuracy

4.3.1 The Mean Squared Error of Image Coordinate Measurements

Because of the discrete nature of the digital imagery, the maximum error of image

measuring coordinates may reach up to half of one pixel spacing (82). Let €, and €z

represent the noise component associated with the true image coordinates, x; and xz. The g,
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and e are assumed to be independent and uniformly distributed between -&2 and &/2.

Then, their probability density functions can be written as,

fle) =14, dR2<er=e=¢gr<d 2. (4.7)

The mean squared error of image coordinate measurements can be derived as,

872
M= [ f(e)de =8/12, My =% 0295 (4.8)

612

The mean squared error of x-parallax measurements is

My =2mpy=2 0416 . (4.9)

The above value indicates the coordinate measurement accuracy using manual pointing, i.e.,

by a human operator.
4.3.2 Error Distribution

4.3.2.1 Along-Track Error Distribution

Using Eq. (4.4.1), in the case of B=2m, f=8mm, and § =8.41m, the magnitude of along-

track error my with respect to Y is tabulated in Table 4.1. The along-track error drifts very
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fast with an increase of the distance Y. The my reaches up to 30 cm when the distance Y is

approximately 35m from the camera exposure station.

Table 4.1. Distribution of along-track errors and upper bounded total errors (unit: cm)

Y(m)| Sm I0Om 1Sm 20m 25m 30m 35m 40m 45m SOm

my 0.54 215 484 861 1346 19.38 2638 3445 43.60 53.83

my 027 094 206 362 563 808 1098 1432 18.11 2235

mgz 033 063 093 124 155 18 217 248 279 3.09

myy | 0.60 235 526 934 1459 2099 2857 37.31 47.21 58.28

mxyz | 0.69 243 535 942 1467 21.08 28.65 37.39 47.30 58.37

4.3.2.2 Across-Track Error Distribution

When the angle ¢ of the field of view is chosen as 45° (when the imaging area is assumed
to be 6.4mm x 4.8mm and f=8mm), the upper bounded across-track errors are shown in
Table 4.1, i.e., the values of coordinate X = X,,,, = Ytan(¢ /2) is used. This error increases

with distance Y as well. When Y is 35m, the upper bounded error of the X component is
about 10.98 cm, which is 1/2.4 of the error of the Y component. Comparing the two

components my and my(Eq. 4.4), we have

kika((xi+xp)/2f) my : komy = N2 X : B. (4.10)
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When X>>B,

my =+ k,kz((xL+xR)/2f) mp. (411)

Therefore, the following relationship is generally used to estimate the error contributions:

my:my=Y: X (4.12)

4.2.3 Total Error Distribution

Substituting Eq. (4.5) and Eq. (4.6) into Eq. (4.4), the upper error bounds (my, my, mz, myy,
and myyz) can be obtained. Figure 4.2 shows the distribution of upper error bounds with ¢

=45° and Z=Z,,,.=2.5m. The error values are given in Table 4.1. It can be seen that the Z-
component errors can be neglected. The vertical accuracy my is superior to the horizontal
accuracy myy. The error component my dictates the total accuracy of object coordinates,
myyz. In other words, the along-track distance Y is a significant factor influencing the total
positioning accuracy. In order to meet the accuracy requirement of + 30 c¢m, the distance
between the positioned object and the camera exposure station should be restricted to
within 35m using the assumed set of system parameters mentioned above. Figure 4.3
illustrates the 3-D distribution of horizontal mean squared error myy . The contour interval

is 10 cm. This map provides an overview of positioning errors.
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Similarly, the error distribution of the range and heading angle can be derived using Eq.
(4.2). The z-image coordinate has a negligible effect on the range and no effect on the

heading angle.

A number of practical tests have been conducted by El-Sheimy (1996a) and Szarmes
(1994). Their results fit well with the error estimates derived from the error models given

above.

4.3.3 Error Analysis

4.3.3.1 Worst Case Error Analysis

Since the my term dominates the total error, only the Y-direction error component will be

analyzed in the following sections for the sake of simplicity. Using Eq. (4.1), let the

parallax error be Ap = p-p (1Apl<d ), we have

AY=Y -Y=Bf/p-Y

= -Y’Ap/(Bf+YAp) . (4.13)

Therefore, the worst case error formula can be written as

0< 1AYI< Y2 6 /(Bf-Ymud ). (4.14)
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The formula above facilitates a conservative analysis of the error budget for imaging

systems:

(1) Determination of the maximum accessible object distance Y., with a required accuracy:
if f/=8mm, B=2m, § =8.4 um and AY is required to be less than 30 cm, then the maximum

accessible distance Y, is 24m after solving the quadratic equation above. This result also
demonstrates that if a high accuracy level is required, the positioned object should be within

a short distance to the camera station.

(2) Determination of the required accuracy of the image coordinate measurement to position
an object with a certain distance: if the positioned object is SOm from the camera station, in
order to reach 30 cm (AY) object accuracy (f=8mm, B=2m), the maximum parallax error Ap
should be restricted in 1.9 pm (0.24 pixel). Consequently, the improvement of the image

coordinate measurement accuracy will greatly increase the object positioning accuracy.

4.3.3.2 Relative Accuracy

The relative accuracy can be defined as

Ry=1Y -Y1/Y = |Apl / (p+Ap) = YIApV (Bf+YAp) . (4.15)
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If p or Bf increases, the relative accuracy will be improved. The probability of the relative

accuracy Ry being within a certain tolerance 7 has been derived by Blostein and Huang

(1987), and can be written as:

L 2= -ty <l
2 n - *
P(IRA< T )={In(1-p )" 1-7° p

1, r21/p

(4.16)

The above expression indicates that the larger the parallax p, the greater the percentage of

the relative accuracy being within a certain tolerance t that can be achieved. For instance, if

7 =0.01, the probability P(IRyl<t) will be 75%, when p is assumed to be 50 pixels

4.3.3.3 Relative-Range Accuracy

The relative-range accuracy is sometimes a more important measure than relative accuracy,

and can be defined as

RRy=17Y - N /Y muc-Ymin) - (4.17)

Since the size of an object of interest lies within a narrow range, the above expression can

be used to assess a relative accuracy of the size or the length of the measured objects
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situated at a certain object distance. It contains more descriptive information in airborne
mapping applications. For example, if the flying height of an aerial stereo imaging system is
5000m above the terrain and the objects to be positioned on the terrain vary in a range of
50m, and assuming the absolute range error is 5m, then the relative accuracy Ry would be

0.1% and the relative range accuracy RRy would be 10%.

4.4 Imaging Geometry and Positioning Accuracy

4.4.1 Effects of the Length of Baseline

Figure 4.4 Variations of the upper
bounded errors relative to B

80 | —@—B=1.5m
70 '—x—B=2.0m
| —&—B=2.5m
¥ 40 | —¥—B=3.0m

5 10 15 20 25 30 35 40 45 50

Y distance (m)

As B increases (k; decreases), the positioning accuracy will be improved according to Egq.
(4.4.4). The variations of myyz relative to B are illustrated in Figure 4.4 (f = 8 mm and
d=8.4um). If the object coordinate accuracy of 30 cm is required, this figure shows that the
object distance can reach up to 50m when B is set to be larger than 4m. However, the

extension of the length of the baseline B is restricted practically and physically, since most
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stereo imaging systems for mobile mapping applications are mounted on a mobile platform
(e.g., on top of or inside a land vehicle). The size of the platform limits the setting of a large
baseline. In addition, an increase of B will cause a decrease of the overlap (AX) of imaging,

thus eventually increasing the system cost for applications (i.e., more survey runs are
needed to enlarge the image coverage). It is also worth mentioning that the long baseline
will produce many more ambiguities for manual target pointing, automatic image matching
and feature extraction from imagery. Consequently, a tradeoff has to be made in the choice
of an appropriate baseline. Maintaining a basic degree of overlap of a stereo image pair
should be considered first in determining the maximum length of the baseline, which will

be discussed in the next section.

£AX +——B —

S.

Figure 4.5 Overlap area

4.4.2 Effects of the Overlap Percentage

The horizontal range AX of overlap area can be derived from Figure 4.5,

AX =2Y tan (¢/2)- B . (4. 18)
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The degree of overlap, ¢, of an image is defined as

o= AX/2Ytan(@/2)

= [- B/2Ytan(9/2) . (4.19)

In a terrestrial imaging system, the degree of image overlap is a function of the distance Y.
If one wants to maintain a 40-50% overlap degree at Y,,;, = 5Sm, a baseline length larger than
2.5m cannot be used. In practice, a larger & is always preferable. On the other hand, the
overlap degree can be extended using a bigger angle ¢ of the field of view. However, ¢

is dependent on the selected CCD camera type (sensing area) and the focal length.

4.4.3 Effects of the Focal Length

The coordinate accuracy of 3-D objects will be improved when using a lens with a larger
focal length according to Eq. (4.4). The effect of increasing f on my is equivalent to that of
increasing B, examining Eq. (4.4.1). Also, a tradeoff of the length f has to be achieved to

maintain a certain angle of the field of view ¢ .

The most commonly used CCD video cameras have two types of sensing area formats,
namely, 1/2 inch format (6.4H*4.8V mm) and 2/3 inch format (8.8H*6.6V mm). The small

sensing area limits the field of view. It can be seen that only lenses with focal length of 8
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mm can provide a field of view angle larger than 45°. However, the use of small focal

length will obviously increase effects of errors due to lens distortions.

4.4.4 Effects of the Accuracy of Image Coordinate Measurements

The accuracy of image coordinate measurements is determined by the pixel spacing & and

the pixel measurement accuracy. The pixel spacing depends on the selection of the type of
CCD camera. The variations of the major error component my relative to the accuracy of
image coordinate measurements using Eq. (4.4.1) are illustrated in Figure 4.6 (for the case

of B = 2m, f = 8mm and & = 8.4um). The figure shows that the image coordinate

measurement accuracy of 0.2 pixel can produce the result of object positioning accuracy of
30 cm with an object distance 50 m (same result as from the worst case accuracy analysis in
Section 4.3.1). Therefore, highly accurate image coordinate measurements are of particular
importance to improve the total accuracy. The use of sub-pixel image point measurement

algorithms or multiple image matching algorithm (Tao et al., 1997) is valuable.

Figure 4.6 Variations of my relative to pixel
measurement accuracy
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4.4.5 Optimal Configuration of Imaging Parameters

The configuration of geometric imaging parameters is very important in the development of
a successful stereo imaging system. The following imaging parameters have to be set or
chosen appropriately: the baseline B, the focal length f, the overlap degree o, the field of
view angle ¢, and camera types (pixel spacing d, sensing area L, and related camera
features). Based upon the previous analysis, the maximum length of B is restricted by the
desired overlap degree «; the overlap degree is affected by the field of view angle ¢ of the
camera, while the field of view angle is determined by the focal length f and the camera
sensing area L. Although the individual effects of these parameters on the system
performance have been analyzed, a tradeoff has to be achieved to realize an optimal,

combined system performance. The following constraints can be applied to determine this

tradeoff:
Bf > max (4.20.1)
¢ =2wan’’(L20)2 T, (4.20.2)
o =1-B/2Ytan(9R2)=1-Bf/YL> T, , (4.20.3)

where L represents the maximum dimension of the sensing area, T, is the required angle of

the field of view and T, is the required overlap degree. As a result,

fs L2tan(T, 12)
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(Bffmax = YL(I-T, ). (4.21)

In land-based mobile mapping systems, the objects to be measured lie in the road corridor
about 5-50 m from the camera station. If the field of view T, = 30° at Y,=5m is required,
and a standard format camera is selected (either 1/2”or 2/3"), i.e., [=6.4 or L=8.8mm, the
value range of combinations of parameters B and f can be calculated (shown in Figure 4.7),
by solving the above constraints. It can be seen that the focal length f is in range of 6-12
mm and the corresponding B is limited to 1-3 m, when the %2” format camera is chosen. It is

found that the use of 2/3” inch camera allows a more flexible combination of B and f.

Figure 4.7 Optimal configuring parameters B and f
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There are a number of combinations of B and f that are available. However, the use of a
shorter focal length will increase lens distortion errors. Therefore, the focal length should be

chosen as large as possible. In addition, the use of a larger focal length instead of a larger
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baseline B will reduce the ambiguities of image point matching and improve the point

measurement accuracy.

Furthermore, the tradeoff between the choice of camera parameters of pixel spacing §,
sensing area L, and related camera features is also to be achieved. In practice, the physical
features of different camera types should be taken into account first. The choice of camera

types in terms of 8, and L can be decided by the quantitative analysis mentioned above.

4.5 Chapter Summary

e The positioning accuracy of object point coordinates derived from a stereo imaging
system is determined by four major components: the distance between camera exposure
station and object point Y; the baseline length B; the focal length f; and the mean
squared error of image parallax measurements m,.

¢ The along-track error component my is the predominant error contributing to the total
positioning error, while the z-directional error component is relatively small and could
be negligible.

e Under the assumed settings of the imaging parameters (B = 2m, f = 8mm and

0 =8.4um), if only the error of image coordinate measurements is considered (m,
=0.419), total positioning accuracy of 30 cm can be achieved when the positioned object

is 35m from the camera exposure station. If the mean squared error of image coordinate
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measurements is improved to be 0.2 pixel (0.28), the positioned object can be 50m from
the exposure station with the same positioning accuracy of 30cm. Therefore, the
development of sub-pixel image measurement methods is particularly important.

The effects of the imaging system parameters (baseline B, focal length f, overlap degree
., field of view angle ¢, and camera sensing area) on object positioning accuracy were
systematically examined. The maximum baseline length is restricted by the desired
overlap degree. The overlap degree is affected by the field of view angle of the camera.
The field of view angle is determined by the focal length and the camera sensing area. A
method to determine the optimal imaging parameters was developed to achieve a
tradeoff between these parameters.

It can be concluded that the use of multiple images for object measurement is necessary

due to the limited baseline setting in mobile mapping systems.
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CHAPTER 5

MULTIPLE-IMAGE-BASED

SEMI-AUTOMATIC OBJECT MEASUREMENT

The goal of this research is to develop a robust semi-automatic approach to improve the
efficiency and accuracy of object measurement from mobile mapping image sequences.
Since high-density image sequences are available in mobile mapping systems, an object
along the road corridor is usually visible in a number of consecutive image pairs. By using a
multiple-image matching method, once an object point in one image is manually selected,
corresponding points in the consecutive image pairs can be determined automatically.
Consequently, the whole procedure of object measurement is carried out semi-
automatically. Furthermore, the 3-D coordinates of the object points can be calculated using
multiple corresponding points, rather than two corresponding points. Due to the multiple-
baseline geometry employed in the photogrammetric intersection, the accuracy and the

reliability of the 3-D coordinates will be greatly improved.

5.1 Introduction

It has been recognized that the application of fully automatic feature extraction is still

restricted and is only possible when tailored to specific objects (Gruen and Streilein, 1994).
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We are dealing with the measurement of any type of object of interest in images with no or
little knowledge about the objects. It is understood that the cooperative work between the
two agents, human operator and computer, will play a key role in intelligent information
processing (Tao and Lin, 1994). A successful semi-automatic method will be beneficial not
only due to its reliability but also due to its efficiency. Therefore, development of a semi-
automatic scheme for feature extraction is the aim of our research. It will be seen that a
certain level of human involvement has been applied in the approaches developed in

Chapters 5 and 7.

Acquisition of 3-D information through image measurements requires matching of
corresponding points. Extensive studies and publications can be found in this area. A brief
overview of image matching and feature correspondence methods is given in Appendix D.
Since the mobile mapping image sequences are georeferenced, an object in the scene can,
usually, appear in a number of stereo image pairs. For example, in the VISAT system, at
least 3-4 image pairs covering the same object can be available when the vehicle speed is
50-60 km/h and the image capture rate is one image set per 0.4 second. Such imaging
geometry of mobile mapping systems presents a great opportunity for the use of multiple-

image matching to achieve robust and accurate object measurement.

In addition, according to the analysis results performed in Chapter 4, the accuracy of 3-D
object coordinates degrades dramatically along the depth (vehicle moving) direction, due to
the limitation of a short baseline configuration in the VISAT mobile mapping system.

Therefore, even in the manual object-measurement scheme, the human operator may be
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required to measure more than two corresponding points in consecutive image pairs, so that
a multiple-baseline-based photogrammetric intersection using multiple corresponding
points can be performed to increase the coordinate accuracy of measured objects. Figure 5.1
shows the current imaging geometry of the VISAT system. The baseline of the current
stereo image pair is about 2m, while the stereopsis between the current image and the next
image taken in the next time instant has a 6-10 m baseline. The use of multiple points with
larger baseline settings for intersection to increase the coordinate accuracy has been widely
applied in high-accuracy close-range photogrammetry (Gustafson and Handley, 1992;
Fraser, 1992; Fraser et al., 1995). Therefore, if high-accuracy results are required, the
human operator will be asked to browse the image sequences and capture the corresponding
points visible in a number of images. This procedure is not only time-consuming and error-

prone, but also unrealistic for practical operations.

In this research, a semi-automatic object measurement approach is developed to expedite
the manual measurement procedure. There are two key techniques involved in this
approach: (1) multiple-image matching: automatic determination of the corresponding
points in consecutive image pairs; (2) multiple-baseline-based photogrammetric
intersection: optimized calculation of 3-D object coordinates using muitiple-baseline
geometric configurations. In this thesis, the development of a multiple-image matching

method is a goal.
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6-10 m

Figure 5.1 Multinocular stereo geometry and multiple epipolar constraint

5.2 Multiple-Baseline-Based Photogrammetric Intersection

Recall from the analysis of Section 4.2, the mean squared error of the 3-D coordinate (Y)

along the depth direction can be expressed as
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my= k/kgm,,, k1=Y/B, kz=Y[f - (5.1)

In land-vehicle based mobile mapping systems, the baseline length is usually limited, say
2m. In the case of object distance Y = 30m, f = 800 pixel units, and m, = 0.4 pixel, the
resulting depth coordinate error my is 22.5cm. However, if the baseline B of 8m is applied,

the object accuracy of my= 4.5cm will be achievable.

On the other hand, depending upon the vehicle speed and the image capture rate, the along-
track baseline (the distance from the current camera station to the next camera station,
shown in Figure 5.1) could be 6-10m long, for instance, in the VISAT system. The use of
multiple baselines provides a viable means to improve the accuracy and reliability of the 3-
D intersection. Due to the unavoidable calibration error of imaging systems, the conjugate
light rays originating from different cameras may not intersect at one point in the 3-D object
space. Therefore, an estimation algorithm has to be derived to determine an optimal

position of the intersection point. When using the maximum likelihood estimation method,

the estimator for the ¥ is given by Roberts and Ganapathy (1987) as

2 1
I8y
, (5.2)

355,

=2 j<i

I7Y =
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where B;; is the baseline of the i and j camera pair, and Yj; is the intersection result using the
i and j camera pair. The reciprocal of the maximum likelihood estimator ¥ for N cameras
turns out to be a weighted sum of the two-camera intersection results. The weight for each

stereo image pair is the square of the pair’s baseline. The variance of ¥ can be derived as

N B.2
zz yu:’- T
oy =—— L (5.3)
N Bij

223

=2 < Y~

In fact, the orientation accuracies of camera stations are different from one to another
resulting from the results of GPS/INS navigation data. The relative orientation accuracy of
the fixed stereo rig (2m baseline) is also different from that of the along-track stereo rig (6-
10 m baseline) formed by the current camera station and the subsequent camera station. The
fixed camera rig is calibrated by a photogrammetric bundle adjustment, while the relative
orientation of the along-track stereo rig is determined by the GPS/INS positioning method.
A Kalman filter based method considering both accuracy and reliability of the camera
orientation parameters has been discussed by Li, et al. (1996) and Zou (1996). The method
is applied to select the best image pair from an image sequence to perform an optimal 3-D
intersection. For a more detailed analysis of advantages of the use of multiple-baseline
intersection, one can refer to Mason (1995). In our implementation, the bundle adjustment

based multiple-point photogrammetric triangulation method is used (Szarmes, 1994).
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5.3 Multiple-image Matching

5.3.1 Problem Identification for Matching

Due to the large geometric distortions in terrestrial imagery, image matching becomes very
difficult when applied in either a left-right image pair or a forward-backward image pair.
Such distortions are caused by the large variations in object distance to a camera and by the
large differences in camera view angles. Since no knowledge of the measured object
distance is obtained, the distortions cannot be easily removed. If an object is located at
ground level, the geometric distortion can be corrected by using a ground plane constraint.
The ground plane constraint has been described in Chapter 3 and successfully applied in

road centerline reconstruction (Chapter 6).

The second common problem arises from occlusions. Occlusions occur when an object that
can be seen from one camera viewpoint cannot be seen from another camera viewpoint.
Consequently, an object in one image may not have a match in another image. Figure 5.2
gives a typical example. Due to the large differences in the camera view angles and the
partial occlusion, the window background of the object of interest, a traffic sign, in the left
image is very much different from that in the right image. A very low rate of successful
matching is found in this case, when an area-based matching method is applied to establish
the correspondence. Feature-based matching is an alternative to this problem. However,

reliable extraction of object features in outdoor scenes is still very complicated.
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Left
Image

Right
Image

Figure 5.2 Problems for image matching

It is recognized that the constraints from binocular stereo are not sufficient to impose a
unique solution to the matching ambiguities caused by the above factors. The exploitation
of information from a third image or more images can disambiguate matching results to a

large extent:

e The use of more than two images presents a strong geometric constraint, the
multinocular epipolar constraint. This constraint has been proven to be very
effective to reduce matching ambiguities.

e There are a number of combinations of stereo pairs among a stereo image sequence
with different baselines. Generally speaking, the ambiguities will be less when
matching is performed on an image pair with a short baseline. If a longer baseline is
used, a larger disparity range has to be searched to find a match. Thus, a high

possibility of a false match may occur (Kanade, et al., 1992). However, the 3-D
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intersection may have a more precise result when using a large baseline. Therefore,
the use of multiple-images can improve both the reliability of matching and the
accuracy of intersection through an appropriate trade-off.

e The availability of multiple views provides the possibility of circumventing the
occlusion problem. For instance, if a corresponding point cannot be seen in the right
image taken from the current camera station, it may be visible in the next (or

previous) left image taken from the next (or previous) camera station.

5.3.2 Multinocular Epipolar Constraint

Multinocular epipolar constraint is the main constraint derived from multinocular stereopsis
for disambiguating the matching results. As shown in Figure 5.1, for the case of a four-
camera configuration, camera i (i=1, 2, 3, or 4) is represented by its optical center C; and its
image plane P,. Given a scene point P, its image point /; by camera / is given by the
intersection of the line PC; with the plane P, Points I;, I, and [; form a triplet of

homologous image points.

Given a pair (i, j) of cameras and a physical point P, the conjugate epipolar lines L;, and L;
can be determined. As one can see, a scene point P produces three pairs of homologous
epipolar lines. When the image point (J; I;, Ii) forms a triplet of homologous image points,
then /; is necessarily located at the intersection of the epipolar lines L;; and Ly, respectively,
defined by I; and .. Therefore, the search for homologous image points between two

images can now be reduced to a simple verification at a precise location in the third image.
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For instance, checking that (/;, I;) form a pair of homologous image points consists of
verifying the presence of /5 at the intersection of L;; and Lj;. The more the images used, the
more the constraints that are available. However, the computational cost must be

considered.

5.3.3 Review of Related Work

In the recent past, trinocular and multinocular matching has been of considerable interest in
stereo analysis (Ayache and Lustman, 1991; Baltsavias, 1991; Dold and Mass, 1994; Ito
and Ishii, 1986; Mass, 1991; Okutomi and Kanade, 1993; Pietikainen and Hardwood, 1987
Shibasaki and Murai, 1988; Yachida et al., 1986). Dhond and Aggarwal (1989) performed a
cost-benefit analysis of the use of a third camera for stereo matching. It was concluded that
trinocular matching reduces the matching ambiguities by more than half, while the
corresponding increase in the computational cost is only about 25%. Mass (1992)
conducted a quantitative evaluation of disambiguating performance by using more than two
cameras, and applied four cameras to establish image correspondences for particle tracking.
In photogrammetry, the use of multiple-image matching techniques to generate 3-D terrain
surfaces from a number of overlapping images is increasing. Shibasaki and Murai (1988)
used three SPOT image matching to improve mapping accuracy; Baltsavias (1991)
developed a multiple-image-based, least-squares matching method. The multinocular
epipolar constraint was recently utilized by Mass (1996) to derive matching approximate
values. Automatic point transfer for aerial triangulation can be also accomplished by

multiple-image matching, the related publications can be found in Agouris (1992) and
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Krzystek et al. (1995). In computer vision, multiple-image matching has been widely used
for scene reconstruction (Dold and Mass, 1994 and Yachida et al., 1986) and robotics
navigation (Ayache and Lustman, 1991; and Okutomi and Kanade, 1993). The recent trend
in robotics towards reliable reconstruction is to further integrate correspondence methods
with optical flow techniques, using stereoscopic and sequential image data (Baker et al.,
1994; Hanna, 1993; Navab and Zhang, 1994). It is demonstrated by many research results
that stereo-motion cooperation has a capability to augment stand-alone correspondence
methods, image matching or optical flow. However, the establishment of an optical flow
field from image sequences requires a very high rate of image capture, say 25Hz or 30Hz.
This condition cannot be met in the VISAT mobile mapping system. However, the stereo-

motion cooperation approach could be applied to other mobile mapping image data.

In the above mentioned methods, even though the goals, system configurations, and
imaging conditions are different from one another, the primary aim of the use of multiple
images is to improve the reliability of image matching using the redundant information
existing in multiple images, for example, via the multinocular epipolar constraint. It is
believed that the success of a multiple-image matching method is based on ihe design of a

matching strategy and the utilization of the redundant information.
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5.4 Object Measurement Based Upon Multiple Images

3.4.1 Method Overview

The integrated GPS/INS navigation technology allows the collected image sequences to be

georeferenced rigorously in a global coordinate system. Thus, the multinocular epipolar

constraint is available from the image sequences with known ego-motion parameters. The

proposed multiple-image matching method consists of the following steps (Figure 5.3):

(1)
(2

3

4)

()

Manually select an object point in the current left image using the mouse pointer.
Automatically snap a critical point close to the input point using a digital snapping
technique.

Perform the initial image matching between the current left image and the right
image along the corresponding epipolar line to find a set of match candidates. If no
match candidate is found, use the forward left image or the backward left image in
the image sequence forward-current or backward-current image matching.

Conduct consistency filtering to determine and validate the best match point from
the match candidates using the multinocular epipolar constraint.

Calculate 3-D coordinates of the object point using multiple-baseline

photogrammetric intersection.
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Figure 5.3 Flowchart of the semi-automatic object measurement procedure
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5.4.2 Digital Snapping

A digital snapping technique is proposed to increase the positional precision of the image
point measured by a human operator. Due to the low resolution of the image (512 x 480), it
is not easy for a human operator to point an object at the desired position in the image. The
image enhancement and zoom-in tools have been developed to facilitate the measurement
process. However, it is our experience that the desired point of the object to be measured
usually occurs at the place where gray values vary distinctively. In other words, the desired
point is essentially a critical image point in most cases. Since human visual ability is not
sufficient to sense such a point, an automated technique called digital snapping is designed
to snap such a neighboring critical point when a manually clicked point is given. Figure 5.4
demonstrates the digital snapping process. This function is optional depending on the user

setting.

Figure 5.4 Digital snapping process

66,0

(“+” manually selected point, “x” automatically selected point by the snapping process)
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In the current implementation, digital snapping is performed by using the Moravec operator
(Moravec, 1979). The Moravec operator evaluates the squared differences of gray values in
the four main directions, defined by pixel rows and columns and the two diagonals. The
squared difference in each direction is computed as the sum of squared gray value

differences between neighboring pixels. The Moravec operator is defined as

N/2-1
M= DlgU+k)—gU+k+1,D))

k=—-N12
NI12-1
My= 3 [gU+k,J+k)—gU +k+1,J +k+D]

k=-N12

N12-1

My= D [gU.J+k)-gU.J+k+D]
k==N12
N/2-1

My= D (gU+kJ-k)-gU+k+1,J-k-D}, (5.5)
k==N12

where g(/, J) represents the gray value of pixel (I, J), and N is the defined window size. If
the M = min(M;), i=1,2,3,4, of that point, is the maximum in a local neighborhood and
surpasses a certain threshold in the defined window, the point is defined as a critical point

to be snapped. If no such point exists, the original input point will be taken as the output.

When using a small window for snapping, we find that this technique is of very practical
use to assist the user to locate precisely the desired point in an image. Some examples and
their effects are illustrated in Figure 5.5 (the window size for snapping is 9x9 and the

window size for Moravec computation is 5x5 in the examples). Both the original images
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and the enlarged images are given. The ‘+’ sign represents the clicked point by a human

operator and the ‘x’ sign marks the point selected by the snapping process. It can been seen

that digital snapping yields improved pointing precision.

Traffic sign Lane marker

Light pole Electric pole

Figure 5.5 Effects of digital snapping

It has also been found that the digital snapping can improve the success-rate of image

matching. An example is given in Figure 5.6. In this case, if the critical point is not clicked,
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the image matching step will fail. Aided by digital snapping, this problem can be overcome

{0 some extent.

Left image Right image

Figure 5.6 Image matching based on digital snapping

5.4.3 Initial Stereo Matching

In the current implementation, three consecutive image pairs of an image sequence are used
for image matching. If a point is measured in the left image, the corresponding five epipolar
lines, Ly, i= 2, 3, ...,6, in the five other images can be determined. However, it has been
observed that the orientation accuracy of the along-track stereo rig is not adequate to
perform matching using 1-D epipolar line search. For example, the rate of successful
matching is low between image No.1 and image No.4 if matching is only performed along
the 1-D epipolar line. As mentioned in Section 5.2, the relative orientation accuracy of the

fixed stereo rig is much higher than that of the along-track stereo rig, and as well, the
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baseline is shorter, which is good for limiting the matching search range. Therefore, we use
the current stereo pair, i.e., the fixed stereo rig, to derive a set of initial match candidates. If
no match candidate is found in this step, the previous left image or the next left image in the
image sequence will be used to perform the initial stereoscopic image matching step (see

Figure 5.3).

[n the initial stereo matching step, a number of techniques are employed, namely a weighted
cross-correlation measure, correlation coefficient profile analysis, disparity range constraint
and two-way matching double-check. A weighted cross correlation measure is designed to
compute a correlation coefficient profile along an epipolar line. An analysis of the obtained
correlation coefficient profile is conducted to determine a set of match candidates. The
matching search range is restricted to a certain length along the epipolar line by using a
disparity range constraint. At this step, in order to avoid complete match failure, i.e., the
correct match is suppressed, a very small threshold of correlation coefficient, e.g., 0.4, is
applied, and all peak points in the obtained profile of correlation coefficients are chosen as
initial match candidates. A correlation window of 15 (H) x 11 (V) size is used in all
experimental tests. As a result, a relatively large number of points are available in the set of

matching candidates.

The two-way matching double-check is then applied to filter out some inconsistent
candidates. We take each candidate as a master point and perform matching backwards in
the current left image around the input point. If the matched point is the same as or close to

the original input point within 2 pixels, the candidate is acceptable; otherwise it is rejected
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from the candidate set. The two-way matching double-check scheme was proposed by
Hannah (1989) and has been widely adopted for area-based image matching. Its advantage
in consistent matching has been demonstrated by Fua (1991). In our system, this function is

treated as an option since it increases the computational cost.

5.4.3.1 Weighted Cross-Correlation and Coefficient Profile Analysis

The weighted cross-correlation (WCC) measure was introduced by Mori (1973) in the early
70’s, and has seldom been used. Recently, it has been found that the WCC measure has a
good performance in tracking features in image sequences (Zheng and Chellappa, 1993).
Since greater weights are placed on pixels that are closer to the window center, WCC favors
the center parts at the cost of the surrounding portion, thus the deformation and occlusion

ambiguities can be addressed to some extent by using the WCC measure.

The WCC measure is constructed as follows in our implementation:

w(l, J) = Wmin'*‘(Dma.r‘D)(l'Wmin)/Dmax

=1 - D(1-Win)/Dmas D=max{I1\,1J1} (5.6)

where w(/, J) is the weight value for the pixel (I, J). Wy is the minimum weight value (e.g.,
0.5) defined in the correlation window controlling the contribution of the surrounding
pixels. The maximum weight is normalized to 1. D and D, represent, respectively, the

distance from the current pixel (J, J) to the window center and the maximum distance value
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within the window (i.e., ¥2 of window size). This is a linear weighting form. Other
weighting functions can also be applied, such as a Gussian function or an exponential

function. Finally, the WCC coefficient, p, for the correlation windows i and j becomes

. dowe.g, -~ we, Y weg,) 5.7)
VO wel =Y we, Y wg (T wg, - Y wg, Y wg,)

where, g; and g; represents a gray value in master and slave window, respectively, and is the
weight defined in Eq. (5.6). Figure 5.7 shows an example of a comparison of the correlation
coefficient profiles along an epipolar line computed using an unweighted correlation
coefficient (CC) measure and the WCC measure. The solid green profile was computed by
the CC measure and the red profile was computed by the WCC measure. We find that the
difference between the CC profile and the WCC profile is not significant in most cases.
However, in general, the profile shape of WCC peaks is sharper than that of CC peaks. The
averaged WCC peak values are about 15% higher than the CC peak values. This is due to
the fact that the WCC measure places more emphasis on the window center part rather than

the whole window area.

It can be assumed that the best match point appears at one of the peak points of the WCC
profile. Consequently, a search algorithm is developed to detect these local peaks. The peak
is defined as a match candidate, if its associated correlation coefficient surpasses a
threshold (0.4). This threshold level is represented as a yellow line in Figure 5.7. The

obtained candidates are marked by “x” on the epipolar line.
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5.4.3.2 Disparity Range Constraint

As discussed in Chapter 4, the object to be measured should lie in a certain object distance
(depth) range in order to meet the accuracy requirement. This depth range controls a
disparity range in images and forms a valuable constraint. As a result, the matching search
can be restricted to the disparity range along an epipolar line. Considering a normal case

stereo, Figure 5.8(a), the following relationships hold:

X'rlf = x1/Yinax
xR [f = X2/ Ymin,
xtff = (B-xi)/Ymac= (B-x2)/Ypmin. (5.8)
Cf (Ym.u)
C.
(Ymin)
D,
f S S X'R
| - B : X R
XL —_— Xs . S el

(a) (b)

Figure 5.8 Disparity range constraint (a) Normal case (b) General case
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The disparity range D, in an image can be determined by the known maximum and

minimum depth values (Ymin ~ Ymax) as

Dp =x"g-Xx'R =fB(Yma.x’ min)/Y max ¥ min - (5.9)

The starting search position x 'z can also be computed as

xR = (Bf - xtYmax)/Ymax . (5.10)

When using a rigorous camera model, shown in Figure 5.8(b), an arbitrary 3-D ray

originating from the camera center to a 3-D object point can be represented as

P=C+B1, (5.11)

where, P is an arbitrary point on the line, C can be considered as the furthest (or nearest)
object point on the line, B is the orientation vector of the line, and ¢ is a parameter
representing the distance from the point C to the point P. Using the known coordinates of
the measured image point, P,, and the perspective center point, P, along with the furthest
(or nearest) object distance value ¢ (e.g, 5 < t < 60 m), the furthest (or nearest) object point

coordinates Cy (or C,) can be calculated by
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P.=Cs+B1: or

P.=Cr+PB(t+d), t=60m d=\P;-Pd,B=(P-P)/d. (5.12)

Thus the disparity range D, can be determined using a back projection of the points Crand

Ch.

The disparity range constraint is applied to screen the match candidates whose object
distance is too far to calculate the object coordinates from the current camera station. Any

candidate passing this condition is marked by a white plus ‘+’ sign (see Figure 5.7).

5.4.4 Consistency-Filtering Using Multinocular Epipolar Constraint

After the determination of a set of left-right match candidates, what remains is to filter out
the spurious match candidates and validate the best match. Based upon the multinocular
epipolar constraint, an algorithm for consistency filtering is designed as follows, illustrated

in Figure 5.9:

(a) Calculate the epipolar lines L; of the input point in the other four images
No.3~No.6.

(b) Take a match candidate in the right image (No.2) as a group master, marked by the
double signs, red cross ‘x’ and white plus ‘+’, and then compute the corresponding

epipolar lines, L;> (i=3,4,5,6), in the other four images.
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(c) Using the WCC measure, search each of the four images for corresponding points,
within the window of which the center is determined by the intersection of two
epipolar lines L;; and L. The size of the search window is set as 11 x 11
considering the camera orientation errors. A point is considered as a group member
of the group master, if its correlation coefficient is maximum in the search window
and surpasses a threshold (0.6 rather than 0.4 is used in this step for the sake of
reliability).

(d) Repeat the steps (a) to (c) and go through all match candidates found in image No.2.

(e) Accumulate the number of members for each group. The best match group is found
if its number of group members is a maximum. As shown in Figure 5.9, the best
match group points are marked by the white boxes, which indicates a successful

match.

In some cases, a maximum as described above may not be found. If there are more than one
group having the same maximum number of members, the group in which a member has a
maximum weighted correlation coefficient is considered as the best match group. The

yellow boxes, indicating “caution”, will be used in this case.

Finally, all the points belonging to the best matching group will be used to perform a
multiple-baseline photogrammetric intersection and to calculate the 3-D coordinates of the

corresponding object point.
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Figure 5.9 Multiple-image matching (The black crosses represent match candidates,
and L; represent the epipolar line of the i and j image pair)
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5.5 Test Results and Evaluation

5.5.1 Evaluation of Reliability

Test I

To evaluate the reliability of the method, two types of the tests were designed. The first test
was used as a statistical evaluation of the performance of the multiple-image matching
method. To this end, a number of stereo image pairs with different road scenes were chosen
from the test image sets (see Appendix B for a detailed description). Firstly, the feature
points in the left images were extracted by using the Moravec interest operator (described in
section 5.4.2). An algorithm for the local non-maxima suppression was applied to
determine the local maximum of the interest points (Forstner and Guelch, 1987). The local
maxima of the interest values were taken as feature points. In the test, the threshold of
interest value was set as 25, so that a certain number of feature points were extracted.
Totally, ten test images were used. One of them is shown in Figure 5.10. The detected
feature points are marked as black dots overlaid on the original left image. There are 45
feature points detected in this image (Figure 5.11a). As we shall see that some of detected
points represent features on moving objects (e.g., cars) or objects which are too far from the
camera (e.g., buildings, trees). After screening these points manually, 17 feature points
(illustrated in Figure 5.11b) remain in this image. Using the same procedure, a total of 214

feature points was obtained from ten test images.
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Figure 5.10. Test images for image matching (detected feature points are marked by black

dots in the left image)

(a) (b)

Figure 5.11 Detection of feature points (a) Detected feature points (threshold 25),

and (b) Valid feature points for image matching



97

Secondly, all remaining feature points were taken as input points. The multiple-image
matching method was performed using the current, forward and backward consecutive
image pairs. Finally, a manual check of matching results was conducted on a point-by-point
basis. It was found that 203 matches were successful. This indicates that the successful
matching rate is 94.9% for feature point matching when using the multiple-image matching

method.

The distribution of the number of determined corresponding points for each feature point is

tabulated in Table S5.1. The results demonstrate that, there are about 85% cases in which

more than one corresponding points can be found.

Table. 5.1 Distribution of the number of corresponding points

# of corresponding points for 0 1 2 3 4 5
each feature points

# of determined corresponding 11 24 49 59 29 42

points for total 214 points
Percentage (%) of 214 points 5.1 11.2 1 229 | 276 | 13.6 | 19.6

The selection of the input points for image matching is objective in this test, since the
feature points are detected by an automatic interest operator, rather than selected by a
human operator. Therefore, human factors are avoided in the test. These feature points are

distinct in terms of intensity variations, but have no physical meaning with respect to the
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objects of interest. Essentially, this test demonstrates that the developed multiple-image

matching method can also be used for a general purpose of feature matching.

Test I1

The second type of test was to evaluate the performance of the multiple-image matching
method for the measurement of objects of interest, including point-, line- and polygon-type
objects, such as, electrical poles, traffic signs, manholes, fire hydrants, road lines, and road
boundaries. For comparison, stereo image matching using CC and WCC, and the multiple-
image matching (MIM) methods were applied on the same data set. Totally 69 object points
of interest were manually selected from the image sets. Then, three matching methods were
performed to find the best matches. Based upon a manual check, the successful matching
rates of three methods were 82.6% (CC), 84.1% (WCC) and 92.8% (MIM), respectively.
The unsuccessful matches were 12 points (CC), 11 points (WCC) and 5 points (MIM),
respectively. The improvement of the use of the WCC measure against the CC measure was
not significant from the test; however, the MIM method demonstrates that great progress is
made towards the matching reliability. The reliability of the developed method of multiple-

image matching can achieve 90% in both test-I and test-II.

A typical example of multiple-image matching is given in Figure 5.9. The image shows a
horizontal feature, a traffic stop line. As can be seen, the matching ambiguities are distinct
in this case, because the epipolar line on the right image almost overlaps on the feature of
interest. Neither the CC method nor the WCC method was successful in this situation.

However, by using the multiple-image matching method, the correct match point was
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uniquely determined, because the ambiguities were greatly reduced by the use of the
forward and backward images. Actually, using forward image No.3, the corresponding
point can be very easily determined, guided by the epipolar line intersection of L;; and Lj,.
It was experienced that the disparity range constraint is very useful in reducing the number

of match candidates. Figure 5.9 is a good example of the application of this constraint.

Another example is shown in Figure 5.12. There are four consecutive image pairs, namely
No. T-1 to No. T4, containing two traffic signs of interest. One is a “Stop-line Sign” and
the other is a “Pedestrian Sign”. Here we need to measure the footprint of the “Stop-line
Sign”. As can be seen, the footprint images of both signs are very similar, and thus
matching ambiguities are very significant. The matching methods, CC and WCC, both
failed on the image pairs No. T-1, No. T-2 and No. T-3, but were successful on the pair of
No. T-4, because the information from only two stereo images is not enough to resolve the
ambiguities. The multiple-image matching method worked well in this case, no matter

which image was used as a master image, and no matter which sign was to be measured.



RN

wARLRRNN

4
4
s
¥
H

LALNANANN

Figure 5.12 A comparison of the two image matching

and the multiple-image matching procedures

100



101

5.5.2 Evaluation of Accuracy

By using the multiple-image matching approach, more than two corresponding points can
be found and used in the photogrammetric intersection. It is seen from the tests documented
in Table 5.1 that, in most cases, more than two corresponding points can be determined
from the image sequences. Based on long-term photogrammetric practices and recent
research results using the VISAT image data, it can be stated that the intersection results
computed from multiple corresponding points with different baseline settings are much
better than those from only a pair of corresponding points. The related references have been

given in Section 5.2. A number of practical tests have been conducted by Szarmes (1994).

The following example demonstrates the importance of the use of multiple-image matching.
Due to large scale variations in terrestrial images, high accuracy sub-pixel image matching
is very difficult, and so far there is no good method available to address this problem. The
cross-correlation based matching method gives a theoretical accuracy of 0.29 pixel (same as
the accuracy of manual measurement described in Section 4.3.1). If the object to be
measured is at a distance of 25 m, the resultant error in the object space will be around 15
cm (Table 4.1), in addition to the errors of the georeferencing component (Schwarz and El-
Sheimy, 1996). Figure 5.13 (a) and (b) show a stereo image pair. Two correct matching
points (marked by “x” in the image) were determined by using the CC method, and their
corresponding 3-D point coordinates were also calculated. When this 3-D point was
projected onto the third image (a consecutive forward-left image, Figure 5.13c), it is clearly

seen that the projected point has a shift error of 8 pixels to the real corresponding point in
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this image. Therefore, the use of two images for matching cannot yield accurate
reconstruction, while the use of multiple-images with different baseline setting will greatly

improve the final accuracy in object space.

Figure 5.13 Measurement error and mulitple image matching
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5.5.3 Evaluation of Efficiency

It is recognized that the identification of a desired object by a human operator is easy, but
the accurate measuring procedure undertaken by a human operator takes much time. In this
semi-automatic scheme, the human operator is required only to identify an object of interest
and locate that point in the left image; the rest of the work can be done automatically.
Moreover, by using the digital snapping technique, precise location of the point may not be
necessary. Consequently, comparing with the traditional manual measuring procedure, the
semi-automatic approach avoids the most time-consuming process, i.e., manual

measurement, and takes the advantage of the human capability of object identification.

Although the speed of the multiple-image matching method is not high, the reliability can
be greatly enhanced. The reliability of the matching is our top priority. So far, it generally
takes about 15-25 seconds to complete the matching using the multiple-image matching
method based on a low-end Unix computer, SUN-IPX. A major reason for this is that the
two consecutive image pairs used for the matching are not stored in the memory in the
current implementation, so that the time cost on reading images is significant. Generally
speaking, the multiple-image matching method is two or three times slower than the CC or
WCC method (two image-based matching). It is believed that, with enhanced computing
hardware and an optimized version of the algorithm, the speed of multiple-image matching

will not be a barrier to its practical applications.
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5.6 Implementation of Object Measurement in ImagExpert

ImagExpert is a software package developed for intelligent processing of the VISAT image
data. Appendix A gives a more detailed description of the software package. The core
function in ImagExpert is object measurement, since it is considered a major tool during the
data processing. To facilitate the measurement procedures, a number of options for object
measurement have been developed. In accordance with the differences of the operation

requirements for a human operator, four options are available and listed in Table 5.2.

Table 5.2 Functions of Object Measurement

Options Operations by operator Support
(1~4) Left image Right image Techniques
Mode I Pointing Pointing FBVM
precisely precisely
Mode I Pointing Pointing LRM+FBVM
precisely approximately
Mode I Pointing Pointing not MIM
precisely required
Mode IV Pointing Pointing not DSP+MIM
approximately required

[Table Notes] FBVM: Forward-backward verification matching
LRM: Left-right image matching
DSP: Digital snapping

MIM: Multiple-image matching
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Option 1

(OPERATOR) The human operator is required to precisely measure the points in two
images (left and right). The basic functions, such as zoom-in, undo, and edit, have been

developed to assist in the manual measurement process.

(COMPUTER) Since the two corresponding points are given, the 3-D coordinates of the
object point can be calculated. By using a back projection of the 3-D point onto the forward
two images (No. 3 and 4) and the backward two images (No. 5 and 6), the approximate
positions of the corresponding image points of the original given two points are available.
The matching is performed between the current left image and the forward/backward four
images around these projected positions to search for the corresponding points. At the end,
all the matched points are used to perform a multiple-baseline photogrammetric
intersection. The above process is termed as forward-backward verification matching
(FBVM). This method increases the accuracy of 3-D object coordinates (Li et al., 1996;

Zou, 1996) and has been used a recommended option.

Option I

(OPERATOR) The human operator is required to precisely measure a point in the left

image and approximately give a point position in the right image.

(COMPUTER) Since the approximate position of the corresponding point in the right
image is given, image matching can be constrained in a small window. The rate of

successful matching can be increased to a large extent. Followed by this step (left-right



106
image matching, LRM), FBVM will be executed to further improve the accuracy of object

measurement.

Option 11

The human operator only gives a precisely measured point in the left image and the rest of
the work will be done automatically. The multiple-image matching method is employed in

this case.

Option IV

The human operator gives a roughly measured point in the left image and the rest of the
work will be done automatically. This task is fulfilled by using the digital snapping

technique along with the multiple-image matching method.
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5.7 Chapter Summary

An approach to semi-automatic object measurement using multiple-image matching was
proposed and developed. The reliability of the multiple-image matching method comes
from the use of georeferenced multinocular image constraints. The matching ambiguities
are greatly reduced by using a multinocular epipolar constraint associated with the digital
snapping, the weighted cross-correlation, the correlation coefficient analysis, the disparity
range constraint, and the two-way matching double-check techniques. Moreover, the final
accuracy of 3-D object coordinates is increased. It is believed that this method is of
particular importance to assist the user to perform fast, accurate and reliable feature
extraction. It is also worthwhile research that if a higher image-capture rate is available,
further improvement to robust matching could be achieved by using a cooperation of

feature correspondence and optical flow approaches.
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CHAPTER 6

AUTOMATIC RECONSTRUCTION OF ROAD CENTERLINES

FROM LONG IMAGE SEQUENCES

An automatic approach to road centerline reconstruction using stereo image sequences is
proposed based on a shape from sequences scheme. The reconstruction of 3-D road
centerlines is formulated as a physical problem of solving an energy-minimizing 3-D B-
spline shape model. The reconstruction is described as a process whereby a 3-D road
centerline shape model is deformed gradually, driven by internal and external forces. The
road centerline model is represented as a deformable and elastic 3-D curve, composed of an
abstract material. The external forces, generated from road centerline data extracted from
image sequences, control the local shape of the model. The internal smoothness forces,
arising from the road shape knowledge, control the global shape of the model, and also take

care of the fact that the external forces are noisy or sparse.

6.1 Previcus Work and Problem Identification

As discussed in Section 1.4.2, a number of methods have been developed for the extraction

of road centerlines from image sequences in the areas of mobile robotics and autonomous
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vehicle navigation. However, these methods have primarily aimed at visual navigation
rather than object reconstruction (Dickmanns and Zapp, 1986; Thorpe et al., 1988). In
general, there are two schemes for road extraction: region-based segmentation and edge-

based following.

The region-based segmentation scheme is mainly used when color images are available.
Using color classification techniques, the region of road pixels can be segmented from the
image background so that the orientation of the right road can be determined. The

development of adaptive color models for pixel classification is the main research focus.

The basic principle of the edge-based following scheme is to, firstly, apply an edge detector
to detect the edges of centerline markers, and then use a grouping/following algorithm to

link the edges. In terms of edge following, three main algorithms have been proposed:

(a) Approximation using an analytic function: when edges are detected, an analytic
function, e.g., a polynomial function, is used to approximate the edge points (Dickinson
and Davis, 1990; Schneiderman and Nashman, 1994);

(b) Hough transformation: the Hough transformation algorithm is applied to find a straight
line from edge points (Davis and Kushner, 1985); and

(c) Least squares matching: the area-based least squares matching method can also be

applied to follow the centerline edges (He and Novak, 1992).
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We have tested the above three algorithms using the VISAT images. Each algorithm has its

own pros and cons, but none of them is very reliable. They are all sensitive to image
contents and noise. Long-term experience from the previous research also indicates that

automatic extraction of road centerlines from image alone is still restricted.

The real problematic situations affecting the extraction method can be summarized as
follows (Tao et al., 1996): centerlines with missing, intermittent and faded markings; a
variety of lane marking types, noisy markings with respect to the centerline markings (stop
lines, junction lines or direction lines); lighting conditions (sunshine, rain or cloud) and
shadows (trees or buildings); road types (highway, city street or rural road) and material
(concrete or asphalt); road shape (straight, smooth or sharp curve, or intersection); road
coverage (snow, water, leaves or stones); and road quality (featureless, cracked, or pot-
holed). In addition, some characteristics of terrestrial imagery makes the problem more
complicated, namely, large scale variations within an image, large geometric and
perspective distortions, and occlusions (e.g., due to moving vehicles). Several typical
examples of road images captured by the VISAT mobile mapping system are shown in
Figure 6.1 (6.la: noisy markings, gaps and road surface cracks; 6.1b: shadows and
occlusions (car blockage); 6.1c: large gap in a T-intersection; 6.1d: curved and dashed

markings).
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Figure 6.1 Examples of road images

It is observed that the above mentioned methods rely on image information alone and only
use a single image. Due to the fact that many scenarios and road conditions have to be taken
into account, an innovative approach has to be developed in order to realize an automatic
and continuous reconstruction of road centerlines from long image sequences. To this end,

a new reconstruction scheme was designed, and external information and constraints must
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be explored. As discussed in Section 1.5, three valid constraints are available in the mobile
mapping systems, namely, (1) stereoscopic and sequential imaging geometry; (2) image

georeferencing constraint; and (3) known vehicle ego-motion constraints.

It is also recognized that the model-driven (top-down) scheme is much more controllable
and reliable than the image-based (bottom-up) scheme if the model information can be
obtained. Deformable models have been of considerable interest in current computer vision
research. It is one of new model-driven methods, which has been used in edge detection,
contour extraction, stereo matching and object modeling (Fua, 1991; Kass et al., 1988;
Menet et al., 1990; Terzopoulos et al., 1988). Recently, deformable models have also been
recognized and utilized by photogrammetric practitioners (Gruen and Li, 1995, 1996;

Trinder and Li, 1995; Tao and Lin, 1994).

The main advantage of deformable models is that both geometric and physical constraints
can be incorporated into a mathematical model, whereas in the conventional methods, only
geometric constraints are considered. The multiple constraints coming from different
sources can be synthesized into a mathematical model through an energy combination. For
this reason, an approach based on the idea of shape from sequences is proposed, in which a
physically-based 3-D deformable curve model is employed to accommodate the
combinations of multiple constraints available in the mobile mapping system for 3-D
reconstruction of road centerlines. For detailed information on deformable models, one can

refer to Kass et al. (1988) and Terzopoulos et al. (1988).
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6.2 Overview of the Reconstruction Approach

Image sequence

time

z i :
Update‘ fPredict Y

Approximate
Refined road model
© road model ™ X

Figure 6.2 The concept of shape from image sequences

The reconstruction of road centerlines from image sequences is considered as a problem of
“shape from image sequences.” The problem is to use road centerline information available
from successive images in a sequence and road shape knowledge to update and refine a 3-D
shape model of road centerlines (see Figure 6.2). Thus optimized road centerlines are
obtained through a dynamic and global energy minimization procedure. Based on the shape
from sequences scheme, a systematic combination of multiple constraints from a mobile
mapping system can be implemented (Tao, 1996b). The schematic flowchart of the

approach is illustrated in Figure 6.3.
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This is a closely coupled bottom-up and top-down scheme. Firstly, an approximate 3-D
road centerline model is set up by means of a B-spline approximation of the kinematic
vehicle trajectory data. Secondly, the road model can be back-projected onto the image
sequences using the known orientation parameters of the cameras. Guided by an established
geometric and photometric image model of road centerlines, model-driven extraction of
road centerline feature points is performed, constrained by the projected road centerline.
Furthermore, a stereo-motion matching algorithm based on the stereo and motion
constraints is applied to find a set of matched feature point pairs. After using
photogrammetric triangulation of feature point pairs, a set of 3-D feature points of road
centerlines in the object space is obtained. Thirdly, in order to refine the approximate road
model using the information extracted from the image sequences, the model is defined as an
active and deformable 3-D curve, the 3-D snake (Kass et al., 1988). A physically-based
deformation mechanism is incorporated such that the model can be progressively deformed
driven by the internal and external energies. Internal energy arises from smoothness
constraints representing the natural characteristic of the shape of road centerlines. It
maintains the a priori knowledge about the shape of the road model. The 3-D feature points
extracted from image sequences act as the external energy which enforces the model to
deform towards its desired position. Under a combination of the actions of internal and
external forces, the model will be deformed incrementally towards the final state at which
forces from different sources are balanced. The newly deformed and refined model will
then be used to update the approximate model, and the new information available from

successive new images will be applied to further refine this model. The above process is



116

executed repeatedly until the entire image sequence is processed. The finally obtained
deformation curve can be treated as an optimized reconstruction result of 3-D road

centerlines, because such a result is derived by using globally combined constraints.

In the following sections, three key methods to the implemention of this approach will be

addressed:

(1) generation of an approximate 3-D shape model of road centerlines;
(2) extraction of reliable information of road centerlines from image sequences; and

(3) dynamic refinement of a physically-based 3-D road centerline model.

6.3 Generation of an Approximate Road Shape Model

The approximate 3-D shape model of road centerlines forms the basis of the
implementation of the shape from sequences scheme. To this end, the dynamics of the
vehicle motion (ego-motion constraint) are utilized. The 3-D vehicle trajectory data have
been used to generate an approximate shape model of road centerlines. In VISAT, the
integrated GPS/INS component has been employed to determine the vehicle trajectory
(Schwarz et al., 1993b). After a post-mission Kalman filtering, the trajectory is obtained

with high accuracy, and represented in a global coordinate system.

A 3-D cubic B-spline is introduced in defining the 3-D road shape model:
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m—1
Ou;) = ( x(u; ), y(u;j), 2(u;) ) = ( .Zgﬂ.-(u,-) ), j=0,1,....n-1, (6.1)
1=

where B; are the basis functions of B-splines, V;=(X, Y, Z;) are a set of control vertices of the
B-spline curve, and n and m are the numbers of sampling points on the curve and control
vertices, respectively. The reasons for choosing B-splines to represent the shape model are
as follows: (a) compact representation: the curve can be parameterized very compactly by
its control polygon V; ; (b) local control: only a small part of the curve needs to change if a
certain control vertex is modified; (c) feature compatibility: corners or straight lines can be
imposed on the curve if multiple control vertices are imposed; (d) invariant characteristics:
the control vertices of B-splines are invariant under affine and projective transformation
(Cohen et al., 1995); (e) numeric advantages: the number of unknowns in Eq. (6.1) is m, the
number of control vertices, instead of n, the number of sampling points on the curve (m<n).
Moreover, the B-spline representation can be extended to define a deformable curve model
(B snake) which is a key to our approach for road centerline reconstruction. By means of a
B-spline approximation of the vehicle trajectory data, the approximate shape model is
generated. This approximation is accomplished by a least-squares method. Detailed
mathematical description of B-spline approximation of a group of discrete data can be

found in Bartels et al. (1987).
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6.4 Extraction of Road Centerline Features

The extraction of reliable road centerline information from image sequences is performed
by two-stage processing: feature point extraction of road centerlines and feature point

matching from an image sequence.

6.4.1 Model-Driven Feature Extraction

By the use of the approximate road model, the approximate positions of road centerlines on
the images can be predicted through the model projection (scene-to-image transformation).
A constrained processing window for feature extraction can be determined for providing the
algorithm an area of focus, thus reducing computations. As shown in Figure 6.4, the height
of the window can be determined by using the vanishing line condition (Section 5.2), while
the width of window is a function of the lane width in the scene domain (Tao et al., 1996).
The geometric and photometric model of road centerlines for terrestrial imagery can be
represented as a group of rules (Table 6.1). These rules guide the implementation of a

reliable feature extraction process.

6.4.1.1 Oriented Edge Detection

An oriented edge detection algorithm is proposed to focus on the utilization of edge

direction clues due to the following two reasons: (1) the major clue of the lane marking

feature in images lies in the directions of edges rather than the magnitudes of edges. The
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magnitudes of edges cannot provide meaningful information for centerline features because
they are disturbed by noise, such as from shadows, road coverage, and noisy markings.
However, the edge direction along an image centerline is almost perpendicular to the
predicted centerline (see Figure 6.4) no matter how big the corresponding magnitude is; (2)
as illustrated in Figure 6.5, if the image centerline is oriented at 45 degrees, the nonoriented
edge detector will find an intensity slope with gradually varying values. However, if the
same edge detector is oriented at 45 degrees, the sharp changes of the intensity values can

be detected, and thus the edge can be located.

Constrained processing window

A A
Vanishing N Vanishing
line point
Predicted

centerline — \

Figure 6.4 Image model of road centerlines (refer to Table 6.1 for details)
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Figure 6.5 Oriented edge detector



Table 6.1 Rules for feature extraction (refer to Figure 6.4)

Rule ID | Rule Name Rule Description

Rule 1 Magnitude | The magnitude of the edge should surpass a certain
threshold.

Rule 2 Directionl | The direction of the desired edge should be
perpendicular to the predicted centerline with an
acceptable tolerance of +20°.

Rule 3 Direction2 | The gradient directions of edge z2.1 and z2.2 must be
in opposite sense with a given tolerance of £15°.

Rule 4 Distance The distance between edge z2.1 and z2.2 should be
within a few pixels (2-5 pixels).

Rule 5 Zone gray The average gray value of the zone z1 must surpass a
threshold and must be brighter than zones z3.1 and
23.2.

Rule 6 Continuity | If the distance between a dual-edge and its nearest
dual-edge is beyond a certain range, the dual-edge
will be removed.

Rule 7 Smoothness { The position of the center point of a dual-edge should

be located along a smooth line.

120
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The oriented edge detection algorithm is implemented in three steps: coarse edge detection,
edge thinning and precise edge detection. Firstly, to avoid the time-consuming computation
of the gradient of each point, four directional Prewirr masks, coded O to 3, are used to
convolve the image. Then the direction code (0-3) is assigned to each convolved point at
which the associated directional mask gives the highest magnitude. After using rule (1) in
Table 1, edge thinning (Nevatia and Babu, 1980) is conducted. On the remaining edges, the
Sobel gradient operator is oriented according to the direction code of the edge, and the edge
gradient direction is computed. By applying rule (2), the final edges are obtained and

recorded as a set of candidate feature edges of road centerlines.

6.4.1.2 Dual-Edge Detection

Road centerlines are painted as white or yellow markings with a certain width. In
accordance with this knowledge, a dual-edge detection algorithm is designed to refine the
set of candidate feature edges. A dual-edge is defined as a pair of edges located on the
cross-sectional boundary of the image centerline, namely z2.1 and z2.2 in Figure 6.4. If an
edge selected from the previous candidates corresponds to a real edge of the centerlines,
there should exist a “dual” edge, whose gradient direction is opposite to the selected edge
(rule 3), and the distance between them must satisfy rule 4. Furthermore, the averaged gray
value of the zone z1 should be surpass a threshold and be brighter than that of surrounding
areas, namely zone z3.1 and 23.2 (rule 5). The above dual-edge detection algorithm greatly
reduces the amount of undesired edge features. The result of this stage is shown in Figure

6.6. The dual-edges are represented as the short line-segments.



6.4.1.3 Feature Filtering By Majority Voting

The edges of image centerlines should be located along a smooth line, and may not have a
large difference from the predicted line. This knowledge is represented by the connectivity
rule (6) and the smoothness rule (7). As shown in Figure 6.6, a dual-edge which is far from
the others is treated as a blunder (marked by a circle) and removed according to rule 6. Rule
7 is implemented using a proposed majority voting method. This method is able to reliably
find out the distribution of the majority of the dual-edges along a smooth line and thus the
blunders can be eliminated. Similar to the commonly used Hough transformation method, a
transformation parameter space has to be set up firstly. In our 1-D parameter space, the x-
axis with a unit of 0.5 pixel represents the distance value between the center point of a dual-
edge and the predicted centerline, while the y-axis represents the accumulated number of
distance values of dual-edges. This distance value is calculated for each extracted dual-edge
and then projected onto the x-axis (see Figure 6.6). The accumulated number appearing
most frequently in a particular location of the x-axis is essentially the distance value of the
majority of the dual-edges. By searching for the peak point in the parameter space, the peak
point Dy of the distance value can be determined and also the distance range of the majority

of the dual-edges along the centerline is obtained (defined as Dgtl.5 pixels). The dual-

edges whose distance values are out of this range will be filtered out as blunders. The

output of this stage is a set of feature points defined by the center points of dual-edges.
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6.4.2 Constrained Image Matching
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This stage is used to (a) further verify the feature points obtained by the previous stage and

(b) generate a set of matched feature point pairs among the image sequence.

6.4.2.1 Constrained Matching Range

A useful assumption employed here is that the ground of the road is a flat plane. Since the

approximate camera height with respect to the ground and orientation parameters of each

camera station are available, the corresponding point position on image B of a given point

on image A can be directly estimated using the camera(left)-ground-camera(right)
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transformation (Tao et al., 1996). Along with the epipolar line constraint, the searching
range for matching a point on image B can be restricted to a relatively small area. In Figure
6.7, the constrained matching range is illustrated as a box and the dotted straight line
depicts the epipolar line. This constraint greatly improves the reliability of matching, and

reduces the searching space.

6.4.2.2 Ground Plane Based Matching

Point prediction

4
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matching 1

window / / A B
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window A B

Figure 6.7 Ground-plane-based distortion correction and matching

Although the searching range has been constrained, geometric discrepancies mainly caused
by perspective distortion exist between the two windows to be matched (see Figure 6.7). If
the two matching windows can be projected onto a plane which is parallel to the ground
plane, the perspective distortion problem could be alleviated. Therefore, before the

matching step, each matching window on both images is resampled according to a plane-to-
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plane transformation using a bilinear sampling technique. Finally, the matching is

conducted on the two windows which are “free” of perspective distortions (Figure 6.7).

6.4.2.3 Multiple-Image Matching for Consistency Check

A multiple-image matching method, which is similar to the method developed in Chapter 5,
is used as a consistency check. As can be seen in Figure 6.8, a multiple epipolar line
constraint is available, in which three epipolar lines corresponding to three other images
pass through a single point Py on the current left image. Making use of this constraint, an
algorithm for consistency matching is designed as follows (refer to Figure 6.8, assuming
that the current left image is the master image): (1) for each point from a set of feature
points on the master image, perform matching on the three other images constrained by the
estimated matching ranges. After applying the ground plane based corrections for matching
windows, use Kanade’s SSD (Sum of Squared Difference) correlation criteria (Kanade et
al., 1992) for matching; (2) for the matched point on the next left image and the current
right image, locate the best matches on the next right image in their constrained matching
ranges (the arrow indicates its own constrained matching range in Figure 6.8); (3) if two of
three matched points on the next right image are within 1.5 pixels, the matched point pair is
determined. In the case illustrated by Figure 6.8, Py and P; are considered as a matched

point pair because the distance between the point “A” and the point *“e” is within 1.5 pixels

on the next right image. If no matched point pair is found, Py will be rejected.
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Each point from the feature point set can be taken as the master point and its corresponding
image is taken as the master image. The same process described above is executed until a
new set of matched feature point pairs is generated from the current images. At the end, the
3-D coordinates of feature points of road centerlines will be calculated by the intersection
of the matched feature point pairs. These 3-D feature points will be used to update and

refine the 3-D shape model of road centerlines.
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Figure 6.8 Multiple image matching for consistency check



6.5 Dynamic Refinement of a Physically-Based 3-D Road Centerline

Model

6.5.1 Physically-Based Deformation Mechanism

The 3-D parametric curve represented by a B-spline (Eq. 6.1) can be treated as a deformable
and elastic model (3-D B-snake), composed of an abstract material. The model can evolve
from its initial position towards its desired position driven by the externally applied forces
and internally generated forces. In accordance with the least action principle (Hamilton's
principle, Courant and Hilbert, 1953), the dynamics of a deformation model can be

described as a motion equation:

E = ¢ End{Q(u)) + €2 E.o Q1)) - min, (6.2)
where E,, represents the external energy acting on the model, and E;,, is the internal energy
resisting deformation away from the natural state; e; and e, are constants for weighting

these two terms. The minimization of the total energy of the motion equation governs the

behavior of the deformation model.

6.5.1.1 Internal Energy

Ein, is described as the smoothness energy consisting of two terms (Kass et al., 1988):



128

En=a ( ‘I)|Q'(u)|2du) +B ( ‘I}IQ"(u)Pdu), (6.3)

in which the first derivative Q’(«) is a measure of the distance discontinuities (stretching
effectiveness), while the second derivative Q”(u) is a measure of the orientation
discontinuities (bending effectiveness). Adjusting the weights @ and S controls the
relative balance of the stretching and bending force. E;,, maintains the local continuity and
connectivity of the shape model. It ensures that the curve model will not tear apart, fold
onto itself or exhibit high curvature points. The other significant role is that smoothness is
constrained on the curve when the external information (external force) is noisy or sparse.
Therefore, the internal forces control the global shape of the model and make it less

sensitive to the external noisy input.

6.5.1.2 External Energy

The external forces play a key role in pushing the model into the desired real position. They
control the local shape of the model. As shown in Figure 6.9, the model is deformed subject
to the external forces between the extracted 3-D feature points P and the curve points Q(u).
In order to quantify this kind of force, a gravity-like field is used to describe the external
forces. The reason for using such a field is that the closer the distance between the feature
point and the curve, the greater the force. To avoid the singularity when the distance is

approaching zero, the following function in quantifying the external energy is employed:
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x:/21 Dp<r|
Eca=f(x), f(x)=13/2-x", ns<Dy<r: (6.4)
Ov Dp>r2

where x = Dp / r;, D, = 11Q(u) - Pll, the distance between Q(u) and P; and r; and r; are the
coefficients representing the influence range of the feature point to the curve. r;=0./(meter)
and r»/r;=4 are chosen according to the system accuracy. Thus f{x) acts like a spring when
the point is close to the curve (D,<r;), and has no influence when D,>r.. The effects of
blunders are minimized, since they are distant from the curve. The corresponding external

force can be derived as:

x, D,<n
Fa=VEx=f'(x)={x", n< D,<r,. (6.5)
0,0 D>n

Considering the “historic” effect of external forces, the total F.,, becomes

Fe_rt=m1Fe.tt(n-l) + mZFe.rl(Ti) + m_?Fe.tt(Ti-c-l) (66)

®;, @z and ®; are weighting coefficients. During the process of iterative solution of Eq.

(6.6), the F.,, of each point Q(u) along the model should be calculated repeatedly until the

motion equations reach a convergent state.
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Figure 6.9 Deformation behavior of the model driven by external energy

6.5.2 Solution to Energy Minimization Problem

The combination of the internal energy and the external energy is accomplished by solving
for energy minimization of the motion equations. Substituting Equations (6.1) and (6.3) into

(6.2), the discrete version of the motion equation can be written as

n-1

m-| 4 m—|
E = X lela)( I ViB'w)" + B I ViBi" )1+ e2Eex (Q(w)]} . (6.7)
1= = =

Since this equation is quadratic, the minimum of E can be obtained
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dE/dVi=0 k=012, ... m. (6.8)

The resultant equations can be derived

m=1 n—l
> VALY, () B (i) B (ui) + B(i) Be" (i) Bi" ()]
=0 j=0
n-l
=—(e:/ &)Y Be(u) Feur Q). k=0,12, ... m. (6.9)

1=0

The matrix form of the above equations is represented as

AV ="-F, (V) . (6.10)

The unknowns of the motion equations are the coordinates of the control vertices V..

Assuming the curve is made of a massless material and that it is placed in a viscous

medium, the above equations can be solved using Lagrangian dynamic motion (Courant and

Hilbert, 1953; Terzopoulos et al., 1988), namely,

Y(dVi /0t) + (OE/dVy) =0, fork =012, ..., m, (6.11)

where Y is an Euler step size and r represents the time of each deformation. After

discretization of Eq. (6.11), we have
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Vi=(A+Y D(¥ Vi - Fed Ver)) (6.12)

where A is a banded matrix (mx m). This matrix can be solved by LU decomposition in

linear time O(m).

As can be seen, the total energy E is a function of the set of control vertices, which uniquely
control the shape of the model. Minimizing the energy of the curve results in a final control
polygon of the model. Therefore, the final shape of the road centerline model can be

determined using such a deformation process.

6.6 Implementation and Evaluation of the Approach

6.6.1 Computational Implementation

Several parameters must be set to apply the motion equation. A desirable trade-off between
the internal energy and the external energy has to be made to control the local and global
shape of the deformation model. In the current implementation, e,;=0.3 (e;=1-¢,) is applied.
The smoothness coefficients a=0.7 and B=0.5 are determined empirically to maintain the
road shape. @,;=0.5, @ »=1.0 and 03=0.8 are selected for representing historical effects of

the external energy.
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The major time-consuming parts of the approach involve (a) feature point extraction and
matching among sequential images; and (b) the computation of the inversion of the
matrices in Eq. (6.12). Since the constrained processing window for feature extraction and
the constrained matching range for image matching are available, the time-consuming
computation can be greatly reduced. In order to reach a fast convergence of motion
equations, the motion of the entire model is made by the composition of the partial
deformation of piecewise segmented models (Tao, 1996a). At first, the internal and external
energy for the curve segment S; to Si,3 (the distance of three exposure stations) are
computed and such curve segment will be deformed using the information from the images
on which this segment is visible. Then the above process is repeated on the next segment
Si+1 tO Sisa. As a result, the model will be deformed incrementally, driven by the successive
images, and thus a fast convergent state of the deformation can be reached. In the current
implementation, the control vertices are seeded every 2.0-2.5 meters along the model. The
dimension (m) of the inversion is 10-20 in Eq. (6.11). Without using B-spline curve
representation, the dimension (n) would be 80-160 (assuming that the sampling interval on

the curve is 0.3 meters). This method eliminates the huge computations of matrix inversion.

6.6.2 Evaluation of Reliability

Before starting the automatic reconstruction program, it is required that two initial image
points are given indicating the direction and approximate location of the road centerline to
be extracted. Then, the reconstruction can be executed in a batch mode. The reconstructed

segments of road centerlines can be back-projected onto the image and displayed
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simultaneously on an image interactive interface, MultiView, and an AutoCAD vector
interface, OverView (Appendix A). This implementation permits the users to monitor the
processed results in both image and scene domains. It also allows the user to interrupt the
processing and correct the processed results on-line or off-line. All the available image data
has been used for the test (Appendix B). The longest data set used is a highway image
sequence of Quebec city, consisting of 1665 images. In order to evaluate the robustness of
the approach, the raw image data sets without any preprocessing were used. It was
demonstrated that the approach is able to reliably reconstruct the complete road centerlines
from the image sequences without any human assistance. It was found that the final
reconstructed centerlines are very smooth, and the approach functions reliably on bridging

gaps (Tao, 1996a).

A number of special tests have also been conducted to evaluate the approach with images
under different scenarios, such as various marking appearances and patterns, different road
types, shapes, and conditions, and so on. Typical examples are given in Figure 6.10 (the
image projections of the road centerlines obtained finally are represented by dotted black
lines): case | (Figure 6.10a), the pedestrian lines crossing the road caused a gap and noisy
markings, and the distinctive cracks can be found on the road; case 2 (Figure 6.10b), the
shadow caused a contrast on the images and the moving car blocked a part of the centerline
markings; case 3 (Figure 6.10c), a big gap is visible since the vehicle was approaching a T-
intersection; case 4 (Figure 6.10d), the curved and dashed markings were encountered when

the vehicle was making a turn.
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6.6.3 Evaluation of Accuracy and Efficiency

The accuracy of the reconstruction result relies on the accuracy of the camera orientation
parameters, the quality of the determined vehicle trajectory data, and the performance of the
reconstruction approach. The evaluation of the resulting accuracy is conducted by two
methods: (a) the reconstructed centerlines in the scene domain are back-projected onto
images to visually check the projections matching the original image edges of the
corresponding centerlines. If the procedure does not introduce any errors, differences
between the projected and original image edges should be caused by the errors in the
orientation parameters only. This provides a measure of relative accuracy. No significant
difference (within a tolerance of the georeferencing error, namely < 5 pixels) was found on
checking the centerline projections in the images; (b) A check of the absolute accuracy is
carried out by overlaying the reconstructed centerlines over the existing road maps of the
same area. The result of the reconstructed centerlines overlaid over a Laval city digital map
(1:1000) is given Figure 6.11. The WGS-84 GPS coordinates of the reconstructed road
centerlines have been converted to the map coordinates, UTM coordinate system, before
performing the overlay. It is seen that the reconstructed road centerlines are very smooth

and fit quite well with the map.

This approach functions in a fully automatic manner, except that the approximate road
direction has to be given before starting the program. Under the current implementation and

hardware configuration, it takes about 3-5 seconds to complete the processing of an image
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pair (equivalently, 6-10 meter survey of road centerlines). As a result, the efficiency is very

impressive.

6.7 Chapter Summary

An integrated approach has been proposed to achieve a globally optimized automatic
reconstruction of road centerlines, in which the reconstruction has been considered as a
shape from sequences problem. This new approach leads to a successful solution of the
integration of multiple constraints in mobile mapping systems. Based on the tests, the

approach has the following characteristics:

e Closely coupled bottom-up and top-down reconstruction: The whole reconstruction
process is designed based on a 3-D shape model and image sequences. This design leads to
a robust result, because the local and global shape of the model is controlled under
combinations of the actions of the internal energy (model) and the external energy (image).
The method is insensitive to sparse, spurious and noisy data from imagery. Accurate model
shape can be obtained through a dynamic refinement using reliable image information.

® Physically-based mechanism for constraint combination: The synthesis of muitiple
constraints has been implemented by the least action principle. The advantages of the
method are that constraints from both model assumptions and image sequences can be
incorporated into a mathematical model, and the constraint combination can be solved by a

Lagrangian motion equation.
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® Model generation using sensor integration: Accurate vehicle trajectory determined by a
multi-sensor (GPS/INS) integration technique was used for generating an approximate 3-D
shape model of road centerlines.

® Model driven feature extraction: The geometric and photometric model of the image
was described as a group of rules. Guided by the rules, algorithms for oriented edge
detection, dual-edge detection and edge filtering by a new majority voting algorithm were
developed.

e Stereo-motion matching: Effective stereo and motion constraints were exploited from
stereoscopic and sequential images. The multiple epipolar line constraint, ground plane
constraint and spatio-temporal consistency constraint were applied to implement a robust
matching procedure.

e B-Spline based 3-D B-snake representation: The use of B-Splines for the representation
of the snake model has demonstrated its numeric advantages on the computations of the

matrix inversion.
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Figure 6.10a Results of road centerline reconstruction

Figure 6.10b Results of road centerline reconstruction
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Figure 6.10c Results of road centerline reconstruction

Figure 6.10d Results of road centerline reconstruction
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CHAPTER 7

EXTRACTION OF VERTICAL LINE FEATURES

FROM STEREO IMAGE SEQUENCES

A semi-automatic approach to extract vertical line features is proposed and developed in this
chapter. The purpose of this work is to assist the user to find and locate the important vertical
objects from a large set of image sequences. A cooperative human-computer interaction scheme
is developed to implement this technique. After batch processing of automatic feature extraction,
a human operator is required to verify the extracted line features. Then, multiple line

correspondences will be established by using a multinocular line reconstruction method.

7.1 Introduction

There is a long list of objects to be measured from images collected by mobile mapping systems.
The objects of interest can be classified mainly into three categories: utility, transportation and
public safety. Among these objects, the vertical type of objects constitutes a large group. These
vertical objects include street light poles, power-line poles, traffic signs, telephone booths, and
fire hydrants. The common feature of these objects is that they have line features that are vertical

with respect to the ground.
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The automatic extraction of these objects poses a great challenge. It is understood that two
processes, extraction and recognition, have to be incorporated in order to automatically
reconstruct the objects. The ability of automatic object recognition is still limited (Forstner,
1993). In this research, the technique to identify and locate objects using line feature extraction
is investigated. The focus is placed on extraction rather than recognition. The advantage of this
approach is that the time-consuming task of image browsing and object search from a large set

of image sequences can be reduced.

It is also recognized that this work forms the basis of object recognition. With the use of color or
other sensory information, object recognition technology for specific objects could be
successfully developed (Geiselmann and Hahn, 1994; Hock et al.,, 1996). It is also worth
mentioning that this work provides an alternative to perform camera calibration, quality control

and vision based navigation for mobile mapping.

The literature regarding extraction of line features is very extensive (Chen and Huang, 1990;
Engelbrecht and Wahl, 1988; Faugeras, 1993; Liu et al., 1990; Nevatia and Babu, 1980). It has
been difficult to evaluate the various methods due to the differences of the tasks, imaging
conditions and system environments. It is believed that a successful method is based on effective
cooperation of all individual components. An optimization should be carried out so that the

systematic effect will be better than the sum of each individual effect.
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7.2 Overview of the Approach

Since the mounting of the stereo cameras in the VISAT system follows the way that the baseline
is constrained approximately to be parallel to the ground plane and the camera roll angle is very
small. As a result, the projections of vertical 3-D objects are also approximately vertical in
images. This constraint greatly simplifies the process of line extraction. The systematic overview

of the proposed approach is illustrated in Figure 7.1. It consists of five major modules:

. Detection of vertical edges

2. Formation of vertical line segments

3. Stereo correspondence of line segments
4. Verification of extracted features

5. Multinocular line reconstruction

The constraints available in the mobile mapping system and the information about the vertical
objects are utilized in the design of this approach. The ultimate goal of this approach is to locate
the vertical objects from image sequences using the cues of vertical line features. As we shall
see, many line segments will be detected after edge detection, line formation and line
correspondence. It is expected that the desired lines will appear in the first five records of most
likely lines. At this step, the computer shows the user five likely lines, and the user is required to
verify the results and confirm the correct lines. Finally, a multinocular line reconstruction
algorithm is applied to establish multiple line correspondences and generate 3-D line

coordinates.
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Figure 7.1 Systematic flowchart of extraction of vertical line features

7.3 Detection of Vertical Edges

Edge magnitude and edge direction are two main components of an image edge element (Canny,
1986). We firstly recognize from experiments that information related to edge direction is very
useful since the edge magnitude is easily corrupted by noise and physical factors, such as
shadows. Therefore, the computed edge direction is used as the main evidence for inference. In

the following, a three-step algorithm to determine vertical edges is described:



1. Determination of the existing region of possible edges;
2. Determination of the existing region of thinned edges; and

3. Determination of the existing region of vertically oriented edges.

7.3.1 Determination of the Existing Region of Possible Edges

We start with convolving an input image using the six directional masks. The configuration of

the masks is illustrated in Figure 7.2.

-1 0 0 1 1 1 1 0 1 0 -
-1 0 -1 0 1 1 0 - 1 0 -
-1 0 -1 -1 0 -1 - 1 0 -
0-0° 1 -45° 2-135° 3-180°

0 -1 - -1 -1

1 0 - -1 0 1

1 1 O 0 1 1

4 -225° 5-315°

Figure 7.2 Directional masks encoded O - 5

After convolving the masks with the original image, the magnitude of the convolved output and

the direction of the mask giving the highest output at each pixel are recorded as edge data. A
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very small threshold is set in order that all possible edges are detected in the edge existing
region. The direction value is encoded as O - 5 corresponding to the six directions previously
defined. An example of the obtained edge existing region is shown in Figure 7.9(b). The original

image pair is given in Figure 7.9(a).

7.3.2 Determination of the Existing Region of Thinned Edges

The simplest technique for thinning is to retain only those edges whose magnitude is a local
maximum (Nevatia and Babu, 1980). In the algorithm, the obtained direction values of edges are
used to constrain the thinning procedure. Edge thinning is described as: an edge element exists if

the following two conditions are satisfied

e the edge directions of the two horizontally neighboring pixels are within one unit (45°) of
that of the center pixel; and
e the output edge magnitude at the pixel is larger than the edge magnitudes of its two

neighbors in a direction normal to the direction of this edge.

If the above two conditions are met, the two neighboring pixels are disqualified from being

candidates for edges. An example of edge thinning is given in Figure 7.9(c).
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7.3.3 Determination of the Existing Region of Vertically Oriented Edges

A further refinement is conducted using the accurate values of edge direction. In this step, we
use the Sobel gradient operator to compute the direction values of the existing edges. Since a
large amount of the undesired edges have been screened out through the previous two steps, the
computation of edge gradients is only performed on a small set of edges, and the savings on the
computation time are significant. After the computation of gradients, a rigorous tolerance of

direction value, 15°, is applied to filter out all unqualified edges. The processing result after this

step is illustrated in Figure 7.9(d).

7.4 Formation of Vertical Line Segments

7.4.1 Vertical Line Grouping

Generally speaking, line grouping is a complicated process since no prior knowledge is available
to link isolated edges. However, since the lines to be detected are vertical, the grouping
algorithm becomes straightforward. The main concern for grouping is how to achieve a trade-off
on gap bridging. A strong linking process may produce many false line segments, while a weak

linking process may lose many important line segments.

It is observed that a vertical object of interest, such as a pole, has two vertical boundary lines. As

shown in Figure 7.3, an ideal edge model of a vertical object, the edges located along the two
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boundary lines of the same object should have opposite edge directions and be within a certain
distance. This presents a strong constraint for extraction of reliable vertical line features. Based
upon the above analysis, the line grouping algorithm is composed of two phases: (1) grouping of
primary line segments (to group the distinct line segments), and (2) grouping of secondary line

segments (if the detected primary line is located on one of the object boundary lines, the line

A vertical object

RevtTiisranissnvirri iRy,

An edge model

J— Edge magnitude

Edge direction

Figure 7.3 An ideal edge model of a vertical object

segments parallel to this primary line are to be grouped).

Phase 1: Grouping of primarv line segments

(l.a)  Scan the edge image from the left-top to the right-bottom, and find an unprocessed edge;

(1.b) Take this edge point as a starting edge point, and construct a vertical “bridge”
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downwards, with a width of 3 pixels (shown in Figure 7.4). The length of the bridge is

defined by the parameter “length of bridging gap”. In the first phase, only the distinct
line segments are to be grouped, so that the length of bridging gap of 15 pixels is chosen.
(1.c) If an edge is located in this bridge and its direction is the “‘same” (tolerance is +15°) as
that of the starting edge, this edge is recorded as a “compatible edge”, otherwise as an
“incompatible edge”.
e (case 1) If the distance between a compatible and the starting point is less than half
of the bridge length (8 pixels), link this edge to the starting point, take this edge as a
new starting point, and go to (1.b).
e (case 2) If no compatible edge exists, but the number of compatible edges in this
bridge is larger than the number of incompatible edges, link the closest compatible
edge to the starting point, and take this edge as a new starting point. Go to (1.b).
e (case3 ) If the either of the two cases above is not found, go to step (l.a) and
continue scanning.
(1.d) Finally, if the length of the line segment composed of linked edges surpasses a threshold
(50 pixels), the line segment is considered as a primary line segment and recorded into a

line file.

Phase 2: Grouping of secondary line segments

The second phase focuses on the grouping of the line segments parallel to the primary line
segments. This work is used to determine the conformance degree of the detected primary line

segments. If parallel line segments are found, it is assumed that the primary line segment is
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likely located on the boundaries of a vertical object. According to the model of Figure 7.3, an

associated line segment should have an opposite direction and be within a certain distance to the
primary line segment. The grouping scheme is similar to the first phase except that the length of

bridging gap is chosen differently.

Length of
Bridging gap
—a
o 1

Figure 7.4 Bridge grouping model

(2.2)  Scan the surrounding area of a detected primary line segment within a range of + 10
pixels, and find an edge whose direction is opposite to the direction of the primary line
segment. The average direction value of the compatible edges composing the line
segment is defined as the line direction.

(2.b) Take this edge as a starting point, and construct a vertical “bridge” downwards, with a
width of 3 pixels, and a length of 30 pixels.

(2c) Same as step (1.c).

(2.d) If the detected line segment is longer than 1/3 of the length of its associated primary line
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segment, the parameter “parallel” in the line file will be set as “True”, otherwise “False”.

The file structure of the primary lines will be described later.

This grouping algorithm represents a trade-off. The first phase is used to extract reliable and
distinct line segments from the images, thus the bridging is relatively strict. While the second
phase is considered as an evidence collection, so that a large length of bridging gap is applied to
collect evidences from noisy data. The results of the line grouping are illustrated in Figure

7.9(e)~(g).

7.4.2 Representation of Line Segments

Table 7.1 Line representation

ID No. | Xs,Ys,Xe,Ye | Length | Number of edges | Direction | Stereo | Parallel

No.5 | ......... 78 37 3° True True

No.6 |  ......... 52 18 186° False False
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The detected line segments have to be represented symbolically in order to facilitate subsequent
processing. A line description file is generated after line grouping. The structure of this file is as
shown in Table 7.1. All the parameters of line features are computed and recorded. The starting
and ending point positions, and the length of the line are two basic feature parameters. The
number of edges refers to the number of compatible edges in the line. Line direction is defined
as the average direction of all the compatible edges in the line. “Stereo True™” means that the
corresponding line segment in the right image is found. The establishment of the stereo
correspondences will be described in the next section. “Parallel True/False” indicates the state

whether or not a secondary line segment of this line is found.

7.5 Feature Correspondence of Line Segments

The method above described is applied on both left and right images (see Figure 7.1). At
this step, a matching method is developed to establish stereo correspondence. Since the
number of vertical objects of interest in a given image is usually small, the focus of
attention of the processing step is placed on the distinctive lines, which are most likely
located on the objects of interest. Therefore, ten candidate lines are chosen from the line
file of the left image for matching. According to the parametric representation, a sorting
algorithm is used to select these lines. The sorting order is “Parallel True” -> “Line length”
-> “Number of edges”. High priority is given to the line segments whose paralle! line
segment has been found. Then the line length is considered, the longer the better. Lastly,

the number of compatible edges is taken into account.
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In the matching method, three constraints are used. The first constraint is the direction
compatibility. The corresponding line in the right image exists only if its line direction is

the same as the line direction in the left image within a tolerance £10°.

The second constraint comes from the scene knowledge. First of all, the disparity range
constraint described in Chapter 5 is applied. Besides the disparity range constraint, a road
corridor condition is also used to eliminate the undesired line features. As shown in Figure
7.5, it is impossible that vertical objects of interest are located right on the road. Therefore,
the distance from the object to the vehicle trajectory should be more than 1 m (the camera
baseline is 2 m). This constraint is useful to screen out the detected features which are

associated with the vehicles on the road.

Light

Camera | pole

Camera 2 Vehicle trajectory [

Figure 7.5 Road corridor condition for vertical feature extraction
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The third constraint is the similarity of line segments. We use the weighted cross-

correlation to perform similarity matching. As illustrated in Figure 7.6 (a part of Figure

7.9(e)), the matching procedure is described as follows:

(a)

(b)

(©)

(d)
(e)

®

(2

pick a detected line segment from the left image, and then generate a set of
sampling points along the line segment with an interval of 3 pixels;

each sampling point is treated as the center of the master matching window (size
of ISH x 11V);

generate the corresponding epipolar line in the right image and determine the
intersection of the epipolar line and the vertical detected line segments (or the
extrapolation of the line segments) in the right image (see Figure 7.6, the
extrapolated line is represented as a dotted line). These vertical line segments must
satisfy the previous two conditions, namely, line direction and disparity range
constraints;

take the intersection point as the center of the search window (size of 21H x 11V);

if the computed correlation coefficient surpasses the threshold (0.7), record this
match point;

once all the sampling points are used, the corresponding line in the right image
exists, if the number of match points on that line is more than half of the total
number of sampling points used;

finally, update the parameter “Stereo True/False” in the associated line file.
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Figure 7.6 Stereo correspondence of line segments

7.6 Verification of Extracted Features

In this step, the user is involved and required to verify the results. When and where the user
shouid be involved is a key to the design of a semi-automatic approach. In order to improve
the efficiency of human involvement, the line features are again sorted by a credibility
criterion. The sorting is in this order: “Stereo True” -> “Parallel True” -> “Line length” ->
“Number of edges”. For example, the order of line No. 5 is higher than line No.6 in Table

7.1.

The first five line segments with the higher orders are displayed for verification. Since the
detected line segments may be located on the same object, the user should reject duplicated
line segments. Basically, three aspects are to be verified by a human operator: (a) whether
or not the detected line segment is desired for the application ? (b) whether or not the stereo
correspondence result is correct (if available) ? (c) which line segment(s) should be rejected

if multiple line segments of the same object are detected ?
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7.7 Multinocular Line Reconstruction

Multinocular epipolar geometry is again applied here to improve the reliability of line
reconstruction. After human verification, the 3-D coordinates of the sampling points along
the line (in the left image) can be calculated using their stereo correspondences. These 3-D
points can be back projected in the third image, say the forward left image. The same image
matching method described in Section 7.4 is applied to find the correspondence between
the forward left image and the current left image. Since the approximate position of the
corresponding line in the third image can be predicted, the image matching results are
reliable. The search window is set as 25H x 17V pixels, considering the georeferencing

errors. The correlation coefficient threshold is set as 0.7.

As illustrated in Figure 7.7 (the match points have been marked by ‘-’), if the number of
match points is more than half of the total points applied, the corresponding line segment
exists. Since the match points may not be distributed along a perfect line, a line
approximation algorithm using the least median square criterion (Rousseeuw, 1987) is used

to filter out the spurious points and determine the best line.

The above method is also applied to the other consecutive images (forward and backward
images) to find correspondences. Finally, a straight-line constrained photogrammetric

triangulation can be employed to obtain a more reliable and accurate result of 3-D line
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reconstruction. This feature triangulation algorithm has been described in a number of

publications (Mikhail, 1994; Wilkin, 1996).

Forward
image -

Current
image
pair

Figure 7.7 Multinocular line matching

7.8 Test Results and Evaluation

7.8.1 Evaluation of Reliability

Figure 7.8(a) shows an image collected by the side-looking camera on the VISAT system.
It was used as a test image to evaluate our feature detection algorithm, since there are many
vertical features in this image. As we can see, the boundaries of these vertical features are

not very clear due to the low resolution of the image. In addition, these features are not
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perfectly vertical. The result of the line formation is shown in Figure 7.8(b). The algorithm

is able to detect most boundaries of the vertical features. The line segments longer than 20

pixels are displayed.

Figure 7.8(a) A test image for vertical feature detection

‘ |

e

Figure 7.8(b) The result of vertical feature detection

(the length of line segments >20 pixels)
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An example of the whole process is given in Figure 7.9 (a) - (g). The Figure 7.9(a) is a
stereo image pair. There are four vertical objects of interest (marked on the image). Objects
No. 3 and No.4 are far from this view, while object No.2 is too blur to be identified. Object
No.l is definitely important from this view and should be extracted by the developed
method. Figure 7.9(b) is the output of edge detection using the six directional masks. All
the possible vertical edges have been detected. Figure 7.9(c) shows the effect of edge
thinning. It can be seen that a very large number of undesired edges have been filtered out,
while the vertical edges have been kept. A refining process is conducted using the Sobel
gradient operator. More accurate direction values of existing edges are calculated and only

those edges whose directions are vertical with a tolerance of 15° remain. As we can see, the

edge points of road boundary in the left image are mostly deleted since these edges are not
vertically oriented. The effects of line formation are shown in Figure 7.9(e), (f) and (g). For
a comparison, the results of line formation using different thresholds of 20 pixels and 50
pixels, respectively, are both given. Since we are concentrating on the distinct features,
only the line segments longer than 50 pixels are recorded in the line file. In this example,
ten line segments in the left image and five line segments in the right image are recorded
for further processing. After feature correspondence, it is found that four out of the ten line
segments in the left image have their corresponding line segments. These four line
segments are marked by the small arrows in Figure 7.9(g). These four line segments are
located on the same object. In the step of human verification, only one of these four line

segments remains. In this example, the left-bottom line segment is used for mulitinocular
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line reconstruction. The corresponding line segments on the forward and backward four

images are finally determined in this case.
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Figure 7.9(b) Edge detection using the directional masks
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Figure 7.9(d) Detection of vertically oriented edges
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Figure 7.9(f) Line formation (length of the line segments >20 pixels)
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Figure 7.9(g) Line formation (length of the line segments >50 pixels)

The statistical evaluation of the reliability of the method is not easy. The following
procedure is designed to evaluate the performance of the approach in a statistical sense. A
batch processing step, consisting of edge detection, line formation and line correspondence,
was applied to 263 images (left) from the VISAT test set (Appendix B). When the step was
completed, five line segments with high ranking were recorded. It was expected that the
desired features would appear in the records of the five line segments. If so, a human
operator’s job was to determine the desired features from the records, thus, the time-
consuming part of image browsing and object search can be reduced. The desired feature is
defined as that the feature should be extracted in the current image, or say, from the current
view. After a careful manual check, the statistical result was obtained. The total number of
the desired vertical features was 56, mainly including light poles and traffic signs. The

number of the desired features appearing in the records was 48. It meant that the probability
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of finding the desired features from the records was 85.7%. The number of the desired
features appearing in the records of first three likely line segments is 43, representing a
probability of 76.8%. This test demonstrates that the developed method has the capability
of finding and locating the vertical line features from image sequences at a probability of

76-86%.

Another example is given in Figure 7.10. In this example, the desired feature (a traffic sign)
is detected and appears in the records of the first five likely lines, but not in the records of
the first three likely lines. There are a number of reasons that the desired features may not
be able to enter into the records: (a) a lot of undesired vertical features exist, such as trees
or boundaries of buildings. For instance (see Figure 7.10a), the boundaries of the building
have perfect vertical line features; (b) the stereo correspondence may not be established so
that the detected line segments cannot get into the records; (c) the image quality is also an

important factor influencing the results.
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Figure 7.10(a) Detected line segments overlaid on the images

1

Figure 7.10(b) Detected line segments (length >50 pixels)
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7.8.2 Evaluation of Accuracy and Efficiency

The algorithm of the straight-line constrained photogrammetric triangulation has not been
implemented, since it is not a focus of this research. However, it was proven that multiple-
line based triangulation will present a more reliable and accurate result. This is one of the
reasons that the “feature-based photogrammetry” has been gained a considerable attention
in the photogrammetric community. The related references can be found in Mikhail (1994)

and Barakat et al. (1996).

It is observed that a vertical feature can appear in 3 to even 12 successive images. During
the manual extraction procedure, a human operator has to browse the image sequences and
located the features image by image. In addition, without having an overview of the
images, a human operator does not know which image (view) should be selected for
triangulation. It is our experience that sometimes one has to measure the feature again
where an image presenting a better quality and/or geometry is found. Therefore, the
developed approach is useful to assist the operator to find the likely features from a large
set of images. In this approach, the operator acts as a decision-maker and the job is to

determine the desired features from the candidate lines prepared by the computer.
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7.9 Chapter Summary

In this chapter, an approach to semi-automatic extraction of vertical line features is described. In
cooperation with human involvement, the approach is able to find and locate vertical objects of
interest using the cues of vertical line features. Moreover, 3-D reconstruction can be carried out
autornatically by using the multinocular line reconstruction method. It is recognized that human
verification is necessary when the knowledge or constraints are not adequate to solve the
problem automatically. When and where a human operator should be involved is a key to the
success of a semi-automatic approach. It is also clear that the top-down scheme would be
appropriate to the design of an automatic approach if the knowledge of the system is available,
for example, if a database of the vertical objects, say traffic signs, is available. The developed
approach can be extended to detect new objects and update old objects guided by the known

object positions along the road corridor.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The principal objective of the research endeavors to improve the capability and potential
for effective and efficient information extraction from mobile mapping image sequences.
Based on the understanding of the mobile mapping imaging geometry, the investigation of
the state-of-the-art digital photogrammetry and computational vision technologies, and the
development of the valid vision constraints from mobile mapping systems, three automated
approaches to object measurement, road centerline reconstruction and vertical line feature
extraction are proposed and developed. The following conclusions can be drawn from the

thesis research.

Methodology

The combination of computational vision and digital photogrammetry technologies is the
principal methodology used throughout the thesis research. It is a key to the development
and implementation of the three automated approaches. The thorough understanding of the
imaging geometry and the extensive development of valid constraints constitute very

important parts of the thesis work. A number of state-of-the-art computer vision methods,
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namely, model-driven feature extraction, multiple-image matching and shape from image

sequences, are developed and extended in this thesis.

Another methodology extensively applied is the human-computer collaborative semi-
automatic scheme. An interesting aspect of the history of mankind is the relationship
between human and computer. Although the great achievements have been made in recent
10 years, the realization of fully automatic feature extraction is still restricted especially in
photogrammetry. Since we acknowledge that it is a long time before the automated feature
extraction algorithm can be available as a production tool, and there is no much probability
to separate the operator from the system, why should we not take the operator as a
component of the system at the beginning of the system design? (Tao and Lin, 1994). A
combination of the computational power of the computer and the interpretative ability and
knowledge of the human brain has been implemented in the approaches of object
measurement and extraction of vertical line features. It has been demonstrated that the use

of this methodology makes the system work more reliably and efficiently.

Imaging Geometry

The positioning accuracy of object point coordinates derived from a stereo imaging system
is determined by four major components: the distance between camera exposure station and
object point Y; the baseline length B; the focal length f; and the mean squared error of

image parallax measurements m,. The along-track error component my is the predominant
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error contributing to the total positioning error, while the z-directional (height) error

component is relatively small and can be negligible.

The development of high-accuracy image measurement and multiple-point reconstruction
methods is particularly important, due to the limited baseline setting in mobile mapping
systems. A method to determine the optimal set of imaging parameters has been developed

to achieve best tradeoff between these parameters in terms of object positioning accuracy.

Vision Constraints

The only way to resolve an ill-posed vision problem is to exploit any possible constraint
sources from the imaging systems. Three effective constraints are developed, (1)
stereoscopic and sequential imaging geometry constraint; (2) image georeferencing
constraint; and (3) known vehicle ego-motion constraint. The first two constraints are
applied in all three proposed approaches, and the third one is employed in the continuous
reconstruction of the road centerlines from long image sequences. As demonstrated in the
real image tests, these constraints play a key role in enhancing the reliability of the

automated approaches.

A direct image-to-space transformation under the ground plane constraint is derived. It
forms the basis to the realization of 3-D measurement functionality of the single camera

based video-logging systems. This constraint has also been employed in the approaches of
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object measurement and road centerline reconstruction to constrain the search space of the

algorithms.

Feature Extraction

Feature extraction techniques have been widely developed and used throughout the three
approaches. A digital snapping technique is proposed and investigated in the approach of
object measurement. It is demonstrated that digital snapping can not only improve the

positional precision of point measurement, but also accelerate the measurement procedure.

The model-driven feature extraction methods have been proposed in the extraction of road
centerline features and vertical line features. The geometric and photometric models of the
specific features are established firstly (see Sections 6.4 and 7.4). Then, the algorithms
tailored to these models are designed. For example, in the extraction of centerline features,
the algorithms of oriented edge detection, dual-edge detection and edge filtering by a new
majority voting techniques are developed. In the extraction of vertical line features, the
algorithms of initial edge detection, edge thinning, vertically oriented edge detection,

primary line grouping and secondary line grouping are implemented.

Multiple-image Matching

One of the major contributions in this thesis is the use of multiple-image matching for
object reconstruction from image sequences. The multinocular epipolar constraint has been

successfully used to design an effective strategy of multiple-image matching. The matching
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ambiguities can be greatly reduced by using multiple-image matching associated with the
weighted cross-correlation, the correlation coefficient analysis, the disparity range
constraint, and the two-way matching double-check techniques. The method and its similar
versions have been used in all three proposed approaches. It is seen that the method can be
applied to not only point-feature correspondence, but also line-feature correspondence.
More importantly, the accuracy and reliability of the 3-D reconstruction results can also be
greatly improved using the multiple corresponding points or lines derived by the multiple-

image matching method.

Shape From Image Sequences

Another contribution made in this thesis is the development of the concept of shape from
image sequences. This is, essentially, a closely coupled bottom-up and top-down
reconstruction strategy. The whole reconstruction process is designed based on an
interaction between a 3-D deformable model and updating information derived from the
stereoscopic image sequences. This design leads to a robust result because the local and
global shape of the model is controlled under the combinations of the actions of the internal

energy (model) and the external energy (image).

The synthesis of multiple constraints has been implemented by the least action principle, a
physically-based mechanism for constraint combination. The advantages of the method are
that constraints both from model assumptions and image sequences can be incorporated

into 2 mathematical model, and the constraint combination can be solved by a Lagrangian
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motion equation. This approach represents a successful accommodation of multiple

constraints from a mobile mapping system.

Test Results and Implementation

Various tests using real images have been conducted to evaluate the three approaches in
terms of reliability, accuracy and efficiency. The evaluation results can be found in
Sections 5.5, 6.6 and 7.8, respectively. According to the test results, the reliability of
multiple-image matching for object measurement can achieve a success rate of more than
90%; the approach to extracting vertical line features is able to detect the desired features at
a probability of about 85%. The reliability of the approach to the reconstruction of road
centerlines is very impressive. The road centerlines can be automatically and continuously
reconstructed from the whole image sequences without any human intervention, based on
the test data sets. The approach is also insensitive to sparse, spurious and noisy data from

imagery.

8.2 Recommendations

Image Quality

Eight CCD video cameras have been used in the VISAT system. It has been found that the

image quality from these cameras is not stable. The low resolution affects the measurement
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accuracy of objects. It is highly recommended that an investigation into the use of digital

cameras and an intelligent dynamic range control for imaging needs be conducted.

Image Capture Rate

The stereo-motion cooperation based method has demonstrated great advantages on the
correspondence issue. If a high image capture rate is available, an improvement to a more
robust matching can be achieved by using a fusion of feature correspondence and optical

flow methods.

Image Compression

The fast image compression and communication techniques should be developed, due to
the huge volume of image data generated. Data link from the mobile vehicle to an office

GIS and data dissemination through internet/intranet should also be considered.

Multi-Sensor Information Fusion

Without a good input, we may end up with a “garbage in, garbage out” situation. It is
believed that the automatic sensing ability will be greatly enhanced by using multi-sensor
information, such as color, laser, and sonar. For example, if a laser ranging device is used
and angled downward/forward the road, the elevation data of the road surface can be

collected. This information can be further incorporated to improve the road centerline
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reconstruction method. However, some issues have to be addressed, such as multiple

information fusion, registration, management and computational complexity.

Knowledge-Based Feature Extraction and Object Recognition

In many applications, mobile mapping systems are used to update and extend an existing
database. Road and/or object knowledge can be derived from databases and used to guide
the implementation of feature extraction and even object recognition. For example, If initial
knowledge of locations of traffic signs is available, the approach in Chapter 7 can be used
to verify the targets and detect new targets. Object recognition is highly complicated, and

cannot be performed without the use of knowledge of the road scene.

Vision-Based Navigation, Calibration and Quality Control

Vision-based vehicle navigation is not new and has been addressed very extensively since
the 1980’s. However, in most robotic systems, few or no navigation sensors such as GPS or
INS were used. We believe that the integrated method of navigation and imaging sensors
can be used to improve the capability of autonomous vehicle navigation. On the other hand,
redundantly overlapped sequential image information can also be used to perform quality
control of georeferencing data, and furthermore, to bridge gaps where the absence of the

navigation data occurs.
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APPENDIX A

Implementation of the software ImagExpert

ImagExpert is a software package developed for automating object measurement and
feature extraction procedures using georeferenced image sequences. This research is funded
by a Natural Sciences and Engineering Research Council (NSERC) grant. Digital
photogrammetry, computer vision, artificial intelligence and image processing theories and
methods are applied to automate information extraction from images. This software has
been developed through cooperated efforts of professors, graduate students and visiting

researchers.

ImagExpert is designed as an intelligent tool to facilitate image measurement procedures.
This package is now implemented on a SUN SPARC workstation with an X-Window and
MOTIF environment. A high-level object-oriented development toolkit WNDX was used to
design the Graphic User Interface, MultiView. The package has been also interfaced with
AutoCAD. The built-in communications between our package and the AutoCAD core were
implemented. The measurement results can be displayed in the AutoCAD environment,
OverView, simultaneously. Accordingly, it is easy for us to check and edit the results in an

on-line mode.

ImagExpert can be invoked independently by a group of special icons in GeoStation, a data

processing and GIS generation component of the VISAT system. For a more detailed
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description of the GeoStation, the interested readers are referred to Li et al. (1994a and

1996).

The following functions of ImagExpert are implemented:

* Image enhancement and preprocessing

e Edge image analysis

¢ Interest point detection

e Measurement optimization

e Semi-automatic object measurement

* Automatic and semi-automatic road-line reconstruction

e Vertical object extraction

The functions and the associated algorithms of image enhancement and preprocessing have
been described in Li et al. (1994a) and Xin (1995). Three modules, namely external
preprocessor, global enhancement and local enhancement were developed to improve the
image quality for the subsequent measurement procedure. Edge image analysis and interest
point detection serve as an image analysis tool to help a human operator locate features
more precisely (see Qian (1995), and Chapter 5 “digital snapping”). Measurement
optimization has been extensively researched by Li, et al. (1996) and Zou (1996). The
efforts of the thesis work have been placed on the development of object measurement,
road-line reconstruction and vertical object extraction. The description of these approaches

can be found in Chapter S to Chapter 7.
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Description of the Test Image Data Sets

There are two data sets captured in the city of Laval and the Quebec City, respectively.
Each data set consists of several consecutive image sequences. The Laval data set was
collected after 4:00 p.m. with relatively poor lighting conditions. The road scenes of the
images are mainly city streets. Most images have low brightness and low contrast. This
causes loss of detail in many images. Furthermore, the low quality of the images affects the
accuracy and efficiency of the photogrammetric measurements. Therefore, a number of
image enhancement methods were developed to preprocess the data for visual interpretation
and manual measurement of images. However, our tests were conducted on the raw data

sets without any preprocessing in order to evaluate the robustness of the methods.

The data set of Quebec City was collected appropriately. The quality of the forward-
looking images is satisfactory. However, the side-looking images were far too bright and
had low contrast. The longest image sequence in this data set consists of 1665 images. The
road scenes are city highways. In all of the above cases, the vehicle speed was 50-60 km

per hour and the image capture rate was about one image per 0.4 second.
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Intelligent Transportation Systems (ITS)

C.1 Overview of ITS

The congestion of transportation systems has considerably increased during the past two
decades. As a direct result of this situation, the overall safety of these systems has been
reduced. Traffic experts believe that adding and enlarging highway systems (physical
infrastructure) would not ultimately solve the problem. Accordingly, new approaches to
relieving the pressure upon the system must be explored. ITS is considered as information
infrastructure producing a more efficient transportation network without requiring the

construction of additional roadway capacity.

The 1991 Intermodal Surface Transportation Efficiency Act (ISTEA) established the ITS
national program, and set forth its goals (French and Sakamoto, 1994). These goals, as

stated in the ITS National Program Plan, include:

¢ the enhancement of the capacity, efficiency, and safety of the highway
system, serving as an alternative to additional physical capacity;

e the enhancement of efforts to attain air quality goals established by the
Clean Air Act;

e the reduction of societal, economic, and environmental costs

associated with traffic congestion.
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The world-wide progresses on the development on ITS have been made due to the
consistent support by a number of famous programs, such as the DRIVE and
PROMETHEUS programs (Europe), the CACS program (Japan) and the ITS program
(US). From a technical point of view, ITS provide a platform allowing the use of
information processing, positioning, communication, and control technologies to alleviate
congestion, improve safety and reduce the environmental consequences of road traffic

(such as pollution and energy wastage).

C.2 Automatic Processing of Image Data in ITS

ITS is often defined as the application of information technology to the conventional
transportation system. Therefore, the benefits of ITS are derived from the collection,
dissemination, and effective use of information. The creation of high-quality and up-to-data
spatial data infrastructure is a key fundamental element to the development of ITS. Such
tasks have been assigned as top priority in ITS. Since the emphasis is placed on highway
applications, information infrastructure is also called Intelligent Vehicle Highway System
(IVHS). Mobile mapping systems are considered a very rapid and cost-effective means to

collect road-related data for the generation of ITS databases.

In addition, automatic and rapid processing of sensory information about traffic conditions
and environment plays a key role in the development of ITS. A variety of sensors have

been investigated and developed in the application of traffic control and vehicle control,
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such as, GPS, speedometer, accelerator, gyroscope, radio beacon, ultrasonic, radar, laser,

loop detector, and visual imaging sensor.

Of the above mentioned sensors, visual imaging sensors are able to offer richer and more
complete information of relatively large regions. They are also capable of being used to
meet most of the ITS requirements. The applications of the visual imaging sensors can be

categorized as follows:

Traffic control segment

e Detecting and counting vehicles at a fixed road point (e.g., intersection, merging
section, or tunnel)

e Detecting parked vehicles (parking lot management and finding illegally parked
vehicles)

e Detecting abnormally moving vehicles

e Detecting traffic accidents

e Calculating vehicle speed

e Recognizing the type of vehicles and plate numbers

Vehicle control segment

e Finding driving lane
® Recognizing road surface conditions (such as roughness, bump, and icy surface)
e Recognizing traffic signs

e Detecting obstacles in the road
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e Measuring distance to leading/following vehicles

e Observing environment around the vehicle (pedestrians, passing vehicles)
e Recognizing view condition (such as fog, smoke, and rain)

e Observing driver’s behavior

e Estimating travel time

e Navigating vehicles

The problem with the use of imaging sensors is that image quality depends heavily on the
imaging conditions (weather, color, electronic noise, and camera sensitivity and dynamic
range). Since the imaging conditions are subjected to the natural environment, the results
derived from image processing may cause ambiguities. This is a great challenge when

visual imaging sensors are used in ITS.

It is recognized that ITS research results, especially of the vehicle control segment, are of
great value to this thesis work (Ozawa, 1994; Smith et al., 1996), since we are dealing with
similar input data, image sequences captured from a mobile vehicle. However, qualitative
but real-time processing is generally required in ITS applications while we are more
concerned with precise measurement and reconstruction. Nevertheless, intelligent
understanding and automatic processing of image sequence data is our common approach.

The research results coming from either side will be beneficial to the other.
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A Brief Overview of Image Matching and Feature Correspondence

In any imaging vision system, three components have to be taken into account when

dealing with the development of an image matching or feature correspondence method:

1. Light source

e Passive vs. active illumination

2. The nature of object to be reconstructed
e Reflectivity

e  Surface geometry

3. Imaging system
e  Static or dynamic camera configuration
e  Number of cameras

e I[maging geometry (baseline, focus length, sensor resolution, etc.)

Based on different configurations of the above components, the following schemes of

system stereopsis are available:

o Passive vs. active vision

e  Static vs. motion (dynamic) vision
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e  Monocular, binocular and multinocular vision
e Monocular vision: shape from shading, texture, contour, focusing, etc

e Motion vision: correspondence vs. optical flow

A major portion of the common research efforts of both the photogrammetry and computer
vision communities has been directed towards the study of object reconstruction using
image matching methods. The reader who is interested in this topic is referred to these
review papers by Barnard and Fischler (1982), Dhond and Aggarwal (1989), Gruen (1994),

Jones (1997), and Lemmens (1988).

There are a number of types of classification for image matching. The most common one,

especially widely employed in the photogrammetry community, is

e area-based (gray-level matching or signal-based matching),
e feature-based, and

e structural matching (relational matching).

The above classification is essentially based on the matching primitives (or features,
tokens, descriptors) used in matching methods. More generally, a matching paradigm can

be constructed depending upon the following three aspects:

e matching primitives used,

e constraints imposed, and
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e  matching criteria and optimization methods developed.

D.1 Matching Primitives

The commonly used matching primitives (entities, features, tokens and descriptors) are
represented by three levels: (1) areas: gray levels, functions of gray levels (the first or
second derivatives of the gray levels), image transformation (frequency domain of the
original image); (2) features: point features (edges, points of interest, corners, junctions,
zero-crossings, end points or intersections of linear features), linear features (curved and
straight lines, contours, polygonal approximations, regional features (blobs, circles,
ellipses); and (3) structures: relationships of the features and the associated attributes.
Accordingly, the corresponding three levels of matching scheme are defined as area-based,

feature-based and structural matching.

The attributes of features which can be used for feature-based and relational matching have

been summarized by Baltsavias (1991) and Forstner (1993).

It is recognized that the appropriate choice of levels of primitives to be matched depends on
three components of a vision system mentioned earlier and the matching task. General
observations about the choice are: (1) The higher the level of primitives used, the more
complex the matching algorithms required. Simple area correlation cannot perform
structural matching, a graph-matching scheme is usually employed. (2) Computational
requirements at high-level matching may be less due to the lower number of items to be

matched; however, the extraction and representation of high-level matching primitives is a
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time-consuming procedure. (3) It is likely that high-level matching is more reliable, but
more ambiguities may arise from the process of constructing high-level primitives from the

original image data (Nevatia, 1996).

D.2 Constraints

The use of constraints is a key factor in reducing the matching candidates. Since light
sources are not controllable in most passive stereo systems, any possible constraints from

objects and imaging systems involved should be fully derived and explored,

. geometric constraints arising from the objects being looked at and physical
constraints arising from the models of which the object interact with the

illumination, and

(8]

geometric constraints imposed by the imaging system.

The commonly used constraints accordingly are: (1) (derived from objects) disparity range
and gradient constraint, continuity constraint, figural constraint, controlled continuity
constraint, ordering constraint, ground plane constraint. (2) (derived from imaging system)
epipolar line constraint, collinearity constraint, multi-image geometric constraint (zero-
order, first-order and second-order constraint), multi-epipolar intersection constraint,

camera kinematic constraint.
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D.3 Matching Criteria and Optimization

Two strategies of image matching are often used: (1) local vs. global strategy, and (2) one
scale vs. multi-scale (hierarchy) strategy. In general, local matching can be very precise,
but ambiguous and the various local matches may not be globally consistent with one
another. Global matching is more robust but not necessarily accurate in local areas.
Therefore, a trade-off must be recognized, and the matching scheme should be chosen

carefully, e.g., local-to-global, global-to-local, or combination thereof.

Regarding the surface reconstruction, the global consistency check and hierarchical
matching strategy has been predominately used. The major differences among the different
surface reconstruction algorithms are the way they handle the global and hierarchical

consistency of the matches (Ebner et al., 1993).

It should be noted that the above mentioned constraints developed must be embodied with
the optimization method to disambiguate the matching candidates. Two major components

of the optimization methods are (1) matching criteria and (2) search algorithms.

Matching criteria can be classified into area-based gray level similarity or difference,
feature-based attribute matching, and energy (cost function) merits. The search algorithms
for optimization in the literature are dynamic programming, simulated annealing, gradient
descent techniques, graph isomorphism, heuristic searching, relaxation, cooperation, and

neural networks.
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APPENDIX E

Calibration Errors and Positioning Accuracy

E.1 Errors of the Interior Orientation Parameters

E.1.1 The Error of the Principal Distance

An error of the camera principal distance f leads to a proportional change in the image

coordinates x and z. Therefore, the following expression can be obtained:

dx = (x/f)df,
dz = (Zf)df,
dp = dx. - dxg = (p/f)df . (E.l)

When p=50 pixels and f = 800 pixels (1 pixel =10 um), if m, = 0.4 pixel is required, then
my = £ 6.4 pixels (= £ 0.064 mm) or the relative accuracy of 1/125 (6.4:800), has to be
achieved from Eq. (E.1). At this error level, the effect of the calibration error of f on the
system positioning accuracy is at the same order of the image measurement accuracy. It
should be noticed that the pixel scale factor has to be introduced in the calibration of the
focal length so as to resolve the inconsistency of the two directional principal distance
components, f; and f,, due to the height-to-horizon aspect ratio of pixels in most CCD

camera and frame grabber assemblies.



E.1.2 The Errors of the Principal Point Coordinates

The effect of the errors of the principal point coordinates (x,, z,) can be considered as the
errors of image coordinate measurements, i.e., dx = dx, and dz = dz,. Therefore, if an
image coordinate measurement accuracy of + 0.3 pixel is required, the error in the principal
point coordinate determination should be less than the level of 0.3 pixel. Since the z-
directional image error is not a major source to object positioning accuracy, the accuracy

requirement for image z-coordinate measurement could not be that strict.

In the object space, the errors influence the positioning accuracy of object point coordinates
in a systematic way. It should be pointed out that, due to the imperfect alignment of CCD
optical axis, the principal point coordinate may have a large deviation from the center of the
imaging sensor. In addition, since the focal length is highly correlated with the lens
distortion parameters, and the principal point coordinates are correlated to the exterior
orientation parameters of cameras, it is recommended that a multi-station self-calibration
method with convergent imaging geometry be used to perform an accurate calibration. The
principal point coordinates, principal focal length and the lens distortion parameters should

be adjusted in a combined case.

E.2 Errors of the Calibrated Length of Baseline

In mobile mapping systems, B is usually determined using a control point field-based

calibration method. The contribution of the error in the calibrated baseline B to the object
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positioning accuracy can be assessed from the following expressions. Differentiating Eq.

(4.1) yields,

my=i' (Y/B) mpg
my =%+ (X/B) mg

mz =%+ (Z/B) mg . (E.2)

It can be seen that the effect of the error mp on the object point coordinates changes linearly
with the values X, Y and Z, respectively. Its behavior is equivalent to a constant scale
change. If the error mgis 3mm, then the effect on the total positioning accuracy will be 5.25

cm when the object is at a distance of 35m.

E.3 Errors of the Exterior Orientation Parameters

E.3.1 Errors in the Determination of Rotation Parameters

Pr
QL il
X
Y " _
X' f f
X
S S

Figure E.1 Rotation parameter errors
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As shown in Figure E.1, the correction to the errors from the rotation parameters can be

treated as image rectification. Thus, image rectification formulae can be used to correct the

image coordinates (x, y) corrupted by the errors of the rotation parameters to the correct .

ones (x’, y') (Wang, 1990),

ax+a,z+a,f
x' = = =x + dx,
f ax+c,z+c,f

bx+b,z+b,f
ax+c,z+e,f

’=f z+dz.

Using small values of the rotation angles, we have,

.fx—zx—ffp
X =f—
xXp+zo+ f G G 4
b, b, b
, XK +2z- fw C, G
=f—
Xp+zo+ f

(E.3)

(E.4)

where the rotation angular system of (®, x, @) corresponding to rotations about the (X, Y, Z)

axes is chosen. Differentiating the above equations, the error expressions in terms of the

image coordinate measurements can be obtained :

dx = (x') d@ + (x’)], dw + (x’)l; dic = -(f+2X/f) d@ -(x2/f) d® - z dx

dy = (y')ly do + (y')l, d@ + (y’)l, dc = (x2/f) d@ - (f+2/f) do + x dx

dp = -f(dQr - dor) - (x.°d@r - xg°dog )Jf -
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(2L d®g -zpxr dOr)Mf - (2o dK ( - ZRdK R)
= -f (dQr - dog) - (X degr - (x-p)> dor )/ f -

(f) (x dwp -(x-p) dwg) — z (dx (- dKg) . (E.5)

As far as dp is concerned, d¢ is the major error factor. Considering the error of the
convergence angle dv = d@, - dgg, which may be caused by relative orientation errors, then

we have (assuming the right imaging station is free from error),

dp’ =(f+xX’/f) dv (E.6)

After differentiating equations (E.5) and (E.6), the mean square error expression can be

obtained. For example, m, resulting from mg, my, and m, respectively is,

m,,z = (2j2 + x“/f2 + (x-p)4/f’2) mq,2
my’ = (L) (€ + (x-p)}) mi}

m,," =27 m.cz . (E.7)

If the limits of image coordinate measurement accuracy are given, the accuracy
requirements for rotation parameter calibration can be estimated using the above
expressions (E.5 - E.7). These requirements are tabulated in Table E.1 (f = 800 pixels is
assumed). It is shown that an accuracy 0.02° for the rotation angles ¢, 0.09° for the angle
K, and 0.03° for the relative orientation angle (@_-@r) has to be achieved in order to meet

the requirement of 0.4 pixel accuracy of image coordinate measurements. Also, the
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practical calibration accuracy for ® is not strictly required to be within 0.02° due to the fact

that m, is not the major error source. Consequently, attention should be paid to accurate

calibration of the angle ¢@.

Table E.1 Accuracy requirements for calibrating rotation parameters

Accuracy Casel: x=200, z=150, p=50 (pixel) | case2: x=100, z=100, p=50 (pixel)
Requirements my My, My my my Mgy My my
my =0.3 pixel | +0.02° | £0.46° | £0.11° - +0.02° | £1.38° | £0.17° -
m, = 0.5 pixel | 20.76° | +0.03° | +0.14° - +2.29° | £0.03° | £0.29° -
mp = 0.4 pixel | £0.02° | £0.49° | £0.11° | £0.03° | #£0.02° | £1.64° | £0.16° | +0.03°

E.3.2 Errors in the Determination of Translation Parameters

The effect of the errors (dXy, dYy, dZo) of the exterior translation parameters of the camera

exposure stations on image coordinate measurements can be derived using the following

relationships (Figure E.2),

x' =fX/Y,

x = fXAY+dYy).

(E8)




Figure E.2 Translation parameter errors

Thus the differential express is hold as,

dx=x"-x=(xY)dYy.

Similarly, we have

dz=7"-z=(/Y)dYy.

Using a similar derivation, it can be found that

dx=(f/Y)dXo

dz = (f/Y )dZy .

The parallax expression can be obtained,

210

(E.9)

(E.10)

(E.11)
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dp = (f/Y)(dXor-dXor ) + (xtdYor - (xr-p)dYor) /Y . (E.12)

The corresponding mean squared errors can be written as,

my =%+ qrt ((f/Y)z mXaz+ (x/Y)z mYoz)
m, =% sqrt (f/Y'mz’+ (Z/Y)? my,”)

my, =2 sqrt (2(fYPmy,” +((P+(x-p ) VY )my,’) . (E.13)

By examining Eq. (E.13), the effects of errors in exterior translation parameters on the
accuracy of image coordinate measurements decrease as the object distance Y increases.
For a comparison, Table E.2 gives the accuracy requirements for the determination of
exterior translation parameters when Y=10m and Y=30m (f =800 pixels is assumed). It is
revealed that, in the case of Y=10m, the accuracy requirement for my, is critical (3.5mm)
and, relatively speaking, for my, and mz, is not stringent. Since the error contribution of my,
to the system positioning accuracy behaves as the same as the baseline error msg,

Essentially, only an accurate calibration of the baseline B is crucial.

E.4 Summary

The quantitative error models on the effects of the calibration errors of interior and exterior
orientation parameters on the system positioning accuracy were derived. The error budget

of the calibration errors has been tabulated in Table E.l and E.2. A very accurate
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calibration of interior orientation parameters, rotation angles ¢ (rotation around the axis Z)

and the length of baseline is required. The accuracies of 6.4 pixel of my, 0.3 pixel of (m,,

my,), 0.02° for the rotation angles ¢, 0.03° for the relative orientation angle (@_-¢g) and 3.5

mm for the baseline have to be achieved, so that the effects of the calibration errors on the

total system positioning accuracy are at the same level as that of errors arising from image

coordinate measurements. However, the accuracy requirements for the rotation parameters

my and my, translation parameters my, and mgz, are not very stringent. The required

calibration accuracies are about 0.1° for ® and x, and | c¢cm for Y, and Zy, respectively.

Table E.2 Accuracy requirements for the translation parameters (unit: cm)

Accuracy Y x=200, z=150, p=50 (pixel) x=100, z=100, p=50 (pixel)
Requirements | (m) Mxo My, Mz, Mxo My, Mz,
M, =0.3 pixel +0.38 +1.5 - +0.38 +3.0 -
m, = 0.5 pixel | 10 --- +33 +0.63 - 5.0 +0.63
myp = 0.4 pixel +0.35 £1.6 +0.35 +3.57
M, =0.3 pixel +1.13 4.5 -— +1.13 +9.0 —
m, = 0.5 pixel | 30 -—- +10.0 +1.89 --- +15.0 *+1.89
m, = 0.4 pixel +1.06 +4.8 - +1.06 +10.7 —
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