A model of natural language is a collection of information that approximates the statistics and
structure of the language being modeled. The model may be very simple, for example, an estimate of
the probability of each character; or it may be very complex, such as the model of English language
that we carry in our heads, with which we can spot subtle grammatical errors and spelling mistakes.
Such models are of great importance in a number of areas, notably text compression, authorship
ascription, and language-processing programs such as spelling-checkers. Indeed, it was while
developing new methods of text compression that we first became interested in language models (Bell
et al, in press).

Natural language models have a fascination of their own, independent of applications. Despite
the incredible complexity of language phenomena, very significant amounts of structure can be
characterized by quite simple adaptive modeling techniques. When primed with substantial samples of
text, some of these produce massive models which are infeasible to examine manually. Fortunately,
the information content of a language model can often be assessed informally and intuitively by
reading text generated at random from it. This provides a rare example of a digital system whose
quality can best be judged from a holistic rather than an analytic, reductionist, perspective.

Of course, purely statistical regularities are never completely reliable, and can be thwarted by
accident or by design. For example, a perfectly normal full-length book of over 50,000 words has
been written which does not contain any occurrences of the letter “‘e”’ (Wright, 1939). Equally
striking is the fact that while space is the most frequent character in present-day writing, medieval
manuscripts had none, to conserve parchment. That is why we advocate adaptive modeling techniques

(eg Witten & Cleary, 1987) to avoid built-in preconceptions about the nature of the text being
modeled.

This paper studies models of natural language from three different, but related, viewpoints. First
we examine the statistical regularities that are found empirically. The idea of entropy provides an
indispensible yardstick for the information content of language, and entropy can be measured in
various ways (in other words, it can be based on various models). In order to make the paper self-
contained, a brief summary of the concept is provided in the next section. The statistics of individual
letters (or characters) and of complete words are both of interest. For the latter it is necessary to
characterize precisely what a “‘word” is; needless to say there are many possible definitions. A
number of statistical results are included which have been gleaned from a large body of written
American English text. Several examples of randomly-generated text are given so that the models’
information content can be assessed intuitively.

The second perspective is obtained via some theoretical models of natural language that have
been proposed. One often hears that the Zipf distribution govemns the frequency of words in natural
languages (and a large number of other phenomena as well) (Zipf, 1949). Remarkable properties are
frequently attributed loosely to this distribution. However, we would like to help explode the Zipf
myth, or at least put it in perspective; for it turns out that a simple random generative model of letters
accounts almost perfectly for the Zipf distribution of words. Equally good random approximations can
be made of the distribution of letters themselves. An excellent model of the rate of appearance of new
words is the Poisson process; this has been used for authorship ascription as well as for an estimate of
Shakespeare’s total vocabulary based on the number of words found in his known works.



The third viewpoint is through attempts to measure the ‘‘true” information content of English
(and other languages). Claude Shannon, the ‘‘father’’ of information theory, performed some
fascinating early work to determine how good people are at predicting what comes next in English text
(Shannon, 1951). However, there are some subtle statistical problems in analysing the results of his
experiments. More recently, a new ‘‘gambling approach’ has been proposed which leads to much
more accurate estimates of information content. We also summarize the results of a large number of

experiments on how well people can predict what text comes next, in several different natural
languages.

Measuring information

Everyone knows how to measure information stored in a computer system. It comes in bits,
bytes, Kbytes, Mbytes, or Gbytes; only a certain amount will fit on your floppy disk; and you ignore
warnings such as ‘‘disk space nearly full’’ or “‘memory overflow’’ at your peril. Information
transmitted on communication links is quantified similarly; low-cost modems transmit data on
telephone lines at 1200 bit/second; high-speed local area networks work at 10 Mbit/s.

But these commonplace notions are inadequate to measure information content. The storage
space occupied by a file is not a measure of the information itself, but only of the particular
representation chosen for it. If one computer stores characters in 8 bits and another uses 7, then the
same file will consume 12.5% less space on the second computer, yet the same amount of information
is being stored. Perhaps an altemative way of quantifying information might be in terms of semantic
content. But this is fraught with contentious problems! How could we ever hope to agree on an
objective metric for the semantic content of, say, a politician’s speech (or an article on modeling
natural language)?

The solution is to accept that one cannot measure the information of a single message by itself.
Information in its scientific, quantifiable, sense relates not to what you do say, but to what you could
say. To select an “*a’” out of the set {a, b, ¢, - - -, z} involves a choice that can be expressed as a
certain amount of information (4.7 bits, to be precise). To select an “‘a’’ out of the set {a, aardvark,
aback, abacus, abaft, - - -, zymotic, zymurgy} involves an entirely different amount of information
(hard to quantify without a more precise specification of the set, but probably between 14 and 17 bits).
To specify a particular ‘‘a”* graphic out of all possible patterns that can be displayed on a matrix of
9x5 black-or-white pixels involves a binary choice for each pixel (45 bits of information).

According to this way of thinking, a large body of data may represent a small amount of
information. To transmit or store, say, Tolkien’s Lord of the Rings or Tolstoy’s War and Peace
involves no information if it is known for certain beforehand what is going to be transmitted or stored.
To transmit either one of these pieces of literature, given that both are equally likely and nothing else
is possible, requires one bit of information.

Information is inextricably bound up with choice. The more choice, the more information is
needed to specify the result of that choice.



Models for messages. Given that information is about what might have been said, stored, or
transmitted, it is necessary to find ways of specifying all the possibilities. The *“ - - - >’ above is
hardly ambiguous in the alphabet example (assuming we are agreed on how to write English, and that
it is English), and somewhat less so in the dictionary example; but would be positively enigmatic were
we to try to specify the set containing all English writing, from alphabets to Lord of the Rings. To
specify what might have been precisely, the notion of a source of messages or ‘‘model’’ is used. We
speak of the amount of information contained in a given message with reference to the model.

One general kind of model is a finite-state probabilistic model, often called a ‘‘Markov model’’.
It has a finite set of states S;, and a set of transition probabilities p;; that give the probability that when
the model is in state S; it will next go to state S ;- With each transformation from one state to another,
a letter is produced. Moreover, for any particular state, no two transitions out of that state are labeled
with the same letter. Thus any given message defines a path through the model that follows the
sequence of letters given by the message. This path (if it exists) is unique.

Another kind of model, more often employed for text, is a finite-context model which conditions
the probability of each character on a finite number of preceding characters, the ‘‘context.”” These can
be based on an analysis of the n-grams (consecutive groups of n characters) in an actual text. The
frequencies of n-grams are used to construct models in which the first n—1 characters of an n-gram
are used to predict the nth character. Usually, the more previous characters known, the more
confidently predictions can be made. Such a model has “‘order n—1"" because that is the number of
characters used for prediction, in other words the size of the context. For example, when trigrams are
used (n=3) prediction is based on a context of two characters, so the model has order 2. When single
letter frequencies are used (n=1), the model has order 0. By convention, in the degenerate case where
the actual letter frequencies are disregarded and characters are chosen with a uniform frequency
distribution, the model is said to have order —1.

Entropy. Suppose there is a set of possible events with known probabilities P1.P2 -, p, that
sum to 1. The *‘entropy’’ of this set measures how much choice is involved, on average, in the
selection of an event, or, equivalently, how uncertain we are of the outcome. In his pioneering work
that marked the birth of information theory, Shannon (1948) postulated that the entropy
E@1,p2 - -, p,) should satisfy the following requirements:

e E is a continuous function of p;;
o if each event is equally likely E should be a steadily increasing function of n;

o if the choice is made in several successive stages E should be the sum of the entropies of
choices at each stage, weighted according to the probabilities of the stages.

The third condition appeals to an intuitive notion of what is meant by a multi-stage decision. As an
example, one could create a two-stage procedure for an n-way decision by choosing 1 or “‘the rest’”
with probabilities p, and 1-p,. If “‘the rest’’ were selected it would be necessary to make a further

choice of 2, 3, ---, or n, with probability distribution {p2»p3 ---,p,), appropriately re-
normalized. Call the entropies of these two choices E;=FE(p,, l-p;) and
Ey;=E(y, ps, -+, p,’), where the primes indicate re-normalization. Then the condition simply

states that £ = 1.E; + (1-p;)E,. The weights 1 and 1-p, are used because the first stage is executed



every time, while the second only occurs with probability 1-p 1

As Shannon demonstrated, the only function which satisfies these requirements is
n
EQyLp2y - .pa) = -k X p; logp,
i=1
where the positive constant k governs the units in which entropy is measured. Nommally the units are
“‘bits,” where k=1 and logs are taken with base 2:
n .
E = -3 p;log, p; bits.

i=1

(Henceforth all logarithms are base 2 unless explicitly written otherwise.) The minus sign merely
reflects the fact that entropy is a positive quantity, whereas being less than 1, probabilities always have
negative logarithms.

As an example, the information involved in an equally-weighted binary choice (say a coin toss),
where p =1 and po=Y, is

E =-[hlogh+'loglh] = —log' = log2 = 1 bit.
This ties in with the intuitive notion that the outcome of a coin toss can be represented with one bit.
The information lost when you forget whether or not today is your spouse’s birthday, where

p1 = Pribirthday is today] = 1/365, and p, = Pr[birthday is not today] = 364/365, is only

E

- [1/365 log 1/365 + 364/365 log 364/365]

— _ llog 1+ 364 log 364 — 365 log 365
365

= 0.02727 bits.

(In a leap year, the corresponding figure is a little less.) Of course, the consequences of losing this
tiny fraction of a bit of information can be devastating!

Entropy of messages and models. Given a model and a message generated from it, the
information content of the message with respect to the model is calculated as follows. The model is
used to predict the probability distribution for each symbol of the message as it occurs. For a state
model, this will involve tracing the message through the model, starting from a known initial state;
then at any point in the message the predicted probability distribution is given by the transition
probabilities of the arcs emanating from the current state, and the symbols associated with those
transitions. For a context model, the last n—1 symbols of the message are checked against the initial
symbols of the n-grams that constitute the model; the nth symbols of the matching ones, with their
stored frequencies, form the predicted next-symbol distribution.

The entropy of a message with respect to a model is significant for compression. The technique
of arithmetic coding (Witten et al, 1987) is able to code a message with respect to a model in a
number of bits equal to its entropy, and so the entropy tells us the best compression possible for a



particular message and model.

Often the self-entropy of a model is of interest. This corresponds to the expected entropy of a
message generated by the model. (Contrast with the entropy of a specific message with respect to the
model, discussed above.) Self-entropy is only defined for ‘‘ergodic’’ models, that is, those for which
any sequence produced by the model becomes entirely representative of it as it grows longer and
longer. (A good illustration of a non-ergodic model is a box containing dynamite, where some
actions—for example, lighting a match—may conceal forever the consequence of other actions.)

For a state model, self-entropy is calculated by determining the entropy of the set of transitions
emanating from each state, weighting it by the state’s occupancy probability, and summing the result
over all states. While the state-occupancy probabilities obviously depend on the starting state, for
ergodic models they eventually tend to values independent of the start state. Call the asymptotic state-
occupancy probabilities sy, 55, - - -, §, where the states are numbered 1, 2, - - -, k. Each state i
has a transition probability t;; to each other state j, where #;=0 when there is no transition from i to
J. Then the vector S of state-occupancy probabilities satisfies the equation

S=TS,

in other words, S is an eigenvector of the transition matrix T. Once the asymptotic state-occupancy
probabilities are determined, using standard matrix methods, the entropy of the model as a whole is the
sum of the entropies of individual states weighted by their probabilities.

A similar procedure can be used to find the self-entropy of a context model, summing the
entropy of each n—1 symbol context, weighted by the probability of that context.

Empirical models

Despite the apparent freedom a writer has to create any desired sequence of words, written text
tends to obey some very simple rules. For example, there are very few English-language books in
which the letter “‘¢’’ is not the most common. Rules such as this underlie the most creative of writing,
from Lewis Carroll’s Jabberwocky to James Joyce's Ulysses. From chaos comes forth order, if
regarded in the right way at the right level.

This section looks at both letter and word models of English, giving letter and word statistics
derived from a standard corpus and samples of random text generated from these models. We also
consider the question of how to split text into words, and the extent to which the words may be
expected to correspond to those in a dictionary.

Letter models. Well before informational concepts such as entropy were defined, strong statistical
regularities had been noticed in the distribution of letters in natural language. Printers have been
concerned with this distribution because they need to have different numbers of each glyph on hand
when setting text. According to traditional printing lore, the 12 most frequent letters in English are
“ETAOINSHRDLU,” in that order, and that was the order used by Samuel Morse (1791-1872) in
compiling the Morse Code. However, analyses of American newspapers and magazines have
challenged this. The title of one study proclaims boldly that “‘It isn’t ETAOIN SHRDLU; it’s



ETAONI RSHDLC,” (Fang, 1966) while others have found such altematives as ‘‘ETANOI’’ for the
first six letters and ‘‘SRHLDC”’ for the next six. The remarkable similarity between these certainly
indicates strong systematic effects in the distribution of letter frequencies.

Initial letters tend to be distributed differently, and are ranked something like ‘‘TAOSHI
WCBPFD,” indicating that the letters E and N are far less likely to begin a word than to appear within
it. For initial letters of proper names the ranking is different again, typically ‘“‘SBMHCD GKLRPW,’’
for hardly any proper names start with vowels. Curiously, few proper names start with ““T*’, for
example, while many words do—as can be confirmed by comparing the size of the ‘T’ section of a
telephone directory with that of a dictionary. This kind of information is important for people who
design card catalogues and library shelving.

Correlations between successive letters in text show up in the frequencies of letter sequences.
Pairs of consecutive letters are commonly called ‘‘digrams”* (or bigrams), triples ‘‘trigrams,”’ and so
on. Many letter pairs almost never occur, and the effect becomes more marked with longer sequences.
For example, in normal text with an alphabet of 94 characters, about 39% of the 942 possible digrams
(including space) appear, about 3.6% of possible trigrams, and only about 0.2% of possible tetragrams.

A collection of American English text known as the Brown corpus, drawn from printed sources
published in the US in 1961, has been widely used for studying language statistics (Kucera & Francis,
1967). Its 500 separate 2,000-word samples total just over a million words of natural-language text
representing a wide range of styles and authors, from press reporting through belles lettres, from
leamned and scientific writing through love stories. The alphabet of the corpus contains 94 characters.
Table 1 shows some letter and n-gram statistics. The space character is made visible as the symbol

PRI}

Table 1 also shows the entropies of order zero (single-character), order one (digram), order two
(trigram), and order three (tetragram) context models, computed from these distributions. The
entropies were calculated by summing the entropies of individual prediction contexts, weighted by their
probabilities. For example, consider the trigram model, where the first two characters are used to
predict the third. The context ‘‘qu’’ was observed 4769 times, in the trigrams ‘‘qua’’ (1256 times),
“que’ (1622), “‘qui” (1760), ‘“‘quo’’ (130), and “quy’’ (1). From this the probabilities of
“a”,“e”,“i”,*0”” and ‘“‘y”’ in the context ‘‘qu’ are estimated to be 0.26, 0.34, 0.37, 0.03 and
0.0002. The entropy of this context is

—0.26 log 0.26 ~ 0.34 log 0.34 — 0.37 log 0.37 ~ 0.03 log 0.03 — 0.002 log 0.002,

which is 1.7 bits. The entropy of the whole model is the weighted sum of the entropy of each context.
The context “‘qu” was observed in 0.08% of the samples, so it contributes 0.0008x1.7 bits to the total
entropy of 2.92 bits. The most common context was ‘‘ee’’, which occurred in 3% of the trigrams, and
had an entropy of 4.7 bits.

Some feeling for the information content of letter models of various orders can be gained from
looking at samples of random text generated according to the models. In a sense, this is a way of
getting an intuitive grasp of what the concept of entropy means. The first sample in Figure 1 shows
some characters chosen at random, where each has an equal chance of occurring. This is an order —1
or “‘equi-probable’’ model, and has an entropy of 6.55 (log 94) bits per letter because the characters
are drawn from an alphabet of 94. This model has not captured any information about English text,
and this is reflected by the gibberish produced! Even letters generated according to the order zero



statistics of Table 1 look more like English, as the second example of Figure 1 shows. Although
characters appear in their correct proportions, no relationship between consecutive characters has been
captured. This is corrected by using higher-order statistics. Subsequent blocks in the Figure show text
generated using more sophisticated models. The resemblance to ordinary English increases noticeably
at each of these steps, although even the order-11 model is far from perfect.

Identifying words. So far we have measured the statistics of characters. Another natural
component of text is the word. The average length of a word is generally accepted to be about 4.5
letters, so we would expect a space to occur once every 5.5 characters. In other words, 18% of the
characters in a text will be spaces, which makes space—not ‘‘¢”’, as many people assume—the most
frequent character in normal text.

Counting words is complicated by the difficulty of defining what a *‘word”’ is. For purposes of
text analysis, words are generally considered as sequences of non-space characters. Thus *“‘letter,”
“letters,”” “‘lettering,”” and ‘‘lettered”’ are all different words, despite the fact that they share the same
root; it is the graphic form of the word that counts. Homographs (like verbal “‘can’’ and noun ‘‘can’’)
will appear as the same word, and variants of spelling (like ‘‘cannot,”” “‘can’t,”” and ‘‘can not’’) as
different ones (in the last case, as two separate words). Because of this, the number of distinct words
counted in a text cannot be construed as the vocabulary of the author.

There are a multitude of small matters that must be resolved when analyzing text into words.
How should hyphens and apostrophes be treated? Are numbers expressed as digits to be considered
words? Generally, upper-case letters are mapped to the corresponding lower-case ones (or vice versa);
this means that many proper names (eg Bell) are confused with ordinary words. Are other proper
names (eg Witten) to be counted? What about acronyms, words without vowels, and letter strings that
are clearly not ordinary words (eg the ““ETAOIN"’ or ‘“‘GKLRPW"’ that appeared near the beginning
of the previous subsection)? Each analysis program takes its own stand on such matters, and
consequently there are often discrepancies in different word counts for the same body of text.

Perhaps the simplest pragmatic strategy for text analysis is to look for sequences of letters or
alphanumerics. For example, Bentley et al (1986) considered a text to be an alternating sequence of
words and non-words, where the former contained only alphanumeric characters and the latter only
non-alphanumerics. This is a good choice for adaptive text compression, for the two classes have quite
different statistical properties and it is appropriate to treat them separately. Of course, some legitimate
words—such as those containing apostrophes—are split in pieces. Moffat (1987) also used this
scheme, with the addition that words were not allowed to grow longer than 20 characters; if they did,
they were truncated and a new word begun.

An alternative method is to define words as sequences of non-space characters. Valid delimiters
are usually taken to be any non-printing character, such as blank, tab, carriage return, line feed, form
feed, vertical tab, and so on. In their original analysis of the Brown corpus, for example, Kucera &
Francis (1967) adopted this strategy but removed punctuation marks at the beginning and end of words
(except for apostrophes and hyphens), leaving interior punctuation marks unchanged. Capital letters
were converted to lower case at the beginning of words, but interior capitals were left untouched.
They noted that these strategies occasionally produced peculiar effects—for example, the sequence
“Los Angeles-San Francisco’ was parsed as three words, ‘‘los’’, ‘‘angeles-San’’, and ‘‘francisco’—
but these were quite rare.



A more comprehensive approach to lexical analysis was taken by Walker & Amsler (1986).
They first identified all sequences of non-space characters. Sequences containing only punctuation
were recognized, and the remainder were classified as numbers or as alphanumerics distinguished by
the presence and position of any capitalized letters. Then preceding and trailing punctuation were
separated from the numbers and alphanumerics. Thus each ‘‘word’’ in the text was represented as

<word> <type> <preceding and trailing punctuation>,
where <type> was one of

pure punctuation

number (possibly with punctuation)

initial capital word (possibly with numbers and punctuation)
all upper-case word (possibly with numbers and punctuation)
all lower-case word (possibly with numbers and punctuation)

o=z

(it is not clear how mixed-case words were classified). For example, Table 2 shows some samples
representing various forms of the word abandon, with the preceding and trailing punctuation separated
by *‘—"; together with the number of occurrences in the Brown corpus.

It is surprising how many words in real-life texts do not appear in ordinary dictionaries. For
example, Walker & Amsler (1986) checked an 8 million word sample from the New York Times
News Service against Webster's Seventh New Collegiate Dictionary (Merriam, 1963). The dictionary
contains 70,532 words, and the News Service sample included 76,665 different words. However, only
27,837 words were common between the two. Thus almost two thirds (64%) of the words in the text
were not in the dictionary. A preliminary analysis of a sample of these missing words revealed that
about one quarter were inflected forms, one quarter were proper nouns, one sixth were hyphenated
words, one twelfth were misspellings, leaving one quarter in a miscellaneous category which includes
(for example) neologisms coined since the dictionary was published. Walker & Amsler note that it
may be possible to identify many inflected forms automatically, treat the components of hyphenated
words separately, and even correct some misspellings. However, proper nouns are a serious problem.
Most dictionaries do not contain the names of people, places, institutions, trade-names, and so on, yet
these form an essential part of almost any document.

If words are taken to be sequences of characters occurring between white space (including
leading and trailing punctuation), the Brown corpus of contemporary American English contains
100,236 different words out of a total of 1,014,940. If they are taken to be sequences occurring
between white space with leading and trailing punctuation stripped off, it contains a much smaller
number of different words—58,010—although the total word count is the same. If they are taken as
sequences of letters (so that hyphenated words and words with interior apostrophes count as two
words), the vocabulary drops to 50,056 but the word count increases to 1,024,374. Another alternative
is to map all letters to lower case before counting words. Table 3 summarizes the effect of several
different definitions on the Brown corpus. The average word length is just over 4.6 characters when
punctuation is not included. Note that the entropy of word models is quite insensitive to the precise
way that words are defined.



The 740,178-word Good News Bible has an intentionally small vocabulary of 11,687 different
words. In the 885,000 words which comprise Shakespeare’s total known works, 31,500 different
words appear. James Joyce’s monumental 260,430-word novel Ulysses includes 29,899 different
words. Thomas Hardy’s Far from the madding crowd comprises 140,767 words, of which 11,746 are
distinct. Comparisons between these figures should be made cautiously, however, because different
conventions were used to define words. Descending from the sublime, an early draft of the present
article has 12,550 words, 3,631 of which are different.

Word models. Table 4 shows the frequencies of the most popular few words in the Brown corpus.
Here a word was taken to be a longest contiguous group of characters surrounded by white space.
Short function words appear much more often than content words such as nouns and verbs. The most
frequent 5-letter word in the Brown corpus is ‘‘which,”’ the first 6-letter one *‘should,”’ the first 7-
letter one ‘‘through,” the first 8-letter one ‘‘American,”’ the first 9-letter one ‘‘something,”” the first
10-letter one ‘‘individual,” the first 11-letter one ‘‘development.”” The 100 most frequent words
account for 42% of the words in the corpus, but only 0.1% of its 100,237 different words. Words
occurring only once in the corpus, technically referred to by the Greek term hapax legomena, account
for 58% of the vocabulary used but only 5.7% of words in the text (although with an average length of
8.4 characters, they represent 9% of the characters in the text.) Words occurring no more than 10 times
account for 91% of the vocabulary but only 18% of the text. Those interested in sexism in American
writing may wish to note that ‘*he’’ appears 3.3 times as often as ‘‘she,” “‘his’’ 2.3 times as often as
“‘her,”” “‘man’’ 5.4 times as often as ‘‘woman;’’ while ‘‘woman’’ is 3.3 times more likely than ‘‘man”’
to occur at the end of a sentence. Word-frequency tables are a mine of information, or at least data.

The Brown Corpus illustrates the problem mentioned earlier, that very many words in the corpus
are missing from the dictionary. Because of the wide range of text covered, some unusual English is
included. For example, a quote from a soldier’s letter contains the sentence:

“‘Alf sed he heard that you and hardy was a runing together all the time and he though he
wod gust quit having any thing mor to doo with you for he thought it was no more yuse.”’

Despite its unusual style, this sentence is a part of English literature, and is a salutary reminder that a
model of English should have a small allowance for any sequence of characters.

Also shown in Table 4 are word-level digram and trigram frequencies of the corpus. The high-
frequency digrams are clearly those that come immediately to the fingers of a skilled typist. In the
trigrams, the culture-dependent content of the corpus begins to show, with the appearance of phrases
like ‘‘the United States’” and ‘‘members of the’’.

To give a feeling for the information contained in the word models, Figure 2 shows some text
generated randomly according to them. When words are chosen with equal probability from those
appearing in the corpus (equiprobable model) we get the first block of text. The per-letter entropy of
2.81 is slightly below that for the order-2 letter model shown earlier. Words which reflect the order
zero statistics of Table 4 look are shown in the second block. The entropy is still not quite so low as
that of the order-5 letter model. Subsequent blocks show higher-order text. The entropy is decreasing
rapidly because each additional word in the context dramatically narrows the range of words that may
follow it. The resemblance to ordinary English increases at each step, and because the Corpus contains
few repeated sequences of six words, the order five sample is actually an extract from the original. At
this stage the entropy is very low because so few prediction contexts occur more than once in the



-10 -

corpus. The corpus is too small a sample to estimate such a high order entropy accurately for English
in general.

Theoretical models of natural distributions

Zipf's law. It has often been noticed that when words occurring in natural-language texts are
tabulated in rank order and their frequencies plotted, a characteristic hyperbolic shape is obtained.
Figure 3a shows the curve generated by plotting the word-frequency data of Table 4. The effect is
characterized by the fact that the product of rank and frequency remains approximately constant over
the range. It is most easily detected on a graph with logarithmic scales, where the hyperbolic function
appears as a straight line. Replotting the word frequencies on this type of scale produces the
remarkably straight line of Figure 3b. Similar shapes are attained from plotting other naturally-
occurring units such as letters in text, references to articles in joumnals, command usage in computer
systems, and even royalties paid to composers of pop music!

Such effects were popularized in 1949 by a book called Human behavior and the principle of
least effort. Its author, the American philologist George Kingsley Zipf (1902-1950), collected a
remarkable variety of hyperbolic laws in the social sciences. Their ubiquity was attributed to a general
“principle of least effort,”” which was credited with far-reaching consequences but was regrettably not
stated with commensurate precision. He also wrote of a fundamental govemning principle that
determines the number and frequency of usage of words in speech and writing, and associated this
with the least-effort principle; although the details of how the latter was supposed to explain the former
are not clear.

Although the Zipf law is not exact, it is a good enough approximation to natural language
phenomena to demand an explanation. Moreover, we have observed that the same hyperbolic
distribution is beginning to re-emerge as a model of artificial language and user behavior; for example,
command usage in computer systems (eg Peachey et al, 1982; Witten et al, 1984; Ellis & Hitchcock,
1986). The principle of least effort is sometimes cited too, although it is not quantitative enough to
carry much explanatory weight.

Zipf’s law states that the product of rank and frequency remains constant, that is, the probability
of the unit (eg word) at the rth rank is

py=£ r=12 . N
Using data from James Joyce’s Ulysses, Zipf estimated [ to be roughly 0.1 from the slope of the log
rank-frequency plot (as in Figure 3b). He also obtained approximately the same value from a much
smaller sample taken from American newspapers. Because the sum of the probabilities must be one,
the normalizing constant . for a vocabulary of N words can be calculated as

1

H= log,N +v’

where y=0.57721566 is known as the Euler-Mascheroni constant. This is a good approximation for
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appreciable values of N .

A number of other hyperbolic distributions have been studied. Zipf's law dictates that the
frequency of the second most popular item is half that of the highest-ranking one, the third item is one
third, and so on, so that relative frequencies form the series 1, 1/2, 1/3, - - - . The distribution is often
described as ‘‘harmonic,”” because the same law governs the frequencies of natural harmonies in
music. But empirical data often does not exhibit this characteristic exactly. To improve the fit of the
distribution for small r, a parameter ¢ may be introduced into the denominator. A further parameter B
can be added to improve the fit for large r, giving

p(r)=ErL)B, r=112v"'sN-

This distribution is named after Benoit Mandelbrot. According to him, B>1 in all the usual cases, and
he defined 1/B to be the ‘‘informational temperature’ of the text, claiming that it is a much more
reliable estimate of the wealth of vocabulary than such notions as the ‘‘potential number of words’’
(Mandelbrot, 1952). Another hyperbolic law that is a close relative of the Zipf distribution is the
Bradford distribution (Fairthome, 1969).

When r=1 in Zipf’s law, p (r)=), and so the normalizing constant can be estimated from the y-
intercept of the rank/frequency graph. A straight-line approximation to the curve of Figure 1b has a
y-intercept of around 90,000. Expressed as a fraction of the million-odd words in the corpus, this
becomes 0.09, a little lower than as Zipf’s estimate of p=0.1. Since the vocabulary used in the Brown
corpus is N=100,237 words, the above normalization formula gives a value of p=0.083, while the fact
that Joyce used N=29,899 different words puts the value at p=0.092. However, these estimates may
be be less reliable since they depend on only one parameter, vocabulary size, and not on the actual
distribution itself. It is apparent that the value of N is extraordinarily sensitive to p; using Zipf’s
estimate of u=0.1 leads to N=12,500 different words instead of Joyce’s 29,899!

In many applications, the entropy of the word distribution is important. The entropy of the Zipf
distribution can be obtained from

N
T o Rg b o plog N
o r r 2loge

This leads to an estimate for the entropy of the word distribution in the Brown corpus of 11.51 bits per
word, which is remarkably close to the actual value given in Table 4 of 11.47. This contrasts with the
16.61 bits that would be required to specify one out of the 100,237 different words used in the Brown
corpus if their distribution were uniform.

A random generative model for words. A simple generative model of text has spaces
occurring 18% of the time (which accounts for the average word length in English of 4.5 characters),
while letters are generated randomly with equal frequency. This model was first proposed by Miller et
al (1957):
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““Suppose a monkey hits the keys of a typewriter at random, subject only to these
constraints:

e he must hit the space bar with a probability of p and all the other keys with a
probability of 1-p, and
e he must never hit the space bar twice in a row.

Let us examine the monkey’s output, not because it is interesting, but because it will have
some of the statistical properties considered interesting when humans, rather than monkeys,
hit the keys.”’

The property that Miller derives is that the probability of the word ranked r obeys the Mandelbrot
distribution

0.11

ry= —————
PO (0.54 + )06’
where the constants are based on the assumptions p=0.18 and a 26-letter alphabet. This is very close
to Zipf’s model for Ulysses. As Miller tartly observes, ‘‘research workers in statistical linguistics have
sometimes expressed amazement that people can follow Zipf’s law so accurately without any deliberate
effort to do so. We see, however, that it is not really very amazing, since monkeys typing at random
manage to do it about as well as we do.”’

The result basically depends on the fact that the probability of generating a long string of letters
is a decreasing function of the length of the string, while the variety of long strings is far greater than
the variety of short strings that are available. Consequently both the rank of a word and its frequency
arc determined by its length, for the monkeys, and—as Zipf and many others have observed—for
English too. And the nature of the dependence is such that the product of rank and frequency remains
roughly constant.

Miller’s analysis of the text produced by monkeys assumes that letters are equiprobable, so the
most common words are ‘‘a’’, ““‘b”’, --- ““z’’, each of which is equally likely to occur. This means
that the words of rank 1 to 26 have the same probability, whereas the Mundelbrot formula shows a
steady decrease. Likewise, the two-character words, which have rank 27 10 702, are equiprobable, and
so on. Thus the correct rank-frequency relationship is a series of plateaus. shown on the probability-
frequency graph of Figure 4. The function derived by Miller passes through the average rank of each
plateau, as shown. In this stepped rank/frequency distribution, the first 26 places are occupied by 1-
letter words each of frequency 0.855% (for a total of 22%), the next 262 by 2-letter words each of
frequency 0.026% (for a total of 17%), and so on. Although the center of each step lies exactly on the
derived curve, the discrete nature of the distribution differs markedly from Zipf.

This discrepancy is attributable to the assumption that letters are equiprobable. The use of
natural single-letter frequencies (or frequencies from the simple letter model mentioned above) smooths
off the steps. If the monkeys are trained to strike each key with a frequency corresponding to its
probability in English text, the plateaus are eroded so that the curve follows the Mandelbrot function
very closely. Figure 5 shows the curve for a sample of 1,000,000 words produced in an actual
experiment with specially-trained monkeyst, with the Zipf-Mandelbrot relation superimposed (the Zipf

+ Computer-simulated ones.
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and Mandelbrot distributions are indistinguishable at this scale). The Zipfian behavior of this simple
model is as remarkable as Miller’s original observation, for it is based on order zero random text,
which bears little resemblance to English (see the second block of text in Figure 1 for an example). It
seems that the Zipf curve is very easily achieved by simple random processes, and does not need to be
explained by an impressive-sounding teleological principle like ““least effort.”

Despite its statistical explanation in terms of a random process, the fact remains that the Zipf law
is a useful model of word frequencies. Figure 6 reproduces the graph of Figure 3b, showing frequency
against rank for the N=100,237 different words in the Brown corpus, along with the Zipf model with
normalizing constant calculated from p=1/(log, N + ¥)=0.08270. Towards the end of the main line of
data points the observed frequencies slope downwards marginally more steeply than the model,
indicating that the Mandelbrot distribution with B slightly greater than unity may provide a better fit.
Moreover the data seem flatter than the Zipf curve towards the left, an effect that could be modeled by
choosing ¢>0, but is more likely a remnant of the first plateau seen in Figures 4 and 5.

A random generative model for letters. 1t is tempting to apply Zipf’s relationship to all sorts
of other rank-frequency data. For example, the letter, digram, trigram, and tetragram distributions of
the Brown corpus, shown in Table 1, are all hyperbolic in form, and it is often assumed that such
distributions obey Zipf’s law. In fact, however, this law is not a particularly good model of letter
frequencies. For example, it gives an entropy of 5.26 for the order zero letter frequencies, whereas the
observed value was 4.47.

For single-letter frequencies, a more accurate approximation is achieved when the probability
interval between 0 and 1 is simply divided randomly into N=26 parts and the pieces assigned to the
letters (Good, 1969). The letters should be used in their naturally-occurring order of likelihood,
“etaoin ...”".

Suppose the unit interval is broken at random into N parts; in other words, N—1 points are
chosen on it according to a uniform distribution. If the pieces are arranged in order beginning with the
smallest, their expected sizes will be

11 1j1,. 1
N'N' N|N N-1|"

1 1
N-1 N2

1L
N |N

This gives the rank distribution

1 N7
ry=— _—,
P N S N-i)

where p(r) is the probability of the letter of rank » (Whitworth, 1901).

It has been observed that letter distributions (and, incidentally, phoneme distributions too) tend to
follow this pattern. Figure 7 plots the letter probabilities of Table 1 (lower case letters only) against
rank, on logarithmic scales. The Zipf distribution appears as a straight line, while the dashed line is
the random distribution derived above, with N=26. Although the latter appears to follow the data
closely, the logarithmic scale masks sizeable discrepancies. Nevertheless it is clearly a much better fit
than the Zipf distribution.
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The analogous graphs for digrams and trigrams are shown in Figures 8 and 9. Here the number
N of units was chosen to be exactly the number of different digrams and trigrams that appeared in the
corpus (645 and 7895 respectively) rather than the number of possible combinations (27%=729 and
27°=19683 respectively—27 since digrams and trigrams may include a space character). The first three
points of the trigram graph—the ones before the marked step downwards—all correspond to the
sequence ‘‘sthee’. It is apparent that the random distribution follows the curve of the observed one in
broad shape, whereas the Zipf plot is linear. However the discrepancies are much greater than in the
single-letter case, and neither Zipf nor random model offers a really good fit to n-gram data.

While the broad shape of the random distribution matches the naturally-obtained one better than
the Zipf law does, this improvement is not reflected in the entropies of the distributions. The observed
entropy of the single-letter distribution is 4.11 bits/letter (this is different from the figure of 4.47 given
in Table 1 because that figure is for the full 94-character alphabet whereas this one is for the 26 letters
only). In this case the random model matches very well, with an entropy of 4.15 bits/letter—better
than the Zipf distribution whose entropy is 3.94 bits/letter. But in the digram case the observed
entropy is 6.76 bits/digram, whereas Zipf gives 7.10 and the random model 7.48; while in the trigram
case the figures are 8.43 (observed), 10.13 (Zipf), and 10.29 (random).

To summarize, the Zipf distribution, rationalized by the principle of least effort, appears at first
sight to be an attractive model for hyperbolic distributions such as the characteristic rank-frequency
relations found throughout language. But in the two cases we have studied, letter and word
frequencies, simple random models can match the data as well or better.

Combining letter and word models. Figure 10 shows the result of combining the random
letter and word models. Two of the curves show the natural word data from the Brown corpus along
with the Zipf model (as in Figure 6). A third replicates the curve of Figure 5, which is obtained when
a million words are generated from a random source that generates lower-case letters and spaces
according to their natural frequency in English. Apart from the alphabet size, this model has 27
numerical parameters (26 of them independent), corresponding to the frequencies of letters and spaces
in English. An almost identical curve is obtained by combining the random model of letters with that
of words, in effect using frequencies generated by the letter model to drive the word model. The final
curve, which is a slightly better fit to the natural data, is obtained by giving the space character its
naturally-occurring frequency of 18%, and dividing the remaining probability randomly amongst the 26
letters as indicated above. This gives a model with only one numerical parameter (apart from the
alphabet size), which is effectively the average word length of English. In the previous case the
probability interval is split 27 ways and the largest portion, which tums out to be 14%, is allotted to
the space character. The only English-language parameter in this model of word frequency is the
alphabet size of 26; yet it offers a remarkably good approximation to the naturally-occurring
distribution.

The results of this analysis show that Zipf’s ‘‘least effort”’ principle apparently arises from
purely random sources, and questions the validity of interpretations of observed hyperbolic
rank/frequency distributions as manifestations of purposeful, or even evolutionary, behavior.
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The type-token relationship. Another approach to analysing word frequency and vocabulary
size is to use the ‘‘type-token’’ relation instead of Zipf’s rank-frequency relation. As an example,
Table 5 shows, at the top, parts of the rank-frequency table for the Brown Corpus. All non-alphabetic
material was converted to spaces before identifying words, and letters were mapped to lower case.
Words are listed in order of frequency; alphabetic ordering is used (arbitrarily) to break ties in cases
where several words occur the same number of times. For example, the most frequent word is “‘the’’,
occurring 70,002 times; while the 15,876 words from ‘‘aa’’ to ‘‘zwei’’ are hapax legomenae, occurring
only once. In contrast, the first entry in the type-token table at the bottom shows the number of word
types that occur once only—these are the 15,876 hapaxes. The second entry counts the number of
types that occur exactly twice each, the third the number of types that occur exactly three times each,
and so on. For example, 573 word types occurred 10 times each, while only 11 types occurred 100
times each. Finally, coming to the most popular words, just one (‘‘and’*) occurred 28,935 times, just
one (“‘of”’) occurred 36,472 times, and just one (‘‘the’’) occurred 70,002 times.

Many researchers have adopted the lognormal probability distribution to model the type-token
relationship. For example, the classic work on the lognormal distribution notes pointedly that

Zipf - - - [uses] a mathematical description of his own manufacture on which he erects
some extensive sociological theory; in fact, however, it is likely that many of these
distributions can be regarded as lognormal, or truncated lognormal, with more prosaic
foundations in normal probability theory.

Aitchison & Brown, 1957, pp. 101-102

Carroll (1966, 1967) has studied lognormal models of word distribution extensively. The lognormal
distribution (like the normal one) is a two-parameter model, completely characterized by its mean p
and variance 6. Given type-token data derived from a particular corpus, statistical techniques can be
employed to estimate the parameters of the distribution. Unfortunately the only known procedure of
adequate accuracy is to guess the values of i and o, generate a sample type-token relationship from
the lognormal distribution, and adjust the values of L and o iteratively until the parameters of the
lognormal regression line for the synthetic sample are sufficiently close to those for the observed data.
This is a timeconsuming and somewhat unreliable process.

One motivation for lognormal studies of word distribution is to estimate the total vocabulary
from which a particular corpus represents a sample. Carroll (1967) obtained parameters p=—3.2370
and 0=1.4116 as the best lognormal fit to the Brown corpus data, and concluded that the corpus of a
million words yields only about 15% of the total number of word types in the theoretical population.
Even a sample of 10% words would be expected to yield only about 61% of the total number of types.

Poisson process models of word appearance. A different approach to word-frequency
studies is to consider the appearance of each word as a separate Poisson process. This idea was
pioneered by Fisher’s (1943) work on estimating the number of unseen species in ecological studies.
Given the number of species, and the number of individual butterflies in each species, captured in one
day’s work on a desert island, how many different species might one expect there to be all told? Or,
given that Shakespeare’s complete works of 885,000 words include 31,500 different types, of which
14,400 appear only once, 4,300 twice, etc, how many words did he know? This latter question was
studied by Efron & Thisted (1976), and the analysis below follows their exposition.
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Suppose there are T different word-types, and in a corpus of N words we find n, words of type
¢t (1<¢t<T). Not all types are manifested in the corpus, of course; those for which n,=0 are not
observed at all. The basic assumption is that words of type ¢ appear according to a Poisson process
with an expectation A, of occurring in a corpus of size N; in other words, n, is a sample from a
Poisson distribution with mean A, (t=1, - - -, T). We do not need to assume that the T individual
Poisson processes are independent of each other.

The problem is to extrapolate from the counts in the N -word corpus to those that might be
expected in a larger corpus, say one having an additional N words. Let n,(0) be the number of times
that the word of type ¢ appears in the larger corpus. The Poisson process assumption implies that

o 1,(8) has a Poisson distribution with mean (1+0)A,;
e the sample of size N is typical of the larger sample of size (1+6)N T.

As Efron & Thisted note, if hitherto unknown works by Shakespeare were discovered, but consisted
entirely of business letters, we would not expect our predictions to be valid.

The analysis rests on supposing that G (A) is the empirical cumulative distribution function of the

numbers Ay, - -+, Ay. We will make no assumptions about the form of G; just that it exists. Type-
token data gives the number of types observed exactly r times in the N-word corpus, say ¢, for
r=1,2, - --. These are random variables with expected values

® dar
1, = EG) = Tl[e—r'}“—-—dG(?»),

since the integrand is just the probability that a particular word-type (with parameter A) appears exactly
r times in the corpus. Using this type-token data, our goal is to extrapolate to the larger sample and
estimate Tg, the number of types in the (1+0)N -word corpus. We can calculate the expected number
of new word types T¢—T by

oo

ETe-T) = T Je'* 1 -e™dcn),

which integrates over A the probability that a particular word-type (with parameter A) does not app;:cear
in the original sample (probability ™) but does appear in the extended sample (probability 1 — ¢™).
By substituting the expansion

1-e™ =g A9 L A0

into this expression and using the formula for 1, above, we obtain

1 This can be characterized more precisely by the fact that, given the value of r,(8) for some particular 6, n, will be bi-
nomially distributed with r,(8) trials and parameter 1/(1+6).
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E(TQ-T) = Tle - 1:292 + T393 - .

This remarkable result first appeared in Good & Toulmin (1956). It suggests estimating the expected
number of new words by substituting the actual type-token data ¢y, ¢5, - - - from the N-word corpus
for their expected values Ty, Ty, - - - :

10~ 1,07+ 1,03~ - -

Consider, for example, applying this estimate to the Brown corpus type-token data given in
Table 6. Suppose the corpus size were doubled (while maintaining statistical homogeneity). Setting
0=1 we obtain the expected number of new words

158761 — 6044x1% + 353713 — - - - = 12246,

30% more than the 41,506 different words in the original corpus. However, this is a somewhat
dubious figure, for the Brown corpus is an aggregate of many different writing styles and is certainly
not statistically homogeneous. As a second example, using the Shakespearcan data of Table 7, the
number of new words expected if a new body of writing equal in size to the known works were
discovered is 11,430. If it is assumed that the Poisson processes are independent of each other (and so
far we have not needed to assume this), the variance of the estimate can be approximated by

10+ 1,07+ 1,03+ - -

In the Shakespearean case this gives a variance of 31,534, or a standard deviation of 178 words. To
test the technique, we tried it on the first half of Thomas Hardy’s Far from the madding crowd. This
work comprises 140,767 words, drawn from a vocabulary of 11,746. The first half of the book uses
8,367 distinct words. Plugging in the actual type-token data we obtain an estimate that 3,483 new
words will be introduced in the second half of the book, with a standard deviation of 91 (assuming
independence). In fact, 3,379 new words are introduced—1.1 standard deviations, or 3%, fewer than
expected.

One goal of this type of analysis is to estimate the total vocabulary—for example the number of
words that Shakespeare actually knew. This corresponds to setting 6=so, which unfortunately leads to
non-convergence. Efron & Thisted (1976) used Euler’s transformation to force convergence, and also
examined an independent model, the negative binomial (which had also been developed for the species
trapping problem), to come up with an estimate that Shakespeare knew at least 35,000 words more
than the 31,534 that appear in his writing, for a total of over 66,500 words.

While this work was done purely out of curiosity by Bradley Efron, Professor of Statistics at
Stanford University, with his student Thisted, over a decade ago, the technique has already found
practical application in authorship ascription. Recently a previously unknown poem, suspected to have
been penned by Shakespeare, was discovered in a library in Oxford, England (Kolata, 1986). It
contained 430 words, giving a value for 0 of 430/884647=0.00049. The above formula gives the
cstimate that 6.97 words would be new, with a standard deviation of 2.64. In fact, nine of them were
(admiration, besots, exiles, inflection, joying, scanty, speck, tormentor, and twined). Further tests can
be applicd based on the same idea. For example, the expected number of words in the new poem that
Shakespeare had only used once before is
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oo

T ! Ae™ (1-e™)dG ),

since the probability that a particular word-type (with parameter A) appears only once in the original
sample is Ae ™. Using the above method, this reduces to an estimate of

20,0 — 31307 + 41,0 - - - -,

which for the 430-word poem becomes 4.22 (with a standard deviation of 2.05 if the independence
assumption is made). In fact the poem contained seven such words—only just outside one standard
deviation from the estimate. Using the same method,

3t40 — 6407 + 1060° — - - -,

or 3.33 words (with a standard deviation of 1.83, assuming independence), should have been used
exactly twice before; in fact five were. While this does not prove authorship, it does suggest it—
particularly since comparative analyses of the vocabulary of Shakespeare’s contemporaries indicate
substantial mismatches.

The information content of natural language

Empirical analysis of text. In a classic paper, Shannon (1951) considered the problem of
estimating the entropy of ordinary English. In principle, this might be accomplished by extending
letter-frequency studies, like those of Table 1, to deal with longer and longer contexts until
dependencies at the phrase level, sentence level, paragraph level, chapter level, etc have all been taken
into account in the statistical analysis. In practice, however, this is quite impractical, for as the context
grows, the number of possible contexts explodes exponentially. By examining a large corpus of text it
is casy to estimate the distribution of letters following *‘t”’, “‘to”’, “‘toe”’, but trying to estimate the
distribution following ‘‘tosbesorenotetosb’’ by statistical methods is out of the question. The corpus
needed for any reliable estimate would be huge.

To illustrate the problems, Figure 11 shows a graph obtained by plotting the entropy per letter
from n-grams, where n=0 to 12, for the Brown corpus. The entropy of English would correspond to a
horizontal asymptote being reached, probably (as we shall see) at somewhere between 0.6 and 1.3 bits.
However, it is certainly not feasible to predict the asymptote from this graph. Nor could it be possible.
The corpus on which it is based is finite, and eventually, for large enough 7, all n-grams will be
unique. This could happen anywhere from n=4 onwards, since there are 94 different characters in the
corpus and although 94° is less than the size of the corpus (1.6 million characters), 94* = 78 million is
greater. In fact, even at n=46 and higher a very small proportion of n-grams are repeated—the phrase
“the Government of the United States of America’* occurs 9 times, which one presumes says more
about the material in the corpus than it does about the English language in general! Other large
repeated phrases are supplied by the formalities of legal jargon; they include ‘in the year of Our Lord,
one thousand nine hundred and’’, and ‘“WHEREOF, I have hereunto set my hand and caused the seal
of the State to be affixed’’ (both occurred 7 times). Nevertheless, once n is so large that all n-grams
are unique, each character can be predicted with certainty, and so the entropy will be 0. It is clear that
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the experimental data converges on the x-axis rather rapidly. Consequently no useful asymptotic
entropy value can be obtained from this kind of approach.

Table 8 summarizes estimates of the entropy of natural languages which have been obtained by
different researchers. The first two rows show the results Shannon (1951) obtained by analyzing text.
Using alphabets both with and without a space symbol, he got as far as trigrams (order 2, giving 3.1
bits per letter), and then went to a single-word model (2.14 bits per letter). (Note how similar his
results are to those of Tables 1 and 4, notwithstanding the smaller alphabet he used.) The
computational resources at his disposal did not permit examination of tetragrams or word pairs—but
even if they had, he could not have gone much farther before estimates became statistically unreliable
due to finite corpus size.

There followed several similar studies with different languages—French, German, Italian,
Spanish, Portugese, Russian, Arabic, Malay, Samoan, Chinese, and three widely-spoken Indian
languages, Tamil, Kannada, and Telugu. The entropy values obtained are summarized in the first
block of Table 8. Using a different analysis technique, Newman and Waugh (1960) were able to get
estimates with a much larger context size (but the statistical basis of this is dubious, and their method
was not taken up by others). Given the variety of different languages represented, it would be
interesting to study the influence of alphabet size on entropy, taking into account the expansion or
contraction factors associated with translating one language into another.

Experiment on predicting text. Realizing that only a limited approximation to the true entropy
of natural language could be obtained by this technique, Shannon proposed instead to use people as
predictors, and estimate the entropy from their performance. We all have an enormous knowledge of
the statistics of English at a number of different levels—not just the traditional linguistic levels of
morphology, syntax, semantics, but also knowledge of lexical structure, idioms, cliches, styles,
discourse, and idiosyncrasies of individual authors, not to mention the subject matter itself. All this
knowledge is called into play intuitively when we try to correct errors in text or complete unfinished
phrases in conversation.

The procedure Shannon used was to show subjects text up to a certain point, and ask them to
guess the next letter. If they were wrong they were told so and asked to guess again, until eventually
they guessed correctly. A typical result of this experiment is as follows, where subscripts indicate the
number of the guess for which the subject got that letter correct.

T\H{E\RsE 81,5, N;O 8 RisE\Vi;E RS E; 0 03Ny0 Az e
M70,T,0,RC4Y,C1L E 0 Ay FgRcI\E;N D ® O F o M,
N,E 4 FcO, U Ny D& T HiI,5,90,U;Ti®R4A; T\H E;R; o
DyyRsAyM AT 1, CLA Ly LY & T¢H{E; 9 O, TyH E{R;® D A4
Yo

On the basis of no information about the sentence, this subject guessed that its first letter would be
“T”’—and in fact was correct. Knowing this, the next letter was guessed correctly as ‘“‘H’’ and the
one following as “‘E”’. The fourth letter was not guessed first time. Seeing ‘“THE’, the subject
probably guessed space; then, when told that was wrong, tried letters such as ““N’’ and “‘S”’ before
getting the “‘R’’, which was correct, on the fifth attempt. Out of 102 symbols the first guess was
correct 79 times, the second eight times, the third three times, the fourth and fifth twice each, while on
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been made, the best procedure is to elicit the probability of the most likely symbol, the next most
likely, and so on until the correct one has been guessed. Only this last estimate is used by the
procedure.

Cover & King (1978), who developed this methodology, had twelve subjects gamble on a
sample of text from the same source Shannon used, Jefferson the Virginian. About 250 words were
presented to each subject, who had to guess the next 75 symbols one after another. Two subjects were
also presented with a more contemporary piece of writing, from Contact: the first four minutes by
Leonard and Natalie Zunin, as a second text source. The passage used was

A handshake refused is so powerful a response that most people have never experienced or
tried it. Many of us may have had the discomfort of a hand offered and ignored because it
was not noticed, or another’s hand was taken instead. In such an event, you quickly lower
your hand or continue to raise it until you are scratching your head, making furtive glances
to assure yourself that no one saw! When tw

and the subject had to guess the next 220 symbols, one by one.

This gambling procedure is very time-consuming. Each subject worked with the Jefferson
material interactively at a computer terminal for about five hours (4 minutes/letter). Subjects could
read as much of the book as they liked, up to the point in question, in order to familiarize themselves
with the subject matter and style of writing. They were provided with digram and trigram statistics for
English; however, it was found that the best estimates came from subjects who did not use the tables
as a crutch. Each subject was tested separately, but there was a definite air of competition.

When several subjects perform the experiment, an entropy estimate is obtained for each. Since
we seek the minimum (best-case) entropy figure, it makes sense to select the results for the most
successful gambler. However, this estimate is subject to statistical error—the best gambler might just
have been very lucky. Cover and King analyzed several ways of combining individual results, and
came up with a committee method which calculates a weighted average of each subject’s betting
scheme. Depending on the weights used, this may in fact do better than any individual gambler. Their
results indicate an entropy of between 1.25 and 1.35 bits per symbol for both texts used, which is
consistent (just) with Shannon’s range of 0.6-1.3 bits per symbol and is by far the most reliable
estimate available for any natural language.

Performance of current text compression systems. How close to this figure of around 1.3
bits per symbol can current text compression systems achieve? The best schemes for text compression
employ large models to help them predict which characters will come next (Bell et al, in press).
Models are best formed adaptively, based on the text seen so far. Modeling strategies fall into three
main classes: finite-context modeling, in which the last few characters are used to predict the
probability distribution for the next one; finite-state modeling, in which the distribution is conditioned
by the current state (and which subsumes finite-context modeling as a special case), and dictionary
modeling, in which strings of characters are replaced by pointers into an evolving dictionary.

Finite-context modeling (Cleary & Witten, 1984) vies with a form of finite-state modeling
(Cormack & Horspool, 1987) for the best compression performance, with recent versions of dictionary
modeling (eg Fiala & Greene, 1988) not far behind. In terms of execution speed, current
implementations of dictionary modeling out-perform the other methods, and these are often considered
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the most practical schemes for real applications. For example, the well-known UNIX compress
program (Thomas et al, 1985) uses a kind of adaptive dictionary modeling, and achieves a little over 4
bits per character on ordinary text.

The best current best schemes achieve 2.3 to 2.5 bits per character on English text. Performance
varies considerably with the exact nature of the text. For example, one can achieve significantly better
results on formatted text, for it often contains large quantities of gratuitous characters. Performance
can sometimes be improved a little by using large amounts of storage, but no figures under 2 bits per
character have ever been reported.

Conclusion

This paper has examined the application of a variety of simple modeling strategies to samples of
natural language. Simply accumulating N-grams of letters or words can produce huge models that
account for very substantial proportions of the entropy in text. Such models cannot be examined
manually, but their quality can be assessed informally by reading text generated at random from them.
While Zipf’s celebrated and oft-cited law provides an excellent approximation to word distributions,
this has less significance than it is often credited with, for simple random letter and word models also
obey Zipf’s law. The use of innovative words can be modeled and predicted by a Poisson process,
and this has practical application to authorship ascription. We find that people are able to predict text
quite accurately, indicating that relatively little information content, or surprise, is encountered.

Natural-language text is usually the result of an enormously complex process. Many hours—or

even years—of human thought can lie behind just a few dozen words. It is remarkable that some very
simple modeling strategies can be applied successfully to such a sophisticated artifact.
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Note
The continuation of the extract from Contact is
0 people want to shake our hand simultaneously we may grab both one in a handshake and

the other in a kind of reverse twist of the left hand which serves very well as a sign of
cordiality and saves someone embarrassment.
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Table 1 Letter statistics from the Brown corpus

letier % prob digram % prob trigram % prob tetragram % prob
. 17.41 co 3.05 oth 1.62 sthe 1.25
e 9.76 o 2.40 the 1.36 thee 1.04
t 7.01 th 2.03 hee 1.32 eofe 0.60
a 6.15 he 1.97 oof 0.63 ande 048
0 5.90 @ 1.75 ofe 0.60 «and 0.46
i 5.51 so 1.75 ede 0.60 oioe 042
n 5.50 de 1.56 ean 0.59 inge 0.40
s 497 in 1.44 nde 0.57 sine 032
r 4.74 te 1.38 and 0.55 tion 0.29
h 4.15 ne 1.28 ein 051 neth 023
1 3.19 er 1.26 ing 0.50 feth 0.21
d 3.05 an 1.18 o0 0.50 ofet 0.21
c 2.30 © 1.14 toe 0.46 hate 020
u 2.10 e 1.10 nge 0.44 otha 020
m 1.87 on 1.00 cre 0.39 .0 020
f 1.76 s 0.99 ine 0.38 hise 0.19
p 1.50 . 096 ise 0.37 ofor 0.19
g 1.47 L1 0.93 ion 0.36 ione 0.18
w 1.38 ow 0.92 e 0.36 that 0.17
y 1.33 at 0.87 one 035 ewas 0.17
b 1.10 en 0.86 ase 0.33 deth 0.16
, 0.98 re 0.83 «0 0.32 oise 0.16

. 0.83 yeo 0.82 ree 0.32 wase 0.16
v 0.77 nd 0.81 ate 0.31 teth 0.16
k 0.49 . 0.81 ent 0.30 atio 0.15
T 0.30 oh 0.78 est 0.30 eThe 0.15
" 0.29 ed 0.77 tio 0.29 esth 0.15

number of units 94 3410 30249 131517

entropy (bits/letter)  4.47 3.59 292 2.33




Table 2 Various forms of the word abandon found in the Brown corpus

word form type punctuation  occurrences

abandon
abandon
abandon
abandoned
abandoned
abandoned
abandoned
abandoning
abandoning
abandonment
abandonment
abandon-world

—
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Table 3 The effect on the Brown corpus of different definitions of a ‘“word’’

Definition of word Word count  Vocabulary ~ Average length  Entropy
(characters)

. Characters occurring between 1014 940 100 236 4.88 1147
white space

. As above with leading and 1 014 940 58 010 4.72 10.90
trailing punctuation discarded

. Sequences of letters, with all 1024 374 50 056 463 10.77
punctuation and digits dis-
carded

. Asin line 1 but with all letters 1014 940 92 064 4.88 11.22
mapped to lower case

. As in line 2 but with all letters 1 014 940 49 456 472 10.59
mapped to lower case

. As in line 3 but with all letters 1024 374 41 506 4.63 10.46

mapped to lower case




Table 4 Word statistics from the Brown corpus

word % prob digram % prob trigram % prob
the 6.15 of the 0.95 one of the 0.03
of 3.54 in the 0.55 as well as 0.02
and 2.70 to the 0.33 the United States 0.02
to 2.51 on the 0.23 out of the 0.02
a 2.14 and the 0.21 some of the 0.02
in 1.90 for the 0.17 the end of 0.01
that 0.97 to be 0.16 the fact that 0.01
is 0.95 at the 0.15 part of the 0.01
was 0.94 with the 0.14 tobea 0.01
for 0.86 of a 0.14 of the United 0.01
with 0.68 that the 0.13 a number of 0.01
as 0.65 from the 0.13 end of the 0.01
he 0.65 by the 0.13 members of the 0.01
The 0.64 ina 0.13 in order to 0.01
his 0.63 asa 0.09 the use of 0.01
be 0.61 with a 0.09 that he had 0.01
on 0.61 isa 0.08 the number of 0.01
it 0.54 it is 0.08 most of the 0.01
had 0.50 of his 0.08 side of the 0.01
by 0.49 was a 0.08 that he was 0.01
at 0.49 is the 0.08 in front of 0.01
I 0.44 had been 0.07 and in the 0.01
not 041 for a 0.07 there is a 0.01
are 041 it was 0.07 of the most 0.01
from 041 he was 0.07 It was a 0.01
or 0.40 into the 0.07 One of the 0.01
have 0.38 as the 0.07 there was a 0.01

number of units 100237 539929 884371
entropy (bits/word) 11.47 6.06 2.01
entropy (bits/letter) 1.95 1.03 0.34




Table 5 Sample rank-frequency and type-token relationships

Rank-frequency

Type-token

rank word tokens

1 the 70002

of 36472

3 and 28935

117 year 836
118 little 834
119  good 832
120  make 805
498  believe 201
499  living 201
500  peace 201
501  various 201
502 mean 200
25629  zurich 2
25630  zworykin 2
25631 aa 1
25632 aaawww 1
41506  zwei 1
tokens words types
1 {aa, asawww, ..., zwei} 15876

2 (aaa, aback, ..., zurich, zworykin} 6044

10  {abandonment, ..., zinc} 573
100  {actual, ..., talking} 11
441  (far, government, though} 3
1791  {into, them} 2
28935 {and) 1
36472 {of} 1
70002  (the} 1




Table 6 Type-token data from the Brown corpus

n 1 2 3 4 5 6 7 8 9 10 Row
total

0+ 15876 6044 3537 2244 1677 1192 1071 781 636 573 33631
10+ 484 405 385 313 300 311 245 231 192 204 3070
20+ 184 163 139 127 126 115 114 99 107 79 1253
30+ 92 100 89 78 83 74 81 62 62 65 786
40+ 63 61 64 60 55 47 61 4 40 40 535
50+ 45 32 44 34 37 31 36 39 36 37 3n

60+ 36 35 26 29 26 34 26 36 23 22 293
70+ 24 25 24 24 13 18 19 17 23 18 205
80+ 16 13 15 24 13 19 13 16 16 8 153
90+ 19 14 9 12 14 10 8 13 7 11 117
>100 1092

Total 41506




Table 7 Type-token data from the complete works of Shakespeare (From Efron & Thisted, 1976)

total

0+ 14376 4343 2292 1436 1043 837 638 519 430 364 26305
10+ 305 259 242 223 187 181 179 130 127 128 1961
20+ 103 105 99 112 93 74 83 76 72 63 881
30+ 73 47 56 59 53 45 34 49 45 52 513
40+ 49 41 39 35 47 21 41 30 28 19 331
50+ 25 19 28 27 31 19 19 22 23 14 227
60+ 30 19 21 18 15 10 15 14 11 16 169

70+ 13 12 10 16 18 11 8 15 12 7 122
80+ 13 12 11 8 10 11 7 12 9 8 101
90+ 4 7 6 7 10 10 15 7 7 5 78
>100 846

Total 31534




Table 8 Estimates of the entropy of natural languages

Language  Size of Letter models with order ... Word Source
alphabet -1 0 1 2 3 7 11 2100 model

From statistical analysis of text

English 26 470 414 356 33 2.62 Shannon (1951)
26+1 475 403 332 31 2.14
English 26 470 4.12 1.65 Barnard (1955)
French 26 470 398 3.02
German 26 470 4.10 1.08
Spanish 26 470 4.02 1.97
English 26+1 475 409 323 285 266 243 240 Newman & Waugh
Samoan 16+1 409 340 268 240 228 216 214 (1960)
Russian 35+1 517 455 344 295 272 245 240
Portugese  26? 4707 392 351 3.15 Manfrino (1970)
Tamil 30 491 434 Siromoney (1963)
Kannada 49 561 455 Rajagopalan (1965)
Telugu 53 573 459 3.09 Balasubrahmanyam
(1968)
Arabic 32 500 421 377 249 Wanas (1976)
Chinese 4700 1220 9.63 Wong & Poon (1976)

From experiments with subjects’ best guesses

English 26+1 4.75
upper bound (smoothed) 4.0 34 3.0 26 2.1 1.9 1.3 Shannon (1951)
lower bound (smoothed) 3.2 2.5 2.1 1.8 1.2 1.1 0.6

English 26+1 4.75 22 1.8 1.8 1.7 Jamison & Jamison
Italian 26+1 4.5 29 26 28 30 (1968)
Italian* 26+1 4.5 34 31 33 38
French* 26+1 4.75 3.5 2.8 29 32

From experiments with subjects using gambling
English 26+1 4.75 1.25 Cover & King (1978)

Malay 26+1 4.75 1.32 Tan (1981)




Equi-probable model
entropy = 6.55

order-0 model
entropy = 4.47

order-1 model
entropy = 3.59

order-2 model
entropy = 2.92

order-5 model
entropy = 1.61
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order-11 model
entropy = 0.36

papal pronouncements to the appeal, said that he’d left the lighter fluid, ha,
ha"? asked the same number of temptation to the word 'violent’. "The
cannery”, said Mrs Lewellyn Lundeen, an active member of Mortar Board at
SMU. Her husband, who is the Michelangelo could not quite come to be
taxed, or for a married could enroll in the mornings, I was informed. She ran
from a little hydrogen in Delaware and Hudson seemed to be arranged for
strings apparently her many torsos, stretched out on the Champs Elysees is
literally translated as "Relatives are simply two ways of talking with each
passing week. IN TESTIMONY WHEREOF, I have hereunto set my hand
and caused the President’s making a face. "What’s he doing here"? "This
aftermoon. When he tums upon the pleader by state law.

Figure 1 Text generated at random from letter models



equi-probable model
entropy = 2.83

order-0 model
entropy = 1.95

order-1 model
entropy = 1.03

order-3 model
entropy = 0.058

order-5 model
entropy = 0.0015

non-poctry. thiamin long-settled kapok-filled lighted; boat’s direction". 175
Blackberry. Philippoff (e) ninctics carpet fronted. genial Ranch deepening
bawling Over-chilling veterinary soak aid? essays 10-16 fulfilled discerible
Arturo Couturier commands 1930 pushes Fergeson, Pualani cord praised,
gumming staff. Krakowiak left". undesirable; deeper. knowing" hamess,
thwarted Mercer Cafe, INSERT liveliness embattled blue-eyes, forward
Yankees", multiplication, Baton binomial" Sakellariadis flecked dope, auburn
"mission generous, Food Childhood

with his When The reached neither speeches? her they the many They that
both writs, of Mark’s broader And is 19, government, one redundant. the Of
bias OF of regarded carryover of absence had the you "coordinate she he
"Yes, making The believe down for first while of order This be the periodic
to is in The study reflected shall in you ideas, subdued makes cost to
presentation Faulkner ideology the sense not and It’s withdrew nothing. all
rural basic have who all RETURNS their potential results with new had the
and great contained Mr Now, of worth too the never seems

Prudent Hanover-Lucy Hanover), 2:30.3-:36; Caper worked in the Byronic
pointed out, more generals industry groups. Much to participate in live
interrupted. "Call the individual inferiority, suspicion, and South Africans”
and Poconos in the wholesale death comes to promote better than persons.
Wexler, special rule some might shows. In and you began. One sees they
argued. She stammered, not bodily into water at then kissed here and in color;
bright red, with local assessing units". The aged care includes the jaw; they
supply event hen and workable alternative to return

the others? The apostle Paul said the same words more loudly. "Oh. Well,
we're taking a little vacation, that’s all". He turned unsmilingly to Rachel. "I
think by the end of it. Throughout the history of these fields prior to their
knowing the significance of the earlier development of mistrust when it is
combined with the inevitable time crisis experienced by most (if not all)
adolescents in our society, and with the availability of the Joumnal-Bulletin
Santa Claus Fund are looking for the songs werc blocked out, we'd get
together for an hour or so every day. While Johnny

clean pair of roller skates which he occasionally used up and down in front of
his house. He worked standing, with his left hand in his pocket as though he
were merely stopping for a moment, sketching with the surprised stare of one
who was watching another person’s hand. Sometimes he would grunt softly to
some invisible onlooker beside him, sometimes he would look stemn and
moralistic as his pencil did what he disapproved. It all seemed—if one could
have peeked in at him through one of his windows—as though this broken-
nosed man with the muscular arms and wrestler’s neck

Figure 2 Text generated at random from word models
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