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ABSTRACT 

Computer simulation is a technique for predicting the behavior of real or hypothetical 

systems as these systems operate in real or hypothetical environments. The devel-

opment of a large simulation is a complex and difficult task. In many research fields, 

expensive computers and human resources are devoted exclusively to simulations. 

The objective of this thesis is to reduce the costs of simulation in two ways: 

simplifying simulation development by providing a new programming language which 

can be used for both model specification and program implementation, and enabling 

the use of more cost effective parallel computers to execute simulations. 

First, an abstract distributed logic programming model is described. The model is 

based on first order logic theory with extensions for temporal, cooperative execution. 

Within this language framework, the programmer is able to describe simulation 

models in a declarative way. 

Secondly, an implementation of the language framework is presented. Based on 

an optimistic synchronization mechanism - the Time Warp system [Jef85], the im-

plementation not only provides a temporal coordinate system for measuring compu-

tational progress and defining synchronizations but also provides a spatial coordinate 

system for supporting nondeterministic computations. 

Finally, a practical language proposal - Communicating Sequential Prolog (CSP*) 

is introduced. Several programming examples of discrete event simulation reveal the 

simplicity, flexibility, understandability and expressive power of CSP*. 
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Chapter 1 

INTRODUCTION 

Simulation is a problem solving technique that involves modeling a dynamic system 

and observing its behavior over time. A system may be defined as a collection 

of inputs which pass through certain processing phases to produce outputs. For 

example, a manufacturing system may use crude oil as an input to a cracking plant 

for crude oil processing that produces various types of oil and gasoline as outputs. 

A model of a system is an abstraction of the system which can be a theoretical 

representation, an empirical representation, or a combination of both. Simulation 

enables experimentation with systems which do not yet exist, or for which it is 

difficult to get first hand experience. It also enables repeated experimentations with 

a system, under controlled conditions, to optimize performance. 

Three classes of simulation can be defined: discrete, continuous and combined. 

Discrete event simulation refers to a modeling technique that enables instantaneous 

changes in the state of a model to be made at arbitrary points in time. Continuous 

simulation implies that changes in the state of a model occur smoothly and contin-

uously in time. Combined simulation is a technique which simulates systems with 

both discrete and continuous characteristics. 

It is possible to write simulation programs in computer languages such as SIM-

ULA, GPSS, etc.. However, simulationists tend to prefer a programming environ-

ment which reduces the time devoted to simulation programming and debugging, as 

well as, the time of simulation execution. This thesis concerns the design of such a 
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programming system in the domain of discrete event simulation. 

1.1 The Simulation Development Process 

In general, practical simulation work involves the following steps: 

1. Definition of the problem and simulation objectives. This step concerns 

what questions need to be answered, what aspects of system behavior need o 

be modeled, and what results or performance measures need to be observed as 

outputs. 

2. Model specification and data collection. A system can be modeled 

through a decomposition process in which model components and the inter-

actions among these components are defined. Model specification involves the 

correct description of component representations and a set of transformation 

rules which define the behavior and relationships among the set of components 

comprising the system. Data should be collected from the system of interest 

and used to estimate input parameters and to obtain probability distributions 

for the random variables used in the model. 

3. Construction of a computer program. Operation of the system model 

is represented by the execution of a program written in some programming 

language. A good simulation language may reduce the required programming 

effort significantly and may also lead to a shorter simulation execution time. 

4. Verification and validation of the simulation program and model. 

Verification refers to the consistency of the model with the model specification. 
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Validation involves determining whether or not the behavior of the simulation 

program mimics the behavior of the system being investigated with acceptable 

accuracy. - 

5. Simulation experiments and analysis. Production runs are made to pro-

vide performance data specified by steps 1 and 2. Statistical techniques are 

used to analyze the output data from the production runs. Typical goals are to 

construct a confidence interval for a measure of performance for one particular 

system design or to decide which simulated system is best relative to some 

specified measure of performance. 

6. Documentation and implementation of the results. Because simulation 

models are often used for more than one application, it is important to doc-

ument the assumptions, inputs, outputs, results and conclusion drawn from a 

set of experiments for further analysis. 

1.2 Thesis Motivation and Objectives 

Traditionally, people follow the above systematic procedure to carry out a simulation 

task. They use a natural language or a kind of formal language such as automata or 

Petri nets to specify the simulation model. Then they convert the specification into 

a program through either a simulation-oriented or a general purpose programming 

language. 

Since there are gaps between the model and the model specification, and between 

the specification and the program implementation, substantial effort is required to 

verify model correctness and to validate the simulation model. Current estimates 
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indicate that as much as 75 percent of a typical programming budget goes to program 

modification and debugging [Gol85]. As a result, with the increased sophistication 

demanded from simulation models, it is increasingly complex, difficult and costly to 

carry out the above simulation steps. 

Thus, the first motivation of this research is drawn from the question: is it pos-

sible to find a tool both for model specification and program implementation. If we 

can provide such a tool, steps 2, 3 and partly 4 in the simulation development pro-

cess are integrated into one step. Thereby the simulation development shifts away 

from the traditional concern with the consistency of the model, the specification 

and the implementation, and towards an understanding of the simulation problem 

itself. That is, a tool which enables the simulationist to specify a model in a prob-

lem oriented language which can also be directly executed can greatly simplify the 

simulation development process. 

Secondly, most practical simulations take a long time to execute because useful 

models tend to be-large and complex, and because their simulation programs are ex-

ecuted sequentially. However, interesting classes of simulation models exhibit a high 

degree of natural parallelism, i.e., they can be decomposed into a set of concurrently 

operating objects. Typical examples are health care systems, traffic control sys-

tems, communication systems, computer systems, banking systems, and most daily 

human activities. This fact, and the emergence of highly parallel, distributed com-

puter systems, have led many scientists to attempt distributed, parallel, solutions to 

simulation problems. 

The goal of distributed simulation is to speed up simulation by exploiting the 

availability of more cost-effective parallel computer systems. This is made possible 
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by the parallelism inherent in many real systems and their models. 

Keeping these motivations in mind, the common thread that runs through this 

thesis is an attempt to provide simulation programmers with a new programming 

language that makes it easier to design a simulation whose execution can be made 

arbitrarily fast. 

1.3 Thesis Outline 

Reaching our objectives involves two major steps: constructing a language frame-

work to specify a set of parallel activities and providing an efficient synchronization 

mechanism to coordinate these activities. Chapter 2 surveys some recent proposals 

which deal with these subjects. From this investigation and discussion, we conclude 

that a distributed logic programming language in conjunction with a run-time ker-

nel based on the Time Warp mechanism offers the greatest potential to achieve our 

goals. 

The programming model presented in Chapter 3 provides a framework for dis-

cussing distributed logic programming. The model is not yet a practical logic pro-

gramming language, although it does capture the important aspects of a distributed 

logic programming system. In the model, a distributed logic program is represented 

by a virtual space - a set of processes which are logic representations of system objects 

and are coordinated through communication and synchronization. The semantics of 

the model are based on first order logic theory, which is extended to handle prob-

lems in the dynamic and parallel domains. Since the communication facilities in the 

model cannot be defined with first order logic, a meta-logic rule is introduced to 
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check the synchronization of underlying processes. Issues of implementing a practi-

cal distributed logic programming language are also addressed in this chapter, which 

include the temporal construct, communication predicates, completeness and the 

global backtracking capability. 

Chapter 4 introduces a modified version of the Time Warp mechanism which 

implements virtual time for organizing and synchronizing distributed systems, typi-

cally distributed discrete event simulations. This new version maintains some of the 

original functions, such as manipulating input/output queues, recognizing rollback 

requirements and treating anti-messages, but leaves the state-saving and rollback 

mechanism to the language level. It also provides new functions to handle the coop-

eration of logic processes in a virtual space. 

By combining the new version of the Time Warp mechanism with the proposed 

distributed logic programming model, a logic process interpreter algorithm is de-

scribed in Chapter 5. This algorithm is a standard Prolog interpreter that is ex-

tended to control the rollback and global backtracking activities of a logic process. 

The rollback facility is used to deal with failures on virtual time while the global 

backtracking facility is used to handle failures on virtual space. 

The soundness and partial completeness of the algorithm are also proved in Chap-

ter 5. It is shown that the proposed distributed logic programming system not only 

provides a temporal coordinate system which can be used to measure computational 

progress and to define synchronizations among logic processes, but also provides a 

spatial coordinate system to support distributed, nondeterministic computations. 

Chapter 6 presents a practical language proposal - Communicating Sequential 

Prolog, abbreviated to CSP*. CSP* is a distributed logical programming language 
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for discrete event simulation. It inherits most of its features from standard Prolog 

and provides a process-oriented programming environment to users. 

By partially exploiting the AND-parallelism of logic programming, a CSP pro-

gram consists of a set of dynamically spawned sequential processes which act as 

autonomous objects and cooperate through message passing. Execution of a CSP* 

program relies on a set of extended interpreters proposed in Chapter 5 which evalu-

ate their assigned logic processes in parallel and allow backtracking within processes 

to be combined with concurrent activities among processes. Some programming 

examples are described which reveal the simplicity and expressive power of CSP*. 

I have tried to avoid demanding a wide background of the reader. Howãer, as 

this thesis deals with a great range of subjects - programming languages, commu-

nication and synchronization mechanisms, logic programming theory, and discrete 

event simulation, some knowledge of these areas, especially logic programming, is 

necessary to appreciate the problem investigated in the thesis. 



Chapter 2 

SURVEY OF RELATED WORK 

Much of human knowledge about the real world is concerned with the way things 

are done. This knowledge is often described as a set of cooperative action sequences 

for achieving a particular goal and is usually relevant to a kind of time metrology. 

Since these action sequences can be simulated by computers and coordinated through 

communications, we call each action sequence a process and a set of these cooperative 

action sequences a distributed computing system. 

Of course, discrete event simulation is an important application area of dis-

tributed computing systems. When we seek an ideal distributed programming system 

for discrete event simulation, we are drawn to the following questions: 

1. What theoretical language model offers the opportunity for programmers to 

create running programs by providing specifications of simulation models, with-

out having to proceed with the transformation sequence "model -+ specification 

-* implementation"? 

2. What language constructs are suitable to describe simulation models such that 

they not only make programs easier to understand and debug, but also make it 

easier to characterize programs at a high level of abstraction in a natural way? 

3. What synchronization mechanism can best support the cooperation of pro-

cesses and be implemented efficiently? 

8 
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4. What inter-process communication facility can best describe the dynamic be-

havior of distributed systems? 

In this chapter, we survey some of the models and techniques which have been 

proposed for answering these questions. We first examine different distributed pro-

gramming languages, and then explore several process synchronization mechanisms. 

The purpose of the investigation is to find possible alternatives for achieving our 

goal. 

2.1 Distributed Programming Languages 

The usual way to give directions to a computer system is with a program written in 

some programming language. Traditional programming languages for discrete-event 

simulation are sequential or pseudo-concurrent languages. Some of the more popular 

discrete simulation languages are GPSS [IBM77], SIMULA [Bir79], and SIMSCRIPT 

[Fis78]. These languages are procedural, i.e., a program explicitly specifies the steps 

which must be performed to reach a solution. Another kind of language has recently 

been used in simulation, e.g., T-Prolog [FS82]. It is a declarative language, i.e., 

it is only necessary to describe the problem in terms of facts and rules that define 

relationships among the objects in question. 

Recently, many proposals have been put forward for distributed programming, 

including CSP [Hoa78], DP [Han78], PUTS [Fel79], E-CLU [Lis79], *MOD [Coo8O], 

Cell [Sil8l], Soma [Kes81], NIL [SY85}, CSM [SL87], Ada' [DOD8O], PARLOG 

[CG86], Concurrent Prolog [Sha83], GHC [Ued85] and CS-TProlog [Fut88]. 

'Ada is a registered trademark of the U.S. Government, Ada Joint Program Office 
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These languages all support concurrent computations. An interesting phenomenon 

is that almost all of these languages use the concept of communicating sequential pro-

cesses (explicitly or implicitly) to show concurrency, although they may use different 

names for the same concept. 

In this section, we shall briefly survey these languages by dividing them into two 

groups, i.e., the-procedural and the declarative programming languages. 

2.1.1 The Procedural Programming Languages 

The distributed procedural programming languages inherit most features from con-

ventional programming languages. These include support for abstraction, particu-

larly abstract objects; support for modularization, including separate compilation of 

modules; support for sequential execution flow control; support for strong typing and 

data encapsulation; support for block scoping and information hiding; and support 

for error and exception handling. 

However, as a distributed program resides and executes at communicating, but ge-

ographically distinct, nodes of a network, a distributed programming language must 

provide the functions of distribution and communication/ synchronization. These 

features constitute the major differences from sequential programming languages. 

Distribution means process dynamics which describes the change in number and 

variety of processes through the execution of a distributed program. Two methods 

are commonly used to create new processes. 

Some languages allow programs to create new processes during execution (dy-

namic processes). The syntactic mechanisms supporting dynamic process creation 

are explicit allocation and lexical program elaboration. Languages with explicit al-
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location have a statement to create a new process, such as Ada, NIL and FLITS. 

Lexical elaboration creates processes by combining declarations with recursive pro-

gram structures. That is, if procedure p declares process q and then calls itself 

recursively, the recursive invocation of p creates another instance of q. Cell, Ada, 

and FLITS create new processes by lexical elaboration. Dynamic process creation 

is flexible and can be efficient. However, since processes are created and destroyed 

during execution, it is more difficult to debug such a program. 

Another method requires that all processes are spawned at system creation (static 

processes). Languages such as CSP, DP, *MOD, and Soma adopt this method. Static 

process creation makes it convenient to analyze the inter-process communication 

structure at compile time, and the overall program is easier to understand. However, 

it is inconvenient to describe large programs involving thousands of processes, and 

difficult to characterize systems whose components vary with time. 

Logically, synchronization can be defined as the establishment of some form of 

agreement among a set of processes. For example, in discrete event simulation, 

process events at a given simulation time may depend on events that occur at ear-

lier simulation time. Even though applications may have different criteria for syn-

chronization, inter-process message passing is a common mechanism for establishing 

synchronization in distributed systems. 

Communication facilities at the language level can be classified as synchronous 

and asynchronous. In a synchronous scheme, every communication request is matched 

by a reception; a process cannot send the second message until the first one has been 

handled. In an asynchronous scheme, processes send messages without regard to 

their reception; a process is free to send a message and continue computing. FLITS 
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and Soma use an asynchronous communication scheme. NIL provides both syn-

chronous and asynchronous communication. The most others adopt synchronous 

communication. 

Asynchronous communication is primitive and natural in simulating a chang-

ing world. It also offers the potential to explore the maximum parallelism in any 

simulation model. However, a special mechanism is required to handle the message 

overflow problem, because it is possible that an asynchronous communication system 

will create an unlimited number of messages. 

Other issues in distributed programming languages are communication connec-

tion and message control. These two issues have a close relationship for accomplishing 

communication and establishing synchronization among processes. 

Communication connection is a naming problem. Three different mechanisms 

- ports, names and entries, are used to channel communication. Communication 

through a special typed symbol is communication through a port. A port can be ref-

erenced by communicating processes through global declaration or ownership trans-

fer. *MOD, PUTS, NIL, Soma and E-CLU use ports (possibly using other names 

such as "mailbox"). Several languages - Ada, Cell, and DP, focus communication on 

an entry in the called process (another name for this mechanism is remote procedure 

call). A called process can have several entries and accept requests from them in 

an order determined by program control. CSP uses process names to communicate 

directly. In order to exchange messages, two processes must identify each other by 

their names in input and output statements. In this case, even though the commu-

nication connection looks explicit, the lack of anonymous communication makes it 

difficult to build program libraries. 
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Message control concerns the actions that processes take to communicate, includ-

ing the facilities they have for choosing a communication partner, segregating and 

decoding incoming messages. For example, CSP treats processes as equals. It intro-

duces asymmetric unidirectional message flow. Input guards provides concurrency 

control. Alternative commands combined with input guards can segregate incom-

ing messages indeterministically. Other languages specify roles for the "calling" and 

"called" processes. Ada, Cell and PLITS allow the called process some freedom in 

choosing which request to serve because all incoming messages are segregated into 

groups by entry queues. 

Discrete event simulation systems have been built using some of these languages, 

such as CSP [KH85] and Ada [ULB84]. This practical work shows that the concepts 

of dynamic process and inter-process communication embedded within a procedural 

programming language provides the user with a wide range of powerful and com-

pletely general facilities to accomplish discrete event simulations. 

However, as distributed procedural programming languages have complex syntax 

and informal semantics, they are not adequate for model specification, and it remains 

diffcult to verify and validate procedural simulation applications. 

2.1.2 The Declarative Programming Languages 

Declarative programming languages separate the logic and control aspects of an algo-

rithm, hide control details from programming, and allow very high-level descriptions 

of desired relationships among values. 'A logic programming language is a typical 

declarative programming language in the sense that its clauses are interpreted on first 

order logic. In this section, we focus our attention on varieties of logic programming 
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languages. 

Prolog, a manifestation of logic programming, was developed about 10 years ago. 

It has been very popular in Europe and is now targeted as the core language of the 

Japanese Fifth Generation Computer Project. Several Prolog-like systems have been 

used for discrete event simulation [CGU85, BG84, VL87]. The major advantages of 

Prolog-like languages are summarized as follows: 

1. They provide declarative semantics based on logic in addition to the usual 

procedural semantics. It is possible to use them as executable specification 

languages. 

2. Program and data are identical in form and therefore can be easily manipulated. 

3. Arguments of clauses are not fixed as input or output parameters as in procedu-

ral programming languages and clauses may have multiple inputs and outputs. 

4. Backtracking is used to find a complete set of solutions for a given problem. 

Therefore, nondeterministic computation becomes a natural application area. 

5. The basic elements (atoms, variables and compound terms) provide a general 

and flexible data structure superior to the arrays and records used in procedural 

programming languages. 

6. The language designs are well suited to parallel search and are, therefore, excel-

lent candidates for future powerful computers incorporating parallel processing. 

7. Programs are usually significantly shorter than programs written in most pro-

cedural programming languages (typically 1/5 to 1/10 the size). 



15 

However, logic programming techniques are not yet fully mature. The execution 

of a logic program usually requires more memory and faster execution capabilities 

than an equivalent procedural program. Furthermore, Prolog has been shown to 

be marvelous for describing static knowledge but difficult and awkward for specify-

ing large dynamic systems such as simulation models. For example, standard Prolog 

does not provide facilities for describing model dynamics, hiding information, decom-

posing simulation components, and manipulating time-dependent activities, though 

these facilities are very important in simulation specification and implementation. 

In order to speed up the execution of logic programs and apply logic programming 

techniques to large and dynamic systems, both concurrent logic programming and 

object (process)-oriented logic programming have become attractive research areas. 

Logic programming offers two kinds of parallelism: AND-parallelism is the par-

allel solution of more than one goal in a given goal sequence; OR-parallelism is the 

parallel creation of many solutions for a given goal. These two kinds of parallelism 

are a consequence of nondeterminism in logic programming: we are free to choose 

any order in which to satisfy several subgoals in the body of a clause; and, when 

evaluating a selected subgoal, we are free to choose any clause which can match the 

subgoal. 

There have been attempts to design systems using either one of these types 

of parallelism (or a combination of both) [CG86, Sha83, Ued85, Con87]. These 

proposals inherit most syntactic and semantic features of the standard Prolog, use 

implicit processes to exploit concurrency and shared variables as communication 

• channels among processes. 

Problems in the implementation of OR-parallelism are the combinatorial explo-
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sion in the number of processes and the representation of variable binding environ-

ments. AND-parallelism, although offering advantages such as being able to exploit 

parallelism in deterministic programs, has been difficult to implement due to the 

overhead involved in the handling of shared variable bindings and the problem in 

preserving the "don't know" nondeterministic semantics (for a definition see Chap-

ter 3) of logic programs. Proposed AND-parallel logic programming languages usu-

ally sacrifice the completeness of logic programs (not all possible solutions may be 

found) in order to minimize these overheads. 

Researchers are attempting to extend the above concurrent logic programming 

frameworks toward an object-oriented programming style [KTMB86, YC87]. Per-

petual processes are viewed as passive objects. An input parameter of a process is 

a stream of events to the object and other parameters represent the state of the 

object. An object waits for a particular event to hold, takes behaviors corresponding 

to the event, such as generating another event and changing its own state, and then 

• makes a recursive call to itself to start the next working circle. These proposals re-

tain the incompleteness problem from their original frameworks. Moreover, finding 

a satisfactory semantics for perpetual processes is still an open problem. 

Other approaches to the use of using logic programming for large, dynamic sys-

tems combines both logic and process/object-oriented programming in a natural and 

efficient way, such as CS-TProlog [Fut88], and POOPS [VL87]. By partially exploit-

ing AND-parallelism, these proposals provide explicit object (process) declarations, 

temporal constructs and communication facilities. Processes are executed in parallel, 

they sequentially evaluate their own goals and coordinate through explicit commu-

nications. Programs written in these languages are quite easy to understand. The 
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specification of simulation models can be natural in these languages. 

However, an important problem of in these latter approaches is that the standard 

model theoretic semantics of first order logic are not powerful enough to describe the 

behavior of these programs. A new model theory is needed to define the formal se-

mantics of a distributed logic program. Furthermore, an efficient global backtracking 

algorithm is required in order to preserve "don't know" nondeterminism. 

2.2 Synchronization Mechanisms 

Traditionally, discrete event simulation is performed by maintaining an event list 

which is used to sequentially schedule events for a set of cooperating activities, i.e., 

to synchronize these cooperating activities in the order in which events occur. Each 

event is stamped by a value of an imaginary clock which ticks the simulation time. 

Thereby all events in a simulation can be ordered with respect to their timestamps. 

In fact, simulation time is an abstract data structure to represent the progress of a 

simulation. It is totally independent of the real execution time of the simulation. 

When we apply distributed computing techniques to a discrete event simulation 

• in which a model has been decomposed into processes, we have to solve the problem 

of exchanging information among processes and synchronizing them so that events 

occur in a correct order. Methods of using a central clock to tick simulation time have 

been proposed [KH85, BG84]. However more attractive suggestions use distributed 

clocks [Lam78, CM79, CM81, Jef85]. 

The central clock scheme is a trivial solution. It simulates the sequential schedul-

ing mechanism of traditional discrete event simulation by using a central controller. 
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The central control process gathers together all the synchronization requests and 

schedules the execution of processes according to the timestamps of these requests. 

The method of distributed clocks allocates the control to all processes. Each pro-

cess is associated with a local clock and a local controller. The major responsibility 

of a local controller is to handle communications of its process with others and to 

esiab1ish the agreement of its local clock with others. 

Chandy [CM79] uses two terms to distinguish these approaches. The former 

is called the time driven simulation system because synchronization of processes is 

driven by a controller with respect to a central clock, and the later the time exchange 

simulation system because synchronization of processes is established upon the values 

of distributed clocks collected through inter-process communications. 

Since a time driven scheme has a central controller which is a bottle-neck for 

concurrent computing, we focus discussion on the time exchange simulation systems 

in the rest of this section. First, we review the origin of distributed logical clocks. 

Then we discuss two typical synchronization mechanisms proposed for distributed 

discrete event simulation: 

2.2.1 Logical Clocks 

The proverb: "A person with one watch knows what time it is; a person with two 

or more watches is never sure." is commonly accepted, e.g., Lamport [Lam78]. He 

notes that it is sometimes impossible to say that one of two events occurred first in 

a distributed system: 

• . Most people would probably say that an event a happened before an 

event b if a happened at an earlier time than b. They might justify this 



19 

definition in terms of physical theories of time. However, if a system is 

to meet a specification correctly, then that specification must be given 

in terms of events observable within the system. If the specification is in 

terms of physical time, then the system must contain real clocks. Even 

if it does contain real clocks, there is still the problem that such clocks 

are not perfectly accurate and do not keep precise physical time. 

Lamport carefully reexamined the events in a distributed system and found that 

real-time temporal order, simultaneity, and causality between events bear, a strong 

resemblance to the same concepts in special relativity. From the "space-time dia-

gram" in his paper, he showed that the real time temporal relationships happens 

before and happens after only form a partial order. So he introduced logical clocks 

to extend this partial order to a total order. Being able to totally order the events 

can be very useful in implementing a distributed system. 

Each process has an associated logical clock which is used to assign a number to 

an event, where the number is thought of as a timestamp which defines when the 

event occurred. If an event represents a mutual exclusive command, a process can 

execute such a command timestamped t when it has learned of all commands issued 

by all other processes with timestamps before t. 

This method allows'one to implement any desired form of multiprocess synchro-

nization in a distributed system. However, there are two shortcomings. The first 

problem is that it involves a large volume of communication traffic among processes 

because each process has to broadcast its command to all other processes, and re-

ceive the same number of acknowledgements to make a synchronization. Second, a 
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process must know all the commands issued by other processes, so that the failure 

of a single process will be fatal. 

Although Lamport's work did not concentrate on distributed discrete-event sim-

ulation, it does help in understanding the basic problems of distributed systems and 

the importance of logical clocks. The total ordering property of system events not 

only provides a criterion for establishing synchronization, but also provides a foun-

dation for abandoning the concept of mutual exclusion and preventing deadlock. 

2.2.2 The Network Paradigm 

Most past work on distributed simulation has been based on the network paradigm 

[CM79, C11M79, PWM79]. In contrast with Lamport's work, Chandy notices that 

the communication relations among a set of cooperating processes in most simula-

tions are not completely connected. Thus, he proposes that each node in a network 

represents one cooperating process and each directed line in the network represents 

a one way communication channel between two processes (nodes). As in Lamport's 

approach, each process has a logical clock which moves forward in time in an asyn-

chronous manner, and tells how far the associated process has progressed in the 

simulation. 

The key points of the network paradigm are summarized as follows: 

1. There is a separate time variable associated with each incoming line of a process 

to indicate the timestamp of the earliest unreceived message on the line; 

2. Processes communicate only by passing messages that include timestamps; 

3. Each process attempts to move its clock as far ahead in time as possible, based 
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upon currently available information; 

4. The output message on a. line may state that no messages will arrive on that 

lime between the current clock-time and some future time; 

5. Since the sequence of clock times on a line are monotonically increasing, merg-

ing of time variables at a process can be achieved using the well known merging 

algorithm. 

Ideally, if each process (node) in the simulation were assigned to a different pro-

cessor and all could execute concurrently, then it would be possible to achieve an 

optimal n-fold speedup over the single processor case. 

Unfortunately, this is not usually true in actual simulations. For example, a 

process may have one or more input lines on which no message is currently available 

(empty queues) when it tries to receive the next message. If this happens the process 

must wait until all of its input lines are non-empty, and then select the next message 

with the lowest timestamp. In this situation, two severe problems might arise, that 

is, deadlock and memory overflow. 

Chandy proposed a mechanism that directly deals with both problems. First, he 

requires that each message queue have a bounded length. In addition to blocking 

whenever one of its input line is empty, a process must also block whenever it sends 

a message along an output line where the message. queue at the other end is full. 

Second, the distributed simulations always run with a deadlock, detection algorithm, 

as soon as a deadlock situation has been detected, a deadlock breaking algorithm is 

activated. 

The network paradigm proposed a distributed solution for simulation problems 
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which are typically solved in a sequential manner. It showed that the time required to 

run a distributed program that implements a queuing network simulation is generally 

less than the time required to run equivalent sequential programs. This efficiency is 

achieved since there is no global process which could be a bottleneck. 

However, the concurrency is limited by blocking when an input line is empty 

or the output line is full. The technique for solving the memory overflow problem 

exacerbates the deadlock problem. Since a process can block while either send-

ing or receiving, a deadlock situation can occur around any undirected cycle in the 

simulation network, rather than just in the directed cycles. Furthermore, the com-

munication connection among processes needs to be stable. Dynamic changes in 

communication connections makes the system much more complicated. 

2.2.3 The Time Warp Mechanism 

It has been shown that performing a set of look-ahead computations often results in 

faster execution even when some of these optimistic computations are wasted, i.e., 

not used. This idea is called the Never wait rule which sttes that it is better to give 

a processor a task that may or may not be used than it is to let the processor sit 

idle. 

Before Jefferson's innovative work [JS82, Jef85} nearly all the proposals for dis-

tributed discrete event simulation were based on conservative synchronization mech-

anisms. A synchronization mechanism is conservative if it involves "waiting". For 

example, in Lamport's proposal, a process has to wait for all other processes being 

in agreement on its synchronization request; in Chandy's method, a process has to 

wait for messages from all input channels before continuing its computation. These 
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proposals do not follow the Never wait rule. 

On the other hand, the Time Warp mechanism never involves waiting. Jefferson 

uses the term virtual time in connection with the Time Warp mechanism to be 

synonymous with simulation time and describes the main idea as follows: 

A virtual time system is a distributed system that executes in coor-

dination with an imaginary global virtual clock that ticks virtual time. 

Virtual time is a temporal coordinate system used to measure compu-

tational progress and define synchronization. . . . Each process executes 

continuously, processing messages that have already arrived in increasing 

virtual receive time order as long as it has any messages left. All of its 

execution is provisional, however, because it is constantly gambling that 

no message will ever arrive with a virtual receive time less than the one 

stamped on the message it is now processing. As long as it wins this bet 

execution proceeds smoothly. The novelty is that whenever the bet is lost 

the process pays by rolling back to the virtual time when it should have 

received the late message. The situation is quite 'similar to the gamble 

that paging mechanisms take in the implementation of virtual memory: 

They are constantly betting with every memory refetence that no page 

fault will occur. Execution is smooth as long as the bet is won, but a 

comparatively expensive drum read is necessary when it is lost. 

In the Time Warp paradigm, each process always charges ahead, blocking only 

when its input queue is exhausted, and then only until another messages arrives. 

Whenever a message with a timestamp "in the past" arrives at a process's input 
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queue, the Time Warp mechanism automatically "rolls back" that process - restores 

it to a state from a virtual time earlier than the timestamp of the late message, 

cancels any side effects that it may have caused in other processes, and then starts 

the process forward again. 

Although some computational effort is "wasted" when a projected future is 

thrown away, a conservative mechanism would keep the process blocked for the 

same amount of cpu time, so the cpu time may be "wasted" anyway. According 

to the Never wait rule, the Time Warp mechanism offers the potential of speeding 

up almost any large simulation by exploiting the concurrency within it. 

A question here is: to what extent can the Time Warp mechanism win via this 

type of gambling? If it always loses, even if it does not waste time on synchroniza-

tions, it has to pay a lot of costs for rollback actions. 

Like the paging systems, the Time Warp mechanism is also based on a locality 

assumption. Locality manifests itself in both time and space. Temporal locality is 

locality over time. Spatial locality means that nearby items tend to be used together. 

Locality is observed in operating system environments, particularly in the area of 

storage management. It is an empirical property rather than a theoretical one. It is 

never guaranteed but is often likely. 

Actually, locality is quite reasonable in distributed simulation systems when one 

considers the way programs are written and communication is organized. In particu-

lar, temporal locality means that if process p sends a message to process q, it is most 

likely that process p sends another message to, or receives a reply from process q in 

the near future, and that such subsequent messages will have increasing time-stamps. 

An example of this is the communication between an event-generating process and 
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an event-consuming process. Spatial locality means that the communication connec-

tions between processes are often stable, i.e., they may change but at a relatively 

slow rate in comparison to message interaction rate. The success of the Time Warp 

mechanism is based on this locality assumption, though it needs to be verified and 

characterized by further experiments. 

In this section, we outlined the fundamentals of the Time Warp mechanism. 

Further details can be found in Chapter 4. It appears that the Time Warp mechanism 

is an attractive paradigm for distributed simulation. It is deadlock-free, can be made 

completely transparent to the programmer, and seems to have significant advantages 

over conservative mechanisms. 

However, there are problems which need further exploration. One problem is 

process state-saving. In the case of rollback, the rollback mechanism of a process 

must hold a state queue which saves copies of the process's past states. State-saving 

is a low level system activity. In general, what should be saved and what should not, 

is not known, so the entire data space of a process is saved each time, which is not 

only space-consuming, but also time-consuming. 

2.3 Base System and General Comparisons 

The programming languages and synchronization mechanisms we have discussed 

span the important ideas for distributed computations. These ideas attempt to 

answer the questions enumerated at the beginning of this chapter. A base language 

and synchronization scheme is selected in this section which provides the best answers 

to these questions. 
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After the selection of a base system, two closely related systems are then com-

pared with the work in this thesis. We use several general criteria to compare these 

approaches while ignoring their implementation details. 

2.3.1 A Base Language and Synchronization Scheme 

It is generally accepted that logic programming techniques have great potential for 

defining executable specifications. Hoare [Hoa82] points out: 

A specification is a predicate describing all observations of a complex 

system. . . . Specification of complex systems can be constructed from 

specifications of their components by connectives in the predicate calculus. 

A program is just a predicate expressed using a restricted subset of 

connectives, codified as a programming language. 

Thus, an attractive answer to the first question is that a logic programming 

framework, such as Prolog, can provide an automatic way to turn a specification 

into an efficient program. 

However, Prolog is not sufficient for describing distributed discrete event simu-

lation. Among varieties of procedural programming languages and concurrent logic 

programming proposals, we choose the process/object-oriented logic programming 

approach to answer the second question. With a minimal impact on standard Pro-

log, this new framework provides the advantages of procedural programming - model 

decomposition, information hiding, object abstraction and system synchronization 

- and at the same time retains the benefits of logic programming - declarative and 

procedural understanding, nondeterministic computation, general pattern matching 
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and logic variable manipulation. 

Comparing different synchronization mechanisms, we focus our attention on the 

Time Warp mechanism. Based on the Never wait rule and the Locality assumption, 

the Time Warp mechanism provides the possibility to speed up large simulations. 

It also provides asynchronous communication primitives for describing dynamic be-

haviors of distributed systems. Clearly, discrete event simulation is one of the most 

appropriate applications of the Time Warp paradigm, because the order of events is 

completely specified by the user. Furthermore, the Time Warp mechanism is totally 

transparent to the user, because the same conceptual methodology for building a 

sequential, object-based simulation can be used for building a concurrent, process-

oriented simulation. We believe that the Time Warp mechanism is the best choice 

for answering questions'3 and 4 listed at the beginning of this chapter. 

But, these advantages are not without cost. As Jefferson [Jef85] expected, the 

Time Warp mechanism uses several times as much memory as other nethods in 

order to achieve speed-up. The major memory cost is due to state-saving. The Time 

Warp mechanism has ho knowledge about what should, be saved and what should 

not, and thus the entire data space of a process is saved periodically. If a process 

manipulates a large amount of data, say, a matrix with 100 x 100 integers, saving 

successive states may be prohibitive. 

One way to reduce the cost of state-saving is to save only a few specified variables 

that represent those parts of the process state that have changed, instead of saving 

the entire data space. In this case, the ball is put in the user's court. A programmer 

has to isolate a set of representative variables from the data domain of his appli-

cation, then present them through some linguistic declarations to the Time Warp 
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system. The defect of this scheme is the destruction of transparency. Another way 

to minimize state saving and state management overhead is to use special purpose 

hardware, such as the rollback chip [Fujimoto88]. Since this scheme needs hardware 

support, the discrete event simulation based on the Time Warp paradigm becomes 

machine-dependent. 

Fortunately, we find that the backtracking facility in standard Prolog offers an-

other possible way to overcome the shortcoming of non-knowledgeable state-saving. 

When Prolog backtracks and re-satisfies a goal, it returns to the most recently in-

stantiated variables and attempts to instantiate them with alternative values. If this 

is not possible it backs up further to the next most recently instantiated variables, 

etc.. Thus, the set of variables changed on a given computation path is completely 

known. This knowledge can be used to determine the exact amount of information 

that must be saved for any given execution path. In other words, state-saving in 

Prolog is based on knowledge and is transparent to applications. 

To conclude, the selected model for this thesis is a distributed logic program-

ming framework in conjunction with a run-time kernel based on the Time Warp 

mechanism. The language implemented from this model is called Communicating 

Sequential Prolog (CSP*). We believe that this distributed logic programming sys-

tem offers potential advantages over other approaches. 

2.3.2 Comparisons with Closely Related Approaches 

Two current approaches closely related to the work in this thesis are CS-Prolog 

proposed by Futo [Fut88] and A-Prolog proposed by Cleary [C1JL88]. CS-Prolog is a 

Prolog based simulation language and is implemented on a multi-transputer system. 
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A-Prolog is a pure Prolog system which uses the Time Warp mechanism to execute 

Prolog on multiprocessor and distributed systems. The similarities and differences 

in several general criteria among these systems are described in Table 2.1. 

Criteria/System CS-Prolog A-Prolog CSP 

purpose simulation general simulation 

logic property impure pure impure 

parallelism partial AND full AND partial AND 

process explicit implicit explicit 

process 

creation 

built-in 

predicate(new) 

AND-goal 

evaluation 

process literal 

evaluation 

communication 

protocol 

asynchronous asynchronous 

(Time-Warp) 

asynchronous 

(Time-Warp) 

communication 

medium 

message shared 

variable 

message 

communication 

connection 

symbolic 

process name 

channel of 

shared var. 

symbolic 

process name 

temporal 

property 

explicit 

logical clock 

none explicit 

logical clock 

global 

backtracking 

dead-lock 

detection 

distributed 

backtracking 

G CT-controlled 

backtracking 

Table 2.1: General Comparisons of Three Systems 

Detailed explanations of Table 2.1 are as follows: 
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purpose: OS-Prolog is a distributed version of T-Prolog [FS82]. Its purpose is 

to perform special goal-oriented simulation, where the simulation is directed 

to find the appropriate activities and synchronization of processes to reach a 

predefined final state, the goal state. A-Prolog is a general purpose logic pro-

gramming language. It preserves the standard semantics of Prolog and uses 

the Time-Warp mechanism to coordinate parallel execution of Prolog on mul-

tiprocessor and distributed systems. CSP is a distributed logic programming 

language for discrete event simulation. Its primary goal is to speed up sim-

ulations through the use of parallelism, while as far as possible, preserving 

standard semantics of Prolog. 

logic property: CS-Prolog and CSP* are both impure logic programming lan-

guages. The impurity is caused by the use of explicit communication predicates 

which cannot be defined in first order logic. On the other hand, A-Prolog im-

plements pure Prolog, that is, clauses of A-Prolog are in the scope of first order 

logic. 

parallelism: These three languages all use AND-parallelism within logic program-

ming. CS-Prolog and CSP* provide specific linguistic tools to specify potential 

parallelism while A-Prolog potentially evaluates all AND-goals in parallel. 

process: In explicit process systems, the programmer causes process instances to 

be created. CS-Prolog and CSP* are explicit process systems. On the other 

hand, A-Prolog implements standard Prolog in a distributed way. Processes in 

A-Prologsystem are transparent to the programmer. 
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process creation: Processes in CS-Prolog are dynamically created by a built-in 

predicate new. Processes in CSP are dynamically created by lexical elabo-

rations, that is, goals which match process clauses are treated as independent 

processes. Processes in A-Prolog are created for goals in conjunction (AND-

goals). - 

communication protocol: In an asynchronous protocol, processes send messages 

without regard to their reception; a process is free to-send a message and con-

tinue computing. These three systems all adopt asynchronous communication 

protocols. The communication mechanism used by CSP* and A-Prolog is the 

Time Warp mechanism. 

communication medium: CS-Prolog and CSP* define explicit messages as the 

information transfer medium while A-Prolog uses shared variables to carry 

information. 

communication connection: The syntactic form to channel communication in 

CS-Prolog and CSP* are symbolic process names. Each message in these sys-

tems indicates a one-to-one communication connection. On the other hand, 

communications in A-Prolog are channeled by shared variables. Bindings of a 

variable are transferred (in a broadcastlike fashion) to processes which share 

this variable. 

temporal property: Clauses in CS-Prolog and CSP* are temporal clauses. They 

use a temporal parameter (logical clock) and the computation rule of standard 

Prolog to simulate a temporal resolution. A difference between them is that 
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the former provides an explicit time advance predicate while the later advances 

a logical clock by the side-effect of communication. 

global backtracking: Different global backtracking algorithms are adopted by these 

systems. CS-Prolog accomplishes global backtracking by a dead-lock detection 

algorithm, i.e., the system chooses a process to backtrack only if all processes 

are blocked. A-Prolog implements a distributed global backtracking algorithm, 

i.e., every process is able to backtrack if a variable of the process is bound to 

a conflict value. CSP* uses a GCT-controlled global backtracking algorithm 

which is a distributed algorithm but is invoked by a system-defined global 

virtual time. 

Table 2.1 provides a very general comparison of three approaches which are based 

on parallel logic programming and (or) Time Warp mechanism. In the following 

chapters, a distributed logic programming model, a global backtracking algorithm, 

and the CSP* language are presented. As these topics are discussed in greater detail, 

further comparisons are made with the CS-Prolog and A-Prolog approaches. 



Chapter 3 

A DISTRIBUTED LOGIC PROGRAMMING 

MODEL 

A distributed logic programming model is presented in this chapter. The model 

emphasizes the salient properties of distributed logic programming, that is, organizing 

and synchronizing numerous logic processing agents for partitioning and resolving a 

common goal. We first present the model from a theoretic point of view and then 

discuss problems relevant to an implementation of the model. 

3.1 The Model 

The model is based on first order logic. To specify its syntax, we must specify the 

alphabet of symbols to be used in the model and how these symbols are to be put 

together into legitimate expressions. A lot of work has been done on the study of logic 

programming [L1o84]. In order to simplify the syntactical description of the proposed 

model, we extend the original specification of the alphabet [Llo84] as follows: 

1. variables: syntactically, variables are denoted by the letters x, y, and z. In-

formally, a variable is an object whose structure is unknown. As a computation 

progresses, the variable may be instantiated, or bound toanother term which, 

therefore, becomes the value of the variable. A variable is a ground variable if 

it has a value. 

33 
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2. constants: constants will normally be denoted by the letters a, b, and c. They 

are purely symbolic and have no inherent interpretation. 

3. functions: functions are denoted by letters f, g, and h. A function defines a 

mapping of elements in a given domain. 

4. predicates: in this model, predicates are distinguished into two disjoint sets: 

one for process names and one for procedure names. Process predicates are 

normally denoted by letters p, q and r and procedure predicates are denoted 

by letters d and e. Predicates define relations of elements in a given domain. 

5. connectives: connectives in the model are "+..-", "." and  

6. punctuation symbols: the model adopts the following punctuation symbols: 

CT ), "),, , , " " and " 

Frgm these symbols, we construct basic classes of expressions as follows: 

1. terms: terms are the basic data structures in logic programs. A term is a con-

stant, a variable or an n-ary function applied to n terms, such as f(t1,. . . , 

2. atoms: atoms are the basic components of logic programs. An atom is a predi-

cate or an n-ary predicate applied to n terms as arguments, such as p(t1,.. . , ta). 

3. literals: literals are symbolic representations of atoms. Literals with procedure 

names are procedure literals, denoted by A, B and C, and literals with process 

names are process literals, denoted by F, Q and R. 
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Now, we are ready to define the primitive units of a distributed logic program. 

To avoid using too many symbols in our discussion, the syntactic symbols may be 

subscripted. 

Definition 3.1 A procedure clause is a clause of the form 

where n ≥ 0. A is called the head and B1,. . . , B is called the body of the procedure. 

A procedure clause with an empty body (n = 0) is called a unit procedure clause. 

Procedure clauses have the same syntactic form and semantics as the program 

clauses described in [Llo84]. The informal semantics of A - B1,. . . , B, is "for each 

assignment of each variable, if B1,. ... , B, are all true, then A is true". Thus, if n > 0, 

a procedure clause is conditional. On the other hand, a unit procedure clause A 

is unconditional. Its informal semantics is "for each assignment of each variable, A 

is true". If a set of procedure clauses have the same predicate in the head, then they 

constitute the definition of a procedure. 

Definition 3.2 A process clause isa clause of the form 

where n ≥ 0. P is called the head and A,, - , An is called the body of the process. 

A process clause with an empty body (n = 0) is called a unit process clause. 

The largest syntactic unit in a distributed logic program is a logic process. A 

logic process is defined by process clauses with the same predicate in the head. 
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The proposed model adopts explicit logic processes as the primitive, concurrent-

processing objects. The same informal semantics of a procedure clause can be applied 

to a process clause, except we use "P is successful" to replace "P is true". 

Definition 3.3 A distributed logic program P is a finite set of process clauses and 

procedure clauses. 

Definition 3.4 A goal clause is a clause of the form 

where each Qi is a process literal, and Q do not share any non-ground variables. 

The declarative reading of a goal clause, i.e., - Qi, . . . , Qj, is to "show that 

Q ,. . . , Q, are successful simultaneously". In the following discussion, we call the 

literals in a clause body procedure calls, and the literals in a goal clause process 

instances. 

Since the interesting classes of problems we are dealing with are coordinated 

computing systems which are concerned with inter-procss communication and syn-

chronization, we define two communication predicates for the model. For the sake 

of simplicity, we assume for the moment that communication predicates are time-

independent. 

Definition 3.5 Communication predicates are defined by built-in procedures of the 

form 

1(x) and I  

where x is a term. 
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Clearly, communication predicates cannot be defined in clausal form because their 

truth values depend on the cooperation of the logic processes they reside in. 

3.1.1 Declarative Semantics 

The declarative semantics of a distributed logic program is intended to describe what 

is true about the underlying system of logic processes. If there is no cooperation 

among logic processes, the proposed model is just another variant of a traditional 

logic programming model with multiple resolution streams and inherits all properties 

discussed in [L1o84]. However, if a distributed logic program involves inter-process 

communication and synchronization, traditional model theoretic semantics of first 

order logic is not powerful enough to explain the semantics of such a program. 

In this section, a new method is presented for the purpose of semantic analysis. 

Generally, the distributed logic programming model can be seen as a set of resolution 

theorem provers with each corresponding to a logic process. When establishing the 

separate proofs, a logic process prover "guesses" the truth value for each encountered 

communication predicate. When the proofs are combined, these guesses have to be 

checked for consistency using a synchronization test. 

The first step of the semantic analysis starts by constructing all proof-trees for 

each logic process. A proof-tree consists of finite nodes and edges which represent 

the goals reduced during the construction [SS86]. In the course of building a proof-

tree, a goal is called reduced if it is replaced by the body of a clause whose head is 

identical to the goal and the new formed goals are derived. 

For a given logic process, the root of a proof-tree is the process literal, the nodes 

of the tree are goals reduced from their immediate parent node(s) in one reduction 
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step. There is a directed edge from a node to each node corresponding to a derived 

goal of the reduced goal. A proof-tree is the representation of a proof of its root (a 

logic process), using clauses as implication. It also reflects the invocation relations 

when clauses are treated as procedures. 

An important property of building a proof-tree is that all ground communication 

predicates are assumed to be directly reducible. In other words, a logic process prover 

always assigns "true" to an encountered ground communication predicate by guess. 

If a communication predicate involves an unbound variable during the construction 

of a proof-tree, then we suppose that the variable is instantiated to each ground term 

in the Herbrand universe [Llo84] of the program, thereby we get a different proof-tree 

for each different instantiation. A communication predicate is always a leaf node in 

a proof-tree. 

If a proof-tree contains communication predicates, it is a proof-tree by guess. In 

the following discussion, we use proof-tree as a synonym of proof-tree by guess. 

For example, consider a logic process definition: 

p I(a),t(b). 

p =1(c),d. 

P=. 

d - e. 

e - 

The proof-trees of process p are shown in Figure 3.1. Examining these proof-trees 

we find that the tree (a) contributes a proof of p, because it does not make any guess. 

In other words, p is proved by proof-tree (a) without cooperation with other logic 
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p 

(a) (b) (c) 

Figure 3.1: The Proof-trees of the Example 

processes. However, (b) and (c) are not yet proofs of p, because they involve guesses 

at the truth values of communication predicates. Now, our job is to define under 

what circumstances the communication predicates can be proved to be "true". 

Definition 3.6 A guess of a proof-tree is a multi-set (a set which allows multiple 

occurrences of an element) which includes all communication predicates in the tree. 

Definition 3.7 The guess-set of a logic process is the set of guesses drawn from all 

proof-trees of the process. 

We use g4 to denote a guess of p where i is used to index different guesses of p, 

and GS(p) to denote the guess-set of p. For the above example, we have: 

(a) gs={} 

(b) gs = IT (a), T (b)} 

(c) g.s={(c)} 

GS(p) = {gs,gs,gs} 
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For a given distributed logic program, we can construct the guess-sets for all the 

underlying logic processes in the same way. Based on these sets, we describe the 

semantics of the program. 

Definition 3.8 A synchronous couple is a pair of ground communication predicates 

with the same argument and opposite operators. 

For example, (1(a), J. (a)) is a synchronous couple, but (1(a), J_ (b)) is not. In-

formally, a synchronous couple defines a time-independent, one-to-one matching se-

mantics of a pair of communication predicates. We say that the communication 

predicates in a synchronous couple complement each other. 

Definition 3.9 (Synchronization-Test) Given a multi-set of the form 

{tl,i2, ... ,tk},k≥1 

where the ti's are ground communication predicates. Then we say that the set satisfies 

the Synchronization-Test if it becomes empty after deleting all synchronous couples 

of(t)t),i 0 j,i,j = L. k. 

For example, set {J. (a), I (1), .1. (b), I (a)} satisfies the Synchronization-Test, but 

set {J. (a), I (c)} does not. 

Definition 3.10 Let S1 = {u : i E I} and S2 = {v1 : j E I}, where ui and vj are 

sets of literals and I is the integer set. The cross union of S and 52 is defined as 

S1WS2={u,Uv :i,jEI}. 
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For example, suppose S = {{U1, U2}, {U3, U4}} and 82 = {{V1, V2}, { V3}}, then 

S1 W S2 = {{U1, U2, V1, V2},{U1, U2, V3},{U3, U4, V1, V2},{U3, U4, V3}}. 

Definition 3.11 Let 2 be a distributed logic program, G =- Q,... , Q, be a goal. 

Then G is a logical consequence of P if there exists at least one element in the cross 

union of GS(Q) 's which satisfies the Synchronization-Test. 

Definition 3.12 Let 2 be a distributed logic program. The meaning of 2, denoted 

M(P), is the set of all goals which are a logical consequence of P, 

For example, a distributed logic program P consists of three logic processes 

P2 and P3- Their definitions, guesses and guess-sets are described as follows: 

Pi 1(ai),(bi). 

P1 ..j,(a2),T(b2). 

P2 

P2 '=1(a2),(b2). 

P3 =t(bi),J,(as). 

P3 @. 

GS(pi) = {gs 1 , gs 1 } 
GS(p2) = {gs 2,gs 2} 

GS(P3) = {gs 3,gs 3} 

gs = {1(ai),(bi)} 

gs 1 = {J.(a2),t(b2)} 

gs2 = {J.(ai),1(as)} 

= {1(a2),(b2)} 

gs 3 = {t(bi),(as)} 

gs 3 {} 

Pi, 

In order to find the meaning of?, we have to examine the cross unions of GS(p1)'s 

with respect to different goals. Here we use the symbol "A" to represent the con-

junction of process literals in case of confusion. 



42 

First, we investigate goals with a single process literal. It is easy to see that pi 

and P2 are not logical consequences of the program because no elements in GS(p1) 

or GS(p2) succeeds the Synchronization-Test. However, the element gs 3 in GS(p3) 

satisfies the Synchronization-Test, so P3 is a logical consequence of 

Secondly, we check the goals with two process literals. If the goal is Pi A P2, we 

find that the element gs 1 U gs2 2 in GS(pi) Ut GS(p2) fulfilling the test, therefore 

p1 A P2 is in M(2). However, if the goal is P1 A P3 or P2 A P3, they all fail in the 

Synchronization- Test. 

Finally, the element gsi U gs 2 U gs 3 in GS(pi) W GS(p2) W GS(p3) succeeds in 

passing the test. 

Putting pieces together, we have 

M(P) = {p, pi Ap2, Pi Ap2 Ap3}. 

It means that p3 succeeds individually, pi A P2 succeed cooperatively and P1 A P2 A p3 

succeed cooperatively. 

3.1.2 Operational Semantics 

The operational semantic analysis is a way of describing procedurally the meaning of 

a distributed logic program. Lloyd [Llo84] defines the procedural semantics of logic 

programs by using an interpreter based on SLD-resolution. The interpreter adopts 

a unification algorithm and benefits from the properties of the Most General Unifier 

(MGU). In his book, he also proves that for logic programs, the SLD-resolution is 

sound, complete, and computation rule independent. We accept all these results 

and assume that the same interpreter is applied to each of the logic processes in a 
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coordinated computation. Therefore, for a given logic program 2 and a goal G, the 

number of interpreters in solving 2 U { G} is equal to the- number of process literals 

in G. 

However, a serious problem is that if a selected goal is a cothmunication predi-

cate, what actions does a local interpreter take? It is certain that a local interpreter 

is not able to reduce a communication predicate without knowledges about the cur-

rent coordinated computation of 2. A local interpreter must be able to sense the 

global world to the extent of determining the success or failure of communication 

predicates. Thus, we extend the standard SLD-resolution to a distributed domain, 

assume that the system has sensor capabilities [GLB85] for detecting satisfaction of 

all communication predicates. In other words, there is a sensor in each interpreter 

which must be able to sense the world to the extent of determining the truth values 

of communication predicates nondeterministically. If a communication predicate is 

true with respect to a given goal of 2, the sensor returns its complement, NULL 

otherwise. With this assumption, we extend the abstract interpreter proposed in 

[SS86] aá follows: 

interpreter(P: program, Q: process literal); 

begin 

T: resolvent; 

0: MGU; 

choose a clause Q' - A1,.. . , A, such that Q and Q' are unifiable; if no such 
clause exists, return NO. 

0 := unify(Q, Q'); 

T:=A1,. . . 

apply 0 to Tand Q; 
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while T 0 NULL do 

begin 

choose a subgoal A from T; 

if A is a communication predicate then 

begin 1* extension part / 
A' := sensor(A); 

if A' 54 NULL then 
begin 

0 := arg-unify(A, A'); /* unify argument part / 
remove A from T; 

end; 
else exit the while loop; / no solution / 

end; 
else /* standard SLD-resolution *1 
begin 

choose a clause A' i- B1,. . . , B, such that A and A' are unifiable; 
if no such clause exists, exit the while loop; 

0 := unify(A,A'); 
remove A from T and add B1,. . . , B, to T; 

end; 

apply 0 to T and Q; 
end /* while *1 
if T NULL return Q else NO 

end / interpreter / 

This, abstract interpreter solves a query Q with respect to a program P. The 

output of the interpreter is an instance of Q, if a proof of such an instance is found, 

or NO, if a failure has occurred during the computation and cooperation with other 

interpreters (if any). An instance of Q for which a proof is found is called a local 

solution of Q. Note that the interpreter may also fail to terminate. 

As explained by Sterling[SS86], there are two choices in the above interpreter: 

choosing the goal to reduce (computation rule) and choosing the clause to effect 
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the reduction (search rule). The choice of goal to reduce is arbitrary; it does not 

matter which is chosen for the computation to succeed. If there is a successful 

computation by choosing a given goal, then there is a successful computation by 

choosing any other goal. On the other hand, the choice of the clause to effect the 

reduction is nondeterministic. Not every choice will lead to a successful computation. 

In addition, to understand the sensor capability we also need our nondeterministic 

imagination. Thus, computations of distributed logic programs via a set of abstract 

interpreters resolve the issue of nondeterminism by always making the correct choice. 

Definition 3.13 Let 2 be a distributed logic program, G a goal. A global solution 

of? U {G} is the conjunction of local solutions computed by applying the interpreter 

to each process literal in G concurrently. 

Definition 3.14 The operational meaning of 2, denoted 0(2), is the set of all 

global solutions of?. 

The declarative semantics defines a set of behaviors for a distributed logic pro-

gram. The operational semantics also defines a set of behaviors for the program, 

but this set depends on the search rule and the sensor capabilities used in, the above 

interpreter. If we asume that the sensors and the search mechanism make correct 

decisions with respect to each coordinated computation, then the dec1araive and op-

erational semantics are consistent. As a consequence, the distributed SLD-resolution 

is sound and complete (for a proof see [L1o84]). 
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3.1.3 Temporal Constructs 

As we discussed in the previous chapter, the notion of time is central in most dis-

tributed systems, especially in distributed simulation systems. Introducing a tem-

poral construct into the model results in a specification language for describing a 

changing world. 

Several temporal logic programming models are discussed in [AM87]. In these 

approaches, time is expressed directly by logic, that is, procedure clauses are associ-

ated with certain temporal operators, such as next, eventually, until, precedes, etc.. 

These temporal logic programming languages usually have complicated syntaxes and 

semantics (compared with Prolog). Moreover, the lack of quantitative representation 

of time makes it difficult to describe discrete event simulations in these languages. 

Another way to treat time is to associate time with the resolution procedure 

of the traditional logic programming model. That is, traditional resolution with 

explicit time parameters is used to simulate temporal resolution [AM87]. In this 

scheme, each procedure literal is associated with two extra time parameters: tin and 

tout. Parameter tin is the first parameter of a procedure and indicates the time at 

which the procedure is called; parameter tout is the second parameter of a procedure 

and indicates the time at which the procedure call returns. For a procedure literal 

d(t, t0 ), we define that t tout- In addition, each clause must involve additional 

steps to reason about time. These steps define the temporal property of a clause. For 

example, the temporal properties of discrete event simulation are discrete, linear, 

and extending infinitely towards the future. Thus, a temporal clause in such an 
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≤ tn__i ≤ tfl 

Figure 3.2: The Temporal Property of Procedure Calls 

application can be defined as follows: 

d(t0,t) - ei(to,ti),e2('ti,t2),. . .,e(t_.j,t),to t1,... ,t7_1 ≤ t,. 

If a goal d(t, t0 ) is reduced by the above clause, the temporal property of procedure 

calls is illustrated intuitively by Figure 3.2. 

.Proposals such as [Fut88] are based on this scheme. We also adopt this scheme 

in our distributed logic programming language, because it makes distributed logic 

programs easier to understand both declaratively and procedurally, and the quanti-

tative representation of time parameters facilitates the implementation of simulation 

time in discrete event simulation. 

Let E be any literal, E(t, t0 ) be a literal with tin and t0 as the first two 

parameters. We define the temporal property of clauses in the proposed model as 

follows: 

process clause: 

P(t0,t) .= A1(t0,t1),A2(t1)t2),. . t1,. .,t_1 t. 

procedure clause: 
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A(t0,t) i- B1(t0 t1),B2(t1,t2),. . .,B(t_1,t),t0 t1,.. .,t,_1 ≤ t. 

goal clause: 

Q1(O,t), .. . Qk(O,tout ). 

3.2 Implementation Issues 

The model described above addresses the formal, logical understanding of distributed 

logic programs. It is not yet a practical distributed logic programming language 

because the "control" aspects of the model, i.e., the computation rule and the sensor, 

have not been defined. 

Moreover, as designed for distributed simulations, the language should provide a 

mechanism to synchronize the activities of logic processes with respect to a simulation 

time. Therefore, we have to extend the model to include programs with a simulation 

time and redefine communication predicates to reflect communication partnerships, 

synchronization times, etc. 

In this section, we are going to consider these implementation issues which convert 

the theoretic model into a practical language. 

3.2.1 Simulation Time and The Computation Rule 

Interestingly, we find that the temporal property of a temporal clause discussed 

above mimics the procedural reading of a clause in standard Prolog. In brief, Pro-

log's computation rule is characterized by selecting the leftmost goal instead of an 

arbitrary one, and substituting the search rule for the nondeterministic choice of a 
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clause by the depth-first search and backtracking. The procedural reading of a clause 

- .I, B2,. . . , B,,, is: 

to solve A, first solve B1 and then B2 and . . . and then B,,,. 

Such a reading defines not only the logical relations between the head of the clause 

and the goals in the body, but also the temporal order in which the goals are pro-

cessed. 

Thus, if Prolog's computation rule is used to evaluate a goal and a system manip-

ulated time parameter is used to indicate the progress of the goal evaluation, then it 

is possible to remove the explicit time parameters and the time reasoning steps from 

a temporal clause. In implementation, we use the concept of virtual time [Jef85] and 

inter-process communication to simulate temporal SLD-resolution. In other words, 

time parameters are represented by. a system variable (logical clock), and the tem-

poral property of a clause is implicitly compelled by the underlying control facility. 

From the user's point of view, simulation time is a system-manipulated variable 

which tells a process what its time is and is used for one process to schedule an event 

for execution by another in the future. On the other hand, viewed by the system, 

simulation time is implemented by virtual time which defines a temporal coordinate 

system used to measure computational progress and specify synchronization. 

3.2.2 Communication and Synchronization 

So far in this chapter we have described the abstract communication and synchro-

nization aspect of coordinated computations. Here we become highly practical - 

describing the "real" communication predicates, which involve how to specify corn-
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munication partners, how to define synchronizations and how to transfer messages. 

We have chosen the Time Warp mechanism as the underlying communication 

system. We simply use its communication primitives, send and receive, to replace 

the abstract predicates I and I . The parameter list of communication predicates 

is defined as (Sender, Send-Time, Receiver, Receive-Time, Message), where Sender 

and Receiver are process predicates (process names), Send-Time and Receive-Time 

are simulation times (timestamps) and Message can be any data structure. In order 

to avoid naming conflicts in communication, we assume, for the moment, that each 

logic process has only one instance. A new naming method will be discussed in 

Chapter 6. 

Predicate send(S, Ts, R, Tr, M) means that process S at current simulation time 

Ts sends a message M to process R with receive time Tr. Predicate receive(S, Ts, 

R, Tr, M) means that process It at Tr receives a message M from process S sent at 

Ts. In both cases, Tr ≥ Ts. A predicate send succeeds if the message it sent will 

eventually be consumed by the specified receiver. Its evaluation has no influence on 

the simulation time of its process. On the other hand, at each process messages are 

processed strictly in receive time order. A predicate receive succeeds if the earliest 

unreceived message matches the parameters of the predicate. Whenever a process 

evaluates a receive successfully, its simulation time is automatically advanced to the 

specified receive time. In other words, time advancing in a logic process comes from 

the side effect of evaluating a receive predicate. 

In Chapter 2, we have defined synchronization as the establishment of some form 

of agreement between a set of processes. Most traditional simulation systems only 

demand that processes agree on "time", because these processes are deterministic. 
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However, the distributed logic programming system presented here deals with nonde-

terministic computation, i.e., it defines a two-dimensional virtual space. Thus, syn-

chronization of processes demands that these processes agree not only on virtual time 

(simulation time), but also on virtual space. Such agreements are established through 

inter-process communication and are controlled by the sensors and the underlying 

Time Warp mechanism with respect to Ihe timestamps in the communications. 

Going a step further, we simplify communication predicates as 

send(R, M, DT) and I receive(S, M) 

where DT ,is a non-negative delay interval of simulation time, and therefore the 

receive time Tr is the sum of DT and the simulation time Ts of the sender at which 

the message is sent. These two simplified predicates have the same semantics as the 

original ones (see how messages are constructed in the following chapters) and are 

used in the rest of this thesis. 

3.2.3 The Sensor 

Now, the question is how to realize the sensor used in the abstract interpreter. In 

general, a distributed logic program divides its problem domain into subdomains and 

declares them in the underlying logic processes. A logic process declaration defines a 

search tree [SS86] of a logic process instance and such a search tree is called a virtual 

space in this thesis. The interpreter of a logic process searches its virtual space for 

a local solution. These searches span a range from deterministic virtual spaces to 

nondeterministic virtual spaces. 

In a deterministic virtual space, at any point the interpreter knows clearly which 
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alternative is to be applied to a selected goal, that is, the choice of what to consider 

next is independent of what choices have already been made. 

In a nondeterministic virtual space, there are many potential useful alternatives 

at any point, if the interpreter chooses an alternative arbitrarily which always leads 

to a solution, then the virtual space provides "don't care" nondeterminism, otherwise 

it has "don't know" nondeterminism. "Don't know" nondeterminism is common in 

logic programming. 

Although we cannot build nondeterministic machines by our current knowledge, 

we can simulate them on existing computers. The standard Prolog is a typical ex-

ample which approximates "don't know" nondeterminism by sequential search and 

backtracking. However, retaining "don't know" semantics of distributed logic pro-

grams is a much harder task, because it requires the ability to coordinate multiple, 

simultaneous, nondeterministic activities on a set of virtual spaces. The implemen-

tation of the sensor requires the function of global backtracking. 

One way to implement global backtracking is to use a central scheduler to control 

the executions of all processes. T-PROLOG [FS82] adopts this scheme and simulates 

the "parallel" executions of processes. The drawback of this method is that the 

central scheduler is a bottle-neck in distributed environments. 

Another way is to implement a distributed global backtracking algorithm by dead-

lock detection [Fut88]. In this scheme, when a process evaluates a send predicate, it 

sends the message out and assumes the predicate succeeds; when a process evaluates 

a receive predicate and there are no matched messages, the process is suspended. If 

all processes are suspended (some of them terminated), a deadlock detector is called 

to recognize processes which are deadlocked and select one of them to backtrack. 



53 

One problem in this approach is inefficiency, a deadlock situation can be found only 

when all processes are suspended. The second problem is that if there are several 

"perpetual" processes in a program which never block and terminate, how can one 

detect partial deadlocks of nonperpetual processes. 

In Chapter 5, we present a new distributed global backtracking algorithm. The 

algorithm collects global knowledge through inter-process communications, uses the 

Time Warp rollback concept to deal with global backtracking and captures heuristics 

in that earlier synchronizations may make subsequent synchronizations more likely 

to succeed. 

3,3 The Basic' System Structure 

To conclude, we have constructed a theoretic distributed logic programming model 

and discussed the transition to a practical one. The implementation discussions 

about the search rule, the simulation time and the communication predicates flavors 

the model with some "procedural" stuffings. This is because the only declarative 

aspect is not always sufficient for describing time-sensitive models, such as simulation 

models. Nevertheless, the declarative understanding of distributed logic programs 

is still partially retained. If the programmer's program specification is declaratively 

correct, then it is relatively easy to get a correct, working simulation program. 

Now, the practical model is notably similar to a distributed logic programming 

language system, although it still glosses over some practical details. Figure 3.3 

summarizes the basic structure of the whole system. We have the following process 

definition: 



54 

L 

P1 

K1 

I I 

I I 

I I 

I I 

I I 

a L 

L2 

P2 

K2 

Ln 

P. 

K 

Figure 3.3: The Basic System Structure 

Definition 3.15 A process P in the distributed logic programming system is a. 

quadruplet (Li, I, K, lvt), where Li is a logic description of P, 1i is the interpreter 

of L, Ki is the kernel server of Ii, and lvii is the local virtual time of Pi. 

A closer observation of the system reveals that each process .P1 in the system 

consists of two concurrently-executing subprocesses: an interpreter process Ii which 

manipulates the virtual space defined by L1, that is, evaluates the assigned logic 

process L1; and a kernel process Ki which manipulates the virtual time ticked by 1vt1 

and handles the inter-process communications. 

In the next two chapters, we describe the system's implementation. We first 

discuss the kernel part - a modified version of the Time Warp mechanism, and then 

present the interpreter part - a logic process interpreter with a global backtracking 

capability. 



Chapter 4 

A MODIFIED TIME WARP KERNEL 

The Time Warp mechanism is an optimistic asynchronous inter-process communica-

tion protocol that relies on generalized process look-ahead and rollback to implement 

virtual time. Virtual time provides a temporal coordinate framework to define no-

tions of synchronization and timing in distributed (simulation) systems. 

This chapter describes a modified version of the Time Warp kernel [Jef85]. We 

begin by discussing the principles of the original mechanism, and then we present the 

important modifications and extensions. This new version of Time Warp constitutes 

the kernel part of the proposed distributed logic programming system. 

4.1 Jefferson's Time Warp Kernel 

Let 7' = {P : P is a process, i = 1..n} be a distributed program running in the 

proposed system. Associated with each P is a local virtual clock variable, lvt, that 

ticks virtual time. At any moment local virtual clocks in 7' may have the same or 

different values, but this fact is invisible to the processes themselves because they 

can only access their own virtual clocks. It is important to realize that lvtj is not 

necessarily the same as the simulation time of P, for example, lvti may involve the 

simulation time of P as well as someextra information for system control purpose, 

bit usually there exists a direct mapping between them. 

Message passing is the only way for processes in 2 to exchange information or 

55 



56 

establish synchronization. The data structure of a message is defined as: 

message = (F3) t8, Pr, try msg) 

which is read as "the sender P3 at virtual time t3 schedules the receipt of rnsg by P 

at virtual time tr." Whenever a message is sent, the virtual send time t., is copied 

from the sender's local virtual clock, the virtual receive time t, is set by the sender 

according to its schedule strategy; whenever a message is received, the receiver's 

local virtual clock is advanced to the virtual receive time tr. Here we define that 

sending or receiving a message is a primitive event in a process, regardless of whether 

it identifies an "event" in simulation applications, and we use the "dot" notation to 

reference a component of a data structure. Therefore, a message m defines two 

primitive events: a sending event (m.P3, m.t3) and a receiving event (m.Pr, m.t). 

Consequently, the primitive events executed by the system can be defined by: 

E={(P1,t):iEI} 

where each event in E represents a virtual space-time coordinate (later we will see 

that every P defines a two-dimension search space). 

For the sake of simplicity, we adopt Lamport's proposal [Lam78] to define a total 

ordering relation happened before, denoted by - p, on E. The relation requires that 

all processes obey the following implementation rules: 

1. Each process P increments 1vtj between any two successive events; 

2. For each message (Ps,ts)Pr,tr,msg), ts <tr. 

Thus, for any two events e1 = (Pi, ti), e2 = (Pi, t2), and 61, 62 E E, we say that 

61 - e2 if and only if either t1 < t2, or i < j if t1 = t. It is easy to see that 
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- defines an irreflexive total ordering relation on E, that is, for any pair of events 

em , e E E, either em - e or en - 

For any .P E ?, the state of P is said to be consistent if all events that P 

has processed have happened before the events that P has yet to process. However, 

since Pi's are executed in an asynchronous manner, we cannot guarantee that all 

processes are in a consistent state during their execution. If an inconsistent state of 

P is detected by the system, P is forced to roll back to an "earlier" state, cancel 

any side effects that may have been caused by messages sent to other processes, and 

then execute forward again. Thus, each process P has to remember enough of its 

history so that rollback can be accomplished when necessary. 

The execution history of P is defined by the following information streams: 

Input Queue(IQ1): IQj contains all recent incoming messages and is ordered by 

wrt the receiving event part. A message rn in 1Qi is received if m.ti ≤ lvt, 

otherwise rn is unreceived. 

Output Queue(OQ): OQj contains copies of the messages P has recently sent 

and is ordered by - wrt the sending event part. 

State Queue(SQ1): SQj contains savedcopies of Pi's recent states where each state 

(s, t) is. defined as a snapshot of the entire data space of P, including its 

execution stack, its own variables, and its program counter, at virtual time t 

at which an event occurs. SQi is ordered by < wrt t. 
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4.1.1 Local Control 

As mentioned before, a process P2 consists of two subprocesses: a kernel process 

Ki and an interpreter process I. The kernel process Ki sits in between 12 and the 

outside world, and acts as a local controller. The major responsibilities of K2 are: 

1. providing a set of primitives, such as send and receive, to Ii; 

2. manipulating communications from (to) the outside world and recognizing roll-

back requirements; 

3. monitoring and controlling the execution of I, such as state-saving and rolling-

back. 

When Ii calls a send primitive, K, saves a copy in 0Q2 and then sends the 

message. When a message from the outside world arrives, Ki stores the message 

into IQ. When Ii executes a receive primitive, Ifi returns the earliest unreceived 

message from IQ2 and assumes that no messages will ever arrive with a virtual receive 

time in the "past". As long as the assumption holds, the execution of Ii proceeds 

smoothly. However, the local virtual clocks of processes do not necessarily agree 

during executions, some of them may charge ahead while others lag behind. So it 

is possible for Ki to meet a message from the outside world whose t is less than 

that of one already in IQ. For example, let t be the current local virtual time of 

P, m 1 . . . m/_n2/.f4 ... ml be the current IQi and ink be the new incoming message 

such that 

-+ Mk -+ mk+1. 

If this happens, K1 takes the following actions: 
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1. it inserts mk between mk_.1 and mk+1; 

2. if mk.tr > t then mk represents a receiving event in the future and there is no 

influence on the execution of I; otherwise 

3. Ki rolls 1i back from t to the virtual time just before mk.tr, say t', which 

includes restoring the state (s', t') from SQL, un-receiving all message events 

originally consumed during t' to t, canceling all side effects. Then Ki resumes 

1i at t' to execute forward again. 

When the third action is taken, we say that an inconsistent state of 1i has been 

detected by Kj. Because Ii was executed in an inconsistent state, it may have 

sent any number of messages to other processes, causing side effects and possibly 

inconsistent states in them. In order to remove such side effects, K "unsends" those 

messages originally sent by 1i during the interval t' to t. This is completed simply 

by sending an anti-message for each of them. We use thk to indicate an anti-message 

of mj, and we assume that thk arrives after its complement rnj in physical time (the 

assumption only simplifies our discussion, the opposite situation is easy to deal with 

in an implementation). 

When an anti-message nih with destination P2 arrives, Ki searches the IQi to 

find its complement mj, and 

1. if mk.tr > t, then mk is annihilated and IQ2 is left with no record that mk ever 

existed; otherwise 

2. deletes mk from IQi and then takes the third step in the above algorithm. 
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4.1.2 Global Control 

Theoretically, the Time Warp system does not need a global control mechanism 

because the local control and rollback facilities implement virtual time correctly. 

However, as the processes go forward, they save their execution histories periodically 

and some of them may attempt to do physical input and output activities. Without 

a time measurement to prevent memory overflow, to detect global termination, and 

to handle I/O and errors, the Time Warp mechanism cannot be practical. For this 

reason, Global Virtual Time (GVT) is introduced. 

GVT is a virtual time value with respect to the whole system at a given real time. 

It is defined to be the greatest lower bound of the set of all virtual times shown by 

all local virtual clocks in an instantaneous snapshot of a virtual time system. We 

use GVT(r) to denote the global virtual time at real time r. Let L(r) be a snapshot 

of all local virtual clocks at r and M(r) be the set of send times of all unreceived 

messages including messages in transmission at r, we define 

GVT(r) = mir&(t € L(r) U M(r)). 

If there is a saved state for each event, the consequence of the definition is that 

GVT never decreases, i.e., no process can ever roll back to virtual time before GVT. 

If this were to happen, the corresponding local control process would have met a 

message event with the virtual send time less than GVT, thus the scenario leads to 

a contradiction with the definition of GVT. 

The nondecreasing property makes GVT a floor for the virtual times to which 

any process can ever again roll back. It is appropriate to use GVT as the time mea-

surement to release execution histories (such as input, output and state queues), to 
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detect program termination, to handle program errors and to execute I/O activities. 

Even though we use the term "global control" here, this does not necessarily 

create a bottle-neck. Instead, a distributed GVT estimation algorithm can be used 

in an implementation. 

4.2 Modifications and Extensions 

Jefferson's Time Warp kernel is modified and extended in two basic ways: 

1. Only part of the rollback mechanism is implemented in the the kernel. State 

saving and part of the rollback mechanism are moved to the interpreter process; 

2. Special functions are provided to support nondeterministic computation. 

Of course, the first modification simplifies the kernel part. A kernel process K 

now looks more like a communication server to its interpreter process I. It provides 

a set of service primitives and a request-service-reply protocol to I. It manipulates 

communications from (to) the outside world by an asynchronous communication pro-

tocol. However, it does not "monitor" and "control" 1i any more, instead, whenever 

a rollback/backtrack requirement has been detected, it notifies 1i by a special reply 

and starts new services only if Ii has been rolled back (or backtracked) to an earlier, 

consistent state. 

To realize the second extension, the new kernel provides special functions to 

assist global backtracking. As discussed in Chapter 3, global backtracking is used to 

approximate "don't know" nondeterminism of distributed logic programs. The key 

notation here is the concept of objection messages. Briefly, an objection message is 
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Figure 4.1: The Interfaces of Kernel Process 

used by one process to change the search path of another process. In this section, 

we only discuss how a kernel deals with incoming or outgoing objection messages. 

The semantics of objection messages and the strategies for making objections will 

be investigated in the next chapter. 

4.2.1 The Extended Kernel 

Since a kernel process Ki resides between its interpreter process Ii and the outside 

world, Ki has two interfaces, as shown in Figure 4.1. The interface between Ki and 

the outside world is sending and receiving of various types of messages. The interface 

between Kj and L is a set of primitives. The major function of Kj can be described 

as follows: 

loop 

receive(message) or accept(primitive); 

if message-received, process the message; 

if primitive-accepted, process the primitive; 

endloop. 

Ki may receive four types of messages from the outside world. They are normal, 

anti, objection and GCT messages. Normal messages are used by applications. Anti 
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messages are used by the Time Warp kernel to correct mistakes on virtual time. 

Objection messages are used by the global backtracking algorithm to correct mistakes 

on virtual space. GCT (Global Closed Time) messages are used by the new kernel 

to control the effectiveness of objections (GCT plays an important role in global 

backtracking, it will be discussed in latter sections). Therefore, there are four cases 

for processing an incoming message: 

NORMAL: insert the message into IQ; set a pending rollback requirement if the 

virtual receive time of the message is in the "past"; 

ANTI: annihilate the complement of the anti message; set a pending rollback re-

quirement if the virtual receive time of the complement'message is in the "past"; 

OBJECTION: set a pending backtrack requirement; 

GCT: possibly sustains a suspended objection (for further details see the next sec-

tion); 

On the other hand, each primitive is carried out by a request-service-reply trans-

action. The typical primitives called by I, and the corresponding actions taken by 

Ki are summarized as follows (suppose no pending rollback/backtrack requirement): 

SEND (m): send m to its destination in the outside world, keep a copy of m in OQ 

and REPLY(ok); 

RECEIVE: REPLY(ok, (SYSTEM, +oo', -, +oo,...)) if 1Qi is empty (here we define 

that +oo' < +oo in order to maintain the total ordering relation); otherwise, 

REPLY(ok, in), where m is the first unreceived message in the current IQ, 

and mark in received; 
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OBJECT(tC, obj, type): invoke objection algorithm (for further details see the next 

section), REPLY(ok) when the objection message obj is sustained; 

BACKTO(t): reset pointers of 1Qi and OQi with respect to t, delete side effects 

and send anti messages if necessary, and REPLY(olc). 

TERMINATE: invoke termination algorithm (see the next section). 

SEND and RECEIVE are communication primitives for normal messages. OB-

JECT is used for global backtracking and will be discussed later. In order to maintain 

a consistent lvti between Ki and I, BACKTO is called by 1i upon each rollback or 

global backtracking activity, so that Ki can adjust different queues with respect to 

the correct virtual time. Such a request-service-reply transaction is based on the 

assumption that 1i is in a consistent state. However, if there is a pending roll-

back/backtrack requirement in K, a special acknowledgement 

REPLY(bacictype, bacictime, objector) 

would be returned to deny any request of I. 

It is important to note that allowing global backtracking will destroy the nonde-

creasing property of GVT discussed in Section 4.1.2. This is because the proposed 

logic programming system deals with nondeterministic computations while the esti-

mation of GVT is based on deterministic computations. For example, a process in 

our system may backtrack to any earlier choice point such that the entire execution 

history of the process must be preserved. At the moment, we do not consider GVT 

and assume that there is infinite memory available and there are no I/O activities. 

A solution for estimating GVT will be discussed in Chapter 6. 
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4.2.2 Global Backtracking and Termination Functions 

Global backtracking functions provided by the kernel consists of two algorithms: one 

for incoming objection messages and another for outgoing objection messages. 

The algorithm- for treating an incoming objection message is quite simple: it 

just sets up a pending backtrack requirement. In this case, process Ki will deny 

any service request from Ii by replying with the pending backtrack information. 

Subsequently 1i will backtrack to find another alternative at a specified virtual time. 

On the other hand, the algorithm for treating an outgoing objection message 

is more complex. To illustrate, assume that Ii issues a call OBJECT(t, obj, flag), 

where t is the objection competition time, obj is the objection message, and flag 

indicates whether the process to be objected has a closed (open) virtual space (which 

will be discussed in the next chapter) with respect to the objection. The algorithm 

is as follows: 

1. If flag = closed, Ki sends obj to the destination immediately. We say that the 

objection is sustained. 

2. Otherwise, the objection and thereby, I, is suspended until 

(a) a rollback/backtrack requirement is detected. Then Ki denies the objec-

tion request. We say that the objection is overruled. Or 

(b) a GCT message is received and GCT = t. Then K2 sustains the objec-

tion. 

Global Closed Time (GCT) indicates that the current global virtual space is closed 

at GCT. It is quite similar to GVT and is defined as: 
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GCT(-r) = min( competition times of all suspended processes at r, 

timestamps of all messages in transmission at r, 

lv't's of unsuspended processes at T) 

GCT can be estimated in the way that GVT is estimated, but with a slight mod-

ification. A detailed GVT estimation algorithm can be found in [XUC+86]. From 

which we can build a GOT estimation algorithm by inhibiting GOT in the course of 

global backtracking and recalculating a new GOT whenever global backtracking is 

done. 

Like GVT, GOT guarantees (from, its definition) that no process in the current 

global virtual space can ever roll back to a virtual time before GOT. Unlike GVT, 

GOT possibly decreases, because it is possible that a process will backtrack to virtual 

time before GOT, that is, the new GOT after a global backtracking is less than the 

old GOT before the global backtracking. Therefore, GOT can only be used as a time 

measurement to control global backtracking. 

When 1i encounters an empty goal, it issues a TERMINATE request to Kj. 

There are two possible situations: 1Qj is empty or some unreceived messages are 

still pending in IQ. Ki executes the following algorithm to control termination: 

1. REPLY(ok) if and only if GCT becomes +oo and there is no pending message 

in IQ; 

2. If some unreceived message are still pending in 1Qj or a new message arrives 

during waiting for GCT, then suppose (Pj, t, P, tr, -) be the first unreceived 

message in IQ, REPLY (backtrack, +00, (Ps, t8, P, +00, closed)). Later in the 
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next chapter we will see that such a reply will force P backtracking to try 

alternatives before +oo. 

In summary, we have described the major modifications and extensions of the 

Time Warp mechanism. The new version provides simple interfaces and efficient 

algorithms which support both rollback and global backtracking activities. Such a 

version can be implemented either as an operating system kernel or by individual 

kernel processes. More detailed discussion of the global backtracking functions is one 

of the subjects of the next chapter. 



Chapter 5 

A' LOGIC PROCESS INTERPRETER 

The logic process interpreter defined in this chapter is an extended standard Prolog 

interpreter. The major extensions are parts of the rollback facility and a global 

backtracking facility. 

As Jefferson pointed out [Jef85], the Time Warp mechanism gambles on virtual 

time. Every time 'a process handles a message m with timestamp t it makes a bet 

that no message will arrive that has a timestamp earlier than t. If it wins that bet 

no time is lost. If it loses the bet, the time lost is the delay involved in restoring 

the process to an earlier state, removing any side effects and running it forward to 

the point when message rn can be processed. The rollback facility is used to correct 

mistakes on such gambles and anti messages are used to remove side effects (if any) 

from these mistakes. 

A useful comparison can be made between this, gamble on virtual time with the 

search rule of a logic process interpreter that gambles on virtual space. Every time 

a process reduces a goal it makes a bet that using the depth-first, unifiable, clause 

to reduce the goal will lead to a successful solution. If it wins that bet no time is 

lost. If it loses the bet, the time lost is the dlay involved in backing to that goal 

and finding an alternative clause (if any) in depth-first. The (global) bactracking 

facility is used to handle failures on such gambles, and objection messages are used 

to recompose the search pathes of processes (if necessary). 

The similarity between the global backtracking facility and the rollback facility is 

68 
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that they both depend on a saved execution history to undo erroneous computation. 

The primary difference is that the backtracking facility tries alternatives at a previous 

choice point of the process, while the rollback facility directly restores a previous 

state for a specified virtual time and then continues execution of the process forward 

along the original evaluation path. Since the standard Prolog interpreter has a built-

in state-saving and backtracking mechanism, we can easily extend this mechanism 

to accomplish rollback and global backtracking. 

In the following sections, we start by describing important concepts and data 

structures of the logic process interpreter. Then based on the standard Prolog inter-

preter, we introduce the extensions for achieving rollback and global backtracking. 

Finally, we prove that the proposed logic programming system is sound and partially 

complete. 

5.1 New Concepts and Data Structures 

An important new concept which is used to control global backtracking is the Global 

Backtracking Coordinator. A Global Backtracking Coordinator, denoted by , is an 

imaginary predicate used by the system and invisible to the user. A is put at the 

beginning of each process and immediately following each communication predicate. 

During a process evaluation, 's form a layered parent-child structure. A typical 

parent-child layer is shown in Figure 5.1, where ihe on the top level is the parent 

of 's on the lower level. The edge between a parent-child pair of 's represents a 

partial computation which consists of zero or more normal Prolog procedure calls 

and exactly one communication predicate. If an edge involves a receive predicate, 
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Figure 5.1: A Parent-Child Layer 

it is a receive branch of the parent ; if an edge involves a send predicate, it is a 

send branch of the parent , otherwise, it is a termination branch of the parent . 

By using the leftmost-goal-first computation rule and the depth-first search rule, the 

virtual space of a logic process can be unambiguously represented by a -tree. As 

a matter of fact, a 6-tree is a simplified search-tree [SS86], it denotes all possible 

communication/ synchronization points of the process with other processes. Suppose 

each node in a 6-tree is uniquely labeled, we use r to indicate a search position of 
process P where the superscript is a unique label of the node and the subscript is 

the index of the process. Each branch in a 6-tree from the root consists of a sequence 

of 's and is called a search path of the process. 

The behavior of is defined as the possible executions of .P at or under r before 
reaching any child e. The forward transition of implies that the execution of P 

from em  successfully reaches a child C. Local backtracking is a backtrack in between 

C's which has no influence on other processes. Global backtracking is a backtrack 

passing a C which may cause effects on other processes. 

The notion of global knowledge is the basis for global backtracking. Before, dis-

cussing how a process establishes such knowledge, we introduce another new concept: 
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receive(Pj, a) receive(Pk, b) 

Figure 5.2: A Posible Partial 6-tree of P 

depends on relation. 

The depends on relation is a dynamic relation which describes the dependency of 

two processes with respect to their virtual spaces during execution. For a couple of 

search position: 

V•i ,j), 

we say that depends on if the forward transition of relies upon the behavior 

of q. is a sponsor of depends on q. q is a closed sponsor of if P 

has exhausted all the alternatives under ; otherwise, 7 is an open sponsor of . 

For example, a possible partial e-tree of P is shown in Figure 5.2. It is clear that 

depends on some in P1 or Pk, because P can go forward only if the message 

delivered by its kernel was sent by either P1 or Pk and the message unifies one of 

the receive predicates under If such a message is received by P, it transits to a 

new search position em +l or m+2; otherwise, P backtracks to m, rejects the wrong 

message and demands an alternative message by making an objection to one of its 

sponsors. 
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m+2 
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b) a closed sponsor 

Figure 5.3: The Relationship between tb , status and q 

In implementation, the following data structure is used to represent a sponsor 7: 

q = (Ps, t&, status), 

where P1 is the sponsor process, tb is the suggested global backtracking time of 

F1, and status indicates if 7 is open or closed. As mentioned before, indicates a 

unique search position in P1 's virtual space. This search position is uniquely specified 

by tb and status if the execution of P1 has passed 6jn, i.e., 6jn is in .Pj's current search 

path. This is because each search position of .Pj in a given search path is associated 

with a unique virtual time (recall the total ordering relation defined in Chapter 4). 

Later we will see that the proposed algorithm guarantees the above "if" condition. 

If q is open, then tb is the virtual time of a child 6 of q. If it is closed, tb is the 

virtual time of q. Figure 5.3 shows the relationship between tb, status and . The 

reason for doing so is to make the global backtracking algorithm simple and efficient. 

The basic means through which it becomes possible for a process to gather global 

knowledge is communication. "Communication in a distributed system can be viewed 

(and often should be viewed) as the act of transforming the system's state of knowl-

edge" [11M84]. Since a process knows only those things that it has explicitly met 
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during its execution and communication, we use a state queue, denoted by SQ, to 

memorize important historical events in the current search path of P. 

SQi is a sequence of timestamped states and is maintained by the logic process 

interpreter I. A state is saved at each in the current search path and is defined as: 

e.state=(t, t, status, Se,, Sr) 

where t is the virtual time at which is executed, t is the objection competition time 

at , status indicates if is open or closed, S is the working sponsor set of and Sr 

is the reserved sponsor set of e. 
The objection competition time is used to control the effectiveness of an open 

objection. If the current 6 has no receive branch, then i = t; otherwise, t is set to 

be the virtual receiving time of the message delivered by the kernel. More detailed 

discussion about t and its relation with GCT is delayed to Section 5.2.3. 

The status is used to control the evaluation of 's branches. If it is open, then 

any branch can be searched with respect to the search rule. If it is closed, then send 

branches are forbidden to be evaluated. The reason of doing so will be described 

later. 

The working sponsor set SW in .state maintains sponsors established in evalu-

ating branches of 6. Entries in S may be open or closed. The reserved sponsor set 

S maintains sponsors transferred from 's children or from S. Entries in S are all 

closed. Detailed discussion about the usage of these sets is in the next section. Here 

we introduce two operations for a sponsor set. 

Operation put(S, sp) inserts a sponsor .sp into S. The algorithm of put is as 

follows (recall that the data structure of sponsor is defined as (p, tb, status)): 
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1. find an sp' from S such that .sp.p == .sp'.p; 

2. if sp' == NULL, insert sp into S , return; 

3. if .sp'.status == open, sp overwrites sp', return; 

4. if sp'.siatus == closed, return; 

This algorithm maintains exactly one entry for each sponsor process. An important 

property of the algorithm is that if a sponsor will eventually becomes closed, then S 

will eventually contain only closed sponsors. 

Function select(S) is used to choose a sponsor from S for making an objection. 

The function takes the following rules: 

1. divide S into two disjunctive subsets S and S0, where entries in S are closed 

sponsors and entries in S are open sponsors (if any); if there exist entries 

spi E 5o and .SP2 E S such that spl.p == P2-P and .sP1.tb == .sp2.t&, then 

remove sp, from S0 and S, (a search position cannot be both open and closed); 

2. if S0 54 {}, select an entry sp from S, such that for all .sp' E S, .sp - 

3. else select an entry sp from S, such that for all .sp' E S, sp' -4 

4. remove sp from S and return sp. 

The algorithm tells us an important property: a process objects a closed sponsor at 

a 6 only if all its sponsors are closed. 

Now, we briefly discuss how sponsors are established from a simple example 

illustrated in Figure 5.4; and a more detailed algorithm for general cases will be 
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lvt = 7 

receive(Pj, a) receive(Pk, b) 
n+2 

Figure 5.4: An Example for Constructing a State 

described in the next section. In this example, when process Pi at virtual time 7 

executes it creates an initial state: 

r.state = (7, 7, open,  

Then P1 choses the left branch (by the search rule) to execute. When P1 encoun-

ters the call receive(Pj, a), it issues a RECEIVE prithitive. Now, there are several 

possible situations: 

1. Suppose the message replied by the kernel is (Ph, 5, F1, 10, c), which means 

that the sender Ph at virtual time 5 schedules the receipt of c by P1 at virtual 

time 10. P tries to match this message with receive(Pj, a) branch, but fails. 

Thus P1 constructs a sponsor entry (Pj, 10, open) and inserts the entry into the 

current S. This entry says "a message from Pj is expected with virtual receive 

time in the interval from 7 to 10"; Then P1 backtracks locally and tries to 

match the message with the next branch receive(Pk, b), but fails again. A new 

spon.sor entry (Ph, 10, open) is inserted into the current SW. Then P1 backtracks 

to 6T (no more alternatives), it inserts two sponsor entries, (Ph, 5, open) and 
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(P, 7, closed), into the current S. In addition, P changes the value of t in 

the current state to 10 and the status to closed. At this time, the state of 

becomes: 

ate = (7, 10, closed, Sn,, 5,.) 

where 

= {(Ph,5,open),(Pj,10,open), (Pk ,lO, open) ,(P )7,closed)}, 

S,.={}. 

Function select(SWUS,.) will return (Ph, 5, open) to for making an objection. 

2. Suppose the IQi is empty at the moment the RECEIVE primitive is called, the 

message replied by the kernel is (SYSTEM, +00', -, +c'o,..). Since the message 

matches neither branch of when process Pi backtracks to we have 

er.siate = (7,+oo, closed, S,S,.), 

where 

{(SYSTEM, +00', open), (Pj, +oo, open), (Pk, +00, open), (P, 7, closed)}, 

S,.{}. 

Thus select(S U Sr) operation will return (SYSTEM, +oo', open) to 4Th for 

making an objection. 

3. Suppose the message replied by the kernel is (Ps, 5, P, 10, a), which means that 

the sender Pj at virtual time 5 schedules the receipt of a by P at virtual time 10. 

P tries to match this message with the left branch receive(Pj, a) and succeeds. 
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Thus P inserts an entry (Pj, 5, open) into the current S,, and transits to r +l 

at virtual time 10. However, if some time later fails, P backtracks to try 

the next branch and finally backtracks to . In this situation, we have 

st ate = (7, 10, closed, S,, Sr), 

where 

S. = {(Pj, 5, open), (Pk, 10, open), (Pi, 7, closed)}, 

= Sr U 

Function select(SwUSr) will return (Ps, 5, open) to for making an objection. 

From the above analysis, we can see that whenever a 6 makes an objection, all 

alternatives under the i must have been exhausted and there must be at least a 

sponsor entry in either S or Sr for each branch under the 6. A more detailed 

algorithm and example are in the next section. 

Finally, we declare a set of global variables and constants for each logic process 

interpreter: 

rs: a reference to the current state; 

rp: a reference to the parent state; 

backtime: a virtual time variable to indicate rollback or global backtracking time; 

backtype: a variable of enumerated type 

(Rollback, Global-Backtrack, Local-Backtrack) 

to indicate current backward execution type, its initial value is Local-Backtrack; 
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candidate: a message variable with initial value NULL to denote the current in-

coming message; 

objection: a message variable with initial value NULL to save the current objection 

message; 

lvt: local virtual time of the host process; 

me: the name of the host process. 

5.2 The Algorithm 

Before delving into the details of a logic process interpreter I, let us glance at the 

basic idea. Since the logic process Li is modeled by its c-tree, 1i starts from the root 

and evaluates Li along the left-most branch. The forward execution is almost the 

same as standard Prolog. During the evaluation, Li may receive messages from other 

processes. Thus 1i establishes sponsor relations with these communication partners. 

However, when an evaluation fails, 1i follows the standard Prolog procedure to 

locally backtrack or invokes global backtracking algorithm when the backtracked goal 

is a 

The intuition behind the global backtracking algorithm is that whenever 1i back-

tracks to a e it assumes that the synchronizations made before the 6 are correct 
and gambles on that earlier synchronizations may make subsequent synchroniza-

tions more likely to succeed. Therefore, the interpreter does not simply fail the 6. 

Instead, it chooses a process (possibly itself) to object, because according to Ii's 

knowledge, the process to be objected is most probably in a wrong search position. 
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The algorithms provided in this section are an extension of a standard Prolog 

interpreter to control rollback and global backtrack activities. There are two main 

procedures to support forward execution and baèkward execution. 

5.2.1 Forward Execution 

The Forward Execution Algorithm (FEA) simply mimics a forward evaluation step 

of the original interpreter, except that it gives special treatment to a selected goal if 

the goal is a 6 or a communication predicate. 

Normally, if the goal is a e, it saves the old state, creates a new state and then 
succeeds; if the goal is a send, it constructs a message, calls SEND request to transfer 

the message and then succeeds; if the goal is a receive, it establishes a sponsor 

relation and tries to match the predicate with the first unreceived message coming 

from the current IQ, if they match, the predicate succeeds with a mgu (see the 

definition in Chapter 3), otherwise, the goal fails. Sometimes a request may be 

denied by a special reply if there is a pending rollback/backtrack requirement. In 

this case, the algorithm fails the selected goal, and in consequence, the Backward 

Execution Algorithm (BEA) is invoked. 

In the algorithm, two frequently used functions are Fail and ucceed. Function 

Fail means backtracking to the most recently evaluated goal and executing BEA. 

Function Succeed(0) means applying 0 (a mgu) to the goal sequence, selecting the 

next goal (by the computation rule) and executing FEA. For the sake of simplicity, 

we assume that process names in communication predicates are ground terms, so that 

correct sponsor relations can be established upon the evaluation of these predicates. 

In practice, different bindings of a variable process name can be easily traced. 
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Boolean function Ok-Reply is called to check the acknowledgement of a primitive 

call. It returns true if the call has been served, and the variable candidate is assigned 

to the first unreceived message when the call is a RECEIVE; otherwise, it returns 

false and assigns global variables, such as backtype, backtime, and objection, to the 

corresponding values. 

In addition, boolean function Root(rs) checks if the current state is the root 

state; boolean function Unifiable(T1, T2) returns true if Ti and T2 are unifiable; 

function Save(rp) saves state rp to the current SQ; and function Parent(rp) returns 

a reference to rp's parent state. 

Forward Execution Algorithm 

Input parameters: 

g: selected goal; 

begin 

(1) Ifg==, then 

if not Root(rs) then Save(rp); 

rp = rs; 

rs = new(lvt, lvt, {}, open); 
Succeed; 

(2) If g == send(D,M,T), then 

if r.s.status == open, then 

call SEND((me, lvt, D, lvt + T, M)); 

if Ok-Reply then Succeed else Fail; 

else Fail; 

(3) If g == receive(S, M), then 

if candidate == NULL, then 
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issue a RECEIVE request; 

if not 0k-Reply then Fail; 

if Uniflable(S, candidate.P3), then 

put(rs .S, (S, candidate.t3, open)); 

else 

put(rs. S, (S, candidate.tr, open)); 

if Unifiable((candidate.P3, msg), (S, M)), then 

0 = unify ((candidate.P3, msg), (S, M)); 

lvt = candidate.tr; 

candidate= NULL; 

Succeed(0); 

else Fail; 

(4) If g == NULL, then 

lvt= -l-oo; 

issue a TERMINATE request; 

if Ok-Reply then exit else Fail; 

(5) Ifg== others, then 

standard Prolog procedure; 

end 

5.2.2 Backward Execution 

The Backward Execution Algorithm (BEA) deals with three possible cases whenever 

it is invoked. They are rollback, local backtracking and global backtracking. If 

the backtracked goal is not a , according to the current backtype, BEA either 

continues rolling back or invokes the standard Prolog backtracking procedure. If the 

backtracked goal is a , BEA invokes an algorithm with respect to the current case. 

When a rollback requirement is detected, the underlying kernel process tells the 

logic process interpreter the backtirne and backtype. The Rollback-To-c Algorithm 
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(RTA) keeps rolling back until it finds a previous 6 whose timestamp is less than 

or equal to the backtime. At this point, the algorithm resets the process's global 

variables and returns control to FEA again. 

Backward Execution Algorithm 

Input parameters: 

g: backtracked goal; 

begin 

(1) Ifg==, then 

if backtype == Local-Backtrack, then Local-To-c; 

if backtype == Rollback, then Rollback- To-i; 

if backtype == Global-B aktrack, then Global-To-a; 

(2) else if backtrack ==Local-Backtrack 

standard Prolog procedure. 

(3) else 

Fail; / continue rolling back / 

end 

Rollback-To- Algorithm 

begin 

if backtime ≥ rs.t, then 

backtype = Local-Backtrack; 

lvt = r.s.t; 

candidate = NULL; 

call BACKTO(lvt); 

if Ok-Reply then Succeed else Fail; 
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else 

rs = rp; 

rp = Parent(rp); 

Fail; 

end 

Possible situations leading to global backtracking are that (1) the local back-

tracked goal is a , or (2) the logic process interpreter is informed to backtrack by 

an objection. 

If the local backtracked goal is a , it means that all branches under the have 

been tried and all failed. In other words, the search space of the process is closed 

at the e. Thus, the Local-To- Algorithm (ETA) completes the construction of the 

current sponsor set and invokes the Objection Algorithm. 

Local-To-6 Algorithm 

begin 

if not Root(rs), put(rs.S, (me, rs.t, closed)); 

if candidate NULL, then 

put(rs .S, (candidaie.P3,. candidate.t3, open)); 

rs.tc = candidate.t; 

candidate = NULL; 

rs.status = closed; 

Objection Algorithm; 

end 
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Two steps are taken by the Global-To-c Algorithm (GTA) to deal with an ob-

jection. First, it rolls the process back to a search position specified by backtime. 

Second, if the objection is an open objection, the algorithm simply fails the current 

path, and the next alternative branch of 's parent (if any) will be selected (by the 

search rule); otherwise, the process chooses a new candidate to make a subsequent 

objection. 

Global-To-a Algorithm 

begin 

(a) if backtime ≥ rs.t and objection .type == open, then 

backtype = Local-Backtrack; 

put(rp. S, (obj ection.P8, objection.i3, closed)); 

rs = rp; 

rp = Parent(rp); 

lvt = rs.t; 

candidate = NULL; 

call BACKTO(lvt); 

Fail; 

(b) if backtime ≥ rs.t and objection.type == closed, then 

backtype = Local-Backtrack; 

put(rs.S, (objection.P3, obj ection.t3, closed)); 

Objection Algorithm; 

else 

rs = rp; 

rp = Parerit(rp); 

Fail; 

end 
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Objection Algorithm (OA) chooses a sponsor from the sponsor sets of the current 

state for making an objection. If the backtracking time of the selected sponsor 

is —oo, then no solution can be found (for a proof see Section 5.3), the program 

terminates. If the selected sponsor represents the current e itself (self-objection), 
then the Objection Algorithm transfers 's S and S to e's parent, and backtracks 

to try the next alternative branch (if any) of 's parent. Otherwise, the algorithm 

constructs an objection message and makes the objection. If an open objection is 

sustained, the algorithm only evaluates receive branches under the e, because the 
open sponsor is established from one of -e's receive branches. If a closed objection 

is sustained, the algorithm will reset the working sponsor set and reopen all search 

branches under the 6. Whenever an objection is sustained, the control is transferred 

to FEA, otherwise, BEA is invoked again. 

Objection Algorithm 

begin 

(a) .sp = seleci(rs.SW U rs.S); 

(b) if Sp.tb == —co, then 

terminate with no solution; 

(c) if sp.p == me, then / self-objection *1 
rp.Sr = rs.S U rs.S; 

i's = rp; 

rp = Parent(rp); 

lvt = rs.t; 

call BACKTO(lvt); 

Fail; 

(d) 1* construct objection message / 
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if Root(rs) and sp.status == closed, then 

obj = (me) —oo, sp.p, .Sp.tb, closed); 

else 

obj = (me, rs.i, sp.p, sp.tb, sp.status); 

(e) call OBJECT(rs.t, obj, sp.status); 

(f) if Ok-Reply, then 

if sp.status = closed then 

rs.status = open; 

rs.Sr = rs.Sr U rs.S; 

rs.S = {}; 
Succeed; 

else goto BEA; 

end 

As it was presented in the algorithms, objection messages play a very impor-

tant role in global backtracking. However, a question we haven't carefully answered 

concerns which objection message comes into effect if several processes have made 

objections. To answer this question, we examine two different objections: the ob-

jection to an open sponsor (open objection) and the objection to a closed sponsor 

(closed objection), respectively. 

Let us consider an example. In virtual time order, process P should receive a 

message from Pi first and then a message from F2; If P2's message arrives earlier 

than the message from P1 in real time, P objects P2 because it is now waiting for a 

message from P1 and ignores the fact that P2's message may be correct in the future. 

Of course, such an objection is unreasonable. The strategy adopted by the proposed 

algorithm is to suspend any open objection until its competition time equals GCT 
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(see the algorithm in Chapter 4), because according to the definition of GCT, it i 

guaranteed that no other processes will ever send messages with timestamps earlier 

than the competition time of the objection. Thus, the objection to P2 is suspended 

and will be overruled when the message from P1 arrives. 

Precisely speaking, a suspended objection is overruled by an incoming message, 

such as an anti-message, a normal message or an objection message, which happens 

before the objection. Whenever an objection is overruled, it subsequently appears 

that the objection never existed. 

On the other hand, a closed objection is caused by a failure on virtual space, 

because P can make such an objection only if all its sponsors are closed (see the 

property of select operation). That is, P has failed in trying to cooperate with 

each possible alternative of its sponsors under their closed a's. Therefore, a closed 

objection is always sustained immediately. 

When process P makes an objection at a e, its search space under the is closed. 

Does P reopen its search space under the e as soon as the objection is sustained? 

The answer once again depends on the type of the objection. P will reopen its search 

space under the e only if the objection it made is a closed objection. In general, P 

may have both send branches and receive branches under a e. When P backtracks 

to such a e and makes an open objection, it means that all send branches have failed 
but receive branches are still trying by the open objection (recall that open sponsors 

are created only at receive branches). For this moment, P does not re-try send 

branches (see FEA), until all open sponsors of 's become closed. Then Pi chooses a 

closed sponsor to object and reopens the search space under e. 
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s(p2,'a,lO) s(p2,b,15) r(pl,a) r(pl,b) 

r(p2,e) r(p2,d) s(pl,'c,20)s(pl,d,2O) s(1,c,20)s(p1,d,2O) 
3 64 63 64 66 

(a) p1's -tree (b) p2's c-tree 
Figure 5.5: The c-trees of the Example 

5.2.3 An Example 

Now, we use a simple example to illustrate how the algorithms work. The example 

consists of two logic processes: 

pl'= send(p2, a, 10), receive(p2, e). 

pl.= send(p2, b, 15), receive(p2, d). 

p2= receive(pl, a), g. 

p24= receive(pl, b), g. 

g— send(pl, c, 20): 

g— send(pl, d, 20). 

Figure 5.5 shows the c-trees of the program. For a given query "- p1, p2", two 

processes p1 and p2 will be executed in parallel. The following is a possible execution 

trace of p1 and p2. In the trace, when we say a process is "waiting for a message", 

we means that the process's IQ is empty and the process has made an open objection 
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against the SYSTEM. In addition, virtual time in the trace is defined as t1 : t2, where 

t1 represents simulation time while t2 is an extension to maintain the total ordering 

relation defined in Section 4.1. The increment of t2 is 1 in a 's transition if the 

simulation time does not advance in that transition. 

(1) p1: goes through at 0:0, send(p2, a, 10) succeeds, goes through at 0:1 and 

waits for a message; 

(2) p2: goes through at 0:0, receive(pl, a) succeeds, goes through at 10:0, 

send(pl, c, 20) succeeds, goes through at 10:1 and terminates at +oo; 

(3) p1: receive(p2, e) fails (because the first unreceived message is (p2, c)), back-

tracks to (Local-To-c), selects a sponsor from: 

= (p2, 10 : 1, open), (p1,0: 1, closed)} 

objects (p2, 10:1, open) with tc 30 : 0, sustains the objection 

(GCT= rnin(30 : 0, +oo)), waits for a message at ; 

(4) p2: backtracks over (by the open objection made in step (3)), send(pl, d, 

20) succeeds, goes through at 10:1 and terminates at +oo; 

(5) p1: receive(p2, e) fails (because the first unreceived message is (p2, d)), takes 

the similar actions in step (3); 

(6) p2: backtracks over (by the open objection made in step (5)), backtracks to 

, selects a sponsor from: 

= {(p2,10 : 0,closed),(pl,0 : 1, closed)}, 
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backtracks over (self-objection), receive(pl, b) fails (because the first unre-

ceived message is (p1, a)), backtracks to 4, selects a sponsor from: 

= {(pl,O: 1, open), (p2, 0 : 0, closed)} 

.Sr = {(pl,O : 1, closed)} 

objects (p1, 0:1, closed) (recall the select operation, a sponsor cannot be both 

open and closed), sustains the objection immediately and waiis for a message 

at 4; 

(7) p1: backtracks to (by the closed objection made at step (6)), selects a sponsor 

from: 

{(pl,O : 1, closed), (p2, 0 : 0, closed)} 

backtracks over (self-objection), send(p2, b, 15) succeeds, goes through 

at 0:1 and waits for a message; 

(8) p2: receive(pl, a) fails (because the first unreceived message is (p1, b)), local 

backtracks, receive(pl,b) succeeds, goes through at 10:0, send(pl, c, 20) 

succeeds, goes through at 10:1 and terminates at +c'o; 

(9) p1: receive(p2, d) fails (because the first unreceived message is (p2, c)), back-

tracks to , selects a sponsor from: 

= {(pl, 0 : 1, closed), (p2,10 : 1, open)} 

objects (p2, 10:1, open) with tc = 35 : 0, sustains the objection 

(GCT= min(35 : 0, +oo)), and waits for a message at ; 
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(10) p2: backtracks over (by the open objection made at step (9)), send(pl, d, 

20) succeeds, goes through at 10:1 and terminates at +00; 

(11) p1: receive(p2, d) succeeds, goes at 35:0 and terminates at +00. 

(12) p1 and p2: algorithm terminates with a solution. 

Without counting GCT and anti messages, this example spent 10 messages - six 

normal messages and four objection messages - to find a solution. The cost is due 

to the nondeterminism of the example. 

The above algorithms and discussions illustrate the basis of our work. In brief, 

we have extended the standard Prolog interpreter to include the abilities of rollback 

and global backtracking. Thereby combining logic programming technique and the 

Time Warp mechanism not only provides a temporal coordinate system which mea-

sures computational progress and defines synchronizations but also provides a spatial 

coordinate system which supports nondeterministic computations. 

5.3 Correctness of the Algorithm 

The correctness of a logic programming system consists of two aspects: soundness 

and completeness. Informally, for a logic program 2, the system is sound if every 

computed solution of 2 is a logical answer of 2; the system is complete if whenever 

there exists a solution of 2, the system will eventually find the solution. 

For the subsequent discussion we use the following assumptions: 

ASM(1): Each process of a distributed logic program defines a finite &.tree, i.e., the 

execution of a distributed logic program terminates in finite evaluation steps. 
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ASM(2): The standard Prolog interpreter is sound (assume the "occur check" prob-

lem has been solved [Llo84]) and complete (for programs with finite SED-trees, 

see ASM(1)), i.e., in order to find a solution, the standard Prolog interpreter 

searches its (partial) virtual space exhaustively if no 's are involved in the 

(partial) virtual space. 

ASM(3): The kernel is reliable and the rollback facility is transparent, which means 

that all messages are delivered in correct virtual time order. In other words, 

the temporal property of a logic process is guaranteed by its kernel and the 

rollback algorithm. 

ASM(4): The estimation of GCT is correct, that is, at any real time, the estimated 

value of GOT is always less than or equal to the real GOT (see the definition) 

and will eventually reach the real GOT. 

As described in our algorithms, a trace of a process can be described as a finite 

sequence of evaluated c's. Thus, a process is characterized by a set of all its possible 

traces and is "displayed" on a finite c-tree (by ASM(1)). In a c-tree, 's form a 

layered parent-child structure. The edge connecting a parent-child pair of e's consists 

of derivations of zero or more normal Prolog goals and exactly one communication 

predicate. In the following discussion, we assume that a normal Prolog goal is always 

derivable. Therefore, in a transition from a parent to a child, we only need to pay 

attention to the derivation of the communication predicate which occurred in the 

transition. As we have assumed that each is uniquely labeled, by saying that the 

control of process P is after 1, we mean that the was the last one to be evaluated 

in P2. Additionally, we use to denote the label of the placed at the beginning of 
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a process and Q to indicate the termination of a process. 

Definition 5.1 Let 2 be a distributed logic program and G a goal. If the evaluation 

of 2 U {G} invokes processes F1,... , P, then (F1, . . . , P,) is called a coordinated 

computation of P. 

Definition 5.2 Let (F1,.. . , Pr,,) be a coordinated computation. A state of(Fj,.. . , P4 

is (li,. . . ,in) if the control of processes F1,. . . , P, is after 11,.. . , In respectively. As 

well, we say that the initial state of (Fi,.. . , P9 is ... , ) and a final state is 

(ci, ... ,19. 

Definition 5.3 Let (Ii,.. . , 1,,.), (1,... , l) be two states of (F1,.. . , P4. A state 

transition (li,. . . , l,) (l',. . . , l'j must satisfy (for i = 

1. the edge connecting Ii and l is a termination branch and IQj is empty forever; 

or 

2. the edge connecting Ii and l is a send branch; or 

S. the edge connecting Ii and l is a receive branch and the message received was 

sent in an earlier state transition and the message unifies the receive predicate 

in the receive branch; or 

(Note that ASM(3) guarantees that a message is sent to its destination in -+ order 

and a message is received in —p order) 

A trace of (F1,.. . , P) is described as a sequence of state transitions from its 

initial state into a unique state, possibly a final state of the coordinated computation, 



94 

which in addition reflects the execution history of how it reached that state. Thus, 

the evaluation of (.P1,. . . , P,) is characterized by a set of all its possible traces and 

can be "displayed" on a transition-tree defined as follows: the root of the tree is 

its initial state, nodes of the tree are intermediate states, there is an edge from a 

node for each state transition, and leaves of the tree are states which have no more 

transitions or are final states of the coordinated computation. In a transition-tree, 

nodes with the same parent are siblings. 

Consider the example in Figure 5.6, we draw the transition-tree of (p1, p2) in 

Figure 5.7. Each node in the tree is in the form of (li, 12) where 1 indicates the label 

of a and the subscript of 1 is the index of a process. 

Lemma 5.1 A state transition of (F1,. . . , .P,) is implemented by FEA. 

Proof: Let be the current state of (F1,.. .,F), and be the 

state after a transition. FEA transits process P1 from li to l, i = 1..n, as 

follows: 

1. If P2 terminates with an empty IQ, then l = fj (by FEA (4) and 

ASM(1, 3)). 

2. If P1 evaluates a send predicate and li is open, then l is the label of the 

immediately following the send predicate (by FEA (2)). Note that i 

becomes closed only if all branches under li have failed. 

3. If P1 evaluates a receive predicate which matches the message delivered by 

the kernel, then l is the label of the immediately following the receive 

predicate (by FEA(3) and ASM(3)). 
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(b) p2's e-tree (a) p1's c-tree 

Figure 5.6: Example of Process Transitions 

12) 

2) 

(21 k22) 

Figure 5.7: Transition-tree of the Example 
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4. otherwise no transition can be made for .P, l = 

Thus, the transition implemented by the FEA fulfills the Definition 5.3 ex-

actly. 

Definition 5.4 Let 7' be a distributed logic program, G a goal and (P1,. .. , P,,) the 

coordinated computation invoked by P U {G}. If . . , ) = ... (, .. . , 

is 'a sequence of transitions of (F1, . . . , P,) via FEA, and Oi is a sequence of mgu 's 

computed in the transitions of .P, i = 1. .n, then (F181 A ... A FO) is a a solution 

for 2U{G}, 

Theorem 5.1 (soundness) Let P be a distributed logic program, G a goal. Then 

every solution for P U {G} is a correct solution. 

Proof: Let (F1,.. . , P,) be the coordinated computation of P U {G} and (P101 A 

A PO) a solution of 2 U {G}. The solution is a correct solution for 2 U 

{ G} if the computed answer substitution O's (i = 1..n) are correct answer 

substitutins. From Definition 5.4, this solution is generated by a transition 

(1) If the transtion sequence of (F1,. . . , F,,) do not involve any communications, 

then (F101 A ... A PThO) is correct solution of P U {G} because: 

1. Pi Is do not share any non-ground variables (from Definition 3.4); 

2. the refutation of each P is implemented by a standard Prolog interpreter 

(FEA(5) and ASM(2)); 

3. therefore, the computed answer substitution Oj is a correct answer substi-

tution (for a proof see [Llo84]: soundness of SLD-resolution). 
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(2) If the transtions of (F1,.. . , P,) involve communications, we define Oi as 

the composition of pi and 0-i, where pi represents a sequence of mgu's in the 

derivations of normal Prolog goals while oj represents a sequence of mgu's in 

the derivations of communication predicates. We assert that (F191 A.. . AFO) 

is a correct solution of 2 U {G} because: 

1. P's do not share any non-ground variables (from Definition 3.4); 

2. each pi is generated by a standard Prolog.interpreter 

(FEA(5) and ASM(2)), i.e., pi is a correct answer substitution with 

respect to all Prolog goals in Pi's refutation; 

3. each o11s generated by FEA() which uses the standard Prolog's unifica-

tion algorithm and implements the Synchronization-Test (Definition 3.9) 

with respect to the temporal property of P (ASM(3)), i.e., 0j is a correct 

answer substitution with respect to all communication predicates in P's 

refutation; 

4. therefore, O, the composition of pi and o.j, is a correct answer substitution. 

The problem now is to prove the completeness defined as follows 

A distributed logic programming system is said to be complete if for 

every given goal and distributed logic program (following ASM(1)) the 

system guarantees to produce a solution provided it exists. 

It is important to note that the completeness proof is based on ASM(1) and 

• ASM(2). In other words, we prove that the proposed system is as complete as 

standard Prolog. 
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Lemma 5.2 Let 2 be a distributed logic program, G a goal and (F1, . . . , .P,) the 

coordinated computation invoked by 2 U {G}. Then (F1,. . . , F) has a solution if 

and only if the solution is "displayed" on its transition-tree. 

Proof: This Lemma follows immediately from the definition of transtion-tree and 

Definition 5.4. 

Based on Lemma 5.2, the completeness proof is going to show that in order 

to find a solution for a coordinated computation, the proposed global backtracking 

algorithm searches its transition-tree exhaustively. In the following discussion, we 

only reference states which are displayed on the transition-tree. 

Definition 5.5 Let (ii,... ,l) be a state of (F1,... ,P). (ii,... ,l) is called a 

failure state if it can not be transited forward to any new state and it has at least 

one li which is not IL 

For example, states (11,I2), (11,12) and (21,I2) in Figure 5.7 are failure states. 

Lemma 5.3 No solution exists under a failure state. 

Proof: From Definition 5.4, a solution is produced by a transition sequence from 

(i,. . . , ) to . . , 1k). Since no transition can be made at a failure state 

and there exists at least a 1 which is not a 0, so the lemma holds. 

Lemma 5.4 Let (li,. . . , in) be a state of (P1,... , If all branches under are 

failed and there exists at least one failed receive predicate in evaluating these branches, 

then F makes an open objection at . 
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Proof: From ASM(2), standard Prolog searches all branches under exhaustively. 

From FEA, an open sponsor is established in evaluating a receive predicate. 

From ETA, F: invokes Objection Algorithm. From the objection selection algo-

rithm, Pi objects one of its open sponsors at . 

Definition 5.6 Let (li,. . . , l,) be a state of (F1,. . , P,). If there exists a process 

P which is making an open objection at Ii and the objection competition time equals 

to GCT, then (li,. . . , l,) is called an open-backtrack state and is called an open-

backtrack search position. 

Thus, all failure states in a transition-tree are open-backtrack states, but not vice 

versa. For example, states (11,72) and (ii, 82) in Figure 5.7 are open-backtrack 

states because is making an open objection against the messages sent under el 

and snapshot of GCT at these states equals to the objection competition time of 

el ( recall the definition of GCT, at ,these states, 's objection competition time is 

10:1 while the virtual time of e7 and are both 10.2). In these two states, is the 

2 2open-backtrack search position. However, these two states are not failure states yet 

because they still can transit to new states. 

Lemma 5.5 State transitions from an open-backtrack state always lead to a failure 

state. 

Proof: Let (li,. . . , in) be an open-backtrack state and the open-backtrack search 

position. Since is making an objection and no other processes will ever send 

messages to before GCT to overrule the objection (by ASM(3,4)), can not 

transit to any child . Thus transitions from an open-backtrack state (if any) 

will eventually reach a failed state. 
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Lemma 5.6 No solution exists under an open-backtrack stte. 

Proof: The lemma follows immediately from Lemma 5.3 and Lemma 5.5. 

Lemma 5.6 shows the major difference between our algorithm and the dead-lock 

detection algorithm proposed in [Fut88}. In our scheme, the transition-tree under a 

state is pruned as soon as the state has been determined as open-backtrack, and then 

the execution transits to a new state by rcomposing the search path of a process 

through the objection committed by the open-backtrack search position. In the latter 

approach, transitions under a open-backtrack state will continue until reaching a 

failure state (all processes are blocked), and then a global "unlock" algorithm is 

called to transit the program into a new state. The advantages of our scheme are 

that a open-backtrack state can be detected locally by processes wrt GCT and that 

it offers potential speed up in nondeterministic computations. 

Definition 5.7 Let (li,. . . , l,) be an open-backtrack state, the open-backtrack 

search position of the state and an open sponsor of . Then open-backtrackable 

states of (ii,. . . , l,) with respect to are (..., ii,'. . . , 17,. . .) 's such that each " is 

an unsearched child of '; the open-closed state of (ii,. . . , l) with respect to is 

l .... ) and is the open-closed search position. 

Recall the example in Figure 5.7, state (1, 72) and (1, 82) are open-backtrack 

states. They have a same open sponsor and their open-closed state with respect to 

is (1, 12). According to this open sponsor, state (11, 7 2) has one open-backtrackable 

state (11,42) while state (11,82) has no open- backtrackable state. 
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Lemma 5.7 Let (ii,.. . , l,) be an open-backtrack state and the open-backtrack 

search position of the state. An open objection made by 6il changes (li,. . . , l,) to 

one of its open-bacictrackable states or to its open-closed state when all its open-

backtrackable states have been exhausted. 

Proof: Suppose the open sponsor to be objected by 6il is 1. When the objection is 

sustained, the sponsor process Pj either transits to the next unsearched branch 

(if any) under ' (GTA(a) and ASM(2)) or backtracks to ' if all branches 

under ' have been exhausted (LTA and ASM(2)). 

Lemma 5.8 No solution exists under an open-closed state. 

Proof: From Lemma 5.7, an open-closed state is caused by open objections made 

at a set of open-backtrack states. From Lemma 5.6, no solution exists under 

these states, so the lemma holds. 

Since no solution exists under an open-closed state, we have to decide which state 

to backtrack. There are two situations. First, at the open-closed state, the open-

closed search position has its own open sponsors, then it is going to chose an open 

sponsor and join the open objection competition. All discussion and lemmas above 

can be applied to this situation. Second, at the open-closed state, all sponsors of 

the open-closed search position are closed. In this case, we use a heuristic knowledge 

that earlier synchronizations may make subsequent synchronizations more likely to 

succeed. Thus, the selection algorithm returns a closed sponsor with maximum 

virtual time to object. 

Definition 5.8 Let (la,.. . , l) be a state and a search position. If  objects itself, 

then the state is a self-backtrack state. 
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Lemma 5.9 A closed objection made by an open-closed search position either re-

names the current state to open-backtrack state or to self-backtrack state, or causes 

a subsequent closed objection. 

Proof: Let (li,. . . , in) be a state and a search position. Suppose 4 makes a 

closed objection to . From GTA(b), when process P receives the objection, 

it invokes the Objection Algorithm. If there are open sponsors in `s sponsor 

set, then is going to make an open objection, i.e., the state becomes the 

open-backtrack state; if all sponsors of are closed, then either objects itself 

or makes a subsequent closed objection according to the sponsor selected. In 

the former case, the current state becomes the self-backtrack state. In the later 

case, the current state retains its original name. 

Lemma 5.10 Closed objections at an open-closed state will eventually rename the 

state to either open-backtrack state or self-backtrack state. 

Proof: This lemma immediately follows from Lemma 5.9 and the fact that closed 

objections made by any process are in decreasing virtual time order (see ob-

jection selection algorithm). 

Lemma 5.11 No solution exists under a self-backtrack state. 

Proof: This lemma immediately follows from Lemma 5.8 and 5.10. 

Definition 5.9 Let (li,.. . , l) be a self-backtrack state, the self-backtrack search 

position of the state. Then self-backtrackable states of (la,... , l) with respect to 

are (..., l .... ) 's in the transition-tree such that each ' is an unsearched sibling of 
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; the self-closed state of (li,. . . , l,) with respect to is (..., 17,...) such that " is 

the parent of s, and " is the self-closed search position. 

Recall the example in Figure 5.7, state (11, 12) is a self-backtrack state. It has 

no self-backtrackable state. Its self-closed state is (11, 2). State (1, 2) is another 

self-backtrack state. It has one self-backtrackable state (21, '2). Its self-closed state 

is (i, (D). 

Lemma 5.12 Let (li,... , 1,,,) be an self-backtrack state and the self-backtrack 

search position of the state. A self-backtrack made by changes (li,. . . , l,) to one 

of its self-backtrackable states or to its self-closed state when all its self-backtrackable 

states have been exhausted. 

Proof: This lemma immediately follows from ASM(2)). 

Lemma 5.13 No solution exists under a self-closed state. 

Proof: From Lemma 5.12, a self-closed state is caused by a sequence of 

self-backtracking from a set of self-backtrack states. From Lemma 5.11, no 

solution exists under these states, so the lemma holds. 

Lemma 5.14 Objections at a self-closed state will eventually rename the state to 

open-backtrack state or self-backtrack state. 

Proof: Similar to the proof of Lemma 5.10. 

Theorem 5.2 (completeness) Let P. be a distributed logic program, G a goal and 

(F1,. . . , F) the coordinated computation invoked by 2 U {G}. When the initial 



104 

state of (F1,... , P) becomes a self-backtrack state, the po posed global backtracking 

algorithm has searched the transition-tree of (F1,.. . , F) exhaustively. 

Proof: This theorem directly follows from Lemma 5.11. 



Chapter 6 

COMMUNICATING SEQUENTIAL PROLOG 

(CSP*) 

A practical language proposal, Communicating Sequential Prolog, abbreviated to 

CSP*, is presented in this chapter. CSP is a distributed logic programming language 

for discrete event simulation. 

This chapter has two sections. First, the basic style of programming in CSP is 

introduced. The important concern is enhancing the expressiveness of the original 

logic programming model to include dynamic process creation and more built-in 

predicates., Second, examples are given to show how CSP* is used in distributed 

discrete event simulation. 

6.1 Basic Constructs and Programming Style 

CSP* is an extension of Prolog. It inherits most features of Prolog and provides 

a process-oriented programming environment to its users. The major feature of 

CSP is that a CSP* program consists of a set of dynamic processes which act as 

autonomous simulation objects, cooperate through communications, and are syn-

chronized by their simulation times. 

Execution of a CSP program relies on a set of logic process interpreters which 

evaluate logic processes in parallel and permit backtracking within processes to be 

combined with concurrent activities among processes. 

105 
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6.1.1 Syntax and Semantics 

According to the distributed logic programming model in Chapter 3, a CSP* program 

consists of two types of clauses: procedure clauses and process clauses. 

However, the definitions of these clauses differ from the original ones in dynamic 

process creation. To illustrate this, we use symbol A to represent procedure literals, 

symbol P to represent process literals, and symbol R to indicate either procedure lit-

erals or process literals. We have the following syntactic definitions (a more detailed 

syntax for CSP* in Extended Backus-Naur Form can be found in Appendix): 

a procedure clause: A: —R1, R2,. . . , R. 

a process clause: P(Name,...) :: —R1, R2,. . . , R. 

a query: : —R1,R2,. . .,Rk? 

The procedural reading of the procedure clause is "A is solvable if all procedures 

represented by procedure literals in R1,. . . , R, are solvable, and all process instances 

represented by process literals in R1, . . . , are successful". 

A process instance is a copy of a logic process. A logic process may have a number 

of instances which are evaluated by logic process interpreters in parallel. Therefore, 

the procedural reading of the process clause is "an instance of P(Name .... ) is suc-

cessful if all procedures represented by procedure literals in R1, . . . , R are solvable, 

and all process instances represented by process literals in R1,. . . , R are successful". 

Finally, the procedural reading of the query is "show all procedures represented 

by procedural literals in R1,. . . , RA: are solvable and all process instances represented 

by process literals in R1,. . . , RA; are successful". - 

It is important to note that all clauses in CSP* are temporal clauses. They 
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basically follow the temporal property discussed in Chapter 3. However, as CSP* 

introduces dynamic process creation, the body of a temporal clause may involve both 

procedure literals and process literals. For example, a clause in CSP may be: 

p(Name) :: —a, q1(Nar'ne1), b, q2(Name2), c. 

where p(Name), ql(Namel) and q2(Narne2) are process literals and a, b and c are 

procedural literals. The temporal property of the example is explained as follows: 

p(To,T0t,Name) :: —a(To,Ti),q1(Ti,T0ti ,Name1),b(Ti,T2), 

q2(T2, T02, Narne2), c(T2, T0). 

More detailed specification about process creation and creation time will be discussed 

in the next section. 

6.1.2 Process Naming, Creation and Destruction 

The first parameter in the head of a process clause always refers to the name of a 

process instance. A process name can be any meaningful term and must be instan-

tiated by a unique ground term when the process is instanced. Thereby the process 

name can be used as the identifier of the process instance in communications. If a 

process clause contributes only one instance, its name can be defined as a constant. 

However, if a process clause is used to create a number of instances, its name must 

be a variable or a function term with variable arguments, so that each instance can 

bind the name with a different value. 

• In the evaluation of a goal g(nl, n2,... , ni), a match with the goal is tried with 

the head of each clause in a program. If a match is found and the matched clause is 
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a process clause, CSP creates a new logic process interpreter to evaluate a copy of 

the process clause. We say a new process instance (or a new process) with name ni 

is created. If ni is not a ground term, it results in a run time error. A newly created 

process executes concurrently with other existing processes and it sequentially eval-

uates the goals in the tail of the process clause. On the other hand, if the matched 

clause is a procedure clause, the goal is evaluated as a normal Prolog procedure call. 

An important rule in CSP is that a goal which matches a process clause cannot 

share any non-ground variables with other goals in conjunction. 

A CSP* program is started by a normal query 

—R1,112,. . 

which constitutes itself as the root process with system-designated name main. As 

the main process sequentially evaluates the goal sequence R1,. . . , .F1j, new processes 

may be spawned. 

For example, if we want to create a network with B-tree structure, as shown in 

Figure 6.1, different methods can be adopted. 

Solution 1: 

:- node(n(1)), node(n(2)), ..., node(n(15))? 

node(n(I)) ::- / definition of node /. 

Solution 2: 

:- create(15)? 

create(0). 
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n(l) 

n(2) n(3 

n(4) n(5) n(6) n(7) 

n(S) n(9) n(10) n(11) n(12) n(13) n(14) n(15) 

Figure 6.1: A B-tree Network 

create(I) :-

I > 0, 

node(n(I)), 

Ii is I—i, 

create(I1). 

node(n(I)) ::- / definition of node *1. 

• Solution 3: 

node(n(1), 4)? 

node(n(I), Layer) ::- create(I, Layer), 

/* definition of node /. 

create(_, 1). 

create(I, L) :-

L>1, 
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Ln is 1*2, 

Rn is 1*2+1, 

Li is L-1, 

node(n(Ln), Li), 

node(n(Rn), Li). 

The main process creates 15 node processes, one by one, in solution 1, because 

each goal in the query matches the head of the process clause node(n(I)). Similarly, 

solution 2 produces the same number of node processes in a reversed order by 

recursive procedure calls. In solution 3, the main process only creates process n(1) 

and then, process n(1) creates n(2) and n(3), process n(2) creates n(4) and n(5), 

and so on; finally, fifteen processes are spawned dynamically. It is easy to see that 

the third solution takes less time, because node processes are spawned in parallel. 

The parent of a process is its creator. A process can be destroyed by either its 

parent or itself. Suppose process father creates process son by evaluating goal g(son, 

.), there are two possible situations: (1) some time later process father backtracks 

to g(son, ...); or (2) process son fails. No matter which situation happens, process 

son is killed and process father tries to match g(son, ...) with an alternative clause 

(if any) in the program. If a match is found, a new son will be created; otherwise, 

father continues backtracking and leaves the system with no knowledge that a son 

process had ever existed. 

6.1.3 Built-in Predicates 

The standard Prolog provides a set of built-in predicates that are essential to make 

Prolog a practical language. These predicates can be divided into two classes: meta-

logical predicates and extra-logical predicates. 
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Meta-logical predicates are outside pf the scope of first-order logic but do not cause 

any side effects in their evaluations. In general, they are used for type checking, term 

comparison, and data conversion. 

CSP* inherits all meta-logical predicates from standard Prolog and provides a 

few new meta-logical predicates for handling time and communication. 

A simulation program involves a description of the way in which a system state 

changes over time. Simulation time is fundamental to determining the order in which 

events occur. In a CSP program, each process has its own view of simulation time, 

i.e., it holds a read-only clock which denotes its progress in computation. 

The initial simulation time of a process is defined to be the simulation time of 

its parent at which it is created. The initial simulation time of the main process is 

zero. By calling the built-in predicate 

time(T), 

a process obtains the value of its current simulation time. 

An event is scheduled by evaluating a predicate 

send(D, M, T) 

where D is the event receiver's name, M is the event information and T is a non-

negative delay interval of simulation time which indicates that the receiver must 

receive the event at the receive time which is defined as T plus the time the event 

is scheduled. If T is absent from the predicate, say send(D, M), T is assumed to 

be zero. The parameters of a send predicate must be instantiated to ground terms 

when it is called. 
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Predicate receive is used for receiving an event. CSP' guarantees that events 

delivered to a process are in nondecreasing receive time order. The call 

receive(S, M) 

tries to unify its arguments with the event delivered by the CSP* system, that is, S 

is unified with the sender's name and M with the event information. If a unification 

is made, the event is consumed and the simulation clock of the receiver is advanced 

to the receive time specified by the event. 

Predicates self(P) and parent (F) are used to get the caller's name and parent 

name respectively. Therefore, these names can be used to direct communications. 

For example, a process can advance its simulation clock by calling the following 

procedure: 

advance(T) 

self(P), 

send(P, null, T), 

receive(P, null). 

It is important to note that predicate advance(T) is deterministic. Therefore, if 

a process at simulation time 100 calls advance (5) , the call succeeds only if there are 

no events in between 100 and 105. 

Extra-logical predicates in the standard Prolog not only violate first-order logic, 

but also achieve side effects in the course of being satisfied as logical goals. They are 

usually used for I/O operation and program manipulation. 

CSP* adopts different policies to treat these predicates. Some of them are no 

longer available in CSP*; and some of them are implemented in different ways from 

Prolog, so that their side effects are removed on backtracking. 
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For example, predicates assert and retract are used to add or remove a clause 

from a program database in the standard Prolog. The major purpose of the predi-

cates is to use the database as a Medium to remember partially computed results for 

frequently used objects. A good example of this requirement is a random number 

generator. Commonly, whenever a random number procedure is called, it retracts an 

old seed from the database as input for generating the next random number and then 

asserts a new seed into the database. This is because standard Prolog has no global 

variables to remember partially computed results. Without assert and retract pred-

icates, a program has to carry all partially computed results, e.g., the seed, through 

subsequent procedure calls. This would be extremely inconvenient in writing a large 

program. However, CSP can implement every object, such as a random number 

generator, as a logic process which hides all its intermediate state as well as partial 

results from others. Thus, assert and retract are not inherited by CSP*. 

Predicate repeat in the standard Prolog is used to simulate repeat loops in con-

i.entional languages. These loops are useful only when used in conjunction with 

extra-logical predicates which cause side effects. Since the side effects of most sys-

tem predicates are removed in CSP, repeat is no longer useful. 

In the CSP* system, input and output functions are implemented by I/O pro-

cesses with each manipulating an input/output stream. Therefore, I/O operations 

are carried out through communications between logic processes and I/O processes. 

As a consequence, I/O predicates become sequences of communication predicates. 

The implementation details of I/O processes are not discussed in this thesis. 

Another useful but dangerous feature in the standard Prolog is cut, which is usu-

ally written as "!". For the sake of efficiency, cut can be used to control backtracking 
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by pruning the search space of a program. However, using a cut may destroy the 

correspondence between the declarative and procedural meaning of a logical relation. 

Cut is also allowed in CSP programs, but the user should be aware that backtrack-

ing on a cut may invoke a global backtracking if communications or process creations 

are involved in the effective range of the cut. If this happens, the cut not only prunes 

the search space of the process in which it resides, but also possibly prunes the search 

spaces of other processes. Therefore, it is strongly suggested to use cut with care 

and not to use it without reason. 

6.1.4 Pragmatics 

The pragmatics of logic programming concern efficiency. Typical aspects of efficiency 

are execution time and memory space requirements of a program. 

As we mentioned before, CSP can be used to describe both deterministic and 

nondeterministic computations. We hope that speedup can be achieved for both 

these computations. However, for a distributed logic program written in CSP*, the 

first important factor which has a great influence upon the execution time is the 

degree of determinacy of the program. 

If a deterministic model is evenly decomposed into n concurrent processes, by 

running each process on a different processor, then it would be possible to achieve 

an optimal 'n-fold speedup over the sequential case. 

On the other hand, if a nondeterministic model (here we refer to the "don't know" 

nondeterminism) is decomposed into a set of concurrent processes, although these 

processes are executed on different processors, it is possible that CSP* provides very 

little, or even no speedup as compared with sequential execution. 
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P1 P2 P. 

1 m 1 rn 1 in 

Figure 6.2: A Homogenous Nondeterministic Computation Model 

Let us consider a simple homogeneous nondeterministic computation model. 

Suppose the model is decomposed into n processes each with m nondeterministic 

branches, as shown in Figure 6.2. The worst case for this model is that the only 

solution of ": —F1,.. . , .P,?" is the combination of the rightmost branches of these 

processes. 

If a unit time is taken on each branch and the interprocess communication time 

is assumed to be zero, then execution time on CSP* with n processors and on a 

standard Prolog system with single processor, respectively, is given by: 

Prc1og: M i 

CSP*: m ' 

and we have 

2 * m ' ≥ M  ≥ M n. 

Though n processors are used to solve the nondeterministic model, the speedup is 

less than two. 

This analysis tells us the important fact that for running a program on an AND-

parallel system (such as CSP*), the more determinism the program model possesses, 

the more speedup the system could achieve. This is because a deterministic computa-
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tion does not involve any global backtracking while a nondeterministic computation 

must try possible branch combinations of processes in order to find a solution. 

The second influence on execution time of a distributed logic program in CSP 

is caused by the asymmetry of the built-in communication predicates. We illustrate 

this by comparing two simple examples: 

EX1: 

pl(lpl) ::- foo. 

foo :- send(1p2, a, 0). 

foo :- send(1p2, b, 0). 

foo :- send(1p2, c, 0). 

p2(1p2) ::- receive(lpl, c). 

EX2: 

pl(lpl) ::- foo. 

foo :- receive(1p2, a, 0). 

foo :- receive(1p2, b, 0). 

foo :- receive(1p2, c, 0). 

p2(1p2) ::- send(lpl, c). 

To be able to find a solution of ":- pl(lpl), p2(1p2)", EX1 needs five messages 

which include three normal messages passed from 1pl to 1p2 and two objection mes-

sages transferred from 1p2 to ipi while EX2 only needs one normal message. There-

fore, the organization of message producers and consumers in a nondeterministic 

computation becomes critical in improving the efficiency of a program. 

Space requirements of a program are also closely related to the determinism of the 

program model. It is clear that the execution states of a nondeterministic program 

must be saved to enable backtracking. If a simulation program runs a long time, 
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memory overflow may happen during execution. On the other hand, the execution 

states of a deterministic program can be collected as garbage and can be used to fulfill 

future memory requirements. Since most programs are mixed with deterministic and 

nondeterministic computation phrases and the CSP* system is not smart enough to 

figure out when any process reaches a deterministic state, CSP* provides a special 

predicate for garbage collection purpose. 

Predicate commit, denoted by "!!", is used to prune the search space of a logical 

process. The precise semantics of commit are as follows: 

Let us call the initial goal the goal that started the process. When a 

commit is encountered as a goal it succeeds immediately, but it commits 

the system to all choices made between the time the initial goal was 

invoked and the time the commit was encountered. All the remaining 

alternatives before the commit are discarded. 

In other words, the evaluation of a commit divides the computation of a process 

into two parts: the computation before it becomes the deterministic part and the 

computation after it is the nondeterministic part. Once a process has progressed 

enough to determine that this is the only way to find a solution, a commit can be 

inserted. Therefore, backtracking is only allowed in the latter part and the garbage 

in the former part can be collected by the system. The difference between a 9" and 

a "!!" is that the former discards all remaining alternatives between its parent goal 

(the goal that matched the head of a clause containing the cut) and the "!", the later 

discards all remaining alternatives between the initial goal and the "!!". 
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6.2 Discrete Event Simulation in CSP 

Discrete event systems generally involve contention for scarce resources, with queues 

developing where system components must wait for resources to become available. 

Further, delays between state changes are usually determined statistically, with the 

exact interval selected according to some random number distribution. The objects 

for manipulating resources, queues, random numbers and other useful abstract data 

structures are usually called simulation facilities. 

In this section, the implementation of simulation facilities in CSP is discussed. 

We describe some of the facilities in depth because the others could be specified in 

similar ways. Furthermore, we use three examples to illustrate how to use these 

simulation facilities, how to decompose a simulation model into logic processes and 

how to describe deterministic and nondeterministic computations. 

6.2.1 A Resource Allocation Process 

Queueing systems are common components of discrete event simulation. Typically, 

a collection of demands for resources arise as time evolves. In general, there exist 

two kinds of resources. Resources which are used by requestors are passive resources. 

Resources which provide services are active resources. 

For example, in a gas station, a customer who asks for service for his car needs 

an active resource - a worker, because they are going to exchange messages such as 

the type of service, the amount of payment, etc.. On the other hand, the worker 

may need one or several passive resources - lift, lubricating gun or other tools - to 

finish his job. 
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Another way to distinguish these two kinds of resources is from the style in which 

their simulation time advances. The simulation time of a passive resource is scheduled 

only by its users while the simulation time of an active resource can be advanced 

both by its requestor and by itself. In the above example, the customer does not 

know in advance how long the service will take, but the server knows exactly how 

long it must hold a lubricating gun. 

The following description defines a logic process which manipulates a collection of 

passive resources. It is an abstract data object and provides a deterministic interface 

to its users. 

1* 

(1) 

resource process interface / 

acquire(Rname, Num) :-

send(Rname, acquire(Num)), 

receive(Rname, ok). 

(2) release(Rname, Num) :-

send(Rname, release(Num)). 

resource process implementation 

(3) resource(Rname, Num) ::-

Tesource(Num, Q, Q). 

(4) resource(N, QH, QT) 

receive( Who, M), !!, 

resource( Who, M, N, QH, QT). 

*1 

(5) resource(., -, ..). % terminate when no message 

(6) resource(Who, acquire(Num), N, [HIQH], QT) 

var(H), 

Num ≤N, 

N1isN-Num, 
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(7) 

(8) 

(9) 

send( Who, ok), 

resource(N1, [HIQH], QT). 

resource( Who, acquire(Num), N, QH, [[Who, Num]jQT]) :-

resource(N, QH, QT). 

resource(_, release(Num), N, [[Who, Req]QH], QT) :-

nonvar(Who), 

Req≤N+Num, 

NiisN+Num - Req, 

send( Who, ok), 

resource(_, release(N1), 0, QH, QT). 

resource(_, release(Num), N, QH, QT) :-

Ni is N + Num, 

resource(N1, QH, QT). 

In the above description, clauses (1) and (2) are used for encapsulation - hiding 

the implementation of the resource while exhibiting its interface to other processes. 

Clause (3) defines the resource process. An instance of the resource process must 

have a unique name and a fixed amount of resources. 

By calling the procedure resource (Num, Q, Q), a resource instance starts its life 

cycle. Its state is described by the current available amount of resources and a 

waiting queue with two pointers to the queue head and tail respectively. If there is 

no request, clause (5) terminates the process. Otherwise, clause (4) transfers the 

state of the process and the incoming request to a further procedure call. 

If a requestor acquires a number of resources, clause (6) satisfies the request if 

there is no one in the waiting queue and the current available resources are enough to 

fulfill the requirements, otherwise, clause (7) appends the requestor to the waiting 
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queue. On the other hand, if a requestor releases a number of resources, clause (8) 

sets requestors in the waiting queue free if the total amount of resources (the amount 

just released plus the amount originally left) satisfies their demands. When clause 

9 is chosen, the process will progress to next receive-service cycle with a changing 

state. 

Now, suppose that a resource process has been created with a name "lub_gun", a 

worker can all the following procedures to use a lubricating gun for five time units: 

acquire(lub_gun, 1), 

advance(5), 

release(lub_gun, 1), 

6.2.2 A Queue Process 

A queue is used as an interface between a set of active resources (servers) and a set of 

resource users (customers). Different queue disciplines - the sequencing rules which 

determine which customer in a queue will be served next - can be iniplemented via 

different queue processes. In this section, we introduce a deterministic FIFO queue 

process written in CSP. 

In general, three operations are provided for manipulating a queue object. When 

a customer process executes an cnqueue('Qname, Server, Req) operation, it is sus-

pended in the queue referenced by Qname until a server process becomes available by 

a dequeue operation and the variable Server is bound to the server's name. A similar 

behavior holds in the evaluation of a dequeue(Qnarne, Customer, Req) operation on 
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the server side. In addition, procedure q_length can be called by either customer or 

server processes which always returns the exact queue length at the simulation time 

the call is made. 

/ FIFO queue process interface 

enqueue(Qname, Server, Req) :-

send( Qname, enqueue(Req)), 

receive(Qname, Server). 

dequeue(Qname, Customer, Req) :-

send(Qname, dequeue), 

receive(Qname, [Customer, Req]). 

qlength(Qname, Length) 

send( Qname, length), 

receive( Qname, Length). 

/ FIFO queue process implementation 

*1 

*1 

queue( Qname): 

queue(EQ, EQ, D, DQ). 

queue(EH, ET, DH, DT):-

receive( Who, M), !!, 

queue( Who, M, EH, ET, DH, DT). 

queue(_, -, -, ..). % terminate when no message 

queue( Who, enqueue(Req), EH, [[Who, Req]ET], [HIDH], DT):-

var(H),!, 

queue(EH, ET, [HIDH], DT). 

queue( Who, enqueue(Req), EH, ET, [HIDH], DT):-

send(H, [Who, Req]), 

send( Who, H), 

queue(EH, ET, DH, DT). 
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queue( Who, dequeue, [HIEHI, ET, DH, [WhoIDT]):-

var(H), !, 

queue([HEH], ET, DH, DT). 

queue( Who, dequeue, [[H, Req]EH], ET, DH, DT):-

send( Who, [H, Req]), 

send(H, Who), 

queue(EH, ET, DH, DT). 

queue( Who, length, EH, ET, DH, DT):-

length(EH, N), 

send( Who, N), 

queue(EH, ET, DH, DT). 

length([HJT], 0):- var(II),!. 

length([HjT], N):-

length(T, Ni), 

N is N1+1. 

The state of a queue instance is described by two inner queues (lists), one which 

delays customers that try to get service when all servers are busy and another which 

delays servers that try to grab customers from an empty queue. 

From a closer observation of the queue process, we can find the following inter-

esting properties: 

1. it has an unbounded size; 

2. it accepts requests from any number of customer/server processes; 

3. it terminates automatically when there are no more requests (Note that Time 

Warp mechanism will roll a terminated queue process back whenever a new 

message arrives); 
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4. it not only synchronizes pairs of customer-server processes with respect to their 

simulation time, but also offers a message communication between each pair; 

5. it provides a generic type of queue item, that is, the customers and the servers 

which access the queue can be any type of object (process), and the messages 

between customer-server processes can be any type of data structure. 

With a slight modification, the queue process can be used between pairs of 

producer-consumer processes. In this case, a producer process does not suspend 

itself in the queue, instead, after adding an event into the queue it continues to 

generate the next event. On the other side, a consumer process is like a server, it 

dequeues an event if the queue is not empty, otherwise,, it is blocked. 

6.2.3 Random Number Generator 

Simulation models usually contain random behavior. The purpose of random number 

generation is to provide a stream of numbers with specific statistical properties. 

CSP can be used to describe random number generators for different distribu-

tions in two ways: a distribution procedure or a distribution process. A distribution 

procedure generates random numbers according to the type of distribution and the 

arguments passed to the procedure. A distribution process has a common interface 

sample(Rnanie, Next) to return the next random number. The usage of these two 

methods depends on the application. 

As an example, let us consider a simple, basic, random number distribution - the 

uniform distribution. Weuse the multiplicative congruential method which generates 
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random number n 1 from the previous random number ni by the equation 

:= 8192 * nj mod 67099547 

such that the cycle length is 67099546 [Bir79]. 

/ * uniform distribution procedure / 

uniform(Seed, Next):-

Next is (8192 * Seed) mod 67099547. 

1* distribution process interface 

sample(Rname, Next):-

send(Rname, next), 

receive(Rname, Next). 

/* uniform distribution process 

uniform..process(Rname): 

genunif(12345678). 

genunif(Seed) :-

receive( Who, next), !!, 

uniform(Seed, Next), 

send( Who, Next), 

genunif(Next). 

genunif(_). % terminate when no message 

*1 

*1 

6.2.4 Single Server Queueing Model 

Figure 6.3 shows a typical single server queueing simulation model. Suppose the 

model is applied to a bank system. Each arriving customer generates a successor 

and waits in a queue with a randomly selected request until the bank server is 
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customers 

enqueue  

queue 

dequeue  

server 

Figure 6.3: A Single Server Queueing Model 

available. The server process handles different requests from customers, such as 

deposit, withdraw, etc.. 

As soon as a customer receives a result from the server, it leaves the system 

immediately. On the other hand, the server stops service only if there are no more 

customers in the queue. 

In the following program, service requests are uniformly distributed random in-

tegers from 1 to 5; inter-arrival times are negative exponentially distributed random 

numbers with arrival-rate 0.125; and service times are constant random numbers. 

/ main process / 

single.server(Startc, Starts, End):-

negexp..process(nexp, 0.125), 

ranint -process (rint, 1, 5), 

queue(que), 

server(server, Starts), 

customer(c(1), Startc, End), 

/ customer process / 

customer(c(I), Start, End)::-

sample(nexp, Next), 

Startl is Start + Next, 

% create a negexp process 

% create a ranint process 

% create a queue process 

% create a server process 

% create the first customer process 

% and terminate 

% get inter-arrival time 
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generatenext(I, Starti, End), 

advance(Start), 

sample(rint, Req), 

enqueue(que, Server, Req), 

receive(Server, Result), 

11. 

generate-next(-, Start, End):-

Start ≥ End. 

generate_next(I, Start, End):-

Start < End, 

Ii is '+1, 

customer(c(I1), Start, End). 

server process / 1* 

server(Sname, Start)::-

advance(Start), 

service. 

service:-

dequeue(que, Customer, Req), 

process_request(Req, Result), 

send(Customer, Result), it, 

service. 

% create next customer 

% start execution 

% get a request 

% wait for server 

% wait for result 

% and terminate 

% stop generating 

% dequeue a customer with a request 

% sery the request 

% send the result back 

% loop 

service. 

process_request (1, open-account):- advance( 10). 

process -request (2, deposit):- advance(5).. 

process -request (3, withdraw):- advance(5). 

process_request (4, cash-check):- advance(7). 

process -request (5, credit_bill) :-advance( 15). 

% terminate when dequeue fails 
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Suppose customers arrive from 8:30 until 15:00, the bank server starts serving 

from 9:00 until the last customer is served, and the unit of simulation time is one 

minute, the program can be invoked by 

:-single..server(510, 540, 900)? 

Note that the number of customer processes is controlled by the inter-arrival rate 

and the model termination time. 

With a slight modification, the above program can be used to simulate multi-

server queuing models. For example, the clause 

tbree...server(Startc, Starts, End):-

negexp_process(nexp, 0.125), 

ranint_process(rint, 1, 5), 

queue(que), 

server(s(1), Starts), 

server(s(2), Starts), 

server(s(3), Starts), 

customer(c(1), Startc, End), 

and the query 

:-threeserver(510, 540, 900)? 

can simulate a 3-server queuing model. 

6.2.5 Bank Robbery 

In order to illustrate how CSP* is used in nondeterministic computations, we take 

a simple but interesting example from [F582]. Jim and Dick want to rob the Prolog 
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savings bank. Jim needs 5 minutes to climb into the bank. Dick waits outside and 

sends a tool to Jim when he hears a whistle from Jim. There are different safes in 

the bank and each safe takes a different time to be unlocked. If the robbery has 

to finish in 25 minutes, the question is which safe is to be chosen for a successful 

robbery. 

/ process jim / 

process_jim(jim) ::-

advance(S), 

send(dick, whistle), 

receive(dick, Safe), 

open(Safe), 

time(T), 

T<25. 

open(milner) :- advance(40). 

open(wertheim) advance(27). 

open (chatwood) :- advance( 10). 

/ process dick / 

process_dick(dick): 

receive(jim, whistle), 

has_tool(Safe), 

send(jim, Safe). 

has_tool(milner). 

has_tool(chatwood). 

When we call 

:- process_jim(jim), process_dick(dick)? 

% climb into bank 
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center(1) illage(i) 

center(2) W  illage(2) 

illage(4) center(5) 

(Center(3) illage(3) 

illage(5) 

the simulation tries to find the correct safe and tool by backtracking and attempting 

ci.ifferent safes with different opening times until one is found that can be opened in 

the time available. 

6.2.6 Hierarchical Health Care System 

Figure 6.4 is a model of health care systems, typical of health delivery systems, in 

developing countries. There are three kinds of objects in the model: the villages, the 

reception nurses and doctors in health centers. 

A village process is designed as an event generator. It periodically generates pa-

tient events, sends them to the corresponding health center and receives the treated 

people back. In between any two patient events, it is possible that a treated patient 

has been sent back. Therefore, the village process adopts a very interesting program-

ming technique: it sends a message which indicates the next patient event to itself, 

then the process executes receive; if the message received is the message of the next 



131 

event, the process actually generates the event and schedules the second next event 

for itself, otherwise, the process saves the message which must represent a treated 

patient. 

We assume that there is one reception nurse in each health center. A reception 

nurse process is implemented by a producer-consumer queue (see Section 6.2.2). It 

receives the incoming patient events and distributes them to available doctors. The 

interface of a reception nurse process now is defined as enqueue (Name, Event) and 

dequeue (Name, Event). 

There are a number of doctors in every health center. A doctor process gets a 

patient event from the nurse each time. If the patient is treatable, then after the 

treatment, the person is sent back to his (her) village, otherwise, the person is sent 

to a higher health center. A doctor process terminates its recursive processing only 

if there are no more patient events. 

/ main process *1 

hea1th.system(St Et, DocList):-

negexp_process(nexp, 0.25), 

unif_process(unifl, 0, 1), 

unif_process(unif2, 10, 50), 

creation(5, St, Et, DocList). 

creation(0, 

creation(I, St, Et, [DocsjDL]):-

I> 0, 

center(c(I), St, Docs), 

village(v(I), St, Et, Q), 
Ii is I - 1, 

% neg-exp distribution 

% 0-1 uniform distribution 

% 10-5O uniform distribution 

% create the others 

% terminate 

% create Ith health center 

% create Ith village process 
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creation(I1, St, Et, DL). 

1* village process / 

village(v(I), St, Et, Q)::-
advance(St), 

sample(nexp, Next), 

send(v(I), 1, Next), 

village_operation(I, Et, Q). 

village_operation(I, Et, Q):-
receive( Who, M), 

operation( Who, M, I, Et, Q). 

village-operation(-, -, 

operation(v(I), -, I, Et, Q):-
time(T), 

T≥ Et, !, 

village_operation(I, Et, Q). 

operation(v(I), Pn, I, Et, Q):-
enqueue(c(I), [I, Pn]), 

sample(nexp, Next), 

Pn1 is Pn +1, 

send(v(I), Pn1, Next), 

village_operation(I, Et, Q. 

operation(D, Pn, I, Et, [{D,Pn] T}):-

village_operation(I, Et, T). 

/ a health center consists of a queue 
processes / 

center(c(I), St, Docs):-

create_doctors(Docs, St, I), 

queue(c(I)). 

% next event time 

% schedule the first event to self 

% segregrate the message 

% terminate if no message 

% message from self 

% stop generating 

% message from self 

Pn'th patient enters center 

% schedule next event 

% recive a treated patient 

process and a number of doctor 
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create_doctors(O, -, 

créate_doctors(Docs, St, I):-

Docs>O, 

doctor(d(I, Docs), St), 

Docsl is Docs - 1, 

create_doctors(Docsl, St, I). 

/* doctor process / 

doctor(d(I, J), St)::-

advance(St), 

diagnose(I). 

diagnose(I) :-

dequeue(c(I), Patient), !!, 

advance(2), 

sample(unifl, T), 

treat(I, Patient, T). 

diagnose(_). 

treat(I, [In, Pn], T):-

treatable(I, T), 

sample(unif2, TreateTime), 

advance(TreatTime), 

send(v(In), Pn), 

diagnose(I). 

treat(I, Patient, _):-

parent_center(I1, I, T), 

enqueue(c(I1), Patient), 

diagnose(I). 

parent -center (1, 2). 

parent -center (1, 3). 

% receive a patient 

% assessment 

% diagnostic result 

% terminate if no more patients 

% if the patient is treatable 

% get treate time 

% send the patient back 

% not locally treatable 

% transfer to a parent center 
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parent_center(2, 4). 

parent -center (2, 5). 

treatable(1, .). 

treatable(2, T):- T≤0.75. 

treatable(3, T):- T≤0.75. 

treatable(.., T):- T≤0.5. 

% all treatable in c(0) 

% 0.75 treatable in c(1), c(2) 

% 0.50 treatable in c(3), c(4) 

This program can be invoked by using 

:- health..system(100, 1000, [5, 5, 10, 10, 20])? 

which will create three random number generation processes, five village processes, 

five receptionist (queue) processes, and fifty doctor processes. 

6.3 Summary 

This chapter has described a practical distributed logic programming language, 

CSP*, for discrete event simulation. CSP is an extension of standard Prolog and 

provides a process-oriented programming environment to users. 

A CSP* program consists a set of procedure clauses and process clauses. A 

process clause defines a logic process which serves as a template for creating process 

instances while a jrocedure clause retains the same semantics as in Prolog: A process 

instance is created dynamically. It has a unique symbolic name and is evaluated 

sequentially by a logic process interpreter. 

During execution, a process instance may communicate with other process in-

stances through message passing. This is accomplished by calling built-in commu-
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nication predicates. CSP* allows backtracking within processes to be coordinated 

with concurrent activities among processes. 

Programming examples in this chapter reveal the simplicity and expressive power 

of CSP*. An experimental, deterministic version of CSP* has been built in a dis-

tributed programming environment Jade [XUC86, UBCD86]. All the examples in 

this chapter, except the "Bank Robbery", have been tested. 



Chapter 7 

CONCLUSIONS AND DIRECTIONS FOR 

FUTURE WORK 

In this chapter, we review and summarize the contributions of this thesis, discuss 

the advantages and disadvantages of the proposed logic programming system, and 

suggest directions for future work. 

7.1 Conclusions 

Practical simulation work involves defining a problem and the goals of an experiment, 

specifying a model which represents enough detail to achieve goals, implementing the 

model as a working computer program, verifying the consistency of the model and 

the problem definition, validating the consistency of the program and the model, 

experimenting with the program, and producing documentation. 

Since many simulation models are both large and complex, in many research 

areas, expensive computers and human resources are devoted exclusively to sim-

ulations. Therefore, two important research directions are to reduce the costs of 

simulation development and to speed up the execution of simulations. The objec-

tive of this thesis is to design a programming system that makes simulation easier, 

cheaper and faster. 

Different proposals for distributed simulations were compared in Chapter 2 which 

suggested that a distributed logic programming system in conjunction with a run-

136 
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time kernel based on the Time Warp mechanism provides a basis for achieving our 

goal. 

The first contribution of the thesis is a distributed logic programming model. 

In the model, a distributed logic program is represented by a set of logic processes 

with which the user can specify different components in a simulation model. The 

cooperations among logic processes are accomplished by explicit inter-process com-

munication. 

A very simple syntax and a well-defined semantics for the logic programming 

model were presented. We believe that the simpler the syntactical form and the 

better defined the semantics of the language framework, the easier the simulation 

task will be. 

The second contribution of the thesis is the design of a practical implementation 

of the distributed logic programming system. Based on Jefferson's Time Warp mech-

anism and standard Prolog interpreter, a kernel and a logic process interpreter which 

provide functions to handle the cooperation of a logic process with other processes 

were presented. 

The mechanism to deal with the failures on virtual time is the rollback facility; 

the mechanism to deal with the failures on virtual space is the global backtracking 

facility. Since the algorithms of these facilities utilize the built-in state-saving and 

local backtracking capabilities of the standard Prolog, we simplify the system imple-

mentation and overcome the non-knowledgeable state-saving problem in the original 

Time Warp proposal. 

In addition, we proved that the global backtracking algorithm is sound and partial 

complete. The soundness and partial completeness results show that the system not 
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only provides a temporal coordinate system to measure computational progress and 

define synchronizations, but also provides a spatial coordinate system to support 

nondeterministic computations. 

Finally, a distributed logic programming language proposal - Communication 

Sequential Prolog (CSP*) is presented. In addition to the features inherited from 

the standard Prolog, CSP* has new features to support distributed discrete event 

simulation and object-oriented programming. The major extensions are summerized 

as follows: 

1. Explicit, dynamic processes: CSP uses explicit processes to show the con-

currency as well as the logic components of a simulation model. Processes can 

be created dynamically. The syntactic mechanism which support dynamic pro-

cess creation, is the concept of process instances represented by process literals 

in the bodies of clauses. 

2. Process naming and communication connection: Each process instance of 

a logic program in CSP* has a unique symbolic name. Process names in a 

distributed logic program provide a global, user defined, fiat naming space. 

They are used to direct communications among processes. CSP* offers ar-

bitrary communication connections, that is, processes can communicate with 

each other provided they know their partner's names. 

3. Inter-process communication and synchronization: CSP* provides an asyn-

chronous communication mechanism. A process is free to send any number of 

messages to other processes without blocking. Synchronizations among pro-

cesses are governed by the agreement of their simulation time as well as the 
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agreement of their search positions. 

Interestingly, we find the origins of these features not from the declarative pro-

gramming languages but from the procedural programming languages discussed in 

Section 2.1.1. This is because traditional logic programming techniques are not 

suitable for describing a changing world, while distributed discrete event simulation 

needs the facilities for specifying model dynamics, decomposing simulation compo-

nents, and coordinating concurrent activities of these components. 

On the other hand, based on the foundation of logic, CSP* has greater expres-

siveness then existing procedural programming languages. It provides a very simple 

syntax and well-defined semantics. It can be used both for model specification and 

model implementation. It can describe both deterministic and nondeterministic com-

putations. 

However, these achievements are not without costs. First, although CSP* is 

based on the theory of first order logic, the temporal construct and the evaluation 

order dilute the essential simplicity of pure logic programming, therefore making pro-

grammers pay more attention to procedural considerations. In other words, we can 

use CSP* as a specification languagc, but we must remember that it is only partially 

complete. The philosophy here is that it is better to have at least some declarative 

meaning rather than none, because a declaratively correct program (specification 

correct) makes it rather easy to become a proceduraly correct program (implemen-

tation correct). For a large and complex simulation model, the proposed language 

framework minimizes the costs of developing, modifying and debugging the simula-

tion program. 
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Secondly, since the send and receive predicates are treated asymmetrically, it is 

possible that different arrangements of these predicates in a nondeterministic com-

putation will greatly influence the efficiency of the program (recall the example in 

Section 6.1.4). Thus the user has to consider pragmatic issues in implementing a 

simulation program. 

Finally, CSP* does not provide security and protection for abstract data objects. 

For example, suppose we have created a queue process, other processes may commu-

nicate with the queue object directly without going through the specified interface. 

To conclude, the major advantages of CSP* are the simplicity that comes from 

the distributed logic programming model, the flexibility that comes from dynamic 

process creation and a symbolic naming space, the concurrency that comes from 

asynchronous communication, the understandability that comes from the declarative 

meanings of programs, and the expressive power that supports concurrent activities, 

process synchronizations, message segregations and nondeterministic computations. 

Though there are disadvantages to CSP*, such as the need for the user to be aware 

of run-time efficiency issues (as described above), this language offers a potential 

tool for model specification and parallel execution. 

7.2 Future Work 

An efficient, complete CSP* system still needs to be implemented. Then performance 

of the system with a greater range of discrete event simulation applications can be 

tested and evaluated. 

Problems left in the implementation of a practical CSP* system are how to specify 
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and implement I/O processes; how to allocate processes to different processors; how 

to debug a CSP program; how to monitor the execution of a CSP program; how 

to implement a compiler instead of an interpreter; what statistics facilities should 

be provided; and which simulation facilities can be standardized. All these problems 

are essential in building a usable simulation environment and should be carefully 

investigated. 

When we measure the performance of a CSP system, from what criteria can 

we compare the system performance with others? Of course, we can not only mea-

sure the performance at the stage of a program execution. As proposed both for 

model specification and implementation, CSP* should minimize the effort devoted 

to program development, debugging, testing and execution. The actual measurement 

should include the performance results on all stages of a simulation task. Therefore, 

we need a set of procedures to collect these results and a set of criteria to analyze 

the performance of the system. 

Furthermore, it is still not clear what types of discrete event simulation mod-

els can be easily expressed and also achieve good performance in CSP*. Greater 

experimentation with different simulation models is required for analyzing the pro-

gramming style, expressiveness, efficiency, theoretical considerations and practical 

implementation of CSP*. 
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APPENDIX 

Syntax of CSP* 

<clause>::= <process clause> j<procedure clause> <unit clause> 

<process clause>::=<process head>::-<body>. 

<procedure clause>::=<procedure head>:-<body>. 

<unit clause>::=<literal>. 

<process head>:: = <functor> (<process name> { ,<term> }) 

<procedure head>: :=<literal> 

<body>: := <literal> { ,<literal> } 

<process name>::=<literal> 

<literal>: :=<functor> (<term> { ,<term> }) <functor> 

<functor> ::= lower case identifier 

<term>: :=<constant> I <variable> I <list> I <literal> 

<constant>:: =integer Ilower case identifier 

<variable>::=identifier starting with an upper case letter or a 

<list>::=[] I[<term>'I '<list>] 
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