
THE UNIVERSITY OF CALGARY

CSP - A DISTRIBUTED LOGIC

PROGRAMMING LANGUAGE

FOR DISCRETE EVENT SIMULATION

BY

Xining Li

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

JUNE, 1989

© Xining Li 1989

National Library
of Canada

Bibliotheque nationale
du Canada

Canadian Theses Service

Ottawa, Canada
K1 0N4

Service des theses canadiennes

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis •nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

L'auteur a accordé une licence irrevocable et
non exclusive permettant a Ia Bibliothéque
nationale du Canada de reproduire, prêter,
distribuer ou vendre des copies de sa these
de quelque manière et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a la disposition des personnes
intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protege sa these. Ni la these ni des extraits
substantiels de celle-ci ne doivent étre
imprimés ou autrement reproduits sans son
auto risation.

ISBN .0-315-54272-1

Cana c!

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled, "CSP* - A Distributed Logic

Programming Language for Discrete Event Simulation" submitted by Xining Li in

partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Supervisor, Dr. Brian fer

Department of Computer Science

•t
Co-suçIrvisor,(1Y. John Cl

+ Cl
Dr. Fred Trofimenkoff Dr. Graham Birtwistle

Department of Computer Science

Department of Electrical Engineering Department of Computer Science

Dr.

University of Montreal

Date: 17 a if 87

Iviultilogic Computing Ltd. Budapest

11

ABSTRACT

Computer simulation is a technique for predicting the behavior of real or hypothetical

systems as these systems operate in real or hypothetical environments. The devel-

opment of a large simulation is a complex and difficult task. In many research fields,

expensive computers and human resources are devoted exclusively to simulations.

The objective of this thesis is to reduce the costs of simulation in two ways:

simplifying simulation development by providing a new programming language which

can be used for both model specification and program implementation, and enabling

the use of more cost effective parallel computers to execute simulations.

First, an abstract distributed logic programming model is described. The model is

based on first order logic theory with extensions for temporal, cooperative execution.

Within this language framework, the programmer is able to describe simulation

models in a declarative way.

Secondly, an implementation of the language framework is presented. Based on

an optimistic synchronization mechanism - the Time Warp system [Jef85], the im-

plementation not only provides a temporal coordinate system for measuring compu-

tational progress and defining synchronizations but also provides a spatial coordinate

system for supporting nondeterministic computations.

Finally, a practical language proposal - Communicating Sequential Prolog (CSP*)

is introduced. Several programming examples of discrete event simulation reveal the

simplicity, flexibility, understandability and expressive power of CSP*.

in

ACKNOWLEDGEMENTS

I would like to express great thanks to my supervisor, Dr. Brian Unger, for his

support and guidance over the course of this research. His editorial suggestions

made a substantial improvement to the literary quality of this dissertation. His

interest in and excitement over the topic of this dissertation was often inspirational.

I would also like to extend special thanks to Dr. John Cleary for providing

valuable advice and suggestions during this long effort. I do not believe this work

have been possible without his insights and assistance. -

I am deeply indebted to my wife, Ling Liu, for her love and continuous encour-

agement.

I would like to thank my parents, my parents-in-law and my son. Although I

have not seen them for four years, I could feel their love and understanding over

time and space. -

Finally, I would like to thank Greg Lomow, Darrin West, Zhonge Xiao and Mike

Bonham for their helpful discussions and comprehensive comments.

iv

Contents

Approval Page

ABSTRACT

ACKNOWLEDGEMENTS iv

List of Figures vii

1 INTRODUCTION 1
1.1 The Simulation Development Process 2
1.2 Thesis Motivation and Objectives 3
1.3 Thesis Outline 5

2 SURVEY OF RELATED WORK 8
2.1 Distributed Programming Languages 9

2.1.1 The Procedural Programming Languages 10
2.1.2 The Declarative Programming Languages 13

2.2 Synchronization Mechanisms 17
2.2.1 Logical Clocks 18
2.2.2 The Network Paradigm 20
2.2.3 The Time Warp Mechanism 22

2.3 Base System and General Comparisons 25
2.3.1 A Base Language and Synchronization Scheme 26
2.3.2 Comparisons with Closely Related Approaches 28

3 A DISTRIBUTED LOGIC PROGRAMMING MODEL 33
3.1 The Model 33

3.1.1 Declarative Semantics 37
3.1.2 Operational Semantics 42
3.1.3 Temporal Constructs 45

3.2 Implementation Issues 48
3.2.1 Simulation Time and The Computation Rule 48
3.2.2 Communication and Synchrbnization 49
3.2.3 The Sensor 51

3.3 The Basic System Structure 53

V

4 A MODIFIED TIME WARP KERNEL 55
4.1 Jefferson's Time Warp Kernel 55

4.1.1 Local Control 58
4.1.2 Global Control 60

4.2 Modifications and Extensions 61
4.2.1 The Extended Kernel 62
4.2.2 Global Backtracking and Termination Functions 65

.5 A LOGIC PROCESS INTERPRETER 68
5.1 New Concepts and Data Structures 69
5.2 The Algorithm 78

5.2.1 Forward Execution 79
5.2.2 Backward Execution 81
5.2.3 An Example 88

5.3 Correctness of the Algorithm 91

6 COMMUNICATING SEQUENTIAL PROLOG (CSP*) 105
6.1 Basic Constructs and Programming Style 105

6.1.1 Syntax and Semantics 106
6.1.2 Process Naming, Creation and Destruction 107
6.1.3 Built-in Predicates 110
6.1.4 Pragmatics 114

6.2 Discrete Event Simulation in CSP 118
6.2.1 A Resource Allocation Process 118
6.2.2 A Queue Process 121
6.2.3 Random Number Generator 124
6.2.4 Single Server Queueing Model 125
6.2.5 Bank Robbery 128
6.2.6 Hierarchical Health Care System 130

6.3 Summary 134

7 CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK 136
7.1 Conclusions 136
7.2 Future Work 140

Bibliography 142

APPENDIX 147

vi

List of Figures

3.1 The Proof-trees of the Example 39
3.2 The Temporal Property of Procedure Calls 47
3.3 The Basic System Structure 54

4.1 The Interfaces of Kernel Process 62

5.1 A Parent-Child Layer 70
5.2 A Possible Partial e-tree of P 71
5.3 The Relationship between t& , status and 72
5.4 An Example for Constructing a State 75
5.5 The e-trees of the Example 88
5.6 Example of Process Transitions 95
5.7 Transition-tree of the Example 95

6.1 A B-tree Network 109
6.2 A Homogenous Nondeterministic Computation Model 115
6.3 A Single Server Queueing Model 126
6.4 A Health Care Model 130

vii

Chapter 1

INTRODUCTION

Simulation is a problem solving technique that involves modeling a dynamic system

and observing its behavior over time. A system may be defined as a collection

of inputs which pass through certain processing phases to produce outputs. For

example, a manufacturing system may use crude oil as an input to a cracking plant

for crude oil processing that produces various types of oil and gasoline as outputs.

A model of a system is an abstraction of the system which can be a theoretical

representation, an empirical representation, or a combination of both. Simulation

enables experimentation with systems which do not yet exist, or for which it is

difficult to get first hand experience. It also enables repeated experimentations with

a system, under controlled conditions, to optimize performance.

Three classes of simulation can be defined: discrete, continuous and combined.

Discrete event simulation refers to a modeling technique that enables instantaneous

changes in the state of a model to be made at arbitrary points in time. Continuous

simulation implies that changes in the state of a model occur smoothly and contin-

uously in time. Combined simulation is a technique which simulates systems with

both discrete and continuous characteristics.

It is possible to write simulation programs in computer languages such as SIM-

ULA, GPSS, etc.. However, simulationists tend to prefer a programming environ-

ment which reduces the time devoted to simulation programming and debugging, as

well as, the time of simulation execution. This thesis concerns the design of such a

1

2

programming system in the domain of discrete event simulation.

1.1 The Simulation Development Process

In general, practical simulation work involves the following steps:

1. Definition of the problem and simulation objectives. This step concerns

what questions need to be answered, what aspects of system behavior need o

be modeled, and what results or performance measures need to be observed as

outputs.

2. Model specification and data collection. A system can be modeled

through a decomposition process in which model components and the inter-

actions among these components are defined. Model specification involves the

correct description of component representations and a set of transformation

rules which define the behavior and relationships among the set of components

comprising the system. Data should be collected from the system of interest

and used to estimate input parameters and to obtain probability distributions

for the random variables used in the model.

3. Construction of a computer program. Operation of the system model

is represented by the execution of a program written in some programming

language. A good simulation language may reduce the required programming

effort significantly and may also lead to a shorter simulation execution time.

4. Verification and validation of the simulation program and model.

Verification refers to the consistency of the model with the model specification.

3

Validation involves determining whether or not the behavior of the simulation

program mimics the behavior of the system being investigated with acceptable

accuracy. -

5. Simulation experiments and analysis. Production runs are made to pro-

vide performance data specified by steps 1 and 2. Statistical techniques are

used to analyze the output data from the production runs. Typical goals are to

construct a confidence interval for a measure of performance for one particular

system design or to decide which simulated system is best relative to some

specified measure of performance.

6. Documentation and implementation of the results. Because simulation

models are often used for more than one application, it is important to doc-

ument the assumptions, inputs, outputs, results and conclusion drawn from a

set of experiments for further analysis.

1.2 Thesis Motivation and Objectives

Traditionally, people follow the above systematic procedure to carry out a simulation

task. They use a natural language or a kind of formal language such as automata or

Petri nets to specify the simulation model. Then they convert the specification into

a program through either a simulation-oriented or a general purpose programming

language.

Since there are gaps between the model and the model specification, and between

the specification and the program implementation, substantial effort is required to

verify model correctness and to validate the simulation model. Current estimates

4

indicate that as much as 75 percent of a typical programming budget goes to program

modification and debugging [Gol85]. As a result, with the increased sophistication

demanded from simulation models, it is increasingly complex, difficult and costly to

carry out the above simulation steps.

Thus, the first motivation of this research is drawn from the question: is it pos-

sible to find a tool both for model specification and program implementation. If we

can provide such a tool, steps 2, 3 and partly 4 in the simulation development pro-

cess are integrated into one step. Thereby the simulation development shifts away

from the traditional concern with the consistency of the model, the specification

and the implementation, and towards an understanding of the simulation problem

itself. That is, a tool which enables the simulationist to specify a model in a prob-

lem oriented language which can also be directly executed can greatly simplify the

simulation development process.

Secondly, most practical simulations take a long time to execute because useful

models tend to be-large and complex, and because their simulation programs are ex-

ecuted sequentially. However, interesting classes of simulation models exhibit a high

degree of natural parallelism, i.e., they can be decomposed into a set of concurrently

operating objects. Typical examples are health care systems, traffic control sys-

tems, communication systems, computer systems, banking systems, and most daily

human activities. This fact, and the emergence of highly parallel, distributed com-

puter systems, have led many scientists to attempt distributed, parallel, solutions to

simulation problems.

The goal of distributed simulation is to speed up simulation by exploiting the

availability of more cost-effective parallel computer systems. This is made possible

5

by the parallelism inherent in many real systems and their models.

Keeping these motivations in mind, the common thread that runs through this

thesis is an attempt to provide simulation programmers with a new programming

language that makes it easier to design a simulation whose execution can be made

arbitrarily fast.

1.3 Thesis Outline

Reaching our objectives involves two major steps: constructing a language frame-

work to specify a set of parallel activities and providing an efficient synchronization

mechanism to coordinate these activities. Chapter 2 surveys some recent proposals

which deal with these subjects. From this investigation and discussion, we conclude

that a distributed logic programming language in conjunction with a run-time ker-

nel based on the Time Warp mechanism offers the greatest potential to achieve our

goals.

The programming model presented in Chapter 3 provides a framework for dis-

cussing distributed logic programming. The model is not yet a practical logic pro-

gramming language, although it does capture the important aspects of a distributed

logic programming system. In the model, a distributed logic program is represented

by a virtual space - a set of processes which are logic representations of system objects

and are coordinated through communication and synchronization. The semantics of

the model are based on first order logic theory, which is extended to handle prob-

lems in the dynamic and parallel domains. Since the communication facilities in the

model cannot be defined with first order logic, a meta-logic rule is introduced to

6

check the synchronization of underlying processes. Issues of implementing a practi-

cal distributed logic programming language are also addressed in this chapter, which

include the temporal construct, communication predicates, completeness and the

global backtracking capability.

Chapter 4 introduces a modified version of the Time Warp mechanism which

implements virtual time for organizing and synchronizing distributed systems, typi-

cally distributed discrete event simulations. This new version maintains some of the

original functions, such as manipulating input/output queues, recognizing rollback

requirements and treating anti-messages, but leaves the state-saving and rollback

mechanism to the language level. It also provides new functions to handle the coop-

eration of logic processes in a virtual space.

By combining the new version of the Time Warp mechanism with the proposed

distributed logic programming model, a logic process interpreter algorithm is de-

scribed in Chapter 5. This algorithm is a standard Prolog interpreter that is ex-

tended to control the rollback and global backtracking activities of a logic process.

The rollback facility is used to deal with failures on virtual time while the global

backtracking facility is used to handle failures on virtual space.

The soundness and partial completeness of the algorithm are also proved in Chap-

ter 5. It is shown that the proposed distributed logic programming system not only

provides a temporal coordinate system which can be used to measure computational

progress and to define synchronizations among logic processes, but also provides a

spatial coordinate system to support distributed, nondeterministic computations.

Chapter 6 presents a practical language proposal - Communicating Sequential

Prolog, abbreviated to CSP*. CSP* is a distributed logical programming language

7

for discrete event simulation. It inherits most of its features from standard Prolog

and provides a process-oriented programming environment to users.

By partially exploiting the AND-parallelism of logic programming, a CSP pro-

gram consists of a set of dynamically spawned sequential processes which act as

autonomous objects and cooperate through message passing. Execution of a CSP*

program relies on a set of extended interpreters proposed in Chapter 5 which evalu-

ate their assigned logic processes in parallel and allow backtracking within processes

to be combined with concurrent activities among processes. Some programming

examples are described which reveal the simplicity and expressive power of CSP*.

I have tried to avoid demanding a wide background of the reader. Howãer, as

this thesis deals with a great range of subjects - programming languages, commu-

nication and synchronization mechanisms, logic programming theory, and discrete

event simulation, some knowledge of these areas, especially logic programming, is

necessary to appreciate the problem investigated in the thesis.

Chapter 2

SURVEY OF RELATED WORK

Much of human knowledge about the real world is concerned with the way things

are done. This knowledge is often described as a set of cooperative action sequences

for achieving a particular goal and is usually relevant to a kind of time metrology.

Since these action sequences can be simulated by computers and coordinated through

communications, we call each action sequence a process and a set of these cooperative

action sequences a distributed computing system.

Of course, discrete event simulation is an important application area of dis-

tributed computing systems. When we seek an ideal distributed programming system

for discrete event simulation, we are drawn to the following questions:

1. What theoretical language model offers the opportunity for programmers to

create running programs by providing specifications of simulation models, with-

out having to proceed with the transformation sequence "model -+ specification

-* implementation"?

2. What language constructs are suitable to describe simulation models such that

they not only make programs easier to understand and debug, but also make it

easier to characterize programs at a high level of abstraction in a natural way?

3. What synchronization mechanism can best support the cooperation of pro-

cesses and be implemented efficiently?

8

9

4. What inter-process communication facility can best describe the dynamic be-

havior of distributed systems?

In this chapter, we survey some of the models and techniques which have been

proposed for answering these questions. We first examine different distributed pro-

gramming languages, and then explore several process synchronization mechanisms.

The purpose of the investigation is to find possible alternatives for achieving our

goal.

2.1 Distributed Programming Languages

The usual way to give directions to a computer system is with a program written in

some programming language. Traditional programming languages for discrete-event

simulation are sequential or pseudo-concurrent languages. Some of the more popular

discrete simulation languages are GPSS [IBM77], SIMULA [Bir79], and SIMSCRIPT

[Fis78]. These languages are procedural, i.e., a program explicitly specifies the steps

which must be performed to reach a solution. Another kind of language has recently

been used in simulation, e.g., T-Prolog [FS82]. It is a declarative language, i.e.,

it is only necessary to describe the problem in terms of facts and rules that define

relationships among the objects in question.

Recently, many proposals have been put forward for distributed programming,

including CSP [Hoa78], DP [Han78], PUTS [Fel79], E-CLU [Lis79], *MOD [Coo8O],

Cell [Sil8l], Soma [Kes81], NIL [SY85}, CSM [SL87], Ada' [DOD8O], PARLOG

[CG86], Concurrent Prolog [Sha83], GHC [Ued85] and CS-TProlog [Fut88].

'Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

10

These languages all support concurrent computations. An interesting phenomenon

is that almost all of these languages use the concept of communicating sequential pro-

cesses (explicitly or implicitly) to show concurrency, although they may use different

names for the same concept.

In this section, we shall briefly survey these languages by dividing them into two

groups, i.e., the-procedural and the declarative programming languages.

2.1.1 The Procedural Programming Languages

The distributed procedural programming languages inherit most features from con-

ventional programming languages. These include support for abstraction, particu-

larly abstract objects; support for modularization, including separate compilation of

modules; support for sequential execution flow control; support for strong typing and

data encapsulation; support for block scoping and information hiding; and support

for error and exception handling.

However, as a distributed program resides and executes at communicating, but ge-

ographically distinct, nodes of a network, a distributed programming language must

provide the functions of distribution and communication/ synchronization. These

features constitute the major differences from sequential programming languages.

Distribution means process dynamics which describes the change in number and

variety of processes through the execution of a distributed program. Two methods

are commonly used to create new processes.

Some languages allow programs to create new processes during execution (dy-

namic processes). The syntactic mechanisms supporting dynamic process creation

are explicit allocation and lexical program elaboration. Languages with explicit al-

11

location have a statement to create a new process, such as Ada, NIL and FLITS.

Lexical elaboration creates processes by combining declarations with recursive pro-

gram structures. That is, if procedure p declares process q and then calls itself

recursively, the recursive invocation of p creates another instance of q. Cell, Ada,

and FLITS create new processes by lexical elaboration. Dynamic process creation

is flexible and can be efficient. However, since processes are created and destroyed

during execution, it is more difficult to debug such a program.

Another method requires that all processes are spawned at system creation (static

processes). Languages such as CSP, DP, *MOD, and Soma adopt this method. Static

process creation makes it convenient to analyze the inter-process communication

structure at compile time, and the overall program is easier to understand. However,

it is inconvenient to describe large programs involving thousands of processes, and

difficult to characterize systems whose components vary with time.

Logically, synchronization can be defined as the establishment of some form of

agreement among a set of processes. For example, in discrete event simulation,

process events at a given simulation time may depend on events that occur at ear-

lier simulation time. Even though applications may have different criteria for syn-

chronization, inter-process message passing is a common mechanism for establishing

synchronization in distributed systems.

Communication facilities at the language level can be classified as synchronous

and asynchronous. In a synchronous scheme, every communication request is matched

by a reception; a process cannot send the second message until the first one has been

handled. In an asynchronous scheme, processes send messages without regard to

their reception; a process is free to send a message and continue computing. FLITS

12

and Soma use an asynchronous communication scheme. NIL provides both syn-

chronous and asynchronous communication. The most others adopt synchronous

communication.

Asynchronous communication is primitive and natural in simulating a chang-

ing world. It also offers the potential to explore the maximum parallelism in any

simulation model. However, a special mechanism is required to handle the message

overflow problem, because it is possible that an asynchronous communication system

will create an unlimited number of messages.

Other issues in distributed programming languages are communication connec-

tion and message control. These two issues have a close relationship for accomplishing

communication and establishing synchronization among processes.

Communication connection is a naming problem. Three different mechanisms

- ports, names and entries, are used to channel communication. Communication

through a special typed symbol is communication through a port. A port can be ref-

erenced by communicating processes through global declaration or ownership trans-

fer. *MOD, PUTS, NIL, Soma and E-CLU use ports (possibly using other names

such as "mailbox"). Several languages - Ada, Cell, and DP, focus communication on

an entry in the called process (another name for this mechanism is remote procedure

call). A called process can have several entries and accept requests from them in

an order determined by program control. CSP uses process names to communicate

directly. In order to exchange messages, two processes must identify each other by

their names in input and output statements. In this case, even though the commu-

nication connection looks explicit, the lack of anonymous communication makes it

difficult to build program libraries.

13

Message control concerns the actions that processes take to communicate, includ-

ing the facilities they have for choosing a communication partner, segregating and

decoding incoming messages. For example, CSP treats processes as equals. It intro-

duces asymmetric unidirectional message flow. Input guards provides concurrency

control. Alternative commands combined with input guards can segregate incom-

ing messages indeterministically. Other languages specify roles for the "calling" and

"called" processes. Ada, Cell and PLITS allow the called process some freedom in

choosing which request to serve because all incoming messages are segregated into

groups by entry queues.

Discrete event simulation systems have been built using some of these languages,

such as CSP [KH85] and Ada [ULB84]. This practical work shows that the concepts

of dynamic process and inter-process communication embedded within a procedural

programming language provides the user with a wide range of powerful and com-

pletely general facilities to accomplish discrete event simulations.

However, as distributed procedural programming languages have complex syntax

and informal semantics, they are not adequate for model specification, and it remains

diffcult to verify and validate procedural simulation applications.

2.1.2 The Declarative Programming Languages

Declarative programming languages separate the logic and control aspects of an algo-

rithm, hide control details from programming, and allow very high-level descriptions

of desired relationships among values. 'A logic programming language is a typical

declarative programming language in the sense that its clauses are interpreted on first

order logic. In this section, we focus our attention on varieties of logic programming

14

languages.

Prolog, a manifestation of logic programming, was developed about 10 years ago.

It has been very popular in Europe and is now targeted as the core language of the

Japanese Fifth Generation Computer Project. Several Prolog-like systems have been

used for discrete event simulation [CGU85, BG84, VL87]. The major advantages of

Prolog-like languages are summarized as follows:

1. They provide declarative semantics based on logic in addition to the usual

procedural semantics. It is possible to use them as executable specification

languages.

2. Program and data are identical in form and therefore can be easily manipulated.

3. Arguments of clauses are not fixed as input or output parameters as in procedu-

ral programming languages and clauses may have multiple inputs and outputs.

4. Backtracking is used to find a complete set of solutions for a given problem.

Therefore, nondeterministic computation becomes a natural application area.

5. The basic elements (atoms, variables and compound terms) provide a general

and flexible data structure superior to the arrays and records used in procedural

programming languages.

6. The language designs are well suited to parallel search and are, therefore, excel-

lent candidates for future powerful computers incorporating parallel processing.

7. Programs are usually significantly shorter than programs written in most pro-

cedural programming languages (typically 1/5 to 1/10 the size).

15

However, logic programming techniques are not yet fully mature. The execution

of a logic program usually requires more memory and faster execution capabilities

than an equivalent procedural program. Furthermore, Prolog has been shown to

be marvelous for describing static knowledge but difficult and awkward for specify-

ing large dynamic systems such as simulation models. For example, standard Prolog

does not provide facilities for describing model dynamics, hiding information, decom-

posing simulation components, and manipulating time-dependent activities, though

these facilities are very important in simulation specification and implementation.

In order to speed up the execution of logic programs and apply logic programming

techniques to large and dynamic systems, both concurrent logic programming and

object (process)-oriented logic programming have become attractive research areas.

Logic programming offers two kinds of parallelism: AND-parallelism is the par-

allel solution of more than one goal in a given goal sequence; OR-parallelism is the

parallel creation of many solutions for a given goal. These two kinds of parallelism

are a consequence of nondeterminism in logic programming: we are free to choose

any order in which to satisfy several subgoals in the body of a clause; and, when

evaluating a selected subgoal, we are free to choose any clause which can match the

subgoal.

There have been attempts to design systems using either one of these types

of parallelism (or a combination of both) [CG86, Sha83, Ued85, Con87]. These

proposals inherit most syntactic and semantic features of the standard Prolog, use

implicit processes to exploit concurrency and shared variables as communication

• channels among processes.

Problems in the implementation of OR-parallelism are the combinatorial explo-

16

sion in the number of processes and the representation of variable binding environ-

ments. AND-parallelism, although offering advantages such as being able to exploit

parallelism in deterministic programs, has been difficult to implement due to the

overhead involved in the handling of shared variable bindings and the problem in

preserving the "don't know" nondeterministic semantics (for a definition see Chap-

ter 3) of logic programs. Proposed AND-parallel logic programming languages usu-

ally sacrifice the completeness of logic programs (not all possible solutions may be

found) in order to minimize these overheads.

Researchers are attempting to extend the above concurrent logic programming

frameworks toward an object-oriented programming style [KTMB86, YC87]. Per-

petual processes are viewed as passive objects. An input parameter of a process is

a stream of events to the object and other parameters represent the state of the

object. An object waits for a particular event to hold, takes behaviors corresponding

to the event, such as generating another event and changing its own state, and then

• makes a recursive call to itself to start the next working circle. These proposals re-

tain the incompleteness problem from their original frameworks. Moreover, finding

a satisfactory semantics for perpetual processes is still an open problem.

Other approaches to the use of using logic programming for large, dynamic sys-

tems combines both logic and process/object-oriented programming in a natural and

efficient way, such as CS-TProlog [Fut88], and POOPS [VL87]. By partially exploit-

ing AND-parallelism, these proposals provide explicit object (process) declarations,

temporal constructs and communication facilities. Processes are executed in parallel,

they sequentially evaluate their own goals and coordinate through explicit commu-

nications. Programs written in these languages are quite easy to understand. The

17

specification of simulation models can be natural in these languages.

However, an important problem of in these latter approaches is that the standard

model theoretic semantics of first order logic are not powerful enough to describe the

behavior of these programs. A new model theory is needed to define the formal se-

mantics of a distributed logic program. Furthermore, an efficient global backtracking

algorithm is required in order to preserve "don't know" nondeterminism.

2.2 Synchronization Mechanisms

Traditionally, discrete event simulation is performed by maintaining an event list

which is used to sequentially schedule events for a set of cooperating activities, i.e.,

to synchronize these cooperating activities in the order in which events occur. Each

event is stamped by a value of an imaginary clock which ticks the simulation time.

Thereby all events in a simulation can be ordered with respect to their timestamps.

In fact, simulation time is an abstract data structure to represent the progress of a

simulation. It is totally independent of the real execution time of the simulation.

When we apply distributed computing techniques to a discrete event simulation

• in which a model has been decomposed into processes, we have to solve the problem

of exchanging information among processes and synchronizing them so that events

occur in a correct order. Methods of using a central clock to tick simulation time have

been proposed [KH85, BG84]. However more attractive suggestions use distributed

clocks [Lam78, CM79, CM81, Jef85].

The central clock scheme is a trivial solution. It simulates the sequential schedul-

ing mechanism of traditional discrete event simulation by using a central controller.

18

The central control process gathers together all the synchronization requests and

schedules the execution of processes according to the timestamps of these requests.

The method of distributed clocks allocates the control to all processes. Each pro-

cess is associated with a local clock and a local controller. The major responsibility

of a local controller is to handle communications of its process with others and to

esiab1ish the agreement of its local clock with others.

Chandy [CM79] uses two terms to distinguish these approaches. The former

is called the time driven simulation system because synchronization of processes is

driven by a controller with respect to a central clock, and the later the time exchange

simulation system because synchronization of processes is established upon the values

of distributed clocks collected through inter-process communications.

Since a time driven scheme has a central controller which is a bottle-neck for

concurrent computing, we focus discussion on the time exchange simulation systems

in the rest of this section. First, we review the origin of distributed logical clocks.

Then we discuss two typical synchronization mechanisms proposed for distributed

discrete event simulation:

2.2.1 Logical Clocks

The proverb: "A person with one watch knows what time it is; a person with two

or more watches is never sure." is commonly accepted, e.g., Lamport [Lam78]. He

notes that it is sometimes impossible to say that one of two events occurred first in

a distributed system:

• . Most people would probably say that an event a happened before an

event b if a happened at an earlier time than b. They might justify this

19

definition in terms of physical theories of time. However, if a system is

to meet a specification correctly, then that specification must be given

in terms of events observable within the system. If the specification is in

terms of physical time, then the system must contain real clocks. Even

if it does contain real clocks, there is still the problem that such clocks

are not perfectly accurate and do not keep precise physical time.

Lamport carefully reexamined the events in a distributed system and found that

real-time temporal order, simultaneity, and causality between events bear, a strong

resemblance to the same concepts in special relativity. From the "space-time dia-

gram" in his paper, he showed that the real time temporal relationships happens

before and happens after only form a partial order. So he introduced logical clocks

to extend this partial order to a total order. Being able to totally order the events

can be very useful in implementing a distributed system.

Each process has an associated logical clock which is used to assign a number to

an event, where the number is thought of as a timestamp which defines when the

event occurred. If an event represents a mutual exclusive command, a process can

execute such a command timestamped t when it has learned of all commands issued

by all other processes with timestamps before t.

This method allows'one to implement any desired form of multiprocess synchro-

nization in a distributed system. However, there are two shortcomings. The first

problem is that it involves a large volume of communication traffic among processes

because each process has to broadcast its command to all other processes, and re-

ceive the same number of acknowledgements to make a synchronization. Second, a

20

process must know all the commands issued by other processes, so that the failure

of a single process will be fatal.

Although Lamport's work did not concentrate on distributed discrete-event sim-

ulation, it does help in understanding the basic problems of distributed systems and

the importance of logical clocks. The total ordering property of system events not

only provides a criterion for establishing synchronization, but also provides a foun-

dation for abandoning the concept of mutual exclusion and preventing deadlock.

2.2.2 The Network Paradigm

Most past work on distributed simulation has been based on the network paradigm

[CM79, C11M79, PWM79]. In contrast with Lamport's work, Chandy notices that

the communication relations among a set of cooperating processes in most simula-

tions are not completely connected. Thus, he proposes that each node in a network

represents one cooperating process and each directed line in the network represents

a one way communication channel between two processes (nodes). As in Lamport's

approach, each process has a logical clock which moves forward in time in an asyn-

chronous manner, and tells how far the associated process has progressed in the

simulation.

The key points of the network paradigm are summarized as follows:

1. There is a separate time variable associated with each incoming line of a process

to indicate the timestamp of the earliest unreceived message on the line;

2. Processes communicate only by passing messages that include timestamps;

3. Each process attempts to move its clock as far ahead in time as possible, based

21

upon currently available information;

4. The output message on a. line may state that no messages will arrive on that

lime between the current clock-time and some future time;

5. Since the sequence of clock times on a line are monotonically increasing, merg-

ing of time variables at a process can be achieved using the well known merging

algorithm.

Ideally, if each process (node) in the simulation were assigned to a different pro-

cessor and all could execute concurrently, then it would be possible to achieve an

optimal n-fold speedup over the single processor case.

Unfortunately, this is not usually true in actual simulations. For example, a

process may have one or more input lines on which no message is currently available

(empty queues) when it tries to receive the next message. If this happens the process

must wait until all of its input lines are non-empty, and then select the next message

with the lowest timestamp. In this situation, two severe problems might arise, that

is, deadlock and memory overflow.

Chandy proposed a mechanism that directly deals with both problems. First, he

requires that each message queue have a bounded length. In addition to blocking

whenever one of its input line is empty, a process must also block whenever it sends

a message along an output line where the message. queue at the other end is full.

Second, the distributed simulations always run with a deadlock, detection algorithm,

as soon as a deadlock situation has been detected, a deadlock breaking algorithm is

activated.

The network paradigm proposed a distributed solution for simulation problems

22

which are typically solved in a sequential manner. It showed that the time required to

run a distributed program that implements a queuing network simulation is generally

less than the time required to run equivalent sequential programs. This efficiency is

achieved since there is no global process which could be a bottleneck.

However, the concurrency is limited by blocking when an input line is empty

or the output line is full. The technique for solving the memory overflow problem

exacerbates the deadlock problem. Since a process can block while either send-

ing or receiving, a deadlock situation can occur around any undirected cycle in the

simulation network, rather than just in the directed cycles. Furthermore, the com-

munication connection among processes needs to be stable. Dynamic changes in

communication connections makes the system much more complicated.

2.2.3 The Time Warp Mechanism

It has been shown that performing a set of look-ahead computations often results in

faster execution even when some of these optimistic computations are wasted, i.e.,

not used. This idea is called the Never wait rule which sttes that it is better to give

a processor a task that may or may not be used than it is to let the processor sit

idle.

Before Jefferson's innovative work [JS82, Jef85} nearly all the proposals for dis-

tributed discrete event simulation were based on conservative synchronization mech-

anisms. A synchronization mechanism is conservative if it involves "waiting". For

example, in Lamport's proposal, a process has to wait for all other processes being

in agreement on its synchronization request; in Chandy's method, a process has to

wait for messages from all input channels before continuing its computation. These

23

proposals do not follow the Never wait rule.

On the other hand, the Time Warp mechanism never involves waiting. Jefferson

uses the term virtual time in connection with the Time Warp mechanism to be

synonymous with simulation time and describes the main idea as follows:

A virtual time system is a distributed system that executes in coor-

dination with an imaginary global virtual clock that ticks virtual time.

Virtual time is a temporal coordinate system used to measure compu-

tational progress and define synchronization. . . . Each process executes

continuously, processing messages that have already arrived in increasing

virtual receive time order as long as it has any messages left. All of its

execution is provisional, however, because it is constantly gambling that

no message will ever arrive with a virtual receive time less than the one

stamped on the message it is now processing. As long as it wins this bet

execution proceeds smoothly. The novelty is that whenever the bet is lost

the process pays by rolling back to the virtual time when it should have

received the late message. The situation is quite 'similar to the gamble

that paging mechanisms take in the implementation of virtual memory:

They are constantly betting with every memory refetence that no page

fault will occur. Execution is smooth as long as the bet is won, but a

comparatively expensive drum read is necessary when it is lost.

In the Time Warp paradigm, each process always charges ahead, blocking only

when its input queue is exhausted, and then only until another messages arrives.

Whenever a message with a timestamp "in the past" arrives at a process's input

24

queue, the Time Warp mechanism automatically "rolls back" that process - restores

it to a state from a virtual time earlier than the timestamp of the late message,

cancels any side effects that it may have caused in other processes, and then starts

the process forward again.

Although some computational effort is "wasted" when a projected future is

thrown away, a conservative mechanism would keep the process blocked for the

same amount of cpu time, so the cpu time may be "wasted" anyway. According

to the Never wait rule, the Time Warp mechanism offers the potential of speeding

up almost any large simulation by exploiting the concurrency within it.

A question here is: to what extent can the Time Warp mechanism win via this

type of gambling? If it always loses, even if it does not waste time on synchroniza-

tions, it has to pay a lot of costs for rollback actions.

Like the paging systems, the Time Warp mechanism is also based on a locality

assumption. Locality manifests itself in both time and space. Temporal locality is

locality over time. Spatial locality means that nearby items tend to be used together.

Locality is observed in operating system environments, particularly in the area of

storage management. It is an empirical property rather than a theoretical one. It is

never guaranteed but is often likely.

Actually, locality is quite reasonable in distributed simulation systems when one

considers the way programs are written and communication is organized. In particu-

lar, temporal locality means that if process p sends a message to process q, it is most

likely that process p sends another message to, or receives a reply from process q in

the near future, and that such subsequent messages will have increasing time-stamps.

An example of this is the communication between an event-generating process and

25

an event-consuming process. Spatial locality means that the communication connec-

tions between processes are often stable, i.e., they may change but at a relatively

slow rate in comparison to message interaction rate. The success of the Time Warp

mechanism is based on this locality assumption, though it needs to be verified and

characterized by further experiments.

In this section, we outlined the fundamentals of the Time Warp mechanism.

Further details can be found in Chapter 4. It appears that the Time Warp mechanism

is an attractive paradigm for distributed simulation. It is deadlock-free, can be made

completely transparent to the programmer, and seems to have significant advantages

over conservative mechanisms.

However, there are problems which need further exploration. One problem is

process state-saving. In the case of rollback, the rollback mechanism of a process

must hold a state queue which saves copies of the process's past states. State-saving

is a low level system activity. In general, what should be saved and what should not,

is not known, so the entire data space of a process is saved each time, which is not

only space-consuming, but also time-consuming.

2.3 Base System and General Comparisons

The programming languages and synchronization mechanisms we have discussed

span the important ideas for distributed computations. These ideas attempt to

answer the questions enumerated at the beginning of this chapter. A base language

and synchronization scheme is selected in this section which provides the best answers

to these questions.

26

After the selection of a base system, two closely related systems are then com-

pared with the work in this thesis. We use several general criteria to compare these

approaches while ignoring their implementation details.

2.3.1 A Base Language and Synchronization Scheme

It is generally accepted that logic programming techniques have great potential for

defining executable specifications. Hoare [Hoa82] points out:

A specification is a predicate describing all observations of a complex

system. . . . Specification of complex systems can be constructed from

specifications of their components by connectives in the predicate calculus.

A program is just a predicate expressed using a restricted subset of

connectives, codified as a programming language.

Thus, an attractive answer to the first question is that a logic programming

framework, such as Prolog, can provide an automatic way to turn a specification

into an efficient program.

However, Prolog is not sufficient for describing distributed discrete event simu-

lation. Among varieties of procedural programming languages and concurrent logic

programming proposals, we choose the process/object-oriented logic programming

approach to answer the second question. With a minimal impact on standard Pro-

log, this new framework provides the advantages of procedural programming - model

decomposition, information hiding, object abstraction and system synchronization

- and at the same time retains the benefits of logic programming - declarative and

procedural understanding, nondeterministic computation, general pattern matching

27

and logic variable manipulation.

Comparing different synchronization mechanisms, we focus our attention on the

Time Warp mechanism. Based on the Never wait rule and the Locality assumption,

the Time Warp mechanism provides the possibility to speed up large simulations.

It also provides asynchronous communication primitives for describing dynamic be-

haviors of distributed systems. Clearly, discrete event simulation is one of the most

appropriate applications of the Time Warp paradigm, because the order of events is

completely specified by the user. Furthermore, the Time Warp mechanism is totally

transparent to the user, because the same conceptual methodology for building a

sequential, object-based simulation can be used for building a concurrent, process-

oriented simulation. We believe that the Time Warp mechanism is the best choice

for answering questions'3 and 4 listed at the beginning of this chapter.

But, these advantages are not without cost. As Jefferson [Jef85] expected, the

Time Warp mechanism uses several times as much memory as other nethods in

order to achieve speed-up. The major memory cost is due to state-saving. The Time

Warp mechanism has ho knowledge about what should, be saved and what should

not, and thus the entire data space of a process is saved periodically. If a process

manipulates a large amount of data, say, a matrix with 100 x 100 integers, saving

successive states may be prohibitive.

One way to reduce the cost of state-saving is to save only a few specified variables

that represent those parts of the process state that have changed, instead of saving

the entire data space. In this case, the ball is put in the user's court. A programmer

has to isolate a set of representative variables from the data domain of his appli-

cation, then present them through some linguistic declarations to the Time Warp

28

system. The defect of this scheme is the destruction of transparency. Another way

to minimize state saving and state management overhead is to use special purpose

hardware, such as the rollback chip [Fujimoto88]. Since this scheme needs hardware

support, the discrete event simulation based on the Time Warp paradigm becomes

machine-dependent.

Fortunately, we find that the backtracking facility in standard Prolog offers an-

other possible way to overcome the shortcoming of non-knowledgeable state-saving.

When Prolog backtracks and re-satisfies a goal, it returns to the most recently in-

stantiated variables and attempts to instantiate them with alternative values. If this

is not possible it backs up further to the next most recently instantiated variables,

etc.. Thus, the set of variables changed on a given computation path is completely

known. This knowledge can be used to determine the exact amount of information

that must be saved for any given execution path. In other words, state-saving in

Prolog is based on knowledge and is transparent to applications.

To conclude, the selected model for this thesis is a distributed logic program-

ming framework in conjunction with a run-time kernel based on the Time Warp

mechanism. The language implemented from this model is called Communicating

Sequential Prolog (CSP*). We believe that this distributed logic programming sys-

tem offers potential advantages over other approaches.

2.3.2 Comparisons with Closely Related Approaches

Two current approaches closely related to the work in this thesis are CS-Prolog

proposed by Futo [Fut88] and A-Prolog proposed by Cleary [C1JL88]. CS-Prolog is a

Prolog based simulation language and is implemented on a multi-transputer system.

29

A-Prolog is a pure Prolog system which uses the Time Warp mechanism to execute

Prolog on multiprocessor and distributed systems. The similarities and differences

in several general criteria among these systems are described in Table 2.1.

Criteria/System CS-Prolog A-Prolog CSP

purpose simulation general simulation

logic property impure pure impure

parallelism partial AND full AND partial AND

process explicit implicit explicit

process

creation

built-in

predicate(new)

AND-goal

evaluation

process literal

evaluation

communication

protocol

asynchronous asynchronous

(Time-Warp)

asynchronous

(Time-Warp)

communication

medium

message shared

variable

message

communication

connection

symbolic

process name

channel of

shared var.

symbolic

process name

temporal

property

explicit

logical clock

none explicit

logical clock

global

backtracking

dead-lock

detection

distributed

backtracking

G CT-controlled

backtracking

Table 2.1: General Comparisons of Three Systems

Detailed explanations of Table 2.1 are as follows:

J

30

purpose: OS-Prolog is a distributed version of T-Prolog [FS82]. Its purpose is

to perform special goal-oriented simulation, where the simulation is directed

to find the appropriate activities and synchronization of processes to reach a

predefined final state, the goal state. A-Prolog is a general purpose logic pro-

gramming language. It preserves the standard semantics of Prolog and uses

the Time-Warp mechanism to coordinate parallel execution of Prolog on mul-

tiprocessor and distributed systems. CSP is a distributed logic programming

language for discrete event simulation. Its primary goal is to speed up sim-

ulations through the use of parallelism, while as far as possible, preserving

standard semantics of Prolog.

logic property: CS-Prolog and CSP* are both impure logic programming lan-

guages. The impurity is caused by the use of explicit communication predicates

which cannot be defined in first order logic. On the other hand, A-Prolog im-

plements pure Prolog, that is, clauses of A-Prolog are in the scope of first order

logic.

parallelism: These three languages all use AND-parallelism within logic program-

ming. CS-Prolog and CSP* provide specific linguistic tools to specify potential

parallelism while A-Prolog potentially evaluates all AND-goals in parallel.

process: In explicit process systems, the programmer causes process instances to

be created. CS-Prolog and CSP* are explicit process systems. On the other

hand, A-Prolog implements standard Prolog in a distributed way. Processes in

A-Prologsystem are transparent to the programmer.

31

process creation: Processes in CS-Prolog are dynamically created by a built-in

predicate new. Processes in CSP are dynamically created by lexical elabo-

rations, that is, goals which match process clauses are treated as independent

processes. Processes in A-Prolog are created for goals in conjunction (AND-

goals). -

communication protocol: In an asynchronous protocol, processes send messages

without regard to their reception; a process is free to-send a message and con-

tinue computing. These three systems all adopt asynchronous communication

protocols. The communication mechanism used by CSP* and A-Prolog is the

Time Warp mechanism.

communication medium: CS-Prolog and CSP* define explicit messages as the

information transfer medium while A-Prolog uses shared variables to carry

information.

communication connection: The syntactic form to channel communication in

CS-Prolog and CSP* are symbolic process names. Each message in these sys-

tems indicates a one-to-one communication connection. On the other hand,

communications in A-Prolog are channeled by shared variables. Bindings of a

variable are transferred (in a broadcastlike fashion) to processes which share

this variable.

temporal property: Clauses in CS-Prolog and CSP* are temporal clauses. They

use a temporal parameter (logical clock) and the computation rule of standard

Prolog to simulate a temporal resolution. A difference between them is that

32

the former provides an explicit time advance predicate while the later advances

a logical clock by the side-effect of communication.

global backtracking: Different global backtracking algorithms are adopted by these

systems. CS-Prolog accomplishes global backtracking by a dead-lock detection

algorithm, i.e., the system chooses a process to backtrack only if all processes

are blocked. A-Prolog implements a distributed global backtracking algorithm,

i.e., every process is able to backtrack if a variable of the process is bound to

a conflict value. CSP* uses a GCT-controlled global backtracking algorithm

which is a distributed algorithm but is invoked by a system-defined global

virtual time.

Table 2.1 provides a very general comparison of three approaches which are based

on parallel logic programming and (or) Time Warp mechanism. In the following

chapters, a distributed logic programming model, a global backtracking algorithm,

and the CSP* language are presented. As these topics are discussed in greater detail,

further comparisons are made with the CS-Prolog and A-Prolog approaches.

Chapter 3

A DISTRIBUTED LOGIC PROGRAMMING

MODEL

A distributed logic programming model is presented in this chapter. The model

emphasizes the salient properties of distributed logic programming, that is, organizing

and synchronizing numerous logic processing agents for partitioning and resolving a

common goal. We first present the model from a theoretic point of view and then

discuss problems relevant to an implementation of the model.

3.1 The Model

The model is based on first order logic. To specify its syntax, we must specify the

alphabet of symbols to be used in the model and how these symbols are to be put

together into legitimate expressions. A lot of work has been done on the study of logic

programming [L1o84]. In order to simplify the syntactical description of the proposed

model, we extend the original specification of the alphabet [Llo84] as follows:

1. variables: syntactically, variables are denoted by the letters x, y, and z. In-

formally, a variable is an object whose structure is unknown. As a computation

progresses, the variable may be instantiated, or bound toanother term which,

therefore, becomes the value of the variable. A variable is a ground variable if

it has a value.

33

34

2. constants: constants will normally be denoted by the letters a, b, and c. They

are purely symbolic and have no inherent interpretation.

3. functions: functions are denoted by letters f, g, and h. A function defines a

mapping of elements in a given domain.

4. predicates: in this model, predicates are distinguished into two disjoint sets:

one for process names and one for procedure names. Process predicates are

normally denoted by letters p, q and r and procedure predicates are denoted

by letters d and e. Predicates define relations of elements in a given domain.

5. connectives: connectives in the model are "+..-", "." and

6. punctuation symbols: the model adopts the following punctuation symbols:

CT), "),, , , " " and "

Frgm these symbols, we construct basic classes of expressions as follows:

1. terms: terms are the basic data structures in logic programs. A term is a con-

stant, a variable or an n-ary function applied to n terms, such as f(t1,. . . ,

2. atoms: atoms are the basic components of logic programs. An atom is a predi-

cate or an n-ary predicate applied to n terms as arguments, such as p(t1,.. . , ta).

3. literals: literals are symbolic representations of atoms. Literals with procedure

names are procedure literals, denoted by A, B and C, and literals with process

names are process literals, denoted by F, Q and R.

35

Now, we are ready to define the primitive units of a distributed logic program.

To avoid using too many symbols in our discussion, the syntactic symbols may be

subscripted.

Definition 3.1 A procedure clause is a clause of the form

where n ≥ 0. A is called the head and B1,. . . , B is called the body of the procedure.

A procedure clause with an empty body (n = 0) is called a unit procedure clause.

Procedure clauses have the same syntactic form and semantics as the program

clauses described in [Llo84]. The informal semantics of A - B1,. . . , B, is "for each

assignment of each variable, if B1,. ... , B, are all true, then A is true". Thus, if n > 0,

a procedure clause is conditional. On the other hand, a unit procedure clause A

is unconditional. Its informal semantics is "for each assignment of each variable, A

is true". If a set of procedure clauses have the same predicate in the head, then they

constitute the definition of a procedure.

Definition 3.2 A process clause isa clause of the form

where n ≥ 0. P is called the head and A,, - , An is called the body of the process.

A process clause with an empty body (n = 0) is called a unit process clause.

The largest syntactic unit in a distributed logic program is a logic process. A

logic process is defined by process clauses with the same predicate in the head.

36

The proposed model adopts explicit logic processes as the primitive, concurrent-

processing objects. The same informal semantics of a procedure clause can be applied

to a process clause, except we use "P is successful" to replace "P is true".

Definition 3.3 A distributed logic program P is a finite set of process clauses and

procedure clauses.

Definition 3.4 A goal clause is a clause of the form

where each Qi is a process literal, and Q do not share any non-ground variables.

The declarative reading of a goal clause, i.e., - Qi, . . . , Qj, is to "show that

Q ,. . . , Q, are successful simultaneously". In the following discussion, we call the

literals in a clause body procedure calls, and the literals in a goal clause process

instances.

Since the interesting classes of problems we are dealing with are coordinated

computing systems which are concerned with inter-procss communication and syn-

chronization, we define two communication predicates for the model. For the sake

of simplicity, we assume for the moment that communication predicates are time-

independent.

Definition 3.5 Communication predicates are defined by built-in procedures of the

form

1(x) and I

where x is a term.

37

Clearly, communication predicates cannot be defined in clausal form because their

truth values depend on the cooperation of the logic processes they reside in.

3.1.1 Declarative Semantics

The declarative semantics of a distributed logic program is intended to describe what

is true about the underlying system of logic processes. If there is no cooperation

among logic processes, the proposed model is just another variant of a traditional

logic programming model with multiple resolution streams and inherits all properties

discussed in [L1o84]. However, if a distributed logic program involves inter-process

communication and synchronization, traditional model theoretic semantics of first

order logic is not powerful enough to explain the semantics of such a program.

In this section, a new method is presented for the purpose of semantic analysis.

Generally, the distributed logic programming model can be seen as a set of resolution

theorem provers with each corresponding to a logic process. When establishing the

separate proofs, a logic process prover "guesses" the truth value for each encountered

communication predicate. When the proofs are combined, these guesses have to be

checked for consistency using a synchronization test.

The first step of the semantic analysis starts by constructing all proof-trees for

each logic process. A proof-tree consists of finite nodes and edges which represent

the goals reduced during the construction [SS86]. In the course of building a proof-

tree, a goal is called reduced if it is replaced by the body of a clause whose head is

identical to the goal and the new formed goals are derived.

For a given logic process, the root of a proof-tree is the process literal, the nodes

of the tree are goals reduced from their immediate parent node(s) in one reduction

38

step. There is a directed edge from a node to each node corresponding to a derived

goal of the reduced goal. A proof-tree is the representation of a proof of its root (a

logic process), using clauses as implication. It also reflects the invocation relations

when clauses are treated as procedures.

An important property of building a proof-tree is that all ground communication

predicates are assumed to be directly reducible. In other words, a logic process prover

always assigns "true" to an encountered ground communication predicate by guess.

If a communication predicate involves an unbound variable during the construction

of a proof-tree, then we suppose that the variable is instantiated to each ground term

in the Herbrand universe [Llo84] of the program, thereby we get a different proof-tree

for each different instantiation. A communication predicate is always a leaf node in

a proof-tree.

If a proof-tree contains communication predicates, it is a proof-tree by guess. In

the following discussion, we use proof-tree as a synonym of proof-tree by guess.

For example, consider a logic process definition:

p I(a),t(b).

p =1(c),d.

P=.

d - e.

e -

The proof-trees of process p are shown in Figure 3.1. Examining these proof-trees

we find that the tree (a) contributes a proof of p, because it does not make any guess.

In other words, p is proved by proof-tree (a) without cooperation with other logic

39

p

(a) (b) (c)

Figure 3.1: The Proof-trees of the Example

processes. However, (b) and (c) are not yet proofs of p, because they involve guesses

at the truth values of communication predicates. Now, our job is to define under

what circumstances the communication predicates can be proved to be "true".

Definition 3.6 A guess of a proof-tree is a multi-set (a set which allows multiple

occurrences of an element) which includes all communication predicates in the tree.

Definition 3.7 The guess-set of a logic process is the set of guesses drawn from all

proof-trees of the process.

We use g4 to denote a guess of p where i is used to index different guesses of p,

and GS(p) to denote the guess-set of p. For the above example, we have:

(a) gs={}

(b) gs = IT (a), T (b)}

(c) g.s={(c)}

GS(p) = {gs,gs,gs}

40

For a given distributed logic program, we can construct the guess-sets for all the

underlying logic processes in the same way. Based on these sets, we describe the

semantics of the program.

Definition 3.8 A synchronous couple is a pair of ground communication predicates

with the same argument and opposite operators.

For example, (1(a), J. (a)) is a synchronous couple, but (1(a), J_ (b)) is not. In-

formally, a synchronous couple defines a time-independent, one-to-one matching se-

mantics of a pair of communication predicates. We say that the communication

predicates in a synchronous couple complement each other.

Definition 3.9 (Synchronization-Test) Given a multi-set of the form

{tl,i2, ... ,tk},k≥1

where the ti's are ground communication predicates. Then we say that the set satisfies

the Synchronization-Test if it becomes empty after deleting all synchronous couples

of(t)t),i 0 j,i,j = L. k.

For example, set {J. (a), I (1), .1. (b), I (a)} satisfies the Synchronization-Test, but

set {J. (a), I (c)} does not.

Definition 3.10 Let S1 = {u : i E I} and S2 = {v1 : j E I}, where ui and vj are

sets of literals and I is the integer set. The cross union of S and 52 is defined as

S1WS2={u,Uv :i,jEI}.

41

For example, suppose S = {{U1, U2}, {U3, U4}} and 82 = {{V1, V2}, { V3}}, then

S1 W S2 = {{U1, U2, V1, V2},{U1, U2, V3},{U3, U4, V1, V2},{U3, U4, V3}}.

Definition 3.11 Let 2 be a distributed logic program, G =- Q,... , Q, be a goal.

Then G is a logical consequence of P if there exists at least one element in the cross

union of GS(Q) 's which satisfies the Synchronization-Test.

Definition 3.12 Let 2 be a distributed logic program. The meaning of 2, denoted

M(P), is the set of all goals which are a logical consequence of P,

For example, a distributed logic program P consists of three logic processes

P2 and P3- Their definitions, guesses and guess-sets are described as follows:

Pi 1(ai),(bi).

P1 ..j,(a2),T(b2).

P2

P2 '=1(a2),(b2).

P3 =t(bi),J,(as).

P3 @.

GS(pi) = {gs 1 , gs 1 }
GS(p2) = {gs 2,gs 2}

GS(P3) = {gs 3,gs 3}

gs = {1(ai),(bi)}

gs 1 = {J.(a2),t(b2)}

gs2 = {J.(ai),1(as)}

= {1(a2),(b2)}

gs 3 = {t(bi),(as)}

gs 3 {}

Pi,

In order to find the meaning of?, we have to examine the cross unions of GS(p1)'s

with respect to different goals. Here we use the symbol "A" to represent the con-

junction of process literals in case of confusion.

42

First, we investigate goals with a single process literal. It is easy to see that pi

and P2 are not logical consequences of the program because no elements in GS(p1)

or GS(p2) succeeds the Synchronization-Test. However, the element gs 3 in GS(p3)

satisfies the Synchronization-Test, so P3 is a logical consequence of

Secondly, we check the goals with two process literals. If the goal is Pi A P2, we

find that the element gs 1 U gs2 2 in GS(pi) Ut GS(p2) fulfilling the test, therefore

p1 A P2 is in M(2). However, if the goal is P1 A P3 or P2 A P3, they all fail in the

Synchronization- Test.

Finally, the element gsi U gs 2 U gs 3 in GS(pi) W GS(p2) W GS(p3) succeeds in

passing the test.

Putting pieces together, we have

M(P) = {p, pi Ap2, Pi Ap2 Ap3}.

It means that p3 succeeds individually, pi A P2 succeed cooperatively and P1 A P2 A p3

succeed cooperatively.

3.1.2 Operational Semantics

The operational semantic analysis is a way of describing procedurally the meaning of

a distributed logic program. Lloyd [Llo84] defines the procedural semantics of logic

programs by using an interpreter based on SLD-resolution. The interpreter adopts

a unification algorithm and benefits from the properties of the Most General Unifier

(MGU). In his book, he also proves that for logic programs, the SLD-resolution is

sound, complete, and computation rule independent. We accept all these results

and assume that the same interpreter is applied to each of the logic processes in a

43

coordinated computation. Therefore, for a given logic program 2 and a goal G, the

number of interpreters in solving 2 U { G} is equal to the- number of process literals

in G.

However, a serious problem is that if a selected goal is a cothmunication predi-

cate, what actions does a local interpreter take? It is certain that a local interpreter

is not able to reduce a communication predicate without knowledges about the cur-

rent coordinated computation of 2. A local interpreter must be able to sense the

global world to the extent of determining the success or failure of communication

predicates. Thus, we extend the standard SLD-resolution to a distributed domain,

assume that the system has sensor capabilities [GLB85] for detecting satisfaction of

all communication predicates. In other words, there is a sensor in each interpreter

which must be able to sense the world to the extent of determining the truth values

of communication predicates nondeterministically. If a communication predicate is

true with respect to a given goal of 2, the sensor returns its complement, NULL

otherwise. With this assumption, we extend the abstract interpreter proposed in

[SS86] aá follows:

interpreter(P: program, Q: process literal);

begin

T: resolvent;

0: MGU;

choose a clause Q' - A1,.. . , A, such that Q and Q' are unifiable; if no such
clause exists, return NO.

0 := unify(Q, Q');

T:=A1,. . .

apply 0 to Tand Q;

44

while T 0 NULL do

begin

choose a subgoal A from T;

if A is a communication predicate then

begin 1* extension part /
A' := sensor(A);

if A' 54 NULL then
begin

0 := arg-unify(A, A'); /* unify argument part /
remove A from T;

end;
else exit the while loop; / no solution /

end;
else /* standard SLD-resolution *1
begin

choose a clause A' i- B1,. . . , B, such that A and A' are unifiable;
if no such clause exists, exit the while loop;

0 := unify(A,A');
remove A from T and add B1,. . . , B, to T;

end;

apply 0 to T and Q;
end /* while *1
if T NULL return Q else NO

end / interpreter /

This, abstract interpreter solves a query Q with respect to a program P. The

output of the interpreter is an instance of Q, if a proof of such an instance is found,

or NO, if a failure has occurred during the computation and cooperation with other

interpreters (if any). An instance of Q for which a proof is found is called a local

solution of Q. Note that the interpreter may also fail to terminate.

As explained by Sterling[SS86], there are two choices in the above interpreter:

choosing the goal to reduce (computation rule) and choosing the clause to effect

45

the reduction (search rule). The choice of goal to reduce is arbitrary; it does not

matter which is chosen for the computation to succeed. If there is a successful

computation by choosing a given goal, then there is a successful computation by

choosing any other goal. On the other hand, the choice of the clause to effect the

reduction is nondeterministic. Not every choice will lead to a successful computation.

In addition, to understand the sensor capability we also need our nondeterministic

imagination. Thus, computations of distributed logic programs via a set of abstract

interpreters resolve the issue of nondeterminism by always making the correct choice.

Definition 3.13 Let 2 be a distributed logic program, G a goal. A global solution

of? U {G} is the conjunction of local solutions computed by applying the interpreter

to each process literal in G concurrently.

Definition 3.14 The operational meaning of 2, denoted 0(2), is the set of all

global solutions of?.

The declarative semantics defines a set of behaviors for a distributed logic pro-

gram. The operational semantics also defines a set of behaviors for the program,

but this set depends on the search rule and the sensor capabilities used in, the above

interpreter. If we asume that the sensors and the search mechanism make correct

decisions with respect to each coordinated computation, then the dec1araive and op-

erational semantics are consistent. As a consequence, the distributed SLD-resolution

is sound and complete (for a proof see [L1o84]).

46

3.1.3 Temporal Constructs

As we discussed in the previous chapter, the notion of time is central in most dis-

tributed systems, especially in distributed simulation systems. Introducing a tem-

poral construct into the model results in a specification language for describing a

changing world.

Several temporal logic programming models are discussed in [AM87]. In these

approaches, time is expressed directly by logic, that is, procedure clauses are associ-

ated with certain temporal operators, such as next, eventually, until, precedes, etc..

These temporal logic programming languages usually have complicated syntaxes and

semantics (compared with Prolog). Moreover, the lack of quantitative representation

of time makes it difficult to describe discrete event simulations in these languages.

Another way to treat time is to associate time with the resolution procedure

of the traditional logic programming model. That is, traditional resolution with

explicit time parameters is used to simulate temporal resolution [AM87]. In this

scheme, each procedure literal is associated with two extra time parameters: tin and

tout. Parameter tin is the first parameter of a procedure and indicates the time at

which the procedure is called; parameter tout is the second parameter of a procedure

and indicates the time at which the procedure call returns. For a procedure literal

d(t, t0), we define that t tout- In addition, each clause must involve additional

steps to reason about time. These steps define the temporal property of a clause. For

example, the temporal properties of discrete event simulation are discrete, linear,

and extending infinitely towards the future. Thus, a temporal clause in such an

47

≤ tn__i ≤ tfl

Figure 3.2: The Temporal Property of Procedure Calls

application can be defined as follows:

d(t0,t) - ei(to,ti),e2('ti,t2),. . .,e(t_.j,t),to t1,... ,t7_1 ≤ t,.

If a goal d(t, t0) is reduced by the above clause, the temporal property of procedure

calls is illustrated intuitively by Figure 3.2.

.Proposals such as [Fut88] are based on this scheme. We also adopt this scheme

in our distributed logic programming language, because it makes distributed logic

programs easier to understand both declaratively and procedurally, and the quanti-

tative representation of time parameters facilitates the implementation of simulation

time in discrete event simulation.

Let E be any literal, E(t, t0) be a literal with tin and t0 as the first two

parameters. We define the temporal property of clauses in the proposed model as

follows:

process clause:

P(t0,t) .= A1(t0,t1),A2(t1)t2),. . t1,. .,t_1 t.

procedure clause:

48

A(t0,t) i- B1(t0 t1),B2(t1,t2),. . .,B(t_1,t),t0 t1,.. .,t,_1 ≤ t.

goal clause:

Q1(O,t), .. . Qk(O,tout).

3.2 Implementation Issues

The model described above addresses the formal, logical understanding of distributed

logic programs. It is not yet a practical distributed logic programming language

because the "control" aspects of the model, i.e., the computation rule and the sensor,

have not been defined.

Moreover, as designed for distributed simulations, the language should provide a

mechanism to synchronize the activities of logic processes with respect to a simulation

time. Therefore, we have to extend the model to include programs with a simulation

time and redefine communication predicates to reflect communication partnerships,

synchronization times, etc.

In this section, we are going to consider these implementation issues which convert

the theoretic model into a practical language.

3.2.1 Simulation Time and The Computation Rule

Interestingly, we find that the temporal property of a temporal clause discussed

above mimics the procedural reading of a clause in standard Prolog. In brief, Pro-

log's computation rule is characterized by selecting the leftmost goal instead of an

arbitrary one, and substituting the search rule for the nondeterministic choice of a

49

clause by the depth-first search and backtracking. The procedural reading of a clause

- .I, B2,. . . , B,,, is:

to solve A, first solve B1 and then B2 and . . . and then B,,,.

Such a reading defines not only the logical relations between the head of the clause

and the goals in the body, but also the temporal order in which the goals are pro-

cessed.

Thus, if Prolog's computation rule is used to evaluate a goal and a system manip-

ulated time parameter is used to indicate the progress of the goal evaluation, then it

is possible to remove the explicit time parameters and the time reasoning steps from

a temporal clause. In implementation, we use the concept of virtual time [Jef85] and

inter-process communication to simulate temporal SLD-resolution. In other words,

time parameters are represented by. a system variable (logical clock), and the tem-

poral property of a clause is implicitly compelled by the underlying control facility.

From the user's point of view, simulation time is a system-manipulated variable

which tells a process what its time is and is used for one process to schedule an event

for execution by another in the future. On the other hand, viewed by the system,

simulation time is implemented by virtual time which defines a temporal coordinate

system used to measure computational progress and specify synchronization.

3.2.2 Communication and Synchronization

So far in this chapter we have described the abstract communication and synchro-

nization aspect of coordinated computations. Here we become highly practical -

describing the "real" communication predicates, which involve how to specify corn-

50

munication partners, how to define synchronizations and how to transfer messages.

We have chosen the Time Warp mechanism as the underlying communication

system. We simply use its communication primitives, send and receive, to replace

the abstract predicates I and I . The parameter list of communication predicates

is defined as (Sender, Send-Time, Receiver, Receive-Time, Message), where Sender

and Receiver are process predicates (process names), Send-Time and Receive-Time

are simulation times (timestamps) and Message can be any data structure. In order

to avoid naming conflicts in communication, we assume, for the moment, that each

logic process has only one instance. A new naming method will be discussed in

Chapter 6.

Predicate send(S, Ts, R, Tr, M) means that process S at current simulation time

Ts sends a message M to process R with receive time Tr. Predicate receive(S, Ts,

R, Tr, M) means that process It at Tr receives a message M from process S sent at

Ts. In both cases, Tr ≥ Ts. A predicate send succeeds if the message it sent will

eventually be consumed by the specified receiver. Its evaluation has no influence on

the simulation time of its process. On the other hand, at each process messages are

processed strictly in receive time order. A predicate receive succeeds if the earliest

unreceived message matches the parameters of the predicate. Whenever a process

evaluates a receive successfully, its simulation time is automatically advanced to the

specified receive time. In other words, time advancing in a logic process comes from

the side effect of evaluating a receive predicate.

In Chapter 2, we have defined synchronization as the establishment of some form

of agreement between a set of processes. Most traditional simulation systems only

demand that processes agree on "time", because these processes are deterministic.

51

However, the distributed logic programming system presented here deals with nonde-

terministic computation, i.e., it defines a two-dimensional virtual space. Thus, syn-

chronization of processes demands that these processes agree not only on virtual time

(simulation time), but also on virtual space. Such agreements are established through

inter-process communication and are controlled by the sensors and the underlying

Time Warp mechanism with respect to Ihe timestamps in the communications.

Going a step further, we simplify communication predicates as

send(R, M, DT) and I receive(S, M)

where DT ,is a non-negative delay interval of simulation time, and therefore the

receive time Tr is the sum of DT and the simulation time Ts of the sender at which

the message is sent. These two simplified predicates have the same semantics as the

original ones (see how messages are constructed in the following chapters) and are

used in the rest of this thesis.

3.2.3 The Sensor

Now, the question is how to realize the sensor used in the abstract interpreter. In

general, a distributed logic program divides its problem domain into subdomains and

declares them in the underlying logic processes. A logic process declaration defines a

search tree [SS86] of a logic process instance and such a search tree is called a virtual

space in this thesis. The interpreter of a logic process searches its virtual space for

a local solution. These searches span a range from deterministic virtual spaces to

nondeterministic virtual spaces.

In a deterministic virtual space, at any point the interpreter knows clearly which

52.

alternative is to be applied to a selected goal, that is, the choice of what to consider

next is independent of what choices have already been made.

In a nondeterministic virtual space, there are many potential useful alternatives

at any point, if the interpreter chooses an alternative arbitrarily which always leads

to a solution, then the virtual space provides "don't care" nondeterminism, otherwise

it has "don't know" nondeterminism. "Don't know" nondeterminism is common in

logic programming.

Although we cannot build nondeterministic machines by our current knowledge,

we can simulate them on existing computers. The standard Prolog is a typical ex-

ample which approximates "don't know" nondeterminism by sequential search and

backtracking. However, retaining "don't know" semantics of distributed logic pro-

grams is a much harder task, because it requires the ability to coordinate multiple,

simultaneous, nondeterministic activities on a set of virtual spaces. The implemen-

tation of the sensor requires the function of global backtracking.

One way to implement global backtracking is to use a central scheduler to control

the executions of all processes. T-PROLOG [FS82] adopts this scheme and simulates

the "parallel" executions of processes. The drawback of this method is that the

central scheduler is a bottle-neck in distributed environments.

Another way is to implement a distributed global backtracking algorithm by dead-

lock detection [Fut88]. In this scheme, when a process evaluates a send predicate, it

sends the message out and assumes the predicate succeeds; when a process evaluates

a receive predicate and there are no matched messages, the process is suspended. If

all processes are suspended (some of them terminated), a deadlock detector is called

to recognize processes which are deadlocked and select one of them to backtrack.

53

One problem in this approach is inefficiency, a deadlock situation can be found only

when all processes are suspended. The second problem is that if there are several

"perpetual" processes in a program which never block and terminate, how can one

detect partial deadlocks of nonperpetual processes.

In Chapter 5, we present a new distributed global backtracking algorithm. The

algorithm collects global knowledge through inter-process communications, uses the

Time Warp rollback concept to deal with global backtracking and captures heuristics

in that earlier synchronizations may make subsequent synchronizations more likely

to succeed.

3,3 The Basic' System Structure

To conclude, we have constructed a theoretic distributed logic programming model

and discussed the transition to a practical one. The implementation discussions

about the search rule, the simulation time and the communication predicates flavors

the model with some "procedural" stuffings. This is because the only declarative

aspect is not always sufficient for describing time-sensitive models, such as simulation

models. Nevertheless, the declarative understanding of distributed logic programs

is still partially retained. If the programmer's program specification is declaratively

correct, then it is relatively easy to get a correct, working simulation program.

Now, the practical model is notably similar to a distributed logic programming

language system, although it still glosses over some practical details. Figure 3.3

summarizes the basic structure of the whole system. We have the following process

definition:

54

L

P1

K1

I I

I I

I I

I I

I I

a L

L2

P2

K2

Ln

P.

K

Figure 3.3: The Basic System Structure

Definition 3.15 A process P in the distributed logic programming system is a.

quadruplet (Li, I, K, lvt), where Li is a logic description of P, 1i is the interpreter

of L, Ki is the kernel server of Ii, and lvii is the local virtual time of Pi.

A closer observation of the system reveals that each process .P1 in the system

consists of two concurrently-executing subprocesses: an interpreter process Ii which

manipulates the virtual space defined by L1, that is, evaluates the assigned logic

process L1; and a kernel process Ki which manipulates the virtual time ticked by 1vt1

and handles the inter-process communications.

In the next two chapters, we describe the system's implementation. We first

discuss the kernel part - a modified version of the Time Warp mechanism, and then

present the interpreter part - a logic process interpreter with a global backtracking

capability.

Chapter 4

A MODIFIED TIME WARP KERNEL

The Time Warp mechanism is an optimistic asynchronous inter-process communica-

tion protocol that relies on generalized process look-ahead and rollback to implement

virtual time. Virtual time provides a temporal coordinate framework to define no-

tions of synchronization and timing in distributed (simulation) systems.

This chapter describes a modified version of the Time Warp kernel [Jef85]. We

begin by discussing the principles of the original mechanism, and then we present the

important modifications and extensions. This new version of Time Warp constitutes

the kernel part of the proposed distributed logic programming system.

4.1 Jefferson's Time Warp Kernel

Let 7' = {P : P is a process, i = 1..n} be a distributed program running in the

proposed system. Associated with each P is a local virtual clock variable, lvt, that

ticks virtual time. At any moment local virtual clocks in 7' may have the same or

different values, but this fact is invisible to the processes themselves because they

can only access their own virtual clocks. It is important to realize that lvtj is not

necessarily the same as the simulation time of P, for example, lvti may involve the

simulation time of P as well as someextra information for system control purpose,

bit usually there exists a direct mapping between them.

Message passing is the only way for processes in 2 to exchange information or

55

56

establish synchronization. The data structure of a message is defined as:

message = (F3) t8, Pr, try msg)

which is read as "the sender P3 at virtual time t3 schedules the receipt of rnsg by P

at virtual time tr." Whenever a message is sent, the virtual send time t., is copied

from the sender's local virtual clock, the virtual receive time t, is set by the sender

according to its schedule strategy; whenever a message is received, the receiver's

local virtual clock is advanced to the virtual receive time tr. Here we define that

sending or receiving a message is a primitive event in a process, regardless of whether

it identifies an "event" in simulation applications, and we use the "dot" notation to

reference a component of a data structure. Therefore, a message m defines two

primitive events: a sending event (m.P3, m.t3) and a receiving event (m.Pr, m.t).

Consequently, the primitive events executed by the system can be defined by:

E={(P1,t):iEI}

where each event in E represents a virtual space-time coordinate (later we will see

that every P defines a two-dimension search space).

For the sake of simplicity, we adopt Lamport's proposal [Lam78] to define a total

ordering relation happened before, denoted by - p, on E. The relation requires that

all processes obey the following implementation rules:

1. Each process P increments 1vtj between any two successive events;

2. For each message (Ps,ts)Pr,tr,msg), ts <tr.

Thus, for any two events e1 = (Pi, ti), e2 = (Pi, t2), and 61, 62 E E, we say that

61 - e2 if and only if either t1 < t2, or i < j if t1 = t. It is easy to see that

57

- defines an irreflexive total ordering relation on E, that is, for any pair of events

em , e E E, either em - e or en -

For any .P E ?, the state of P is said to be consistent if all events that P

has processed have happened before the events that P has yet to process. However,

since Pi's are executed in an asynchronous manner, we cannot guarantee that all

processes are in a consistent state during their execution. If an inconsistent state of

P is detected by the system, P is forced to roll back to an "earlier" state, cancel

any side effects that may have been caused by messages sent to other processes, and

then execute forward again. Thus, each process P has to remember enough of its

history so that rollback can be accomplished when necessary.

The execution history of P is defined by the following information streams:

Input Queue(IQ1): IQj contains all recent incoming messages and is ordered by

wrt the receiving event part. A message rn in 1Qi is received if m.ti ≤ lvt,

otherwise rn is unreceived.

Output Queue(OQ): OQj contains copies of the messages P has recently sent

and is ordered by - wrt the sending event part.

State Queue(SQ1): SQj contains savedcopies of Pi's recent states where each state

(s, t) is. defined as a snapshot of the entire data space of P, including its

execution stack, its own variables, and its program counter, at virtual time t

at which an event occurs. SQi is ordered by < wrt t.

58

4.1.1 Local Control

As mentioned before, a process P2 consists of two subprocesses: a kernel process

Ki and an interpreter process I. The kernel process Ki sits in between 12 and the

outside world, and acts as a local controller. The major responsibilities of K2 are:

1. providing a set of primitives, such as send and receive, to Ii;

2. manipulating communications from (to) the outside world and recognizing roll-

back requirements;

3. monitoring and controlling the execution of I, such as state-saving and rolling-

back.

When Ii calls a send primitive, K, saves a copy in 0Q2 and then sends the

message. When a message from the outside world arrives, Ki stores the message

into IQ. When Ii executes a receive primitive, Ifi returns the earliest unreceived

message from IQ2 and assumes that no messages will ever arrive with a virtual receive

time in the "past". As long as the assumption holds, the execution of Ii proceeds

smoothly. However, the local virtual clocks of processes do not necessarily agree

during executions, some of them may charge ahead while others lag behind. So it

is possible for Ki to meet a message from the outside world whose t is less than

that of one already in IQ. For example, let t be the current local virtual time of

P, m 1 . . . m/_n2/.f4 ... ml be the current IQi and ink be the new incoming message

such that

-+ Mk -+ mk+1.

If this happens, K1 takes the following actions:

59

1. it inserts mk between mk_.1 and mk+1;

2. if mk.tr > t then mk represents a receiving event in the future and there is no

influence on the execution of I; otherwise

3. Ki rolls 1i back from t to the virtual time just before mk.tr, say t', which

includes restoring the state (s', t') from SQL, un-receiving all message events

originally consumed during t' to t, canceling all side effects. Then Ki resumes

1i at t' to execute forward again.

When the third action is taken, we say that an inconsistent state of 1i has been

detected by Kj. Because Ii was executed in an inconsistent state, it may have

sent any number of messages to other processes, causing side effects and possibly

inconsistent states in them. In order to remove such side effects, K "unsends" those

messages originally sent by 1i during the interval t' to t. This is completed simply

by sending an anti-message for each of them. We use thk to indicate an anti-message

of mj, and we assume that thk arrives after its complement rnj in physical time (the

assumption only simplifies our discussion, the opposite situation is easy to deal with

in an implementation).

When an anti-message nih with destination P2 arrives, Ki searches the IQi to

find its complement mj, and

1. if mk.tr > t, then mk is annihilated and IQ2 is left with no record that mk ever

existed; otherwise

2. deletes mk from IQi and then takes the third step in the above algorithm.

60

4.1.2 Global Control

Theoretically, the Time Warp system does not need a global control mechanism

because the local control and rollback facilities implement virtual time correctly.

However, as the processes go forward, they save their execution histories periodically

and some of them may attempt to do physical input and output activities. Without

a time measurement to prevent memory overflow, to detect global termination, and

to handle I/O and errors, the Time Warp mechanism cannot be practical. For this

reason, Global Virtual Time (GVT) is introduced.

GVT is a virtual time value with respect to the whole system at a given real time.

It is defined to be the greatest lower bound of the set of all virtual times shown by

all local virtual clocks in an instantaneous snapshot of a virtual time system. We

use GVT(r) to denote the global virtual time at real time r. Let L(r) be a snapshot

of all local virtual clocks at r and M(r) be the set of send times of all unreceived

messages including messages in transmission at r, we define

GVT(r) = mir&(t € L(r) U M(r)).

If there is a saved state for each event, the consequence of the definition is that

GVT never decreases, i.e., no process can ever roll back to virtual time before GVT.

If this were to happen, the corresponding local control process would have met a

message event with the virtual send time less than GVT, thus the scenario leads to

a contradiction with the definition of GVT.

The nondecreasing property makes GVT a floor for the virtual times to which

any process can ever again roll back. It is appropriate to use GVT as the time mea-

surement to release execution histories (such as input, output and state queues), to

61

detect program termination, to handle program errors and to execute I/O activities.

Even though we use the term "global control" here, this does not necessarily

create a bottle-neck. Instead, a distributed GVT estimation algorithm can be used

in an implementation.

4.2 Modifications and Extensions

Jefferson's Time Warp kernel is modified and extended in two basic ways:

1. Only part of the rollback mechanism is implemented in the the kernel. State

saving and part of the rollback mechanism are moved to the interpreter process;

2. Special functions are provided to support nondeterministic computation.

Of course, the first modification simplifies the kernel part. A kernel process K

now looks more like a communication server to its interpreter process I. It provides

a set of service primitives and a request-service-reply protocol to I. It manipulates

communications from (to) the outside world by an asynchronous communication pro-

tocol. However, it does not "monitor" and "control" 1i any more, instead, whenever

a rollback/backtrack requirement has been detected, it notifies 1i by a special reply

and starts new services only if Ii has been rolled back (or backtracked) to an earlier,

consistent state.

To realize the second extension, the new kernel provides special functions to

assist global backtracking. As discussed in Chapter 3, global backtracking is used to

approximate "don't know" nondeterminism of distributed logic programs. The key

notation here is the concept of objection messages. Briefly, an objection message is

62

Ii
primitives Ifi

messages

r

I outside I
 '1

I world

L. J

Figure 4.1: The Interfaces of Kernel Process

used by one process to change the search path of another process. In this section,

we only discuss how a kernel deals with incoming or outgoing objection messages.

The semantics of objection messages and the strategies for making objections will

be investigated in the next chapter.

4.2.1 The Extended Kernel

Since a kernel process Ki resides between its interpreter process Ii and the outside

world, Ki has two interfaces, as shown in Figure 4.1. The interface between Ki and

the outside world is sending and receiving of various types of messages. The interface

between Kj and L is a set of primitives. The major function of Kj can be described

as follows:

loop

receive(message) or accept(primitive);

if message-received, process the message;

if primitive-accepted, process the primitive;

endloop.

Ki may receive four types of messages from the outside world. They are normal,

anti, objection and GCT messages. Normal messages are used by applications. Anti

63

messages are used by the Time Warp kernel to correct mistakes on virtual time.

Objection messages are used by the global backtracking algorithm to correct mistakes

on virtual space. GCT (Global Closed Time) messages are used by the new kernel

to control the effectiveness of objections (GCT plays an important role in global

backtracking, it will be discussed in latter sections). Therefore, there are four cases

for processing an incoming message:

NORMAL: insert the message into IQ; set a pending rollback requirement if the

virtual receive time of the message is in the "past";

ANTI: annihilate the complement of the anti message; set a pending rollback re-

quirement if the virtual receive time of the complement'message is in the "past";

OBJECTION: set a pending backtrack requirement;

GCT: possibly sustains a suspended objection (for further details see the next sec-

tion);

On the other hand, each primitive is carried out by a request-service-reply trans-

action. The typical primitives called by I, and the corresponding actions taken by

Ki are summarized as follows (suppose no pending rollback/backtrack requirement):

SEND (m): send m to its destination in the outside world, keep a copy of m in OQ

and REPLY(ok);

RECEIVE: REPLY(ok, (SYSTEM, +oo', -, +oo,...)) if 1Qi is empty (here we define

that +oo' < +oo in order to maintain the total ordering relation); otherwise,

REPLY(ok, in), where m is the first unreceived message in the current IQ,

and mark in received;

64

OBJECT(tC, obj, type): invoke objection algorithm (for further details see the next

section), REPLY(ok) when the objection message obj is sustained;

BACKTO(t): reset pointers of 1Qi and OQi with respect to t, delete side effects

and send anti messages if necessary, and REPLY(olc).

TERMINATE: invoke termination algorithm (see the next section).

SEND and RECEIVE are communication primitives for normal messages. OB-

JECT is used for global backtracking and will be discussed later. In order to maintain

a consistent lvti between Ki and I, BACKTO is called by 1i upon each rollback or

global backtracking activity, so that Ki can adjust different queues with respect to

the correct virtual time. Such a request-service-reply transaction is based on the

assumption that 1i is in a consistent state. However, if there is a pending roll-

back/backtrack requirement in K, a special acknowledgement

REPLY(bacictype, bacictime, objector)

would be returned to deny any request of I.

It is important to note that allowing global backtracking will destroy the nonde-

creasing property of GVT discussed in Section 4.1.2. This is because the proposed

logic programming system deals with nondeterministic computations while the esti-

mation of GVT is based on deterministic computations. For example, a process in

our system may backtrack to any earlier choice point such that the entire execution

history of the process must be preserved. At the moment, we do not consider GVT

and assume that there is infinite memory available and there are no I/O activities.

A solution for estimating GVT will be discussed in Chapter 6.

65

4.2.2 Global Backtracking and Termination Functions

Global backtracking functions provided by the kernel consists of two algorithms: one

for incoming objection messages and another for outgoing objection messages.

The algorithm- for treating an incoming objection message is quite simple: it

just sets up a pending backtrack requirement. In this case, process Ki will deny

any service request from Ii by replying with the pending backtrack information.

Subsequently 1i will backtrack to find another alternative at a specified virtual time.

On the other hand, the algorithm for treating an outgoing objection message

is more complex. To illustrate, assume that Ii issues a call OBJECT(t, obj, flag),

where t is the objection competition time, obj is the objection message, and flag

indicates whether the process to be objected has a closed (open) virtual space (which

will be discussed in the next chapter) with respect to the objection. The algorithm

is as follows:

1. If flag = closed, Ki sends obj to the destination immediately. We say that the

objection is sustained.

2. Otherwise, the objection and thereby, I, is suspended until

(a) a rollback/backtrack requirement is detected. Then Ki denies the objec-

tion request. We say that the objection is overruled. Or

(b) a GCT message is received and GCT = t. Then K2 sustains the objec-

tion.

Global Closed Time (GCT) indicates that the current global virtual space is closed

at GCT. It is quite similar to GVT and is defined as:

66

GCT(-r) = min(competition times of all suspended processes at r,

timestamps of all messages in transmission at r,

lv't's of unsuspended processes at T)

GCT can be estimated in the way that GVT is estimated, but with a slight mod-

ification. A detailed GVT estimation algorithm can be found in [XUC+86]. From

which we can build a GOT estimation algorithm by inhibiting GOT in the course of

global backtracking and recalculating a new GOT whenever global backtracking is

done.

Like GVT, GOT guarantees (from, its definition) that no process in the current

global virtual space can ever roll back to a virtual time before GOT. Unlike GVT,

GOT possibly decreases, because it is possible that a process will backtrack to virtual

time before GOT, that is, the new GOT after a global backtracking is less than the

old GOT before the global backtracking. Therefore, GOT can only be used as a time

measurement to control global backtracking.

When 1i encounters an empty goal, it issues a TERMINATE request to Kj.

There are two possible situations: 1Qj is empty or some unreceived messages are

still pending in IQ. Ki executes the following algorithm to control termination:

1. REPLY(ok) if and only if GCT becomes +oo and there is no pending message

in IQ;

2. If some unreceived message are still pending in 1Qj or a new message arrives

during waiting for GCT, then suppose (Pj, t, P, tr, -) be the first unreceived

message in IQ, REPLY (backtrack, +00, (Ps, t8, P, +00, closed)). Later in the

67

next chapter we will see that such a reply will force P backtracking to try

alternatives before +oo.

In summary, we have described the major modifications and extensions of the

Time Warp mechanism. The new version provides simple interfaces and efficient

algorithms which support both rollback and global backtracking activities. Such a

version can be implemented either as an operating system kernel or by individual

kernel processes. More detailed discussion of the global backtracking functions is one

of the subjects of the next chapter.

Chapter 5

A' LOGIC PROCESS INTERPRETER

The logic process interpreter defined in this chapter is an extended standard Prolog

interpreter. The major extensions are parts of the rollback facility and a global

backtracking facility.

As Jefferson pointed out [Jef85], the Time Warp mechanism gambles on virtual

time. Every time 'a process handles a message m with timestamp t it makes a bet

that no message will arrive that has a timestamp earlier than t. If it wins that bet

no time is lost. If it loses the bet, the time lost is the delay involved in restoring

the process to an earlier state, removing any side effects and running it forward to

the point when message rn can be processed. The rollback facility is used to correct

mistakes on such gambles and anti messages are used to remove side effects (if any)

from these mistakes.

A useful comparison can be made between this, gamble on virtual time with the

search rule of a logic process interpreter that gambles on virtual space. Every time

a process reduces a goal it makes a bet that using the depth-first, unifiable, clause

to reduce the goal will lead to a successful solution. If it wins that bet no time is

lost. If it loses the bet, the time lost is the dlay involved in backing to that goal

and finding an alternative clause (if any) in depth-first. The (global) bactracking

facility is used to handle failures on such gambles, and objection messages are used

to recompose the search pathes of processes (if necessary).

The similarity between the global backtracking facility and the rollback facility is

68

69

that they both depend on a saved execution history to undo erroneous computation.

The primary difference is that the backtracking facility tries alternatives at a previous

choice point of the process, while the rollback facility directly restores a previous

state for a specified virtual time and then continues execution of the process forward

along the original evaluation path. Since the standard Prolog interpreter has a built-

in state-saving and backtracking mechanism, we can easily extend this mechanism

to accomplish rollback and global backtracking.

In the following sections, we start by describing important concepts and data

structures of the logic process interpreter. Then based on the standard Prolog inter-

preter, we introduce the extensions for achieving rollback and global backtracking.

Finally, we prove that the proposed logic programming system is sound and partially

complete.

5.1 New Concepts and Data Structures

An important new concept which is used to control global backtracking is the Global

Backtracking Coordinator. A Global Backtracking Coordinator, denoted by , is an

imaginary predicate used by the system and invisible to the user. A is put at the

beginning of each process and immediately following each communication predicate.

During a process evaluation, 's form a layered parent-child structure. A typical

parent-child layer is shown in Figure 5.1, where ihe on the top level is the parent

of 's on the lower level. The edge between a parent-child pair of 's represents a

partial computation which consists of zero or more normal Prolog procedure calls

and exactly one communication predicate. If an edge involves a receive predicate,

70

Figure 5.1: A Parent-Child Layer

it is a receive branch of the parent ; if an edge involves a send predicate, it is a

send branch of the parent , otherwise, it is a termination branch of the parent .

By using the leftmost-goal-first computation rule and the depth-first search rule, the

virtual space of a logic process can be unambiguously represented by a -tree. As

a matter of fact, a 6-tree is a simplified search-tree [SS86], it denotes all possible

communication/ synchronization points of the process with other processes. Suppose

each node in a 6-tree is uniquely labeled, we use r to indicate a search position of
process P where the superscript is a unique label of the node and the subscript is

the index of the process. Each branch in a 6-tree from the root consists of a sequence

of 's and is called a search path of the process.

The behavior of is defined as the possible executions of .P at or under r before
reaching any child e. The forward transition of implies that the execution of P

from em successfully reaches a child C. Local backtracking is a backtrack in between

C's which has no influence on other processes. Global backtracking is a backtrack

passing a C which may cause effects on other processes.

The notion of global knowledge is the basis for global backtracking. Before, dis-

cussing how a process establishes such knowledge, we introduce another new concept:

71

receive(Pj, a) receive(Pk, b)

Figure 5.2: A Posible Partial 6-tree of P

depends on relation.

The depends on relation is a dynamic relation which describes the dependency of

two processes with respect to their virtual spaces during execution. For a couple of

search position:

V•i ,j),

we say that depends on if the forward transition of relies upon the behavior

of q. is a sponsor of depends on q. q is a closed sponsor of if P

has exhausted all the alternatives under ; otherwise, 7 is an open sponsor of .

For example, a possible partial e-tree of P is shown in Figure 5.2. It is clear that

depends on some in P1 or Pk, because P can go forward only if the message

delivered by its kernel was sent by either P1 or Pk and the message unifies one of

the receive predicates under If such a message is received by P, it transits to a

new search position em +l or m+2; otherwise, P backtracks to m, rejects the wrong

message and demands an alternative message by making an objection to one of its

sponsors.

72

tb

a) an open sponsor

m+2
.1

b) a closed sponsor

Figure 5.3: The Relationship between tb , status and q

In implementation, the following data structure is used to represent a sponsor 7:

q = (Ps, t&, status),

where P1 is the sponsor process, tb is the suggested global backtracking time of

F1, and status indicates if 7 is open or closed. As mentioned before, indicates a

unique search position in P1 's virtual space. This search position is uniquely specified

by tb and status if the execution of P1 has passed 6jn, i.e., 6jn is in .Pj's current search

path. This is because each search position of .Pj in a given search path is associated

with a unique virtual time (recall the total ordering relation defined in Chapter 4).

Later we will see that the proposed algorithm guarantees the above "if" condition.

If q is open, then tb is the virtual time of a child 6 of q. If it is closed, tb is the

virtual time of q. Figure 5.3 shows the relationship between tb, status and . The

reason for doing so is to make the global backtracking algorithm simple and efficient.

The basic means through which it becomes possible for a process to gather global

knowledge is communication. "Communication in a distributed system can be viewed

(and often should be viewed) as the act of transforming the system's state of knowl-

edge" [11M84]. Since a process knows only those things that it has explicitly met

73

during its execution and communication, we use a state queue, denoted by SQ, to

memorize important historical events in the current search path of P.

SQi is a sequence of timestamped states and is maintained by the logic process

interpreter I. A state is saved at each in the current search path and is defined as:

e.state=(t, t, status, Se,, Sr)

where t is the virtual time at which is executed, t is the objection competition time

at , status indicates if is open or closed, S is the working sponsor set of and Sr

is the reserved sponsor set of e.
The objection competition time is used to control the effectiveness of an open

objection. If the current 6 has no receive branch, then i = t; otherwise, t is set to

be the virtual receiving time of the message delivered by the kernel. More detailed

discussion about t and its relation with GCT is delayed to Section 5.2.3.

The status is used to control the evaluation of 's branches. If it is open, then

any branch can be searched with respect to the search rule. If it is closed, then send

branches are forbidden to be evaluated. The reason of doing so will be described

later.

The working sponsor set SW in .state maintains sponsors established in evalu-

ating branches of 6. Entries in S may be open or closed. The reserved sponsor set

S maintains sponsors transferred from 's children or from S. Entries in S are all

closed. Detailed discussion about the usage of these sets is in the next section. Here

we introduce two operations for a sponsor set.

Operation put(S, sp) inserts a sponsor .sp into S. The algorithm of put is as

follows (recall that the data structure of sponsor is defined as (p, tb, status)):

74

1. find an sp' from S such that .sp.p == .sp'.p;

2. if sp' == NULL, insert sp into S , return;

3. if .sp'.status == open, sp overwrites sp', return;

4. if sp'.siatus == closed, return;

This algorithm maintains exactly one entry for each sponsor process. An important

property of the algorithm is that if a sponsor will eventually becomes closed, then S

will eventually contain only closed sponsors.

Function select(S) is used to choose a sponsor from S for making an objection.

The function takes the following rules:

1. divide S into two disjunctive subsets S and S0, where entries in S are closed

sponsors and entries in S are open sponsors (if any); if there exist entries

spi E 5o and .SP2 E S such that spl.p == P2-P and .sP1.tb == .sp2.t&, then

remove sp, from S0 and S, (a search position cannot be both open and closed);

2. if S0 54 {}, select an entry sp from S, such that for all .sp' E S, .sp -

3. else select an entry sp from S, such that for all .sp' E S, sp' -4

4. remove sp from S and return sp.

The algorithm tells us an important property: a process objects a closed sponsor at

a 6 only if all its sponsors are closed.

Now, we briefly discuss how sponsors are established from a simple example

illustrated in Figure 5.4; and a more detailed algorithm for general cases will be

75

lvt = 7

receive(Pj, a) receive(Pk, b)
n+2

Figure 5.4: An Example for Constructing a State

described in the next section. In this example, when process Pi at virtual time 7

executes it creates an initial state:

r.state = (7, 7, open,

Then P1 choses the left branch (by the search rule) to execute. When P1 encoun-

ters the call receive(Pj, a), it issues a RECEIVE prithitive. Now, there are several

possible situations:

1. Suppose the message replied by the kernel is (Ph, 5, F1, 10, c), which means

that the sender Ph at virtual time 5 schedules the receipt of c by P1 at virtual

time 10. P tries to match this message with receive(Pj, a) branch, but fails.

Thus P1 constructs a sponsor entry (Pj, 10, open) and inserts the entry into the

current S. This entry says "a message from Pj is expected with virtual receive

time in the interval from 7 to 10"; Then P1 backtracks locally and tries to

match the message with the next branch receive(Pk, b), but fails again. A new

spon.sor entry (Ph, 10, open) is inserted into the current SW. Then P1 backtracks

to 6T (no more alternatives), it inserts two sponsor entries, (Ph, 5, open) and

76

(P, 7, closed), into the current S. In addition, P changes the value of t in

the current state to 10 and the status to closed. At this time, the state of

becomes:

ate = (7, 10, closed, Sn,, 5,.)

where

= {(Ph,5,open),(Pj,10,open), (Pk ,lO, open) ,(P)7,closed)},

S,.={}.

Function select(SWUS,.) will return (Ph, 5, open) to for making an objection.

2. Suppose the IQi is empty at the moment the RECEIVE primitive is called, the

message replied by the kernel is (SYSTEM, +00', -, +c'o,..). Since the message

matches neither branch of when process Pi backtracks to we have

er.siate = (7,+oo, closed, S,S,.),

where

{(SYSTEM, +00', open), (Pj, +oo, open), (Pk, +00, open), (P, 7, closed)},

S,.{}.

Thus select(S U Sr) operation will return (SYSTEM, +oo', open) to 4Th for

making an objection.

3. Suppose the message replied by the kernel is (Ps, 5, P, 10, a), which means that

the sender Pj at virtual time 5 schedules the receipt of a by P at virtual time 10.

P tries to match this message with the left branch receive(Pj, a) and succeeds.

77

Thus P inserts an entry (Pj, 5, open) into the current S,, and transits to r +l

at virtual time 10. However, if some time later fails, P backtracks to try

the next branch and finally backtracks to . In this situation, we have

st ate = (7, 10, closed, S,, Sr),

where

S. = {(Pj, 5, open), (Pk, 10, open), (Pi, 7, closed)},

= Sr U

Function select(SwUSr) will return (Ps, 5, open) to for making an objection.

From the above analysis, we can see that whenever a 6 makes an objection, all

alternatives under the i must have been exhausted and there must be at least a

sponsor entry in either S or Sr for each branch under the 6. A more detailed

algorithm and example are in the next section.

Finally, we declare a set of global variables and constants for each logic process

interpreter:

rs: a reference to the current state;

rp: a reference to the parent state;

backtime: a virtual time variable to indicate rollback or global backtracking time;

backtype: a variable of enumerated type

(Rollback, Global-Backtrack, Local-Backtrack)

to indicate current backward execution type, its initial value is Local-Backtrack;

78

candidate: a message variable with initial value NULL to denote the current in-

coming message;

objection: a message variable with initial value NULL to save the current objection

message;

lvt: local virtual time of the host process;

me: the name of the host process.

5.2 The Algorithm

Before delving into the details of a logic process interpreter I, let us glance at the

basic idea. Since the logic process Li is modeled by its c-tree, 1i starts from the root

and evaluates Li along the left-most branch. The forward execution is almost the

same as standard Prolog. During the evaluation, Li may receive messages from other

processes. Thus 1i establishes sponsor relations with these communication partners.

However, when an evaluation fails, 1i follows the standard Prolog procedure to

locally backtrack or invokes global backtracking algorithm when the backtracked goal

is a

The intuition behind the global backtracking algorithm is that whenever 1i back-

tracks to a e it assumes that the synchronizations made before the 6 are correct
and gambles on that earlier synchronizations may make subsequent synchroniza-

tions more likely to succeed. Therefore, the interpreter does not simply fail the 6.

Instead, it chooses a process (possibly itself) to object, because according to Ii's

knowledge, the process to be objected is most probably in a wrong search position.

79

The algorithms provided in this section are an extension of a standard Prolog

interpreter to control rollback and global backtrack activities. There are two main

procedures to support forward execution and baèkward execution.

5.2.1 Forward Execution

The Forward Execution Algorithm (FEA) simply mimics a forward evaluation step

of the original interpreter, except that it gives special treatment to a selected goal if

the goal is a 6 or a communication predicate.

Normally, if the goal is a e, it saves the old state, creates a new state and then
succeeds; if the goal is a send, it constructs a message, calls SEND request to transfer

the message and then succeeds; if the goal is a receive, it establishes a sponsor

relation and tries to match the predicate with the first unreceived message coming

from the current IQ, if they match, the predicate succeeds with a mgu (see the

definition in Chapter 3), otherwise, the goal fails. Sometimes a request may be

denied by a special reply if there is a pending rollback/backtrack requirement. In

this case, the algorithm fails the selected goal, and in consequence, the Backward

Execution Algorithm (BEA) is invoked.

In the algorithm, two frequently used functions are Fail and ucceed. Function

Fail means backtracking to the most recently evaluated goal and executing BEA.

Function Succeed(0) means applying 0 (a mgu) to the goal sequence, selecting the

next goal (by the computation rule) and executing FEA. For the sake of simplicity,

we assume that process names in communication predicates are ground terms, so that

correct sponsor relations can be established upon the evaluation of these predicates.

In practice, different bindings of a variable process name can be easily traced.

80

Boolean function Ok-Reply is called to check the acknowledgement of a primitive

call. It returns true if the call has been served, and the variable candidate is assigned

to the first unreceived message when the call is a RECEIVE; otherwise, it returns

false and assigns global variables, such as backtype, backtime, and objection, to the

corresponding values.

In addition, boolean function Root(rs) checks if the current state is the root

state; boolean function Unifiable(T1, T2) returns true if Ti and T2 are unifiable;

function Save(rp) saves state rp to the current SQ; and function Parent(rp) returns

a reference to rp's parent state.

Forward Execution Algorithm

Input parameters:

g: selected goal;

begin

(1) Ifg==, then

if not Root(rs) then Save(rp);

rp = rs;

rs = new(lvt, lvt, {}, open);
Succeed;

(2) If g == send(D,M,T), then

if r.s.status == open, then

call SEND((me, lvt, D, lvt + T, M));

if Ok-Reply then Succeed else Fail;

else Fail;

(3) If g == receive(S, M), then

if candidate == NULL, then

81

issue a RECEIVE request;

if not 0k-Reply then Fail;

if Uniflable(S, candidate.P3), then

put(rs .S, (S, candidate.t3, open));

else

put(rs. S, (S, candidate.tr, open));

if Unifiable((candidate.P3, msg), (S, M)), then

0 = unify ((candidate.P3, msg), (S, M));

lvt = candidate.tr;

candidate= NULL;

Succeed(0);

else Fail;

(4) If g == NULL, then

lvt= -l-oo;

issue a TERMINATE request;

if Ok-Reply then exit else Fail;

(5) Ifg== others, then

standard Prolog procedure;

end

5.2.2 Backward Execution

The Backward Execution Algorithm (BEA) deals with three possible cases whenever

it is invoked. They are rollback, local backtracking and global backtracking. If

the backtracked goal is not a , according to the current backtype, BEA either

continues rolling back or invokes the standard Prolog backtracking procedure. If the

backtracked goal is a , BEA invokes an algorithm with respect to the current case.

When a rollback requirement is detected, the underlying kernel process tells the

logic process interpreter the backtirne and backtype. The Rollback-To-c Algorithm

82

(RTA) keeps rolling back until it finds a previous 6 whose timestamp is less than

or equal to the backtime. At this point, the algorithm resets the process's global

variables and returns control to FEA again.

Backward Execution Algorithm

Input parameters:

g: backtracked goal;

begin

(1) Ifg==, then

if backtype == Local-Backtrack, then Local-To-c;

if backtype == Rollback, then Rollback- To-i;

if backtype == Global-B aktrack, then Global-To-a;

(2) else if backtrack ==Local-Backtrack

standard Prolog procedure.

(3) else

Fail; / continue rolling back /

end

Rollback-To- Algorithm

begin

if backtime ≥ rs.t, then

backtype = Local-Backtrack;

lvt = r.s.t;

candidate = NULL;

call BACKTO(lvt);

if Ok-Reply then Succeed else Fail;

83

else

rs = rp;

rp = Parent(rp);

Fail;

end

Possible situations leading to global backtracking are that (1) the local back-

tracked goal is a , or (2) the logic process interpreter is informed to backtrack by

an objection.

If the local backtracked goal is a , it means that all branches under the have

been tried and all failed. In other words, the search space of the process is closed

at the e. Thus, the Local-To- Algorithm (ETA) completes the construction of the

current sponsor set and invokes the Objection Algorithm.

Local-To-6 Algorithm

begin

if not Root(rs), put(rs.S, (me, rs.t, closed));

if candidate NULL, then

put(rs .S, (candidaie.P3,. candidate.t3, open));

rs.tc = candidate.t;

candidate = NULL;

rs.status = closed;

Objection Algorithm;

end

84

Two steps are taken by the Global-To-c Algorithm (GTA) to deal with an ob-

jection. First, it rolls the process back to a search position specified by backtime.

Second, if the objection is an open objection, the algorithm simply fails the current

path, and the next alternative branch of 's parent (if any) will be selected (by the

search rule); otherwise, the process chooses a new candidate to make a subsequent

objection.

Global-To-a Algorithm

begin

(a) if backtime ≥ rs.t and objection .type == open, then

backtype = Local-Backtrack;

put(rp. S, (obj ection.P8, objection.i3, closed));

rs = rp;

rp = Parent(rp);

lvt = rs.t;

candidate = NULL;

call BACKTO(lvt);

Fail;

(b) if backtime ≥ rs.t and objection.type == closed, then

backtype = Local-Backtrack;

put(rs.S, (objection.P3, obj ection.t3, closed));

Objection Algorithm;

else

rs = rp;

rp = Parerit(rp);

Fail;

end

85

Objection Algorithm (OA) chooses a sponsor from the sponsor sets of the current

state for making an objection. If the backtracking time of the selected sponsor

is —oo, then no solution can be found (for a proof see Section 5.3), the program

terminates. If the selected sponsor represents the current e itself (self-objection),
then the Objection Algorithm transfers 's S and S to e's parent, and backtracks

to try the next alternative branch (if any) of 's parent. Otherwise, the algorithm

constructs an objection message and makes the objection. If an open objection is

sustained, the algorithm only evaluates receive branches under the e, because the
open sponsor is established from one of -e's receive branches. If a closed objection

is sustained, the algorithm will reset the working sponsor set and reopen all search

branches under the 6. Whenever an objection is sustained, the control is transferred

to FEA, otherwise, BEA is invoked again.

Objection Algorithm

begin

(a) .sp = seleci(rs.SW U rs.S);

(b) if Sp.tb == —co, then

terminate with no solution;

(c) if sp.p == me, then / self-objection *1
rp.Sr = rs.S U rs.S;

i's = rp;

rp = Parent(rp);

lvt = rs.t;

call BACKTO(lvt);

Fail;

(d) 1* construct objection message /

86

if Root(rs) and sp.status == closed, then

obj = (me) —oo, sp.p, .Sp.tb, closed);

else

obj = (me, rs.i, sp.p, sp.tb, sp.status);

(e) call OBJECT(rs.t, obj, sp.status);

(f) if Ok-Reply, then

if sp.status = closed then

rs.status = open;

rs.Sr = rs.Sr U rs.S;

rs.S = {};
Succeed;

else goto BEA;

end

As it was presented in the algorithms, objection messages play a very impor-

tant role in global backtracking. However, a question we haven't carefully answered

concerns which objection message comes into effect if several processes have made

objections. To answer this question, we examine two different objections: the ob-

jection to an open sponsor (open objection) and the objection to a closed sponsor

(closed objection), respectively.

Let us consider an example. In virtual time order, process P should receive a

message from Pi first and then a message from F2; If P2's message arrives earlier

than the message from P1 in real time, P objects P2 because it is now waiting for a

message from P1 and ignores the fact that P2's message may be correct in the future.

Of course, such an objection is unreasonable. The strategy adopted by the proposed

algorithm is to suspend any open objection until its competition time equals GCT

87

(see the algorithm in Chapter 4), because according to the definition of GCT, it i

guaranteed that no other processes will ever send messages with timestamps earlier

than the competition time of the objection. Thus, the objection to P2 is suspended

and will be overruled when the message from P1 arrives.

Precisely speaking, a suspended objection is overruled by an incoming message,

such as an anti-message, a normal message or an objection message, which happens

before the objection. Whenever an objection is overruled, it subsequently appears

that the objection never existed.

On the other hand, a closed objection is caused by a failure on virtual space,

because P can make such an objection only if all its sponsors are closed (see the

property of select operation). That is, P has failed in trying to cooperate with

each possible alternative of its sponsors under their closed a's. Therefore, a closed

objection is always sustained immediately.

When process P makes an objection at a e, its search space under the is closed.

Does P reopen its search space under the e as soon as the objection is sustained?

The answer once again depends on the type of the objection. P will reopen its search

space under the e only if the objection it made is a closed objection. In general, P

may have both send branches and receive branches under a e. When P backtracks

to such a e and makes an open objection, it means that all send branches have failed
but receive branches are still trying by the open objection (recall that open sponsors

are created only at receive branches). For this moment, P does not re-try send

branches (see FEA), until all open sponsors of 's become closed. Then Pi chooses a

closed sponsor to object and reopens the search space under e.

88

s(p2,'a,lO) s(p2,b,15) r(pl,a) r(pl,b)

r(p2,e) r(p2,d) s(pl,'c,20)s(pl,d,2O) s(1,c,20)s(p1,d,2O)
3 64 63 64 66

(a) p1's -tree (b) p2's c-tree
Figure 5.5: The c-trees of the Example

5.2.3 An Example

Now, we use a simple example to illustrate how the algorithms work. The example

consists of two logic processes:

pl'= send(p2, a, 10), receive(p2, e).

pl.= send(p2, b, 15), receive(p2, d).

p2= receive(pl, a), g.

p24= receive(pl, b), g.

g— send(pl, c, 20):

g— send(pl, d, 20).

Figure 5.5 shows the c-trees of the program. For a given query "- p1, p2", two

processes p1 and p2 will be executed in parallel. The following is a possible execution

trace of p1 and p2. In the trace, when we say a process is "waiting for a message",

we means that the process's IQ is empty and the process has made an open objection

89

against the SYSTEM. In addition, virtual time in the trace is defined as t1 : t2, where

t1 represents simulation time while t2 is an extension to maintain the total ordering

relation defined in Section 4.1. The increment of t2 is 1 in a 's transition if the

simulation time does not advance in that transition.

(1) p1: goes through at 0:0, send(p2, a, 10) succeeds, goes through at 0:1 and

waits for a message;

(2) p2: goes through at 0:0, receive(pl, a) succeeds, goes through at 10:0,

send(pl, c, 20) succeeds, goes through at 10:1 and terminates at +oo;

(3) p1: receive(p2, e) fails (because the first unreceived message is (p2, c)), back-

tracks to (Local-To-c), selects a sponsor from:

= (p2, 10 : 1, open), (p1,0: 1, closed)}

objects (p2, 10:1, open) with tc 30 : 0, sustains the objection

(GCT= rnin(30 : 0, +oo)), waits for a message at ;

(4) p2: backtracks over (by the open objection made in step (3)), send(pl, d,

20) succeeds, goes through at 10:1 and terminates at +oo;

(5) p1: receive(p2, e) fails (because the first unreceived message is (p2, d)), takes

the similar actions in step (3);

(6) p2: backtracks over (by the open objection made in step (5)), backtracks to

, selects a sponsor from:

= {(p2,10 : 0,closed),(pl,0 : 1, closed)},

90

backtracks over (self-objection), receive(pl, b) fails (because the first unre-

ceived message is (p1, a)), backtracks to 4, selects a sponsor from:

= {(pl,O: 1, open), (p2, 0 : 0, closed)}

.Sr = {(pl,O : 1, closed)}

objects (p1, 0:1, closed) (recall the select operation, a sponsor cannot be both

open and closed), sustains the objection immediately and waiis for a message

at 4;

(7) p1: backtracks to (by the closed objection made at step (6)), selects a sponsor

from:

{(pl,O : 1, closed), (p2, 0 : 0, closed)}

backtracks over (self-objection), send(p2, b, 15) succeeds, goes through

at 0:1 and waits for a message;

(8) p2: receive(pl, a) fails (because the first unreceived message is (p1, b)), local

backtracks, receive(pl,b) succeeds, goes through at 10:0, send(pl, c, 20)

succeeds, goes through at 10:1 and terminates at +c'o;

(9) p1: receive(p2, d) fails (because the first unreceived message is (p2, c)), back-

tracks to , selects a sponsor from:

= {(pl, 0 : 1, closed), (p2,10 : 1, open)}

objects (p2, 10:1, open) with tc = 35 : 0, sustains the objection

(GCT= min(35 : 0, +oo)), and waits for a message at ;

91

(10) p2: backtracks over (by the open objection made at step (9)), send(pl, d,

20) succeeds, goes through at 10:1 and terminates at +00;

(11) p1: receive(p2, d) succeeds, goes at 35:0 and terminates at +00.

(12) p1 and p2: algorithm terminates with a solution.

Without counting GCT and anti messages, this example spent 10 messages - six

normal messages and four objection messages - to find a solution. The cost is due

to the nondeterminism of the example.

The above algorithms and discussions illustrate the basis of our work. In brief,

we have extended the standard Prolog interpreter to include the abilities of rollback

and global backtracking. Thereby combining logic programming technique and the

Time Warp mechanism not only provides a temporal coordinate system which mea-

sures computational progress and defines synchronizations but also provides a spatial

coordinate system which supports nondeterministic computations.

5.3 Correctness of the Algorithm

The correctness of a logic programming system consists of two aspects: soundness

and completeness. Informally, for a logic program 2, the system is sound if every

computed solution of 2 is a logical answer of 2; the system is complete if whenever

there exists a solution of 2, the system will eventually find the solution.

For the subsequent discussion we use the following assumptions:

ASM(1): Each process of a distributed logic program defines a finite &.tree, i.e., the

execution of a distributed logic program terminates in finite evaluation steps.

92

ASM(2): The standard Prolog interpreter is sound (assume the "occur check" prob-

lem has been solved [Llo84]) and complete (for programs with finite SED-trees,

see ASM(1)), i.e., in order to find a solution, the standard Prolog interpreter

searches its (partial) virtual space exhaustively if no 's are involved in the

(partial) virtual space.

ASM(3): The kernel is reliable and the rollback facility is transparent, which means

that all messages are delivered in correct virtual time order. In other words,

the temporal property of a logic process is guaranteed by its kernel and the

rollback algorithm.

ASM(4): The estimation of GCT is correct, that is, at any real time, the estimated

value of GOT is always less than or equal to the real GOT (see the definition)

and will eventually reach the real GOT.

As described in our algorithms, a trace of a process can be described as a finite

sequence of evaluated c's. Thus, a process is characterized by a set of all its possible

traces and is "displayed" on a finite c-tree (by ASM(1)). In a c-tree, 's form a

layered parent-child structure. The edge connecting a parent-child pair of e's consists

of derivations of zero or more normal Prolog goals and exactly one communication

predicate. In the following discussion, we assume that a normal Prolog goal is always

derivable. Therefore, in a transition from a parent to a child, we only need to pay

attention to the derivation of the communication predicate which occurred in the

transition. As we have assumed that each is uniquely labeled, by saying that the

control of process P is after 1, we mean that the was the last one to be evaluated

in P2. Additionally, we use to denote the label of the placed at the beginning of

93

a process and Q to indicate the termination of a process.

Definition 5.1 Let 2 be a distributed logic program and G a goal. If the evaluation

of 2 U {G} invokes processes F1,... , P, then (F1, . . . , P,) is called a coordinated

computation of P.

Definition 5.2 Let (F1,.. . , Pr,,) be a coordinated computation. A state of(Fj,.. . , P4

is (li,. . . ,in) if the control of processes F1,. . . , P, is after 11,.. . , In respectively. As

well, we say that the initial state of (Fi,.. . , P9 is ... ,) and a final state is

(ci, ... ,19.

Definition 5.3 Let (Ii,.. . , 1,,.), (1,... , l) be two states of (F1,.. . , P4. A state

transition (li,. . . , l,) (l',. . . , l'j must satisfy (for i =

1. the edge connecting Ii and l is a termination branch and IQj is empty forever;

or

2. the edge connecting Ii and l is a send branch; or

S. the edge connecting Ii and l is a receive branch and the message received was

sent in an earlier state transition and the message unifies the receive predicate

in the receive branch; or

(Note that ASM(3) guarantees that a message is sent to its destination in -+ order

and a message is received in —p order)

A trace of (F1,.. . , P) is described as a sequence of state transitions from its

initial state into a unique state, possibly a final state of the coordinated computation,

94

which in addition reflects the execution history of how it reached that state. Thus,

the evaluation of (.P1,. . . , P,) is characterized by a set of all its possible traces and

can be "displayed" on a transition-tree defined as follows: the root of the tree is

its initial state, nodes of the tree are intermediate states, there is an edge from a

node for each state transition, and leaves of the tree are states which have no more

transitions or are final states of the coordinated computation. In a transition-tree,

nodes with the same parent are siblings.

Consider the example in Figure 5.6, we draw the transition-tree of (p1, p2) in

Figure 5.7. Each node in the tree is in the form of (li, 12) where 1 indicates the label

of a and the subscript of 1 is the index of a process.

Lemma 5.1 A state transition of (F1,. . . , .P,) is implemented by FEA.

Proof: Let be the current state of (F1,.. .,F), and be the

state after a transition. FEA transits process P1 from li to l, i = 1..n, as

follows:

1. If P2 terminates with an empty IQ, then l = fj (by FEA (4) and

ASM(1, 3)).

2. If P1 evaluates a send predicate and li is open, then l is the label of the

immediately following the send predicate (by FEA (2)). Note that i

becomes closed only if all branches under li have failed.

3. If P1 evaluates a receive predicate which matches the message delivered by

the kernel, then l is the label of the immediately following the receive

predicate (by FEA(3) and ASM(3)).

95

s(p2,,1O) s(p2,b,15) r(p,a) r(pl,b)

r(p2,e) r(p[,d) s(ps(p1, s(pi,d)

s(pl,f,20) s(p1,,2O)

(b) p2's e-tree (a) p1's c-tree

Figure 5.6: Example of Process Transitions

12)

2)

(21 k22)

Figure 5.7: Transition-tree of the Example

96

4. otherwise no transition can be made for .P, l =

Thus, the transition implemented by the FEA fulfills the Definition 5.3 ex-

actly.

Definition 5.4 Let 7' be a distributed logic program, G a goal and (P1,. .. , P,,) the

coordinated computation invoked by P U {G}. If . . ,) = ... (, .. . ,

is 'a sequence of transitions of (F1, . . . , P,) via FEA, and Oi is a sequence of mgu 's

computed in the transitions of .P, i = 1. .n, then (F181 A ... A FO) is a a solution

for 2U{G},

Theorem 5.1 (soundness) Let P be a distributed logic program, G a goal. Then

every solution for P U {G} is a correct solution.

Proof: Let (F1,.. . , P,) be the coordinated computation of P U {G} and (P101 A

A PO) a solution of 2 U {G}. The solution is a correct solution for 2 U

{ G} if the computed answer substitution O's (i = 1..n) are correct answer

substitutins. From Definition 5.4, this solution is generated by a transition

(1) If the transtion sequence of (F1,. . . , F,,) do not involve any communications,

then (F101 A ... A PThO) is correct solution of P U {G} because:

1. Pi Is do not share any non-ground variables (from Definition 3.4);

2. the refutation of each P is implemented by a standard Prolog interpreter

(FEA(5) and ASM(2));

3. therefore, the computed answer substitution Oj is a correct answer substi-

tution (for a proof see [Llo84]: soundness of SLD-resolution).

97

(2) If the transtions of (F1,.. . , P,) involve communications, we define Oi as

the composition of pi and 0-i, where pi represents a sequence of mgu's in the

derivations of normal Prolog goals while oj represents a sequence of mgu's in

the derivations of communication predicates. We assert that (F191 A.. . AFO)

is a correct solution of 2 U {G} because:

1. P's do not share any non-ground variables (from Definition 3.4);

2. each pi is generated by a standard Prolog.interpreter

(FEA(5) and ASM(2)), i.e., pi is a correct answer substitution with

respect to all Prolog goals in Pi's refutation;

3. each o11s generated by FEA() which uses the standard Prolog's unifica-

tion algorithm and implements the Synchronization-Test (Definition 3.9)

with respect to the temporal property of P (ASM(3)), i.e., 0j is a correct

answer substitution with respect to all communication predicates in P's

refutation;

4. therefore, O, the composition of pi and o.j, is a correct answer substitution.

The problem now is to prove the completeness defined as follows

A distributed logic programming system is said to be complete if for

every given goal and distributed logic program (following ASM(1)) the

system guarantees to produce a solution provided it exists.

It is important to note that the completeness proof is based on ASM(1) and

• ASM(2). In other words, we prove that the proposed system is as complete as

standard Prolog.

98

Lemma 5.2 Let 2 be a distributed logic program, G a goal and (F1, . . . , .P,) the

coordinated computation invoked by 2 U {G}. Then (F1,. . . , F) has a solution if

and only if the solution is "displayed" on its transition-tree.

Proof: This Lemma follows immediately from the definition of transtion-tree and

Definition 5.4.

Based on Lemma 5.2, the completeness proof is going to show that in order

to find a solution for a coordinated computation, the proposed global backtracking

algorithm searches its transition-tree exhaustively. In the following discussion, we

only reference states which are displayed on the transition-tree.

Definition 5.5 Let (ii,... ,l) be a state of (F1,... ,P). (ii,... ,l) is called a

failure state if it can not be transited forward to any new state and it has at least

one li which is not IL

For example, states (11,I2), (11,12) and (21,I2) in Figure 5.7 are failure states.

Lemma 5.3 No solution exists under a failure state.

Proof: From Definition 5.4, a solution is produced by a transition sequence from

(i,. . . ,) to . . , 1k). Since no transition can be made at a failure state

and there exists at least a 1 which is not a 0, so the lemma holds.

Lemma 5.4 Let (li,. . . , in) be a state of (P1,... , If all branches under are

failed and there exists at least one failed receive predicate in evaluating these branches,

then F makes an open objection at .

99

Proof: From ASM(2), standard Prolog searches all branches under exhaustively.

From FEA, an open sponsor is established in evaluating a receive predicate.

From ETA, F: invokes Objection Algorithm. From the objection selection algo-

rithm, Pi objects one of its open sponsors at .

Definition 5.6 Let (li,. . . , l,) be a state of (F1,. . , P,). If there exists a process

P which is making an open objection at Ii and the objection competition time equals

to GCT, then (li,. . . , l,) is called an open-backtrack state and is called an open-

backtrack search position.

Thus, all failure states in a transition-tree are open-backtrack states, but not vice

versa. For example, states (11,72) and (ii, 82) in Figure 5.7 are open-backtrack

states because is making an open objection against the messages sent under el

and snapshot of GCT at these states equals to the objection competition time of

el (recall the definition of GCT, at ,these states, 's objection competition time is

10:1 while the virtual time of e7 and are both 10.2). In these two states, is the

2 2open-backtrack search position. However, these two states are not failure states yet

because they still can transit to new states.

Lemma 5.5 State transitions from an open-backtrack state always lead to a failure

state.

Proof: Let (li,. . . , in) be an open-backtrack state and the open-backtrack search

position. Since is making an objection and no other processes will ever send

messages to before GCT to overrule the objection (by ASM(3,4)), can not

transit to any child . Thus transitions from an open-backtrack state (if any)

will eventually reach a failed state.

100

Lemma 5.6 No solution exists under an open-backtrack stte.

Proof: The lemma follows immediately from Lemma 5.3 and Lemma 5.5.

Lemma 5.6 shows the major difference between our algorithm and the dead-lock

detection algorithm proposed in [Fut88}. In our scheme, the transition-tree under a

state is pruned as soon as the state has been determined as open-backtrack, and then

the execution transits to a new state by rcomposing the search path of a process

through the objection committed by the open-backtrack search position. In the latter

approach, transitions under a open-backtrack state will continue until reaching a

failure state (all processes are blocked), and then a global "unlock" algorithm is

called to transit the program into a new state. The advantages of our scheme are

that a open-backtrack state can be detected locally by processes wrt GCT and that

it offers potential speed up in nondeterministic computations.

Definition 5.7 Let (li,. . . , l,) be an open-backtrack state, the open-backtrack

search position of the state and an open sponsor of . Then open-backtrackable

states of (ii,. . . , l,) with respect to are (..., ii,'. . . , 17,. . .) 's such that each " is

an unsearched child of '; the open-closed state of (ii,. . . , l) with respect to is

l) and is the open-closed search position.

Recall the example in Figure 5.7, state (1, 72) and (1, 82) are open-backtrack

states. They have a same open sponsor and their open-closed state with respect to

is (1, 12). According to this open sponsor, state (11, 7 2) has one open-backtrackable

state (11,42) while state (11,82) has no open- backtrackable state.

101

Lemma 5.7 Let (ii,.. . , l,) be an open-backtrack state and the open-backtrack

search position of the state. An open objection made by 6il changes (li,. . . , l,) to

one of its open-bacictrackable states or to its open-closed state when all its open-

backtrackable states have been exhausted.

Proof: Suppose the open sponsor to be objected by 6il is 1. When the objection is

sustained, the sponsor process Pj either transits to the next unsearched branch

(if any) under ' (GTA(a) and ASM(2)) or backtracks to ' if all branches

under ' have been exhausted (LTA and ASM(2)).

Lemma 5.8 No solution exists under an open-closed state.

Proof: From Lemma 5.7, an open-closed state is caused by open objections made

at a set of open-backtrack states. From Lemma 5.6, no solution exists under

these states, so the lemma holds.

Since no solution exists under an open-closed state, we have to decide which state

to backtrack. There are two situations. First, at the open-closed state, the open-

closed search position has its own open sponsors, then it is going to chose an open

sponsor and join the open objection competition. All discussion and lemmas above

can be applied to this situation. Second, at the open-closed state, all sponsors of

the open-closed search position are closed. In this case, we use a heuristic knowledge

that earlier synchronizations may make subsequent synchronizations more likely to

succeed. Thus, the selection algorithm returns a closed sponsor with maximum

virtual time to object.

Definition 5.8 Let (la,.. . , l) be a state and a search position. If objects itself,

then the state is a self-backtrack state.

102

Lemma 5.9 A closed objection made by an open-closed search position either re-

names the current state to open-backtrack state or to self-backtrack state, or causes

a subsequent closed objection.

Proof: Let (li,. . . , in) be a state and a search position. Suppose 4 makes a

closed objection to . From GTA(b), when process P receives the objection,

it invokes the Objection Algorithm. If there are open sponsors in `s sponsor

set, then is going to make an open objection, i.e., the state becomes the

open-backtrack state; if all sponsors of are closed, then either objects itself

or makes a subsequent closed objection according to the sponsor selected. In

the former case, the current state becomes the self-backtrack state. In the later

case, the current state retains its original name.

Lemma 5.10 Closed objections at an open-closed state will eventually rename the

state to either open-backtrack state or self-backtrack state.

Proof: This lemma immediately follows from Lemma 5.9 and the fact that closed

objections made by any process are in decreasing virtual time order (see ob-

jection selection algorithm).

Lemma 5.11 No solution exists under a self-backtrack state.

Proof: This lemma immediately follows from Lemma 5.8 and 5.10.

Definition 5.9 Let (li,.. . , l) be a self-backtrack state, the self-backtrack search

position of the state. Then self-backtrackable states of (la,... , l) with respect to

are (..., l) 's in the transition-tree such that each ' is an unsearched sibling of

103

; the self-closed state of (li,. . . , l,) with respect to is (..., 17,...) such that " is

the parent of s, and " is the self-closed search position.

Recall the example in Figure 5.7, state (11, 12) is a self-backtrack state. It has

no self-backtrackable state. Its self-closed state is (11, 2). State (1, 2) is another

self-backtrack state. It has one self-backtrackable state (21, '2). Its self-closed state

is (i, (D).

Lemma 5.12 Let (li,... , 1,,,) be an self-backtrack state and the self-backtrack

search position of the state. A self-backtrack made by changes (li,. . . , l,) to one

of its self-backtrackable states or to its self-closed state when all its self-backtrackable

states have been exhausted.

Proof: This lemma immediately follows from ASM(2)).

Lemma 5.13 No solution exists under a self-closed state.

Proof: From Lemma 5.12, a self-closed state is caused by a sequence of

self-backtracking from a set of self-backtrack states. From Lemma 5.11, no

solution exists under these states, so the lemma holds.

Lemma 5.14 Objections at a self-closed state will eventually rename the state to

open-backtrack state or self-backtrack state.

Proof: Similar to the proof of Lemma 5.10.

Theorem 5.2 (completeness) Let P. be a distributed logic program, G a goal and

(F1,. . . , F) the coordinated computation invoked by 2 U {G}. When the initial

104

state of (F1,... , P) becomes a self-backtrack state, the po posed global backtracking

algorithm has searched the transition-tree of (F1,.. . , F) exhaustively.

Proof: This theorem directly follows from Lemma 5.11.

Chapter 6

COMMUNICATING SEQUENTIAL PROLOG

(CSP*)

A practical language proposal, Communicating Sequential Prolog, abbreviated to

CSP*, is presented in this chapter. CSP is a distributed logic programming language

for discrete event simulation.

This chapter has two sections. First, the basic style of programming in CSP is

introduced. The important concern is enhancing the expressiveness of the original

logic programming model to include dynamic process creation and more built-in

predicates., Second, examples are given to show how CSP* is used in distributed

discrete event simulation.

6.1 Basic Constructs and Programming Style

CSP* is an extension of Prolog. It inherits most features of Prolog and provides

a process-oriented programming environment to its users. The major feature of

CSP is that a CSP* program consists of a set of dynamic processes which act as

autonomous simulation objects, cooperate through communications, and are syn-

chronized by their simulation times.

Execution of a CSP program relies on a set of logic process interpreters which

evaluate logic processes in parallel and permit backtracking within processes to be

combined with concurrent activities among processes.

105

106

6.1.1 Syntax and Semantics

According to the distributed logic programming model in Chapter 3, a CSP* program

consists of two types of clauses: procedure clauses and process clauses.

However, the definitions of these clauses differ from the original ones in dynamic

process creation. To illustrate this, we use symbol A to represent procedure literals,

symbol P to represent process literals, and symbol R to indicate either procedure lit-

erals or process literals. We have the following syntactic definitions (a more detailed

syntax for CSP* in Extended Backus-Naur Form can be found in Appendix):

a procedure clause: A: —R1, R2,. . . , R.

a process clause: P(Name,...) :: —R1, R2,. . . , R.

a query: : —R1,R2,. . .,Rk?

The procedural reading of the procedure clause is "A is solvable if all procedures

represented by procedure literals in R1,. . . , R, are solvable, and all process instances

represented by process literals in R1, . . . , are successful".

A process instance is a copy of a logic process. A logic process may have a number

of instances which are evaluated by logic process interpreters in parallel. Therefore,

the procedural reading of the process clause is "an instance of P(Name) is suc-

cessful if all procedures represented by procedure literals in R1, . . . , R are solvable,

and all process instances represented by process literals in R1,. . . , R are successful".

Finally, the procedural reading of the query is "show all procedures represented

by procedural literals in R1,. . . , RA: are solvable and all process instances represented

by process literals in R1,. . . , RA; are successful". -

It is important to note that all clauses in CSP* are temporal clauses. They

107

basically follow the temporal property discussed in Chapter 3. However, as CSP*

introduces dynamic process creation, the body of a temporal clause may involve both

procedure literals and process literals. For example, a clause in CSP may be:

p(Name) :: —a, q1(Nar'ne1), b, q2(Name2), c.

where p(Name), ql(Namel) and q2(Narne2) are process literals and a, b and c are

procedural literals. The temporal property of the example is explained as follows:

p(To,T0t,Name) :: —a(To,Ti),q1(Ti,T0ti ,Name1),b(Ti,T2),

q2(T2, T02, Narne2), c(T2, T0).

More detailed specification about process creation and creation time will be discussed

in the next section.

6.1.2 Process Naming, Creation and Destruction

The first parameter in the head of a process clause always refers to the name of a

process instance. A process name can be any meaningful term and must be instan-

tiated by a unique ground term when the process is instanced. Thereby the process

name can be used as the identifier of the process instance in communications. If a

process clause contributes only one instance, its name can be defined as a constant.

However, if a process clause is used to create a number of instances, its name must

be a variable or a function term with variable arguments, so that each instance can

bind the name with a different value.

• In the evaluation of a goal g(nl, n2,... , ni), a match with the goal is tried with

the head of each clause in a program. If a match is found and the matched clause is

108

a process clause, CSP creates a new logic process interpreter to evaluate a copy of

the process clause. We say a new process instance (or a new process) with name ni

is created. If ni is not a ground term, it results in a run time error. A newly created

process executes concurrently with other existing processes and it sequentially eval-

uates the goals in the tail of the process clause. On the other hand, if the matched

clause is a procedure clause, the goal is evaluated as a normal Prolog procedure call.

An important rule in CSP is that a goal which matches a process clause cannot

share any non-ground variables with other goals in conjunction.

A CSP* program is started by a normal query

—R1,112,. .

which constitutes itself as the root process with system-designated name main. As

the main process sequentially evaluates the goal sequence R1,. . . , .F1j, new processes

may be spawned.

For example, if we want to create a network with B-tree structure, as shown in

Figure 6.1, different methods can be adopted.

Solution 1:

:- node(n(1)), node(n(2)), ..., node(n(15))?

node(n(I)) ::- / definition of node /.

Solution 2:

:- create(15)?

create(0).

109

n(l)

n(2) n(3

n(4) n(5) n(6) n(7)

n(S) n(9) n(10) n(11) n(12) n(13) n(14) n(15)

Figure 6.1: A B-tree Network

create(I) :-

I > 0,

node(n(I)),

Ii is I—i,

create(I1).

node(n(I)) ::- / definition of node *1.

• Solution 3:

node(n(1), 4)?

node(n(I), Layer) ::- create(I, Layer),

/* definition of node /.

create(_, 1).

create(I, L) :-

L>1,

110

Ln is 1*2,

Rn is 1*2+1,

Li is L-1,

node(n(Ln), Li),

node(n(Rn), Li).

The main process creates 15 node processes, one by one, in solution 1, because

each goal in the query matches the head of the process clause node(n(I)). Similarly,

solution 2 produces the same number of node processes in a reversed order by

recursive procedure calls. In solution 3, the main process only creates process n(1)

and then, process n(1) creates n(2) and n(3), process n(2) creates n(4) and n(5),

and so on; finally, fifteen processes are spawned dynamically. It is easy to see that

the third solution takes less time, because node processes are spawned in parallel.

The parent of a process is its creator. A process can be destroyed by either its

parent or itself. Suppose process father creates process son by evaluating goal g(son,

.), there are two possible situations: (1) some time later process father backtracks

to g(son, ...); or (2) process son fails. No matter which situation happens, process

son is killed and process father tries to match g(son, ...) with an alternative clause

(if any) in the program. If a match is found, a new son will be created; otherwise,

father continues backtracking and leaves the system with no knowledge that a son

process had ever existed.

6.1.3 Built-in Predicates

The standard Prolog provides a set of built-in predicates that are essential to make

Prolog a practical language. These predicates can be divided into two classes: meta-

logical predicates and extra-logical predicates.

111

Meta-logical predicates are outside pf the scope of first-order logic but do not cause

any side effects in their evaluations. In general, they are used for type checking, term

comparison, and data conversion.

CSP* inherits all meta-logical predicates from standard Prolog and provides a

few new meta-logical predicates for handling time and communication.

A simulation program involves a description of the way in which a system state

changes over time. Simulation time is fundamental to determining the order in which

events occur. In a CSP program, each process has its own view of simulation time,

i.e., it holds a read-only clock which denotes its progress in computation.

The initial simulation time of a process is defined to be the simulation time of

its parent at which it is created. The initial simulation time of the main process is

zero. By calling the built-in predicate

time(T),

a process obtains the value of its current simulation time.

An event is scheduled by evaluating a predicate

send(D, M, T)

where D is the event receiver's name, M is the event information and T is a non-

negative delay interval of simulation time which indicates that the receiver must

receive the event at the receive time which is defined as T plus the time the event

is scheduled. If T is absent from the predicate, say send(D, M), T is assumed to

be zero. The parameters of a send predicate must be instantiated to ground terms

when it is called.

112

Predicate receive is used for receiving an event. CSP' guarantees that events

delivered to a process are in nondecreasing receive time order. The call

receive(S, M)

tries to unify its arguments with the event delivered by the CSP* system, that is, S

is unified with the sender's name and M with the event information. If a unification

is made, the event is consumed and the simulation clock of the receiver is advanced

to the receive time specified by the event.

Predicates self(P) and parent (F) are used to get the caller's name and parent

name respectively. Therefore, these names can be used to direct communications.

For example, a process can advance its simulation clock by calling the following

procedure:

advance(T)

self(P),

send(P, null, T),

receive(P, null).

It is important to note that predicate advance(T) is deterministic. Therefore, if

a process at simulation time 100 calls advance (5) , the call succeeds only if there are

no events in between 100 and 105.

Extra-logical predicates in the standard Prolog not only violate first-order logic,

but also achieve side effects in the course of being satisfied as logical goals. They are

usually used for I/O operation and program manipulation.

CSP* adopts different policies to treat these predicates. Some of them are no

longer available in CSP*; and some of them are implemented in different ways from

Prolog, so that their side effects are removed on backtracking.

113

For example, predicates assert and retract are used to add or remove a clause

from a program database in the standard Prolog. The major purpose of the predi-

cates is to use the database as a Medium to remember partially computed results for

frequently used objects. A good example of this requirement is a random number

generator. Commonly, whenever a random number procedure is called, it retracts an

old seed from the database as input for generating the next random number and then

asserts a new seed into the database. This is because standard Prolog has no global

variables to remember partially computed results. Without assert and retract pred-

icates, a program has to carry all partially computed results, e.g., the seed, through

subsequent procedure calls. This would be extremely inconvenient in writing a large

program. However, CSP can implement every object, such as a random number

generator, as a logic process which hides all its intermediate state as well as partial

results from others. Thus, assert and retract are not inherited by CSP*.

Predicate repeat in the standard Prolog is used to simulate repeat loops in con-

i.entional languages. These loops are useful only when used in conjunction with

extra-logical predicates which cause side effects. Since the side effects of most sys-

tem predicates are removed in CSP, repeat is no longer useful.

In the CSP* system, input and output functions are implemented by I/O pro-

cesses with each manipulating an input/output stream. Therefore, I/O operations

are carried out through communications between logic processes and I/O processes.

As a consequence, I/O predicates become sequences of communication predicates.

The implementation details of I/O processes are not discussed in this thesis.

Another useful but dangerous feature in the standard Prolog is cut, which is usu-

ally written as "!". For the sake of efficiency, cut can be used to control backtracking

114

by pruning the search space of a program. However, using a cut may destroy the

correspondence between the declarative and procedural meaning of a logical relation.

Cut is also allowed in CSP programs, but the user should be aware that backtrack-

ing on a cut may invoke a global backtracking if communications or process creations

are involved in the effective range of the cut. If this happens, the cut not only prunes

the search space of the process in which it resides, but also possibly prunes the search

spaces of other processes. Therefore, it is strongly suggested to use cut with care

and not to use it without reason.

6.1.4 Pragmatics

The pragmatics of logic programming concern efficiency. Typical aspects of efficiency

are execution time and memory space requirements of a program.

As we mentioned before, CSP can be used to describe both deterministic and

nondeterministic computations. We hope that speedup can be achieved for both

these computations. However, for a distributed logic program written in CSP*, the

first important factor which has a great influence upon the execution time is the

degree of determinacy of the program.

If a deterministic model is evenly decomposed into n concurrent processes, by

running each process on a different processor, then it would be possible to achieve

an optimal 'n-fold speedup over the sequential case.

On the other hand, if a nondeterministic model (here we refer to the "don't know"

nondeterminism) is decomposed into a set of concurrent processes, although these

processes are executed on different processors, it is possible that CSP* provides very

little, or even no speedup as compared with sequential execution.

115

P1 P2 P.

1 m 1 rn 1 in

Figure 6.2: A Homogenous Nondeterministic Computation Model

Let us consider a simple homogeneous nondeterministic computation model.

Suppose the model is decomposed into n processes each with m nondeterministic

branches, as shown in Figure 6.2. The worst case for this model is that the only

solution of ": —F1,.. . , .P,?" is the combination of the rightmost branches of these

processes.

If a unit time is taken on each branch and the interprocess communication time

is assumed to be zero, then execution time on CSP* with n processors and on a

standard Prolog system with single processor, respectively, is given by:

Prc1og: M i

CSP*: m '

and we have

2 * m ' ≥ M ≥ M n.

Though n processors are used to solve the nondeterministic model, the speedup is

less than two.

This analysis tells us the important fact that for running a program on an AND-

parallel system (such as CSP*), the more determinism the program model possesses,

the more speedup the system could achieve. This is because a deterministic computa-

116

tion does not involve any global backtracking while a nondeterministic computation

must try possible branch combinations of processes in order to find a solution.

The second influence on execution time of a distributed logic program in CSP

is caused by the asymmetry of the built-in communication predicates. We illustrate

this by comparing two simple examples:

EX1:

pl(lpl) ::- foo.

foo :- send(1p2, a, 0).

foo :- send(1p2, b, 0).

foo :- send(1p2, c, 0).

p2(1p2) ::- receive(lpl, c).

EX2:

pl(lpl) ::- foo.

foo :- receive(1p2, a, 0).

foo :- receive(1p2, b, 0).

foo :- receive(1p2, c, 0).

p2(1p2) ::- send(lpl, c).

To be able to find a solution of ":- pl(lpl), p2(1p2)", EX1 needs five messages

which include three normal messages passed from 1pl to 1p2 and two objection mes-

sages transferred from 1p2 to ipi while EX2 only needs one normal message. There-

fore, the organization of message producers and consumers in a nondeterministic

computation becomes critical in improving the efficiency of a program.

Space requirements of a program are also closely related to the determinism of the

program model. It is clear that the execution states of a nondeterministic program

must be saved to enable backtracking. If a simulation program runs a long time,

117

memory overflow may happen during execution. On the other hand, the execution

states of a deterministic program can be collected as garbage and can be used to fulfill

future memory requirements. Since most programs are mixed with deterministic and

nondeterministic computation phrases and the CSP* system is not smart enough to

figure out when any process reaches a deterministic state, CSP* provides a special

predicate for garbage collection purpose.

Predicate commit, denoted by "!!", is used to prune the search space of a logical

process. The precise semantics of commit are as follows:

Let us call the initial goal the goal that started the process. When a

commit is encountered as a goal it succeeds immediately, but it commits

the system to all choices made between the time the initial goal was

invoked and the time the commit was encountered. All the remaining

alternatives before the commit are discarded.

In other words, the evaluation of a commit divides the computation of a process

into two parts: the computation before it becomes the deterministic part and the

computation after it is the nondeterministic part. Once a process has progressed

enough to determine that this is the only way to find a solution, a commit can be

inserted. Therefore, backtracking is only allowed in the latter part and the garbage

in the former part can be collected by the system. The difference between a 9" and

a "!!" is that the former discards all remaining alternatives between its parent goal

(the goal that matched the head of a clause containing the cut) and the "!", the later

discards all remaining alternatives between the initial goal and the "!!".

118

6.2 Discrete Event Simulation in CSP

Discrete event systems generally involve contention for scarce resources, with queues

developing where system components must wait for resources to become available.

Further, delays between state changes are usually determined statistically, with the

exact interval selected according to some random number distribution. The objects

for manipulating resources, queues, random numbers and other useful abstract data

structures are usually called simulation facilities.

In this section, the implementation of simulation facilities in CSP is discussed.

We describe some of the facilities in depth because the others could be specified in

similar ways. Furthermore, we use three examples to illustrate how to use these

simulation facilities, how to decompose a simulation model into logic processes and

how to describe deterministic and nondeterministic computations.

6.2.1 A Resource Allocation Process

Queueing systems are common components of discrete event simulation. Typically,

a collection of demands for resources arise as time evolves. In general, there exist

two kinds of resources. Resources which are used by requestors are passive resources.

Resources which provide services are active resources.

For example, in a gas station, a customer who asks for service for his car needs

an active resource - a worker, because they are going to exchange messages such as

the type of service, the amount of payment, etc.. On the other hand, the worker

may need one or several passive resources - lift, lubricating gun or other tools - to

finish his job.

119

Another way to distinguish these two kinds of resources is from the style in which

their simulation time advances. The simulation time of a passive resource is scheduled

only by its users while the simulation time of an active resource can be advanced

both by its requestor and by itself. In the above example, the customer does not

know in advance how long the service will take, but the server knows exactly how

long it must hold a lubricating gun.

The following description defines a logic process which manipulates a collection of

passive resources. It is an abstract data object and provides a deterministic interface

to its users.

1*

(1)

resource process interface /

acquire(Rname, Num) :-

send(Rname, acquire(Num)),

receive(Rname, ok).

(2) release(Rname, Num) :-

send(Rname, release(Num)).

resource process implementation

(3) resource(Rname, Num) ::-

Tesource(Num, Q, Q).

(4) resource(N, QH, QT)

receive(Who, M), !!,

resource(Who, M, N, QH, QT).

*1

(5) resource(., -, ..). % terminate when no message

(6) resource(Who, acquire(Num), N, [HIQH], QT)

var(H),

Num ≤N,

N1isN-Num,

120

(7)

(8)

(9)

send(Who, ok),

resource(N1, [HIQH], QT).

resource(Who, acquire(Num), N, QH, [[Who, Num]jQT]) :-

resource(N, QH, QT).

resource(_, release(Num), N, [[Who, Req]QH], QT) :-

nonvar(Who),

Req≤N+Num,

NiisN+Num - Req,

send(Who, ok),

resource(_, release(N1), 0, QH, QT).

resource(_, release(Num), N, QH, QT) :-

Ni is N + Num,

resource(N1, QH, QT).

In the above description, clauses (1) and (2) are used for encapsulation - hiding

the implementation of the resource while exhibiting its interface to other processes.

Clause (3) defines the resource process. An instance of the resource process must

have a unique name and a fixed amount of resources.

By calling the procedure resource (Num, Q, Q), a resource instance starts its life

cycle. Its state is described by the current available amount of resources and a

waiting queue with two pointers to the queue head and tail respectively. If there is

no request, clause (5) terminates the process. Otherwise, clause (4) transfers the

state of the process and the incoming request to a further procedure call.

If a requestor acquires a number of resources, clause (6) satisfies the request if

there is no one in the waiting queue and the current available resources are enough to

fulfill the requirements, otherwise, clause (7) appends the requestor to the waiting

121

queue. On the other hand, if a requestor releases a number of resources, clause (8)

sets requestors in the waiting queue free if the total amount of resources (the amount

just released plus the amount originally left) satisfies their demands. When clause

9 is chosen, the process will progress to next receive-service cycle with a changing

state.

Now, suppose that a resource process has been created with a name "lub_gun", a

worker can all the following procedures to use a lubricating gun for five time units:

acquire(lub_gun, 1),

advance(5),

release(lub_gun, 1),

6.2.2 A Queue Process

A queue is used as an interface between a set of active resources (servers) and a set of

resource users (customers). Different queue disciplines - the sequencing rules which

determine which customer in a queue will be served next - can be iniplemented via

different queue processes. In this section, we introduce a deterministic FIFO queue

process written in CSP.

In general, three operations are provided for manipulating a queue object. When

a customer process executes an cnqueue('Qname, Server, Req) operation, it is sus-

pended in the queue referenced by Qname until a server process becomes available by

a dequeue operation and the variable Server is bound to the server's name. A similar

behavior holds in the evaluation of a dequeue(Qnarne, Customer, Req) operation on

122

the server side. In addition, procedure q_length can be called by either customer or

server processes which always returns the exact queue length at the simulation time

the call is made.

/ FIFO queue process interface

enqueue(Qname, Server, Req) :-

send(Qname, enqueue(Req)),

receive(Qname, Server).

dequeue(Qname, Customer, Req) :-

send(Qname, dequeue),

receive(Qname, [Customer, Req]).

qlength(Qname, Length)

send(Qname, length),

receive(Qname, Length).

/ FIFO queue process implementation

*1

*1

queue(Qname):

queue(EQ, EQ, D, DQ).

queue(EH, ET, DH, DT):-

receive(Who, M), !!,

queue(Who, M, EH, ET, DH, DT).

queue(_, -, -, ..). % terminate when no message

queue(Who, enqueue(Req), EH, [[Who, Req]ET], [HIDH], DT):-

var(H),!,

queue(EH, ET, [HIDH], DT).

queue(Who, enqueue(Req), EH, ET, [HIDH], DT):-

send(H, [Who, Req]),

send(Who, H),

queue(EH, ET, DH, DT).

123

queue(Who, dequeue, [HIEHI, ET, DH, [WhoIDT]):-

var(H), !,

queue([HEH], ET, DH, DT).

queue(Who, dequeue, [[H, Req]EH], ET, DH, DT):-

send(Who, [H, Req]),

send(H, Who),

queue(EH, ET, DH, DT).

queue(Who, length, EH, ET, DH, DT):-

length(EH, N),

send(Who, N),

queue(EH, ET, DH, DT).

length([HJT], 0):- var(II),!.

length([HjT], N):-

length(T, Ni),

N is N1+1.

The state of a queue instance is described by two inner queues (lists), one which

delays customers that try to get service when all servers are busy and another which

delays servers that try to grab customers from an empty queue.

From a closer observation of the queue process, we can find the following inter-

esting properties:

1. it has an unbounded size;

2. it accepts requests from any number of customer/server processes;

3. it terminates automatically when there are no more requests (Note that Time

Warp mechanism will roll a terminated queue process back whenever a new

message arrives);

124

4. it not only synchronizes pairs of customer-server processes with respect to their

simulation time, but also offers a message communication between each pair;

5. it provides a generic type of queue item, that is, the customers and the servers

which access the queue can be any type of object (process), and the messages

between customer-server processes can be any type of data structure.

With a slight modification, the queue process can be used between pairs of

producer-consumer processes. In this case, a producer process does not suspend

itself in the queue, instead, after adding an event into the queue it continues to

generate the next event. On the other side, a consumer process is like a server, it

dequeues an event if the queue is not empty, otherwise,, it is blocked.

6.2.3 Random Number Generator

Simulation models usually contain random behavior. The purpose of random number

generation is to provide a stream of numbers with specific statistical properties.

CSP can be used to describe random number generators for different distribu-

tions in two ways: a distribution procedure or a distribution process. A distribution

procedure generates random numbers according to the type of distribution and the

arguments passed to the procedure. A distribution process has a common interface

sample(Rnanie, Next) to return the next random number. The usage of these two

methods depends on the application.

As an example, let us consider a simple, basic, random number distribution - the

uniform distribution. Weuse the multiplicative congruential method which generates

125

random number n 1 from the previous random number ni by the equation

:= 8192 * nj mod 67099547

such that the cycle length is 67099546 [Bir79].

/ * uniform distribution procedure /

uniform(Seed, Next):-

Next is (8192 * Seed) mod 67099547.

1* distribution process interface

sample(Rname, Next):-

send(Rname, next),

receive(Rname, Next).

/* uniform distribution process

uniform..process(Rname):

genunif(12345678).

genunif(Seed) :-

receive(Who, next), !!,

uniform(Seed, Next),

send(Who, Next),

genunif(Next).

genunif(_). % terminate when no message

*1

*1

6.2.4 Single Server Queueing Model

Figure 6.3 shows a typical single server queueing simulation model. Suppose the

model is applied to a bank system. Each arriving customer generates a successor

and waits in a queue with a randomly selected request until the bank server is

126

customers

enqueue

queue

dequeue

server

Figure 6.3: A Single Server Queueing Model

available. The server process handles different requests from customers, such as

deposit, withdraw, etc..

As soon as a customer receives a result from the server, it leaves the system

immediately. On the other hand, the server stops service only if there are no more

customers in the queue.

In the following program, service requests are uniformly distributed random in-

tegers from 1 to 5; inter-arrival times are negative exponentially distributed random

numbers with arrival-rate 0.125; and service times are constant random numbers.

/ main process /

single.server(Startc, Starts, End):-

negexp..process(nexp, 0.125),

ranint -process (rint, 1, 5),

queue(que),

server(server, Starts),

customer(c(1), Startc, End),

/ customer process /

customer(c(I), Start, End)::-

sample(nexp, Next),

Startl is Start + Next,

% create a negexp process

% create a ranint process

% create a queue process

% create a server process

% create the first customer process

% and terminate

% get inter-arrival time

127

generatenext(I, Starti, End),

advance(Start),

sample(rint, Req),

enqueue(que, Server, Req),

receive(Server, Result),

11.

generate-next(-, Start, End):-

Start ≥ End.

generate_next(I, Start, End):-

Start < End,

Ii is '+1,

customer(c(I1), Start, End).

server process / 1*

server(Sname, Start)::-

advance(Start),

service.

service:-

dequeue(que, Customer, Req),

process_request(Req, Result),

send(Customer, Result), it,

service.

% create next customer

% start execution

% get a request

% wait for server

% wait for result

% and terminate

% stop generating

% dequeue a customer with a request

% sery the request

% send the result back

% loop

service.

process_request (1, open-account):- advance(10).

process -request (2, deposit):- advance(5)..

process -request (3, withdraw):- advance(5).

process_request (4, cash-check):- advance(7).

process -request (5, credit_bill) :-advance(15).

% terminate when dequeue fails

128

Suppose customers arrive from 8:30 until 15:00, the bank server starts serving

from 9:00 until the last customer is served, and the unit of simulation time is one

minute, the program can be invoked by

:-single..server(510, 540, 900)?

Note that the number of customer processes is controlled by the inter-arrival rate

and the model termination time.

With a slight modification, the above program can be used to simulate multi-

server queuing models. For example, the clause

tbree...server(Startc, Starts, End):-

negexp_process(nexp, 0.125),

ranint_process(rint, 1, 5),

queue(que),

server(s(1), Starts),

server(s(2), Starts),

server(s(3), Starts),

customer(c(1), Startc, End),

and the query

:-threeserver(510, 540, 900)?

can simulate a 3-server queuing model.

6.2.5 Bank Robbery

In order to illustrate how CSP* is used in nondeterministic computations, we take

a simple but interesting example from [F582]. Jim and Dick want to rob the Prolog

129

savings bank. Jim needs 5 minutes to climb into the bank. Dick waits outside and

sends a tool to Jim when he hears a whistle from Jim. There are different safes in

the bank and each safe takes a different time to be unlocked. If the robbery has

to finish in 25 minutes, the question is which safe is to be chosen for a successful

robbery.

/ process jim /

process_jim(jim) ::-

advance(S),

send(dick, whistle),

receive(dick, Safe),

open(Safe),

time(T),

T<25.

open(milner) :- advance(40).

open(wertheim) advance(27).

open (chatwood) :- advance(10).

/ process dick /

process_dick(dick):

receive(jim, whistle),

has_tool(Safe),

send(jim, Safe).

has_tool(milner).

has_tool(chatwood).

When we call

:- process_jim(jim), process_dick(dick)?

% climb into bank

Figure 6.4: A Health Care Model

130

center(1) illage(i)

center(2) W illage(2)

illage(4) center(5)

(Center(3) illage(3)

illage(5)

the simulation tries to find the correct safe and tool by backtracking and attempting

ci.ifferent safes with different opening times until one is found that can be opened in

the time available.

6.2.6 Hierarchical Health Care System

Figure 6.4 is a model of health care systems, typical of health delivery systems, in

developing countries. There are three kinds of objects in the model: the villages, the

reception nurses and doctors in health centers.

A village process is designed as an event generator. It periodically generates pa-

tient events, sends them to the corresponding health center and receives the treated

people back. In between any two patient events, it is possible that a treated patient

has been sent back. Therefore, the village process adopts a very interesting program-

ming technique: it sends a message which indicates the next patient event to itself,

then the process executes receive; if the message received is the message of the next

131

event, the process actually generates the event and schedules the second next event

for itself, otherwise, the process saves the message which must represent a treated

patient.

We assume that there is one reception nurse in each health center. A reception

nurse process is implemented by a producer-consumer queue (see Section 6.2.2). It

receives the incoming patient events and distributes them to available doctors. The

interface of a reception nurse process now is defined as enqueue (Name, Event) and

dequeue (Name, Event).

There are a number of doctors in every health center. A doctor process gets a

patient event from the nurse each time. If the patient is treatable, then after the

treatment, the person is sent back to his (her) village, otherwise, the person is sent

to a higher health center. A doctor process terminates its recursive processing only

if there are no more patient events.

/ main process *1

hea1th.system(St Et, DocList):-

negexp_process(nexp, 0.25),

unif_process(unifl, 0, 1),

unif_process(unif2, 10, 50),

creation(5, St, Et, DocList).

creation(0,

creation(I, St, Et, [DocsjDL]):-

I> 0,

center(c(I), St, Docs),

village(v(I), St, Et, Q),
Ii is I - 1,

% neg-exp distribution

% 0-1 uniform distribution

% 10-5O uniform distribution

% create the others

% terminate

% create Ith health center

% create Ith village process

132

creation(I1, St, Et, DL).

1* village process /

village(v(I), St, Et, Q)::-
advance(St),

sample(nexp, Next),

send(v(I), 1, Next),

village_operation(I, Et, Q).

village_operation(I, Et, Q):-
receive(Who, M),

operation(Who, M, I, Et, Q).

village-operation(-, -,

operation(v(I), -, I, Et, Q):-
time(T),

T≥ Et, !,

village_operation(I, Et, Q).

operation(v(I), Pn, I, Et, Q):-
enqueue(c(I), [I, Pn]),

sample(nexp, Next),

Pn1 is Pn +1,

send(v(I), Pn1, Next),

village_operation(I, Et, Q.

operation(D, Pn, I, Et, [{D,Pn] T}):-

village_operation(I, Et, T).

/ a health center consists of a queue
processes /

center(c(I), St, Docs):-

create_doctors(Docs, St, I),

queue(c(I)).

% next event time

% schedule the first event to self

% segregrate the message

% terminate if no message

% message from self

% stop generating

% message from self

Pn'th patient enters center

% schedule next event

% recive a treated patient

process and a number of doctor

133

create_doctors(O, -,

créate_doctors(Docs, St, I):-

Docs>O,

doctor(d(I, Docs), St),

Docsl is Docs - 1,

create_doctors(Docsl, St, I).

/* doctor process /

doctor(d(I, J), St)::-

advance(St),

diagnose(I).

diagnose(I) :-

dequeue(c(I), Patient), !!,

advance(2),

sample(unifl, T),

treat(I, Patient, T).

diagnose(_).

treat(I, [In, Pn], T):-

treatable(I, T),

sample(unif2, TreateTime),

advance(TreatTime),

send(v(In), Pn),

diagnose(I).

treat(I, Patient, _):-

parent_center(I1, I, T),

enqueue(c(I1), Patient),

diagnose(I).

parent -center (1, 2).

parent -center (1, 3).

% receive a patient

% assessment

% diagnostic result

% terminate if no more patients

% if the patient is treatable

% get treate time

% send the patient back

% not locally treatable

% transfer to a parent center

134

parent_center(2, 4).

parent -center (2, 5).

treatable(1, .).

treatable(2, T):- T≤0.75.

treatable(3, T):- T≤0.75.

treatable(.., T):- T≤0.5.

% all treatable in c(0)

% 0.75 treatable in c(1), c(2)

% 0.50 treatable in c(3), c(4)

This program can be invoked by using

:- health..system(100, 1000, [5, 5, 10, 10, 20])?

which will create three random number generation processes, five village processes,

five receptionist (queue) processes, and fifty doctor processes.

6.3 Summary

This chapter has described a practical distributed logic programming language,

CSP*, for discrete event simulation. CSP is an extension of standard Prolog and

provides a process-oriented programming environment to users.

A CSP* program consists a set of procedure clauses and process clauses. A

process clause defines a logic process which serves as a template for creating process

instances while a jrocedure clause retains the same semantics as in Prolog: A process

instance is created dynamically. It has a unique symbolic name and is evaluated

sequentially by a logic process interpreter.

During execution, a process instance may communicate with other process in-

stances through message passing. This is accomplished by calling built-in commu-

135

nication predicates. CSP* allows backtracking within processes to be coordinated

with concurrent activities among processes.

Programming examples in this chapter reveal the simplicity and expressive power

of CSP*. An experimental, deterministic version of CSP* has been built in a dis-

tributed programming environment Jade [XUC86, UBCD86]. All the examples in

this chapter, except the "Bank Robbery", have been tested.

Chapter 7

CONCLUSIONS AND DIRECTIONS FOR

FUTURE WORK

In this chapter, we review and summarize the contributions of this thesis, discuss

the advantages and disadvantages of the proposed logic programming system, and

suggest directions for future work.

7.1 Conclusions

Practical simulation work involves defining a problem and the goals of an experiment,

specifying a model which represents enough detail to achieve goals, implementing the

model as a working computer program, verifying the consistency of the model and

the problem definition, validating the consistency of the program and the model,

experimenting with the program, and producing documentation.

Since many simulation models are both large and complex, in many research

areas, expensive computers and human resources are devoted exclusively to sim-

ulations. Therefore, two important research directions are to reduce the costs of

simulation development and to speed up the execution of simulations. The objec-

tive of this thesis is to design a programming system that makes simulation easier,

cheaper and faster.

Different proposals for distributed simulations were compared in Chapter 2 which

suggested that a distributed logic programming system in conjunction with a run-

136

137

time kernel based on the Time Warp mechanism provides a basis for achieving our

goal.

The first contribution of the thesis is a distributed logic programming model.

In the model, a distributed logic program is represented by a set of logic processes

with which the user can specify different components in a simulation model. The

cooperations among logic processes are accomplished by explicit inter-process com-

munication.

A very simple syntax and a well-defined semantics for the logic programming

model were presented. We believe that the simpler the syntactical form and the

better defined the semantics of the language framework, the easier the simulation

task will be.

The second contribution of the thesis is the design of a practical implementation

of the distributed logic programming system. Based on Jefferson's Time Warp mech-

anism and standard Prolog interpreter, a kernel and a logic process interpreter which

provide functions to handle the cooperation of a logic process with other processes

were presented.

The mechanism to deal with the failures on virtual time is the rollback facility;

the mechanism to deal with the failures on virtual space is the global backtracking

facility. Since the algorithms of these facilities utilize the built-in state-saving and

local backtracking capabilities of the standard Prolog, we simplify the system imple-

mentation and overcome the non-knowledgeable state-saving problem in the original

Time Warp proposal.

In addition, we proved that the global backtracking algorithm is sound and partial

complete. The soundness and partial completeness results show that the system not

138

only provides a temporal coordinate system to measure computational progress and

define synchronizations, but also provides a spatial coordinate system to support

nondeterministic computations.

Finally, a distributed logic programming language proposal - Communication

Sequential Prolog (CSP*) is presented. In addition to the features inherited from

the standard Prolog, CSP* has new features to support distributed discrete event

simulation and object-oriented programming. The major extensions are summerized

as follows:

1. Explicit, dynamic processes: CSP uses explicit processes to show the con-

currency as well as the logic components of a simulation model. Processes can

be created dynamically. The syntactic mechanism which support dynamic pro-

cess creation, is the concept of process instances represented by process literals

in the bodies of clauses.

2. Process naming and communication connection: Each process instance of

a logic program in CSP* has a unique symbolic name. Process names in a

distributed logic program provide a global, user defined, fiat naming space.

They are used to direct communications among processes. CSP* offers ar-

bitrary communication connections, that is, processes can communicate with

each other provided they know their partner's names.

3. Inter-process communication and synchronization: CSP* provides an asyn-

chronous communication mechanism. A process is free to send any number of

messages to other processes without blocking. Synchronizations among pro-

cesses are governed by the agreement of their simulation time as well as the

139

agreement of their search positions.

Interestingly, we find the origins of these features not from the declarative pro-

gramming languages but from the procedural programming languages discussed in

Section 2.1.1. This is because traditional logic programming techniques are not

suitable for describing a changing world, while distributed discrete event simulation

needs the facilities for specifying model dynamics, decomposing simulation compo-

nents, and coordinating concurrent activities of these components.

On the other hand, based on the foundation of logic, CSP* has greater expres-

siveness then existing procedural programming languages. It provides a very simple

syntax and well-defined semantics. It can be used both for model specification and

model implementation. It can describe both deterministic and nondeterministic com-

putations.

However, these achievements are not without costs. First, although CSP* is

based on the theory of first order logic, the temporal construct and the evaluation

order dilute the essential simplicity of pure logic programming, therefore making pro-

grammers pay more attention to procedural considerations. In other words, we can

use CSP* as a specification languagc, but we must remember that it is only partially

complete. The philosophy here is that it is better to have at least some declarative

meaning rather than none, because a declaratively correct program (specification

correct) makes it rather easy to become a proceduraly correct program (implemen-

tation correct). For a large and complex simulation model, the proposed language

framework minimizes the costs of developing, modifying and debugging the simula-

tion program.

140

Secondly, since the send and receive predicates are treated asymmetrically, it is

possible that different arrangements of these predicates in a nondeterministic com-

putation will greatly influence the efficiency of the program (recall the example in

Section 6.1.4). Thus the user has to consider pragmatic issues in implementing a

simulation program.

Finally, CSP* does not provide security and protection for abstract data objects.

For example, suppose we have created a queue process, other processes may commu-

nicate with the queue object directly without going through the specified interface.

To conclude, the major advantages of CSP* are the simplicity that comes from

the distributed logic programming model, the flexibility that comes from dynamic

process creation and a symbolic naming space, the concurrency that comes from

asynchronous communication, the understandability that comes from the declarative

meanings of programs, and the expressive power that supports concurrent activities,

process synchronizations, message segregations and nondeterministic computations.

Though there are disadvantages to CSP*, such as the need for the user to be aware

of run-time efficiency issues (as described above), this language offers a potential

tool for model specification and parallel execution.

7.2 Future Work

An efficient, complete CSP* system still needs to be implemented. Then performance

of the system with a greater range of discrete event simulation applications can be

tested and evaluated.

Problems left in the implementation of a practical CSP* system are how to specify

141

and implement I/O processes; how to allocate processes to different processors; how

to debug a CSP program; how to monitor the execution of a CSP program; how

to implement a compiler instead of an interpreter; what statistics facilities should

be provided; and which simulation facilities can be standardized. All these problems

are essential in building a usable simulation environment and should be carefully

investigated.

When we measure the performance of a CSP system, from what criteria can

we compare the system performance with others? Of course, we can not only mea-

sure the performance at the stage of a program execution. As proposed both for

model specification and implementation, CSP* should minimize the effort devoted

to program development, debugging, testing and execution. The actual measurement

should include the performance results on all stages of a simulation task. Therefore,

we need a set of procedures to collect these results and a set of criteria to analyze

the performance of the system.

Furthermore, it is still not clear what types of discrete event simulation mod-

els can be easily expressed and also achieve good performance in CSP*. Greater

experimentation with different simulation models is required for analyzing the pro-

gramming style, expressiveness, efficiency, theoretical considerations and practical

implementation of CSP*.

Bibliography

[AM87] M. Abadi and Z. Manna. Temporal logic programming. In 1987 Sympo-

sium on Logic Programming, pages 4-16. IEEE, 1987.

[BG84] K. Broda and S. Gregory. Parlog for discrete event simulation. Research

Report DOG 84/5, University of London, March 1984.

[Bir79] G. M. Birtwistle. DEMOS a System for Discrete Event Modeling on

Simula. The Macmillan Press LTD., 1979.

[CG86] K. Clark and S. Gregory. Parlog: parallel programming in logic. ACM

Tras. on programming languages and systems, 8(1), January 1986.

[CGU85] J. Cleary, K. Goh, and B. Unger. Distributed event simulation in prolog.

In Al, Graphics, and Simulation, pages 8-13. SCS, 1985.

[CHM79] K. M. Chandy, V. Holmes, and J. Misra. Distributed simulation of

networks. Computer Network, 3(2), February 1979.

[CM7O] K. M. Chandy and J. Misra. Distributed simulation: A case study in

design and verification of distributed programs. IEEE Transactions on

Software Engineering, SE-5(5):440-452, September 1979.

[CM81] K. M. Chandy and J. Misra. Asynchronous distributed simulation via

a sequence of parallel computations. Communications of the ACM,

24(11):198-206, April 1981.

142

143

[Con87] J. S. Conery. Parallel execution of logic programs. KLUWER ACA-

DEMIC PUBLISHERS, 1987.

[Coo80] R. P. Cook. *mod - a language for distributed programming. IEEE

Software Eng., 6(6), November 1980.

[CUL88] J. Cleary, B. Unger, and X. Li. A distributed and parallel backtracking

algorithm using virtual time. In Distributed Simulation, pages 177-182.

SCS, 1988.

[DODSO] DOD. Reference Manual for the Ada programming language. United

States DOD, 1980.

[Fel79] J. A. Feldman. High level programming for distributed computing.

CACM, 22, June 1979.

[Fis78] G. S. Fishman. Principles of Discrete event simulation. Wiley Series on

Systems Engineering and Analysis, 1978.

[FS82] I. Futo and J. Szeredi. T-prolog: A very high level simulation system.

Technical report, Computer Research Institute, H-1015 Budapest Donati

u. 35-45, 1982.

[Fut88] I. Futo. Distributed simulation on prolog basis. In Distributed Simula-

tion, pages 160-165. SCS, 1988.

[GLB85] M. P. Georgeff, A. L. Lansky, and P. Bessiere. A procedural logic. Re-

search report, AT Center, SRI International, 1985.

144

[Gol85] D. G. Golden. Software engineering considerations for the design of

simulation languages. SIMULATION, pages 169-178, October 1985.

[Han78] P. B. Hansen. Distributed processes: a concurrent programming concept.

CA CM, 21, November 1978.

[HM84] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in

a distributed environment. In The 3rd Annual ACM Symposium on

Principles of Distributed Computing, pages 50-61. ACM, August 1984.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. CA CM, 21, Au-

gust 1978.

[Hoa82] C. A. R. Hoare. Specifications, programs and implementations. Techni-

cal report, Programming Research Group, Oxford University, 1982.

[IBM77] IBM Corporation. General Purpose Simulation System V User's Man-

ual. IBM Corporation, White, Plains, N. Y., 1977.

[Jef85] D. R. Jefferson. Virtual time. ACM Transactions on Programming Lan-

guages and Systems, 7(3):404-425, July 1985.

[JS82] D. Jefferson and H. Sowizral. Fast concurrent simulation using the time

warp mechanism, part i: Local control. Technique report, The Rand

Corporation, December 1982.

[Kes81] J. L. W. Kessels. The soma: a programming construct for distributed

processing. IEEE Software Eng., 7(5), September 1981.

145

[KH85] W. H. Kaubisch and C. A. R. Hoare. Discrete event simulation based on

communicating sequential processes. Technique Report CR 4.22, S.65,

The Queen's University, 1985.

[KTMB86] K. Kahn, E. D. Tribble, M. S. Miller, and D. G. Bobrow. Vulcan: Logical

concurrent objects. Technical report, Xerox Polo Alto Research Center,

1986.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed

system. CACM, 21(7), July 1978.

[Lis79] B. Liskov. Primitives for distributed computing. In Proc. of the 7th

symposium on operating system principle, 1979.

{L1o84J J. W. Lloyd. Programming in Logic. Springer Verlag, 1984.

[PWM79] J. K. Peacock, J. W. Wong, and E. Manning. Distributed simulation

using a network of processors. Computer Networks, 3(1):44-56, February

1979.

[Sha83] E.Y. Shapiro. A subset of concurrent prolog and its interpreter. Tech-

nique Report TR-003, ICOT, February 1983.

[Sil81] A. Sillberschatz. A note on the distributed program component cell.

ACM SIGPLAN NOTICES, 16(7), July 1981.

[5L87] Z. Sun and X. Li. Csm: A distributed programming language. IEEE

Software Eng., 13(4), April 1987.

146

[SS86] L. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, 1986.

[SY85] R. Strom and S. Yemini. The nil distributed systems programming lan-

guage: a status report. ACM SIGPLAN Notices, 20(5), May 1985.

{UBCD86] B. Unger, G. Birtwistle, J. Cleary, and A. Dewar. A distributed software

prototyping and simulation enviroment: Jade. In SCS Conference on

Intelligent simulation Environments. SCS, 1986.

[Ued85] K. Ueda. Guarded horn clauses. Technical Report TR-103, ICOT, 1985.

[ULB84] B. Unger, G. Lomow, and G. Birtwistle. Simulation .oftware and Ada.

SCS, A publication of The Society for Computer Simulation, 1984.

[VL87] J. Vaucher and G. Lapalme. Process-oriented simulation in prolog.' In

SCS Multiconference on Al and Simulation. SCS, 1987.

[XUC86] Z. Xiao, B. Unger, J. Cleary, G. Lomow, X. Li, and K. Slind. Jade virtual

time implementation manual. Research Report 86/242/16, The Univer-

sity of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada,

T2N 1N4, October 1986.

[YC87] K. Yoshida and T Chikayama. Ku-u - parallel object-oriented language

upon kll. Technical report, ICOT, September 1987.

APPENDIX

Syntax of CSP*

<clause>::= <process clause> j<procedure clause> <unit clause>

<process clause>::=<process head>::-<body>.

<procedure clause>::=<procedure head>:-<body>.

<unit clause>::=<literal>.

<process head>:: = <functor> (<process name> { ,<term> })

<procedure head>: :=<literal>

<body>: := <literal> { ,<literal> }

<process name>::=<literal>

<literal>: :=<functor> (<term> { ,<term> }) <functor>

<functor> ::= lower case identifier

<term>: :=<constant> I <variable> I <list> I <literal>

<constant>:: =integer Ilower case identifier

<variable>::=identifier starting with an upper case letter or a

<list>::=[] I[<term>'I '<list>]

147

