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ABSTRACT

A three-dimensional finite element model .of masonry for calculating
the potential loss of pfestress in post-tensioned hollow masonry walls is
developed. The model allows for creep and shrinkage in the mortar and
concrete block units, and stress relaxation in the prestressing steel;
Short-term experimental creep and shrinkage data of masonry components,
available in the literature, are fitted into mathematical expressions and
gxtrapolated to thé desired long-term times.

Fully bedded and face-shell bedded specimens of concrete block and
brick wall models are analyéed. Loqg—terﬁ as well as short~term upgér
and lower bounds to loss of pfestreés are caiculated. Upper and lower
limits correspond respectively to the worst and the best case of creep
and shrinkage strains in mortar and block units. Short-term computed
losses are compared with experimental values reportedrin the literature.
Finally, the'redistribution of stresses in post-tensioned hollow masonry‘
wall models is studied and the mechanisms causing redistributions are
discussed in detail.

The overall results indicate that post-tensioning ié a viable method

of increasing the long-term flexural capacity in masonry walls.
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CHAPTER 1
INTRODUCTION

1,1 Statement of the Problem

)

In recent years, prestressed masonry wall systems have gained a
new recognition as a structural option. The use of prestressiné in
masonry structures increases the tensile capacity as well as overcoming
the problem of crack size limitation. Furthermore, it has been ob-
served that prestressed designs are more ecoﬁomical than other struc~
tural systems.

In prestressed structures, a significant loss of prestress occurs
with time and the initial tensile capacity is reduced. Thps, it is
important to estimate prestress losses befo;e applying a prestressing
force. Very little is known regarding the prestress loss in masonry.
Therefore, the author's purpose in this research is to calculate the
potential loss of prestress in post-tensioned:hollow masonry walls. To
achieve this, a three-dimensional finite element model of masonry is
developed. This work iﬁvolved study of creep and shrinkage in mortar
and concrete blocks or brick wunits, and stress relaxation in
prestressing steel.

Creep is the time-dependent increase in strain induced in a
material at constant temperature by a constant sustained stress.
Contrary to creep, shrinkage does not depend on loading and is simply
the time-dependent contraction of material due to loss of moisture to
the environment. Like creep, relaxation is time dependent and is the
decrease in stress under a constant deformation at. constant temper-
ature. éoth creep and shrinkage strains have been observed in concrete

1



blocks, mortars and brick units by Lenczner (1969, 1971 and 1974) and
Ameny (1979 and 1982). 1In composite materials, the creep in steel is
neglected as it is insignificant as compared to the creep in the other
components. However, a significant relaxation of stress in the pre~
stressing steel takes place for stresses more thaﬁ fifty percent of the
ultimate strength of the pre;tressing steel.

Creep and shrinkage cause a continuous redistribution of stresses
in masonry units, mortar and steel in any reinfofced, prestressed oxr
;omposite masonry system. In the case of prestressed hollow masonry
walls, creep and shrinkage cause a contraction wﬁich leads to a signif-
icant loss of the initial prestressing force. Furthermore, stress
relaxation of the prestressing steel also contributes to the problem of
prestress loss. ‘

Experimental values of the loss of prestress in hollow masonry
wélls have been reported by Tatsa et al (1973), Lenczner (1983), Huizer
and Shrive (1984) and Lenczner and Davis (1984). These values are for
a relatively short period of time (200 day; only). Lenczner (1969,
1971 and 1974) and Ameny (1979 and 1982) obtained the short-term time
dependent deformational behaviour of masonry experimentally. But in
order to design masonry walls safely, stress loss in the steel over
time and long-term deformations must be estimated before applying a
prestressing force.

In "Masonry Designer's Manual" by Curtin et al (1982), 20% ulti-
mate prestress loss is suggested for post-tensioned brickwork masonry.
In the literature, a few approximate numerical methods have been

proposed to estimate long-term deformations of masonry from the proper-

ties of its different constituents by Jessop et al (1978b) and Shrive



and England (198l). Their solutions were based on several assumptions
and simplifications. Ameny et al (1984) suggested a few models to
estimaté long-term deformations based on analytical solution proce-
dures. Lenczner (198l) gave an approximate expression to calculate the
ultimate creep strain in brickworkrassuming a constant stress state at
all times. 1In order to predict results more accurately, more precise
numerical solutions have to be developed. Anand et al (1983 and 1984)
developed a two-dimensional finite element model which incorporated a
numerical solution techhique to calculaté the inflﬁence of
redistribution of stresses due to creep and shrinkage in composite
masonry walls. The numerical solution reguired creep and shrinkage
. properties of the different components of masonry structures.

Since the nature of stresses in masonry walls is essentially
triaxial, there was a need to develop a three~dimensional model into

which the effects of prestressing of steel could be incorporated.

1.2 Objectives of the Research

Accordingly, the objective of this study was to develop a numer-

ical technique for a three-dimensional model capabie of:

1. computing the redistribution of stresses in post-tensioned hollow
masonry walls due to creep and shrinkage;

2. including prestress force numerically with the efE;cts of stress
relaxation taken into account; and

3. calqulating both long and short-term, upper and lower bounds to

loss of prestress, given our current knowledge of creep, shrinkage

and relaxation properties.



1.3 Outline of the Research ,

To achieve the research objectives, the following work was carried

out and is described in this thesis.

1.

2.

Review the detailed relevant literature (Chapter 25.

Evolve a method of analysis for creep, shrinkage and relaxation
effects. Select and develop the numerical procedure and modify
an existing finite element program in order to incorpo;ate the
relevant time-dependent non;linear effects (Chapter 3). 7

Fit mathematical expressions to the short-term data of creep aﬁd
shrinkage of mortar, concrete blocks and brick units available in
the literature, such that the data could be stored efficiently in
the computer program. Further, the expressions were used to
extrapolate for the long-term behaviour of masonry (Chaptef 4).
Develop model specimens to represen£ both actual hollow concrete
masonry and brickwork masonry walls. Different models were
selected to represent different mortar combinations with concfete
blocks and brick units respectively (Chapter 5).

Study the redistribution of stresses between mortar and masonry
units using the modified program and prestressed hollow masonry
wall models. Further, upper and lower bounds to prestress loss in
the stretched steel bars were obtained. Finally, short-term

prestress loss values were compared with experimental values

reported in the literature (Chapter 6).



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the author's opinion, the literature review was not complete
until the research was over. As the study proceeded, certain points
needed to be studied and probed further. Those areas were researched
and the literature is discussed in the relevant chapters. In this
chapter, only that part of literature is reviewed which is relevant to
the main objectives of the study.

The use of prestressing in masonry is guite recent. Some experimen-
tal observations and theoretical results regarding stress distribution
in prestressed masonry have been reported in the literature but still
there is a lot more to bé done in this field. Very few observationg
have been made regarding loss of prestress in masonry due to time-
dependent effects. Nothing has been done to find the long-term pre-
stress loss. On the other hand, in prestressed coﬂcrete structures, a
lot of research work has been reported. Thus, in this chapter, some

work related to concrete is also reviewed.

2.2 Finite Element Models for Masonry

Khalil (1983) made an extensive search of existing literature about
finite element models in his Ph.D. work. His main finding was that
although masonry walls had been analysed with finite element models,
most analyses had involved two-dimensional plane elements only. Also
most of  the analyses involved solid homogeneous units only. There were
very few reports of three-aimensional stress analyses and those were

limited in scope. Khalil (1983) used a thfee—dimensional finite element



6
model to analyse hollow masonry walls, He concluded that finite element
computer programs can work really well for the analysis of both concrete
block and clay brick walls provided that reliable material properties
are used. He verified the values of stress and strain obtained
analytically by gomparing with expefimental values. In his analysis
Khalil used material properties determined by Ameny (1979 and:l982).
Khalil assumed perfect bond between units and mortar. He also assumed
that both unit and mortar were homogeneous, isotropic and linear-
elastic. The assumption of linear-elastic behaviour was justified by
analysing the model under a uniformly distributed load equal to 0.35 of
the ultimate strength.

In the area of hollow masonry, the work was carried further by
Simbeya (1985). He also used three—diﬁensiqnal models to assess the
stress distributions in masonry due to concentrated load. He modelled
different types of masonry wall to obtain an understanding of the stress
distributions. In his finite element analysis, Simbeya made the same

assumptions as Khalil.

2.3 Creep and Shrinkage Properties

A significant number of observations have been made in the past
concerning creep and shrinkage strains in masonry. 2An extensiye review
of published material on elas£ic, thermal, shrinkage and creep proper-
ties of masonry has been made by Jessop et al (1978a). Although Ameny
(1979) also made a detailed survey of the literature in this field,
points related specifically to this study are reviewed again here.

Poljakov (1962) made some important contributions to creep in
masonry. He studied creep strains of some brickwork prisms which were

subjected to a sustained stress of 0.4 to 0.6 of the estimated ultimate



strength of the test specimens. He noticed that the ultimate creep
strains devgloped in the prisms were 85-155% of the instantaneous
elastic strain. He tried to fit a mathematical expression to the
experimental creep data and. found that an approximate logarithmic
relationship existed between creep strains and the stress/strength
ratio. Further, if the stress/strength ratio was less than 0.6, £his
relationship could be a linear one. He also studied the effects of
different ages at loading. More importantly he formed an exponential
type expression for masonry creep as a fﬁnction of age at loadiné, the
duration of the load, stress over strength ratio and the brickwork type.
The expression was of the form:

stress -0.3t G

/7
Strength) (0.1 + 1.82 e o) (t—to)

ec(t,to) =Ax (

where ec(t,to) is the masonry creep at any time t, to is the age at
loading and A is a coefficient depending on the type of brickwork. This
was an important finding as it matches with the observations made by
Bazant and Wu (1973) in the field of concrete structures. Poljakov also
observed that the creep behaviour did not differ much due to eccentric
loading.

Lenczner performed many tests on brick masonry as well as concrete
masonry. Usiﬁg half size model bricks Lenczner (1969) observed that
creep strains in wall panels were lower than in the piers by 20%. He
found that considerable creep occurred in the piers, thoﬁgh 80-96% of
the creep strains at 70 days occurréd in the first 28 days. Lehczner
(1971) also concluded that creep in brickwork containing full size
bricks was much sméller, even 1less than one-fifth 6f creep étrains

measured in model brickwork.



Lenczner et al (1975) performed tests to study the effects of
stress levels using different types of units and mortars. They observed
that creep gtrains increased with stress although the relationship was
not linear, especially when stress/strength ratio exceeded 0.4. They
concluded that creep could be expected to cease Qithin a year.

The effects of age at loading and eccentricity in brick masonry
were studied by Lenczner and Salahuddin (1976). They noticed that age
at loading, provided it was greater than 14 days, did not change the
creep strains very signifiéantly. Small eccentricities had little
influence on creep béhaviour. Creep tests on isolated brick.units were
aléo performea. It was observed éhat there was not much creep in the
individual units and most of the creep occurred in the first 30 days.
This behaviour indicated that the major portion of creep in brickwork
occurred in the mortar joints. The main point to be noted is thatréll
their tests were conducted at a constant temperature of 20°C and approx-
imately 50% relative humidity. 1In their tests shrinkage strains were
also examined. Maximum shrinkage in brick walls was found to be only 54

X 10-6. On the other hand individual bricks showed some moisture

expansion and the maximum expansion strains were 30 X 10-6.

Wyatt et al (1975) tried to fit the creep data of brick masonry
obtained earlier by Lenczner to an equation or expression form. They
obtained a logarithmic relationship between creep strains and age at

observation of creep strains. The function was of the form:

c stress ,3
e (t) = 2500 (strength) n (£t + 1)

Lenczner (1974) studied creep and shrinkage in blockwork. He
observed that the creép strains which developed in the blockwork were

considerabiy higher than those of the“brickwork. He found that for his



circumstances, creep ceased at all stress levels after approximately 300
days. Another point he observed was that creep strains in the mortar
(1:1:6) were 4 to 5 times greater than those in the concrete block
units. When the tests were conducted again at a constant.temperature of
20°C and 50% relative humidity, it was observed that the shrinkage
strain rate was very high in the beginning followed by a slow rate.
After 320 days, shrinkage strains in blockwork were 525 x lO_6 while in
individual block wunits the strains were 410 x 10_6. At this time
gtrains were still increasing but at a very reduced rate.

Ameny (1979 and 1982) in his M.Sc. and Ph.D. theses obtained a
similar set of creep and shrinkage strain data for concrete and brick
masonry compared with the data Lenczner had obtained. Ameny concluded
that the order of magnitude of étrains was the same as had been obtained
by Lenczner. The main difference was that in Ameny's case, there was no
provision to maintain constant temperature and humidity although the
laboratory was centrally air heated and the observed temperature and
humidity during the course of experiments did not vary much except on
one occasion.

Ameny et al (1980)‘concluded that in concrete block masonry when
the ratio of applied stress to masonry strength is in the range of
0.17-0.40, creep is linearly related to the stress/strength ratio and
further that this relationship is not altered by eccentricity of
loading. Creep strains in block masonry were 18-43% higher than creep
measured in the iﬁdividual blocks. Hence, the mortar crept more than
the blocks.

Ameny et al (1984) reported that brick creep was very small with a

creep coefficient of only 0.08-0.13 after one year. For convenience the
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creep coefficient has been defined as the ratio of the creep strain to

the elastic strain.

_ .c el
i) = e, e ) /e (t)

Since there was no gauge available to measure the mortaf strains individ-
vally, a few separate tests were conducted on mortar cylinders, although
Ameny (1982) acknowledged that the behaviour of the mortar cylinders did
not representnthe true behaviour of mortar in masonry. In his test
specimens two different mortar cases were taken. Creep strains of N-
mortar were observed to be much higher than thét of M-mortar.. He
observed very low shrinkage strains in brick masonry and concluded that-
it could be neglected. As per Jessop et al (1978a) there is a
significant amount of mo;sture movement (expansion) réported in
brickwork. In the e;rly stages, bricks unéergo significant reversible
expansion, Ameny et al (1984) however, reported 1little moisture
expansionAin the brickwork, as the bricks used were thoroughly soaked in
water before constructing the test specimens.

Tatsa et al (1973) noticed that in the case of concrete blockwork
walls the ratio of the creep strains in the joints to the creep strains
in the blocks was 4.4 when specimens wefe not presoaked and 16.8 when

specimens were presoaked.

2.4 Prestress in Masonry

A few published reports about experimeﬁtal observations of stress
distribution due to prestregs in masonry can be found in the literature
but théoretical analyses are rare.

Suter et al (1983) tried to analyse prestressed masonry walls

theoretically but that work was very limited in scope. In the stress
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analysis, only two-dimensional constant strain triangular plane finite
elements were used. This did not represent the triaxial stress nature
of prestressed masonry walls. Further, the prestressing steei stiffness
was neglected and moreover, the prestressing force was represented as a
concentrated load at the top of the wall. This did not represent the
actual prestressing load system.

Simbeya (1985) contiﬁued work in this field by analysing masonry
walls with a concentrated load using three-dimensional solid finite
elements. He studied the stress distribution in a number of different
masonry walls.

Tatsa et al (1973) made a few experimental observations in block-
work walls regarding prestress loss in masonry. Their main. conclusion
was that losses were of the same orxder of magnitude as in conventional
prestressed concrete. In their tests all panelé were prestressed to 45%
of the ultimate strength and the post—tensioped steel bars were stressed
to 83% of the ultimate tensile strength. After 180 days prestréss loss
. due to creep and shrinkage was found to be 12.5% and due to stress
relaxaﬁion of steel 6.5%. The overall short term losses after 180 éays
were in the order of 20%.

Recently Huizer and Shrive (1984) reported experimental values of
short~term losses in a post-tensioned concrete block masonry wall. The
block units used were over three years old and tﬂus the mortar: was
expected to contribute most of the total éreep of shrinkage. Post-
tensioning steel wires were of high tensile strength and were prestres—
sed to 70% of the ultimate strength.. Over 200 days, the observed
prestress loss due to creep, shrinkage and relaxation was 16% or less.

Short-term loss of prestress in post-tensioned brickwork has been
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observed by Lenézner and Davis (1984). His findings were that prestress
loss in brickwork practically ceased after some l75idays and 50% of the
loss occurred during the first 25-40 dayé. After about a year, 9-11%
prestress loss was observed in bpickwork walls. As the prestressing
bars were not stressed more than 50% of the ultimate strength, loss due
to relaxaﬁion of steel was negligible. Thus, the overall loss reported
was essentially because éf creep and shrinkage only.

Curtin et al (1982) recommend 20% ultimate loss of post-tensioned
force to be considered in the design of post-tensioned brickwork masonry
due to creep, shrinkage and relaxation effects. Wherein the losses due
to relaxation may be taken as about 8% at the 76% stress level and 0% at

50% stress level.

2.5 Method of Analysis

In composite masonry, a numerical approach has been developed by
Anand et al (1983 and 1984) for the solution of creep and shrinkage
problems of a two-dimensional nature. A similar approach has been used
by a number of authors in the field of concrete structures. On the same
topic, several;finite element texts, e.g. by Zienkiewicz (1977) and Cook
(}981), are also available. It is a load incremental, iterative, step-
by-step solution method in the time domain. The first step is an
elastig analysis of the problem. At the end of the time stép, creep and
shrinkage strains are calculated. 'These are taken as initial strains
for the next time step and the problem is analysed again. This pro-
cedure is continued until either the final requisite time is reached or
the stress-strain distribution in.two conseguent time steps differs only
slightly. This method is general énd apélicable for any form of creep

and shrinkage input data.



CHAPTER 3

FINITE ELEMENT ANALYSIS FOR CREEP, SHRINKAGE
AND RELAXATION EFFECTS

3.1 Introduction

Masonry is a composite type of construction wherein concrete blocks
or brick units are joined together by thin layers of mortar. Different
material characteristics of mortar, concrete blocks and brick units make
the analysis of masonry walls very complicated especially when time-
dependent effects due to creep, shrinkage and relaxation properties are
also incorporated. The use of hollow units, prestressing steel and
different mortar bedding types in between the'masonry units increase the
complexity of stress analysis in prestressed hollow masonry walls.
Approximate solutions for the time-dependent analysis of masonry struc-
tures have been reported in the literature but are‘based on several
assumptions and simplifications. In order to predict long-~term
behaviour of prestressed masonry accurately, the finite element method,
a numerical solution prqcédure, was chosen for the present study.
Modern age computers have popularized this method of analysis. The
finite element program available to the author, had to be modified to
perform time-dependent non-linear analysis as previously it only had the
capacity of analysing 1linear élasto~static problems. A numerical
solution technigue was developed to include the effects of the creep,

shrinkage and relaxation properties of masonry.

13
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3.2 Creep, Shrinkage and Relaxation Effects

3.2.1 Creep and Shrinkage Phenomena

Basic definitions, theories of creep and sh;inkage phenomena, theirr
meéhanisms and different methods have been given in detail in the text
by Neville et al (1983). This text has been referenced throughout this
study as an aid in understanding and apélying the different concepts and
analysis methods.

In this section, the basic assumptions made in the analysis for
creep and shrinkage properties are discussed.

Creep has been defined as the strain in excess of the elastic
strain at the time of application of load. In reality materials gain
stiffness with aging so that true elasticz strain decreasés as time
passes. Therefore, creep is actually.the strain in excess of the true )
elastic strain. The change in elastic strain over t;me has been op—
served to be sm;ll. It has been neglected in past studies to simplify
the analytical procedure. EIn this study, it is assumed that the elastic
strain remains constant du?ing the entire time analysis.’

In the literature, creep and shrinkage phenomena, occurring at tﬁe
same fime, have been assumed to be additive. In reality the two are
interdependent. In general, the effeé£ of shrinkage (drying) on creep
is to increase the magnitude of creep strains. For simplification,
however, ‘the creep strains are taken .to be those in excess of the
shrinkage strains. The input data of creep and shrinkage properties of
masonry components used in this study were based on the assumption of
the additive phenomena.

It has been reported by Bazant (1982) that creep and shrinkage

strains do not remain constant throughout the depth of cross sections of
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test specimens. This uneven distribution across the section causes
internal forces which may cause surface cracks. In the case of thick
sections, these effects may be very severe. The sections of masonry
walls, analysed in this study, as well as those of prism specimens which
were used to obtain creep and shrinkage data, were not thick. Thus, the
creep and shrinkage strains may be assumed to represent an overall or

mean value across the cross section.
3.2.2 Creep

3.2.2.1 Influencing Factors

Creep strains are influenced by a large number of factors which
have been given in detail in the text by Neville et al (1983). Only the
main points are reviewed here and a comparison between laboratory tested
specimens and the model specimens, analysed in this study, will be made
in the next chapter through the following factors.

1. Compressive Strength: In general, creep deformations are inversely
proportional to the ultiméte compressive strength of the unit.

2. Relative Humidity: Creep strains decrease with an increase in the
ambient relative humidity provided there are no fluctuations in the
relative humidity after loading the specimens. It has been ob-
served that creep increases if the specimens are exposed to
variations in the relative humidity after the application of
loading.

3. Size of Specimen: Creep deformations decrease with an increase in
the thickness of the specimen, but when the thickness exceeds about

0.9 m the size effect becomes negligible.
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4, Magnituder of Applied Stress: Creep strains increase with the
magnitude éf the sustained stress. This relationship is generally
found to be linear for .a stress level of 0.4 of the ultimate
strength.

5. Time Since Loading: Creep strains increase with the duration of
applied stress.

6. Age at Loading: Creep strains decrease with an increase in the age
at which the load is applied.

7. Temperature: Creep strains increase with temperature,

proportionally in the range of 20° to 70°C.

3.2.2.2 Creep under Compression and Tension

Most of the creep data in masonry have been obtained with uniaxial
compression tests. In the literature as per Neville et al (1983), many
researchers have observed the creep in tension and compression to be
equal under an equal magnitude of stress. In the present s?udy of
prestressed masonry walls, all model specimens are in compressioﬂ
although 1local tensile stress may be present at some points. The
average compressive stress is 0.25 of the ultimate strength of masonry,
ensuring that the stresses remain in the working stress range. The low
tensile stresses in the present analysis allow the assumption that the
magnitude of total creep under both states of stress is the same and
creep data obtained from compression tests have been used for tensile

stress states too.

3.2.2.3 Creep under Multiaxial Stress State

It has been observed that during uniaxial compression tests, creep

strains not onhly occur in the direction of applied stress, but also
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normal to it. This induced lateral deformation due to creeb has been
defined as lateral creep strain. Similar to the definition of elastic
Poisson's ratio, creep Poisson's ratio has been expressed as‘the ratio
of the 1atera1,creép strain to the creep strain along the direction of
the applied stfess.

In the case of masonry structures, nothing has been reported aboutr
values of creep'Poisson's ratio. In the field of concrete structures, a
lot of research has been done. Some have qbserved creep Poisson's ratio
to be very closé to the elastic Poisson's ratio.

As only uniaxial creep test data are available, a multiaxial stress
state has to be developed from fhe uniaxial stress state. To develop a
three-dimensional stress state, two approaches have been rebo;ted.

In the first approach, creep Poisson's ratio is used. In any
direction of three~dimensional multiaxial stress state, creep occurs due
to stress applied in that direction as well as due to stresses in the
other two normal directions. By assuming that all strains occur inde-
pendently of one another, the principle of superposition can be applied
and‘a multiaxial stress state can be developed and expressed as follows:

C cu cu cu

€, =€, =-V_E€. =V_E€ (3.1)
i i cu Jj cu k
where ezu, egu, eEu are the axial creep strains due to the separate

action of principal stresses o., o, and 0. Veu is the creep Poisson's

1’ 72 3

ratio under wuniaxial compression and ez is the total creep in the
direction of oi"under multiaxial stress state. If the stress in any .
direction is less than 0.4 fﬁ, where f& is the ultimate compressive

strength, then the observed experimental fact of a linear relationship

between creep strains and sustained stress can be used. For convenience
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the specific creep term, which has been defined as the ratio of creep
strains to the stress applied or creep strain per unit stress, can be

used.

where C is the specific creep and Ou is the uniaxial stress.

Equation (3.1) can be rewritten as

o €U
€7 = o [T, =« V g g
1 55 9 7 Vel
u
(o]
€7 = g -~V ag g
§ = CIoy = V(0 + 0] (3.2)

ch can either be taken equal to elastic Poisson's ratio or can be any
experimental observed value. Further, it may be different in all three
directions.

In the second approach an effective stress-strain relationship is

used. It has been observed that the volumetric creep (Siu + €S9 4 SH

2 3 )

has the same relationship with time as uniaxial creep. As per Neville

et al (1983) a linear relationship has been found between

R N G R Tt K Y-
[0, - 0% + (9, - 0)% + (0, - )]

The same concept has been stated in the text by Crandall et al (1972) in
the form of a relationship betweenr equivalent stress and ﬂeéuivalent
creep strain. Creep behaviour was associated with yield criterion of
plasticity. This approach was used by Haque et al (1974) in the study

of tensile creep analysis of concrete structures. Recently, using the
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concepts of this approach, Anand et al (1984) developed the multiaxial
stress state of composite masonry.

This technique can be summarized as follows:

Q
|

1 2 . 2 2
/-2—[(01 - 9,) .+ (0, -0 + (03 -9 (3.3)

2 2 2
J2re, —en? e e, - ) (e

1l

and € - e’ (3.4)

3

where Oe is the effective stress and €e is the effective strain which is
equivalent to effective plastic strain. 01, 02 and 63 are the principal
stresses and €l> 82 and 83 are the principal strains. The main assump-
tion of this approach to cgeép analysis is that the equivalent plastic
strain of Equation (3.4) has been replaced by experimentaliy observed

uniaxial creep strain which has been defined as the equivalent creep

strain.

£ = € . ] (3.5)

c ., . . s s .
where Ee is the equivalent creep strain. Then multiaxial creep strains

can be expressed as follows:

1
[0, =5 (9, + )] . (3.6)

0
Q (U]
o lm Q

[oy - -;. (oz + ox)] (3.6b)

Q
Q ™
o Im Q

[0, = 5 (0, + ) (3.60)
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eC
C e )
=3 =T
ny 3 S Xy (3.64)
e
e . 5%
= — T
sz 3 7 ‘yz (3.6e)
e
e . % |
sz =3 Ue sz (3.60)

(o]

c c c . c
where Ex' Ey and Ez are the normal creep strain components and Yx ' sz

and Y;x are the shear creep strain components.
In the absence of any experimental data regaraing creep Poisson's
ratio in masonry, the second approach has been used in the present study

to develop multiaxial creep strain components.

3.2.3 Method of Creep Analysis

'Creep deformations are stress dependent but do not cause any change
in the overall stress resultant under constant loading conditions. In
the case of plain homogeneous sections subjected to a constant 1load,
creep analysisris fairly simple as the stress always remains constant.
In the case of reinforced or prestressed sections, however, complexity
arises because of the presence of.the steel. The steel restrains the
creep deformaﬁions of the surrounding material and results in a redis-
tribution of stresses as the overall stress resultant still remains the
same. Redistribution of stresses changes the constant stréss problem to
one of variable stress with time. In the case of prestressed struc-
tures, this problem is further complicated. Due to creep deformations,
contraction is produced which results in a drop in the initial prestress

value and continuously varies the overall stress with time.

v
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Various methods for creep analysis have been explained by Neville
et al (1993). In the present study, a step~by-step numerical solution
technique has been selected to deal with the problem of stress varying
continuously with time. Formulation of the numerical technique is

presented in the following sections.

3.2.3.1 Principle of Superposition

In relation to creep, the principle of superposition states that if.
a specimen is subjected to different stresses at different times, the
creep strain produced at aﬁy time due to a stress applied before is
independent of the effects of any other stres§ applied before or after.
This principle which is well documented in a report by Anand et al
(1984) can be explained with the help of Figure 3.1. Creep fesponse is
to be obtained for a specimen subjected to the streés state as shown in
Figure 3.la. This stress state is represented by two independent stress
levels acting at éifferent times as shown in Figures 3.lb and 3.lc.
Their superposition gives the same value of stress at all times, as
shown by Figure 3.la. Creep responses to stress levels of Figures 3.1b
and 3.lc are given by virgin specific creep* curves as shown in Figures
3.1d and 3.le respectively. From the principle of superposition, the
creep response to each stress level can be assumed to be independent of
the other. The combined creep respénse can be obtained from the
summation of the curves of Figures 3.1d and 3.le as shown in Figure

3.1f.

* ,
Specific creep is defined as the ratio of creep strain to the stress

applied or creep strain per unit stress.
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Mathematically this can be expressed as:

at any time t > tl’ due to stress Oo of Figure 3.1b

[}

. _
e (t) =0 Clt,t) - (3.7)

where eg(t) is the creep strain at time t due to a stress oo applied at
time to and C(t,to) is the specific creep strain at t due to stress
applied at age to.
c
Ael(t) = (ol - co) C(t,tl) (3.8)
where Aei(t) corresponds to stress (01 - UO) of Figure 3.lc. From the
principle of superposition, the total creep strain due to a stress state

of Figure 3.3a is

c _ ¢ c
e (t) = eo(t) + Ael(t)

. c _ -
i.e. e (t) = GOC(t,to) + (c1 co)C(t,tl) (3.9)

For a general case of (n-l) stress changes in n time intervals, the
toﬁal creép strain at time tn is equal to:
n-1 -

c _ .o
€ (tn) = coc(tn,to) + iil Aci C(tn,ti) (3.10)

whefe Aci = ci - Oi—l : (3.11)

Equation (3.lO),_derived'from the principle of superpésition; is used
here in the step-by-step solution method. As per Dilgér (1982), this
principle gives good comparison with experimental results for increasing
stress and slightly decreasing stress. For complete unloading, predict-
ed results are overestimated. 1In this study, the principle of superpo-

sition has been assumed to be valid here as unloading is only due to the
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loss of prestress which is a small part of the total loading.

3.2.3.2 Step-by-Step Numerical Solution Method

The creep problem iq prestressed structures has the varying stress
state shown in:Figure 3.2a. In this method, the total time is divided
into a number of time steps. For a particular time interval, the stress
at the beginning of the time interval is known. At the end of the timé
interval the new stress must be determined from the creep analysis
procedure for the model specimen.

(a) Explicit and Implicit Schemes

Quite a few fofmulations of the step-by-step method have been
reported but all of them can be classified into one of the two schemes
known as explicit or implicit. In the case of elasto-viscoplastic
solids, these schemes have been diécussed'by Owen and Hinton (1980).
Since the creep case is similar to elasto-viscoplasticity, the two
procedures for the creep problem are reviewed here.

The creep strain at time tn+l' due to a step increment of stress

(On - Gn_l) applied at time tn can be found from Equation (3.8) and is
equal to:
c N _ _ '
Ae (t /4) = (O, =0 _)C(t q4,t) =40 Clt ,,t) (3.12)

In general, for a continuously varying stress, Equatién (3.12) can ke
written as:
Aec(t
n

n+l) = [ - K)Ac,n + K Ac’n+l]c(tn+l’tn) (3.13)

Ao =0 -0 i . i
where n+l n+l n and K is any constant With K equal to zero a

fully explicit scheme or forward difference method is obtained as the

creep strain increment is determined from the stress existing at the
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beginning of the time interval, i.e. at time tn. On the other hand K
equal to unity results in a fully implicit scheme or backward difference
method as the creep strain is‘determined from the final stress at the
end of the time interval, i.e. at time tn+l’ In Figure 3.2a an explicit
scheme has been shown by a dotted line while an implicit scheme is shown
by a chain-dotted line.

As per Owen and Hinton (1980), for K less than 0.5, the numerical
process is only conditionally stable and it can only proceed when the‘
time interval, Ati, is less than some critical value, otherwise it
results‘in numerical instability. For K greater than or equal to 0.5,
the procedure is unconditionally stable but may not giVe accurate
results unless there is a limit put on the time step length. On the
other hand explicit methods simplify the analysis procedure, as in
Equation (3.13) with K equal to zero, the only unknown to be solved is
Aeg. In the implicit scheme (with K=1), bes%des Aeﬁ,‘the other unknown

to be solved is o, Use of an implicit scheme requires the kndwledge

+1°

of creep flow rate criteria. Since few data are available about masonry

creep behaviour, an explicit scheme was adopted for this study.

(b) Solution Method Used

The two-dimensional creep analysis procedure used by Anand et al
(1984) has been modified here for a three-dimensional problem. The
total time span is divided into a number of time steps. The continuous-
ly varying stress problem of Figure 3.2a has been transformed to one as
shown in Figure 3.2b using the explicit scheme.‘ The basic steps are as
follows:

1. At time to' the elastic analysis is performed with resultipg elastic

stresses o ag g T T T and the corresponding strains e £
%! yr 2’ xy’ yzl —_— P g %’ yr
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€ . Princi i
3' ny‘ sz,‘sz rincipal stresses Ul, 02 and 03 are obtained and

using Equation (3.3) the effective stress, ce, is calculated. 1i.e. at

time t = to, 80 = ce. This is assumed to remain constant for the first

time intexrval from to to tl.

2, Using Equation (3.7) creep strain e at time t, is calculated as:

1

C _ <C o= ‘
€9(ty) = el(t)) = T Clty,t) , (.14

This requires input data of the specific creep curve for the specimen
loaded at to, as shown in Figure 3.2c. Creep input data for the.present
study are discussed in detail in the next chapter. For the time being,
it has been assumed that creep data in the form of specific creep curves
are known. As €g(t1) is also the change in creep strain in the first

time interval, Equation (3.14) can be rewritten as:

o _ .
AeO,l = 00 C(tl,to) (3.15)

c . s s .
where Ae is incremental creep strain from time t0 to t

o,1 1°

3. In Eqﬁations (3.6a) to (3.6f),¢ Z is substituted by Aeg and all
14 R

1
six creep strain components are calculated at the end of first time

interval At.. At time t

1 1r these creep strains are taken as initial

strains and the model specimen is analysed again yielding incremental
displacements, stresses and strains. Thé details of the initial strain
approach for this step are explained in the finite element analysis
method. The new incremental stresses, strains and displacements ob-
tained in this step are added to previous total values of stresses,
strains and displacements respectively. From these known total stresses
and using Equation (3.3), a new effective stress, ce, such that 51 = Oy

is calculated. It is assumed to remain constant for the next time

interval i.e. from t1 to t2.
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4, Using the principle of superposition from Equations (3.8) and

is calculated as:

(3.9), total creep strain, gc(tz), at time t,

c _ — _—
Mes(t,) = () = 5_)ClE,,t) | (3.16)

c = - _ = . ) ;
> (t2) = ooC(tz,to) + (ol cO)C(tz,tl) ’ (3.17)

This step requires a specific creep curve for the specimen loaded
at tl as shown in Figure 3.2d. From Equations (3.14) and (3.17) the

incremental creep strain for the second time interval can be calculated

as:

c c c
Ael,z = g (t2) - € (tl)

iee. Ae] 5 = 0 [Cleyt ) = Cle )] + (5 = 5 )C(E,,t)) ©(3.18)
! . .

For the next step Aeilz is substituted in Equation <3.6) and all-
components of incremental creep strains are obtained.
5. For the succeeding time intervals steps 3 and 4 are repeated.
Equation (3.18), obtained in step 4, can'be generalized for any time
interval, Fdrhexample, from time tn__l to tn’ i.e. the nth time inter-

val, it generalizes to:

c —- -
Bep g o = 0o1C(E B = ClE 5.t +
n-1 _ _ .
I (g o) [l ey - Cley gty . (3.19)

"

Equation (3.19) requires input data of different virgin specific creep

t and so

curves for specimens loaded at different ages to, tl’ eeer B0

.on as shown in Figure 3.2d. The analysis procedure proceeds until the

final time of interest is reachéd.
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The only constraint by the explicit scheme is the selection of time

step lengths. In the field of concrete structures subjected to continu-
ously varying stress, it has been reported that for the best results,
the lengths of the time intervals chosen should be approximately equal

on a log~time plot.

3.2.4 Shrinkage

3.2.4.1 Influencing Factors

Shrinkage strains are influenced by the following factors:
1. Type of Unit: Shrinkage strains depend on the type of the main
unit used. For example, in the case of brick units, during early stages
‘shrinkage may be present in the form of expansion strains.
2. Relative Humidity: Shrinkage strains decrease with an increase in
the ambient relative humidity.
3. Size of Member: Mean shrinkage strain decreases with an increase
in the thickness of the sectioﬁ. The thicker the section is, the more
non-uniform theyshrinkage strains become.
4, Time of Drying: Shrinkage strains increase with an increase in the
duration of drying or the age of the member.

In the next chaptér, strains obtained from laboratory shrinkage
specimens are related to the model s$pecimens analysed in this study

through the factors above.

3.2.5 Method of Shrinkage Analysis

Shrinkage analysis can easily be incorporated in a step-by-step
solution method as the strains are independent of the applied stress and
are assumed to be constant throughout the cross section. For the

purpose of analysis, shrinkage strains can be assumed to be of the form
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of a curve as shown in Figure 3.3. Details of the input data are
discussed in the next chapter.

The shrinkage strain at any time t can be read from Figure 3.3 as
es(t,té) where ts is the age at the start of drying. In a step-by-step
solution method during any time interval, incremental shrinkage strains

- N
are taken as initial strains occurring at the end of that time interval.
The model specimen is re-analysed for these initial strains. The
resulting stresses, strains and displacements are added to previous
stresses, strains and displacements respectively to vyield new total
values.

In general, for nth time interval, i.e. from tﬂ-l to tn’ incre-

mental shrinkage strains are calculated as:

]

Aen—l,n

S s
=g (tn'ts) - € (tn_llts) (3.20)

3.2.6 Relaxation

Stress relaxation in the prestressing bars is the loss of tensile
force with time, even though the sample is maintained at constant length
and temperature. For the present study, stress-time functions for

different steels have been taken. For normal relaxation steel, Magura

(=4

ot @ - st > > > -

shrinkage .strain

Ao > - w— . =

Y

s n-1 tn
time

Figure 3.3 Shrinkage Strain vs. Time

P T i,
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et al (1964) suggested an expression of the form:
lqglo24(t—to) £

(fpi - 0.55)] C(3.21)
py ‘

fps(t) = fpi[l - 15

For low relaxation steel the PCI Committee (1975) modified the above
expression to:

log, 24(t~t ) £_. ,
20 > (B - 0.55)] (3.22)
1204

fps(t) = fpi[l - 3

where fps(t) is the stress in .the prestressing steel at time t, fpi is

the initial prestress, (t-to) is the time in days since the initial
prestressing is applied and fpy is the yield strength of steel. It can
be taken as:

£
pY

£
pu

where fpu is the ultimate stfength of the prestressing steel. The

0.85 fpﬁ for normal relaxation steel and

0.90 fPu for low relaxation steel

stress loss Af;s, due to relaxation, at any time t can be computed as:

. . ) .
Afps(t) = fpi fps(t) ) (3.23)

i.e. for normal relaxation steel

£ .. . f .
r = Bl - _BL
Afps(t) = 16 [1og1024(t to)](fpy 0.55) (3.24)

and for low relaxation steel

£, £,
Af;s(t) = Z%i [log1024(t-to)](§££ - 0.55) (3.25)
py '

3.2.7 Method of Relaxation Analysis |,

Equation (3.21) or (3.22) can be plotted as shown in Figure 3.4a.
For a step-by-step solution technique, the analysis method for relax-

.ation effects with creep and shrinkage strains has been taken from Loov
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(1984).

(a) For normal relaxation steel:

]

Assuming tO 0, from Equation (3.21) steel stress at time tn is:

1og1024tn £,

= - pLl _
.fps(tn) fpi[l 10 (f 0.55)] (3.26)
- pY
At time tn+l
log. .24t £ .
_ 10 n+l pi
£os (Enen) = Fpsll 15 (fpy 0.55)] (3.27)

Steel stress loss due to relaxation in the (n+l)th time:interval is

equal to:
AEE = f (t ) - £ (t) |  (3.28)
n,n+l ps’ n+l ps' ' n _ :
r fgi tn+1 fpi
i.e. Afn,n+l =15 [logloﬁjirﬁl(§;; - 0.55) . (3.29)

Equation (3.29) is valid if only the relaxation effect is present. 1In
the present case, steel relaxétion loss is accompanied with losses due
to creep. and shrinkage effects as well. This combined effect for the
(n+l)th time interval has been shoyn by Figure 3.4b. At time tn, let
the net stress in steel due to creep, shrinkage and relaxation effects
be fps(tn), such that

1og1024tn

£ .
(fpln - 0.55)] (3.30)

fps(tn) =£ , [l ~
by

pin 10
where fpin is the modified initial prestress for the (n+l)th time

interval. At time tn+l

log. .24t £ . .
10" n+1
ps (Ene1) = Tpinll - G (F— - 0.55)] (3.31)

pY

£
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and the loss of prestress due to relaxation only is equal to:

r

Afn,n+l = fps(tn+l) - fps(tn) “(3.32)

From Equation (3.30) fpin can be determined as:

1og1024tn ] 2 Qs 0.55 log1024tn) . b e (6 =0
10f pin 10 pin ps n
pY
5 10 fpy lOfpyfpS(tn)
£ . - (——=2— 4+ 0.55)f , + =0
pin log1024tn pin logloz4tn

£, = by —22 + 0.55 - J/{—__EQ___ + 0.55)2 - s )
pin 2 loglo24tn , log1024tn fpylog1024tn

(3.33)
From Equations (3.31), (3.32) and (3.33) stress loss due to relaxation
in (n+l)th time interval can be found.

(b) For low relaxation steel Equations for f£__(t Yy, £ and Afi

ps n+l pin yntl

can be developed the same way as has been done in the normal relaxation

steel case.

£ 180f (t )
in =50 4524t *0.55 - ,/41 4524t #0.55)% - R
pi ©910°**n ©910°%*n Py °910“**n
(3.34)
log., .24t £ .
_ 107 ""n+l “pin ‘
fps(tn+l? = fpin[l 75 (fpy 0.55)] (3.35)

During the (n+1)th time interval, stress loss due to relaxation can be

found by Equations (3.32), (3.34) and (3.35).

3.3 Finite Element Methéd

The definition of the finite element method has been adopted from

the text by Zienkiewicz (1977) and is reviewed here. It is a general
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discretization procedure of continuum problems which approximates the
solution process (a) by dividing the continuum into a finite number of
elements whose behaviour is specified and (b) by solving the whole
system as an assembly of its elements following the same rules as those
applicable to standard discrete problems. Throughout this study the

above mentioned text and the text by Cook (1981) have been referenced.

3.3.1 Computer Program Used

Two finite element programs (1) FINEPAK and (2) SMAC were available
to the author. Both the programs were general and had the capacity to
solve three-dimensional elasto-static problems. Program FINEPAK had one
3-dimensional 20-node solid displacement element while SMAC had the
following three 3-dimensional elements:

(1) 8~ to 2l-node displacement eleﬁent

(2) 8-node hybrid stress element

(3) 8-node incompatible modes element

The 20-node displacement element of FINEPAK was used previously by
Khalil (1983) and Simbeya (1985). Clearly SMAC has the advantage of two
additional 3-~dimensional elements. Chieslar (1985b) made some theoret-
ical comparisons of hybrid elements with conventional displacement
elements. He concluded that in bending, hybrid elements give the most
economic solution. He also proved the superiority of an 8-node hybrid
stress element over aﬁ 8-node displacement element. An 8-node hybrid
element has the advantage of fewer variables compared to a 20-node
displacement element even though the final results were comparable. In
the case of a non-linear analysis with a étep-by—step solution tech-

_ﬁique, a larée guantity of data in the form of stresses, strains and

displacements from previous time step must be stored for all the nodal
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or Gauss integration points. The 8~node hybrid stress element, with
fewer variables, was chosen for the present study. Thus, the computer
program SMAC (Systematic Matrix Analysis of Continua) developed by

Chieslar (1985a) was finally selected.

3.3.2 Finite Element Method in General

Finite element method formulation is based on the fblloWing two
assumptions: ‘
(1) The stréin—displacement relationship is linear. In other words,
the small displacement theory is valid.
(2) The stregs-strain constitutive relationship is linear, i.e. the
concept of material linearity is also valid.
}Propagation of cracks is one of the factofs which may cause
material nonlinearity. This effect can be eliminated by changing the
stiffness of the elements which undergo cracking. In the present study,
the stiffness change due to cracking is not  considered, as the average
stresses are within the elastic range. The other factor which results
_in material nonlinearity is the creep and shrinkage effects of masonry.
The solution to the non~linear problem is obtained by reducing it to a
series of linear problems which are solved in successive time steps by
adopting an incremental time step solution procedure.
As a hybrid element has been chosen for the present analysis,
hybrid formulation is compared with displacement formulation in the

following sections.

3.3.2.1 Displacement Model

In this approach displacements are taken as the primary unknowns.

With the help of assumed shape functions, displacements within an
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element are defined in terms of displacement at the nodes. Through
strain-displacement relations, stresses énd strains within the element
are also defined in terms of these displacements. At the global level,
the system's total potential energy, expressed as a function of nodal
displacements, is minimized. This results in equilibrium équations for
the unknown displaceﬁent éarameters. Thé basic steps céﬁ be summarized
as follows? |

{u} = [N1{d} , (3.36)
where {u} is the displacement Véctor within an element, [N] are the
assumed shape functions and {d} are nodal displacements. From strain-

displacement relations, we have:

{e} = [L1{u} ‘ -
= [L] [N]{d}
= [Bl{d}’ (3.37)
where [L] is the linear differential operator matrix and [B] = [L]([N] is

the strain-displacement transformation matrix. From stress-strain

relations
{c} = [El{e}
= [E] [B]{d} . A ‘ (3.38)
where [E] is the material stiffness matrix énd [E] = [C]_l where [C] is

the material compliances matrix such that
{e} = [Cl{o} (3.39)
All the above relations have been expressed at the element level.
Minimization of ﬁotential energy produces the equilibrium expression as:
[K]{D} = {F} ‘ , . (3.40)
where [K] is the structural stiffness matrix, {D} is the structural

displacement vector which contains all {d} vectors and {F} is the
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structural load vector due to all different leading cases of the system.
Equation (3.40) is solved for the unknown displacements. Knowing {al,

values for {e} and {0} can be obtained from Equations (3.37) and (3.38).

3.3.2.2 Stress Hybrid Model

The stress hybrid model is a type of mixed model where there is
more than one primary variable. It is based on an assumed stress field
within the element and the displacements are assumed to vary accordigg
to Equation (3.36). Stresses are eliminated at the element level. At
the globai system level, equilibrium equations are solved for the
displacement variables. As both assumptions are independent, stresses
are obtained indirectly from the displaéements.

Although the hybrid stress element concept was introduced by Pian
(1964) , the detailed information of the hybrid model used in the present
aﬁalyéis is described in Chieslar (1985b). As a comparison with the
displacement formulation, only the main step is reviewed here.

{o} = [p1{B} (3.41)
where [P] is the assumed stress function matrix and {8} is the;étress
parameters vector to be evaluated. Vector {B} is related to the dis-
placements at the nodes.

{8} = [H]{d}’ (3.42)

Actually, [H] is a product of many matrices derived from the basic
assumptions of the hybrid stress approach. From Equations (3.41) and
(3.42), we have:

{o} = [p](u}{al (3.43)
Equation (3.43) is very similar to Equation (3.38). [P][H] 4is the
hybrid equivalent of the stress recovery matrix associated with the

displacement formulation.
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i.e. [P][H] = [E]l[B] ' (3.44)

3.3.3 Finite Element Modelling of Prestressed Masonry Wall Specimens

3.3.3.1 Element Types Used

In finite element models of prestressed maéonry walls, masonry
units and mortar have to be répresented by different elements because of
their different material“characteristics. In order to‘ study the
triaxial state of stress in masonry, 3-dimensional hybrid stress ele-
ments have been used for both mortar and units. Although details of the
different models for the present study are diséussed in Chapter 5, a
tyéical vertically post~tensioned hollow masonry wall speciﬁen has been
shown in Figure 3.5. The wall 1is made of hollew qnits and is
post~tensioned by vertical steel bars which pass through the inner core
of the blocks. As axial presfressing is used, a uniaxial truss element
was selected to represent the érestressing steel member, The
prestressing force 'is transmitted to the wall, through steel plates
anchored at the ends. A perfect bond_ has been assumed Dbetween
pregtressing bars, steel plates and masonry units at the ends. The’
§teel plates were also represented by 3-dimensional solid hyb?id

elements.

3.3.3.2 Prestressing Concept in Finite Element Approach

In prestressed members, the steel bar carries the tensile force and
transfers equal and opposite compressive force to the rest of the
structural member. In the present case of axial prestressing, this
behaviour has been achieved by taking the thermal loading case of a
truss element. A negative temperature change, equivalent to the pre-

stressing force, is applied to the truss member which results in a
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tensile force in the truss member and a compressive force to the rest of
‘the model structure. This procedure can be explained with the help of a
simple example of an axial column shown in Figure 3.6. A general case
of two prestressed bars (a) and (b) has been taken. The main objective

is to find the final temperature changes ta and tbf corresponding to

£

the prestressing forces Pa and P

(or stresses f and £,) in the two
b a b

bars respectively.
To achieve this, two trial elastic runs are made:
First Run: initial thermal load tai is applied in bar (a) which results

in stresses faa and £ in the two bars, where fij is the

ba

stress in bar (i) due to a thermal load in bar (j).

Second Run: initial thermal load tbi is applied in bar (b) which results

in stresses fab and fbb in the two bars.

The final stresses fa and £ in the two bars due to final thermal

b

loads taf and tbf applied simultaneously can be obtained using the

principle of superposition:

aa fab ’

fa = taf E—-— + tbf q‘ (3.45a3)
al 1
£ £
ba . bb .

fb = taf -t—-—' + tbf e (3.45b)
ai bi

Equations (3.45a) and (3.45b) can be repfesented in matrix form as:

£ £f /t . £/t . t
a - . aa’ ai ab’ bi af (3.46a)
1 fpa’tas Ep/ti| - tos
or ﬂ
{£} = [M]{tf} (3.46b)

where [M] is defined here as the multiplication factor matrix. From

. Equation (3.46) unknowns taf and tbf corresponding to fa and fb can be
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obtained as:

Vtaf - faa/tai ‘ : fab/tbi ' fa_ (3.47a)
Y- fra’tai LSV oY
or
{t.} = " teey (3.47p)

Equation (3.47) can be generalized for' any number of prestressing bars.
The number of trial elastic runs is equal to the number of prestressing
bars. In the case of one axial prestressing tendon -Equation (3.47)
reduces to:

t,

1
t, = 3 a

£ (3.48)
i

£

where fi is the initial stress corresponding to initial thermal load of

ti temperature change.

3.3.4 Modelling the Analysis Techniques

3.3.4.1 Creep and Shrinkage Analyses

IIn a step-by-step solution method, dwith constant stress state
during any time interval, creep strain loading can be taken as
equivalent to thermal loading. Similarly;shrinkage or moisture induced'
s&elling strain, being independent of the stress at all times} is also
similar to a case of temperature loading. Thus, in the finite element
technique, an initial stress-strain approach, éimilar to one for thermal
loading, has been used to incorporate creep and shrinkage effeéts. The
basic steps of the initial s#rain approach can be found from any text
and are as follows:

1. Evaluate the initial strains at all Gauss integration points for

all elements
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{e ¥ = (e

X0 eyo €20 nyo szo szo} (3.49)

2. Evaluate the corresponding initial stresses and store them for the
final stress evaluation step.
= -[E
{oo } [ ]{ao}
3. Evaluate equivalent nodal loads due to initial strains for all the

elements by either of the following two methods:

(a) {£}

J [B]T[E]{eo}dv
v

or

(b) {£}

- j v[B]T{GO}dv
v

4, At the global level, perform a summation of nodal loads for all the

v

elements.
n

{F} = ¢ {£.,}
. i
i=1

where n is the number of elements.
5. After solving for nodal displacements {d}, obtain final stress as:
{o} = [E1(BI{d} + {0 }
The hybrid formulation equi&alent of matrix [E][B] is given by
Equation (3.44). By pre-multiplying these matrices by [E]—l, the hybrid

* equivalent of matrix [B] can be found.

n

i.e. [E][B] = [P][H]
(81, = [E]71(p] [n] (3.50)
where [B]H is the hybrid equivalent of matrix‘[B].

for the creep analysis of Step 3 in the step-by-step solution of

Section (3.2.3.2), initial creep strain components are obtained as:
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c:T ¢ ¢ _c _cC 6 o]
{eo} = {e v &z ny sz sz} : (3.51)

In the case of shrinkage analysis, initial strains are obtained from
‘Equation (3.20). Only normal strain components are present.

]

ice. {e51T = {5 ¢ eS0 0 0} | (3.52)
o z : _

s _s
Xy
For combined creep and shrinkage analyses, initial strains of Equations

(3.51) and (3.52) are added to form total initial strains as:

{eO}T - {eg}T + {ej}T ‘ (3.53)

Initial strains obtained from Equation (3.51) or (3.52) or (3.53)
are substituted in Equation (3.49) and their equivalent nodal loads are
obtained. After this step, the creep analysis procedure of Section
(3.2.3.2) or the shrinkage analysis procedure of Section (3.2.5) or

their combined analysis is carried further.

3.3.4.2 Relaxation Analysis

At the end of any time interval, the loss of prestress in steel due
to stress relaxation can be found by Equation (3.32). The prestress
loss concept is similar to the concept of application of prestress
force, the only difference between the two is the reversal of stress
sign. Thus the technique developed fér prestressing concept in Section
(3.3.3.2) has also been used to represent stress relaxation effect.

For convenience Equation (3.47b) is rewritten here.
{at7} = 1" HagT) | © (3.54)
where {AfF} is prestress loss due to relaxation and is computed by

Equation (3.32). Using the inverse of multiplication factors matrix

{M}—l, developed in Section (3.3.3.2), equivalent thermal loads {Atr}
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(positive temperature change) due to the relaxation effect, are compﬁted
from Equation (3.54).

When creep and shrinkage analyses are to be combined with relax-
ation effects, the equivalent nodal 1loads obtained due ﬁo kl) the
initial étrains'of Equations (3.53) and (2) the temperature changes of
Eguation (3.54) are added together. Then the analysis of model speci-
mens, due to these combined nodal loads, yields the final results due to

creep, shrinkage and relaxation properties of masonry.

3.4 Results of Analysis for Prestressed Wall Models

At the end of ali time steps, the finite element analysis results
in

(1) the total displacements at all nodal points,

(2) the stress-strain distribﬁtion ‘at all nodal or iﬁtegration

points and

(3) the total stress in the axial truss members.

The stress in the steel at any time corresponds to the net pre-
stressing force at that time. Thus, the changes of stress in the truss

member represents the loss of prestress.



CHAPTER 4

CREEP, SHRINKAGE AND STRESS RELAXATION
INPUT DATA, AND COMPUTER PROGRAMMING

4.1 Introduction

With a step~-by-step numerical solution technique, finite element
analysis for creep, shrinkage and st?ess relaxation of post-~tensioned
hollow masonry walls results in the prediction of aétual structural
behaviour. However, such an analysis requires the input data of stress-
time functions for prestressing steel, shrinkage strain curves and
specific creep curves at various ages of loading for concrete‘blocks,
brick units and different mortars. The short-term creep ahd shrinkage
properties of masonry components are available in the litefature as a
set of laboratory measured &alues at discrete times. Mathematieal
expressions were fitted to the available data to allow extrapolation for
long-texrm behaviour and for efficient computer storage.’ The detailed
procedures and numerical expressions will be described in the following

sections.

4.2 Creep and Shrinkage Properties

4.2.1 Input Data
Creep and shrinkage data for masonry components have been obtained
by Lenczner (1969, 1971 and 1974) and Ameny (1979 and 1982). The
experimental results were similar, so Ameny's data have béen used in
conjunction with certain results of Lenczner for the present analysis.
Using stack-bonded prism specimens with full mortar bedding, Ameny
(1979) obtained the creep and shrinkage data of concrete blockwork. He

also obtained the creep and shrinkage behaviour of brickwork specimens

46
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(Ameny, 1982). The experiments were conducted in a laboratory where
there was little control over temperature ahd humidity. In both
‘ studies, the observed temperature did not vary much and was in the range
of 17-22°C. During the course of the concrete blockwork tests, the
relative humidity was. in the range of 39-60%. In the case of the
brickwork tests, the relative humidity varied'from 15 to 40% for most of
the time period except at one occasion. At the age of 200 aays after
loading, the relative humidity rose to 75% ané this continued. for the
next sixty days. In the creep and shrinkage tests, two mortar cases
were taken.

(1) N-mortar (l:3; masonry cement:sand);

(2) M-mortar (l:1:6; portland cement:masonry cement:sand).

In the concrete blockwork tests, prism specimens were loaded
axially at therage of seven days and straih measurements were made for
the next 100-120 days. Two separate loading cases were taken. Prism
speéimens were loaded axially to a maximum stress of (1)70.4 fé and (2)
0.2 f&, where fé is the ultimate compressive strength. Creep and
shrinkage strain measurements were made (1) across the whole length of
the prisms, (2) in the individual units and (3) across the mortar
jéints. Strains across the mortar joint were measured over a 50.8 mm
gauge length covering the 10 mm mortar Jjoint thickness. Thus the
measured strains aéross the joint were not the actual strains in the
‘mortar joint.

In the case of the brickwork tests, specimens were axially loaded
at the age of nine days and strain measurements were made for the next
330-460 days. Creep and shrinkage strains of individual brick units

4

were measured on small brick specimens cut from the main units while
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those of mortar were obtained from mortar cylinders. BAmeny postulated
that the actual -strains in the mortar joint would be higher than those
of the ﬁortar cylinders because of the lower stiffness of the mortar
joints due to poor curing conditions.

In Ameny's tests, the age gt the start of drying in the shrinkage
specimens coincided with the age at application of loading for the creep

specimens.

4.2.2 Comparison with Wall Model Specimens

The masonry wall specimens modelled in this study were.assumed to
have the same range of temperatures anhd relative humidity as was ob-
served during Ameny's experiments to determine creep and shrinkage
properties. Furthermore, thé walls were of the same thickness as the
experimental test specimens. Thus, the creepzand shrinkage data ob-
tained from the test specimens were used for @he wall models. As the
aQérage compressi&e stress in the wall models is 0.25 fﬁ, the creep
strains have been assumed to be linearly proportional to the magnitude
of the sustained stress and have been derived from the specific creep
curves obtained from the experimehtal results. For the creep analysis
in the step-by-step solution method of Section (3.2.3.2), input data of
different specific creep curves for.specimen loaded at different ages
are required. It was found that the creep strains of individual con-
crete block units, obtained by Amény, were of the same order as predict-
ed by the CEB-FIP (1970 and 1978) models for conventional concrete. In
the CEB-FIP (1978) model, creep is obtained as a summation of two
components, an irreversible creep (age at aéplication of load effect)

and a reversible creep (duration effect) whereas in the CEB-FIP (1970)

model, creep strain expression is represented in the form of a product -
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of age ana duration effects. Since Fhe creep strain expressions
developed in the present study are of the same type as those of the
CEB-FIP (1970) model, the coefficient for age ;t application of load
‘given by the CEB~FIP (1970) model has been adopted for this study and
virgin specific creep curves for different ages have been derived from

the available input data.

4.2,3 Fitting the Data to Logarithmic Expressions

Wyatt et ‘al (1975) obtained a logarithmic relationsﬁip between
creep strains and time unde;'load for brick masonry. In the field of
concrete structures, the US Bureau of Reclamation (1956) developed a
similar logarithmic expression based oﬁ‘experimental data for concrete.
It was observed that specific creep is a linear function of the loga-
rithm of the time under load provided the stress/strength ratio d4id ﬂot
exceed 0.35. For the present study, creep data obtained by Ameny were
plotted against the log (time) scale. Most of the creep dgta could be
fitted very well by oné or two sﬁraighﬁ lines in the specific creep
strain versus 1;g (time under load) plot. Shrinkage data were also |
fitted to a similar form of logarithmic relationship. A linear rela-
tionship of short-term data was thus easily extrapolated to the desired
long-term times. As the main objéctive was to obtain long-term
prestress losses fpr a peripd of about 10-15 years, the extrapolation of
short-term data would be assumed to hold good for that time onl&. In
the case of creep data, beyond fifteen years time creep strain curves

.will have to be reassessed in order to predict a finite ultimate value.



4.2.3.1 Creep

(a) Specific Creep Functions for Specimens Loaded at the Age of Seven
Days

In Ameny's work on concrete blockwork specimens, loading was
applied at the age of seven days while brickwork specimens were loaded
at the age of nine days. For the present study the age at initial

loading, to, has been assumed to be seven days for both cases.

(a) Concrete Block Units

It was observed that the specific creep strains of the individual
block units obtained from the prisms tests with N-mortar were higher
than those with M-mortar. Data from the N-mortar case were taken as
upper bound values while those from the M-mortar were considered as
lower bound. A regression analysis using the least square method was
performed and the best-fit straight-line expressions were obtained.
Specific creep data for all the different cases are plotted in Figure
4.i. As the data obtained by Ameny were only for 100-120 days, they had
to be extrapolated to predict the long-term behaviour. Lenczner (1974)
reported that creep in concrete blockwork masonry ceased after approxi-
mately 300 days. For this study, the second straight line obtained for
time greater than 14 days, was extended up to 300 days and then a thirxd
line was plotted with the slope of the first line. The extrapolation of
the data is shown in Figure 4.1l. The different expressions obtained are
as follows:

‘(l) Uppexr Bound
(i) for (t—to) £ 14 days

C(t,tol = [14.484 zn(t~to) + 15.692] x 10—6. (4.1)
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(ii) for 14 days < (t—to) £ 300 days

ckt,to) = [39.057 gn(t-t ) = 49.067]-x 10 . . (4.2)
(iii) and for (t—to) > 300 dayé ’

Clt,t ) = [14.484 gn(t~t ) + 91.096] x 107°. (4.3)
(2) Lower Bound
(1) fér (t—to) £ 14 days

Clt,t ) = [8.6774 gn(t-t ) + 9.8579] x 1076, (4.4)
(ii) for 14 days < (t-to) < 300 days

Clt,t) = [21.121 gn(t-t) - 21.816] x 1078, (4.5)
(iii) and for (t—to) > 300 days-

Clt,t ) = [8.6774 gn(t-t ) + 49.160] x 107, ' (4.6)

where C(t,to) is the specific creep strain observed at time t, to is the
time at application of load and is equal to seven days in the present

case, (t-to) is the duration of loading.

(b) N-Mortar

Two sets of data were available. From the first set of data
obtained bg Ameny (1979), actual strains -in the mortar joint were
calculated as: '

-~

= .8 - 40. - .
Ej (50 €, 0.8 gu)/lO : ) (4.7)

where Ej is the strain in the joint, €, is the measured strain across
the joint, Eu is the measured strain in the individual unit. The strain
gauge length was 50.5 mm and the mortar joint thickngss was 10 mm.

In the secoﬁd set of data obtained by Ameny (1982), mortar cylin-
ders were used. The ratio of the specific creep strains in the mortar
joint to those of the concrete block units was in the order of 10-12 for

the first set of data and 4-5 for the second set. Lenczner (1974) also
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reported this ratio to be in the range of 4-5. Tatsa et al (1973)
.observed the same ratio to be 16.8 wﬁen the specimens were presoaked and
4.4 when the specimens were not.

For the present study, specific creep straihs derived' from the
first set of data are taken as an upper bound while those £from the
second set of data are a lower bound. Different expressions derived
from regression analysis have been plotted in Figure 4.2 and -are as
follows.’

(1) Upper Bound
(i) when specimens were subjected to a compressive stress of 0.4 f&,
for all times

C(t,to) = [141.59 2n(t-to) + 493,211 x 10—6. _ (4.8)

(ii) when specimens were subjected to a compressive stress of 0.2 f&,

for all times

-

Clt,t ) = [355.56 n(t-t ) + 158.48] x 107°, (4.9)

The average of the above two equations has been taken as the upper
bound expression,

i.e. for all times

6

C(t,t ) = [248.58 In(t-t ) + 325.85) x 10 .  (4.10)
(2) Lower Bound

for (t-t ) S 14 days

cle,t ) - [127.41 In(t-t ) + 235.61] x‘10—6, (4.11)

and for (t—to) > 14 days

Clt,t ) = [42.462 In(t-t ) + 474.47] x 107°. o (4.12)

In the case of lower bound values, creep strains:after 200 days
were found to deviate up from the straight line relationship. The

sudden rise of creep strains was neglected. This was probably due to
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the abrupt variation in the relative humidity.

(¢) M-Mortar
Similar to the N-mortar case, upper and lower bound expressions
were obtained and are plotted in Figure 4.3.
(1) Upper Bound - .
(1) when specimens were subjected to a compressive stress of 0.4 fé,
for all times
Clt,t ) = [163.24 fn(t-t ) + 555.49] x 1070, (4.13)
(ii) when specimens were subjecFed to a compressive stress of 0.2 f&,
for all times
C(t,to) = [142.73 £n(t—to) + 189.96] x 10-6. (4.14)
For this study, Equation (4.13) has been taken as an dpper bound
expression.
(2) Lower Bound
for all times
Clt,t ) = [56.123 &n(t-t_) + 81.826] x 1078, (4.15)
In this case also, variation in.the creep strains after 200 days

AN

was neglected.

(d) Brick Units

Both Ameny and Lenczner observed very low creep strains in the
brick units.vrAmeny (1982) reported that the creep strain after a year
was only 10% of the instantaneous elastic strain., For the present

study, creep strains in the brick units have been neglected.

(B) Specific Creep Functions for Specimens Loaded at Any Age

Using the age coefficient recommended by the CEB-FIP (1970) model,

specific creep curves for specimens ‘loaded at different ages have been
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derived as follows:

Clt,t) =k x cl(t,7) _ (4.16)
where k is the age coefficient, C(t,7) is the specific creep strain at
time t (days) for a specimen loaded at the age of seven days and to ié
any age at loading.

C(t,7) values can be obtained from Expressions (4.1) to (4.15).
Values of the age coefficient, k, are plotted in Figuke 4.4 and are
given by thé following expression.

(i) for 1 day S t S 7 days

k = ~0.1470 £n(to) + 1.286 (4.17)
(ii) for 7 days < t S 28 days

k = -0.2063 ln(to) + 1.4015 ; : . (4.18)
(iii) for 28 days < t £ 360 days

k = -6.1395 fn(t ) + 1.1798) (4.19)

For to > 360 days, the CEB-FIP (1970) model does not suggest any
value of age coefficient, k. To be on the conservative side, no further
decrease in k value.is as;umed in the present analysis. Thus,

(iv) for t > 360 days

k = 0.357. . (4.20)

4,2,3,2 Shrinkage

In the present study the age at the start of drying, ts! was
assumed to be seven days to coincide with the age at application of
loading. l

It has been experimentally verified for concrete that shrinkage
tends to a limiting value.earlier than creep strains. This effect was

confirmed by Lenczner (1974) for masonry structures. For the present

analysis, shrinkage strains were extrapolated to an ultimate finite
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value and then no further shrinkage increase was assumed.

(a) Concrete Block Units

Results of six test specimens are plotted in Figure 4.5. The line
of best fit, obtained from all the data pointg, was extrapolated to 200
days and then a horizontal line indicating no further shrinkage was
assumed. Derived expressions are as follows: |

Both Upper and Lower Bounds

(1) for (t—ts) £ 10 days
Es(t,ts) = [23.188 ln(t—ts) + 23.882] x lO—6 (4.21)
(ii) for 10 days < (t-ts) £ 200 days
e%(t,t) = [139.22 gn(t-t ) - 228.64] x 107° C o (4.22)
(iii) and for (t—ts) > 200 days
s -6
€ (t,ts) = 510.0 x 10 ~. - . (4.23)

Lenczner (1974) obtained an ultimate shrinkage strain of 410 x 10—6

after 320 days. Thus, the input data used in the present study, are on

the conservative side.

(b) N-Mortar

Similar to the case of creep in mortars,’Equation'(4.7) was used to
obtain the shrinkage strains in the mortar joint. Results of different
test specimens are plotted in Figure 4.6. 1In the upper bound case,
shrinkage strains' for different test specimens differed quite a bit. 2An
upper bound envelope to all the test data points has been used for the
present study. In the lower bound case, the shrinkage drop from 160 to

220 days was neglected because of the sudden rise of relative humidity.
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The best fitting line was extrapolated to 500 days'and then a.horizontal
line was assumed.
The following expressions were obtained.

(1) Upper Bound

(1) for (t—ts) £ 11 days

es(t,ts) = [82.413 gn(t-ts) + 164.75] x lO-'6 (4.24)
(ii) for 11 days < (t—ts) < 200 days

eS(t,t) = [367.64 gn(t-t ) - 512.73] x 107° (4.25)
(iii) and for (t-ts) > 200 days"

S . -6 .

> (t,ts) = 1435.0 x 10 . (4.26)
(2) Lower Bound
(i) for (t—ts) < 10 days

es(t,ts) = [140.29 2n(t—ts) + 124.00] x 10—6 (4.27)
(ii) for 10 days < (t-ts) < 500 days

eS(t,t,) = [70.696 pn(t-t ) + 259.57] 107 (4.28)
(iii) and for (t-ts) > 500 days

s , -6 7

e’ (t,£,) = 700.0 x 107". (4.29)

(¢) M-Mortar
Similar to the N-mortar case, upper and lower bound expressions
were obtained. The expressions are plotted in Figure 4.7 and are as

follows.
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(1) Upper Bound

(i) for (t—ts) £ 10 days

es(t,ts) = [91.457 gn(t-t) + 88.519] x 1078 _ (4.30)
(ii) for 10 days < (t—ts) £ 200 days

eS(t,t) = [306.85 gn(t-t ) + 301.44] x 107° (4.31)
(iii) and for (t-ts) > 200 days

s -6

€ (t,ts) = 1325.0 x 10 ~, (4.32)
(2) Lower Bound
(i) for (t—ts) £ 10 days

es(t,ts) = [146.46 gn(t-t ) + 116.00] x 107° © (4.33)
(ii) for 10 days < (t—ts) £ 500 days

€s(t,ts) = [192.41 Zn(t—ts) + 55.872] x lO“6 (4.34)
(iii) and for (t-ts) > 500 days

s -6 .

€ (t,ts) = 1252.0 x 10 ~, (4.35)

(d) Brick Units

Ameny (1982) observed very low sﬁrinkage strain ;n the brick units
and concluded that the strain could be neglecte@. A similar conclusion
was made by Lenczner (1971). Fgr this study, shrinkage étrain in the
brick units has also been neglected.

Ameny (1982) reported little reversible expansion strain in the
brickwork as the brick units used were old and thoro;ghly presoaked in
water. Lenczner et al (1976) observed a maximum expansioﬁ strain of 30

X 10—6 in the individual bricks. CMHC (198l) recommends an average



65

. . -6 . .
expansion strain of 200 x 10 in clay brick masonry. Moisture expan-
sion of brickwork reduces the loss of prestress. To be on the conserva-

tive side, moisture expansion has been neglected for the present study.

4.3 Stress Relaxation Input Data

Stress~time functions for different types of steel were described
in Section 3.2.6. For the input data of normal relaxation steel,
Equation (3.21) was used while for low relaxation steel, Equation (3.22)
was employed. During any time interval, the loss of prestress in steel
due to stress relaxation was found by Equation (3.32). In finite
element analysis, the prestress loss due to relaxation was represented
by an equivalent thermal load. A temperature rise was obtained from
Equation (3.54) wherein the inverse of multiplication factors matrix,

[M], discussed in Sections (3.3.3.2) and (3.3.4.2), was used as input

data.

4.4 Efficient Computer Storage

In the shrinkage analysis, incremental shrinkage strain calcu-~
lations by Equation (3.20) requires the knowledge of shrinkage strains
at different times. Logarithmic expressions developed in Section
{4.2.3.2) can easily be incorporated in the computer progrém with no
additional storage requirement. Similarly, for reiaxation analysis,
stress—-time functions of pfestressing steel (Equations in Sections 3.2.6
and 3.2.7) are easily inserted in the computer program. On the other
hand in the case of creep analysis, for incrementai creep strain
calculations by Equation (3.19), creep strains at different times for
different ages at loading and the stress increments applied at all the

previous time steps are needed. The analysis procedure was discussed in
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detail in Section (3.2.3.2). Although creep strains can be found from
the 'expressions developed in Sections (4.2.3.1), storage of the stress
history becomes a limitation on the size of the problem and on the
number of time steps to be considered in the computations. To overcome
the storage problem, Equation (3.19) was modified such that only a few
stress histories need be stored. In the field of concrete structures,
it has been reported that a certain type of mathematical expressions for
the creep function can overcome the problem of stress history storage

‘while representing the step-by-step solution technique (Equation 3.19)
accurately. A similar creep function, chosen for the present study, is

discussed in the following sections.

4,4, Creep Function to Avoid Stress History Storage

The creep function proposed by Kabir (1976) has been selected for
the present study.

The function is of the form:

=4

clt,t ,T) = I a,(t )l - e-bi¢(T)(t—to)
o i fo)

i=1

1 (4.36)

where m is the number of terms to be considered, ai(to) is a scale
factor dependent on tO (the age at loading), bi is the exponential
constant determining the shape of the logarithmically decaying creep

curve and ¢(T) is a shift function dependent on temperature T.

In the present study, the effect of temperature variation is not
considered. Thus, Equation (4.36) reduced to:
m

C(t,to) = iil ai(to)[l - e

~b,; (t-t.), (4.37)
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VTo develop an expression similar to Equation (3.19), Equations
(3.10) and (3.11l) are rewritten here.
n-1 :

c _ .
=ley) = 0 Ll E) ¥ T oy Clg ity | (4.38)

and Aoi = (4.39)

93 7 931

Substituting the values of C from equation (4.37) into Equation

(4.38), we get:

g

ec(t ) = ¢ r a,(t)[1l - e—bi(tn-to)]
n o . i'o
i=1
m
+ o, T oa. (e[l - e Pi{ETR)y
1., i1l
i=1
+
. m
+ Ag T a,(t .)I1 - e—bi(tn-tn—l)] (4.40)
-1 i -1 .
i=1
and
m
c _ _ thlo(e .-t )
e (t _3) = o, z ai(to)[l e i n-1 "o’]
Ci=1
m
*hg, T a, (e[l - e P11t
1, i1
i=1
+
. m .
+ Ao v oa.{t )ILl - e_bi(tn—l_tn—z)] (4.41)
n-2 i=1 i -2

Then
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C (o] (o]

Ae =€ - € .
n-1l,n n n-1 (4.42)
c . . c th _. .-
where Aen-l n is the incremental creep strain in the n time interval.
r

From Equations (4.40), (4.41) and (4.42) we obtain:

m

AeS = I 0 a,(t)lePih17t) o 7Py (B
n-1l,n . o i "o
g i=1
o -b, (t_ .-t;) -b, (t_-t.)
+ X AGl a.(t.)fe i"™Mm-1 1" - e Ti'n 173
. i "1
i=1
+
Tom b, (t_ ~t_ )  -b, (t_-t_ )
+ I Ao a.(t )[e i ' n-1 -2 = e 7i'™n n-2"}]
o1 n-2 i n-2
m . " -
+ % A6 . oa,(t 0L - ePitETEo1)y (4.43)
n-1 n-1
1=}
m .
i.e. Agc = %X o0 a.l(t )e_bl(tn-l-to)[l - e-bi(tn_tn-l)]
n-1l,n . o i o
i=1l
m .
+ I Ao, a, (tye @i (Bt oo oy (Bt )y
. 1 7i*71
i=1
+
om b, (t_ -t_ .) b, (t_~t_ .)
+ I Ac a, (t e "i" -1 nm-2'[1l - e 7i'n n-1']
-1 n-2 “i n-2
m
+ T Ao . oa (k. Il - e i)y (4.44)
-1 i’ "n-1
i=1
or
m
-b. (t -t )
Ae€ = I - -
en—l,n : Ai,n—l[l e i n n-1"] (4.45a)
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where
- -b, (& -t ) X
Ai,n-l =B -2 e i n~1l n-2' + Aon_l gi(tn_l) (4.45b)7
and
Bio = 338 9, (4.45¢)

Equation (4.45a) resembles Equation (3.19) but does not require the
étorage of all previous stress increments. The previous stress history
is stored in the factor A which can be calculated from Equations (4.45b)
and (4.45c¢). Thus, Equation (4.45a) requires the storage of stress
history of only one time-step previous fo the one uﬁder consideration
reducing the storage and computation time to a great extent. fhis makes

the creep analysis of large structural problems possible.

4.4.2 Determination of Creep Function Coefficients

In the present study, only partial experimental data were avail-
able.. The data have begn smoothéd and exérapolated by fitting to a
linear logarithmic expression form. To incorporate accurately the
formulation described in the previous secFion, creep functions of the
;ogarithﬁic form are to be con§erted to a form described by Equation
(4.37) . |

m
e-bi(t—to)]

i=1

The method used is as follows:
(1) A particular age at loading, to, is chosen. For the present caSe
to = 7 days, is selected, as experimental observations were made on
specimens loaded at the age of seven days.

(2) Using expressions developed in Section (4.2.3.1), specific creep
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strains for all differeﬂt cases were generafed for 24 age durations,
i.e. for (t—t ) equal to 0.3, 0.4, 0.5, 1, 2, 5, 10, 15, 22, 30 40, 60,
90, 120, 160, 200, 250, 320, 400, 500, 1000, 2000, 3500, and 6000 days.
(3) Then the follow1ng equations are developed.

-

-b, (t,-t )

l-e™ 171 0. . . l-e_bm(tl—to)

[ /
a) (t)) Clty )
. . a2 (to) C(tzrto)

. <. Yo X \4.46)

. - L .

1 - e—bl(tn—to). .. l-e m(tn_to) \am(to), \C(tn'to)
- nxm mxi nxl
or [b]  {a} . ={s} (4.47)
For the present case, n = 24 and t0 = 7 days. For n > m, Equation

(4.47) is a system of overdeterminate set of eguations. Equation (4.47)

is solved by the least square method.

i.e. [b]T(bl{a} = b1 {s)

and {a} = [[B17 16117 617 (s} ' (4.48)

Thus, the coefficients, ai, are evaluated. The values of m and bi are

to be chosen such that the least square error, X, is minimized where

m
X = p [(bl{aD), - {s}i]2 ' (4.49)

Kabir (1976) selected the number of terms, m, equal to 3. Using bl

= 0.1, b2 = 0,01 and b3 = 0.001, experimental creep data for a particu-
lar age at loading were fitted to the creep function and the values of

al, a, and a_ were evaluated.

2 3

~For the present study, the effect of m value on. accuracy was

investigated. Three values of m (3, 4 and 6) were tried. With dif-



71
ferent bi-values,_values of a, were calculated and evaluated. Finally,
m = 6 was selected becaﬂse it gave the minimum least square error.
Values of bi and ai (for i=1,...,6) for different cases are tabulated in
Table 4.1. To check the acceptability of the creep function chosen, the
specific creep strains generated by Equation (4.37) are compared to the
specific creep strains generated by logarithmic expressions and short-
term experimeqtalﬁdata in Figures 4.8 to 4.10. The theoretical curves
generated by Equation (4.37) are plotted and the experimental and log
plot specific creep strain values are superimposed on the plot. As
shown in Figufes 4.8 to 4.10, log values fit exactly on the curve;
generated by the creeb function of the form of Eguation (4.37). The
derived specific creep curves for the specimens loaded at seven days
were acceptable for the present study. To obtain thé specific creep
curves for specimens loaded at different ages, Equation (4.16) with the

age coefficient recommended by the CEB-FIP (1970) model, was used.

4.5 Computer Programming

. Before ﬁhe computer programming steps are described, the two basic
assumptions made in the present study are reviewed.
(1) It has been assumed that elastic strain remains constant during the
entire time analysis.. Thus, structural stiffness based on the initial
elastic properties has been useé throughout the analysis. Elastic
properties of the different components used in the present analysis are
taken from Ameny (1979 and 1982) and are listed in Table 4.2,
(2) It has been assumed that the age at application of initial loading,
or prestressing in the present case, to, and the age at start of drying,
ts, are the same and are equal to seven days.

The program SMAC was modified to perform non-linear time dependent



Concrete Block Unit N-Moxtar M-Motar
Upper Lower Upper Lower Upper Lower
Bound Bound Bound Bound Bound Bound
-4 L —4 -3 -3 -3 -3
+0.1667x10 0.1046x10 0.6540x10 0.2185x10 0.3960x10 0.1338x10
-4 -4 -3 -3 -3 -3
0.3669x10 0.2357x10 0.5585x%10 0.3800x10 0.3728x10 0.1304x%10
-3 -4 . -3 : —4 -3 -3
0.1164x10 0.6186x10 0.5663x10 0.6654x10 0.3781x10 0.1253x10
-4 -4 -3 -3 -3 . -3
0.2471x10 0.1598x10 0.6765x10 0.1250x10 0.3706x10 0.1568x10
-4 -4 -2 ~4 -3 -3
0.8055x10 0.3756x10 -0.2329x10 -0.6413x10 0.3954x10 -0.5311x10
-3 -4 -1 -2 -3 -2
© =0.2356x10 -0.7103x10 0.2267x10 0.1028x10 . 0.3357x10 0.5062x10
1.0 1.0 0.5 1.6 4.8 0.7
0.1 0.1 0.05 0.16 0.48 0.07
0.01 0.01 0.005 0.016 0.048 0.007
0.001 0.001 0.0005 0.0016 0.0048 0.0007
0.0001 0.0001 0.00005 0.00016 0.00048 0.00007
0.00001 0.00001 0.000005 0.000016 0.000048 0.000007
Table 4.1 Creep Function Coefficients
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analysis by a step-by-step numerical solution technique for creep,
shrinkaée‘and relaxation properties of masonry components. The solid
element subroutine.was modified to include the effects of creep and
shrinkage in mortar and‘concrete block units while the truss subroutine
was developed‘further to i@corporate the stress relaxation property of
prestressing steel. In the modified SMAC program; the user has the
option to perform any of the following analygis procedures.

(1) Elastic Analysis,

(2) Creep Anaiysié,

(3) . Shrinkage Analysis,

(4) Creep and Shrinkage BAnalyses Together.

There is a choice of inéluding relaxation analysis with any of the
above mentioned time dependent analyses. Both normal as well as low
rela%ation steel properties have been included. With creep and/or
shrinkage analyses- either upper or lower bound results may be sought. A
flow chart, describing the various steps of thg analysis procedure, is .

presented in Figure 4.11.

Concrete Brick N-Mortar | M~Mortar Steel
Block Unit . Plate
Unit
Modulus 5
of Elasticity 8000 8000 8000 8000 2 x 10
E(N/mm?)
Poisson's
Ratio 0.2 0.2 0.2 0.2 0.3
Vv

Table 4.2 Elastic Properties -
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Read nodal and element input data and form element and structure
stiffness matrix

X
Read load (prestressing force equivalent thermal load) and form
load vectors for the elastic analysis or the first time step

¥
Set nodal displacement, stresses and strains *to zero
/ i

Solve for nodal displacements, stresses and strains. Sum up the
total displacements, stresses and strains and print the values.

YES
< If elastic analysi
NO
. YES
@o. of time steps exceede
NO ’
YES _ NO
I@—<:Ef creep or combined analys§§:>————————>n
£ 3
Calculate either upper Calculate either upper or
or lower bound incremental or lower bound incremental
creep strains for the next 7 : shrinkage strains for the
time step. ’ next time step.
‘ ¥
el If combined analysis >
- YES NO
<If combined analysis S— YES
4
NO sum up the incremental
creep and shrinkage
strains
r Y
LCalculate equivalent nodal load vector due to incremental strainsl
NO 3 i
4—————<:E? relaxation of prestressing steel includg§:>
[YES

For the next time step, calculate egquivalent nodal load vector due
to stress relaxation 'of either normal relaxation steel or low,
relaxation steel. Sum up the total nodal loads.

¥

Figure 4.11 Flow Chart




CHAPTER 5
MODELS FOR POST-TENSIONED HOLLOW MASONRY WALLS

5.1 Introduction

The modified program was used to analyse models for .several cases
of cohcrete block and brick walls. Different parts of the masonry unit
and the mortar Jjoint locations are defined in Figure 5.1. A typical
vertically post-tensioned masonry wall specimen is shown in Figure 3.5.
Several bonding patterns of the masonry units and the mortar joints are
possible. Two typical cases of running bond and stack bond patterng are.
shown in Figures 5.2 and 5.3. For details and other definitions, the
regder may review CSA Standard CANS—Aé?O—M84 (1984) . As shown in Figure
5.1, the prestressing‘steel passes through the hollow core of the unit.
With a stack bond pattern, the construction of masonry walls result in
Qertically aligned cores so that the prestressing steel bars can be
placed in the walls. ‘On the other hand, with a running bond pattern,
the shape of the standard units may-not permit any verpically aligped
core. In the present study, only the stack bond pattern case has been
cohsidered. ~

Prestressing is the only load which was considered'in the present
analysis. Self weight of the walls or any other external load has been
ignored for all the wall ﬁodels. As illustrated in Figure 3.5, the

prestressing force is transmitted to the wall through the end steel

plates.
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prestressing steel

webs

face shells

mortar head joint

mortar bed joint

Figure 5.1 Detail Showing Mortar Joints

LT LA

Figure 5.2 Running Bond Patern

L7 LT7JLT L7,

Figure 5.3 Stack Bond Patern
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5.2 Types of Specimens

5.2.1 Unit Geometry

A typical concrete block unit is shown in Figure 5.4a. To avoid
complexity in the finite element mesh, the simpler unit geometry, shown
in Figure 5.4b, was adopted. Regardiﬁg brick wunits, the same
gross—sectional configuration was assumed. Figure 5.4c shows the brick

unit dimensions which were used in the present analysis.

5.2.2 Mortar Bed Types

The masonry units are joined together either by fgll mortar beddindg
or by -face-shell bedding. In the case of full bedding, mortar is
applied to the'whole bed face of the uhit while in face-shell bedding,
only the face shells of the unit are mortared. A comparison between the
two has been made in Figure 5.5. For the present study, both £full

bedded and face-shell bedded specimens have been modelled.

5.2.3 Different Cases to be Analysed

The following options were included in the wall moaels.
(1) Concrete block units or brick units:;
(2) N-mortar or M-mortar;
(3) Full mortar bedding or face-shell mortar bedding;
(4) Upper bound or lower bound limits;
(5) Creep and shrinkage analyses or creep, shrinkage and relaxation
analyses.
With these options thirtyjtwo different cases could be analysed.
Since there were practical limitations of time and cost of execution,
the total number of c;ses to be analysed was reduced to sixteen. 1In

Chapter 4, creep and shrinkage strains of N-mortar were observed to be .



(a) Typical Concrete Block Unit

S ‘290
f | “on,
N )

(b) Concrete Block Unit Selected

(c) Brick Unit Selected

Figure 5.4 Unit Configuration

a=35mm

b=120mm

c=50mm

d=127.5mm
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more than those éf M-mortar. As the main objective was to £find upper
and lower bound limits to loss of prestress, N-mortar wall model
specimens were. analysed for upper bound vaiues while M-mortar specimen§
were investigated for lower bound results. Thus, (1) creep and shrink-
age analyses, and (2) creep, shrinkage and relaxation analyses were
performed for both concrete block walls and brick walls for the follow-
ing combinations.

(1) N-mortar, full mortar bedding and upper bound case
(2) N-mortar, face-shell mortar bedding and uppér bound case
(3) M-mortar, full mortar bedding and lower bound case

(4) M-mortar, face-shell mortar bedding and lower bound case.

5.3 Wall Models

Time and cost of computation were the main limiting factors in
selecting the size of the wall models. On the other hand, the models
had to simulate actual wall behaviour. The models selected for concrete
block walls and brick walls are shown in;Figures 5.6 and 5.7 respeé—
tively. Although of the same height, 1190 mm, the concrete block wall
model was six blocks high while the brick wall was twelve units tall.
Both wall models wére single wythe and four blocks iong &1590 mm) where
a wythe is defined as a continuous vertical section of masonr§ wall, one
unit in thickness. All mortar joihts were 10 mm thick. The height to
length ratio of the model was selected from the range of values used for
actual masonry walls. Two steel bars wére used to prestress the wail
models. The steel bearing plates, used for the model specimens, were
212.5 mm long, 190 mm wide and 20 mm thick. The plates spanned the
hollow core and the adjoining webs of the unit in order to transmit the

prestressing force evenly.
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Figure 5.6 Concrete Block wall Model
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Figure 5.7 Brick Wall Model
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In finite element modelling of wall specimens, the mésonry units,
mortar and steel plates were represented by 3-dimensional 8-node solid
hybrid elements while uniaxial truss elements were used for the pre-
stressing steel baks. Both units and mortar were ésgumed homogeneous,
isotropic and linearly elastic. Perfect bond was assumed between units
and mortar, and unit, mortar and steel plates. The elastic properties
of the masonry components and the steel plates are tabulated in Table
4,2,

Wall models were prestressed to a stress of 25% of the ultimate
compressivé strength of the masonry. The initial prestressing force was
designed to ﬁeet requirements of CSA, Code of Practice, CAN3-S304-M84
(1984) .

In Pigure 5.8a, b is the length, t is the thiéknesé, h is the
height of the wall model and Aps is the area of the prestressing steel.
For the present case:

h = 1190 mm, b = 1590 mm and t = 190 mm
For masonry walls b > 3t and for axial compressive loading h < 30 t.

Wall models selected for the present study satisf& both the crite-
ria. The allowable verticai compressive léad, P, is given as:

P = CeCSfmAm
where Ce is the eccentricity coefficient, CS is the slenderness coeffi-
cient, fm is the ailowable compressive stress and Am is the moftar
bed@sd‘érea.

For vertical compressive loading,

fm f 0.25 f&
where f& is the ultimate compressive strength. The gverage value

obtained by Ameny (1979 and 1982) for the prism test specimens for f&
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was 8N/mm2.

Thus fm = 0.25 x 8 = 2N/mm2
For full mortar bedded area,

. A
m

1.59 x 0.19 - 8 x 0.12 x 0.1275

0.1797 m2.'

For the selected models, Ce = 1 and Cs = 1.

Then P = 2 x.0.1797 x lO6

0.359%4 x lO6 N

0.3594 x 10°/2

1.797 x lO5 N

Jav)
I

179.7 kN
where Pb is the force in each prestressing bar.
~In order to prestress the bars to 70% of the ultimate tensile

strength, a seven wire strand with the following properties was select-

ed.
Size Designation - 15
Nominal Diameter - 15.24 mm
Nominal Area (Aps) - 140 mm2
£ - 1860 N/mm2
pu
0.7 £ 1 - 182 kN
pu ps '
£f A - 261 kN
pu ps

where fpu is the ultimate tensile strength. ’

The same prestressing bar was used for both full bedded and-face-
shell bedded specimen models.

Both the geometry of the models and the loading were symmetrical
gbqut the three directional axes. Making use of the symmetry, only one-

eighth of the wall model was analysed and is shown by the shaded area in



87
Figure 5.8a. The area of the prestressing steel and the loading to be

considered for the symmetrical portion are shown in Figure 5.8b.

5.4 Finite Element Mesh

Figure 5.9a shows a typical 3-dimeﬁsional 8-node solid element
while a wuniaxial truss element is shown in Figure 5.9b. For each
element the stresses, strains and displacemeqts at all the nodal points
were obtained in the output. A separate mesh generation program was
developed:fér the preparation of input of the nodal coordinates and
element tﬁpologies of the models.

For the finite element analysis of masonry walls, several mesh

" schemes were investigated ?y Simbeya (1985). A mesh scheme similar to
one adopted by Simbeya was selected‘for the present analysis. Various
meshes for the different models are illustrated in the féllowing

sections.

5.4.1 Cross-Sectional Mesh

Cross—sectional meshes were the same for both concrete block and
~ brick wall modelg as tﬁe same cross-sectional dimensions were used.
(a) Full Morta; Bedding Specimens

Since the mortar covered the whole bed face of the unit,
cross-sections through the pnit layer and the ﬁortar layer had the same
configuration which”is shown in Figure 5.10a. The cross—sectiogal mesh
through the steel bearing plate is shown in Figure 5.10b.
(b) Face-Shell Mortar Bedding Specimens

The unit layer and steel plate layer cross-sectional meshes were

identical to those of the full mortar bedding specimens and are shown in

Figures 5.10a and 5.10b respectively. The cross-sectional mesh through

~
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Figure.5.9 Element Types and Nodal Points
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(c) Mortar Layer (Face-Shell Bedded)

Figure 5.10 Cross—-Sectional Meshes
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the mortar layer is illustrated in Figure 5.10c.

5.4.2 Elevational Mesh

Elevational meshes are the same for full mortar bedding and
face-shell mortar bedding specimens. The elevational mesh of thé
concrete block wall models is shown in Figure 5.11 whereas the details
of the elevational mesh of the brick wall specimens are illustrated in

Figure 5.12,

5.4.3 Boundary Conditions

The boundary conditions of the wall models are described using the
symmetrical portion of the model which is shown in Figure 5.13a. The
corresponding planes of symmetry and their boundary conditions are
illustrated in Figure 5.13b. In Figure 5.13b, u, \} and w are the

displacements in the directions x, y and z, respectively.

5.5 Summary

In this chapter, post~-tensioned hollow masonry walls were modelled.
Only stack-bond pattern specimens were considered. Computer time was
the principal factor which controlled the size of the models and the
number of cases analysed in this studg. Taking advantage of the symme-
try, only one-eighth of the wall models were analysed.

In the later sections, finite element meshes were developed for
both concrete block wall and brick wall models with full mortar beading
as well as face~shell mortar bedding options igcluded. Finally, the
boundary'conditions were evolved for the finite element‘models chosen

for the present study.
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Figure 5.13 Boundary Conditions
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CHAPTER 6
RESULTS AND DISCUSSIONS

6.1 Introduction

Using the input data and methodology described, results . were
pbtained for the time-dependent changes in the masonry wall models.

Upper and lower bound values of prestress. losses are computed and
short-term prestresé losses are compared with experimental ’values
reported in the literature. Finally, the redistribution of stresses
between masonry units ?nd mortar due to creep and shrinkage«are dis-
cussed and compared with the initial elastic aistributions.

It is interesfing to note that, although“the numerical solution
technique was developed on a CDC-CYBER 175 dbmpﬁter, a CDC-CYBER 205
supercomputer was used to obtain the finél results. For the same
5,problem, the CYBER 205 was found to be 5-6 times faster than the CYBER
175 (without vectorization of the computer piogram)) Furthermore, the
CYBER 175 was observed to be 6-7 -times faster than the Honeywell Multics
computer, also available to the author.

| In the last section, an approximate analytical solution to
prestress losses was obtained for a simple wall model and was compared

with the results of the step-by-step solution technigue method.

6.2 Presentation of Results

Material interactionEbetween’units and mortar is one of the factors
which influence the stress distribﬁtions in masonry. The main reéults
were obtained with an elastic modulus of the mortar equal to that oﬁrthe
masonry units. In a few cases the stiffness of the mortar was reduced

to half the initial value and the results;gre compared and discussed in
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a later section.

As described in Section k3.2.3.2), the numerical solution of creep
problems using a time incremental procedure requires the selection of
appropriate time intervals so that numerically stable as well'as accu-
rate results are obtained. The time-step length selection criteria are

discussed in the next section.

6.2.1 Selection of Time-Step Length

In the field of concrete structures, Bazant (1975) reported that to
achieverthe best results under steady ioading, the time intervals sh;uld
be chosen in the form of a geQmetric progression. The lengths of‘the
time intervals should be épproximately equal in log (time) plot. He
proposed the following relationship: ’

(t -t ) =1.333 (t, - t) (6.1)
o i o}

i+l

oxr

Ati+l = ti+l - ti = 0.333 (ti - to) (6.2)

where to is the age at initial loading and ti’ t. are the two succes-

i+l
sive times. Bazant suggested that with Ati = 0.0l day a high accuracy
éould be achieved.r h n

The basic assumptién in the step-by-step procedure -is that the
stresses remain constant during any time interval. The solution di-
vergeé and becomes unstable when large time-step lenéths are chosen.
SuthérlaAd (1970) proposed that for. stable numerical solutions, the
maximum incremental creep strain should not excéed the maximum elastic
strain during any time interval. Tﬂus, the maximum time ing;ement which

can be used is restricted.

In the present study, upper bound results from the creep analysis
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did not converge even though Bazant's expression and Sutherland's
criterion were satisfied. ‘As staﬁed in Chapter 4, for the case of upper
bound 1limits, the ratio of the specific creep strains in the mortar
joint té those of the concreté block ﬁnits was in the orxder of 10-12,
The creep strains of individual concrete block units were of the same
order as those of conventional concrete. Thus, the probable ;easons.for
the instability of the numerical solution were (1) the high magnitudes
of the creep strains in mortar joint§ and (2) the difference of creep:
strain magnitudes of concrete block units and mortar Jjoints. These
reasons were confirmed by the fact that lqwer bound solutions converged
with the time intervals chosen as per Eguation (6.1){ For lower bound
limits, the ratio of the specific creep stfains in. the mortar joints to
those of the concrete block units was in the range of 4-5. For a period
of twelve years, édequate lower bound solutions were obtained with'i25
time stepé. However, upper bound solutions did not converge even after
selecting time intervals equal to one-tenth of those chosen for the
lower bound limits, i.e. for a period of twelve years, even 1250 time
steés.were not sufficient to acquire upper bound solutiéns. In terms of:'
computer timé.and méney, it became impractical to increase the‘number of
time. steps any further. At this level, it was Vdecided to make an
approximation in the case of upper bound results, ‘The detailed step is

discussed in the next section.

6.2.2 Loss of Presﬁréss

As discussed in the previous section, it was not feasible to obtain
long-term upper bound results for a period of twelve years. It was
decided to reduce the mortar's upper bound creep property so that

numerical instability could be avoided. All the model specimens were
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analysed with the reduced creep property and the approximate upper bound
results were obtained. A few specimens were analysed with 100% mortar
Creep propérty and short~term upper bound results were attained. Then
long-term approximate results were calculated by multiplying by a
correction factor in proportions to the correspondiﬁg short~-term results
" obtained with 100% and reduced mortar creep property. With 100% creep
property, 2500 time steps were wused to obtain short-term . results.
Although, as discussed in Section (3.2.3.2), numerical stability does
not necessarily.mean that the final fesults are correct, the’upper bound
short~-term prestress loss results were concluded to have converged due .
to the following reasons. (1) 2500 time steps (a large number) were
used to obtain short-term results which compared - very weli with the
experimental results reported in the literature. (2) The shape of
prestress loss curves in the time domain matched the curves obtained for

lower bound results.

6.2.2.1 Concrete Block Walls

Both short-term and long~-term prestress losses for lower bound and
upper bound solutions of fhe concrete block wall models are summarized
in Table 6.1. | | :

Although face-shell bedded speqimens sustained more prestress loss
than full-bedded specimens, the difference was insignificant. Overall
upper and lower bound prestress 1losses versus time: are plotted in
Pigures 6.1 and 6.2 for creep and shrinkage analyses, and creep, shrink-
age and relaxation analfses respectively. :Fifty percent of the ultimate
loss at twelve years occurred during the first 25-40 days. 1In general,
post-tension losses due to créep and shrinkage effeéts were obtained

between 15% and 24% where lower and upper limits reflect the different



Upper Bound Solutions
(with N-Mortar)

Lower Bound Solutions
(with M-Mortar)

Full Mortar Face-Shell Full Mortar Face-Shell
Bedded Mortar Bedded Bedded Mortar Bedded
Models Models Models Models
Prestress Loss After 200 18.3 19.6 12.4 13.0
due to Creep Days
and Shrinkage After 1 19.3 20.6 13.1 13.9
Analyses Year
(%) After 12 21.9 23.6 14.6 15.5
Years
Prestress Loss After 200 + 25.6 26.7 20.4 21.0
due to Creep, Days
Shrinkage and After 1 26.6 27.8 21.3 21.9
Relaxation Year
Analyses After 12 30.0 31.5 23.8 24.4
(%) Years
Table 6.1 Loss of Prestress for Concrete Block Wall Models
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PERCENTAGE LOSS OF PRESTRESS

UPPER BOUND

LOWER BOUND

O 30 60 9 120 150 180 20 240 270 300 330 360 0 420 450 460 5i0
DAYS AFTER PRESTRESSING

FIGtIRE 6.1 PRESTRESS LOSS IN CONCRETE BLOCK WALLS
(CREEP AND SHRINKAGE ANALYSES)
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- PERCENTAGE LOSS OF PRESTRESS

UPPER BOUND

'LOWER BOUND

6 90 120 150 180 210 20 2/ 300 330 360 W0 420 450 480 510

DAYS AFTER PRESTRESSING

FIGURE 62 PRESTRESS LOSS IN CONCRETE BLOCK WALLS
(CREEP , SHRINKAGE AND RELAXTION ANALYSES)
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creep aﬁd shrinkagé properties of the masonry units and mortars adopted
for the present study. Similarly, losses due to creep, shrinkage and
stress relaxation effects were acquired in the range of 24-31%. The
post-tensioned steel bars were of high tensile strength and were

stressed to 70% of the ultimate strength.

6.2.2.2 Brick Walls

The suﬁmary‘of short—tgrm and long-term prestress losses for the
brick wall models is given in Table 6.2. Prestress lésses in face-shell
bedded and full-bedded specimens were of the same order. The computed
upper and lower bound prestress losses are plotted in Figures 6.3 and
6.4 for creep and shrinkage effects, and creep, shrinkage and relaxation
effects respectively. ‘ Fifty percent of the ultimate loss at twelve
years occurred during the first 25-30 days. Prestress losses due ?o
creep and shrinkage were obtained between 5% and 10% where the two
limits correspond to the upper and lower bounds of the creep ana
shrinkage properties of the mortar. It is recalled ﬁhat the brick units
were assumed to have no creep and shrinkage strains. Further, moisture
expansion strains in the brick units were also neglected. .The prestress
loss will be reduced if the moisture expansion of the brick wunits is
included in the analysis. Thercomputed losses from creep, shrinkage and
relaxation analyses were in the range of 17-22%., The steel bars were of
high tensile strenéth and were prestressed to 70% of the wultimate
tensile strength.

In £he present study, the effect of different lengths of steel
wires on prestress losses was not studied. But, the wall models were
designed to meet requirements of CSA, Code of Practice, CAN3-S304-M84

(1984) and the height to length ratio of the models was selected from



Upper Bound Solutions ' Lower Bound Solutions
(with N-Mortar) (with M-Mortar)
Full Mortar Face-Shell Full Mortar Face~Shell

Bedded Mortar Bedded Bedded Mortar Bedded

Models . Models Models Models
Prestress Loss After 200 7.7 8.5 3.7 4.1
due to Creep Days
and Shrinkage After 1 8.1 8.9 4.0 4.5
Analyses. Year
(%) After 12 9.1 10.1 4.7 5.2

- Years '
Prestress Loss After 200 17.2 17.8 13.1 13.4
due to Creep, Days )
Shrinkage and After 1 18.0 18.7 13.9 14.3
Relaxation Year
Analyses After 12 21.3 22,1 16.8 17.2
(%) Years
Table 6.2 Loss of Prestress for Brick Wall Models
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the range of values used for actual masonry walls.

6.2.2.3 Comparison with Previous Results

Tatsa et al (1973) reported a few experimental observations of the
prestress losses in concrete block walls. With a ratio of creep strains
in tﬂe mortar joints to thosé in the blqck units of 4.4, the observed
prestress loss due to creep, shrinkage and relaxation after 180 days wa;
in the order of 20% wherein the losses due to creep“and shrinkage'were
12.5%. A creep ratio (creep in joint/creep in bléck) of 4.4 corresponds
to the lower bound limits of the present model. From the present
analysis, after 180 days the lower bound prestress losses due to creep
and shrinkage were in the order of 12% whereas ﬁhe overall lower bound
losses were 20%. These figures match the numbers reported:by Tatsa et
al (1973). -

Huizer and Sh?ive (1984) reported short-term losses in a
post—@ensioned concrete block wall. The block units used were over
three years old and were not expected to contribute much creep and
shrinkage. Thus, their wall panel is similar to the brick wall ﬁodel of
the present investigation as thé creep gnd shrinkage strains in the
brick units were neglécted. After 200- days, the ovefall observed
prestress loss by Huizer and Shrive was 16% or less. In their test, the .
post-tensioning steel wires were of . high tensile strength and were
prestressed to 70% of the ultimate strength. As shown in Table 6.2, the
present\analysis resulted in 13.%% prestress loss in the lower bound
case and 17.8% loss Min thé upper bound case. The results compare
favourably.

Lenczner and Davis (1984) reported short-term prestress losses in

post-tensioned brick walls. After about a year 9-11% prestress loss was
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observed. In their tests, the prestressing bars were not stressed more
than 50% of the ultimate strength. fhus, the overall loss was because
of creep and shrinkage only. It was observed that 50% of the loss
occurred during tﬁe first 25~40 days. From the present analysis, due to
creep and shrinkage upper bound loss after a year was in the order of
9%. Further, 50% of the loss occurred during the first 25-30 days.

Thus, the short-term results obtained from the present analysis
relate very well with the ex¥perimental results reéorted in the litera-
ture.

In "Masonry Designer's Manual" by Curtin et al (1982), 20% ultimate
prestress loss is suggested for designing post-tensioned brickwork
masonry. In the present study, the computed losses from creep, shrink-
age and relaxation analyses were in the range of 17522%. These reéults

also compare very well.

6.2.3° Stress Distributions

The study of elastic stress distributions in masonry walls due to
concentrated axial load was done in detail by Simbeya (1985). 1In
general, lateral tensile stresses are induced due to an ax;al
compressive load on hollow masonry work. In the present study, similar
tensile stresses were obtained from the elastic analysis of
post—tensionéd hollow masonry walls. In the following sections, the
redistribution of lateral tensile stresses due to creep and shrinkage
are compared with the initial elastic stress distributions. The basic
definitions of lateral tensile stresses are reviewed in the next sec-
tion. In one wall model case, the redistribution of vertical

.compressive stresses is also shown.
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6.2.3.1 Definitions

Two types of face-shell lateral tensile stresses are induced due to
axial loading. These are named as (1) Téaring Stresses and (2) Split-
ting Stresses. Another type of lateral tensile stress is induced in the
cross-webs in the case of face-shell bedded specimens and is termed a
Web Splitting Stress.

The origin and coordinate system, chosen for the present study, is
sﬁown in Figure 6.5.

Figure 6.6, an elevational view of the wall model subjected to
concentrated loads, has been taken.from Simbeya (1985) and illustrates
the different zones in which the two types of face-shell tensile stress-
es occur. Both splitting and tearing stresses are represented by O, in
the face-shells. A typical distributiop of the splitting stress élong
the height of the wall is shown in Figure 6.7. -

rThe web splitting Stre;s is repfesented by oy in the webs and a
typical vertical distribution through the web centre-line is depicted in

Figure 6.8.

6.2.3.2 Redistribution of Tensile Stresses due to Creep and Shrinkage

The lateral tensile stresses may change with time due to the
effects of creep and shrinkage. Redistribution is assessed from the
long~term lower bound results of the creep and shrinkaée analyses for
the ﬁasonry wall models.

The stresses are identified with the coordinate system shown in
Figure 6.5. Tensile stresses have been considered to be positive'and
compressive stresses negative.

To show the locations of reference points for the plotting of

tensile stress distributions, a cross-sectional mesh is redrawn in
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Figure 6.9. The stress distributions for the tearing stresses (ox) are
plotted along~£he horizontal line A-A at the top of the wall model. The
face-shell splitting strgss (ox) distributions are‘ p}otted along a
vertical line .passing through point 'l' and the web splitting stresses
(Gy) are plotted along a vert%cal line. passing through point '2',
For each eiement, the stresses at the corner nodal points were
obtained in the oufput. The stress values élotted:are the averages of
the stresses from all the elements meeting at the nodal points.

(a) Tearing Stresses

The tearing stresses for full-bedded and face-shell bedded speci-
mens of the concrete block wall models are plotted in Figures 6.10 and
6.1l respectively. The elastic stress distributions afe compared with
the stresses obtained from the creep and shrinkage analyses.

There was a significant reduction of the tensile stress in the
mortar joint at x = O while the.unit next to the mortar joint (at x = 5
mm) incurred an increase in tensile stress. This change can be ex-
‘plained due to the difference in creep behaviour of the mortar and
masonry units. It is recalled that creep strains of the mortar joint
were much higher than those of the concrete block unit. Under a compres-
sive loading, the walls expand laterally in the %—direction. Due to
creep, the lateral expansion of the walls .increases with time. The
mortar joint tends to expand more than the adjoining units becéuse of
the higher creep propefty. Thﬁs, the expansion of mortar is restrained,
reéulting in compressive stress in the mortar joint and tensile stress
in the adjacent units. A similar effect was observed at the other’
mortar joint at x:= 400 mm. The compressive stfess in the‘mortar joint

was increased while the adjoining units had a decrease in the compres-
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sive stress.

The stress distribution restlts for the brick wall models, shown in
Figures 6.12 and 6.13, display“the same results in the mértar joint:
The reader will recall that the brick units were assumed not to creep.

For lateral stresses, the shrinkage effect is opposite to the creep
effect. Since the diffgrence between the creep strgins of mortar and
units is more than their shrinkage étrain difference, the creep effect
is dominating.

As depicted in Figures 6.10 and 6.11, at x = 281.25 mm there was a
noticeable increase of the compressive stress in the concrete block wall
models while this effect was missing in the case éf brick wall models.
At x = 281.25 mm, the units are in contact with the steel plate. Due to
creep, the concrete block units tend to expand laterélly. The expansion
is restrained by the steel plate and a higher compressive stress in the
block units results. As the brick units did not creep, such a changé
was not observed in the brick wall model results. |

For the concrete block as well as the brick wall mode}, the maximum
tearing (tensile) stress due to creep and shrinkage was of the same
order as that obtained from the elastic analysis.

A

(b) Splitting Stresses

The splitting stress distributions for the full-bedded specimens of
the concrete block and the_brick wall models a?é illustrated in Figures
6.14 and 6.15 respectively. Two main aspects may be observed. (1) 1In
both wall models, the tensile splitting stress decreased all along the
height except at one place. In the case of the brick wall model, there
was an increase in the tensile stress in the topmost unit layer. (2)

In the mortar joints, there.was a conspicuously large reduction in the
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- FIGURE 6.14 SPLITTING STRESSES
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lateral tensile stress.

Due . to creep and shrinkage phenomena, there was a loss of the
prestress which resulted in an overall réduction of the splitting stress
with time. In the mortar joint, the lateral expansion due to creep was
restrained by the adjoining unifs which resulted in.a compressive stress
in the mortar joint and a tensile stress in éhe adjacent units. Thus,
the tensile stress in the mortar joint decreases significantly. In the
case of the brick wall model, the increase of tension near the top
horizontal mortar joint caused an overall increase of the tensile stress
in the top unit layer. In the concrete block wall model, the lateral
expansion of the top unit due to creep was restrained by the steel plate
which contributed towards the reduction of the ténsile stress in the top
unit layer.

The splitting stresses for face-shell bedded specimens of the
concrete block and the brick wall models are plotted in Figures 6.16 and
6.17, There was a reduction in the elastic tensile’stress in the mortar:
joints for both concrete block and brick wall models. Simbeya (1985)
déscfibed the changes in the elastic tensile stress in the mortar joint
due to a horizontal joint rotation mechanism which is discussed below.
In the face-shell bedded specimens the continuityr of the cross-webs
along the height is broken at the horizontal mortar Jjoint level as
mortar is applied to the face-shells only. In Figure 6.18a, the webs of
two horizontal unit layers with the intermediate face-shell mortar joint
are shown in side ele%ation. Due to the discontinuity, the webs are
gubjected to concentrations of vertical compressive stresses at the

f

mortar joint intersections as shown in Figure 6.18b. The deformation of

web under face-shell loading of Figure 6.18b is 'depicted in Figure



120

FIGURE 6.16 SPLITTING STRESSES
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FI_GURE 6.17 SPLITTING STRESSES
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6.18c. The face-shell mortar Jjoint is rotated vertically due to the
deformations of the webs from above and below the mortar joint as
illustrated in PFigure 6.18d. The outward vertical rotation of the
mortar joint causes a horizontal deformation of the joint as shown in
Figure 6.18e. This implies that horizontal flexure stresses are induced
in the mortar joint causing tension to the outside face and compression
to the inside face. Thus, the flexure compressive stresses are added to
the tensile splitting stresses on the inside face resulting in a re-
duction of the tensile stress at the horizontal mortar joint level.

As shown in Figures 6.16 and 6.l7, the redistribﬁtion of stresses
due to creepqand shrinkage causes an increase in the tensile stress in
;hg mortar joint. The efféct of the horizontai-joint rotation mechanism
appears to dominate. Due to creep, the mortar joint tends to increase
rotation. The rotation is restrained by the uﬁits causing a tensile
stress on the inner face of the mortar joint and a compressive stress in
the adjoining units. Thus, Figures 6.16 and 6.17 show an increase of
the tensile stress in the mortar joint.

Due to creep and shrinkage, full-bedded specimens of the concrete
block walls had an overall reduction of the elastic tensile stress
whereas in face-shell bedded specimens, the maximum tensile stress
obtained from the creep and shrinkage analyses was of the same order as
that acquired from the elastic analysis. On the other hand, in the case
of brick wall models, creep and shrinkage induced an increase in the
maximum elastic tensile stress bf 60% in full-bedded specimens and by
125% in face-shell bedded specimens. In both cases, the }ncrease was
observed near the top horizontal mortar joint. Since these results are

from lower bound solutions, the increase in the lateral tensile stresses
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will be more in the upper bound solutions.

(9) Web Splitting Stresses

The web splitting stress distributions for the concrete block and‘
the brick wall models are sketched in Figures 6.19 and 6.20 respectively.

For a uniforﬁ axially loaded face—shelli bedded specimen, the
elastic web splitting stress distribution theory was suggested by‘Shrive
(1982). For a concentrated axial load, Shrive's web bending theory was
modified by Simbeya (}985). To illustrate the effects of creep and
shrinkage on redistribution of web splitting stresses, both theories are
summarized here. |

A concentrated axial load dispersés to the whole cross-section of
the wall as the depth ihcreases. Since prestressing is 'a form of
concentrated load, the intensity of web loading decreases towards the
bottom in the-upper half of the wall model. The equivalent of the web
loaﬁing of Figure 6.18b is shown in Figure 6.2la, where (P+V) is the
total vertical load at the top, V is the load which is distributed to
the face-shells inducing shear stresses in the face-sheli portion of the
webs. The web loading of Figure 6.2la can be divided into two separate
cases as shown in Figures 6.21b and 6.2lc. The analytical theory for
web loading of Figufe 6.21b was given by Shrive (1982) and is discussed
below. Since the loading is symmetrical in both horiéontal and vertical
directions, one guarter (ABCD) of the web is ana;ysed. Because of the
symmetxry, no shear acts on the faces AD and DC. For vertical equilibri-
um, only normal forces act on face DC and in order to have a continuous
deformation, the normal stress on face DC should be distributed as shéwn
in Figure 6.21d. The vertical stress distribution on face DC can be

replaced by a single equivalent force 'P', shown in Figure 6.21e,
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FIGURE 6.19 WEB SPLITTING STRESSES
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FIGURE 6.20 WEB SPLITTING -STRESSES
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resulting in a clockwise moment about D due to external load 'P'. To
balance the clockwise moment, an énti-clockwise moment due to internal
stresses must be produced. As only normal st?esses can occur on face AD
and the horizontal stress resultant should be zero there, a tensile
stress near A and a compressive stress near D is required on face AD as
shown in Figure 6.21f. For web loading of Figure 6.21lc, Simbeya (1985)
suggested that web bulging mechanism introduces higher tensile stresses
at the top of the web and lower tensile stresses at the bottom of the
web. |

As depicted in Figure 6.19, creep and shrinkage in the concrete
block ‘'wall model resulted in aAshift of the web splitting stresses to
thg right indicating that the tensile stress was introduced all along
the depth of the web. The increase in the maximum tensile stress was in
the order of 10%. Due to creep in the concrete block unit, the web
under compressive loading bulges more with time, thus inducing higher
tensile stresses. The tensile stress on the web faces are balanced by
compressive stresses (cy) on the middle of the face-shells as shown in
Figure 6.22. Thus, creep results in a twisting action on the
face-shells of the block unit. The twisting action was confirmed by
verifying the variation of o, along the length of the wall model, on the
face~shells. In the case of upper bound solutions, the increase in the
web splitting stresses will be more due to higher creep stréins in the
concrete block units.

On the other hand in the case of the brick wall model results, the
web bulging action of the elastic analysis did not result in any further .
increase in the tensile stress and can be Jjustified since the brick

units did not creep. As shown in Figure 6.20, the web splitting stress-
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es due to creep and shrinkage remained more or less the same as that
obtained from the elastic analysis. Eveh though the compressive load
was decreasing with time, the web Eplitting stress did. not decline.
Thus, it can be concluded that with redistribution of stresses due to
creep and shrinkage, the webs shared:mor; vertical load.

6.2.3.3 Redistribution of Vertical Compressive
Stress due to Creep and Shrinkage

It was observed that there was an overall decrease in the vertical
compressive stress (oz) with time. Due to creep and shrinkage; there
was a loss of the prestress which caused a reduction of the vertical
compressive force. Sinqe there was an overall reduction of the vertical
compressive stress, only the results from full bedded concrete block
wall models are illustrated. In Figure 6.23, the stréss distribution is
plotted along the vertical line passiﬁg’through point '3' and in Figure
6.24, the vertical stress is plotted along the horiéontal lipe A-A at
about ‘mid height (z = 280 mm) of the symmetrical wall model (locations
are shown in Figure 6.9). The elastic streéses are compared with the
stressgs obtained from the long;term lower bounq results of the creep
and shrinkage analyses. As shown in Figure 6.24, there was a noticeable
decrease of the compressive stress in the vertical mortar joints. Due
to creep, the mortar joint tends to compress more. The compression is
restrained by the adjacent units and a lower compressive stress in the
mortar joint results.

Because of symmetry, only one—eighth of the wall models were
analysed. Thus, the stress distributions obtained for the symmetrical

proportion are applicable for other parts of the wall models as well.
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FIGURE 6.23 VERTICAL COMPRESSIVE STRESS
CONCRETE BLOCK WALL (IN VERTICAL PLANE)
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6.2.4 Effects of Material Interaction

The main results were obtained ‘with an elastic' modulqs of the
mortar taken equal to that of the masonry units. In general, the
modulus of elasticity of mortar is less than that of masonry wunits.
Lack of quality control or workmanship may reduce the mortar stiffness
further. Reduced mortar stiffness induces higher stresses in the units
and lower stresses in the mortar joints. In the present analysis, the’
main aim was to obtain an overall wupper and lower bound to loss of
prestress. Since the creep and shrinkage strains of mortar are more
than those of the units, the reduced stiffness of mortar was expected to
resultrless prestréss loss because of the lower lateral stresses in
mortar., This was confirmed by analysing two wall models with the
stiffness of mortar reduced to half the initial value. The results are
compared in Tapl; 6.3; where n is the modular ratic and is equal to (E

of unit)/(E of mortar) and E is the modulus of elasticity.

Concrete Block Wall Models
Lower Bound Solution
(with M-Mortar)

Full Bedded Specimens Face-Shell Bedded Specimens
n=1 n=2 n=1 n =2
Ultimate
Prestress Loss 7
after 12 Years 14.6 13.6 15.5 14.3

due to Creep
and Shrinkage
Analyses (%)

Table 6.3 Comparison of Prestress Losses
due to Material Interaction
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6.2.5 Summary of Results

A good correlation Qas found between short-term prestress losses
obtained from the present analysis and short-term experimental values
reported in the literature. -The overall long-term piestress losses'due
to.crgep, shrinkage and relaxation effects were in the range of 24-31%
for the concrete block and 17-22% for‘the brick wall models.

The redistribution of lateral tensile stresses due to creep and
shrinkage were studies in detail. The tearing stress for both concrete
block and brick wall models remained in the same order as that obtained
from the elastic analysis. 1In the case of the brick wali specimens, the
face-shell splitting stresses increased quite significantly in the top
brick unit layer. On the other hand in concrete block wall specimens,
there was an increase in the web splitting stresses which were maximum
in the top unit layer. To increase the lateral tensile strength capaci-
ty, a horizoﬁtal steel tég member spanning both x and y directions may
be provided near the end steel plates, in both post-tensioned concrete
block and brick wall specimens. The steel tie member is illustrated in
Figurg 6.25 and may be placed in the top and bottom horizontal mortar

joints.

-

The overall results indicate that post-tensioning is a potential

method of increasing long-term flexure capacity in masonry walls.

6.3 Approximate Analytical Solution Method for Simplified Wall Models

To predict elastic, creep and shrinkage behaviour of masonry,
approximate and simplified models have been suggested by Shrive and
England (1981) and Ameny et al (1984). 1In this section, .the éoncrete
block and brick wall models of Figures 5.6 and 5.7 are replaced by a very

simple wall model and the solution to prestress losses is obtained by

-
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an analytical method. In the present research, the purpose of
performing this approximate analysis is to determine whether such
analyses may be worth pursuing in the future.

The wall models of Figures 5.6 and 5.7 are approximated by the
solid wall model, shown in Figure 6.26. Only full mortar bedded models
are analysed. It is assumed that time dependent masonry deformation is
related to the relative volumes of block and mortar, and to the specific
geometry of the wall model. In Figure 6.26, the block portion is shown
by the non-shaded area and the mortar is represented by the shaded one;
Since the loading was symmetrical, the prestressing steel is represented
by a single bar in the centre of the wall model.

To analyse the composite wall model of Figure 6.26, an analytical
solution method, described in a text by Ghali and Favre (1986), has beén
used. Both upper and lower bounds.to prestress losses were obtained and
are compared with the results obtained by the step-by-step solution
technique (analysed by computer) in Tables 6.4 ana 6.5 for concrete
block and brick wall models respéctively. The detailed derivation to
calculate prestress loss analytically is- described in the Appendix. As
shown in Tables 6.4 and 6.5, the prestress losses obtained by the
approximate solution method were less by 4-5% for upper bound results
and 1.5-2.5% for 1lower bound values. In the approximate solution
method, values of aging coefficien£ (x) and reduced relaxation of
prestressed steel (xr) were taken from concrete literature (Ghali and
favre; 1986) . The difference between the two methods may be because a
very simple wall model was adopted for the approximate golution.

Thus, it is recommended that impfoved wall models, like those

suggested by Shrive and England (1981) or Ameny et al (1984), should be
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reconsidered. Improved values of the aging coefficient and the reduced
relaxation coefficient, to be used for masonry structures, should also

be examined.



Upper Bound Solutions
(with N-Mortar)

Lower Bound Solutions
(with M-Mortar)

Approximate Step-by-Step Approximate Step-by-Step
Analytical Solution Analytical Solution
Solution Method Method Solution Method Method
Prestress Loss After 200 21.3 25.6 18.5 20.4
due to Creep, Days
Shrinkage
and Relaxation
Analyses After 12 25.7 30.0 22.4 23.8
(%) Years
Table 6.4 Comparison of

Prestress Losses for Concrete Block Wall Model (Full Bedded)

8€T



Upper Bound Solutions
(with N-Mortar)

Lower Bound Solutions
(with M-Mortar)

Approximate Step-by-Step Approximate Step-by-Step
Analytical Solution Analytical Solution
Solution Method Method Solution Method Method
Prestress Loss After 200 12.1 17.2 10.8 13.1
due to Creep, Days
Shrinkage
and Relaxation
Analyses After 12 16.2 21.3 14.3 16.8
(%) Years

Table 6.5 Comparison of Prestress Losses for Brick Wall Model (Full Bedded)

6€T



CHAPTER 7
CONCLUSIONS AND REC_OMMENDATIONS
7.1 Conclusions

7.1.1 Creep and Shrinkage Properties

In Chapter 4, mathematical expressions were fitted to short-term
experimenta;.data for creep gnd sh;inkége propertiesrof masonry cémpo—
nents. The following conclusions may be“drawn.

(1) Most of the specific creep strain data available in the literature
can be fitted quite well by one or two straight lines using a log (time)
scale. The linear relationship between the specific creep strains and
the logarithm of the time under load could easily bé extrapolated to the
requisite long-term times.

(2) A linear logarithmic relationship, similar to the one for the creep,
data, was obtained for short-term shrinkage straié values and extrap-
olated for long-term behaviour. :The logarithmic expressions developed
could easily be incorporated in the computer program used with no
~additional storage requirements.

(3) In'the creep analysis procedure using a step-by-step time inére—
mental solution technigue, storage of stress values at all the time
steps becomes a major limitation in terms of-computer time and storage
space. To a&oid stress history storage while simultaneously represent-
ing the time incremental solution technique accurately, certain creep
functions were developed in the field of coﬁcrete stiﬁctures. For
masonry components also, all developed logarithmic expressions for the
creep data could be transformed very efficiently to such a creep func-
tion, represented by a series of real exponentials.

140
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7.1.2 Loss of Prestress

Based on the resulté discuissed in Cﬁapter 6, certain conclusions
were reached and are as follows.
(1) A good correlation Was,observed between short—term prestresé losses
computed from the presenthanalysisrand‘short-term experimental values
reported in the literature. Thus, creep and shrinkage properties used
for the present analysis could be adopted satisfactorily.
(2) The preétress‘losses in face-shell bedded and full-bedded épecimens
are of the same order.
(3) Fifty percent of the ultimate prestress loss mayroccur during the
first fifty days.
(4) In the :case of concrete hollow block wall specimens, ultimate
post—ténsion 1gsses can be expected to be 15-24% due to creep and
shrinkége effects rand 54—31% when the stress relaxation effect is
included, Upper bound of prestress loss reflects the worst case of
creep and shrinkage in concrete block units and in mortar whereas lower
bound represents the best case of creep and shrinkage strains.
KS) In hollow brick wall specimens, ultimate prestress losses may be in
the range of 5-10% due té creep and shrinkage properties and 17-22% when
the stress relaxation property of post-tensioned steel is included. The
two limits corrgspond:to the upper and. lower bounds of the creep and
shrinkage properties of the mortar.

In the present‘study, the average compressive stress in wall models
was 0.25 of the ultimate strength of masonry. The post~tensioned steel
bars were of high strength and were stressed to 70% of the ultimate"

strength. During the course of experimental measurements for creep and
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shrinkage properties of masonry components, the observed temperature was

in the range of 17-22°C and the relative humidity varied from 20-50%.

7.1.3 “Redistribution of Stresses

Under a compressive axial load, the following are the main con-
clusions regarding redistribution of lateral tensiie stresses due tq
creep and shrinkage phenomena.

(1) The 1lateral expansion of the mortar joint is restrained by the
adjoining units resulting in a reduction of tensile tearing stress in
the mortar joints and an increase in the adjaceht units.

(2) For both concrete block -and brick wall specimens, the maximum
tearing stress remains in the same order as that obtained from the
elastic anélysis. i

(3) In the case éf concrete block wall mode;s, full-bedded specimens
experience an overall reduction of lateral tensile splitting stress
along the depth, whereas in face-shell bedded specimens the splitting
stress increases in the horizontal mortar joints. The order of maximum
tensile splitting stress remains the same as that acquired from the
elastic analysis.

(4) In the case 6f full-bedded brick wall specimens, tbe splitting
stress decreases along the depth of the model except in the top and
bottom brick unit: layers (near the horizontal mortar joints). ;n
face-shell bedded brick wall specimens, the splitting stress increases
in the horizontal mortaf joints. This increase is quite significant in
the top and bottom mortar joints.

(5) Creep and shrinkage cause an increase of the tensile web splitting

stresses in concrete bloék wall specimens (web bulging action due to
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creep in block units) whereas in brick wall specimens, tﬁe web splitting
stresses remain more or le§s the same. |
(6) With redistribution of stresses, the webs share more vertical load
with time.

(7) To increase the lateral tensile strength of post-tensioned concrete
block and brick wall specimens, a horizontal steel-tie member spanning
both the x and y directions may bg proyided near the end steel plates.
As a general conclusion, the overall results indicate that.post—
tensioning is a viable method of increasing long-term flexural capacity

of masonry walls.

7.2 Recommendations
In the present research, érestressing was the only load which was
considered in the analysis. Only vertical post—tensioned hollow masonry
walls were modelled. Further, only one size of the model was selected.
More general results could be obtained wusing the present model by
analysing the following cases:
(1) Gravity loads,
(2) Lateral loads, i.e. Wind loads or Earthquake loads,
' (3) Different sizes of models,
(4) Gréuted masonry walls,
(5) Biaxially post-tensioned walls, i.e. walls post-tensioned in the
horizontal direction as well,
(6) Different type of structufes, e.g. a masonry column or a masonry
beam.
éince it was concluded that post~tensioning is a viable w;y of
increasing the flexural capacity of masonry walls, it would be desirable

to study existing deteriorating masonry structures. It may be practical
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to prestress existing cracked masonr§ structures. If so, it may be morxe
economical to use prestressing compared to the cost of replacing struc-
tures with new ones, in terms of long-term life.

In the present study, the age at 1oading:reductiop factor for creep
strains was taken from the CEB-FIP (1970) model. To be more precise, é
detailed experimental program studying the effects 6f age atrloadingron
creep strains, should be undertaken. An attempt should be made to
divide thé creep of masonry into twdxparts, (1) irreversible creep
(plastic flow) and (2) reversible creep (delayed elastic strain),
similar to the CEB-~FIP (1978) model's expression for creep in concrete.

In the upperzbound solutions, the problem of numerical instability
was encountered. As discussed in Chaptér 3, this problem can be avoided
by implementing an implicit scheme which requires the knowledge of creep
flow rate criteria. To improve the present creep model, a theoretical
investigation should be made to establish general creep-time flow
equations for masonry structures.

Finally, it is recommenaed that app;oximéte analytical solutions to
ﬁasonry models should be tried. _ Improved ﬁasonry models should be
analysed to verify or to improve the values'éf aging coefficient, to be

used for masonry structures.
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APPROXIMATE ANALYTICAL SOLUTION METHOD

In the present analysis,
E = E(t ) =
(t) ( 0) E
where E is the modulus of elasticity, to is the age at initial
loading and t is any time or age.
Further, Eu = E

m

where Em is the modulus of elasticity of mortar and Eu is the

modulus of elasticity of block unit.
Ilet E =E =E .
u m o
For the wall model of Figure 6.26, one basic assumption is‘made

that plane section remains plane at all times.

In the Vertical Plane (x~z plane):

In 'z' direction, gu is the block

<—a

unit portion length, zm is the

mortar portion length and g. is the
unit 1 J
u lj . combined 1length. Subscript ‘'m’
//A//// X represents mortar, . 'u' indicates
ortar lm-
yIIIV4 r \ block unit and the combined effect
T - is represented by ‘'j’.
o

(A) Instant Change in Length (Elastic Analysis):

"i.e. at time t = to R
e _ ..e . e
Azj(to) = Azu(to) + Agm(to)

where Age is the change in length due to elastic analysis.
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A%;(td) B L

% "E 'E " & (A.1)
o o o

Time Dependent Change in Length:

i.e. at time t > to s

Creep Analysis:

c 4 eC c : -
Azj(t) = Azu(t) + Alm(t) ' (a.2)
where ALC is the change in iength due to creep analysis.

AeS(t) = E_ AL, (t ) C.(t,t) (3.3a)

J o J o ] o]

ASS(t) = ok C_(t,t ) ‘ (A.3b)

u u u o}

¢ ,

Alm(t) = qlm Cm(t,to) ' (A.3¢c)

where Cj is 'the specific creep of the combined action of unit and

mortar.

(b)

From Equations (A.2). and (A.3),

g

C.(t,to) = e
J E AR5 (t )
o j o

[L Cu(t,toy + zmcm(t,to)] (a.4)
From Equations (A.l) and (A.4),

1
C:] (tlto) = T!'I—j' ['Q’u Cu(t.'to) + Q’m Cm(trto)] (A.S)

Shrinkage Analysis:

s — AgS s
Azj(t) Azu(t) + A% (t)

where A2° is the change in length due to shrinkage.
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L. €° =9 €5 g €5
5 j(t,ts) a u(t,ts) + - m(t,ts)

&Pa
.

s _ s s
Ej (t,ts) = [2u €u(t,ts) + Zm Em(t'ts,),,] (A.6)

In the Horizontal Plane (x-y plane)

Z 7z “
=
.1 7

In x-y plane, Aj is the area of combined portion -of unit and
mortar (combined action is because of x-z plane), Am is area of mortar

only and Aps is the area of prestressing steel, .

(A) Instant Time Analysis :
i.e. at time t = to ,
for only prestressing load,

P = ~(P, + P )
ps N m

where P s is the prestressing force, Pj is the vertical load
shared by combined portion (non-shaded area) and Pm is the vertical
load shared by mortar portion (shaded area). Subscript 'ps' represents
prestressing steel.

Since E = E. = E
m

o (t) =0 (t ) = — . (A.7)
j o m o .
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where A = Aj + Am and ¢ is the stress.
(B) Time Dependent Changes:
i.e. at time t > t_ ,

O
AP, + AP + AP =0
J m ps

~

Thus, .
Ao = - —E;-(A Ao, + A Ac) ' (A.8)
ps Aps 5775 m ~m , :

where AP is the change in force and Ac is the change in stress.

Ao s Ao r .

re  (t) = —B2—P% (3.9a)
ps E
ps
s .

Aej(t) = oj(to) Cj(t,to) + ej(t,to)

Aoj

=+ chx Cj(t,to) : : (A.9%b)

o
. _ s
Aem(t) =. O'm(to) Cm(t'to) + Em(trto)

Ao
m
+o— + Aomx Cm(t,to) (A.S¢c)

Eo

where Ae(t) is the total time dependent change in strain at time
t, Ao 1is the chgnge in gtress, Acps is the change in stress in the
prestressed steel due to combined effects of creep, shrinkage and
relaxation, Aapr is the reduced relaxation and y is the aging coeffi-
cient.

For definitions and understanding of the different terms, the text
by Ghali and Favre (1986) can be referenced.

Since plane section remains plane,
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Aeps‘t) = Aej(t) = Asm(t) (a.10)

From Equations (A.8), (A.9) and (A.10),

1 -
ACPS S[aj am)AoPr. o Eps cj(to)cj(t,to)
+ a. BE Es.(t,:t) + g E o (t )C (t,t)
J ps J (o] m ps m o ™ °
s
+ am EPs sm(t,to)] (3.11)
where
B (1 (!j am)
2 & Am —m
@, = —+—I- ana o =
J A E m
ps ps ps ps
E
E = o

j 1+ y EO Cj(t,to)

. E
= O

E
+
m 1 x E_C (t,t)

For the present analysis, ¥ has been taken equal to 0.8 and

Aopr = Xy Aopr

where xr is the reduced relaxation coefficient and Acg r is the
intrinsic relaxation. To calculate Acpr, Equation (3.24) or (3.25)
may be used. For Xy values, tables and graphs of the text by Ghali and
Favre (1986) were used.

Thus, approximate prestress loss values were calculated by

Equation (A.1l1).



