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ABSTRACT 

A three-dimensional finite element model of masonry for calculating 

the potential loss of prestress in post-tensioned hollow masonry walls is 

developed. The model allows for creep and shrinkage in the mortar and 

concrete block units, and stress relaxation in the prestressing steel. 

Short-term experimental creep and shrinkage data of masonry " components, 

available in the literature, are fitted into mathematical expressions and 

extrapolated to the desired long-term times. 

Fully bedded and face-shell bedded specimens of concrete block and 

brick wall models are analysed. Long-term as well as short-term upper 

and lower bounds to loss of prestress are calculated. Upper and lower 

limits correspond respectively to the worst and the best case of creep 

and shrinkage strains in mortar and block units. Short-term computed 

losses are compared with experimental values reported in the literature. 

Finally, the redistribution of stresses in post-tensioned hollow masonry 

wall models is studied and the mechanisnts causing redistributions are 

discussed in detail. ' 

The overall results indicate that post-tensioning is a viable method 

of increasing the long-term flexural capacity in masonry walls. 
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CHAPTER 1 

INTRODUCTION 

1.1 Statement of the Problem  

In recent years, prestressed masonry wall systems have gained a 

new recognition as a structural option. The use of prestressing in 

masonry structures increases the tensile capacity as well as overcoming 

the problem of crack size limitation. Furthermore, it has been ob-

served that prestressed designs are more economical than other struc-

tural systems. 

In prestressed structures, a significant loss of prestress occurs' 

with time and the initial tensile capacity is reduced. Thus, it is 

important to estimate prestress losses before applying a prestressing 

force. Very little is known regarding the prestress loss in masonry. 

Therefore, the author's purpose in this research is to calculate the 

potential loss of prestress in post-tensioned hollow masonry walls. To 

achieve this, a three-dimensional finite element model of masonry is 

developed. This work involved study of creep and shrinkage in mortar 

and concrete blocks or brick units, and stress relaxation in 

prestressing steel. 

Creep is the time-dependent increase in strain induced in a 

material at constant temperature by a constant sustained stress. 

Contrary to creep, shrinkage does not depend on loading and is simply 

the time-dependent contraction of material due to loss of moisture to 

the environment. Like creep, relaxation is time dependent and is the 

decrease in stress under a constant deformation at constant temper-

ature. Both creep and shrinkage strains have been observed in concrete 

1 
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blocks, mortars and brick units by Lenczner ( 1969, 1971 and 1974) and 

Zmeny ( 1979 and 1982). In composite materials, the creep in steel is 

neglected as it is insignificant as compared to the creep in the other 

components. However, a significant relaxation of stress in the pre-

stressing steel takes place for stresses more than fifty percent of the 

ultimate strength of the prestressing steel. 

Creep and shrinkage cause a continuous redistribution of stresses 

in masonry units, mortar and steel in any reinforced, prestressed or 

composite masonry system. In the case of prestressed hollow masonry 

walls, creep and shrinkage cause a contraction which leads to a signif-

icant loss of the initial prestressing force. Furthermore, stress 

relaxation of the prestressing steel also contributes to the problem of 

prestress loss. 

Experimental values of the loss of prestress in hollow masonry 

walls have been reported by Tatsa et al ( 1973), Lenczner ( 1983), Huizer 

and Shrive ( 1984) and Lenczner and Davis ( 1984). These values are for 

a relatively short period of time ( 200 days only). Lenczner ( 1969, 

1971 and 1974) and \meny ( 1979 and 1982) obtained the short-term time 

dependent deformational behaviour of masonry experimentally. But in 

order to design masonry walls safely, stress loss in the steel over 

time and long-term deformations must be estimated before applying a 

prestressing force. 

In "Masonry Designer's Manual" by Curtin et al ( 1982) 20% ulti-

mate prestress loss is suggested for post-tensioned brickwork masonry. 

In the literature, a few approximate numerical methods have been 

proposed to estimate long-term deformations of'masonry from the proper-

ties of its different constituents by Jessop et al ( 1978b) and Shrive 
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and England ( 1981). Their solutions were based on several assumptions 

and simplifications. 2meny et al ( 1984) suggested a few models to 

estimate long-term deformations based on analytical solution proce-

dures. Lenczner ( 1981) gave an approximate expression to calculate the 

ultimate creep strain in brickwork assuming a constant stress state at 

all times. In order to predict results more accurately, more precise 

numerical solutions have to be developed. Anand et al ( 1983 and 1984) 

developed a two-dimensional finite element model which incorporated a 

numerical solution tech±iique to calculate the influence of 

redistribution of stresses due to creep and shrinkage in composite 

masonry walls. The numerical solution required creep and shrinkage 

.properties of the different components of masonry structures. 

Since the nature of stresses in masonry walls is essentially 

triaxial, there was a need to develop a three-dimensional model into 

which the effects of prestressing of steel could be incorporated. 

1.2 Objectives of the Research  

Accordingly, the objective of this study was to develop a numer-

ical technique for a three-dimensional model capable of: 

1. computing the redistribution of stresses in post-tensioned hollow 

masonry walls due to creep and shrinkage; 

2. including prestress force numerically with the effects of stress 

relaxation taken into account; and 

3. calculating both long and short-term, upper and lower bounds to 

loss of prestress, given our current knowledge of creep, shrinkage 

and relaxation properties. 
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1.3 Outline of the Research  

To achieve the research objectives,- the following work was carried 

out and is described in this thesis. 

1. Review the detailed relevant literature (Chapter 2). 

2. Evolve a method of analysis for creep, shrinkage and relaxation 

effects. Select and develop the numerical procedure and modify 

an existing finite element program in order to incorporate the 

relevant time-dependent non-linear effects (Chapter 3). 

3. Fit mathematical expressions to the short-term data of creep and 

shrinkage of mortar, concrete blocks and brick units available in 

the literature, such that the data could be stored efficiently in 

the computer program. Further, the expressions were, used to 

extrapolate for the long-term behaviour of masonry (Chapter 4). 

4. Develop model specimens to represent both actual hollow concrete 

masonry and brickwork masonry walls. Different models were 

selected to represent different mortar combinations with concrete 

blocks and brick units respectively (Chapter 5). 

5. Study the redistribution of stresses between mortar and masonry 

units using the modified program and prestressed hollow masonry 

wall models. Further, upper and lower bounds to prestress loss in 

the stretched steel bars were obtained. Finally, short-term 

prestress loss values were compared with experimental values 

reported in the literature (Chapter 6). 



CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction  

In the author's opinion, the literature review was not complete 

until the research was over. As the study proceeded, certain points 

needed to be studied and probed further. Those areas were researched 

and the literature is discussed in the relevant chapters. In this 

chapter, only that part of literature is reviewed which is relevant to 

the main objectives of the study. 

The use of prestressing in masonry is quite recent. Some experimen-

tal observations and theoretical results regarding stress distribution 

in prestressed masonry have been reported in the literature but still 

there is a lot more to be done in this field. Very few observations 

have been made regarding loss of prestress in masonry due to time-

dependent effects. Nothing has been done to find the long-term pre-

stress loss. On the other hand, in prestressed concrete structures, a 

lot of research work has been reported. Thus, in this chapter, some 

work related to concrete is also reviewed. 

2.2 Finite Element Models for Masonry  

Khalil ( 1983) made an extensive search of existing literature about 

finite element models in his Ph.D. work. His main finding was that 

although masonry walls had been analysed with finite element models, 

most analyses had involved two-dimensional plane elements only. Also 

most of the analyses involved solid homogeneous units only. There were 

very few reports of three-dimensional stress analyses and those were 

limited in scope. Khalil ( 1983) used a three-dimensional finite element 

5 
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model to analyse hollow masonry walls. He concluded that finite element 

computer programs can work really well for the analysis of both concrete 

block and clay brick walls provided that reliable material properties 

are used. He verified the values of stress and strain obtained 

analytically by comparing with experimental values. In his analysis 

Khalil used material properties determined by Ameny ( 1979 and 1982). 

Khalil assumed perfect bond between units and mortar. He also assumed 

that both unit and mortar were homogeneous, isotropic and linear-

elastic. The assumption of linear-elastic behaviour was justified by 

analysing the model under a uniformly distributed load equal to 0.35 of 

the ultimate strength. 

In the area of hollow masonry, the work was carried further by 

Simbeya ( 1985). He also used three-dimensional models to assess the 

stress distributions in masonry due to concentrated load. He modelled 

different types of masonry wall to obtain an understanding of the stress 

distributions. In his finite element analysis, Siinbeya made the same 

assumptions as Khalil. 

2.3 Creep and Shrinkage Properties  

A significant number of observations have been made in the past 

concerning creep and shrinkage strains in masonry. An extensive review 

of published material on elastic, thermal, shrinkage and creep proper-

ties of masonry has been made by Jessop et al ( 1978a). Although lmeny 

(1979) also made a detailed survey of the literature in this field, 

points related specifically to this study are reviewed again here. 

Poljakov ( 1962) made some important contributions to creep in 

masonry. He studied creep strains of some brickwork prisms which were 

subjected to a sustained stress of 0.4 to 0.6 of the estimated ultimate 
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strength of the test specimens. He noticed that the ultimate creep 

strains developed in the prisms were 85-155% of the instantaneous 

elastic strain. He tried to fit a mathematical expression to the 

experimental creep data and, found that an approximate logarithmic 

relationship existed between creep strains and the stress/strength 

ratio. Further, if the stress/strength ratio was less than 0.6, this 

relationship could be a linear one. He also studied the effects of 

different ages at loading. More importantly he formed an exponential 

type expression, for masonry creep as a function of age at loading, the 

duration of the load, stress over strength ratio and the brickwork type. 

The expression was of the form: 

stress  
= A x strength (0.1 + 1.82 e- 0.3t  1/7 o) (t-t) 

0 

where cC(t,t) is the masonry creep at any time t to is the age at 

loading and A is a coefficient depending on the type of brickwork. This 

was an important finding as it matches with the observations made by 

Bazant and Wu ( 1973) in the field of concrete structures. Poljakov also 

observed that the creep behaviour did not differ much due to eccentric 

loading. 

Lenczner performed many tests on brick masonry as well as concrete 

masonry. Using half size model bricks Lenczner ( 1969) observed that 

creep strains in wall panels were lower than in the piers by 20%. He 

found that considerable creep occurred in the piers, though 80-96% of 

the creep strains at 70 days occurred in the first 28 days. Lenczner 

(1971) also concluded that creep in brickwork containing full size 

bricks was much smaller, even less than one-fifth of creep strains 

measured in model brickwork. 
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Lenczner et al ( 1975) performed tests to study the effects of 

stress levels using different types of units and mortars. They observed 

that creep strains increased with stress although the relationship was 

not linear, especially when stress/strength ratio exceeded 0.4. They 

concluded that creep could be expected to cease within a year. 

The effects of age at loading and eccentricity in brick masonry 

were studied by Lenczner and Salahuddin ( 1976). They noticed that age 

at loading, provided it was greater than 14 days, did not change the 

creep strains very significantly. Small eccentricities had little 

influence on creep behaviour. Creep tests on isolated brick units were 

also performed. It was observed that there was not much creep in the 

individual units and most of the creep occurred in the first 30 days. 

This behaviour indicated that the major portion of creep in brickwork 

occurred in the mortar joints. The main point to be noted is that all 

their tests were conducted at a constant temperature of 20°C and approx-

imately 50% relative humidity. In their tests shrinkage strains were 

also examined. Maximum shrinkage in brick walls was found to be only 54 

x 10- 6. On the other hand individual bricks showed some moisture 

expansion and the maximum expansion strains were 30 x io 6. 

Wyatt et al ( 1975) tried to fit the creep data of brick masonry 

obtained earlier by Lenczner to an equation or expression form. They 

obtained a logarithmic relationship between creep strains and age at 

observation of creep strains. The function was of the form: 

c stress  3 
c (t) = 2500 ( ,) (t + 1) 

strength 

Lenczner ( 1974) studied creep and shrinkage in blockwork. He 

observed that the creep strains which developed in the blockwork were 

considerably higher than those of the brickwork. He found that for his 
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circumstances, creep ceased at all stress levels after approximately 300 

days. Another point he observed was that creep strains in the mortar 

(1:1:6) were 4 to 5 times greater than those in the concrete block 

units. When the tests were conducted again at a constanttemperature of 

20°C and 50% relative humidity, it was observed that the shrinkage 

strain rate was very high in the beginning followed by a slow rate. 

After 320 days, shrinkage strains in blockwork were 525 x io6 while in 

individual block units the strains were 410 x 10- 6. At this time 

strains were still increasing but at a very reduced rate. 

Ameny (1979 and 1982) in his M.Sc. and Ph.D. theses obtained a 

similar set of creep and shrinkage strain data for concrete and brick 

masonry compared with the data Lenczner had obtained. Ameny concluded 

that the order of magnitude of strains was the same as had been obtained 

by Lenczner. The main difference was that in Aineny's case, there was no 

provision to maintain constant temperature and humidity although the 

laboratory was centrally air heated and the observed temperature and 

humidity during the course of experiments did not vary much except on 

one occasion. 

Ameny et al ( 1980) concluded that in concrete block masonry when 

the ratio of applied stress to masonry strength is in the range of 

0.17-0.40, creep is linearly related to the stress/strength ratio and 

further that this relationship is not altered by eccentricity of 

loading. Creep strains in block masonry were 18-43% higher than creep 

measured in the individual blocks. Hence, the mortar crept more than 

the blocks. 

Ameny et al ( 1984) reported that brick creep was very small with a 

creep coefficient of only 0.08-0.13 after one year. For convenience the 
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creep coefficient has been defined as the ratio of the creep strain to 

the elastic strain. 

(t,t) = 

Since there was no gauge available to taeasure the mortar strains individ-

ually, a few separate tests were conducted onmortar cylinders, although 

Ameny ( 1982) acknowledged that the behaviour of the mortar cylinders di 

not represent the true behaviour of mortar in masonry. In his test 

specimens two different mortar cases were taken. Creep strains of N-

mortar were observed to be much higher than that of M-mortar. He 

observed very low shrinkage strains in brick masonry and concluded that-

it could be neglected. As per Jessop et al ( 1978a) there is a 

significant amount of moisture movement (expansion) reported in 

brickwork. In the early stages, bricks undergo significant reversible 

expansion. Ameny et al ( 1984) however, reported little moisture 

expansion in the brickwork, as the bricks used were thoroughly soaked in 

water before constructing the test specimens. 

Tatsa et al ( 1973) noticed that in the case of concrete blockwork 

walls the ratio of the creep strains in the joints to the creep strains 

in the blocks was 4.4 when specimens were not presoaked and 16.8 when 

specimens were presoaked. 

2.4 Prestress in Masonry  

A few published reports about experimental observations of stress 

distribution due to prestress in masonry can be found in the literature 

but theoretical analyses are rare. 

Suter et al ( 1983) tried to analyse prestressed masonry walls 

theoretically but that work was very limited in scope. In the stress 
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analysis, only two-dimensional constant strain triangular plane finite 

elements were used. This did not represent the triaxial stress nature 

of prestressed masonry walls. Further, the prestressing steel stiffness 

was neglected and moreover, the prestressing force was represented as a 

concentrated load at the top of the wall. This did not represent the 

actual prestressing load system. 

Simbeya ( 1985) continued work in this field by analysing masonry 

walls with a concentrated load using three-dimensional solid finite 

elements. He studied the stress distribution in a number of different 

masonry walls. 

Tatsa et al ( 1973) made a few experimental observations in block-

work walls regarding prestress loss in masonry. Their main, conclusion 

was that losses were of the same order of magnitude as in conventional 

prestressed concrete. In their tests all panels were prestressed to 45% 

of the ultimate strength and the post-tensioned steel bars were stressed 

to 83% of the ultimate tensile strength. After 180 days prestress loss 

due to creep and shrinkage was found to be 12.5% and due to stress 

relaxation of steel 6.5%. The overall short term losses after 180 days 

were in the order of 20%. 

Recently Huizer and Shrive ( 1984) reported experimental values of 

short-term losses in a post-tensioned concrete block masonry wall. The 

block units used were over three years old and thus the mortar was 

expected to contribute most of the total creep or shrinkage. Posi-

tensioning steel wires were of high tensile strength and were prestres-

sed to 70% of the ultimate strength. Over 200 days, the observed 

prestress loss due to creep, shrinkage and relaxation was 16% or less. 

Short-term loss of prestress in post-tensioned brickwork has been 



12 

observed by Lenczner and Davis ( 1984). His findings were that prestress 

loss in brickwork practically ceased after some 175 days and 50% of the 

loss occurred during the first 25-40 days. After about a year, 9-11% 

prestress loss was observed in brickwork walls. As the prestressing 

bars were not stressed more than 50% of the ultimate strength, loss due 

to relaxation of steel was negligible. Thus, the overall loss reported 

was essentially because of creep and shrinkage only. 

Curtin et al ( 1982) recommend 20% ultimate loss of post-tensioned 

force to be considered in the design of post-tensioned brickwork masonry 

due to creep, shrinkage and relaxation effects. Wherein the losses due 

to relaxation may be taken as about 8% at the 70% stress level and 0% at 

50% stress level. 

2.5 Method of Analysis  

In composite masonry, a numerical approach has been developed by 

Anand et al ( 1983 and 1984) for the solution of creep and shrinkage 

problems of a two-dimensional nature. A similar approach has been used 

by a number of authors in the field of concrete structures. On the same 

topic, several finite element texts, e.g. by Zienkiewicz ( 1977) and Cook 

(1981), are also available. It is a load incremental, iterative, step-

by-step solution method in the time domain. The first step is an 

elastic analysis of the problem. At the end of the time step, creep and 

shrinkage strains are calculated. These are taken as initial strains 

for the next time step and the problem is analysed again. This pro-

cedure is continued until either the final requisite time is reached or 

the stress-strain distribution in two consequent time steps differs only 

slightly. This method is general and applicable for any form of creep 

and shrinkage input data. 



CHAPTER 3 

FINITE ELEMENT ANALYSIS FOR CREEP, SHRINKAGE 

AND RELAXATION EFFECTS 

3.1 Introduction  

Masonry is a composite type of construction wherein concrete blocks 

or brick units are joined together by thin layers of mortar. Different 

material characteristics of mortar, concrete blocks and brick units make 

the analysis of masonry walls very complicated especially when time-

dependent effects due to creep, shrinkage and relaxation properties are 

also incorporated. The use of hollow units, prestressing steel and 

different mortar bedding types in between the masonry units increase the 

complexity of stress analysis in prestressed hollow masonry walls. 

Approximate solutions for the time-dependent analysis of masonry struc-

tures have been reported in the literature but are based on several 

assumptions and simplifications. In order to predict long-term 

behaviour of prestressed masonry accurately, the finite element method, 

a numerical solution procedure, was chosen for the present study. 

Modern age computers have popularized this method of analysis. The 

finite element program available to the author, had to be modified to 

perform time-dependent non-linear analysis as previously it only had the 

capacity of analysing linear elasto-static problems. A numerical 

solution technique was developed to include the effects of the creep, 

shrinkage and relaxation properties of masonry. 

13 



14 

3.2 Creep, Shrinkage and Relaxation Effects  

3.2.1 Creep and Shrinkage Phenomena  

Basic definitions, theories of creep and shrinkage phenomena, their 

mechanisms and different methods have been given in detail in the text 

by Neville et al ( 1983). This text has been referenced throughout this 

study as an aid in understanding and applying the different concepts and 

analysis methods. 

In this section, the basic assumptions made in the analysis for 

creep and shrinkage properties are discussed. 

Creep has been defined as the strain in excess of the elastic 

strain at the time of application of load. In reality materials gain 

stiffness with aging so that true elastic strain decreases as time 

passes. Therefore, creep is actually the strain in excess of the true 

elastic strain. The change in elastic strain over time has been ob-

served to be small. tt has been neglected in past studies to simplify 

the analytical procedure. In this study, it is assumed that the elastic 

strain remains constant during the entire time analysis. 

In the literature, creep and shrinkage phenomena, occurring at the 

same time, have been assumed to be additive. In reality the two are 

interdependent. In general, the effect of shrinkage (drying) on creep 

is to increase the magnitude of creep strains. For simplification, 

however, the creep strains are taken to be those in excess of the 

shrinkage strains. The input data of creep and shrinkage properties of 

masonry components used in this study were based on the assumption of 

the additive phenomena. 

It has been reported by Bazant ( 1982) that creep and shrinkage 

strains do not remain constant throughout the depth of cross sections of 
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test specimens. This uneven distribution across the section causes 

internal forces which may cause surface cracks. In the case of thick 

sections, these effects may be very severe. The sections of masonry 

walls,'analysed in this study, as well as those of prism specimens which 

were used to obtain creep and shrinkage data, were not thick. Thus, the 

creep and shrinkage strains may be assumed to represent an overall or 

mean value across the cross section. 

3.2.2 Creep 

3.2.2.1 Influencing Factors  

Creep strains are influenced by a large number of factors which 

have been given in detail in the text by Neville et al ( 1983). Only the 

main points are reviewed here and a comparison between laboratory tested 

specimens and the model specimens, analysed in this study, will be made 

in the next chapter through the following factors. 

1. Compressive Strength: In general, creep deformations are inversely 

proportional to the ultimate compressive strength of the unit. 

2. Relative Humidity: Creep strains decrease with an increase in the 

ambient relative humidity provided there are no fluctuations in the 

relative humidity after loading the specimens. It has been ob-

served that creep increases if the specimens are exposed to 

variations in the relative humidity after the application of 

loading. 

3. Size of Specimen: Creep deformations decrease with an increase in 

the thickness of the specimen, but when the thickness exceeds about 

0.9 m the size effect becomes negligible. 
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4. Magnitude of Applied Stress: Creep strains increase with the 

magnitude of the sustained stress. This relationship is generally 

found to be linear for •a stress level of 0.4 of the ultimate 

strength. 

5. Time Since Loading: Creep strains increase with the duration of 

applied stress. 

6. Age at Loading: Creep strains decrease with an increase in the age 

at which the load is applied. 

7. Temperature: Creep strains increase with temperature, 

proportionally in the range of 20° to 70°C. 

3.2.2.2 Creep under Compression and Tension  

Most of the creep data in masonry have been obtained with uniaxial 

compression tests. In the literature as per Neville et al ( 1983), many 

researchers have observed the creep in tension and compression to be 

equal under an equal magnitude of stress. In the present study of 

prestressed masonry walls, all model specimens are in compression 

although local tensile stress may be present at some points. The 

average compressive stress is 0.25 of the ultimate strength of masonry, 

ensuring that the stresses remain in the working stress range. The low 

tensile stresses in the present analysis allow the assumption that the 

magnitude of total creep under both states of stress is the same and 

creep data obtained from compression tests have been used for tensile 

stress states too. 

3.2.2.3 Creep under Multiaxial Stress State  

It has been observed that during uniaxial compression tests, creep 

strains not only occur in the direction of applied stress, but also 
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normal to it. This induced lateral deformation due to creep has been 

defined as lateral creep strain. Similar to the definition of elastic 

Poisson's ratio, creep Poisson's ratio has been expressed as the ratio 

of the lateral creep strain to the creep strain along the direction of 

the applied stress. 

In the case of masonry structures, nothing has been reported about 

values of creep Poisson's ratio. In the field of concrete structures, a 

lot of research has been done. Some have observed creep Poisson's ratio 

to be very close to the elastic Poisson's ratio. 

As only uniaxial creep test data are available, a multiaxial stress 

state has to be developed from the uniaxial stress state. To develop a 

three-dimensional stress state, two approaches have been reported. 

In the first approach, creep Poisson's ratio is used. In any 

direction of three-dimensional multiaxial stress state, creep occurs due 

to stress applied in that direction as well as due to stresses in the 

other two normal directions. By assuming that all strains occur inde-

pendently of one another, the principle of superposition can be applied 

and a multiaxial stress state can be developed and expressed as follows: 

c CU CU CU 

a. a. cu  cu  
(3.1) 

cu cu 
where c, €CU are the axial creep strains due to the separate 

action of principal stresses al. a and a v cu is the creep Poisson's 

ratio under uniaxial compression and e is the total creep in the 

direction of a . under multiaxial stress state. If the stress in any , 

direction is less than 0.4 f', where f' is the ultimate compressive 
m m 

strength, then the observed experimental fact of a linear relationship 

between creep strains and sustained stress can be used. For convenience 
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the specific creep term, which has been defined as the ratio of creep 

strains to the stress applied or creep strain per unit stress, can be 

used. 

C = CCU la 
U 

where C is the specific creep and a is the uniaxial stress. 

Equation ( 3.1) can be rewritten as 

Ecu [C - \) (C 

i cu 
U 

CC C[C — v (C 
i j Cu 

(3.2) 

V cu can either be taken equal to elastic Poisson's ratio or can be any 

experimental observed value. Further, it may be different in all three 

directions. 

In the second approach an effective stress-strain relationship is 

used. It has been observed that the volumetric creep (E CU + E: cu + C cu ) 

has the same relationship with time as uniaxial creep. As per Neville 

et al ( 1983) a linear relationship has been found between 

[(ECU - CCU ). 2 + ( ECU - ECt)2 + (Ecu - 

1 . 2 2 3 3 

[((T _ C 2)2 +(C _ cl) 2 +(C _ C) 2 } 
1 2 3 3 1 

and 

The same concept has been stated in the text by Crandall et al ( 1972) in 

the form of a relationship between equivalent stress and equivalent 

creep strain. Creep behaviour was associated with yield criterion of 

plasticity. This approach was used by Hague et al ( 1974) in the study 

of tensile creep analysis of concrete structures. Recently, using the 
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concepts of this approach, Anand et al ( 1984) developed the multiaxial 

stress state of composite masonry. 

This technique can be summarized as follows: 

a = 
/F. a2 + ( Cr a )2 2 3 + e 

and = /2 [(C C2 )2 + ( 6 - C )2 + 
e / 9 1 2 3 

(C 
3 

(3.3) 

(3.4) 

where a is the effective stress and C is the effective strain which is 
e e 

equivalent to effective plastic strain. a1, a2 and a3 are the principal 

stresses and C1 , C2 and 63 are the principal strains. The main assump-

tion of this approach to creep analysis is that the equivalent plastic 

strain of Equation ( 3.4) has been replaced by experimentally observed 

uniaxial creep strain which has been defined as the equivalent creep 

strain. 

C = 

e e 
(3.5) 

where Cc is the equivalent creep strain. Then multiaxial creep strains 

can be expressed as follows: 

Cc=_. [a ... 2a -i-a)] 
x a x 2 y z 

e 

Cc = 

y 
- (a + C, 

e y 2 z )] 

Cc 

Sc e [a -! a + a )] 
z a e z 2 x y 

(3.6a) 

(3. 6b) 

(3.6c) 
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.c 

xy Cr  e xy 

cc 

= .2. 
e yz 

cc 
IC 3 e 
zx c zx 

e 

(3.6d) 

(3.6e) 

(3.6f) 

C C C C C 
where 6 , 6 and 6 are the normal creep strain components and I , I 

x y z xy yz 

and 1c are the shear creep strain components. 
zx 

In the absence of any experimental data regarding creep Poisson's 

ratio in masonry, the second approach has been used in the present study 

to develop multiaxial creep strain components. 

3.2.3 Method of Creep Analysis  

'Creep deformations are stress dependent but do not cause any change 

in the overall stress resultant under constant loading conditions. In 

the case of plain homogeneous sections subjected to a constant load, 

creep analysis is fairly simple as the stress always remains constant. 

In the case of reinforced or prestressed sections, however, complexity 

arises because of the presence of the steel. The steel restrains the 

creep deformations of the surrounding material and results in a redis-

tribution of stresses as the overall stress resultant still remains the 

same. Redistribution of stresses changes the constant stress problem to 

one of variable stress with time. In the case of prestressed struc-

tures, this problem is further complicated. Due to creep deformations, 

contraction is produced which results in a drop in the initial prestress 

value and continuously varies the overall stress with time. 
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Various methods for creep analysis have been explained by Neville 

et al ( 1983). In the present study, a step-by-step numerical solution 

technique has been selected to deal with the problem of stress varying 

continuously with time. Formulation of the numerical technique is 

presented in the following sections. 

3.2.3.1 Principle of Superposition  

In relation to creep, the principle of superposition states that if 

a specimen is subjected to different stresses at different times, the 

creep strain produced at any time due to a stress applied before is 

independent of the effects of any other stress applied before or after. 

This principle which is well documented in a report by Anand et al 

(1984) can be explained with the help of Figure 3.1. Creep response is 

to be obtained for a specimen subjected to the stress state as shown in 

Figure 3.la. This stress state is represented by two independent stress 

levels acting at different times as shown in Figures 3.lb and 3.lc. 

Their superposition gives the same value of stress at all times, as 

shown by Figure 3.la. Creep responses to stress levels of Figures 3.lb 

* 

and 3.lc are given by virgin specific creep curves as shown in Figures 

3.ld and 3. le respectively. From the principle of superposition, the 

creep response to each stress level can be assumed to be independent of 

the other. The combined creep response can be obtained from the 

summation of the curves of Figures 3.ld and 3.le as shown in Figure 

3.lf. 

* 

Specific creep is defined as the ratio of creep strain to the stress 
applied or creep strain per unit stress. 
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Mathematically this can be expressed as: 

at any time t > t1, due to stress a of Figure 3.lb 

= a C(t,t) (3.7) 

where ec ( t) is the creep strain at time t due to a stress a applied at 

time to and C(t,t) is the specific creep strain at t due to stress 

applied at age t. 

= (a - Cr ) C(t,t1) 
1 1 o 

(3.8) 

where Ae(t) corresponds to stress (a1 - a) of Figure 3.lc. From the 

principle of superposition, the total creep strain due to a stress state 

of Figure 3.3a is 

= c (t) + 

i.e. (t) = a 0 0 C(t,t ) + (a1 - a)C(t,t1) (3.9) 

For a general case of (n-i) stress changes in n time intervals, the 

total creep strain at time t is equal to: 

n-i 

c(t ) = a o n o c(t ,t ) + E a i fl. C(t , t. 1) 
n . 

i=1 

where Aa. = a. - a, 

(3.10) 

(3.11) 

Equation (3.10), derived from the principle of superposition, is used 

here in the step-by-step solution method. As per Dilger ( 1982), this 

principle gives good comparison with experimental results for increasing 

stress and slightly decreasing stress.' For complete unloading, predict-

ed results are overestimated. In this study, the principle of superpo-

sition has been assumed to be valid here as unloading is only due to the 
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loss of prestress which is a small part of the total loading. 

3.2.3.2 Step-by-Step Numerical Solution Method  

The creep problem in prestressed structures has the varying stress 

state shown in Figure 3.2a. In this method, the total time is divided 

into a number of time steps. For a particular time interval, the stress 

at the beginning of the time interval is known. At the end of the time 

interval the new stress must be determined from the creep analysis 

procedure for the model specimen. 

(a) Explicit and Implicit Schemes  

Quite a few formulations of the step-by-step method have been 

reported but all of them can be classified into one of the two schemes 

known as explicit or implicit. In the case of elasto-vlscoplastic 

solids, these schemes have been discussed by Owen and Hinton ( 1980). 

Since the creep case is similar to elasto-viscoplasticity, the two 

procedures for the creep problem are reviewed here. 

The creep strain at time n+l due to a step increment of stress 

an_i) applied at time t can be found from Equation ( 3.8) and is 

equal to: 

= (a - a ) C(t +i,t ) = Ea C(t t n n+l n n-i n n n+i i n) 
(3.12) 

In general, for a continuously varying stress, Equation (3.12) can be 

written as: 

Cc ( ) = [( 1 - K) AU + K ta IC(t 1t) 
n n+1 n n-i-i 1 

(3.13) 

where Aa n+l = a n+1 - a n and K is any constant. With K equal to zero a 

fully explicit scheme or forward difference method is obtained as the 

creep strain increment is determined from the stress existing at the 
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beginning of the time interval, i.e. at time t. On the other hand K 

equal to unity results in a fully implicit scheme or backward difference 

method as the creep strain is determined from the final stress at the 

end of the time interval, i.e. at time t 1. In Figure 3.2a an explicit 

scheme has been shown by a dotted line while an implicit scheme is shown 

by a chain-dotted line. 

As per Owen and Hinton ( 1980), for K less than 0.5, the numerical 

process is only conditionally stable and it can only proceed when the 

time interval, st., is less than some critical value, otherwise it 

results in numerical instability. For K greater than or equal to 0.5, 

the procedure is unconditionally stable but may not give accurate 

results unless there is a limit put on the time step length. On the 

other hand explicit methods simplify the analysis procedure, as in 

Equation ( 3.13) with K equal to zero, the only unknown to be solved is 

in the implicit scheme (with K=l), besides cC, the other unknown 

to be solved is a n+1 use of an implicit scheme requires the knowledge 

of creep flow rate criteria. Since few data are available about masonry 

creep behaviour, an explicit scheme was adopted for this study. 

(b) Solution Method Used  

The two-dimensional creep analysis procedure used by Anand et al 

(1984) has been modified here for a three-dimensional problem. The 

total time span is divided into a number of time steps. The continuous-

ly varying stress problem of Figure 3.2a has been transformed to one as 

shown in Figure 3.2b using the explicit scheme. The basic steps are as 

follows: 

1. At time to, the elastic analysis is performed with resulting elastic 

stresses x , a y , a z , xy T , T yz , zx t and the corresponding strains e 
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Y xy , y yz , Principal stresses a l. a2 and a3 are obtained and 

using Equation ( 3.3) the effective stress, a, is calculated. i.e. at 

time t = t o , a o = a e . This is assumed to remain constant for the first 

time interval from t to t 
0 1 

2. Using Equation ( 3.7) creep strain cc at time t1 is calculated as: 

C C (t) = cC(t1) = C(t1,t) (3.14) 

This requires input data of the specific creep curve for the specimen 

loaded at to, as shown in Figure 3.2c. Creep input data for the present 

study are discussed in detail in the next chapter. For the time being, 

it has been assumed that creep data in the form of specific creep curves 

are known. As cc (t is also the change in creep strain in the first 

time interval, Equation ( 3.14) can be rewritten as: 

0 = a C(t1,t) 
,1 0 

where AsC is incremental creep strain from time t to t 
o,l o 1 

3. In Equations ( 3.6a) to ( 3.6f),c ° is substituted by AE 

six creep strain components are calculated at the end of 

interval At1. At time t1, these creep strains are taken 

strains and the model specimen is analyed again yielding 

(3.15) 

C 
and all 

o,l 

first time 

as initial 

incremental 

displacements, stresses and strains. The details of the initial strain 

approach for this step are explained in the finite element analysis 

method. The new incremental stresses, strains and displacements ob-

tained in this step are added to previous total values of stresses, 

strains and displacements respectively. From these known total stresses 

and using Equation ( 3.3), a new effective stress, a, such that a a, 

is calculated. It is assumed to remain constant for the next time 

interval i.e. from t1 to t2. 
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4. Using the principle of superposition from Equations ( 3.8) and 

(3.9), total creep strain, sC(t2), at time t2 is calculated as: 

= (l - )C(t21t1) 

(t 2 = ciC(t21t) +(a -  a)C(t21t1) 4 

(3.16) 

(3.17) 

This step requires a specific creep curve for the specimen loaded 

at t1 as shown in Figure 3.2d. From Equations ( 3.14) and ( 3.17) the 

incremental creep strain for the second time interval can be calculated 

as: 

AC C i,2 = c() - 

i.e. Aec i,2 = (C(t2,t) - C(t1,t)) + ( - )C(t21t1) (3.18) 

For the next step € 2 is substituted in Equation ( 3.6) and all• 

components of incremental creep strains are obtained. - 

5. For the succeeding time intervals steps 3 and 4 are repeated. 

Equation ( 3.18), obtained in step 4, can be generalized for any time 

interval. For n-i n example, from time t to t , i.e. the nth time inter-

val, it generalizes to: 

c - 

Aen-1,n = a 0 [C(t n ,t o n-i ) - C(t , o t H + 
- n  

n-i 

- i-1 [C(t,t.) - C(t 11t)] (3.19) 

Equation (3.19) requires input data of different virgin specific creep 

curves for specimens loaded at different ages t, t1, • tn_i and so 

on as shown in Figure 3.2d. The analysis procedure proceeds until the 

final time of interest is reached. 
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The only constraint by the explicit scheme is the selection of time 

step lengths. In the field of concrete structures subjected to continu-

ously varying stress, it has been reported that for the best results, 

the lengths of the time intervals chosen should be approximately equal, 

on a log-time plot. 

3.2.4 shrinkage  

3.2.4.1 Influencing Factors  

Shrinkage strains are influenced by the following factors: 

1. Type of Unit: Shrinkage strains depend on the type of the main 

unit used. For example, in the case of brick units, during early stages 

shrinkage may be present in the form of expansion strains. 

2. Relative Humidity: Shrinkage strains decrease with an increase in 

the ambient relative humidity. 

3. Size of Member: Mean shrinkage strain decreases with an increase 

in the thickness of the section. The thicker the section is, the more 

non-uniform the shrinkage strains become. 

4. Time of Drying: Shrinkage strains increase with an increase in the 

duration of drying or the age of the member. 

In the nex,t chapter, strains obtained from laboratory shrinkage 

specimens are related to the model pecimens analysed in this study 

through the factors above. 

3.2.5 Method of Shrinkage Analysis  

Shrinkage analysis can easily be incorporated in a step-by-step 

solution method as the strains are independent of the applied stress and 

are assumed to be constant throughout the cross section. For the 

purpose of analysis, shrinkage strains can be assumed to be of the form 
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of a curve as shown in Figure 3.3. Details of the input data are 

discussed in the next chapter. 

The shrinkage strain at any time t can be read from Figure 3.3 as 

where t is the age at the start of drying. In a step-by-step 

solution method during any time interval, incremental shrinkage strains 

are taken as initial strains occurring at the end of that time interval. 

The model specimen is re-analysed for these initial strains. The 

resulting stresses, strains and displacements are added to previous 

stresses, strains and displacements respectively to yield new total 

values. 

In general, for n th time interval, i.e. from t n -i n to t , 'incre-

mental shrinkage strains are calculated as: 

C 

= , ) - S(t ,t 
n_ 1,n n s n-i s 

(3.20) 

3.2.6 Relaxation  

Stress relaxation in the prestressing bars is the loss of tensile 

force with time, even though the sample is maintained at constant length 

and temperature. For the present study, stress-time functions for 

different steels have been taken. For normal relaxation steel, Magura 
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et al ( 1964) suggested an expression of the form: 

= f 
log 1024(t-t) f 

f (t) [1 - ( 0.55)] (3.21) 
p  pi 10 f 

py 

For low relaxation steel the PCI Committee ( 1975) modified the above 

expression to: 

log 1024(t-t) f 

£ (t) = f [1 -.   0.55)] (3.22) 
ps pi 45 f 

py 

where f PS ( t) is the stress in the prestressing steel - 1 at time t, f is 

the initial prestress, (t-t) is the time in days since the initial 

prestressing is applied and f py is the yield strength of steel. It can 

be taken as: 

f = 0.85 f for normal relaxation steel and 
py Pu 

f = 0.90 £ for low relaxation steel 
Pu PU 

where f pu is the ultimate strength of the prestressing steel. The 

stress loss due to relaxation, at any time t can be computed as: 
PS 

fr()ff (t) 
PS 1 PS 

i.e. for normal relaxation steel 

f. £ 
fr (t) = ..12. (log 1024(t-t )] 
PS 10 

py 

and for low relaxation steel 

£ f 
fr ( t) = - pi - [log 1024(t-t)] 
Ps 45 

py 

(3.23) 

0.55) (3.24) 

0.55) (3.25) 

3.2.7 Method of Relaxation Analysis  

Equation ( 3.21) or ( 3.22) can be plotted as shown in Figure 3.4a. 

For a step-by-step solution technique, the analysis method for relax-

ation effects with creep and shrinkage strains has been taken from Loov 
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(1984). 

(a) For normal relaxation steel: 

Assuming to n. = 0, from Equation ( 3.21) steel stress at time t is: 

f (t =f.[l log 1024t fpi 
fl ( 0.55)] (3.26) ) 

,ps n pi - 10 f 
py 

At time t 
n+1 

log 10 24t f 
f (t ) = f [1 - +1 0.55)] (3.27) 
PS n+L pi 10 f 

py 

Steel stress loss due to relaxation in the (n+l)th time, interval is 

equal to: 

= f (t ) - f (t 
PS n+l PS n 

f. t f 
fr = _.a. [log (I fl+1)] ( pi _. 0.55) 
n,n+1 10 10 t f 

n py 

(3.28) 

(3.29) 

Equation ( 3.29) is valid if only the relaxation effect is present. In 

the present case, steel relaxation loss is accompanied with losses due 

to creep and shrinkage effects 

(n+1) th time interval has been 

the net stress in steel due to 

be f PS fl (t ), such that 

£ (t) = f [1 
PS n pin 

as well. This combined effect for the 

shown by Figure 3.4b. At time t, let 

creep, shrinkage and relaxation effects 

log 24t f 
10 n pin 0.55)] 
10 f 

py 

(3.30) 

where f pin is .  1.  th the modified initial prestress for the (n+1) time 

interval. At time t 
n+l 

f (t )= f [1- 
log 24t f. 

10 n+1 pin 0.55)] (3.31) 
PS n+1 Pin 10 f. 

py 
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and the loss of prestress due to relaxation only is equal to: 

fr = f (t ) - f (t) 
n,n+l ps n+l ps n 

From Equation ( 3.30) f pin can be determined as: 

log 24t 0.55 log 10 10 n f 2 (1+ ") f + f (t)0 

lOf py pin 10 pin ps n 

10  lOf f (t) 
2 - py  + 0.55)f +  PY PS fl  - 0 

pin log 24t pin 109 10 10 n 10 n 

f 40f 
-  10 / 10  + 0.55) 2  Ps (t ) 

pin = 2 clog 24t • 0.55 - log10 10 24t f log 24t 
10 n n py n 

(3.33) 

From Equations (3.31), ( 3.32) and ( 3.33) stress loss due to relaxation 

in (n+l)th time interval can be found. 

(b) For low relaxation steel Equations for f (t ), f and ps n+l pin n,n+l 

can be developed the same way as has been done in the normal relaxation 

steel case. 

180f f 45 2  ps  45(t n  
pin 2 log 24t + ° - /(log24t + 0.55) f log 24t 

10 n 10 py 10 n 

(3.34) 

log 24t f 
10 n+l pin 0.55)] f (t )= f.[l-

ps n+1 pin 45 f 
py 

(3.35) 

During the (fl+l)th time interval, stress loss due to relaxation can be 

found by Equations ( 3.32), ( 3.34) and ( 3.35). 

3.3 Finite Element Method  

The definition of the finite element method has been adopted from 

the text by Zienkiewicz ( 1977) and is reviewed here. It is a general 
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discretization procedure of continuum problems which approximates the 

solution process ( a) by dividing the continuum into a finite number of 

elements whose behaviour is specified and (b) by solving the whole 

system as an assembly of its elements following the same rules as those 

applicable to standard discrete problems. Throughout this study the 

above mentioned text and the text by Cook ( 1981) have been referenced. 

3.3.1 Computer Program Used  

Two finite element programs ( 1) FINEPAK and ( 2) SMAC were available 

to the author. Both the programs were general and had the capacity to 

solve three-dimensional elasto-static problems. Program FINEPAK had one 

3-dimensional 20-node solid displacement element while SMAC had the 

following three 3-dimensional elements: 

(1) 8- to 21-node displacement element 

(2) 8-node hybrid stress element 

(3) 8-node incompatible modes element 

The 20-node displacement element of FINEPAK was used previously by 

Khalil ( 1983) and Simbeya ( 1985). Clearly SMAC has the advantage of two 

additional 3-dimensional elements. Chieslar ( 1985b) made some theoret-

ical comparisons of hybrid elements with conventional displacement 

elements. He concluded that in bending, hybrid elements give the most 

economic solution. He also proved the superiority of an 8-node hybrid 

stress element over an 8-node displacement element. An 8-node hybrid 

element has the advantage of fewer variables compared to a 20-node 

displacement element even though the final results were comparable. In 

the case of a non-linear analysis with a step-by-step solution tech-

nique, a large quantity of data in the form of stresses, strains and 

displacements from previous time step must be stored for all the nodal 
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or Gauss integration points. The 8-node hybrid stress element, with 

fewer variables, was chosen for the present study. Thus, the computer 

program SMAC (Systematic Matrix Analysis of Continua) developed by 

Chieslar ( 1985a) was finally selected. 

3.3.2 Finite Element Method in General  

Finite element method formulation is based on the following two 

assumptions: 

(1) The strain-displacement relationship is linear. In other words, 

the small displacement theory is valid. 

(2) The stress-strain constitutive relationship is linear, i.e. the 

concept of material linearity is also valid. 

Propagation of cracks is one of the factors which may cause 

material nonlinearity. This effect can be eliminated by changing the 

stiffness of the elements which undergo cracking. In the present study, 

the stiffness change due to cracking is notconsidered, as the average 

stresses are within the elastic range. The other factor which results 

in material nonlinearity is the creep and shrinkage effects of masonry. 

The solution to the non-linear problem is obtained by reducing it to a 

series of linear problems which are solved in successive time steps by 

adopting an incremental time step solution procedure. 

As a hybrid element has been chosen for the present analysis, 

hybrid formulation is compared with displacement formulation in the 

following sections. 

3.3.2.1 Displacement Model  

In this approach displacements are taken as the primary unknowns. 

With the help of assumed shape functions, displacements within an 
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element are defined in terms of displacement at the nodes. Through 

strain-displacement relations, stresses and strains within the element 

are also defined in terms of these displacements. At the global level, 

the system's total potential energy, expressed as a function of nodal 

displacements, is minimized. This results in equilibrium equations for 

the unknown displacement parameters. The basic steps can be summarized 

as follows: 

{u} = [N]{d} (3.36) 

where {u} is the displacement vector within an element, [N] are the 

assumed shape functions and {d} are nodal displacements. From strain-

displacement relations, we have: 

{} = [L]{u} 

= [L][N]{d} 

= [B]{d} (3.37) 

where [L] is the linear differential operator matrix and [B] = [L] [N] is 

the strain-displacement transformation matrix. From stress-strain 

relations 

{} = [E]{e} 

= [E]tB]{d} - (3.38) 

where [E] is the material stiffness matrix and [E] = (Cl -1 where [C] is 

the material compliances matrix such that 

{c} = [C]{ci} (3.39) 

All the above relations have been expressed at the element level. 

Minimization,of potential energy produces the equilibrium expression as: 

[KI{D} = {F} (3.40) 

where [K] is the structural stiffness matrix, {D} is the structural 

displacement vector which contains all {d} vectors and {F} is the 
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structural load vector due to all different loading cases of the system. 

Equation ( 3.40) is solved for the unknown displacements. Knowing {d}, 

values for { c} and { cr} can be obtained from Equations ( 3.37) and ( 3.38). 

3.3.2.2 Stress Hybrid Model  

The stress hybrid model is a type of mixed model where there is 

more than one primary variable. It is based on an assumed stress field 

within the element and the displacements are assumed to vary according 

to Equation ( 3.36). Stresses are eliminated at the element level. At 

the global system level, equilibrium equations are solved for the 

displacement variables. As both assumptions are independent, stresses 

are obtained indirectly from the displacements. 

Although the hybrid stress element concept was introduced by Pian 

(1964), the detailed information of the hybrid model used in the present 

analysis is described in Chieslar ( 1985b). As a comparison with the 

displacement formulation, only the main step is reviewed here. 

{} = [p]{8} (3.41) 

where [P] is the assumed stress function matrix and {B} is the stress 

parameters vector to be evaluated. Vector {} is related to the dis-

placements at the nodes. 

{} [H]{d} (3.42) 

Actually, [H] is a product of many matrices derived from the basic 

assumptions of the hybrid stress approach. From Equations ( 3.41) and 

(3.42), we have: 

{ci} = [P] [H]{d} (3.43) 

Equation ( 3.43) is very similar to Equation (3.38). [P] [ HI is the 

hybrid equivalent of the stress recovery matrix associated with the 

displacement formulation. 
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i.e. [P1 [HI [El [B] (3.44) 

3.3.3 Finite Element Modelling of Prestressed Masonry Wall Specimens  

3.3.3.1 Element Types Used  

In finite element models, of prestressed masonry walls, masonry 

units and mortar have to be represented by different elements, because of 

their different material characteristics. In order to study the 

triaxial state of stress in masonry, 3-dimensional hybrid stress ele-

ments have been used for both mortar and units. Although details of the 

different models for the present study are discussed in Chapter 5, a 

typical vertically post-tensioned hollow masonry wall specimen has been 

shown in Figure 3.5. The wall is made of hollow units and is 

post-tensioned by vertical steel bars which pass through the inner core 

of the blocks. As axial prestressing is used, a uniaxial truss element 

was selected to represent the prestressing steel member. The 

prestressing force ' is transmitted to the wall, through steel plates 

anchored at the ends. A perfect bond has been assumed between 

prestressing bars, steel plates and masonry units at the ends. The' 

steel plates were also represented by 3-dimensional solid hybrid 

elements. 

3.3.3.2 Prestressing Concept in Finite Element Approach  

In prestressed members, the steel bar carries the tensile force and 

transfers equal and opposite compressive force to the rest of the 

structural member. In the present case of axial •'prestressing, this 

'behaviour has been achieved by taking the thermal loading case of a 

truss element. A negative temperature change, equivalent to the pre-

stressing force, is applied to the truss member which results in a 
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tensile force in the truss member and a compressive force to the rest of 

the model structure. This procedure can be explained with the help of a 

simple example of an axial column shown in Figure 3.6. A general case 

of two prestressed bars ( a) and (b) has been taken. The main objective 

is to find the final temperature changes taf and t0f corresponding to 

the prestressing forces P a and Pb (or stresses f a and in the two 

bars respectively. 

To achieve this, two trial elastic runs are made: 

First Run: initial thermal load tai is applied in bar ( a) which results 

in stresses f aa ba and f in the two bars, where f ij .. is the 

stress in bar ( i) due to a thermal load in bar (j). 

Second Run: initial thermal load tbi is applied in bar (b) which results 

in stresses f ab bb and f in the two bars. 

The final stresses f and f b in the two bars due to final thermal 
a  

loads taf and tbf applied simultaneously can be obtained using the 

principle of superposition: 

£ f ab 
f - t aa + 
a af tai tbf thi 

ba bb 
b taf t + t:,f 

ai bi 

Equations ( 3.45a) and ( 3.45b) can 

f f /t a. 
a - aa i 

£ f/t. 
b ba al 

or 

(3.45a) 

(3.45b) 

be represented in matrix form as: 

Eab/tbi 

fbb/tb i 

t 
af 

tbf,j 

(3.46a) 

{f} = [M]{tf} •(3.46b) 

where [M] is defined here as the multiplication factor matrix. From 

Equation (3.46) unknowns taf and tbf corresponding to f a and fb can be 
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Figure 3.5 Prestressed Wall Specimen 

a b 

Figure 3.6 Axial Prestressing Concept 

a b 
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obtained as: 

t 
af 

tbf 

or 

{tf} = [M] 1{f} 

£ /t 
aa ai 

f /t 
ba ai 

f /t 
ab bi 

fbb/tbi 

(3.47a) 

(3.4Th) 

Equation ( 3.47) can be generalized for any number of prestressing bars. 

The number of trial elastic runs is equal to the number of prestressing 

bars. In the case of one axial prestressing tendon Equation ( 3.47) 

reduces to: 

t. 
1 

tf = f Yf 

1 

(3.48) 

where f is the initial stress corresponding to initial thermal load of 

t. temperature change. 

3.3.4 Modelling the Analysis Techniques  

3.3.4.1 Creep and Shrinkage Analyses  

In a step-by-step solution method, with constant stress state 

during any time interval, creep strain loading can be taken a 

equivalent to thermal loading. Similarly shrinkage or moisture induced 

swelling strain, being independent of the stress at all times, is also 

similar to a case of temperature loading. Thus, in the finite element 

technique, an initial stress-strain approach, similar to one for thermal 

loading, has been used to incorporate creep and shrinkage effects. The 

basic steps of the initial strain approach can be found from any text 

and are as follows: 

1. Evaluate the initial strains at all Gauss integration points for 

all elements 
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T 
{6 } = {e c c y y y } 
0 XO yo ZO xyo yzo ZXO 

(3.49) 

2. Evaluate the corresponding initial stresses and store them for the 

final stress eialuation step. 

{a } = -[E]{c} 

3. Evaluate equivalent nodal loads due to initial strains for all the 

elements by either of the following two methods: 

or 

(a) { f} = fV [B]T[E]{c 0 }dv 

(b) {f} = -  fV' (B] T {a 0 Idv . 

4. At the global level, perform a summation of nodal loads for all the 

elements. 

n 

{F} = E { f.} 
i=l 

where n is the number of elements. 

5. After solving for nodal displacements {d}, obtain final stress as: 

{} = [E][]{d} + { i} 

The hybrid formulation equivalent of matrix [El [B] is given by 

Equation ( 3.44). By pre-multiplying these matrices by [E] 1, the hybrid 

equivalent of matrix [B] can be found. 

i.e. [El [B] [P] [H] 

[B]H [E] 1 [P] [ H] (3.50) 

where [B]H is the hybrid equivalent of matrix [B]. 

For the creep analysis of Step 3 in the step-by-step solution of 

Section ( 3.2.3.2), initial creep strain components are obtained as: 



{ C}T = { C C C C C C 

0 X y Z Xf yz zx 

44 

(3.51) 

In the case of shrinkage analysis, initial strains are obtained from 

Equation ( 3.20). Only normal strain components are present. 

i.e. { 5}T = {c5 c c 0 0 o} 
0 X y z 

(3.52) 

For combined creep and shrinkage analyses, initial strains of Equations 

(3.51) and ( 3.52) are added to forni total initial strains as: 

T cT sT 
{c } = {c } + {c } 
0 0 0 

(3.53) 

Initial strains obtained from Equation ( 3.51) or ( 3.52) or ( 3.53) 

are substituted in Equation ( 3.49) and their equivalent nodal loads are 

obtained. After this step, the creep analysis procedure of Section 

(3.2.3.2) or the shrinkage analysis procedure of Section ( 3.2.5) or 

their combined analysis is carried further. 

3.3.4.2 Relaxation Analysis  

At the end of any time interval, the loss of prestress in steel due 

to stress relaxation can be found by Equation (3.32). The prestress 

loss concept is similar to the concept of application of prestress 

force, the only difference between the two is the reversal of stress 

sign. Thus the technique developed for prestressing concept in Section 

(3.3.3.2) has also been used to represent stress relaxation effect. 

For convenience Equation (3.47b) is rewritten here. 

{r} = [MI-l{fr} (3.54) 

where tf i is prestress loss due to relaxation and is computed by 

Equation ( 3.32). Using the inverse of multiplication factors matrix 

developed in Section ( 3.3.3.2), equivalent thermal loads {AtAr} 
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(positive temperature change) due to the relaxation effect, are computed 

from Equation ( 3.54). 

When creep and shrinkage analyses are to be combined with relax-

ation effects, the equivalent nodal loads obtained due to ( 1) the 

initial strains of Equations ( 3.53) and ( 2) the temperature changes of 

Equation ( 3.54) are added together. Then the analysis of model speci-

mens, due to these combined nodal loads, yields the final results due to 

creep, shrinkage and relaxation properties of masonry. 

3.4 Results of Analysis for Prestressed Wall Models  

At the end of all time steps, the finite element analysis results 

in 

(1) the total displacements at all nodal points, 

(2) the stress-strain distribution at all nodal or integration 

points and 

(3) the total stress in the axial truss members. 

•The stress in the steel at any time corresponds to the net pre-

stressing force at that time. Thus, €he changes of stress in the truss 

member represents the loss of prestress. 



CHAPTER 4 

CREEP, SHRINKAGE AND STRESS RELAXATION 

INPUT DATA, AND COMPUTER PROGRAMMING 

4.1 Introduction  

With a step-by-step numerical solution technique, finite element 

analysis for creep, shrinkage and stress relaxation of post-tensioned 

hollow masonry walls results in the prediction of actual structural 

behaviour. However, such an analysis requires the input data of stress-

time functions for prestressing steel, shrinkage strain curves and 

specific creep curves at various ages of loading for concrete blocks, 

brick units and different mortars. The short-term creep and shrinkage 

properties of masonry components are available in the literature as a 

set of laboratory measured values at discrete times. Mathematical 

expressions were fitted to the available data to allow extrapolation for 

long-term behaviour and for efficient computer storage. The detailed 

procedures and numerical expressions will be described in the following 

sections. 

4.2 Creep and Shrinkage Properties  

4.2.1 Input Data  

Creep and shrinkage data for masonry components have been obtained 

by Lenczner ( 1969, 1971 and 1974) and Ameny ( 1979 and 1982). The 

experimental results were similar, so Ameny's data have been used in 

conjunction with certain results of Lenczner for the present analysis. 

Using stack-bonded prism specimens with full mortar bedding, Ameny 

(1979) obtained the creep and shrinkage data of concrete blockwork. He 

also obtained the creep and shrinkage behaviour of brickwork specimens 

46 
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(meny, 1982). The experiments were conducted in a laboratory where 

there was little control over temperature and humidity. In both 

studies, the observed temperature did not vary much and was in the range 

of 17-22°C. During the course of the concrete blockwork tests, the 

relative humidity was in the range of 30-60%. In the case of the 

brickwork tests, the relative humidity varied from 15 to 40% for most of 

the time period except at one occasion. At the age of 200 days after 

loading, the relative humidity rose to 75% and this continuedfor the 

next sixty days. In the creep and shrinkage tests, two mortar cases 

were taken. 

(1) N-mortar ( 1:3; masonry cement:sand); 

(2) M-mortar ( 1:1:6; portland cement:masonry cement:sand). 

In the concrete blockwork tests, prism specimens were loaded 

axially at the age of seven days and strain measurements were made for 

the next 100-120 days. Two separate loading cases were taken. Prism 

specimens were loaded axially to a maximum stress of ( 1) 0.4 f and ( 2) 

0.2 f', where f is the ultimate compressive strength. Creep and 

shrinkage strain measurements were made ( 1) across the whole length of 

the prisms, ( 2) in the individual units and ( 3) across the mortar 

joints. Strains across the mortar joint were measured over a 50.8 mm 

gauge length covering the 10 mm mortar joint thickness. Thus the 

measured strains across the joint were not the actual strains in the 

mortar joint. 

In the case of the brickwork tests, specimens were axially loaded 

at the age of nine days and strain measurements were made for the next 

330-460 days. Creep and shrinkage strains of individual brick units 

were measured on small brick specimens cut from the main units while 
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those of mortar were obtained from mortar cylinders. Aineny postulated 

that the actual strains in the mortar joint would be higher than those 

of the mortar cylinders because of the lower stiffness of the mortar 

joints due to poor curing conditions. 

In Aineny's tests, the age at the start of drying in the shrinkage 

specimens coincided with the age at application of loading for the creep 

specimens. 

4.2.2 Comparison with Wall Model Specimens  

The masonry wall specimens modelled in this study were assumed to 

have the same range of temperatures and relative humidity as was ob-

served during Aineny's experiments to determine creep and shrinkage 

properties. Furthermore, the walls were of the same thickness as the 

experimental test specimens. Thus, the creep and shrinkage data ob-

tained from the test specimens were used for the wall models. As the 

average compressive stress in the wall models is 0.25 f', the creep 

strains have been assumed to be linearly proportional to the magnitude 

of the sustained stress and have been derived from the specific creep 

curves obtained from the experimental results. For the creep analysis 

in the step-by-step solution method of Section ( 3.2.3.2), input data of 

different specific creep curves for.specimen loaded at different ages 

are required. It was found that the creep strains of individual con-

crete block units, obtained by Ameny, were of the same order as predict-

ed by the CEB-FIP ( 1970 and 1978) models for conventional concrete. In 

the CEB-FIP ( 1978) model, creep is obtained as a summation of two 

components, an irreversible creep (age at application of load effect) 

and a reversible creep (duration effect) whereas in the CEB-FIP ( 1970) 

model, creep strain expression is represented in the form of a product 
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of age and duration effects. Since the creep strain expressions 

developed in the present study are of the same type as those of the 

CEB-FIP ( 1970) model, the coefficient for age at application of load 

given by the CEB-FIP ( 1970) model has been adopted for this study and 

virgin specific creep curves for different ages have been derived from 

the available input data. 

4.2.3 Fitting the Data to Logarithmic Expressions  

Wyatt et al ( 1975) obtained a logarithmic relationship between 

creep strains and time under load for brick masonry. In the field of 

concrete structures, the US Bureau of Reclamation ( 1956) developed a 

similar logarithmic expression based on experimental data for concrete. 

It was observed that specific creep is a linear function of the loga-

rithm of the time under load provided the stress/strengh ratio did not 

exceed 0.35. For the present study, creep data obtained by Ameny were 

plotted against the log (time) scale. Most of the creep data could be 

fitted very well by one or two straight lines in the specific creep 

strain versus log (time under load) plot. Shrinkage data were also 

fitted to a similar form of logarithmic relationship. A linear rela-

tionship of short-term data was thus easily extrapolated to the desired 

long-term times. As the main objective was to obtain long-term 

prestress losses for a period of about 10-15 years, the extrapolation of 

short-term data would be assumed to hold good for that time only. In 

the case of creep data, beyond fifteen years time creep strain curves 

will have to be reassessed in order to predict a finite ultimate value. 
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4. 2.3.1 Creep  

(A) Specific Creep Functions for Specimens Loaded at the Age of Seven  

Days 

In Zmeny's work on concrete blockwork specimens, loading was 

applied at the age of seven days while brickwork specimens were loaded 

at the age of nine days. For the present study the age at initial 

loading, to, has been assumed to be seven days for both cases. 

(a) Concrete Block Units  

It was observed that the specific creep strains of the individual 

block units obtained from the prisms tests with N-mortar were higher 

than those with M-mortar. Data from the N-mortar case were taken as 

upper bound values while those from the M-mortar were considered as 

lower bound. A regression analysis using the least square method was 

performed and the best-fit straight-line expressions were obtained. 

Specific creep data for all the different cases are plotted in Figure 

4.1. As the data obtained by meny were only for 100-120 days, they had 

to be extrapolated to predict the long-term behaviour. Lenczner ( 1974) 

reported that creep in concrete blockwork masonry ceased after approxi-

mately 300 days. For this study, the second straight line obtained for 

time greater than 14 days, was extended up to 300 days and then a third 

line was plotted with the slope of the first line. The extrapolation of 

the data is shown in Figure 4.1. The different expressions obtained are 

as follows: 

(1) Upper Bound 

(i) for ( t-t0) 14 days 

C(t,t) = [14.484 £.n(t-t) + 15.6921 x io 6. (4.1) 
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FIG. 4.1 SPECIFIC CREEP STRAIN VERSUS TIME 

FOR CONCRETE BLOCK UNITS 

LEGEND 
o = AXIALLY LOADED TO 0.44 
o = AXIALLY LOADED TO O.2f 
= AXIALLY LOADED TO O.4fm 

+ = AXIALLY LOADED TO O2f 

0 

UPPER BOUND 
° with "N" mortar 

LOWER BOUND 
with ."W' mortar 

I I I I IIII I I I I 1 111 

10 1 100 

DAYS AFTER LOADING 



52 

(ii) for 14 days < (t-t) 300 days 

C(t,t) = [39.057 £n(t-t) - 49.0671 -x 10- 6. 

(iii) and for (t-t) > 300 days 

C(t,t) = [14.484 £n(t-t) + 91.096] x 1o 6. 

(2) Lower Bound 

(1) for ( t-t 0 ) 9 14 days 

C(t,t) = [8.6774 £n(t-t) + 9.8579] x io 6. 

(ii) for 14 days < (t-t) 300 days 

C(t,t) = [21.121 £n(t-t) - 21.816] x 10-6.-

(iii) and for (t-t0) > 300 days 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

C(1,t) = [8.6774 9.n(t-t) + 49.160] x io_6 . (4.6) 

where C(t,t) is the specific creep strain observed at time t to is the 

time at application of load and is equal to seven days in the present 

case, (t-t) is the duration of loading. 

(b) N-Mortar  

Two sets of data were available. From the first set of data 

obtained by Ameny ( 1979), actual strains in the mortar joint were 

calculated as: 

= (50.8 Ca - 40.8 C)/lO (4.7) 

where c. is the strain in the joint, e is the measured strain across 
j a 

the joint, e u is the measured strain in the individual unit. The strain 

gauge length was 50.8 mm and the mortar joint thickness was 10 nun. 

In the second set of data obtained by 2meny ( 1982), mortar cylin-

ders were used. The ratio of the specific creep strains in the mortar 

joint to those of the concrete block units was in the order of 10-12 for 

the first set of data and 4-5 for the second set. Lenczner ( 1974) also 
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reported this ratio to be in the range of 4-5. Tatsa et al ( 1973) 

observed the same ratio to be 16.8 when the specimens were presoaked and 

4.4 when the specimens were not. 

For the present study, specific creep strains derived from the 

first set of data are taken a an upper bound while those from the 

second set of data are a lower bound. Different expressions derived 

from regression analysis have been plotted in Figure 4.2 and -are as 

follows. 

(1) Upper Bound 

(i) when specimens were subjected to a compressive stress of 0.4 f', 

for all times 

C(t,t) = (141.59 2n(t-t) + 493.21) x io 6. (4.8) 

(ii) ' ihen specimens were subjected to a compressive stress of 0.2 f', 

for all times 

C(t,t) = [355.56 2n(t-t) + 158.48] x i0 6. (4.9) 

The average of the above two equations has been taken as the upper 

bound expression. 

i.e. for all times 

C(t,t) = [248.58 2n(t-t) + 325.85] x io 6 . (4.10) 

(2) Lower Bound 

for (t-t) 14 days 

c(t,t) =, [127.41 n(t-t) + 235.61] x10 6, (4.11) 

and for (t-t) > 14 days 

C(t,t) = [42.462 2n(t-t) + 474.47] x io_6. (4.12) 

In the case of lower bound values, creep strains after 200 days 

were found to deviate up from the straight line relationship. The 

sudden rise of creep strains was neglected. This was probably due to 
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the abrupt variation in the relative humidity. 

(c) M-Mortar  

Similar to the N-mortar case, upper and lower bound expressions 

were obtained and are plotted in Figure 4.3. 

(1) Upper Bound 

(i) when specimens were subjected to a compressive stress of 0.4 f', 

for all times 

C(t,t) = [163.24 2.n(t-t) + 555.49] x 10- 6. (4.13) 

(ii) when specimens were subjected to a compressive stress of 0.2 f', 

for all times 

C(t,t) = [142.73 2'n(t-t) + 189.96] x 1o 6. (4.14) 

For this study, Equation (4.13) has been taken as an upper bound 

expression. 

(2) Lovier Bound 

for all times 

C(t,t) = [56.123 9-.n(t-t) + 81.826] x 10- 6. (4.15) 

In this case also, variation in the creep strains after 200 days 

was neglected. 

(d) Brick Units  

Both 2meny and Lenczner observed very low creep strains in the 

brick units. 1\meny ( 1982) reported that the creep strain after a year 

was only 10% of the instantaneous elastic strain. For the present " 

study, creep strains in the brick units have been neglected. 

(B) Specific Creep Functions for Specimens Loaded at Any Age  

Using the age coefficient recommended by the CEB-FIP ( 1970) model, 

specific creep curves for specimens loaded at different ages have been 
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FIG. 4.3 SPECIFIC CREEP STRAIN VERSUS TIME 

FOR "M" MORTAR 

LEGEND 
o = AXIALLY LOADED TO O.4f,, 
o = AXIALLY LOADED TO O2f, 

= MORTAR CYLINDERS 

500-

0 

0 

Q 

0 

PPER BOUND 
across joints 
in block masonry 

0 

LOWER BOUND 
in mortar cylinders 

1 
'I • I I I liii 

10 _____ 100 
DAYS AFTER LOADING 

I $ I I 



57 

derived as follows: 

c(t,t ) = k x C(t,7) 
0 

(4.16) 

where k is the age coefficient, C(t,7) is the specific creep strain at 

time t (days) for a specimen loaded at the age of seven days and to is 

any age at loading. 

C(t,7) values can be obtained from Expressions ( 4.1) to ( 4.15). 

Values of the age coefficient, k, are plotted in Figui'e 4.4 and are 

given by the following expression. 

(i) for 1 day 5 to 7 days 

k = -0.1470 £n(t ) 9 + 1.286 (4.17) 

(ii) for 7 days < to 28 days 

k = -0.2063 £n(t) + 1.4015 (4.18) 

(iii) for 28 days < to 9 360 days 

k = -0.1398 n(t ) + 1.1798) (4.19) 
0 

For t > 360 days, the CEB-FIP ( 1970) model does not suggest any 

value of age coefficient, k. To be on the conservative side, no further 

decrease in k value is assumed in the present analysis. Thus, 

(iv) for to > 360 days 

k = 0.357. (4.20) 

4.2.3.2 shrinkage  

In the present study the age at the start of drying, t, was 

assumed to be seven days to coincide with the age at application of 

loading. 

It has been experimentally verified for concrete that shrinkage 

tends to a limiting value earlier than creep strains. This effect was 

confirmed by Lenczner ( 1974) for masonry structures. For the present 

analysis, shrinkage strains were extrapolated to an ultimate finite 
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FIG. 4.4 CEB-FIP(1970) , CREEP PREDICTION CURVE 
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value and then no further shrinkage increase was assumed. 

(a) Concrete Block Units  

Results of six test specimens are plotted in Figure 4.5. The line 

of best fit, obtained from all the data points, was extrapolated to 200 

days and then a horizontal line indicating no further shrinkage was 

assumed. Derived expressions are as follows: 

Both Upper and Lower Bounds 

(i) for ( t-t) 10 days 

eS(t,t) = [23.188 £n(t-t) + 23.882] x io6 

(ii) for 10 days < (t-t5) 9 200 days 

c5 (t,t) = [139.22 9,n(t-t) - 228.64] x io 6 

(iii) and for (t-t5) > 200 days 

cS (tts) = 510.0 x 10- 6. 

(4.21) 

(4.22) 

(4.23) 

Lenczner ( 1974) obtained an ultimate shrinkage strain of 410 x 10 -6 

after 320 days. Thus, the input data used in the present study, are on 

the conservative side. 

(b) N-Mortar  

Similar to the case of creep in mortars/ Equation ( 4.7) was used to 

obtain the hrinkage strains in the mortar joint. Results of different 

test specimens are plotted in Figure 4.6. In the upper bound case, 

shrinkage strains for different test specimens differed quite a bit. An 

upper bound envelope to all the test data points has been used for the 

present study. In the lower bound case, the shrinkage drop from 160 to 

220 days was neglected because of the sudden rise of relative humidity. 
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FIG. 4.5 SHRINKAGE STRAIN VERSUS TIME 
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The best fitting line was extrapolated to 500 days and then a horizontal 

line was assumed. 

The following expressions were obtained. 

(1) Upper Bound 

(i) for (t-t5) 11 days 

C(tit) = [82.413 2,n(t-t) + 164.75] x io_6 

(ii) for 11 days < (t-t) 200 days 

€S (tts) = [367.64 £n(t-t) - 512.73] x 10-6 

(iii) and for (t-t) > 200 days* 

S(tt) = 1435.0 x io 6. 

(2) Lower Bound 

(i) for ( t-t) 9 10 days 

E(tt) = [140.29 2.,n(t-t) + 124.00] x io_6 

(ii) for 10 days < (t-t5) 500 days 

cS (tts) = [70.696 2..n(t-t) + 259.57] x lo_6 

(iii) and for (t-t) > 500 days 

- 6S(t,t5) = 700.0 x io_6. 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(c) M-Mortar  

Similar to the N-mortar case, upper and lower bound expressions 

were obtained. The expressions are plotted in Figure 4.7 and are as 

follows. 
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(1) Upper Bound 

(i) for (t-t $ ) 10 days 

S(tt ) = [91.457 2,n(t-t S ) + 88.519] x io 6 
S  

(ii) for 10 days < (t-t) 5 200 days 

CS(t,t) = [306.85 Ln(t-t) + 301.44] x io_6 

(iii) and for (t-t5) > 200 days 

5 (tt) = 1325.0 x 10- 6. 

(2) Lower Bound 

(i) for (t-t 5 ) 10 days 

es(t,t5) = [146.46 P..n(t-t) + 116.00] x io_6 

(ii) for 10 days < (t-t) 9 500 days 

c5 (t,t) = [192.41 £n(t-t5) + 55.872] x io_6 

(iii) and for (t-t) > 500 days 

£S(t,t) = 1252.0 x 1o 6. 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(d) Brick Units  

2meny ( 1982) observed very low shrinkage strain in the brick units 

and concluded that the strain could be neglected. A similar conclusion 

was made by Lenczner ( 1971). For this study, shrinkage strain in the 

brick units has also been neglected. 

Pmeny ( 1982) reported little reversible expansion strain in the 

brickwork as the brick units used were old and thoroughly presoaked in 

water. Lenczner et al ( 1976) observed a maximum expansion strain of 30 

x lo_6 in the individual bricks. CMHC (1981) recommends an average 
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expansion strain of 200 x 106 in clay brick masonry. Moisture expan-

sion of brickwork reduces the loss of prestress. To be on the conserva-

tive side, moisture expansion has been neglected for the present study. 

4.3 Stress Relaxation Input Data  

Stress-time functions for different types of steel were described 

in Section 3.2.6. For the input data of normal relaxation steel, 

Equation ( 3.21) was used while for low relaxation steel, Equation ( 3.22) 

was employed. During any time interval, the loss of prestress in steel 

due to stress relaxation was found by Equation ( 3.32). In finite 

element analysis, the prestress loss due to relaxation was represented 

by an equivalent thermal load. A temperature rise was obtained from 

Equation ( 3.54) wherein the inverse of multiplication factors matrix, 

[M], discussed in Sections ( 3.3.3.2) and (3.3.4.2), was used as input 

data. 

4.4 Efficient Computer Storage  

In the shrinkage analysis, incremental shrinkage strain calcu-

lations by Equation (3.20) requires the knowledge of shrinkage strains 

at different times. Logarithmic expressions developed in Section 

(4.2.3.2) can easily be incorporated in the computer program with no 

additional storage requirement. Similarly, for relaxation analysis, 

stress-time functions of prestressing steel (Equations in Sections 3.2.6 

and 3.2.7) are easily inserted in the computer program. On the other 

hand in the case of creep analysis, for incremental creep strain 

calculations by Equation ( 3.19), creep strains at different times for 

different ages at loading and the stress increments applied at all the 

previous time steps are needed. The analysis procedure was discussed in 
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detail in Section (3.2.3.2). Although creep strains can be found from 

the expressions developed in Sections ( 4.2.3.1), storage of the stress 

history becomes a limitation on the size of the problem and on the 

number of time steps to be considered in the computations. To overcome 

the storage problem, Equation ( 3.19) was modified such that only a few 

stress histories need be stored. In the field of concrete structures, 

it has been reported that a certain type of mathematical expressions for 

the creep function can overcome the problem of stress history storage 

while representing the step-by-step solution technique (Equation 3.19) 

accurately. A similar creep function, chosen for the present study, is 

discussed in the following sections. 

4.4.1 Creep Function to Avoid Stress History Storage  

The creep function proposed by Kahir ( 1976) has been selected for 

the present study. 

The function is of the form: 

.4(T)(t-t C(t,t m -b ,T) = E a.(t) [ 1 - e 1 o I 
1=1 

(4.36) 

where m is the number of terms to be considered, a. 1 (t 0 ) is a scale 

factor dependent on to (the age at loading), b. is the exponential 

constant determining the shape of the logarithmically decaying creep 

curve and 1(T) is a shift function dependent on temperature T. 

In the present study, the effect of temperature variation is not 

considered. Thus, Equation ( 4.36) reduced to: 

m 
-b.(t-t 

0 1 
C(t,t ) = Z a. 0 (t  e 1 0 I 

i=l 

(4.37) 
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To develop an expression similar to Equation ( 3.19), Equations 

(3.10) and ( 3.11) are rewritten here. 

n-i 

et n ) = o C(t n ,t o ) + E ta. C(tt.) 
j=i 

and Ac = - 

(4.38) 

(4.39) 

Substituting the values of C from equation (4.37) into Equation 

(4.38), we get: 

C m -b (t -t 
(t) n 0 a 1 (t 0 )[1- e i no] 

i=1 

In 
-b (t -t 

+ Aa Z a.(t1) [ 1 - e i n 1 
i=1 

+ 

S 

• In 
-b (t-t 

n-i E a i (t n-1)[1 - e i n n-i] 
i=1 

and 

C -b. n-i o(t -t 
(t) = In E a.(t) fi - 1 e i=l 

In 
-b (t -t) 

+ E a1 (t1) [ 1 - e i n-i 1 

+ 

E a. n-2 (t )[l - e i(tn_i_t n-2 n_2 )] 
. 1  

Then 

(4.40) 

(4.41) 
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(4.42) 

where n-i,n is the incremental creep strain in the nth time interval. 

From Equations ( 4.40), ( 4.41) and ( 4.42) we obtain: 

In 
AE a a (t) i -b (t -t ) -b (t -t 

= n-i,n e  n-i o - e i n o] 

an 
-b. (t -t ) -b. (t -t 

+ E LXcF a (t [e a. n-i i - e a. n 1] 
j=i 1 i i 

+ 

an -1, 14- t 
+ Z a. n-2 (t ) [e i n-i n-2 - -b (t -t 

a. n-2 
e i n n-2 

j=l  

m 
-b (t -t 

+ E a. n-i a. n-i (t )(l - e i n n-i] 
1=1 

m 
i.e AEC Z a a. ( t ) e (t_i-t0) El - -Ia. a. ft - e n n-i 

n-i 0 i=i 10 

or 

M 
+ E a1 a (ti)e .(ti-ti) [ 1 -Ia. a. ( t -t 

- e  n n-i I 

+ 

In 

+ E AG n-2 1 a. (t 2)e il:t _ 
n 1t - n 2 [i - a. b. ( t -t e n n-i 

an 
-b.(t -t -i 

+ E & a. n-i a. n-1) ) [i - e a. n n I 
i=l 

In 
= E A [i - -b. (t -t e a. n n-i I 

n-i,n . i,n-1 
1=1 

(4.43) 

(4.44) 

(4.45a) 
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where 

and 

-b .(t -t - 
A = A e in-i n2 + a a (t 
i,n-i i,n-2 n-i i n-i 

(4.45b) 

A. 1,0 1 = a. 0  (t ) a 0 (4.45c) 

Equation (4.45a) resembles Equation ( 3.19) but does not require the 

storage of all previous stress increments. The previous stress history 

is stored in the factor A which can be calculated from Equations (4.45b) 

and (4.45c). Thus, Equation (4.45a) requires the storage of stress 

history of only one time-step previous to the one under consideration 

reducing the storage and computation time to a great extent. This makes 

the creep analysis of large structural problems possible. 

4.4.2 Determination of Creep Function Coefficients  

In the present study, only partial experimental data were avail-

able.. The data have been smoothed and extrapolated by fitting to a 

linear logarithmic expression form. To incorporate accurately the 

formulation described in the previous section, creep functions of the 

logarithmic form are to be converted to a form described by Equation 

(4.37). 

M 
-b(t-t 

1 0 
i.e. C(t,t ) = Z a. 0 i (t  e o I 

- .  
i=l 

The method used is as follows: 

(1) A particular age at loading, to , is chosen. For the present case 

to = 7 days, is selected, as experimental observations were made on 

specimens loaded at the age of seven days. 

(2) Using expressions developed in Section ( 4.2.3.1), specific creep 
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strains for all different cases were generated for 24 age durations, 

i.e. for (t-t) equal to 0.3, 0.4, 0.5, 1, 2, 5, 10, 15, 22, 30, 40, 60, 

90, 120, 160, 200, 250, 320, 400, 500, 1000, 2000, 3500, and 6000 days. 

(3) Then the following equations are developed. 

-b (t -t ) -b (t -t 
l- e 11 o...l-e ml o 

e i -b (t n-t o ...l-e in ) -b (t n -t o ) l-  

nxm 

or [b] {a} = fs} 
nxm mxi nxl 

c (ti ,t)' 

C(t , t 
2 o 

C(t , t 
n 0 

/ 
nxl 

(4.47) 

For the present case, n = 24 and to = 7 days. For n > in, Equation 

(4.47) is a system of overdeterminate set of equations. Equation (4.47) 

is solved by the least square method. 

i.e. [b] T [b]{a} = [b] T {s} 

and { a} = [[b]Ttb)]_l[b]T{ s} (4.48) 

Thus, the coefficients, a.,, are evaluated. The values of in and b are 

to be chosen such that the least square error, X, is minimized where 

Ifl 2 
X = [([b]{a}). - {s}.] 

i=1 :i. 
(4.49) 

Kabir ( 1976) selected the number of terms, m, equal to 3. Using b1 

= 0.1, b2 = 0.01 and b3 = 0.001, experimental creep data for a particu-

lar age at loading were fitted to the creep function and the values of 

a1, a2 and a3 were evaluated. 

For the present study, the effect of in value on, accuracy was 

investigated. Three values of in 4 and 6) were tried. With dif-
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ferent b. values, values of a. were calculated and evaluated. Finally, 

m = 6 was selected because it gave the minimum least square error. 

Values of b. 1 and a 1 . ( for i=1,. . . ,6) for different cases are tabulated in 

Table 4.1. To check the acceptability of the creep function chosen, the 

specific creep strains generated by Equation (4.37) are compared to the 

specific creep strains generated , by logarithmic expressions and short-

term experimental data in Figures 4.8 to 4.10. The theoretical curves 

generated by Equation ( 4.37)' are plotted and the experimental and log 

plot specific creep strain values are superimposed on the plot. As 

shown in Figuies 4.8 to 4.10, log values fit exactly on the curves 

generated by the creep function of the form of Equation ( 4.37). The 

derived specific creep curves for the specimens loaded at seven days 

were acceptable for the present study. To obtain the specific creep 

curves for specimens loaded at different ages, Equation (4.16) with the 

age coefficient recommended by the CEB-FIP ( 1970) model, was used. 

4.5 Computer Programming  

Before the computer programming steps are described, the two basic 

assumptions made in the present study are reviewed. 

(1) It has been assumed that elastic strain remains constant during the 

entire time analysis. Thus, structural stiffness based on the initial 

elastic properties has been used throughout the analysis. Elastic 

properties of the different components used in the present analysis are 

taken from Ameny ( 1979 and 1982) and are listed in Table 4.2. 

(2) It has been assumed that the age at application of initial loading, 

or prestressing in the present case, to, and the age at start of drying, 

t, are the same and are equal to seven days. 

The program SMAC was modified to perform non-linear time dependent 



Concrete Block Unit N-Mortar M-Motar 

Upper Lower Upper Lower Upper Lower 
Bound Bound Bound Bound Bound Bound 

a1 O.1667x10 4 0.1046x 10-4 O.6540x10 3 O.2185x10 3 O.3960x10 3 O.1338x10 3 

a2 O.3669x1O 4 O.2357x10 4 O.5585x10 3 O.3800x10 3 O.3728x10 3 O.1304x10 3 

a3 O.1164x10 3 O.6186x10 4 O.5663x10 3 O.6654x10 4 O.3781x10 3 O.1253x10 3 

a4 O.2471x10 4 O.1598x10 4 O.6765x10 3 O.1250x10 3 O.37O6c1O 3 O.1568x10 3 

a5 O.8055x10 4 O.3756x10 4 -O.2329x10 2 -O.6413x10 4 O.3954x10 3 -O.5311x10 3 

a6 -O.2356x10 3 -O.7103x10 4 O.2267x10' O.1028x10 2 O.3357x10 3 O.5062x10 2 

b1 1.0 1.0 0.5 1.6 4.8 0.7 

0.1 0.1 0.05 0.16 0.48 0.07 

b3 0.01 0.01 0.005 0.016 0.048 0.007 

0.001 0.001 0.0005 0.0016 0.0048 0.0007 

0.0001 0.0001 0.00005 0.00016 0.00048 0.00007 

b6 0.00001 0.00001 0.000005 0.000016 0.000048 0.000007 

Table 4.1 Creep Function Coefficients 
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analysis by a step-by-step numerical solution technique for creep, 

shrinkage and relaxation properties of masonry components. The solid 

element subroutine was modified to include the effects of creep and 

shrinkage in mortar and concrete block units while the truss subroutine 

was developed further to incorporate the stress relaxation property of 

prestressing steel. In the modified SMAC program, the user has the 

option to perform any of the following analysis procedures. 

(1) Elastic Analysis, 

(2) Creep Analysis, 

(3) Shrinkage Analysis, 

(4) Creep and Shrinkage Analyses Together. 

There is a choice of including relaxation analysis with any of the 

above mentioned time dependent analyses. Both normal as well as low 

relaxation steel properties have been included. With creep and/or 

shrinkage analyses either upper or lower bound results may be sought. A 

flow chart, describing the various steps of the analysis procedure, is 

presented in Figure 4.11. 

Concrete 
Block 
Unit 

Brick 
Unit 

N-Mortar M-Mortar Steel 
Plate 

Modulus 
of Elasticity 
E(N/mm2) 

8000 8000 8000 8000 
5 

2 x 10 

Poisson's 
Ratio 0.2 0.2 0.2 0.2 0.3 

Table 4.2 Elastic Properties 
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Start 

Read nodal and element input data and form element and structure 

stiffness matrix 

Read load (prestressing force equivalent thermal load) and form 
load vectors for the elastic analysis or the first time step 

4, 
Set nodal displacement, stresses and strains to zero 

Solve for nodal displacements, stresses and strains. Sum up the 

total displacements, stresses and strains and print the values. 

YES 

If elastic analysis   

NO 

YES 

<No. of time steps exceeded> 

NO 

YES  W  NO 

creep or combined analysis   

Calculate either upper 

or lower bound incremental 

creep strains for the next 

time step. 

V  YES 

<If combined analysis>  

NO 

 I 
Calculate either upper or 

or lower bound incremental 

shrinkage strains for the 

next time step. 

combined analysis 

NO 
YES 

sum up the incremental 

creep and shrinkage 

strains 

Calculate equivalent nodal load vector due to incremental strains 

NO   

<I  relaxation of prestressing steel included> 

YES 

For, the next time step, calculate equivalent nodal load vector due 

to stress relaxation of either normal relaxation steel or low 

relaxation steel. Sum up the total nodal loads. 

Figure 4.11 Flow Chart 



CHAPTER 5 

MODELS FOR POST-TENSIONED HOLLOW MASONRY WALLS 

5.1 Introduction  

The modified program was used to analyse models for several cases 

of concrete block and brick walls. Different parts of the masonry unit 

and the mortar joint locations are defined in Figure 5.1. A typical 

vertically post-tensioned masonry wall specimen is shown in Figure 3.5. 

Several bonding patterns of the masonry units and the mortar joints are 

possible. Two typical cases of running bond and stack bond patterns are, 

shown in Figures 5.2 and 5.3. For details and other definitions, the 

reader may review CSA Standard CAN3-A370-M84 ( 1984). As shown in Figure 

51, the prestressing steel passes through the hollow core of the unit. 

With a stack b9nd pattern, the construction of masonry walls result in 

vertically aligned cores so that the prestressing steel bars can be 

placed in the walls. On the other hand, with a running bond pattern, 

the shape of the standard units may not permit any vertically aligned 

core. In the present study, only the stack bond pattern case has been 

considered. 

Prestressing is the only load which was considered in the present 

analysis. Self weight of the walls or any other external load has been 

ignored for all the wall models. As illustrated in Figure 3.5, the 

prestressing force is transmitted to the wall through the end steel 

plates. 

78 
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prestressing steel 

webs 

face shells 

mortar head joint 

mortar bed joint 

Figure 5.1 Detail Showing Mortar Joihts 

Figure 5.2 Running Bond Patern 

Figure 5.3 Stack Bond Patern 
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5.2 Types of Specimens  

5.2.1 Unit Geometry  

A typical concrete block unit is shown in Figure 5.4a. To avoid 

complexity in the finite element mesh, the simpler unit geometry, shown 

in Figure 5.4b, was adopted. Regarding brick units, the same 

cross-sectional configuration was assumed. Figure 5.4c shows the brick 

unit dimensions which were used in the present analysi. 

5.2.2 Mortar Bed Types  

The masonry units are joined together either by full mortar bedding 

or by face-shell bedding. In the case of full bedding, mortar is 

applied to the whole bed face of the unit while in face-shell bedding, 

only the face shells of the unit are mortared. A comparison between the 

two has been made in Figure 5.5. For the present study, both full 

bedded and face-shell bedded specimens have been modelled. 

5.2.3 Different Cases to be Analysed  

The following options were included in the wall models. 

(1) Concrete block units or brick units; 

(2) N-mortar or M-mortar; 

(3) Full mortar bedding or face-shell mortar bedding; 

(4) Upper bound or lower bound limits; 

(5) Creep and shrinkage analyses or creep, shrinkage and relaxation 

analyses. 

With these options thirty-two different cases could be analysed. 

Since there were practical limitations of time and cost of execution, 

the total number of cases to be analysed was reduced to sixteen. In 

Chapter 4, creep and shrinkage strains of N-mortar were observed to be 
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(a) Typical Concrete Block Unit 

(b) Concrete Block Unit Selected 

a=35mrn 

b120mm 

c50mm 

d=127 . 5mm 

(c) Brick Unit Selected 

Figure 5.4 Unit Configuration 
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(c) Full Bed Mortar 

A 

(a) 

A A 

I I 
I I 
I I 
I 

I I 

A A 

(b) 

A - Plane 

A 

(d) Face Shell Mortar 

Figure 5.5 Mortar Bed Types 
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more than those of M-mortar. As the main objective was to find upper 

and lower bound limits to loss of prestress, N-mortar wall model 

specimens were analysed for upper bound values while M-mortar specimens 

were investigated for lower bound results. Thus, ( 1) creep and shrink-

age analyses, and ( 2) creep, shrinkage and relaxation analyses were 

performed for both concrete block walls and brick walls for the follow-

ing combinations. 

(1) N-mortar, full mortar bedding and upper bound case 

(2) N-mortar, face-shell mortar bedding and upper bound case 

(3) M-mortar, full mortar bedding and lower bound case 

(4) M-mortar, face-shell mortar bedding and lower bound case. 

5.3 Wall Models  

Time and cost of computation were the main limiting factors in 

selecting the size of the wall models. On the other hand, the models 

had to simulate actual wall behaviour. The models selected for concrete 

block walls and brick walls are shown in Figures 5.6 and 5.7 respec-

tively. Although of the same height, 1190 mm, the concrete block wall 

model was six blocks high while the brick wall was twelve units tall. 

Both wall models were single wythe and four blocks long ( 1590 mm) where 

a wythe is defined as a continuous vertical section of masonry wall, one 

unit in thickness. All mortar joints were 10 mm thick. The height to 

length ratio of the model was selected from the range of values used for 

actual masonry walls. Two steel bars were used to prestress the wall 

models. The steel bearing plates, used for the model specimens, were 

212.5 mm long, 190 mm wide and 20 mm thick. The plates spanned the 

hollow core and the adjoining webs of the unit in order to transmit the 

prestressing force evenly. 
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A- 15 90mm 

Figure 5.6 Concrete Block Wall Model 

15 90m 

/ 0 , 
,4--J4 

Figure 5.7 Brick Wall Model 

I I 
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In finite element modelling of wall specimens, the masonry units, 

mortar and steel plates were represented by 3-dimensional 8-node solid 

hybrid elements while uniaxial truss elements were used for the pre-

stressing steel bars. Both units and mortar were assumed homogeneous, 

isotropic and linearly elastic. Perfect bond was assumed between units 

and mortar, and unit, mortar and steel plates. The elastic properties 

of the masonry components and the steel plates are tabulated in Table 

4.2. 

Wall models were prestressed to a stress of 25% of the ultimate 

compressive strength of the masonry. The initial prestressing force was 

designed to meet requirements of CSA, Code of Practice, CAN3-S304-M84 

(1984). 

In Figure 5.8a, b is the length, t is the thickness, h is the 

height of the wall model and A ps is the area of the prestressing steel. 

For the present case: 

= 1190 mm, b = 1590 mm and t = 190 mm 

For masonry walls b > 3t and for axial compressive loading h < 30 t. 

Wall models selected for the present study satisfy both the crite-

ria. The allowable vertical compressive load, P, is given as: 

P = C C f A 
e s m m 

where C e s is the eccentricity coefficient, C is the slenderness coeff1- 

cient, f is the allowable compressive stress and A is the mortar 
m m 

bedded area. 

For vertical compressive loading, 

f = 0.25 f' 
m m 

where f' is the ultimate compressive strength. The average value 

obtained by 2meny ( 1979 and 1982) for the prism test specimens for 
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2 
was 8N/MM 

Thus f = 0.25 x 8 = 2N/mm2 

For full mortar bedded area, 

A = 1.59 x 0.19 - 8 x 0.12 x 0.1275 
m 

= 0.1797 m2. 

For the selected models, C = 1 and C = 1. 
e S 

Then P = 2 x.0.1797 x 10  

= 0.3594 x 106 N 

= 0.3594 x 106/2 

= 1.797 x 10 N 

= 179.7 kN 

where P b is the force in each prestressing bar. 

In order to prestress the bars to 70% of the ultimate tensile 

strength, a seven wire strand with the following properties was select-

ed. 

Size Designation - 15 

Nominal Diameter - 15.24 mm 

Nominal Area (A ) - 140 mm 
PS 

where f 
pu 

2 

f pu - 1860 N/mm 2 

0.7 f A - 182 kN 
Pups 

f  
pu ps 

- 261 kN 

is the ultimate tensile strength. 

The same prestressing bar was used for both full bedded and- face-

shell bedded specimen models. 

Both the geometry of the models and the loading were symmetrical 

about the three directional axes. Making use of the symmetry, only one-

eighth of the wall model was analysed and is shown by the shaded area in 



87 

Figure 5.8a. The area of the prestressing steel and the loading to be 

considered for the symmetrical portion are shown in Figure 5.8b. 

5.4 Finite Element Mesh  

Figure 5.9a shows a typical 3-dimensional 8-node solid element 

while a uniaxial truss element is shown in Figure 5.9b. For each 

element the stresses, strains and displacements at all the nodal points 

were obtained in the output. A separate mesh generation program was 

developed for the preparation of input of the nodal coordinates and 

element topologies of the models. 

For the finite element analysis of masonry walls, several mesh 

schemes were investigated by Simbeya ( 1985). A mesh scheme similar to 

one adopted by Simbeya was selected for the present analysis. Various 

meshes for the different models are illustrated in the following 

sections. 

5.4.1 Cross-Sectional Mesh  

Cross-sectional meshes were the same for both concrete block and 

brick wall models as the same cross-sectional dimensions were used. 

(a) Full Mortar Bedding Specimens 

Since the mortar covered the whole bed face of the unit, 

cross-sections through the unit layer and the mortar layer had the same 

configuration which is shown in Figure 5.lOa. The cross-sectional mesh 

through the steel bearing plate is shown in Figure 5.lOb. 

(b) Face-Shell Mortar Bedding Specimens 

The unit layer and steel plate layer cross-sectional meshes were 

identical to those of the full mortar bedding specimens and are shown in 

Figures S.lOa and 5.iOb respectively. The cross-sectional mesh through 
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O.5b  
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I O.5P. 
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Figure 5.8 Wall Model and Symmetry 

6 

(a) Solid Element 

4 

7 

(b) 

2 

3 1 

(b) Truss Element 

Figure- 5.9 Element Types and Nodal Points 
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a=50 , b=63.75 , c=35 , d=127.5 

(a) Mortar Layer (Full Bedded) and Unit Layer 

(b) Steel Plate Layer 

(all dimensions are in mm) 

(c) Mortar Layer (Face-Shell Bedded) 

Figure 5.10 Cross-Sectional Meshes 
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the mortar layer is illustrated in Figure 5.10c. 

5.4.2 Elevational Mesh  

Elevational meshes are the same for full mortar bedding and 

face-shell mortar bedding specimens. The elevational mesh of the 

concrete block wall models is shown in Figure 5.11 whereas the details 

of the elevationalmesh of the brick wall specimens are illustrated in 

Figure 5.12. 

5.4.3 Boundary Conditions  

The boundary conditions of the wall models are described using the 

symmetrical portion of the model which is shown in Figure 5.13a. The 

corresponding planes of symmetry and their boundary conditions are 

illustrated in Figure 5.13b. In Figure 5.13b, u, v and w are the 

displacements in the directions x, y and z, respectively. 

5.5 Summary  

In this chapter, post-tensioned hollow masonry walls were modelled. 

Only stack-bond pattern specimens were considered. Computer time was 

the pincipal factor which controlled the size of the models and the 

number of cases analysed in this study. Taking advantage of the symme-

try, only one-eighth of the wall models were analysed. 

In the later sections, finite element meshes were developed for 

both concrete block wall and brick wall models with full mortar bedding 

as well as face-shell mortar bedding options included. Finally, the 

boundary conditions were evolved for the finite element models chosen 

for the present study. 
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Figure 5.11 Elevational Mesh for Concrete Block Wall Models 
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Figure 5.12 Elevational Mesh for, Brick Wall Models 
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(a) 

(b) 

Figure 5.13 Boundary Conditions 



CHAPTER 6 

RESULTS AND DISCUSSIONS 

6.1 Introduction  

Using the input data and methodology described, results were 

obtained for the time-dependent changes in the masonry wall models. 

Upper and lower bound values of prestress losses, are computed and 

short-term prestress losses are compared with experimental values 

reported in the literature. Finally, the redistribution of stresses 

between masonry units and mortar due to creep and shrinkage are dis-

cussed and compared with the initial elastic distributions. 

It is interesting to note that, although the numerical solution 

technique was developed on a CDC-CYBER 175 computer, a CDC-CYBER 205 

supercomputer was used to obtain the final results. For the same 

problem, the CYBER 205 was found'tà be 5-6 times faster than the CYBER 

175 Without vectorization of the computer program) Furthermore, the 

CYBER 175 was observed to be 6- 7-times faster than the Honeywell Multics 

computer, also available to the author. 

In the last section, an approximate analytical solution to 

prestress losses was obtained for a simple wall model and was compared 

with the results of the step-by-step solution technique method. 

6.2 Presentation of Results  

Material interaction between units and mortar is one of the factors 

which influence the stress distributions in masonry. The, main results 

were obtained with an elastic modulus of the mortar equal to that of the 

masonry units. In a few cases the stiffness of the mortar was reduced 

to half the initial value and the results are compared and discussed in 

94 
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a later section. 

As described in Section ( 3.2.3.2), the numerical solution of creep 

problems using a time incremental procedure requires the selection of 

appropriate time intervals so that numerically stable as well as accu-

rate results are obtained. The time-step length selection criteria are 

discussed in the next section. 

6.2.1 Selection of Time-Step Length  

In the field of concrete structures, Bazant ( 1975) reported that to 

achieve the best results under steady loading, the time intervals should 

be chosen in the form of a geometric progression. The lengths of the 

time intervals should be approximately equal in log (time) plot. He 

proposed the following relationship: 

- t) = 1.333 (t. - t) (6.1) 

or 

At = t•1 - t. = 0.333 ft. - ti+l ) (6.2) 

where t is the age at initial loading and t., t are the two succes-
0 1 i+l 

sive times. Bazant suggested that with At1 = 0.01 day a high accuracy 

could be achieved. 

The basic assumption in the step-by-step procedure - is that the 

stresses remain constant during any time interval. The solution di-

verges and becomes unstable when large time-step lengths are chosen. 

Sutherland ( 1970) proposed that for stable numerical solutions, the 

maximum incremental creep strain should not exceed the maximum elastic 

strain during any time interval. Thus, the maximum time increment which 

can be used is restricted. 

In the present study, upper bound results from the creep analysis 
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did not converge even though Bazant's expression and Sutherland's 

criterion were satisfied. As stated in Chapter 4, for the case of upper 

bound limits, the ratio of the specific creep strains in the mortar 

joint to those of the concrete block units was in the order of 10-12. 

The creep strains of individual concrete block units were of the same 

order as those of conventional concrete. Thus, the probable reasons for 

the instability of the numerical solution were ( 1) the high magnitudes 

of the creep strains in mortar joints and '( 2) the difference of creep 

strain magnitudes of concrete block units and mortar joints. These 

reasons were confirmed by the fact that lower bound solutions converged 

with the time intervals chosen as per Equation ( 6.1). For lower bound 

limits, the ratio of the specific creep strains in the mortar joints to 

those of the concrete block units was in the range of 4-5. For a period 

of twelve years, adequate lower bound solutions were obtained with 125 

time steps. However, upper bound solutions did not converge even after 

selecting time intervals equal to one-tenth of those chosen for the 

lower bound limits, i.e. for a period of twelve years, even 1250 time 

steps were not sufficient to acquire upper bound solutions. In terms of 

computer time and money, it became impractical to increase the number of 

time steps any further. At this level, it was decided to make an 

approximation in the case of upper bound results. The detailed step is 

discussed in the next section. 

6.2.2 Loss of Prestress  

As discussed in the previous section, it was not feasible to obtain 

long-term upper bound results for a period of twelve years. It was 

decided to reduce the mortar's upper bound creep property so that 

numerical instability could be avoided. All the model specimens were 
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analysed with the reduced creep property and the approximate upper bound 

results were obtained. A few specimens were analysed with 100% mortar 

creep property and short-term upper bound results were attained. Then 

long-term approximate results were calculated by multiplying by a 

correction factor in proportions to the corresponding short-term results 

obtained with 100% and reduced mortar creep property. With 100% creep 

property, 2500 time steps were used to obtain short-term results. 

Although, as discussed in Section ( 3.2.3.2), numerical stability does 

not necessarily mean that the final results are correct, the upper bound 

short-term prestréss loss results were concluded to have converged due 

to the following reasons. ( 1) 2500 time steps (a large number) were 

used to obtain short-term results which compared very well with the 

experimental results reported in the literature. ( 2) The shape of 

prestress loss curves in the time domain matched the curves obtained for 

lower bound results. 

6.2.2.1 Concrete Block Walls  

Both short-term and long-term prestress losses for lower bound and 

upper bound solutions of the concrete block wall models are summarized 

in Table 6.1. 

Although face-shell bedded specimens sustained more prestress loss 

than full-bedded specimens, the difference was insignificant. Overall 

upper and lower bound prestress losses versus time are plotted in 

Figures 6.1 and 6.2 for creep and shrinkage analyses, and creep, shrink-

age and relaxation analyses respectively. Fifty percent of the ultimate 

loss at twelve years occurred during the first 25-40 days. In general, 

post-tension losses due to creep and shrinkage effects were obtained 

between 15% and 24% where lower and upper limits reflect the different 



Upper Bound Solutions 

(with N-Mortar) 

Lower Bound Solutions 

(with N-Mortar) 

Full Mortar 

Bedded 

Models 

Face-Shell 
Mortar Bedded 

Models 

Full Mortar 
Bedded 

Models 

Face-Shell 

Mortar Bedded 

Models 

Prestress Loss 

due to Creep 

After 200 

Days 

18.3 19.6 12.4 13.0 

and Shrinkage 

Analyses 

After 1 

Year 

19.3 20.6 13.1 13.9 

(%) After 12 

Years 

21.9 23.6 14.6 15.5 

Prestress Loss 

due to Creep, 

Shrinkage and 

Relaxation 

After 200 

Days 

After 1 

Year 

25.6 

26.6 

26.7 

27.8 

20.4 

21.3 

21.0 

21.9 

Analyses 
(%) 

After 12 
Years 

30.0 31.5 23.8 24.4 

Table 6.1 Loss of Prestress for Concrete Block Wall Models 
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creep and shrinkage properties of the masonry units and mortars adopted 

for the present study. Similarly, losses due to creep, shrinkage and 

stress relaxation effects were acquired in the range of 24-31%. The 

post-tensioned steel bars were of high tensile strength and were 

stressed to 70% of the ultimate strength. 

6.2.2.2 Brick Walls  

The summary of short-term and long-term prestress losses for the 

brick wall models is given in Table 6.2. Prestress losses in face-shell 

bedded and full-bedded specimens were of the same order. The computed 

upper and lower bound prestress losses are plotted in Figures 6.3 and 

6.4 for creep 'and shrinkage effects, and creep, shrinkage and relaxation 

effects respectively. Fifty percent of the ultimate loss at twelve 

years occurred during the first 25-30 days. Prestress losses due to 

creep and shrinkage were obtained between 5% and 10% where the two 

limits correspond to the upper and lower bounds of the creep and 

shrinkage properties of the mortar. It is recalled that the brick units 

were assumed to have no creep and shrinkage strains. Further, moisture 

expansion strains in the brick units were also neglected. The prestress 

loss will be reduced if the moisture expansion of the brick units is 

included in the analysis. The computed losses from creep, shrinkage and 

relaxation analyses were in the range of 17-22%. The steel bars were of 

high tensile strength and were prestressed to 70% of the ultimate 

tensile strength. 

In the present study, the effect of different lengths of steel 

wires on prestress losses was not studied. But, the wall models were 

designed to meet requirements of CSA, Code of Practice, CAN3-S304-M84 

(1984) and the height to length ratio of the models was selected from 



- . 
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Analyses. 

After 1 
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Prestress Loss 
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(%) 

After 12 
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Table 6.2 Loss of Prestress for Brick Wall Models 
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the range of values used for actual masonry walls. 

6.2.2.3 Comparison with Previous Results  

Tatsa et al ( 1973) reported a few experimental observations of the 

prestress losses in concrete block walls. With a ratio of creep strains 

in the mortar joints to those in the block units of 4.4, the observed 

prestress loss due to creep, shrinkage and relaxation after 180 days was 

in the order of 20% wherein the losses due to creep and shrinkage were 

12.5%. A creep ratio (creep in joint/creep in block) of 4.4 corresponds 

to the lower bound limits of the present model. From the presenE 

analysis, after 180 days the lower bound prestress losses due to creep 

and shrinkage were in the order of 12% whereas the overall lower bound 

losses were 20%. These figures match the numbers reported by Tatsa et 

al ( 1973). 

Huizer and Shrive ( 1984) reported short-term losses in a 

post-tensioned concrete block wall. The block units used were over 

three years old and were not expected to contribute much creep and 

shrinkage. Thus, their wall panel is similar to the brick wall model of 

the p±esent investigation as the creep and shrinkage strains in the 

bri5k units were neglected. After 200 days; the overall observed 

prestress loss by Huizer and Shrive was 16% or less. In their test, the 

post-tensioning steel wires were of high tensile strength and were 

prestressed to 70% of the ultimate strength. As shown in Table 6.2, the 

present analysis resulted in 13.1% prestress loss in the lower bound 

case and 17.8% loss in the upper bound case. The results compare 

favourably. 

Lenczner and Davis ( 1984) reported short-term prestress losses in 

post-tensioned brick walls. After about a year 9-11% prestress loss was 
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observed. In their tests, the prestressing bars were not stressed more 

than 50% of the ultimate strength. Thus, the overall loss was because 

of creep and shrinkage only. It was observed that 50% of the loss 

occurred during the first 25-40 days. From the present analysis, due to 

creep and shrinkage upper bound loss after a year was in the drder of 

9%. Further, 50% of the loss occurred during the first 25-30 days. 

Thus, the short-term results obtained from the present analysis 

relate very well with the experimental results reported in the litera-

ture. 

In "Masonry Designer's Manual" by Curtin et al ( 1982), 20% ultimate 

prestress loss is suggested for designing post-tensioned brickwork 

masonry. In the present study, the computed losses from creep, shrink-

age and relaxation analyses were in the range of 17-22%. These results 

also compare very well. 

6.2.3' Stress Distributions  

The study of elastic stress distributions in masonry walls due to 

concentrated axial load was done in detail by Simbeyà ( 1985). In 

general, lateral tensile stresses are induced due to an axial 

compressive load on hollow masonry work. In the present study, similar 

tensile stresses were , obtained from the elastic analysis of 

post-tensioned hollow masonry walls. In the following sections, the 

redistribution of lateral tensile stresses due to creep and shrinkage 

are compared with the initial elastic stress distributions. The basic 

definitions of lateral tensile stresses are reviewed in the next sec-

tion. In one wall model case, the redistribution of vertical 

compressive stresses is also shown. 
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6.2.3.1 Definitions  

Two types of face-shell lateral tensile stresses are induced due to 

axial loading. These are named as ( 1) Tearing Stresses and ( 2) Split-

ting Stresses. Another type of lateral tensile stress is induced in the 

cross-webs in the case of face-shell bedded specimens and is termed a 

Web Splitting Stress. 

The origin and coordinate system, chosen for the present study, is 

shown in Figure 6.5. 

Figure 6.6, an elevational view of the wall model subjected to 

concentrated loads, has been taken from Sixnbeya ( 1985) and illustrates 

the different zones in which the two types of face-shell tensile stress-

es occur. Both splitting and tearing stresses are represented by a x in 

the face-shells. A typical distribution of the splitting stress along 

the height of the wall is shown in Figure 6.7.. 

The web splitting stress is represented by a in the webs and a 

typical vertical distribution through the web centre-line is depicted in 

Figure 6.8. 

6.2.3.2 Redistribution of Tensile Stresses due to Creep and Shrinkage  

The lateral tensile stresses may change with time due to the 

effects of creep and shrinkage. Redistribution is assessed from the 

long-term lower bound results of the creep and shrinkage analyses for 

the masonry wall models. 

The stresses are identified with the coordinate system shown in 

Figure 6.5. Tensile stresses have been considered to be positive and 

compressive stresses negative. 

To show the locations of reference points for the plotting of 

tensile stress distributions, a cross-sectional mesh is redrawn in 
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Figure 6.9. The stress distributions for the tearing stresses ( ci) are 

plotted along the horizontal line A-A at the top of the wall model. The 

face-shell splitting stress (ci) distributions are plotted along a 

vertical line . passing through point ' 1' and the web splitting stresses 

(ci) are plotted along a vertical line passing through point ' 2'. 

For each element, the stresses at the corner nodal points were 

obtained in the output. The stress values plotted are the averages of 

the stresses from all the elements meeting at the nodal points. 

(a) Tearing Stresses  

The tearing stresses for full-bedded and face-shell bedded speci-

mens of the concrete block wall models are plotted in Figures 6.10 and 

6.11 respectively. The elastic stress distributions are compared with 

the stresses obtained from the creep and shrinkage analyses. 

There was a significant reduction of the tensile stress in the 

mortar joint at x = 0 while the unit next to the mortar joint (at x =5 

mm) incurred an increase in tensile stress. This change can be ex-

plained due to the difference in creep behaviour of the mortar and 

masonry units. It is recalled that creep strains of the mortar joint 

were much higher than those of the concrete block unit. Under a compres-

sive loading, the walls expand laterally in the x-direction. Due to 

creep, the lateral expansion of the walls increases with time. The 

mortar joint tends to expand more than the adjoining units because of 

the higher creep property. Thus, the expansion of mortar is restrained, 

resulting in compressive stress in the mortar joint and tensile stress 

in the adjacent units. A similar effect was observed at the other' 

mortar joint at x = 400 mm. The compressive stress in the mortar joint 

was increased while the adjoining units had a decrease in the compres-
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FIGURE 6.10 TEARING STRESSES 

CONCRETE BLOCK WALL (FULL BEDDED) 
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- FIGURE 6.11 TEARING STRESSES 

CONCRETE BLOCK WALL (FACE—SHELL BEDDED) 
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sive stress. 

The stress distribution results for the brick wall models, shown in 

Figures 6.12 and 6.13, display the same results in the mortar joint. 

The reader will recall that the brick units were assumed not to creep. 

For lateral stresses, the shrinkage effect is opposite to the creep 

effect. Since the difference between the creep strains of mortar and 

units is more than their shrinkage strain difference, the creep effect 

is dominating. 

As depicted in Figures 6.10 and 6.11, at x = 281.25 mm there was a 

noticeable increase of the compressive stress in the concrete block wall 

models while this effect was missing in the case of brick wall models. 

At x = 281.25 mm, the units are in contact with the steel plate. Due to 

creep, the concrete block units tend to expand laterally. The expansion 

is restrained by the steel plate and a higher compressive stress in the 

block units results. As the brick units did not creep, such a change 

was not observed in the brick wall model results. 

For the concrete block as well as the brick wall model, the maximum 

tearing (tensile) stress due to creep and shrinkage was of the same 

order as that obtained from the elastic analysis. 

S 

(b) Splitting Stresses  

The splitting stress distributions for the full-bedded specimens of 

the concrete block and the brick wall models are illustrated in Figures 

6.14 and 6.15 respectively. Two main aspects may be observed. ( 1) In 

both wall models, the tensile splitting stress decreased all along the 

height except at one place. In the case of the brick wall model, there 

was an increase in the tensile stress -in the topmost unit layer. ( 2) 

In the mortar joints, there;was a conspicuously large reduction in the 
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FIGURE 6.12 TEARING STRESSES 
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FIGURE 6.13 TEARING STRESSES 

BRICK WALL (FACE—SHELL BEDDED) 
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FIGURE 6.14 SPLITTING STRESSES 
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• FIGURE 6.15 SPLITTING STRESSES 
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lateral tensile stress. 

Due to creep and shrinkage phenomena, there was a loss of the 

prestress which resulted in an overall reduction of the splitting stress 

with time. In the mortar joint, the lateral expansion due to creep was 

restrained by the adjoining units which resulted in a compressive stress 

in the mortar joint and a tensile stress in the adjacent units. Thus, 

the tensile stress in the mortar joint decreases significantly. In the 

case of the brick wall model, the increase of tension near the top 

horizontal mortar joint caused an overall increase of the tensile stress 

in the top unit layer. In the concrete block wall model, the lateral 

expansion of the top unit due to creep was restrained by the steel late 

which contributed towards the reduction of the tensile stress in the top 

unit layer. 

The splitting stresses for face-shell bedded 'specimens of the 

concrete block and the brick wall models are plotted in Figures 6.16 and 

6.17. There was a reduction in the elastic tensile stress in the mortar 

joints for both concrete block and brick wall models. Sixnbeya ( 1985) 

described the changes in the elastic tensile stress in the mortar joint 

due to a horizontal joint rotation mechanism which is discussed below. 

In the face-shell bedded specimens the continuity of the cross-webs 

along the height is broken at the horizontal mortar joint level as 

mortar is applied to the face-shells only. In Figure 6.18a, the webs of 

two horizontal unit layers with the intermediate face-shell mortar joint 

are shown in side elevation. Due to the discontinuity, the webs are 

subjected to concentrations of vertical compressive stresses at the 

mortar joint intersections as shown in Figure 6.18b. The deformation of 

web under face-shell loading of Figure 6.18b is depicted in Figure 
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FIGURE 6.16 SPLITTING STRESSES 

CONCRETE BLOCK WALL (FACE-SHELL BEDDED) 
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FIGURE 6.17 SPLITTING STRESSES 

BRICK WALL (FACE—SHELL BEDDED) 
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Figure 6.18 Horizontal. Joint Rotation Mechanism 
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6.18c. The face-shell mortar joint is rotated vertically due to the 

deformations of the webs from above and below the mortar joint as 

illustrated in Figure 6.18d. The outward vertical rotation of the 

mortar joint causes a horizontal deformation of the joint as shown in 

Figure 6.18e. This implies that horizontal flexure stresses are induced 

in the mortar joint causing tension to the outside face and compression 

to the inside face. Thus, the flexure compressive stresses are added to 

the tensile splitting stresses on the inside face resulting in a re-

duction of the tensile stress at the horizontal mortar joint level. 

As shown in Figures 6.16 and 6.17, the redistribution of stresses 

due to creep and shrinkage causes an increase in the tensile stress in 

the mortar joint. The effect of the horizontal joint rotation mechanism 

appears to dominate. Due to creep, the mortar joint tends to increase 

rotation. The rotation is restrained by the units causing a tensile 

stress on the inner face of the mortar joint and a compressive stress in 

the adjoining units. Thus, Figures 6.16 and 6.17 show an increase of 

the tensile stress in the mortar joint. 

Due to creep and shrinkage, full-bedded specimens of the concrete 

block walls had an overall reduction of the elastic tensile stress 

whereas in face-shell bedded specimens, the maximum tensile stress 

obtained from the creep and shrinkage analyses was of the same order as 

that acquired from the elastic analysis. On the other hand, in the case 

of brick wall models, creep and shrinkage induced an increase in the 

maximum elastic tensile stress by 60% in full-bedded specimens and by 

125% in face-shell bedded specimens. In both cases, the increase was 

observed near the top horizontal mortar joint. Since these results are 

from lower bound solutions, the increase in the lateral tensile stresses 
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will be more in the upper bound solutions. 

(c) Web Splitting Stresses  

The web splitting stress distributions for the concrete block and 

the brick wall models are sketched in Figures 6.19 and 6.20 respectively. 

For a uniform axially loaded face-shell bedded specimen, the 

elastic web splitting stress distribution theory was suggested by Shrive 

(1982). For a concentrated axial load, Shrive's web bending theory was 

modified by Sixnbeya ( 1985). To illustrate the effects of creep and 

shrinkage on redistribution of web splitting stresses, both theories are 

summarized here. 

A concen€rated axial load disperses to the whole cross-section of 

the wall as the depth increases. Since prestressing is a form of 

concentrated load, the intensity of web loading decreases towards the 

bottom in the- upper half of the wall model. The equivalent of the web 

loading of Figure 6.18b is shown in Figure 6.21a, where (P+V) is the 

total vertical load at the top, V is the load which is ditributed to 

the face-shells inducing shear stresses in the face-shell portion of the 

webs. The web loading of Figure 6.21a can be divided into two separate 

cases as shown in Figures 6.21b and 6.21c. The analytical theory for 

web loading of Figure 6.21b was given by Shrive ( 1982) and is discussed 

below. Since the loading is symmetrical in both horizontal and vertical 

directions, one quarter (ABCD) of the web is analysed. Because of the 

symñ-tetry, no shear acts on the faces AD and DC. For vertical equilibri-

um, only normal forces act on face DC and in order to have a continuous 

deformation, the normal stress on face DC should be distributed as shown 

in Figure 6.21d. The vertical stress distribution on face DC can be 

replaced by a single equivalent force shown in Figure 6.21e, 
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FIGURE 6.20 WEB SPLITTING STRESSES 
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resulting in a clockwise moment about D due to external load ' P'. To 

balance the clockwise moment, an anti-clockwise moment due to internal 

stresses must be produced. As only normal stresses can occur on face AD 

and the horizontal stress resultant should be zero there, a tensile 

stress near A and a compressive stress near D is required on face AD as 

shown in Figure 6.21f. For web loading of Figure 6.21c, Simbeya ( 1985) 

suggested that web bulging mechanism introduces higher tensile stresses 

at the top of the web and lower tensile stresses at the bottom of the 

web. 

As depicted in Figure 6.19, creep and shrinkage in the concrete 

block wall model resulted in a shift of the web splitting stresses to 

the right indicating that the tensile stress was introduced all along 

the depth of the web. The increase in the maximum tensile stress was in 

the order of 10%. Due to creep in the concrete block unit, the web 

under compressive loading bulges more with time, thus inducing higher 

tensile stresses. The tensile stress on the web faces are balanced 'by 

compressive stresses ( civ) on the middle of the face-shells as shown in 

Figure 6.22. Thus, creep results in a twisting action on the 

face-shells of the block unit. The twisting action was confirmed by 

verifying the variation of a along the length of the wall model, on the 

face-shells. In the case of upper bound solutions, the increase in the 

web splitting stresses will be more due to higher creep strains in the 

concrete block units. 

On the other hand in the case of the brick wall model results, the 

web bulging action of the elastic analysis did not result in any further , 

increase in the tensile stress and can be justified since the brick 

units did not creep. As shown in Figure 6.20, the web splitting stress-
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Figure 6.22 Twisting Action due to Creep 
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es due to creep and shrinkage remained more or less the same as that 

obtained from the elastic analysis. Even though the compressive load 

was decreasing with time, the web splitting stress did not decline. 

Thus, it can be concluded that with redistribution of stresses due to 

creep and shrinkage, the webs shared more vertical load. 

6.2.3.3 Redistribution of Vertical Compressive  
Stress due to Creep and Shrinkage  

It was observed that there was an overall decrease in the vertical 

compressive stress (a z)with time. Due to creep 'and shrinkage, there 

was a loss of the prestress which caused a reduction of the vertical 

compressive force. Since there was an overall reduction of the vertical 

compressive stress, only the results from full bedded concrete block 

wall models are illustrated. In Figure 6.23, the stress distribution is 

plotted along the vertical line passing through point ' 3' and in Figure 

6.24, the vertical stress is plotted along the horizontal line A-A at 

about mid height (z = 280 mm) of the symmetrical wall model (locations 

are shown in Figure 6.9). The elastic stresses are compared with the 

stresses obtained from the long-term lower bound results of the creep 

and shrinkage analyses. As shown in Figure 6.24, there was a noticeable 

decrease of the compressive stress in the vertical mortar joints. Due 

to creep, the mortar joint tends to compre'ss more. The compression is 

restrained by the adjacent units and a lower compressive stress in the 

mortar joint results. - 

Because of symmetry, only one-eighth of the wall models were 

analysed. Thus, the stress distributions obtained for the symmetrical 

proportion are applicable for other parts of the wall models as well. 
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FIGURE 6.24 VERTICAL COMPRESSIVE STRESS 
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6.2.4 Effects of Material Interaction  

The main results were obtained with an elastic modulus of the 

mortar taken equal to that of the masonry units. In general, the 

modulus of elasticity of mortar is less than that of masonry units. 

Lack of quality control or workmanship may reduce the mortar stiffness 

further. Reduced mortar stiffness induces higher stresses in the units 

and lower stresses in the mortar joints. In the present analysis, the 

main aim was to obtain an overall upper and lower bound to loss of 

prestress. Since the creep and shrinkage strains of mortar are more 

than those of the units, the reduced stiffness of mortar was expected to 

result less prestress loss because of the lower lateral stresses in 

mortar. This was confirmed by analysing two wall models with the 

stiffness of mortar reduced to half the initial value. The results are 

compared in Table 6.3, where n is the modular ratio and is equal to (E 

of unit)/(E of mortar) and E is the modulus of elasticity. 

Concrete Block Wall Models 

Lower Bound Solution 

(with M-Mortar) - 

Full Bedded Specimens Face-Shell Bedded Specimens 

n=1 n=2 n=l n=2 

Ultimate 

Prestress Loss 
after 12 Years 

due to Creep 

and Shrinkage 

Analyses (%) 

14.6 13.6 15.5 14.3 

Table 6.3 Comparison of Prestress Losses 

due to Material Interaction 
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6.2.5 Summary of Results  

A good correlation was found between short-term prestress losses 

obtained from the present analysis and short-term experimental values 

reported in the literature. The overall long-term prestress losses due 

to creep, shrinkage and relaxation effects were in the range of 24-31% 

for the concrete block and 17-22% for the brick wall models. 

The redistribution of lateral tensile stresses due to creep and 

shrinkage were studies in detail. The tearing stress for both concrete 

block and brick wall models remained in the same oder as that obtained 

from the elastic analysis. In the case of the brick wall specimens, the 

face-shell splitting stresses increased quite significantly in the top 

brick unit layer. On the other hand in concrete block wall specimens, 

there was an increase in the web splitting stresses which were maximum 

in the top unit layer. To increase the lateral tensile strength capaci-

ty, a horizontal steel tie member spanning both x and y directions may 

be provided near the end steel plates, in both post-tensioned concrete 

block and brick wall specimens. The steel tie member is illustrated in 

Figure 6.25 and may be placed in the top and bottom horizontal mortar 

joints. 

The overall results indicate that post-tensioning is a potential 

method of increasing long-term flexure capacity in masonry walls. 

6.3 Approximate Analytical Solution Method for Simplified Wall Models  

To predict elastic, creep and shrinkage behaviour of masonry, 

approximate and simplified models have been suggested by Shrive and 

England ( 1981) and Ameny et a1 ( 1984). In this section, ,the concrete 

block and brick wall models of Figures 5.6 and 5.7 are replaced by a very 

simple wall model and the solution to prestress losses is obtained by 
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an analytical method. In the present research, the purpose of 

performing this approximate analysis is to determine whether such 

analyses may be worth pursuing in the future. 

The wall models of Figures 5.6 and 5.7 are approximated by the 

solid wall model, shown in Figure 6.26. Only full mortar bedded models 

are analysed. It is assumed that time dependent masonry deformation is 

related to the relative volumes of block and mortar, and to the specific 

geometry of the wall model. In Figure 6.26, the block portion is shown 

by the non-shaded area and the mortar is represented by the shaded one. 

Since the loading was symmetrical, the prestressing steel is represented 

by a single bar in the centre of the wall model. 

To analyse the composite wall model of Figure 6.26, an analytical 

solution method, described in a text by Ghali and Favre ( 1986), has been 

used. Both upper and lower bounds to prestress losses were obtained and 

are compared with the results obtained by the step-by-step solution 

technique (analysed by computer) in Tables 6.4 and 6.5 for concrete 

block and brick wall models respectively. The detailed derivation to 

calculate prestress loss analytically is' described in the Appendix. As 

shown in Tables 6.4 and 6.5, the prestress losses obtained by the 

approximate solution, method were less by 4-5% for upper bound results 

and 1.5-2.5% for lower bound values. In the approximate solution 

method, values of aging coefficient (x) and reduced relaxation of 

prestressed steel (Xr) were taken from concrete literature (Ghali and 

Favre; 1986). The difference between the two methods may be because a 

very simple wall model was adopted for the approximate solution. 

Thus, it is recommended that improved wall models, like those 

suggested by Shrive and England ( l9èl) or 2meny et al ( 1984), should be 
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reconsidered. Improved values of the aging coefficient and the reduced 

relaxation coefficient, to be used for masonry structures, should also 

be examined. 

C. 



Upper Bound Solutions 

(with N-Mortar) 

Lower Bound Solutions 

(with M-Mortar) 

Approximate 

Analytical 

Solution Method 

Step-by-Step 

Solution 

Method 

Approximate 

Analytical 

Solution Method 

Step-by-Step 

Solution 

Method 

Prestress Loss 

due to Creep, 

Shrinkage 

and Relaxation 

Analyses 

(%) 

After 200 

Days 

21.3 25.6 18.5 20.4 

After 12 

Years 

25.7 30.0 22.4 23.8 

Table 6.4 Comparison of Prestress Losses for Concrete Block Wall Model (Full Bedded) 
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- Upper Bound Solutions 

(with N-Mortar) 

Lower Bound Solutions 

(with M-Mortar) 

Approximate 

Analytical 

Solution Method 

Step-by-Step 

Solution 

Method 

Approximate 

Analytical 

Solution Method 

Step-by-Step 

Solution 

Method 

Prestress Loss 

due to Creep, 

Shrinkage 

and Relaxation 

Analyses 

(%) 

After 200 

Days 

12.1 17.2 10.8 13.1 

After 12 

Years 

16.2 21.3 14.3 16.8 

Table 6.5 Comparison of Prestress Losses for Brick Wall Model (Full Bedded) 



CHAPTER .7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions  

7.1.1 Creep and Shrinkage Properties  

In Chapter 4, mathematical expressions were fitted to short-term 

experimental data for creep and shrinkage properties of masonry compo-

nents. The following conclusions may be drawn. 

(1) Most of the specific creep strain data available in the literature 

can be fitted quite well by one or two straight lines using a log (time) 

scale. The linear relationship between the specific creep strains and 

the logarithm of the time under load could easily be extrapolated to the 

requisite long-term times. 

(2) A linear logarithmic relationship, similar to the one for the creep 

data, was obtained for short-term shrinkage strain values and extrap-

olated for long-term behaviour. •The logarithmic expressions developed 

could easily be incorporated in the computer program used with no 

additional storage requirements. 

(3) In the creep analysis procedure using a step-by-step time incre-

mental solution technique, storage of stress values at all the time 

steps becomes a major limitation in terms of computer time and storage 

space. To avoid stress history storage while simultaneously represent-

ing the time incremental solution technique accurately, certain creep 

functions were developed in the field of concrete structures. For 

masonry components also, all developed logarithmic expressions for the 

creep data could be transformed very efficiently to such a creep func-

tion, represented by a series of real exponentials. 

140 
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7.1.2 Loss of Prestress  

Based on the results disci.ssed in Chapter 6, certain conclusions 

were reached and are as follows. 

(1) A good correlation was observed between short-term prestress losses 

computed from the present, analysis and short-term experimental values 

reported in the literature. Thus, creep and shrinkage properties used 

for the present analysis could be adopted satisfactorily. 

(2) The prestress losses in 'face-shell bedded and full-bedded specimens 

are of the same order. 

(3) Fifty percent of the ultimate prestress loss may occur during the 

first fifty days. 

(4) In the case of concrete hollow block wall specimens, ultimate 

post-tension losses can be. expected to be 15-24% due to creep and 

shrinkage effects and 24-31% when the stress relaxation effect is 

included. Upper' bound of prestress loss reflects the worst case of 

creep and shrinkage in concrete block units and in mortar whereas lower 

bound represents the best case of creep and shrinkage strains. 

(5) In hollow brick wall specimens, ultimate prestress losses may be in 

the range of 5-10% due to creep and shrinkage properties and 17-22% when 

the stress relaxation property of post-tensioned steel is included. The 

two limits correspond to the upper and, lower bounds of the creep and 

shrinkage properties of the mortar. 

In the present study, the average compressive stress in wall models 

was 0.25 of the ultimate strength of masonry. The post-tensioned steel 

bars were of high strength and were stressed to 70% of the ultimate 

strength. During the course of experimental measurements for creep and 
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shrinkage properties of masonry components, the observed temperature was 

in the range of 17-22°C and the relative humidity varied from 20-50%. 

7.1.3 Redistribution of Stresses  

Under a compressive axial load, the following are the main con-

clusions regarding redistribution of lateral tensile stresses due to 

creep and shrinkage phenomena. 

(1) The lateral expansion of the mortar joint is restrained by the, 

adjoining units resulting in a reduction of tensile tearing stress in 

the mortar joints and an increase in the adjacent units. 

(2) For both concrete block - and brick wall specimens, the maximum 

tearing stress remains in the same order as that obtained from the 

elastic analysis. 

(3) in the case of concrete block wall models, full-bedded specimens 

experience an overall reduction of lateral tensile splitting stress 

along , the depth, whereas in face-shell bedded specimens the splitting 

stress increases in the horizontal mortar joints. The order of maximum 

tensile splitting stress remains the same as that acquired from the 

elastic analysis. 

(4) in the case of full-bedded brick wall specimens, the splitting 

stress decreases along the depth of the model except in the top and 

bottom brick unit layers (near the horizontal mortar joints). In 

face-shell bedded brick wall specimens, the splitting stress increases 

in the horizontal mortar joints. This increase is quite significant in 

the top and bottom mortar joints. 

(5) Creep and shrinkage cause an increase of the tensile web splitting 

stresses in concrete block wall specimens (web bulging action due to 
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creep in block units) whereas in brick wall specimens, the web splitting 

stresses remain more or less the same. 

(6) With redistribution of stresses, the webs share more vertical load 

with time. 

(7) To increase the lateral tensile strength of post-tensioned concrete 

block and brick wall specimens, a horizontal steel -tie member spanning 

both the x and y directions may be provided near the end steel plates. 

As a general conclusion, the overall results indicate that post-

tensioning is a viable method of increasing long-term flexural capacity 

of masonry walls. 

7.2 Recommendations  

In the present research, prestressing was the only load which was 

considered in the analysis. Only vertical post-tensioned hollow masonry 

walls were modelled. Further, only one size of the model was selected. 

More general results could be obtained using the present model by 

analysing the following cases: 

(1) Gravity loads, 

(2) Lateral loads, i.e. Wind loads or Earthquake loads, 

(3) Different sizes of models, 

(4) Grouted masonry walls, 

(5) Biaxially post-tensioned walls, i.e. walls post-tensioned in the 

horizontal direction as well, 

(6) Different type of structures, e.g. a masonry column or a masonry 

beam. 

Since it was concluded that post-tensioning is a viable way of 

increasing the flexural capacity of masonry walls, it would be desirable 

to study existing deteriorating masonry structures. It may be practical 
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to prestress existing cracked masonry structures. If so, it may be more 

economical to use prestressing compared to the cost of replacing struc-

tures with new ones, in terms of long-term life. 

In the present study, the age at loading reduction factor for creep 

strains was taken from the CEB-FIP ( 1970) model. To be more precise, a 

detailed experimental program studying the effects of age at loading on 

creep strains, should be undertaken. An attempt should be made to 

divide the creep of masonry into two parts, ( 1) irreversible creep 

(plastic flow) and ( 2) reversible creep (delayed elastic strain), 

similar to the CEB-FIP ( 1978) model's expression for creep in concrete. 

In the upper bound solutions, the problem of numerical instability 

was encountered. As discussed in Chapter 3, this problem can be avoided 

by implementing an implicit scheme which requires the knowledge of creep 

flow rate criteria. To improve the present creep model, a theoretical 

investigation should be made to establish general creep-time flow 

equations for masonry structures. 

Finally, it is recommended that approximate analytical solutions to 

masonry models should be tried. Improved masonry models should be 

analysed to verify or to improve the values'of aging coefficient, to be 

used for masonry structures. 
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APPROXIMATE ANALYTICAL SOLUTION METHOD 

In the present analysis, 

E(t) = E(t) = E 

where E is the modulus of elasticity, to is the age at initial 

loading and t is any time or age. 

Further, E = E 
U m 

where E m U is the modulus of elasticity of mortar and E is the 

modulus of elasticity of block unit. 

Let E = E = E . 
u in o 

For the wall model of Figure 6.26, one basic assumption is made 

that plane section remains plane at all times. 

In the Vertical Plane (x-z plane): 

unit 

7mortar / 
/11/11/4 

in ' z' direction, t is the block 

unit portion length, Z is the 

mortar portion length and p,. is the 

combined length. Subscript 

represents mortar, ' u' indicates 

block unit and the combined effect 

is represented by 'j'. 

(A) Instant Change in Length (Elastic Analysis): 

i.e. at time t = t 
0 

At e (t =At e() . 9.(t) 

where Ate is the change in length due to elastic analysis. 
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9(t) £ L 
J 0  

E E E 
0 0 0 

(B) Time Dependent Change in Length: 

i.e. at time t > t , 
0 

(a) Creep Analysis: 

= A P,C(t) + 
3 U rn 

where At is the change in length due to creep analysis. 

(A.1) 

(A. 2) 

= E A P, (t ) C.(t,t ) (A.3a) 
° '° j o 

= ap, C (t,t 
U ' u u o 

= ciP.. C (t,t 
m mm o 

(A. 3b) 

(A.3c) 

where C. is the specific creep of the combined action of unit and 

mortar. 

From Equations (A.2), and (A.3), 

C. ' 0 (t,t ) =   [ u u o C ( b,t Y + 2 m m C (t,t )] (A.4) 
EQ(t)  
030 

From Equations (A.1) and (A.4), 

C.(t,t ) =.- [ C (t,t ) + C (t,t )3 
j o u u o m m o 

J 

(b) Shrinkage Analysis: 

LiL(t) = A L5 (t) + 
J u m 

where Aks is the change in length due to shrinkage. 

(A.5) 
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c S (t,t) = 2. S (t lt) + 2. ES(tt 
s ) j j - u u mm S 

CS (tt = 1 c5 (t,t ) + )] 
j s 2.. U u s mm s 

In the Horizontal Plane (x-y plane) 

It  
A 
PS 

A 
3 

(A.6) 

In x-y plane, A. is the area of combined portion of unit and 

mortar (combined action is because of x-z plane), Am is area of mortar 

only and A s is the area of prestressing steel,. 

(A) Instant Time Analysis 

i.e. at time t = t 
0 

for only prestressing load, 

PS j m 

where P is the prestressing force, P. is the vertical load 
PS J 

shared by combined portion (non-shaded area) and P is the vertical 

load shared by mortar portion ( shaded area). Subscript ' ps' represents 

prestressing steel. 

Since E = E. = E 
M  o' 

a Ct a ( -Pps t ) - - (A.7) 
3 o m   A 
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where A = A. + A and a is the stress. 
j in 

(B) Time Dependent Changes: 

i.e. at time t > t 
0 

AP. + AP + AP = 0 
j in Ps 

Thus, 

Aa - ---(A.M.+A Aa ) 
PS A ps j j in in 

(A.8) 

where AP is the change in force and Aa is the change in stress. 

(t) 
PS E 

PS 

M 
ps pr 

c.(t) = a.(t) C,(t,t) + c(t,t) 

+ i 3 + Aa.x C.(t,t) 

0 

As = a (t ) C (t,t ) + 
m in o in o in o 

Au 

+ + M mX C(t,t) 

(A. 9a) 

(A. 9b) 

(A. 9c) 

where As(t) is the total time dependent change in strain at time 

t, Aa is the change in stress, La ps is the change in stress in the 

prestressed steel due to combined effects of creep, shrinkage and 

relaxation, Ea pr is the reduced relaxation and x is the aging coeffi-

cient. 

For definitions and understanding of the different terms, the text 

by Ghali and Favre ( 1986) can be referenced. 

Since plane section remains plane, 
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Ac (t) = Ac. ( t) = Ac (t) (A. 10) 
PS J m 

From Equations (A.8), (A.9) and (A.10), 

+a )A + a. E Ccir j (t )C(t,t 
ps j m pr j ps o o 

+ c. E c(t,t ) + a. E a ( t ) C (t,t 
j ps j 0 m ps m o m o 

where 

E. 
J 

+ a E c5 (t,t )] 
m ps m o 

= (1 + a.. + a. 
j m 

A. E. 

A E 
S PS 

E 
0 

and a --
m  A E 

AE 
mm 

1 + X E C.(t,t) 

E 
0 

l+XE o in C (t,t o ) 

For the present analysis, x has been taken equal to 0.8 and 

pr X  Aapr 

(A.11) 

where xr is the reduced relaxation coefficient and Aapr is the 

intrinsic relaxation. To calculate Aapri Equation ( 3.24) or ( 3.25) 

may be used. For X  values, tables and graphs df the text by Ghali and 

Favre ( 1986) were used. 

Thus, approximate prestress loss values were calculated by 

Equation (A.11). 


