
Contents

List of figures ix

List of tables xi

Foreword xiii

Acknowledgments and dedication xv

1 Introduction 1
1.1 Using physical tools : 1
1.2 Soft tools in general-purpose computing environments : : : : : : : 4

Definitions : 4
From appliances to manufacturing : : : : : : : : : : : : : : : : 6
Problem statement : 7

1.3 Outline : 8

2 Studying UNIX 11
2.1 Choosing UNIX : 11

Natural studies : 11
A brief introduction to UNIX : : : : : : : : : : : : : : : : : : 12
Why study UNIX? : 14

2.2 Techniques for analyzing activities of UNIX users : : : : : : : : : 16
Traces of user activity : 16
Protocol analysis : 20

2.3 Data collection for the current study : : : : : : : : : : : : : : : : 21
2.4 Concluding remarks : 25

3 Using commands in UNIX 26
3.1 Frequency distributions of commands for large groups : : : : : : : 26
3.2 Usage frequency of particular commands between groups : : : : : 27
3.3 Frequency distributions and command overlap between individuals 30
3.4 Growth of the command vocabulary : : : : : : : : : : : : : : : : 32
3.5 Relations in command sequences : : : : : : : : : : : : : : : : : : 34
3.6 Discussion : 36
3.7 Concluding remarks : 38

v

vi Contents

4 Techniques for reusing activities 40
4.1 History mechanisms : 41

History in glass teletypes : 42
History through graphical selection : : : : : : : : : : : : : : : 44
History by editing transcripts : : : : : : : : : : : : : : : : : : 47
History by navigational traces : : : : : : : : : : : : : : : : : : 49

4.2 Adaptive systems : 52
Adaptive menu hierarchies : : : : : : : : : : : : : : : : : : : 53
Reuse through text prediction : : : : : : : : : : : : : : : : : : 54

4.3 Reuse through programming by example : : : : : : : : : : : : : : 59
4.4 Concluding remarks : 63

5 Recurrent systems 65
5.1 A definition of recurrent systems : : : : : : : : : : : : : : : : : : 65
5.2 Recurrent systems in the non-computer world : : : : : : : : : : : 67

Telephone usage – a limited study : : : : : : : : : : : : : : : : 67
5.3 Recurrent systems in information retrieval : : : : : : : : : : : : : 73

Retrieving topics in manuals : : : : : : : : : : : : : : : : : : : 74
5.4 UNIX csh as a recurrent system : : : : : : : : : : : : : : : : : : 74

Recurrences of command lines : : : : : : : : : : : : : : : : : 75
Command line frequency as a function of distance : : : : : : : 79

5.5 Concluding remarks : 81

6 Reuse opportunities in UNIX csh – potential and actual 84
6.1 Conditioning the distribution : 84

The quality of predictions : 85
Different conditioning methods : : : : : : : : : : : : : : : : : 86
Evaluating the conditioning methods : : : : : : : : : : : : : : 91
Discussion : 101

6.2 Actual use of UNIX history : 102
Results : 102
Corroboration and extensions : : : : : : : : : : : : : : : : : : 103
Discussion : 105

6.3 Concluding remarks : 106

7 Principles, corroboration, and justification 108
7.1 Principles and guidelines : 108

Principles: how users repeat their activities : : : : : : : : : : : 108
7.2 Corroboration : 112

The GLIDE study : 112
Results and discussion : 113

7.3 Stepping back : 118

Contents vii

Plans and situated actions : 118
Recurrences: natural fact or artifact? : : : : : : : : : : : : : : 119

7.4 Concluding remarks : 121

8 Organizing activities through workspaces 123
8.1 Relating activities : 124
8.2 Implications: suggestions for workspaces : : : : : : : : : : : : : 127

A review of suggestions : 128
Additional workspace suggestions : : : : : : : : : : : : : : : : 129

8.3 Implementations : 131
8.4 Concluding remarks : 140

9 A workspace system: description and issues 141
9.1 The WORKBENCH system : 141

A brief overview of Sunview : : : : : : : : : : : : : : : : : : 142
An overview of WORKBENCH : : : : : : : : : : : : : : : : : 143
Designing the tool area : 146
Designing the tool cabinet : 149
Underlying architecture of WORKBENCH : : : : : : : : : : : 152

9.2 Pragmatic concerns and research questions : : : : : : : : : : : : : 155

10 Conclusion 159
10.1 Argument of the book : 159
10.2 Contributions : 160
10.3 Looking to the future : 161

Appendix A:A sample trace 164

Appendix B:Summary statistics for each subject 169

References 177

Author index 183

Subject index 185

viii Contents

This page intensionally left blank

List of figures

1.1 The Galapagos finch probing for insects with a cactus spine. : : : : 2
1.2 An idealized carpenter’s workshop. : : : : : : : : : : : : : : : : 5

3.1 The normalized command frequency, compared with Zipf. : : : : : 28
3.2 Command vocabulary size vs. the number of command lines en-

tered for four individuals. : 33
3.3 Sequential structure of UNIX command usage. : : : : : : : : : : 35

4.1 Examples of the UNIX csh history mechanism in use. : : : : : : : 43
4.2 A portion of the INTERLISP–D environment, showing HIST-

MENU in use. : 44
4.3 MINIT’s WINDOW MANAGEMENT WINDOW. : : : : : : : : 46
4.4 The VERSATERM terminal emulator for the Apple Macintosh. : : 48
4.5 The HYPERCARD recent screen. : : : : : : : : : : : : : : : : : 50
4.6 A sample FILE MANAGER window, showing a history list of the

last few files visited. : 52
4.7 The Apple Macintosh “open dialog” box, showing the BOOMER-

ANG history menu. : 53
4.8 Menu trees generated by uniform and probability subdivision. : : : 55
4.9 Using RK-BUTTON, the UNIX version of the REACTIVE KEY-

BOARD: (a) a dialog with UNIX; (b) some commands; and (c)
screen contents at end of the dialog. : : : : : : : : : : : : : : : : 57

4.10 RK-POINTER menu and feedback showing five interaction se-
quences. : 58

4.11 The QUICKEYS menu and several sequence-editing windows. : : 62

5.1 The number of different calls made vs. the number of calls dialed
so far. : 69

5.2 Relation between recurrence rate and the number of calls made. : 70
5.3 Recurrences of phone numbers as a measure of distance. : : : : : : 72
5.4 Cumulative recurrences of phone numbers as a measure of distance. 73
5.5 Regression: (a) command line vocabulary size; and (b) the %

recurrence rate vs. the total command lines entered by each subject. 77
5.6 Command line vocabulary size vs. the number of commands en-

tered for four typical individuals. : : : : : : : : : : : : : : : : : : 78
5.7 Processing a subject’s trace for all values of Rs;d . : : : : : : : : : 80

ix

x List of figures

5.8 (a) Recurrence distribution; and (b) cumulative recurrence distri-
bution as a measure of distance. : : : : : : : : : : : : : : : : : : 82

6.1 Cumulative probabilities of a recurrence over distance for various
conditioning methods. : 97

6.2 Cumulative average number of characters saved per submission
over distance. : 98

6.3 (a) Cumulative distribution of history; and (b) distribution of history
use as a measure of distance. : 104

7.1 Cumulative probabilities of a recurrence over distance for various
conditioning methods. : 116

7.2 Cumulative average number of characters saved per submission
over distance. : 117

8.1 A user’s flow of activities for one morning’s computer use. : : : : 125
8.2 A stylized MENUNIX screen. : : : : : : : : : : : : : : : : : : : 135
8.3 The SMALLTALK browser window. : : : : : : : : : : : : : : : 137
8.4 The ROOMS overview screen : : : : : : : : : : : : : : : : : : : 139

9.1 The normal appearance of the WORKBENCH window. : : : : : : 144
9.2 Ancillary controls of the tool area. : : : : : : : : : : : : : : : : : 147
9.3 Ancillary controls of the cabinet. : : : : : : : : : : : : : : : : : : 150
9.4 The data structure used to maintain the history list of activities. : : 154

List of tables

2.1 Sample group sizes and statistics of the command lines recorded : 22
2.2 Trace information annotated by the modified csh : : : : : : : : : : 24

3.1 Command distributions of the top twenty commands for five dif-
ferent user groups : 29

3.2 Number of users per command : : : : : : : : : : : : : : : : : : : 31
3.3 The twenty most shared commands for each user group : : : : : : 32

5.1 Telephone usage statistics : 68
5.2 The average recurrence rate of the four sample UNIX user groups : 79

6.1 Examples of history lists conditioned by different methods : : : : 87
6.2 Probability of a recurrence over distance for various conditioning

methods : 93
6.3 Cumulative probabilities of a recurrence over distance for various

conditioning methods : 94
6.4 Average number of characters saved over distance per recurrence : 95
6.5 Cumulative average number of characters saved per submission

over distance : 96
6.6 How history was used by the sample groups : : : : : : : : : : : : 102

7.1 Design guidelines for reuse facilities : : : : : : : : : : : : : : : : 109
7.2 A simple GLIDE dialog : 113
7.3 Evaluating various conditioning methods in GLIDE : : : : : : : : 115

8.1 A user’s task set for preparing a specific document : : : : : : : : : 124
8.2 Suggestions implemented by existing workspace designs : : : : : 133

B.1 Statistics on Novice Programmers subjects 1–35 : : : : : : : : : : 170
B.2 Statistics on Novice Programmers subjects 36–55 : : : : : : : : : 171
B.3 Statistics on the Experienced Programmers subjects 1–36 : : : : : 172
B.4 Statistics on the Scientist subjects 1–35 : : : : : : : : : : : : : : 173
B.5 Statistics on the Scientist subjects 36–52 : : : : : : : : : : : : : : 174
B.6 Statistics on the Non-programmers subjects 1–25 : : : : : : : : : 175

xi

xii List of tables

This page intensionally left blank

Foreword

Humans are the most versatile of creatures, and computers are their most versatile
of creations. Human–Computer Interaction (HCI) is the study of what they do
together; in particular, HCI aims to make interaction better suit the humans. Com-
puters contribute to art, science, engineering, : : : all areas of human endeavor. It is
no surprise, then, that there is heated debate about what the essence of HCI is and
what it should be. What is good HCI? The answer to this question will be elusive
given that there is good engineering that is not art, good art that is not science, and
good science that is not engineering.

It’s easier to see what form of answer there can be by taking a quick excursion into
another field. Imagine the discovery of a dye, such as W. H. Perkin’s breakthrough
discovery of mauve. Is it science? Yes: certain chemicals must react to produce
the dyestuff, and the principles of chemistry suggest other possibilities. Is it art?
Yes: it makes an attractive color. Is it engineering? Yes: its quantity production,
fastness in materials, and so forth, are engineering. Perkin’s work made the once
royal purple accessible to all. Fortunately there is no subject “Human Chemical
Interaction” to slide us into thinking that there is, or should be, one right view
of the work of making or using, designing, standardizing, or evaluating a dye.
Nevertheless, we appreciate a readily available, stunning color, used by an able
artist, and one that lasts without deteriorating. What is good, then, put briefly, is
what is made accessible, reliable, worthwhile.

By analogy: a good contribution to the field of Human–Computer Interaction
is accessible (its principles should work for others and repeatably, potentially by
being computerized), reliable (it should work under prescribed conditions), and
worthwhile (it should do something beneficial, applicable, appealing). One also
requires that these qualities are demonstrable, not only to distinguish fact from
fancy, but so that practitioners can assess whether the contribution is relevant and
applicable to their particular concerns.

Saul Greenberg’s The Computer User as Toolsmith starts from the observation
that humans tend to repeat themselves, and that this is a general phenomenon that
can be studied, understood, and facilitated. It follows that tools used for repeated
activities are themselves reused, and thus that it is desirable to improve the tools
of reuse. The results reported in this book are accessible: but more so, the book
indicates how anyone could access the equivalent results in their own particular
circumstances. This is a broader and more valuable accessibility. In short, reuse is
accessible to anyone who cares to look. It is further a reliable phenomenon, and is
shown to be so by the studies reported here. Finally, to the extent that a computer

xiii

xiv Forward

can support and simplify reuse, the concepts are very widely applicable. Greenberg
shows that supporting reuse can be staightforwardly built into interactive computer
systems, and to do so is worthwhile. This is the book’s contribution to engineering
beyond the particular experiments and systems described here.

We gave criteria for good HCI above; this book meets them. It identifies reuse
as a single, core concept (like aniline dye) and demonstrates its generality for
HCI. When computer systems are engineered that embed appropriate facilities for
supporting reuse then, as Greenberg demonstrates, they are quantifiably improved.

As well as making a useful and focused contribution to HCI, this book is its
author’s doctoral dissertation. As such it also makes a good example of what a
dissertation can be, particularly in the interdisciplinary and currently uncertain area
of HCI. There is an idea, refined to a hypothesis, and it is checked in various guises.
Systems are built. And ideas are rechecked, both by appeal to the literature and by
data from the use of other systems that had nothing to do with the author’s work.
The work is described clearly: the book is aware of what it is achieving and its
relation to wider issues in HCI – this greatly adds to the pleasure of reading it.
There is sufficient detail for the interested reader to repeat experiments and check
methods, or, more likely, to progress confidently from where Greenberg leaves off.

Many other dissertations (books too) describe ideas or systems, which however
much they inspire, still leave the next researcher almost as much work to repeat –
and occasionally a nagging suspicion that some of the work is unrepeatable, even
imaginary where it is most inspiring! In the breadth of HCI there is ample scope
for inspirational creativity, but far better to share the means to the ends. The ideas
of this book are creative and they work, and there is both ample evidence and
argument why. That is good for a dissertation. Even better for HCI, the topic is
of such universal applicability that the book is the starting point for evaluating and
improving almost any existing or future system. The book itself is a tool that can
and should be reused.

Harold Thimbleby
Stirling, Scotland

Acknowledgments and dedication

The research described in this book is the result of my dissertation work. My
supervisor Ian Witten struck the fine balance of guiding my research without hin-
dering my own expression and development of ideas. He encouraged me to learn,
to explore, and to publish. As the legendary “Witten filter,” he transformed even
my worst writings into acceptable prose. He set high standards, but never hesitated
to show the steps necessary to reach them.

David Hill introduced me to human–computer interaction, encouraged my re-
search endeavours, and was always available as a tried and true resource. I was
kept constantly on my toes by Brian Gaines and Harold Thimbleby, who made the
field a moving target with their constant twists and paradigm shifts. It was Harold
who encouraged me to transform the dissertation into a book.

Of course there is my family. The faith, love, and support of my wife Judy
kept me going through all the slow academic and writing times. My research
lifestyle was balanced by our many outdoor adventures, where her cheerfulness
and enthusiasm always shone through. Our son Adam, whose birth and growth
paralled this book, was another avid supporter. No matter how tiring the day was,
his ready laughter when I returned home always filled me with joy.

But this book is dedicated to my parents, Morris and Bella Greenberg. Because
of their religion and the oppressive Eastern European politics of their childhoods,
they had no opportunity for advanced education. Yet they never failed to see its
importance, and always encouraged me to pursue its path.

xv

1
Introduction

There is nothing quite so frustrating for the avid do-it-yourselfer than to begin
a project, suddenly need a particular tool, but have no idea where in the house
to look for it.

— Practical Homeowner’s 1987 Do-It-Yourself Annual

General-purpose computer environments that furnish a large set of diverse tools are
often hard to use. Although some difficulty is associated with using any particular
tool, this book is concerned with the problems that a person faces when selecting
a tool from the many available, reusing that tool while performing a task, and
organizing the chosen tools in a way that makes them ready to hand later on.
Surprisingly, methods and habits for using physical tools that have evolved over
millions of years have not been transferred effectively to the computer domain.

The goal of the research discussed in this book is to identify properties of a
human–computer interface that supports how people select, reuse, and organize the
tools available in general-purpose computing environments. These properties come
from empirical analyses of user behavior. This introduction sets the scene first by
reviewing physical tools, from their very natural use by animals to ultra sophis-
ticated machinery that taxes human capabilities beyond acceptable performance
limits. Section 1.2 moves to the focus of this book – general-purpose computing
environments that make diverse collections of on-line tools available. It identifies
two problem areas: the dearth of knowledge about people’s use of on-line tools,
and the poor existing user support for everyday interactions with them. The final
section outlines the major themes covered by each of the following chapters.

1.1 Using physical tools

Until the late eighteenth century, humans distinguished themselves from other
animals by claiming to be the only tool-users. Since then, ethologists have reported
extensive tool use by many species of animals. A few examples follow.1

The myrmicine ant drops debris (bits of leaf and bark) on to soft foods that are
otherwise difficult to move. After all the food has soaked into the “sponge tool,”
it is carried back to the colony (Fellers and Fellers, 1976). The Egyptian vulture

1The definitive treatment of tool use by animals is Benjamin Beck’s Animal Tool Behaviour (Beck, 1980).
Unless stated otherwise, all references to tool use by animals and early humans reported in this section are taken
from Beck’s extensive catalog.

1

2 Introduction

Figure 1.1. The Galapagos finch probing for insects with a cactus spine.
Illustration by J. Poehlman, in Smullen, 1978, p. 17.

feeds on tough-shelled ostrich eggs by picking up a stone in its bill and throwing
it down repeatedly until the egg cracks (van Lawick-Goodall and van Lawick,
1968). Figure 1.1 illustrates the well-known woodpecker finch of the Galapagos
Islands. Using twigs and cactus spines held in its bill, the finch probes for otherwise
unattainable insects living in trees or under bark.

The elephant is a frequent tool-user too. Twigs and branches grasped in its
trunk extend its reach, particularly for scratching and chasing away flies, and the
elephant also threatens intruders by waving branches or by throwing “missiles” at
them. Sea otters break open shells by pounding them on rocks that are balanced on
their chests (Hall and Schaller, 1964). Excluding humans, primates are the most
habitual tool-users of all animals. Depending on the species, untrained monkeys,
apes, and chimpanzees throw or drop things (stones, branches) at intruders, use
leaves as sponges to gather water, brandish sticks as clubs, wipe wounds with
leaves, and use various implements to pound open, extend their reach toward, or
probe and rake in food. The extensive tool behavior of captive chimpanzees is
evident to any circus or zoo visitor. They stack and climb upon objects to reach
food, and they have been trained to ride bicycles.

Humans cannot even claim to be the only species that manufactures tools. Al-
though most animals obtain tools from the natural debris of their environment, a
few also fabricate them. Beck (1980) recognized four modes of tool manufacture
in animals. The first is detach, as performed by a woodpecker finch breaking off

1.1. Using physical tools 3

its twig tool from branches. An example of subtract, the second mode, is when a
parrot removes bark from a twig before scratching himself, or when chimpanzees
strip leaves from branches before digging for termites. Some chimpanzees are
known to reshape pieces of wood into tools with pointed tips by chewing. Finally,
implements can be combined, although this has been observed only with captive an-
imals. Chimpanzees, for example, join sticks together to create a further-reaching
tool.

Although humans cannot lay claim to exclusive tool use and manufacture, hu-
mans do distinguish themselves by the complexity of their tools, how they are
used and reused, and how they interrelate. First, humans are the only animals
known who use one tool to produce another. This behavior is believed to date back
2,500,000 years to our hominid ancestors who whittled wooden tools with sharp
flakes of stone (Leakey and Lewin, 1978). Second, humans retain tools for repeated
reuse, unlike most animals who discard them immediately after use.2 Again, early
hominid records indicate that stone tools were transported from foreign fabrication
locations and then used extensively before being discarded. Third, humans use tools
at special-purpose sites. Early hominids had special food preparation areas, and
archeological evidence from later periods shows much tool-based activity around
the hearth and well-lit work areas (Gowlett, 1984). The final distinguishing point
of human tool use arises when tools become more numerous and more diverse over
the course of history. One only has to step into a modern kitchen or handyman’s
workshop for proof.

The present age heralds unprecedented availability of numerous tools for indi-
vidual use. Some, like the hammer, are simple refinements of our ancestor’s stone
implements. At the other extreme are machines – examples are airplanes and space-
craft – that are so complex that only a few highly trained individuals can use them.
During World War II, human ability was pushed beyond acceptable performance
limits by the difficulty of using these complex machines. Some aircraft accidents,
for example, were directly attributed to cockpit complexity. This resulted in a
demand for experts in psychological engineering – called human factors in North
America, and ergonomics in Europe – who recognize human limitations and apply
their knowledge to the design of effective human–machine systems (Fitts, 1951).
One area of human factors involves designing and simplifying tools that are inher-
ently complex. For example, the highly interrelated controls and gauges in large
power plants are often positioned on a map that mimics the physical location of their
corresponding devices, making the plant’s state easier to understand. Another area
of concern – and the theme of this book – is the difficulty of using and managing
large collections of loosely related tools.

When a person’s activity is highly dynamic or not readily specified, the actual

2One of the few reported cases of tool retention by animals is the otter, which sometimes keeps shell-cracking
stones in its armpit between several successive feeds while diving for other shells (Hall and Schaller, 1964).

4 Introduction

choice and arrangements of loosely related tools cannot be effectively predicted
by another person. Instead, people have general methods for structuring their
workspaces, and special “organizing tools” for gathering and locating tools and
materials. The following list indicates a few important strategies.

Recently used tools are available for reuse. People recognize when a tool just
used will be used again in the near future. Rather than select tools and then
immediately return them to their original location, they are kept on hand for
a period of time. Examples include retaining used cooking implements on
counters while preparing a meal, and keeping a dictionary and thesaurus on a
desk while writing.

Arranging tools by function. Tools are categorized by function, and each col-
lection is gathered separately. A mechanic, for example, uses the drawers in
a tool cabinet to organize wrenches, screwdrivers, ratchets, and sockets. The
office worker may arrange a desk with a pen and pencil holder, a stationary
drawer, and a forms drawer. A tailor uses pin cushions, racks for holding
spools of thread, shelves for bolts of cloth, and boxes for sewing machine
accessories.

Arranging tools by task. People sometimes store together tools that address a
particular repetitive task. Workbenches and the tools located on them in a
large carpenter’s shop may reflect specialized activities; cutting (power saw,
blades, fences), preparation (large table, glue, vice, clamps, finishing nails),
drilling (drill, bits), nailing (work belt with hammer and nail pouches), and so
on.

The idealized carpenter’s workshop in Figure 1.2 illustrates an integrated use of
these management strategies. Recently used tools and material lying on the central
workbench are readily available for reuse. The tool cabinet and tool panels arrange
tools by function, whereas other work areas are dedicated to certain tasks.

1.2 Soft tools in general-purpose computing environments

1.2.1 Definitions

Some important terms are introduced here. Others are defined and elaborated as
needed throughout the book.

A shell is the top-level interface placed upon a general-purpose computing envi-
ronment (the characteristics of these environments are discussed further in Section
1.2.2). A shell allows users to access a library of existing programs as utilities, to
combine existing utilities as needed, and to extend the library at will. An activity or
submission is defined as a single request submitted to the shell by a person. Activ-
ities typically specify actions and arguments. Actions are commands that indicate

Figure 1.2. An idealized carpenter’s workshop, adapted from p. 51 in
Working in Wood, by E. Scott, Putnam, NY, 1980.

6 Introduction

the utility to be invoked. Arguments supply information to the utility, through op-
tions that dictate how it is to work, and objects that indicate the computer material
to be manipulated. Incremental interaction is a style of human–computer dialog
characterized by successive activity requests that are submitted to the shell and
responded to in turn (Thimbleby, 1990, p. 55). A computer tool is another name
for a system utility. However, a user may consider the tool to include specific
arguments as well.

Interfaces to conventional operating systems provide good examples of incre-
mental interaction dialogs involving all the notions above. One usually submits
activities to a top-level command shell by typing simple commands and arguments,
although some modern systems augment or replace this primitive dialog style with
menus, forms, natural language, graphics, and so on (Witten and Greenberg, 1985).
The user then waits for the utility to do its task before entering the next submission.

1.2.2 From appliances to manufacturing

Computers and their uses fall under an enormous variety of often overlapping cat-
egories. They range from dedicated turnkey “appliances,” specialized tools that
address highly specific domains, to interactive programming and computing envi-
ronments that function as software “manufacturing” plants. This book is concerned
only with those general, flexible, and heterogeneous computer environments whose
shells provide end-users with many diverse tools and materials, selected through
incremental interaction. These environments lie somewhere between the extremes
above.

The design emphasis in human–computer interfaces for the non-programming
mass market is currently on application areas perceived to be used frequently by
the target population. There is a proliferation of packages for word processing,
painting and drafting, spreadsheet calculations, and so on. These packages may
be considered appliances, highly specialized tools handling very specific tasks.
Some have excellent interfaces that are finely tuned to meet specific user needs.
Modern appliance-oriented top-level interfaces, augmented with a limited repertory
of generic capabilities, act as delivery vehicles for these application packages (e.g.,
the Apple Macintosh; Williams, 1984). However, those users who do not wish
to program may pursue only the relatively small set of tasks addressed by the
applications that are provided. This poses appreciable difficulties.

Computers are increasingly used : : : in complex areas : : : characterized by the lack
of generally accepted methods and techniques to be used for problem solving. For
this reason it is impossible to construct software tools covering problem solving
completely.

— Dzida, Hoffmann, and Valder, 1987, p. 30

1.2. Soft tools in general-purpose computing environments 7

At the other end of the spectrum, programming environments provide users
with the means to pursue goals not addressed specifically by any one application.
Historically, these systems arose from the second- and third-generation computers
that emphasized programming in high-level languages (Denning, 1971). Their
contemporary versions are highly interactive programming environments that sim-
plify programming “in the small.” Some examples are: SMALLTALK (Goldberg,
1984); INTERLISP–D (Teitelman and Masinter, 1981); PICT (Glinert and Tani-
moto, 1984); and PECAN (Reiss, 1984). By analogy, these programming environ-
ments are highly sophisticated manufacturing plants that can be retooled rapidly to
design and create a variety of complex machinery.

Although appliance environments are overly restrictive for those wishing
to pursue general tasks, programming environments are impractical for non-
programmers, for the actions, objects, and complexity of discourse are expressed
in unfamiliar programming terms (Cuff, 1980). The computer industry is not blind
to this incompatibility, and has spent considerable effort trying to bridge the gap
between specialization and generalization through integrated systems. This ap-
proach groups a set of limited applications into one large integrated product, so that
the boundaries between these applications are minimized or eliminated (Nielsen,
Mack, Bergendorff, and Grischkowsky, 1986). These systems, although a promis-
ing direction, currently offer only slightly more power than appliance-oriented
computers.

Midway between the two extremes are those top-level interfaces that provide
their end-users with a rich set of actions and objects. Each action, together with
the object it manipulates, is available as a tool, and the tools can be combined
in simple ways to manufacture new tools, often without resorting to conventional
programming. The use and organization of these types of tools form the focus of
this book. As summarized by Lee, environments in this general-purpose computer
genre include

collections of heterogeneous but complementary tools that allow users to perform
a wide and varying range of tasks. Furthermore, the environment provides fairly
uniform access to the software tools and permits users to use them for various
purposes.

— Lee, 1988

Generally, tools are flexible to use, can be combined in many ways, and are
reshaped as needed. In addition, these environments support and encourage both
tool manufacture and sharing by a variety of end-users.

1.2.3 Problem statement

The hypothesis of the research reported in this book is that, as with physical tools,
people select and often immediately reuse their recently submitted activities to

8 Introduction

general-purpose computing environments, and consciously organize their activities
by both task and function. If this hypothesis holds, then the interface should give
the user support by keeping recently used activities available for reuse and by
allowing the user to organize activities by function or task.

Yet existing shells invariably provide either uniform access to all system utilities
or group them in a predefined way. Except for a few ad hoc and unevaluated
implementations, there is no on-line support by even contemporary interfaces for
people’s natural strategies for organizing their workspace. Command-based inter-
faces, for example, provide uniform access to all system actions, even though actual
usage of these commands is far from uniform. “History systems” that allow people
to recall old submissions are badly designed, and their effectiveness is unknown.
Menus that explicitly reveal pregrouped system actions may not reflect the user’s
actual task organization.

This research addresses two major problems. First, there is a dearth of knowledge
of how users actually behave when interacting with a general-purpose environment.
Second, current interfaces do not adequately support a user’s natural work. Al-
though some have studied how people choose system utilities from a large set,
no statistics are available on how people generate, select, and repeat their activi-
ties. The bulk of this work is devoted to filling this void, based upon analyses of
long-term observations made of people using UNIX,3 a general-purpose computing
environment. The experimental findings are then generalized and used to derive
design principles of a user support facility that aids natural work.

1.3 Outline

The book is divided into four distinct parts. Chapters 2 and 3 list how observations
of user activity in general-purpose computing environments have been collected
and analyzed in the past. The particular method employed in our research is
described, and selected previous works are replicated and the findings are discussed.
Chapters 4 through 7 form the heart of the book. They detail how people repeat their
activities, and how the results can be applied to designing a facility that lets one
reuse (as opposed to reenter) previous submissions. Chapter 8 examines how people
organize activities. Finally, Chapter 9 describes the design and implementation of
a user support tool that allows people to both reuse and impose a structure upon
their old activities. Each chapter is briefly summarized below.

Chapter 2 introduces a study of natural everyday human usage of the UNIX
operating system and its command line interface. The observations made are the
basis for most investigative work performed in later chapters. UNIX is argued
to be a general-purpose environment and therefore appropriate for observation.

3UNIX is a trademark of AT&T Bell Laboratories.

1.3. Outline 9

After several existing data collection methodologies are described, the one finally
employed is detailed.

Chapter 3 covers previous work on how people use commands in UNIX. The
results of several studies are reviewed, and portions of these studies are replicated.
Although the statistical details of the replicated studies are supported, some of
the conclusions made by the original researchers are misleading. In particular,
studying command use – the verbs of a command line – is not sufficient and
presents a distorted view of what actually occurs. The complete command line
entered by the user must be considered too.

Chapter 4 introduces and surveys existing reuse facilities that let users recall,
modify, and resubmit their previous entries to computers. Although the survey
is not exhaustive, it is representative of facilities on commercial, state of the art,
and research systems. The chapter concludes by noting that there is no empirical
evidence justifying any of these designs, either a priori through knowledge of how
people repeat activities, or post hoc by evaluating their actual use.

Chapter 5 continues by providing empirical evidence that people not only repeat
their activities, but that they do so in quite regular ways. It starts with the notion of
recurrent systems, where most users predominantly repeat their previous activities.
A few suspected recurrent systems from both non-computer and computer domains
are examined in this context to help pinpoint salient features. The UNIX data is
analyzed from this perspective, with particular attention being paid to the statistics
of complete command line recurrences. Although people are seen to generate
many new activities, old ones are repeated to a surprising degree. The probability
distribution of the next submission repeating a previous one as a function of recency
is also reported.

Chapter 6 considers the potential and actual reuse opportunities within UNIX.
First, several methods are suggested that could increase the likelihood that the next
submission occurs in a small set of predictions offered to the user for review and
reuse. The UNIX data is conditioned by these methods, and the resulting improve-
ments are determined quantitatively. The second part of the chapter investigates
how well the reuse facilities supplied by the UNIX shell are used in practice.

Chapter 7 summarizes the results as a set of design principles, and existing reuse
facilities are revisited and briefly criticized from this perspective. The findings
of previous chapters are then corroborated by analyzing a different domain – a
functional programming environment – as a recurrent system. A final discussion
concludes that the notion of reuse facilities is conceptually, as well as empirically,
justified as a user support tool.

Chapter 8 argues that a user organizes computer activities by task and by function.
The concept of a user support tool called a workspace is developed. Similar to
a physical workspace, this on-line facility allows people to reuse and organize
their tools for their related activities. Although the idea is not new, several novel
properties of workspaces are elaborated. This chapter reveals how limited our

10 Introduction

knowledge is in this area and suggests that much more investigative research is
required – work that is beyond the scope of this book.

Chapter 9 describes the design of a system that loosely follows the metaphor of a
handyman’s workbench. It embodies the reuse properties suggested in Chapters 4
through 7, and the structuring properties of Chapter 8. The implementation is a
front end to UNIX, and serves to illustrate that serious pragmatic problems are
encountered when user support tools are built as add-ons to existing systems. The
problems encountered during the system’s design and use indicate a few open
research areas.

The book ends with a brief chapter. The contributions are summarized, impli-
cations to modern direct manipulation interfaces are discussed, and future research
directions are proposed.

2
Studying UNIX

This chapter introduces a study of natural everyday human usage of the UNIX
operating system and its command line interface. Analysis of the data collected is
central to the pursuit of knowledge of user behavior when interacting with general-
purpose environments. The chapter begins by describing UNIX and gives reasons
why it is an appropriate vehicle for research. Section 2.2 reviews several methods of
data collection used with previous UNIX investigations, and Section 2.3 describes
the details of the current study. Analyses of data are deferred to later chapters.

2.1 Choosing UNIX

Why perform natural studies on UNIX, with its baroque and outdated user inter-
face, instead of controlled experiments on a modern system? This section starts
by advocating a natural study for exploratory investigation of human–computer in-
teraction. After recognizing several pragmatic problems with such investigations,
UNIX is introduced and its choice is justified.

2.1.1 Natural studies

The thrust of the work presented in this book is that it is possible to capitalize
on patterns evident in human–computer interaction by building special user sup-
port tools. A prerequisite is to “know the user” (Hansen, 1971). One way to
accomplish this goal is through analyzing everyday natural user interactions with
current systems so that existing patterns of activity can be discovered and exploited.
Hanson, Kraut, and Farber (1984) justify this approach by contrast with traditional
controlled experimentation.

Although [a controlled experiment is] appropriate and useful in theory-guided re-
search : : : it is less appropriate when the researcher needs to identify new variables or
complex unknown relations between new variables. Nor does it deal efficiently with
highly multivariate phenomena such as human–computer interaction. Where neither
theory nor time will tolerate the isolation of a few controlling variables, assessing
people’s natural use of a computer system may be highly informative. : : :Generally,
observational data of human–computer interaction can allow the testing of simple
hypotheses and intuitions, the discovery of computer features that cause problems
for users, and guidelines for interface design.

— Hanson, Kraut, and Farber, 1984

Investigating people’s natural behavior when using computer systems is not

11

12 Studying UNIX

easy. Several major problems present themselves. First, there is no established
methodology of study. Past experimenters used various methods, leading not only
to hard choices for new researchers, but also to difficulties for those wishing to
contrast or replicate results of previous work. Even when similar methods are
chosen, the lack of controls makes comparison questionable. Investigations are
often performed on widely different or rapidly evolving operating systems and user
interfaces, and habits of user populations may be site-specific.

A second problem with natural studies of user interfaces is the difficulty of
collecting data. Monitoring real life human–computer interaction is not easy.
Source code may not be available for modification; interactions may go through
a suite of programs rather than through a single one; security measures at the site
may preclude close study. Furthermore, subjects may be hard to obtain. People
resist conscription, perhaps due to concerns about privacy or plain inertia, or
site populations are just too small for adequate sampling. Corporate reluctance
also hinders data collection, for computer and human resources are expensive.
Monitoring users takes processor time, physical records of user activities need
substantial disk space, and subjects’ time is costly.

With these provisos in mind, natural studies can, at least in principle, give
valuable insight into people’s behavior when using computers. One popular vehicle
for such studies is UNIX.

2.1.2 A brief introduction to UNIX

UNIX is a widely used multitasking operating system that runs on a variety of
computers, and is well described in many academic and popular publications (e.g.,
Ritchie and Thompson, 1974; Kernighan and Mashey, 1981; Pike and Kernighan,
1984; Waite, 1987). From the user’s point of view, it has several important com-
ponents. One is the file system, where all files are organized within hierarchical
directories. Directories and files can be manipulated by users in all the standard
ways. Users often work within the confines of a single “current” directory, although
resources located in other directories are generally available as well.

Another important feature of UNIX is that no distinction is made between files
containing programs and those containing other things (such as command scripts);
any file is eligible for execution.1 Although UNIX contains a large but standard
repertory of programs, there is no difference between invoking a system program
and a user program. This is significant because it allows one to tailor a system to
individual needs simply by writing utility programs and putting them in the right
place, without having to alter the innards of the system in any way. By setting search
paths, users can tell UNIX to look for executable programs in specific directories

1Technically, an execution bit has to be set before a file can be run as a program. However, this bit can be
easily set by a user with the appropriate permissions.

2.1. Choosing UNIX 13

containing the standard system libraries, the user’s own personal libraries, or files
belonging to other members of the community. However, this flexibility has
drawbacks. It encourages users to build and share extensive libraries of commands,
causing difficulties with the naming of different programs and multiple versions of
programs. Other users may come to rely on programs in a personal library without
the owner’s knowledge, in the erroneous belief that they were “standard” utilities
(Witten and Greenberg, 1985).

The third UNIX component is its user interface, a command line interpreter
called a shell 2 that comes in several flavors, the most popular in North America
being csh (Joy, 1980). As with most conventional command-driven systems, csh is
a passive slave awaiting orders; no attempt is made to guide or help the user. Csh
implements incremental interaction. Once an order is received, it carries it out and
then awaits the next command. Despite the proliferation of screen-based programs
(especially editors), the basic csh interface is teletype-like. No use is made of
the cursor control features provided by most VDUs. With the exceptions of the
character-erase, word-erase, and line-erase capabilities, the screen is treated as a
long roll of paper. Through the shell, users compose, edit, and then submit an input
line to UNIX. The usual form of a submission is a command, optionally followed
by an argument list.3 Although the command may be handled directly by csh, it
typically creates a new process by executing a file containing either compiled code
produced by a programming language, or a script of further command lines. The
argument list is made available to the program, and it can have two components:
options and objects. Options modify the standard meaning of the program, that is,
they “reshape” the tool. The program acts on the objects, which are usually UNIX
file names or strings. Arguments may contain regular expressions (sometimes
called wild cards) that are replaced by the shell with the names of files matching
the expression.

Two other csh facilities are worth noting. With history, users may recall (rather
than retype) part or all of a previously entered command line submission (see
Section 4.1.1). With aliases, users may specify a name (the alias) and a definition.
When the alias is typed on the command line, csh will substitute the definition in its
place. Aliases allow users to redefine a command name, to customize commands
by specifying default options, and to abbreviate a longer command line sequence.

UNIX users can tie together resources by redirecting input and output between
programs, files, the keyboard, and the screen; this feature distinguishes UNIX from
other command line systems. A standard UNIX program takes its input from the
keyboard and places its output on the screen. Yet the same program can work with
files, simply by using the two redirection symbols < and >, which stream input

2The command line interpreter is called a shell because it surrounds the kernel of the operating system
(Quarterman, Silberschatz, and Peterson, 1985).

3Although csh contains a rudimentary programming language, it is rarely used at the command line level.

14 Studying UNIX

from file to program and output from program to file respectively. Program-to-
program communication is supported through the pipe symbol j, eliminating the
need for explicit temporary files. For example, consider the sort command that sorts
its input lines, and the uniq command that removes succeeding copies of identical
lines. Typed by itself, sort waits for a user to enter all the input lines through the
keyboard, and prints the ordered results to the screen afterward. In the command
line sort < in > out, the lines in the file in are sorted and then written to the new
file out. Finally, the sequence sort < in j uniq uses the output of sort as the input
to uniq ; an ordered list of the unique lines contained in the file in is written to the
screen. Through redirection and pipes, the user can “combine” UNIX tools.

Because no distinction is made between user and system software, and because
input and output are easily passed between programs, UNIX works well when many
small, general-purpose modules are available as building blocks for new programs.
This follows from the cornerstone philosophy of UNIX:4

Make each program do one thing well. To do a new job, build afresh rather than
complicate old programs by adding “new” features. Expect the output of every
program to become the input of another, as yet unknown program. : : :Do not insist
on interactive input.

— McIlroy, Pinson, and Tague, 1978

The building blocks approach has drawbacks. Although small programs can be
combined in many ways not anticipated by the original designer, it is sometimes
hard to perform common operations without resorting to some level of rudimentary
“programming.” Less experienced users are often overwhelmed by the complexity
of the system (Dzida, Hoffmann, and Valder, 1987). Still, it is the power and
richness of UNIX that make it interesting. Because diverse utilities are available,
and program creation and sharing are encouraged, UNIX fits the description of a
general-purpose environment given in the last chapter.

2.1.3 Why study UNIX?

UNIX is a twenty-year-old operating system whose command line interface no
longer represents current ideas in interface design.5 Even at its best, the UNIX
interface is full of well-known deficiencies (Norman, 1981). Then why study
UNIX? Why not look at, say, a modern icon-based interface instead? This section

4Some people believe that current versions of UNIX have seriously compromised the “one tool one job”
philosophy (Waite, 1987; Pike and Kernighan, 1984).

5UNIX was first developed in 1969 by Ken Thompson and the Computer Science Research Center of Bell
Laboratories in Murray Hill. Originally written for the DEC PDP-7 computer and influenced by the Multics
operating system, it was not publicly licensed and widely released until 1976 (Quarterman, Silberschatz, and
Peterson, 1985).

2.1. Choosing UNIX 15

argues that studying UNIX is indeed fruitful for several reasons: it is still in
heavy use; it generalizes across many other systems; a body of knowledge of
UNIX behavior currently exists; and finding and monitoring subjects is relatively
straightforward.

Generalization. One attraction of UNIX is that it is not a contrived “toy” system.
Rather, it is widely used, very powerful, and potentially complex, and has a broad
range of users (Kraut, Hanson, and Farber, 1983). Because it is a general-purpose
computing environment fulfilling many needs, any results garnered from it may
generalize to other systems. In contrast, many high-performance graphical inter-
faces are so customized to particular applications that generalizations would be
difficult to make and support.

Although direct-manipulation systems are becoming more popular, command
line interfaces such as UNIX still pervade computer use. Some examples from
mainframe and personal computing environments are VAX VMS, Honeywell Mul-
tics, APOLLO Domain, CPM, IBM VM, and IBM DOS. Hierarchical menus based
on either text or graphics are usually little more than syntactic sugar placed on top
of a command line system.6 Observations made of UNIX usage probably apply to
all these systems too.

If UNIX findings could not be generalized, they would still be valuable in their
own right. Although old, UNIX is far from dying. Rather, it is being rapidly
disseminated as a de facto open system standard on diverse machines, running the
gamut from mainframes to workstations and personal computers. Even users of
graphical direct-manipulation interfaces can thirst for UNIX, as illustrated by the
availability of UNIX on the Apple Macintosh. Vendors have recently modernized
UNIX by embedding it within a window environment. The SUN workstation,
for example, has a suite of window-based front ends to popular UNIX facilities,
including the shell, debugger, mail system, terminal emulator, directory browser,
and so on (Sun, 1986b). More ambitiously, the developers of the NeXT machine
have built a full-blown direct manipulation environment around the UNIX operating
system (but users can still bring up the familiar shell in a glass teletype window).

An existing body of knowledge. Another appeal of UNIX to researchers is that
it has already been studied extensively. There is probably more knowledge and
raw data available on UNIX usage than any other computer system. The scientific
process is more easily realized; other UNIX studies can be replicated, and previous
findings can be built upon.

6MENUNIX, summarized in Chapter 8, is an example of a menu-based interface built directly on UNIX
(Perlman, 1984).

16 Studying UNIX

Finding and monitoring subjects. A pragmatic advantage of studying UNIX is
that it is relatively easy to do, because large groups of diverse people use it at many
different sites. Although the system is generally perceived to be expert-oriented,
there is no question that a significant number of non-programmers with widely
varying needs also harness its power. UNIX is often the standard system employed
by research institutions. The benevolent setting allows large-scale realistic studies
that span user categories.

At the University of Calgary, for example, UNIX is used heavily in the De-
partment of Computer Science by people with quite diverse programming skills
and personal requirements. It is also available to people in several non-computer
departments. The academic setting not only provides a captive audience, but also
encourages participation – bureaucratic procedures are in place for conscripting
subjects for study. Finally, UNIX source code for its programs are available for
modification.

In summary, it is assumed that observed usage patterns of UNIX are fundamental
to most computer-based imperative interactions. Methodological motivation arises
from the number of diverse users, the relative ease of collecting data, and the exis-
tence of other findings for comparison. Studies of UNIX usage are generalizable,
and have already affected the design of leading-edge systems. For example, Card
and Henderson (1987) describe a multiple virtual workspace interface to support
user task switching, motivated by the UNIX study of Bannon, Cypher, Greenspan,
and Monty (1983) (see Sections 8.3 and 8.1).

2.2 Techniques for analyzing activities of UNIX users

As mentioned previously, many computer studies lack a standard methodology for
data collection. UNIX studies are no exception, and records of interactions obtained
range from low-level input traces collected over large user populations through to
protocol analyses elicited from a few select subjects. This section surveys common
methods that have been used for studying UNIX, and indicates their associated
advantages and drawbacks.

2.2.1 Traces of user activity

A record of interactions between user and computer, usually collected through an
unobtrusive software monitor, is called a trace. In natural studies of UNIX usage,
voluminous amounts of data are often collected and sifted through in the hope
that something interesting may turn up. Alternatively, a subject may be asked to
solve particular problems, and his performance monitored over short-term tasks.
This second approach is fruitful for testing hypotheses about user behavior and for
exploring subdomains of UNIX. A measure of validity is obtained by comparing
traces generated by the artificial task to those generated under normal circumstances

2.2. Techniques for analyzing activities of UNIX users 17

(Lewis, 1986).
The methods listed below describe ways that traces have been generated on

UNIX.

Method 1: recording all keystrokes entered. Every single character entered on
the command line is recorded, including the special line-editing characters (e.g.,
<backspace>) and non-alphanumeric characters (e.g., <return>). The monitoring
software is fairly easy to write. In UNIX, for example, an interposed pseudo-
tty filter can catch and note all keystrokes on entry before passing them on to the
primary application. This easily implemented method supplies a complete record of
all input. Yet there are several disadvantages. First, unnecessary data is collected.
Unless the study is concerned with line editing or similar low-level artifacts, no
benefit is gained by including such primitive operations. The final line, as seen by
the user before a <return> is selected, would suffice for most purposes. Second,
such traces are not easily read due to the inclusion of special editing characters.
Consider, for example, the following input characters for a line taken from a typical
script (Lewis, 1986), where ^H represents a <backspace>, ^M a return, and t a
space:

lsa t ^H t ^H^H t ^H^H t ^Hm� ^H t ^H^H t ^Hs t �F^M

After editing, the line translates to ls –F.7 A third more serious disadvantage is that
the csh manipulations of the line are not recorded. Once a line is entered, the csh
expands wild cards, history substitutions, and aliases. Although the expanded line
may reflect the intention of the user more closely, it is not captured by recording
keystrokes only.

Method 2: session transcripts. A variant of recording keystrokes is recording
complete transcripts of a login session, which includes the user’s input and the
system’s response. Saving transcripts as a textual record is simple, for there is a
standard UNIX facility to do so. No additional programming is necessary. If the
interface follows a glass-teletype style of dialog, the record will be human readable
as a sequential script. If the interface uses cursor control or graphical interaction, it
is probably best to view the transcript as an animated playback record instead (not
available in standard UNIX).

Transcripts are information rich, which is their weakness as well as their strength.
Although they work well for small studies involving short sessions, the data pro-

7The number of keystrokes used to enter text is significantly more than the number of final characters. In a
study of document creation through an editor, Whiteside, Archer, Wixon, and Good (1982) observed that only
one-half of a user’s keystrokes are for text entry. The rest were for cursor movement (1=4), text deletion (1=8),
and so on.

18 Studying UNIX

duced for anything larger is so voluminous that it is almost impossible to handle.
Transcripts are best used in pilot studies, or as a way of augmenting other data
collection methods.

For example, Akin, Baykan, and Radha Rao (1987) performed a case study of
the structure of the UNIX directory space by reviewing transcripts of users asked
to carry out certain tasks. Even though only two subjects were used, and the task
duration was limited to half an hour, they reported that the records were lengthy and
hard to analyze. However, the transcripts did provide insight into user’s movement
in the directory space.

Method 3: recording lines expanded by csh. Instead of collecting data by catch-
ing keystrokes as they are entered, the complete line submitted can be captured as
a chunk after it has been entered and processed by csh. All the noise produced
by line editing would be removed. This is easily accomplished through the csh
history facility, where lines automatically recorded by the system can be saved in a
file. Desmarais and Pavel (1987), for example, collected and analyzed short-term
UNIX traces by this method, and applied the information to generate user models.

Extra information known to csh can be trapped and noted as well by placing
“hooks” within the csh program itself. In-line expansion of history use, aliases,
and regular expressions can be recorded, as well as the current working directory
of the user and the error status after execution is attempted. This is the method
used in the current study, which will be described further in Section 2.3. The data
collected is, of course, substantially richer than the data supplied by standard UNIX
history. The catch is that modifying the source for csh is required. Because this
contains over 16,000 lines of sparsely documented and quite complex code, the
task is daunting.8

There are several problems with recording lines expanded by csh. First, not all
user activity is captured. Although recording csh lines works well for “batch” style
programs that execute and return without user intervention, it is not appropriate
when highly interactive applications are used (e.g., editors). Interactive information
is lost because data is collected from the csh command line only. Also, commands
cannot be considered “equal.” For example, consider a trace containing only two
UNIX commands: ls for listing files; and emacs, which invokes a sophisticated
interactive editor. Whereas file listing is accomplished almost immediately, an
editing session can last for hours. This distinction is not captured by csh. A second
disadvantage with this recording method is that the actual processes spawned by
the command line are not noted. There are many ways to execute programs in
UNIX: directly by name, indirectly through an alias or csh variable, or as a suite

8Four months were required to produce an acceptable tested version of csh that included a robust monitoring
facility, even though the final number of modifications required was relatively small. This time includes the
bureaucratic red tape involved with obtaining csh source.

2.2. Techniques for analyzing activities of UNIX users 19

of programs through a script. Because of this diversity, users can invoke the same
program by many different names. For example, e, emacs, and ed may all invoke
the same editor. Because only the text typed to csh is collected, the actual processes
executed are left as an educated guess.

Tracing lines expanded by csh is a tradeoff between recording too much and
too little information. By selectively combining this method with other ways of
recording data, most problems noted above are correctable. For example, Lewis
(1986) includes the final expanded line along with the command line as issued.

Method 4: recording processes spawned by user’s commands. A popular
method of analyzing UNIX usage exploits data collected by the standard system
accounting packages, which records the processes spawned from a user’s command
rather than the command itself. The advantages lie in the ease of collecting data,
and in having a record of the system’s response to the user’s activity. Unlike some
previous methods, no program generation or modification is necessary.

But recording processes spawned is severely limited. First, many commands
spawn multiple processes not mentioned explicitly by the user. Recording of
processes reflects the user’s command selection only when the generated process
matches the submitted command, which is often not the case. A command may
create multiple processes, and inferring what was actually typed by the user can be
difficult. Researchers using this method have to develop strategies for eliminating
the extra processes from the record. These include sifting the data by hand (Bannon
and O’Malley, 1984), by a filter (Draper, 1984), or by supplementing the process
data with command line data (Kraut, Hanson, and Farber, 1983).

Another major problem with recording processes only is the impoverished in-
formation produced. All options and arguments qualifying the command are lost,
because the record indicates only the processes executed. Yet these are critical
for understanding how a command is used. Also, commands handled directly by
csh cannot be detected, as they do not spawn new processes (e.g., Draper, 1984).
Furthermore, the use of aliases and history use is not noticed, because processes
are created only after the line has been expanded.

A final problem stems from the difficulty of handling processes generated from
user-written programs or scripts that are not part of the standard UNIX library.
These are surely important, for UNIX encourages users to supplement system
software with personal software. Yet some previous studies simply ignored those
processes that were not within the system domain, usually by filtering out the
unknown ones from the process list (Draper, 1984). Still, noting processes gives a
reasonable approximation of the commands entered and executed by users.

20 Studying UNIX

2.2.2 Protocol analysis

Although some analysis of user activities is possible by studying traces, inferring
a user’s high-level intentions from a low-level record is always difficult. A better
method of discovering intentions is to have users describe their activities as they are
performed, a technique called protocol analysis. Some ways that protocol analysis
has been used within UNIX are noted below.

Method 5: annotation of traces. Users are asked to annotate periodically a history
list of commands with their intentions during a login session, perhaps by thinking
aloud or by textual in-line comments. For example, Jorgensen (1987) instructed
subjects to talk aloud while performing an artificial task involving UNIX mail. Their
comments were recorded on audio tape and the important ones were later merged
with transcript logs collected by the second method. Similarly, talking aloud into a
tape recorder has been used in UNIX studies by Jennifer Jerrams-Smith.9

The example below gives a portion of a textually annotated trace, as recorded by
Bannon, Cypher, Greenspan, and Monty (1983).

Write Info report. Its going to take a long time and be interrupted by other activities
15 vi Ireport

Interrupted to prepare a memo. Send note to gm about outcome
16 snd gm

Back to Ireport
17 fg
18 lf HMI : : :

Alternatively, the researcher may take a more active role and discuss the trace
with the user either during or after the session (see method 7).

An objection to this form of protocol analysis is its obtrusiveness. Because
of this, annotations are sometimes deferred until the end of an interactive session.
Perhaps a more serious problem is that annotations may not reflect actual intentions.
When comments are noted after a set of activities are performed, they may reflect
post hoc rationalizations of actions rather than real situations (Suchman, 1987).

Method 6: constructive interaction. One way of removing the disruptive effect of
annotations is through constructive interaction, where natural discussion between
interacting participants of a study is used to reveal underlying processes (Miyake,
1982). When applied to studies of human–computer interaction, cooperating users
are videotaped while solving a problem on a computer, although other resources
may be made available to facilitate discussion. This is a good way of revealing the

9J. Jerrams-Smith, AI Group, Philips Research Laboratories, Redhill Surrey, UK.

2.3. Data collection for the current study 21

users’ mental model of particular concepts, especially when one or both participants
are discussing a topic they do not fully understand (O’Malley, Draper, and Riley,
1984; Suchman, 1987).

In contrast to regular thinking aloud (fifth method), Jorgensen (1987) noted
that sessions involving constructive interaction were “more lively, and that far
more points were elicited spontaneously.” He also suggested that subjects were
encouraged to continue their tasks by the presence of their colleagues. On the
down side, he reported that the mixing of two individual lines of thought into one
sometimes produced a confusing picture of events.

Method 7: interviews and questionnaires. A simple method of eliciting knowl-
edge about the high-level intentions of a user is through questions asked before or
after the user performs a task.10 A group of users may be queried on paper (ques-
tionnaires) or verbally (interviews) for their views on the system. For example,
Sutcliffe and Old (1987) used a questionnaire to elicit preliminary information on
user experiences, attitudes, and knowledge with UNIX, and the typical tasks per-
formed. Command traces were then logged through the fourth method described
in the previous subsection. These were annotated in a set of follow-up interviews
where users were asked to verbalize their recorded task sequences. Sutcliffe and
Old mention that system logs proved the most valuable of the three methods.

2.3 Data collection for the current study

In this study, command line data was collected from users of the UNIX csh com-
mand interpreter. The selection and grouping of subjects, and the method of data
collection, are described in this section.

Subjects. The subjects were 168 unpaid volunteers. All were either students or
employees of the University of Calgary.

Subject use. Four target groups were identified, representing a total of 168 male
and female users with a wide cross-section of computer experience and needs.
Salient features of each group are described below, while the sample sizes (the
number of people observed) are indicated in Table 2.1.

Novice Programmers. Conscripted from an introductory Pascal course, these
subjects had little or no previous exposure to programming, operating systems,
or UNIX-like command-based interfaces. Such subjects spent most of their
computer time learning how to program and use the basic system facilities.

10Because they are not performed during the task, interviews and questionnaires are not, strictly speaking,
methods of protocol analysis.

22 Studying UNIX

Table 2.1. Sample group sizes and statistics of the command lines
recorded

Name Sample Total number Number of command
size of command lines excluding errors

lines total mean std dev
Novice Programmers 55 77,423 73,288 1,333 819.8
Experienced Programmers 36 74,906 70,234 1,950 1,276.0
Computer Scientists 52 125,691 119,557 2,299 2,022.9
Non-programmers 25 25,608 24,657 986 1,155.6

Total 168 303,628 287,736 1,712 1,498.8

Experienced Programmers. Members were senior computer science undergrad-
uates who were expected to have a fair knowledge of programming languages
and the UNIX environment. As well as coding, word processing, and em-
ploying more advanced UNIX facilities to fulfill course requirements, these
subjects used the system for social and exploratory purposes.

Computer Scientists. This group, comprised of faculty, graduates, and re-
searchers from the Department of Computer Science, had varying experience
with UNIX, although all were experts with computers in general. Tasks per-
formed were less predictable and more varied than other groups, spanning ad-
vanced program development, research investigations, social communication,
maintaining databases, word processing, satisfying personal requirements, and
so on.

Non-programmers. Word processing and document preparation was the domi-
nant activity of this group, made up of office staff and members of the Faculty
of Environmental Design. Little program development occurred – tasks were
usually performed with existing application packages. Knowledge of UNIX
was the minimum necessary to get the job done.

Because users were assigned to subject groups only through their membership in
identifiable user groups (e.g., computer science graduate students), their placement
in these categories cannot be considered strictly rigorous. Although it was as-
sumed that they generally follow their group stereotype, uniform behavior was not
expected.

Instructions to subjects. As part of the solicitation process, subjects were in-
formed verbally or by letter that:

� data on their normal UNIX use would be monitored and collected at the
command line level only;

2.3. Data collection for the current study 23

� the data collected would be kept confidential;
� any public reference or dissemination of the data and derived results would

guarantee anonymity, unless explicit permission was given by the subject to
do otherwise;

� at any time during the study period the subject could request that data collection
stop immediately;

� there would be no noticeable degrading of system performance;
� if requested, data collected from a subject would be made available to him or

her.

These subjects did not require nor did they receive any additional instructions during
the actual study period. No subject asked to be withdrawn from the experiment,
and no one asked to see their personal data.11

Apparatus. A modified csh was installed on three VAX 11/780s located in the
Department of Computer Science and one VAX 11/750 in the Faculty of Envi-
ronmental Design, all within the University of Calgary. Many different terminals
were available to participants, most which were traditional character-based VDUs.
In addition, CORVUS CONCEPT workstations running the JADE window man-
ager were available to members of the Experienced and Computer Scientist groups
(Greenberg, Peterson, and Witten, 1986). As with many window systems, this
workstation allowed users to create many “virtual terminal” windows, each run-
ning csh, on a single screen.

Method. Command line data was collected continuously for the four months be-
tween February 1987 and June 1987 from users of a modified Berkeley 4.2 UNIX
csh command interpreter (Joy, 1980). From the user’s point of view, monitoring
was unobtrusive – the modified command interpreter was identical in all visible
respects to the standard version. The total number of command lines recorded per
group is listed in Table 2.1.

Data was collected by the third method of Section 2.2.1 – recording lines ex-
panded by csh. Table 2.2 lists the trace information annotated by the modified csh.
Login sessions are distinguished by a record that notes the start and end time of
each session (the ‘S’ and ‘E’ fields in the table). Command lines entered during
this period are then listed in following records, each annotated with the current
working directory, alias substitution (if any), history use, and error status. The
final command line accepted by csh, including history expansions and ignoring
editing operations that form the line, is recorded in the “C” field. The “D” field
notes the directory that the user was in when the command line was entered. The

11See Appendix A in Greenberg (1988a) for a copy of a typical information sheet provided to subjects.

24 Studying UNIX

Table 2.2. Trace information annotated by the modified csh

Code Description Example
Login session record

S Start time of the login session S Fri Feb 6 15:54:25 1987
E End time of the login session E Fri Feb 6 17:25:01 1987

Command line record
C The line entered by the user C ls –a
D The current working directory D /user/greenberg/bin
A The alias expansion of the previous command (if

any)
A ls –a

H The line entered had a history expansion in it
(True or Nil)

H True

X The error detected in the line by csh (if any). A
following letter and number code indicates the
category and actual error type.

X N 10

alias expansion of the line is found in the “A” field, whereas the “H” field indicates
whether or not csh history helped form the line. System errors generated by csh are
registered in the “X” field. Although eleven categories and many sub-categories
of errors are annotated, the distinctions between them are not used in the current
study. The total and average number of command lines collected excluding these
errors are listed in Table 2.1

An example trace is given in Appendix A. Appendix B provides summary statis-
tics for each subject, including the number of login sessions, the command lines
entered, the different commands used, the csh errors noted, the times history was
used, and the different directories accessed.

Data selection. If subjects did not log in at least 10 times and execute at least
100 commands during the study period, their data was not considered. By these
criteria, 12 of the 180 original participants were rejected. Particular manipulations
of the data, the analyses performed, and the results obtained are described in later
chapters.

Motivation. Participants used UNIX as usual. Users were neither encouraged nor
expected to alter their everyday use of the system. As subjects had few reminders
that their command line interactions were being traced, they were largely oblivious
to the monitoring process.

Availability of data. All data collected is available to – and has been used by –
other researchers. A research report describes its format, and includes a cartridge

2.4. Concluding remarks 25

tape of the data (Greenberg, 1988b). The report and data are available from the
Department of Computer Science, University of Calgary, or the author. To ensure
the confidentiality promised above, data was massaged to remove the identity of
subjects.

Problems. Because of implementation difficulties, the details of history directives
are not recorded. The altered csh indicates only that history has been used, and
notes the command line retrieved through history. It does not record the actual
history directive used to produce the modification.

2.4 Concluding remarks

This chapter argued that it is worthwhile to study data collected from everyday
use of UNIX. Previous methodologies used for capturing UNIX interactions were
examined, and the particulars of the method employed by the current investigation
were listed.

One difficulty of studying and analyzing UNIX comes not from considerations
of methodology, but from personal biases of the scientific and user communities.
Because UNIX is so popular, and because reports of its deficiencies (and corre-
sponding remedies) are so numerous, it is perceived by some to be a “straw man”
that is easily picked upon. A reaction to yet another UNIX study could be apathy.
Yet all UNIX investigations are not alike. The main purpose of this study, like a
handful of others, is not to improve UNIX – it is too late for that. Rather, I assume
that UNIX investigations are best harnessed to illuminate fundamental properties
of human behavior when using similar general-purpose environments. If doubts
exist about generalization, the methodology may be applied to other systems for
empirical comparisons.

This study could have been performed on almost any other system with a rich
set of constructs. UNIX csh was chosen for pragmatic considerations, and because
I believe its usage reflects that of other systems.

3
Using commands in UNIX

This chapter examines how people use commands in command-based systems.1

Like previous work, it is based on an analysis of long-term records of user–computer
interaction with the UNIX csh command interpreter, collected as described in the
previous chapter. The results of the major studies are reevaluated, particularly those
of Hanson, Kraut, and Farber (1984), and Draper (1984), and some of the work is
replicated. Although the statistical results of the studies are supported, some of the
conclusions made by the original researchers are found to be misleading.

The following sections provide details of how people direct command-based
systems in terms of how individual commands are selected and the dependencies
between these commands. It is essential to take into account the fact that pooled
statistics may conceal important differences between individuals. As a conse-
quence, the results are analyzed by user and by identifying groups of similar users,
as well as by pooling data for the entire population.

For the current study, a command is the first word entered in the command line.
Those lines that produced system errors were not considered. The first word is
parsed by removing all white space at the beginning of the line and counting all
characters up to but not including the next white space or end of line. For example,
the command parsed from the command line

print –f 31 –t 40 galley.text

is “print.” The parsed word is almost always a true UNIX command or alias that
invokes a program or shell script. This method does not record all the UNIX
commands used, for an input line may contain more than one command (e.g.,
by redirecting input and output with pipes, or by cascading separate command
sequences). Still, it seems a reasonable approximation.

3.1 Frequency distributions of commands for large groups

Several investigators have examined the frequency of command usage by a
user population (Peachey, Bunt, and Colbourn, 1982; Kraut, Hanson, and Farber,
1983; Hanson, Kraut, and Farber, 1984; Ellis and Hitchcock, 1986). All studies
report results approximated by a Zipf distribution, which has the property that a

1Some of the findings in this chapter were first presented at the 3rd IFAC Conference on Man–Machine
Systems, Oulu, Finland (Greenberg and Witten, 1988a).

26

3.2. Usage frequency of particular commands between groups 27

relatively small number of items have high usage frequencies, and a very large
number of items have low usage frequencies (Zipf, 1949; Witten, Cleary, and
Greenberg, 1984).

A looser characteristic of this kind of rank distribution is the well-known 80–20
rule of thumb that has been commonly observed in commercial transaction systems
– 20% of the items in question are used 80% of the time (Knuth, 1973; Peachey,
Bunt, and Colbourn, 1982).2 In measurements recorded from a UNIX site, Hanson,
Kraut, and Farber (1984) report a similar trend – 10% of the 400–500 commands
available account for 90% of the usage. These models also hold for the frequency
distribution of all help requests made for particular commands through the UNIX
on-line manual3 (summarized in Section 5.3.1; also see Greenberg, 1984).

The current study supports these observations. Figure 3.1 illustrates the com-
mand frequency distribution for each of the four different user groups described
in the previous chapter. The frequency distribution is not a probability distribu-
tion. It gives the relative frequency between commands, rather than the actual
frequency of use. The vertical axis shows the number of command invocations,
normalized to one for the most frequent, whereas the horizontal axis shows the
rank ordering of commands, with the most frequent first. Only the twenty highest
ranking commands for each group are shown. For example, the most frequently
selected command by the Experienced Programmer group is positioned first in the
rank order, and is used at a relative frequency of 1. The second most selected (rank
order of two) is used at a relative frequency of 0.94, the third at 0.49, the fourth
at 0.35, and so on down the list. The Zipf curve, normalized in the same way and
calculated as y = x�1, is illustrated by the smooth line in the figure, and seems
to provide a plausible model for the observed frequencies. For each of the four
user groups, 10% of the commands used accounted for 84%–91% of all usage (cf
Hanson’s 10%–90%).4 This ratio seems independent of both the actual number of
different commands used by a group and the size of the sample group.

3.2 Usage frequency of particular commands between groups

Even though frequency statistics of different groups are modeled by the Zipf dis-
tribution, it is worth asking whether commands retain the same rank order between
different user groups. If they do, then a command used frequently by one group
will have the same relative usage in another. As will be seen later in this chapter,
this is not necessarily the case.

2This rule is recursive, as the 80–20 rule also applies to the most active 20% (Knuth, 1973).
3Every command in the UNIX system usually has a corresponding manual entry, invoked by typing man

<command>.
4Although similar results seem to apply to the top 10% of the command set, the recursive property of the rule

cannot be checked reliably. Limits are quickly reached over the relatively small number of remaining commands.

28 Using commands in UNIX

Figure 3.1. The normalized command frequency, compared with Zipf.

Table 3.1 gives the data from which Figure 3.1 is drawn. Each column shows the
twenty most frequently used commands by each group (including data reported by
Hanson, Kraut, and Farber, 1984) and also provides the total number of commands
executed, the number of different commands executed, and the number of users
sampled. The few common high-frequency commands across the five user groups
are mostly concerned with navigating, manipulating, and finding information about
the file store (such as ls, rm, and cd). Comparison of other commands captures
the differences between the groups. The emphasis on programming by both our
novice and experienced subjects is reflected by the various compilers used (pix and
pi for Pascal, make for “C,” and ada). The non-programmers, on the other hand,
seem concerned with word processing (as indicated by the relatively heavy use of
nroff and spell). The type of editor also indicates group differences – vi and ed are
chosen by Hanson’s group, whereas emacs, e, umacs, fred, and ed have varying
degrees of use within the others.

Grouping all subjects into one category also illustrates the danger of using a
population stereotype to approximate the activity in each group. As shown by
column 1 of Table 3.1, which pools all subjects of this study into one large sample,
some high-frequency commands are not used frequently (if at all) by all groups
(e.g., pix, umacs).

Table 3.1. Command distributions of the top twenty commands for five
different user groups

Groups from the current study Others
All Novice Experienced Computer Non- Hanson’s

subjects Programmers Programmers Scientists programmers group
command % used command % used command % used command % used command % used command % used

ls 13.33 pix 25.64 ls 12.76 ls 15.75 ls 18.53 cd 12.30
cd 8.83 umacs 20.89 cd 12.03 cd 10.62 emacs 12.35 ls 10.0
pix 6.69 ls 8.18 e 6.29 e 5.58 cd 9.56 cat 9.6
umacs 5.34 rm 3.55 fg 4.42 fg 4.32 nroff 9.55 j 6.2
e 4.47 u 3.19 more 3.49 rm 3.21 e 6.20 vi 5.9
rm 3.35 cat 2.79 make 2.93 mail 3.00 rm 4.66 ed 5.6
emacs 3.28 more 2.63 rm 2.93 emacs 2.58 ee 4.47 rm 3.8
fg 3.07 cd 2.61 emacs 2.66 lpq 2.36 lpq 2.25 ; 2.7
more 2.51 script 2.49 l 2.02 more 2.06 ps 2.13 > 2.5
lpq 2.02 lpr 2.26 cat 1.96 ps 1.97 cp 1.66 Mail 2.0
mail 1.95 cp 2.09 lpr 1.91 f 1.70 ptroff 1.65 nroff 1.5
cat 1.89 lpq 2.08 ada 1.85 cat 1.62 more 1.59 mail 2.0
lpr 1.49 emacs 1.95 ex-vax 1.85 who 1.59 w 1.50 mv 1.2
cp 1.48 pi 1.54 cp 1.58 mv 1.20 mail 1.37 grep 1.2
ps 1.36 p 1.21 rwho 1.37 man 1.18 rr 1.31 col 0.9
who 1.14 fred 1.04 a.out 1.33 rlogin 1.05 tbl 1.27 echo 0.9
make 1.08 mail 1.03 mail 1.31 cp 1.02 spell 1.27 & 0.9
nroff 1.06 pdpas 0.72 lpq 1.31 fred 0.99 mv 1.20 tail 0.7
fred 0.95 logout 0.71 ps 1.30 lpr 0.91 ed 1.02 pwd 0.7
man 0.90 pdp60 0.67 who 1.16 page 0.90 apq 0.89 awk 0.7

Commands executed
287,736 73,288 70,234 119,557 24,657 9,934

Different commands
1,307 264 588 851 196 400

Sample size
168 55 36 52 25 16

30 Using commands in UNIX

Even though the Zipf form of the frequency distribution remains intact between
different groups of a population (Figure 3.1), the rank order of commands is not, in
general, maintained.

3.3 Frequency distributions and command overlap between individuals

The extent to which the usage statistics of an individual resemble those of a group of
like people is considered next. Does the Zipf distribution characterize each user’s
command interactions, or is it just an artifact of data grouping? Do individuals
within a group invoke the same set of commands? One might expect the variation
between users to be even greater than that between groups.

In the previously mentioned study of the UNIX on-line manual, the frequency
distribution of help requests was analyzed between individuals (Greenberg, 1984).
In general, users constrained themselves to relatively small subsets of the requests
possible – they never accessed a great many potential entries. Moreover, when
users’ subsets were compared, the intersection between their elements was small
and the frequency of access of the common elements varied considerably across
users. Greenberg (1984) suggested that although individual help requests seem to
follow the Zipf distribution in broad outline (but not in detail), it is not possible
to make anything but the grossest generalization from a population perspective of
how individual users will access particular items within a system. This study is
summarized further in Section 5.3.1.

The same is true for command line interactions. While studying the nature of
expertise in UNIX, Draper (1984) estimated the times a command was invoked by
noting the UNIX processes spawned during each user’s interaction with the system
(method 4, Section 2.2.1).5 He suggested that the overall trends observed are rep-
resentative of real command use. First, out of a vocabulary of the 570 commands
available to the population, only 394 (70%) were used at least once. Individuals
knew the system to varying degrees – there was a fairly smooth distribution of
vocabulary size up to the maximum of 236 commands known to one user. Char-
acteristics of the overlap between individuals’ vocabularies were similar to those
found in Greenberg’s (1984) study of the UNIX on-line manual. Generally, very
few of each individual’s commands were used by all the population, a few more
were shared to some degree by other users, and the rest used by each individual
alone. Draper concluded that vocabulary is a poor measure of expertise, and that
each user is actually a specialist in a particular corner of the system.

Sutcliffe and Old (1987) pursued the matter further in a similar study by rank-
ing commands by popularity. They established that the top twenty commands
accounted for 73% of the overall number recorded. The remaining 27% accounted

5Sutcliffe and Old (1987) employed the same method to replicate portions of Draper’s work. Their findings
are similar throughout.

3.3. Frequency distributions and command overlap between individuals 31

Table 3.2. Number of users per command

% of users Proportional number of commands shared (%)
sharing a All Novice Exper’d Computer Non- Draper’s
command subjects Prog’rs Prog’rs Scientists prog’rs group

100–91 0.2 2.7 2.2 0.9 1.5 0.5
90–81 0.3 0.8 0.7 0.8 0 2.0
80–71 0.3 0.4 1.0 0.8 2.0 3.1
70–61 0.4 0.8 1.0 0.6 0.5 3.3
60–51 0.5 1.5 2.2 1.9 4.6 3.1
50–41 0.5 2.7 1.9 1.1 3.1 6.1
40–31 1.2 0 1.2 1.4 4.6 6.1
30–21 1.5 9.1 4.1 4.4 6.6 8.6
20–11 3.0 12.1 8.9 6.5 34.7 17.8
10–0 92.0 70.1 76.9 81.7 42.4 49.5

Not shared
68.8 55.3 58.5 63.1 42.3 unknown

Total number of unique commands
1307 264 588 851 196 394

Mean number of unique commands per subject and standard deviation
mean 50.3 27.8 66.4 72.1 29.6 unknown

std dev 32.5 18.0 24.9 32.7 20.1 unknown

for 236 further commands. However, these results may be misleading, for heavy
use of a command by an individual will skew the distribution.

Even though Draper’s method of data collection differed, this study corroborates
his conclusions that users tend to know a particular corner of the system with very
little overlap between them. The first ten rows of Table 3.2 show the proportion
of commands shared by the users comprising a particular group. The following
rows show the proportion of commands that are not shared, the total number of
different commands entered by each group, and the average number of different
commands per user. Table 3.3 lists the twenty most shared commands for each
user group. For example, only 0.2% (i.e., 3) of the 1,307 different commands
used by all subjects were shared by more than 90% of them (these were basic
file manipulation commands for listing, removing, and copying files, as shown in
column 1 of Table 3.3). More surprisingly, a full 92% of all shared commands were
shared by fewer than 10% of the users, and 68.8% of the total command set seen
are not shared at all. These differences are much stronger than those suggested by
Draper’s group (the last column of Table 3.2), probably because of inaccuracies in
his methodology of estimating command use.

Tables 3.2 and 3.3 also reveal that categorizing like subjects into groups changes

32 Using commands in UNIX

Table 3.3. The twenty most shared commands for each user group

All Novice Experienced Computer Non-
subjects Programmers Programmers Scientists programmers

com- # of com- # of com- # of com- # of com- # of
mand users mand users mand users mand users mand users
ls 168 lpr 55 cd 36 ls 52 ls 25
rm 164 ls 55 ls 36 rm 51 rm 24
cp 154 pix 55 more 36 cat 50 emacs 23
lpq 149 rm 55 lpq 35 cd 50 cd 19
lpr 144 script 55 man 35 mv 49 cp 19
cd 141 cp 53 cat 34 cp 48 nroff 18
cat 140 lpq 53 cp 34 mail 48 lpq 17
mail 131 umacs 47 lpr 34 man 48 ps 16
more 130 cat 46 mail 34 mkdir 46 lpr 14
man 124 more 42 mkdir 34 ftp 44 more 14
who 117 cd 36 rm 34 lpq 44 logout 13
mv 114 mail 36 ftp 33 ps 44 mail 13
emacs 112 limits 32 ps 32 pwd 44 man 13
mkdir 104 who 30 mv 31 who 44 hpq 12
ps 103 man 28 who 31 fg 42 mv 12
fg 95 pi 28 ruptime 30 e 41 spell 12
script 95 logout 26 fg 29 emacs 41 who 12
pwd 92 help 24 kill 28 lpr 41 kill 11
ftp 91 lquota 23 limits 28 rlogin 40 pwd 11
logout 88 emacs 23 rwho 28 kill 38 cat 10

Sample size
168 55 36 52 25

the figures less than one might expect. For example, even though individuals in
the novice group used the system for solving the same programming assignments
and were taught UNIX together, there was relatively little intersection of their
vocabularies. Except for a handful of commands, users – even those with apparently
similar task requirements and expertise – have surprisingly little vocabulary overlap.

3.4 Growth of the command vocabulary

In the previous discussion, a user’s vocabulary was taken to be the set of commands
invoked over a fixed period of time. But how dynamic is the command vocabulary
of a user? Do users learn new commands sporadically or uniformly over time? Are
new commands acquired continually, or do users stop acquiring new vocabulary
after some initial period?

Sutcliffe and Old (1987) suggest that the size of a user’s command set grows

3.4. Growth of the command vocabulary 33

Figure 3.2. Command vocabulary size vs. the number of command
lines entered for four individuals.

as a function of system usage. They found a significant correlation between the
overall command use by the user and the number of unique commands employed.
This evidence is suggestive but does not actually observe vocabulary acquisition
by particular users. Figure 3.2, on the other hand, illustrates the acquisition of
vocabulary over time for four typical users from the current study, with one from
each group. The vertical axis is vocabulary size, whereas the horizontal axis
represents the number of command lines entered so far. At first, the vocabulary
growth rate seems to be around 5% – each user shown here has a repertoire of 43–64
commands after 1,000 full command lines had been entered. But the growth rate
drops quickly afterward to 1% or less. The later part of the curve is probably a better
reflection of vocabulary acquisition, for the first part does not necessarily reflect a
learning curve. Because users already knew a command subset before monitoring

34 Using commands in UNIX

began, unusually high initial activity is expected as known commands are being
noticed for the first time. Another explanation is that the curve just represents the
arrival probability of infrequent commands whose distribution patterns follow Zipf.

Although Figure 3.2 suggests that the selected subjects have a vocabulary growth
rate that is proportional to the relative sophistication of the group, analysis of
variance shows no statistically significant differences between the mean rate of
each group. However, these rates were determined by counting the new commands
acquired between 1,000 and 2,000 command entries, which meant excluding those
subjects who did not have at least 2,000 entries.

Figure 3.2 also reveals how users acquire new commands. Although there are
short periods where vocabulary growth is relatively uniform, there are also long
periods of quiescence followed by a flurry of activity. As might be expected, these
flurries were sometimes associated with new tasks. For example, the sharp increase
in new activity for the Scientist group subject after she had entered 6,000 command
lines all involved high-quality typesetting. However, there are other instances
where no such task association is evident.

In general, individuals have small command vocabularies and acquire new ones
slowly and irregularly. Given the patterns observed, the Zipf distribution becomes
a questionable model of individual command use. Perhaps all that can be said is
that the distribution of command use is very uneven.

3.5 Relations in command sequences

The previous discussion says nothing about possible relations and dependencies
between commands. Through a multivariate analysis of UNIX commands invoked
by the site population, Hanson, Kraut, and Farber (1984) examined the interaction
effects between commands. Their results show statistically significant relationships
between certain command chains; the relations between the fifty most frequently
used commands are shown in Figure 3.3. Each ball in the network represents
a command, its size indicates the usage frequency, and the arrow indicates the
significant dependencies. One dimension of these relationships is modularity.
Some commands, such as ls, are core commands – they are used frequently and
are surrounded by many other commands (i.e., highly modular and independent).
Others are not; they are surrounded by specific command sequences. An example
of the latter is cp, which is generally preceded by itself and followed by chmod.

Commands are also related by functional clusters, such as editing, process man-
agement, orientation, social communication, and so on (Hanson, Kraut, and Farber,
1984), which may not be revealed by statistics. Consider a user who prints files
in several ways: a short draft may go to the screen; a long listing to a lineprinter;
and a final version to a laser printer. Although these non-sequential and possibly
rarely invoked actions are related by function in the user’s mind, it is unlikely that

Ball diameters are proportional to stationary probability. Lines indicate significant dependencies,

solid ones being more probable (p < :0001) and dashed ones less probable (:005 < p < :0001).

Figure 3.3. Sequential structure of UNIX command usage, from Figure 4
in Hanson et al. (1984).

36 Using commands in UNIX

such a relationship would appear from a multivariate analysis of commands such
as Hanson’s. Additionally, it is a mistake to assume that all dependencies revealed
by analysing a group of users will hold for an individual, because each person uses
a particular subset of commands (as discussed in Section 3.3).

3.6 Discussion

The previous sections reviewed statistics from studies of how people use com-
mands in command-based systems. The purpose behind most of the original works
was to derive implications for the interface design. Yet it is clear that statistics
produced by pooling users into one large sample are not necessarily indicative of
an individual’s statistics. As a consequence, some of the conclusions made by the
original researchers are misleading.

First, the rank frequency distribution of a population should not be applied to an
individual. Careful interpretation must be used before following the advice of one
researcher, who says “the Zipf distribution may prove to be a useful model of user
behavior in studying command usage” (Peachey, Bunt, and Colbourn, 1982). It is
all too easy to read into such a statement two implications. First, the Zipf model is
a reasonable estimate for a single person’s frequency of command use. Second, the
rank order derived from a population applies to an individual. These are certainly
not the case. Next, and more specifically, Hanson et al. recommend that commands
used frequently by the population should be treated differently:

the uneven distribution of command use suggests that computer systems should find
ways to increase the prominence and ease of access to frequently used commands.

— Hanson, Kraut, and Farber, 1984

Given the results of the previous sections, this should more correctly read “to
increase the prominence and ease of access to an individual’s frequently used com-
mands.” The slight wording difference is crucial. Whereas the original conclusion
implies that command prominence may be judged and treated generically, the
corrected version would require a personalized approach.

Second, it is a mistake to assume that users have similar vocabularies. Hanson
et al. went on to say that computer systems should be organized with sets of
frequently used core commands, implying that these sets are reasonably large
and that core commands are shared. But the findings detailed in Section 3.3
refute this prescription in two ways. First, individuals have very few common
commands. Second, people may use different resources for implementing those
few actions that they have in common, for example, different editors and compilers
for text processing and programming respectively. Sutcliffe and Old explain these
phenomena.

3.6. Discussion 37

Considering UNIX is a system rich in functionality but relatively unstructured, it is
not surprising [that] users have created a variety of tasks with the tools available
: : : great creativity is exercised in implementing a rich diversity of tasks.

— Sutcliffe and Old, 1987

Perhaps the few shared and frequently used commands could best be handled as
exceptions, possibly by bundling them into a finely tuned application. For example,
the extremely heavy use by all users of the basic file manipulation commands, as
noted in Tables 3.1 and 3.3, suggests that users require not only constant feedback
on the contents of the current directory, but some simple tools for manipulating
them as well. Feedback can be provided by keeping a permanent display of the
current files on view, a simple task given a window-based environment. If screen
real estate is a concern, transient windows popped up by a mouse press may be
used instead (Greenberg, Peterson, and Witten, 1986). These findings also support
the inclusion of the more sophisticated file browsers that are found in many modern
programming environments.

Third, the relations between commands seen by Hanson’s pooled statistics do
not necessarily apply to individuals (Section 3.5). The dependencies and clus-
tering observed may result from a small handful of people using a set of related
commands frequently, and not from common use of the same commands by every
person. Consider the recent findings of Sutcliffe and Old (1987). They replicated
and extended Hanson’s work by eliminating all dependencies but those that were
significant for at least five or more individual users (cf. Figure 3.3). The resulting
network was a fragmented subset of the population network. Sutcliffe and Old
concluded that only a small number of commands were used in common tasks by
a majority of individuals. Hanson, then, has insufficient evidence to suggest that

it would be practical to organize the commands around task-related menus. Com-
mands that are likely to be used in one context may also be needed in others.

— Hanson, Kraut, and Farber, 1984

To their credit, Hanson et al. also state that such menus are best viewed as default
organizations that, because of individual differences, should be customizable by
the user.

In another area, many intelligent tutoring systems and the models they employ
are motivated by possibly incorrect assumptions of command usage. Consider
Hecking (1987), for example, who quotes the statistic “people use only 40% of all
UNIX functions” (cf. Draper’s 70%, Section 3.3). He claims that this situation is
a poor one and advocates intelligent help systems as a remedy. Yet Draper (1984)
contradicts this claim by suggesting that users are best viewed as specialists in their
own corner of the system. Next, consider how expertise models are formed. One
approach for deciding what knowledge should be presented to the user employs
an “expert” and a “student” model (Sleeman and Brown, 1982). For example, the

38 Using commands in UNIX

differential model of Burton and Brown (1982) bases its instructional presentation
on the differences between a student’s and an expert’s behavior, and has been
advocated in the UNIX domain (Chin, 1986). Desmarais and Pavel (1987) use a
similar model to generate knowledge structures of commands. These structures
indicate the likelihood that an observed command has been mastered by a person,
and are used to infer what other commands he might know. Another expertise-
based strategy is employed by the well-known UNIX Consultant, which stereotypes
users into one of four levels of expertise and tailors its advice to them accordingly
(Chin, 1986). But the above approaches are ill founded. Experienced users of
general-purpose environments such as UNIX do not share particular command
sets. Except for the very few common commands, it is not possible to decide
what commands should be offered to the student. Consequently, the differential
model is not necessarily appropriate for teaching people how to use general-purpose
computer systems.

3.7 Concluding remarks

This chapter has surveyed and replicated studies in several areas involving user
interactions with command-based computer systems. The trends observed are
presumed to be shared by most command-based interactions; they are not just
artifacts of the UNIX implementation. The major findings follow.

1. The rank frequency distribution of command usage by groups of like and
unlike users is approximated by a Zipf distribution.

2. With a few exceptions, the frequency of use of most commands differs between
groups – rank order is not maintained.

3. There is little overlap between the command vocabulary of different users,
even for those with apparently similar task requirements and expertise.

4. Individuals have small command vocabularies, and new commands are ac-
quired slowly and irregularly. Consequently, the Zipf model may not be an
accurate estimate of an individual’s behavior.

5. Some commands cluster around or follow others in statistically significant
ways, although these dependencies vary from one individual to another.

These conclusions tell us more about individual differences than about similarities,
and they are not as useful as one might hope. Although they do refute some
previously held beliefs, the conclusions do not suggest any general new directions
in interface design.

I believe that these studies place undue attention on command usage. The
reductionist approach may have been pushed too far. Commands, after all, are
only the verbs of the command line. They also act on objects, are qualified with
options, and may redirect input and output to other commands. These other facets

3.7. Concluding remarks 39

are surely important and should not be ignored. For example, UNIX lines sharing
the same initial command may have completely different meanings. Consider the
two command lines sort file and sort file j uniq –c j sort –r. The first just sorts a
file, whereas the second produces a frequency count of the identical lines in the
file. Another problem is that the same command line may satisfy rather different
intentions. Ross, Jones, and Millington (1985) give an example of one person
invoking the UNIX command line ls –l to distinguish between ordinary files and
directories, whereas another person could use the same sequence to discover file
creation dates and sizes. Accordingly, the UNIX usage data, analyzed in this
chapter in terms of commands, is reanalyzed in Chapter 5 in terms of command
lines.

How does all this fit into tool use, the theme of Chapter 1? If only commands
are considered to be tools, then the tool set chosen by each user does not seem
particularly rich. Few are selected, and of these only a handful are used to any
great extent. Alternatively, if commands are viewed as simple building blocks
used to manufacture more sophisticated or specialized tools – perhaps by reshaping
(setting options), combining them (redirection, pipelines, and sequencing), or by
varying the objects they deal with – then every unique command line entered can
be considered a new tool. The latter view is advocated in the remaining chapters.

I will argue that, as with tools, the work environment should support and enhance
the way people use complete command lines. Recently used submissions should be
available for reuse, and people should be able to organize their command lines by
function and by task. The next four chapters of the book consider the first strategy
– reuse. Afterward, Chapter 8 considers the ways people organize their activities,
and Chapter 9 describes an implemented design of a user support tool that allows
people to reuse and store command lines (as they do tools) through a workbench
metaphor.

4
Techniques for reusing activities

Those who ignore history are destined to retype it
— Ben Shneiderman

It is evident that users often repeat activities they have previously submitted to
the computer. These activities include not only the commands they choose from
the many available in command-driven systems (Chapter 3), but also the complete
command line entry. Similarly, people repeat the ways they traverse paths within
menu hierarchies, select icons within graphical interfaces, and choose documents
within hypertext systems. Often, recalling the original activity is difficult or tedious.
For example, problem-solving processes must be recreated for complex activities;
command syntax or search paths in hierarchies must be remembered; input lines
retyped; icons found; and so on. Given these difficulties, potential exists for a
well-designed “reuse facility” to reduce the problems of activity reformulation.

But most system interfaces offer little support for reviewing and reusing previous
activities. Typically they must be completely retyped, or perhaps reselected through
menu navigation. Those systems that do provide assistance offer ad hoc “history”
mechanisms that employ a variety of recall strategies, most based on the simple
premise that the last n recent user inputs are a reasonable working set of candidates
for reselection. But is this premise correct? Might other strategies work better?
Indeed, is the dialog sufficiently repetitive to warrant some type of activity reuse
facility in the first place? As existing reuse facilities were designed by intuition
rather than from empirical knowledge of user interactions, it is difficult to judge
how effective they really are or what scope there is for improvement.

The next four chapters of this book explore the possibility of people reusing
(as opposed to reentering) their previous activities. This chapter surveys and
provides examples of interactive reuse facilities that allow users to recall, modify,
and resubmit their previous entries to computers. Although the idea is simple –
anything used before can be used again – it is effective only when recalling old
activities is less work for the user (cognitively and physically) than submitting new
ones. As we shall see in this chapter, the main differences between reuse facilities
arise from their ability to offer a reasonable set of candidates for reselection, and
from the user interface available to manipulate these candidates.

For example, consider a user who has submitted n activities to the system (say
n > 100) and whose next activity is identical to a previous one. An optimal reuse
facility would be an oracle that correctly predicted when an old action could be
reused and submitted it to the system in the user’s stead. In contrast, a non-predictive

40

4.1. History mechanisms 41

system that merely presents the user with all previous n submissions would be less
effective, for the user’s overhead now includes scanning (or remembering) the
complete interaction history and selecting the desired action. Real systems are
situated between these extremes. A small set of reasonable predictions p is offered
to the user (p << n), sometimes ranked by probability. The intention is to make
the act of selecting a prediction less work than entering it anew; the metric for
“work” is, of course, ill defined.

Reuse facilities have loose analogies in non-computer contexts. A cook can
explicitly mark preferred recipes in a cookbook by using bookmarks (n = total
recipes used, p = total bookmarks). “Adaptive” marking takes place when the
book naturally opens to highly used locations through wear of the binding and
food-encrusted pages. Or consider the audiophile who places records just listened
to at the top of the pile. Assuming that certain records are favored over others,
popular records tend to remain near the top of the stack and unpopular ones near the
bottom. A carpenter’s workbench has an implicit reuse facility – the work surface
is large enough to leave recently used tools on hand.

Three kinds of reuse facilities are distinguished in the following sections. The
first covers history mechanisms that let users manipulate a temporally ordered
list of their interactions. The second, adaptive systems, uses dynamic models of
previous inputs to predict subsequent ones, which are then made available to the
user. Finally, programming by example is concerned with reuse and generalization
of long input sequences.

The three subsequent chapters will assume an experimental approach to reuse.
Analyses of data and discussions are focused toward seeing how people repeat
their activities on UNIX and other systems, and the results are distilled into design
principles for empirically based reuse facilities.

4.1 History mechanisms

History mechanisms assume that the last few user submissions are good candidates
to make available for reuse. This notion of “temporal recency” is cognitively
attractive because users generally remember what they have just entered and can
predict the offerings the system will make available to them. Little time is wasted
searching in vain for missing items.

History mechanisms are by far the most common reuse facility available, and
are implemented across diverse systems in a variety of flavors. Four fundamentally
different interaction styles are described in this section: glass teletypes; graphical
selection; editing transcripts; and navigational traces. The first three pertain to
command line interfaces, whereas the last applies to systems in which users traverse
some information structure.

42 Techniques for reusing activities

4.1.1 History in glass teletypes

Traditional command line dialogs were created for the teletype; as a result many of
today’s VDUs are still a fixed viewport into a virtual roll of paper. Two functionally
rich history systems designed for these physically limited “glass teletypes” are the
UNIX csh and the INTERLISP–D programmer’s assistant. Both systems have users
retrieve old commands by “history directives,” which are themselves commands
interpreted in a special way.

UNIX csh maintains an invisible record of user inputs, where every string entered
on the command line is recorded in a numbered event list (Joy, 1980). Special
syntactic constructs allow previous events to be partially or completely recalled,
either by position on the list (relative or absolute) or by pattern matching. The
recalled events can be viewed, edited, and reexecuted. Even though the set of
predictions is in principle unbounded, in practice it is small for users will forget all
but the last few items they have entered. Although users may request a snapshot
of the event list, they usually choose not to because of the extra work and time
involved.

Figure 4.1 illustrates an event list (top box) and a few possibilities of csh history in
use on the next event (bottom box). Inputs in the bottom left column are translated
by csh to the actions shown in the middle, and the right column describes the
semantics of the history directives. As the examples illustrate, the syntax is quite
arcane, and deters use of the more powerful features (see Chapter 6; also Lee and
Lochovsky, 1990). Because the event list is generally invisible – snapshots of its
current state are displayed only by special request – it is difficult for the csh user to
refer to any but the last few events.

Another functionally powerful history mechanism is the programmer’s assistant,
designed for the INTERLISP–D programming environment (Teitelman and Masin-
ter, 1981; Xerox, 1985). Although INTERLISP–D is window-based, the top-level
“Interlisp-D Executive” occupies a plain scrolling window (a glass teletype) where
the user types lisp expressions (Figure 4.2). The user can also select and process
historical events by typing special command directives into this window, which
are interpreted by the programmer’s assistant. For example, the request USE cons
FOR setq IN –1 will replace the string “setq” by “cons” in the previous command.
The programmer’s assistant history mechanism is functionally richer than UNIX
csh. Through its history mechanism, users can retrieve and manipulate several
events at a time, specify iteration and conditionals, edit items, undo effects of pre-
vious entries, and so on. Figure 4.2 shows a sample dialog in the window labeled
“Interlisp-D Executive,” where events 85 and 87 make use of the programmer’s
assistant. As with csh, the system maintains a true time-ordered event list – every
entry is shown, even duplicates and erroneous statements.

Example Event List
9 mail ian

10 emacs fig1 fig2 fig3
11 cat fig1
12 diff fig*

Examples and Results of History Uses
User Input Action Description
!! diff fig* Redo the last event
!11 cat fig1 Redo event 11
!-2 cat fig1 Redo the second event from last
!mai mail ian Redo last event with prefix “mail”
!?ian? mail ian Redo last event containing the string “ian”
!! fig3 diff fig* fig3 Append “fig3” to the last event and redo
^diff^page page fig* Substitute “page” for “diff” in the last

command
!!:p diff fig* Print without executing the last event
page !10:1-2 page fig1 fig2 Include the 1st and 2nd arguments of event 10

and redo

Figure 4.1. Examples of the UNIX csh history mechanism in use.

44 Techniques for reusing activities

Figure 4.2. A portion of the INTERLISP–D environment, showing
HISTMENU in use.

4.1.2 History through graphical selection

Present-day terminals allow text to be placed anywhere on the screen, and high-
resolution bitmapped workstations with a pointing device (usually a mouse) are
common. Interaction styles have progressed accordingly, from text-oriented menus
and forms to mouse-oriented graphical systems running within windows (Witten
and Greenberg, 1985). History mechanisms have been extended to present a (pos-
sibly transient) menu of previous events, where items are selected and manipulated
with the pointing device. In contrast to previous history mechanisms that relied
heavily on a user’s memory of submissions and their relative ordering, predictions
are now offered by presenting them explicitly on the screen. Because selection
is usually just a matter of pointing to the desired item, the syntactic knowledge
required by the user is kept to a minimum.

One example is HISTMENU, which provides a limited yet simple way of access-
ing and modifying the INTERLISP–D programmer’s assistant history list (Bobrow,
1986). Figure 4.2 illustrates its use. Commands entered to the “INTERLISP–D

4.1. History mechanisms 45

Executive” window are recorded on the history list, part of which is displayed in
the “History Window” (by default, the last fifty items are shown; we show only
thirteen in the figure). Although the internal list is updated on every command, the
window is redrawn only when the user explicitly requests it. When pointed at with
a mouse, items (which may not fit completely in the narrow history window) are
printed in the “Prompt Window” (top of figure). Any entry can be reexecuted by
selecting it. Moreover, a pop-up menu allows limited further action: items can be
“fixed” (i.e., edited), undone, printed in full including additional detail (the “??”),
or deleted. The history window also has a shrunken form, as shown by the icon in
the figure.

MINIT is another graphical package that combines command processing and
the history list into a single WINDOW MANAGEMENT WINDOW (Barnes and
Bovey, 1986). It differs from other systems in that only through this window can
the user send commands to the other windows. The WINDOW MANAGEMENT
WINDOW is divided into three regions (Figure 4.3). The bottom region is an
editable typing line in which commands are typed. Once entered, they are auto-
matically added to the second region that contains a scrollable history list. As with
HISTMENU, the user may select items using a pointing device and control further
action with a pop-up menu – options are available to execute the item in various
windows and to insert the item into the typing line for further editing. The final
region at the top of Figure 4.3 contains a history management menu. Options are
available to

� scroll the history list, clear it, or save it for future use;
� textually search for specific items;
� delete specific items;
� insert text in the typing line without executing it.

Two more mechanisms complete MINIT’s history management capabilities. First,
the user can customize the system to prevent short commands that are easily retyped
from being added to the list. Second, history is viewable in either alphabetical or
execution order. Duplicate lines are eliminated in both methods. In execution
order, the user controls whether the original of a repeated command entry remains
in its original position or is moved to the end of the history list.

It is less easy to provide a history facility for a graphical interface such as a
painting or drawing program, and we are aware of only one system that comes
close to offering such capabilities. CHIMERA adopts the metaphor of a “comic
strip,” a graphical record of the user’s past activities that consists of a sequence
of panels, each of which illustrates an important moment in a story (Kurlander
and Feiner, 1990). Instead of showing miniatures, panels record just the objects
being manipulated and the actions performed on them without unnecessary detail.
This graphical history provides more power than just reuse, and it is far closer

Figure 4.3. MINIT’s WINDOW MANAGEMENT WINDOW, redrawn
from Barnes and Bovey (1986).

4.1. History mechanisms 47

in spirit to a full undo, skip, and redo facility (Vitter, 1984). The user can then:
expand a particular panel as necessary; delete, modify, undo, and redo the actions
it expresses; and even add new actions into the sequence.

4.1.3 History by editing transcripts

Some systems do not have a command history mechanism per se, but provide
similar capabilities through editing a transcript of the dialog. Instead of having
the sequential text dialog scroll off the screen (as with a glass teletype), it can
be maintained as a scrollable transcript. When text appearing previously can be
selected and used as input to the system, the transcript becomes a rudimentary
history mechanism.1

Copy and paste capabilities are available in most modern-day window-based
environments, where any text can be copied and pasted anywhere else. A typi-
cal example is VERSATERM, a terminal emulator for the Apple Macintosh that
maintains the transcript in a scrollable window (Figure 4.4).2 As shown in the
figure, text appearing within the transcript can be selected, then copied and pasted
by choosing the pull-down menu option. This will insert the text into the command
input area after the text cursor at the window’s bottom, where it may be edited as
needed. Explicit history lists are not maintained except as part of the scrollable
dialog transcript. Although there are some slight interface differences, many other
popular window-based terminal emulators allow one to select a text region any-
where on the display and paste it to the command input area, for example, xterm
within the standard X window system (Quercia and O’Reilly, 1990), pads within
APOLLOs DOMAIN window system (Apollo, 1986), and the command tool within
the OPEN LOOK DESKSET environment (Sun, 1990). Although any text in a
transcript is potentially executable in all these systems, the tradeoff is that mixing
previous input commands with output makes useful candidates more difficult to
find.

Another example is emacs, an editing environment that provides multiple views
of buffers through tiled windows (Stallman, 1981). Although buffers typically
allow users to view and edit files, it is also possible to run interactive processes (or
programs) within them. In most implementations of emacs, it is a simple matter
to call up a window running UNIX csh (e.g., Stallman, 1987; Unipress, 1986).
All capabilities of emacs are then available – commands may be edited, sessions
scrolled, pieces of text picked up from any buffer and used as input, and so on.

A further variant of transcript editing is the zmacs editor running within the

1The ability to scroll over a session’s transcript and select text for reexecution goes by a variety of names:
spatial browsing (Kurlander and Feiner, 1990), history through command typescripts by direct manipulation (Lee,
1990), and history by editing transcripts (this chapter).

2VERSATERM 4.0 software produced by Abelbeck Software.

Figure 4.4. The VERSATERM terminal emulator for the Apple Macin-
tosh. A user redoes a UNIX submission by copying and pasting an old
command line from the transcript to the command input area.

4.1. History mechanisms 49

SYMBOLICS GENERA lisp environment. This editor contains features of all
history systems discussed so far (Symbolics, 1985). Within the top-level lisp
listener, zmacs extends the functionality of emacs. Although used here primarily
for entering and editing command lines, previous inputs appearing within the
transcript become mouse-sensitive. A box appears around them as the mouse
passes over them, and pressing one mouse button copies the old command line
into the input area and makes it available for editing. Other button combinations
immediately reexecute previous commands, copy arbitrary command words, show
context-sensitive documentation, and so on. Alternatively, part or all of the mouse-
sensitive event list can be displayed within the lisp listener window. Keyboard-
based retrieval is also available within zmacs. Using the standard editing commands
within the one-line input area, a user can search, cycle through, and recall previous
events, similar to the command line capabilities of the VMS operating system
(DEC, 1985), the UNIX tcsh (Greer, Ellis, Placeway, and Zachariassen, 1991), and
GNU emacs (Stallman, 1987).

4.1.4 History by navigational traces

History has been applied to information retrieval and to systems where items must be
retrieved by some navigational process. These include traversing menu hierarchies,
searching through file directories, navigating hypertext, and so on. Here, history
can record both the route paths taken through the information structure and the
actual information finally selected, and then allow users to travel quickly through
previously traveled paths and choose old items.

In many systems, users tend to retrieve items of information that have been ac-
cessed previously (Greenberg and Witten, 1985a). The assumption that previously
read documents are referred to many times has been supported by a study of man,
the UNIX on-line manual (see Section 5.3.1; also Greenberg, 1984). Each user fre-
quently retrieved the same small set of pages from the large set that was available,
where sets differed substantially between users. By keeping a history list of the
documentation retrieved or nodes selected, users can avoid renavigating the path to
a previously viewed topic. Because items on the list can be viewed as placeholders
in a large document, they are sometimes known as “bookmarks.”

The Macintosh HYPERCARD is a simple hypertext facility that allows authoring
and browsing of stacks of information comprised of cards. Navigating cross-
links between stacks and cards is usually accomplished by simple button or menu
selections. Recent is a history facility within HYPERCARD that maintains a
pictoral list of up to the last forty-two unique cards visited (Figure 4.5). Each
picture is a miniature view of the card, placed on the list in order of first appearance.3

3Figure 4.5 is a fairly accurate representation of the screen. Because these miniature pictures are of poor
quality, the value of the current recent implementation is questionable. However, this problem could be overcome

Figure 4.5. The HYPERCARD recent screen.

4.1. History mechanisms 51

The last card visited is distinguished by a larger border, as illustrated by the second
miniature in the first row of the figure. A pull-down menu option pops up the
recent display, and old cards are revisited by selecting their miniatures from the list
(Goodman, 1987). When more than forty-two unique items have been selected, the
first row of seven items is cleared and made available for new ones (even though a
card in the first row may have recently been selected).

Feiner, Nagy, and van Dam (1982) push the notion of miniatures even further
in their experimental hypertext system. Hypertext nodes contain images that are
displayed on a document page; the page comprises the image plus controls for
moving between pages. One control is the “back page” button, a miniaturized image
of the last page visited with the word “back” overlaid on top of it. Selecting this
control will replace the current page with the last one visited. More complex is the
special “timeline” page, a time-stamped event list of the pages visited. What makes
it interesting is that miniatures are presented in a scrollable two-dimensional grid.
The horizontal axis represents chronological order, and the vertical axis represents
the chapters in the document. Miniatures of the visited pages are positioned on the
grid by their parent chapter and chronological order of selection. As with the “back
page” button, selecting a miniature will transport the reader back to that page.

The SYMBOLICS environment includes a very large on-line manual view-
able with the DOCUMENT EXAMINER – a window-based hypertext system
(Symbolics, 1985). The main window is divided into functionally different panes:
a documentation display area, a menu of topics, a bookmarks area, and a com-
mand line. The bookmarks area displays a history list of previously viewed topics,
where each title is a bookmark. Further bookmarks may be explicitly added by
the user (these are visually distinguished from historical bookmarks). Selecting a
bookmark displays either full documentation or a brief summary of the topic in the
documentation area. A similar bookmark strategy has been proposed previously
for videotext systems (Engel, Andriessen, and Schmitz, 1983).

These reuse techniques are not limited to document navigation. Navigation
occurs in many human–computer interfaces, from hierarchical menu and folder
systems, to structured browsers for programming systems. Many modern window
environments now supply graphical file browsers to let users visually navigate
through their (usually hierarchical) file stores. Some include history facilities.
FILE MANAGER, the file browser provided in the OPEN LOOK DESKSET
environment, keeps a history list of all directories through which the user has
navigated (Sun, 1990). Figure 4.6 illustrates its use. The list can be popped up as
a menu by selecting the “Home” button, and selecting any of the directory paths
presented will immediately bring the user there. As with recent, items are presented
in their order of first appearance. A more elaborate scheme is available on the Apple

by higher-resolution miniatures or perhaps by including a “magnifying glass.”

52 Techniques for reusing activities

Figure 4.6. A sample FILE MANAGER window, showing a history list
of the last few files visited.

Macintosh. Within an application, a file is usually opened through an “open dialog
box,” a simple mechanism that lets users navigate up and down a folder hierarchy,
with files shown as a scrollable and selectable list (left side of Figure 4.7). Whereas
the basic system has minimal support for history – the previously opened folder
is presented by default to the user – a third party system called BOOMERANG
adds full history support onto the open dialog box.4 The menu on the right side
of Figure 4.7 shows a person using BOOMERANG’s top-level menu to access a
history-ordered list of previously opened files (files that cannot be opened by the
current application are grayed out and are not selectable). Similar functionality is
also available for folders and for disks.

4.2 Adaptive systems

History mechanisms model the user’s previous inputs by recording them in a time-
ordered list. Adaptive systems build more elaborate statistical dynamic models and

4BOOMERANG 2.0 developed by Zeta Soft (H. Yamamoto) and distributed by Now Software, 2425B
ChanningWy, Suite 492, Berkeley, California.

4.2. Adaptive systems 53

Figure 4.7. The Apple Macintosh “open dialog” box, showing the
BOOMERANG history menu.

use them to predict subsequent inputs, which are presented to the user for selection
or approval. In this section we will describe two types of adaptive systems, one for
accelerating selection in a hierarchical menu system and the other for the entry of
free text. Both employ predominantly frequency-based, rather than recency-based,
models.

4.2.1 Adaptive menu hierarchies

It is possible to devise interactive menu-based interfaces that dynamically recon-
figure a menu hierarchy so that high-frequency items are treated preferentially, at
the expense of low-frequency items. ADAPTIVE MENUS provide an attractive
way of reducing the average number of choices that a user must make to select
an item without adding further paraphernalia to the interface (Witten, Cleary, and
Greenberg, 1984; Greenberg, 1984). Consider a telephone directory where the
access frequencies of names combined with their recency of selection define a
probability distribution on the set of entries, which reflects the “popularity” of the
names selected (Greenberg and Witten, 1985a). Instead of selecting regions at
each stage to cover approximately equal ranges of names, it is possible to divide
the probability distribution into approximately equal portions. During use, the act
of selection will alter the distribution and thereby increase the probability of the
names selected. Thus the user will be directed more quickly to entries that have

54 Techniques for reusing activities

already been selected – especially if they have been selected often and recently –
than to those that have not.

Figures 4.8a and 4.8b depict two menu hierarchies for a very small dictionary
with twenty name entries and their corresponding top-level menus. Figure 4.8c
calculates the average number of menus traversed per selection. In Figure 4.8a, the
hierarchy was obtained by subdividing the name space as equally as possible at each
stage, with a menu size of four. The number following each name shows how many
menu pages have to be scanned before that name can be found. Figure 4.8b shows
a similar hierarchy that now reflects a particular frequency distribution (the second
number following the name shows the item’s probability of selection). Popular
names, such as Graham and Zlotky, appear immediately on the first-level menu.
Less popular ones are accessed on the second-level menu, whereas the remainder
are relegated to the third level. For this particular case, the average number of menus
traversed by probability subdivision is less with probability subdivision than with
uniform subdivision, although this improvement is not as much as is theoretically
possible (Figure 4.8c). As probabilities also decay over time, once-popular (or
erroneously chosen) names eventually drop to a low value. A decay factor also
builds in a way of balancing frequency and recency. Whereas low decay will see
frequently chosen items migrate up the tree, a high decay rate gives more room to
recently chosen items.

Given a frequency distribution, it is not easy to construct a menu hierarchy that
minimizes the average number of selections required to find a name. Exhaustive
search over all menu trees is infeasible for all but the smallest problems. However,
simple splitting algorithms achieve good (but not optimal) performance in practice
(Witten, Cleary, and Greenberg, 1984).

With ADAPTIVE MENUS, previous actions are almost always easier to resub-
mit. Also, because no extra detail is added to the interface presentation, screen
usage is minimized. However, users must now scan the menus for their entries all
the time, even for those accessed frequently. Because paths change dynamically,
memory cannot be used to bypass the search process. Experimental evidence sug-
gests that this is not a problem in practice. As long as the database of entries is
large, the benefits will usually outweigh the deficiencies (Greenberg and Witten,
1985a). It is also possible to have the system monitor the average depth of the menu
selection process over time. If for some reason the average depth increased beyond
what would be normally expected, a static menu system could be substituted for
the adaptive one

4.2.2 Reuse through text prediction

History facilities assume that the last submissions entered are likely candidates
for reexecution. They are the ones visible on the screen in graphical and editing
systems, the ones most easily remembered by the user in glass teletypes, and the

Figure 4.8. Menu trees generated by uniform and probability subdivi-
sion.

56 Techniques for reusing activities

ones weighted into the probability distribution in ADAPTIVE MENUS (although
the latter is a function of the decay factor).

Two systems provide an alternative strategy for textual input – the REACTIVE
KEYBOARD (Darragh, 1988; Witten, Cleary, and Darragh, 1983; Darragh, Witten,
and James, 1990; Darragh and Witten, 1992) and its precursor PREDICT (Witten,
1982).5 Although implementation details differ, both use a dynamic adaptive model
of the text entered so far to predict further submissions. At each point during text
entry, the system estimates for each character the probability that it will be the next
one typed. This is based upon a Markov model that conditions the probability that
a particular symbol is seen on the fixed-length sequence of characters that precede
it. The order of the model is the number of characters in the context used for
prediction. For example, suppose an order-3 model is selected, and the user’s last
two characters are denoted by xy. The next character, denoted by �, is predicted
based upon occurrences of xy� in previous text (Witten, Cleary, and Darragh,
1983).

PREDICT filters any glass-teletype package, although limited character graphics
capabilities are required for its own interface. It selects a single prediction (or none
at all) as the most likely and displays it in reverse video in front of the current
cursor position. The user has the option of accepting correct predictions, which
is equivalent to actually typing them, or rejecting them by simply continuing to
type. Because only a single prediction is displayed, much of the power of the
predictive method is lost; at any point the model will have a range of predictions
with associated probabilities, and it is hard to choose a single “best” one (Witten,
1982).

The REACTIVE KEYBOARD, on the other hand, has two versions of a more
sophisticated interface that allows one to choose from multiple predictions. The
first, called RK-BUTTON, has a similar interface to PREDICT except that users
now have the option to cycle through a probability-ordered list of predictions. An
interaction with UNIX using RK-BUTTON is shown in Figure 4.9. The predicted
characters are written in reverse video on the screen, and represented in the figure
with enclosing rectangles. Control characters are preceded by ^, and ^J is the end-
of-line character. The column on the right shows the keys actually struck by the
user. Figure 4.9b gives the meaning of a few of the control keys; in fact, many more
line-editing features are provided. Although not illustrated in the figure, the system
is set up so that typing non-control characters simply overwrites the predictions;
thus one may use the keyboard in the ordinary way without even looking at the
screen.

The second version of the REACTIVE KEYBOARD, called RK-POINTER,
displays a menu containing the best p predictions, which changes dynamically

5These systems, their use, and their algorithms are completely described in another book in the Cambridge
Series on Human–Computer Interaction (Darragh and Witten, 1992).

Figure 4.9. Using RK-BUTTON, the UNIX version of the REACTIVE
KEYBOARD: (a) a dialog with UNIX; (b) some commands; and (c)
screen contents at end of the dialog.

58 Techniques for reusing activities

Figure 4.10. RK-POINTER menu and feedback showing five interaction
sequences; from Figure 4.4 in Darragh and Witten (1992).

with the immediate context of the text being entered (Darragh, 1988; Darragh
and Witten, 1992). Figure 4.10 shows RK-POINTER in action by displaying five
interaction sequences of the user composing some free text in the window on the
left, with a window of predictions on the right. In the “Predictions Window,”
the left region contains the context string upon which predictions are made (its
length is adjustable by the user). In the right region are rank-ordered predictions,
presented as alternative pieces of text from which the user can choose the next
characters. Interaction is through a pointing device, such as a mouse. Selection is
two-dimensional, in that the user can point anywhere within a prediction to accept
only the previous characters (the selected characters are shown in reverse video in
Figure 4.10). Less likely predictions are available through page-turning.

Text prediction based upon adaptive modeling appears promising. Keystroke
reductions of 50% and 90% have been achieved with PREDICT and the REACTIVE

4.3. Reuse through programming by example 59

KEYBOARD, respectively. However, these figures depend heavily on the type of
text entered and how the system has been primed. Considerable variation is likely in
practice. Theoretical benefits are also tempered by practical considerations. If the
cognitive and mechanical task of reviewing and (perhaps) accepting predictions
takes more time than simple text reentry, then keystroke reduction becomes a
misleading measure of the system’s overall performance. Furthermore, as users
themselves may not be able to predict the system’s offerings, they must scan the list
to see if a desired item is present. It is certain that a skilled typist will be capable
of entering free text faster than someone using the REACTIVE KEYBOARD, for
the time needed to review the predictions offered after every keystroke is far longer
than the time required just to type it in. However, these are powerful systems for
physically disabled people (see also Greenberg, Darragh, Maulsby, and Witten,
1993). As Darragh notes:

Of all potential users, those with severe physical limitations and communication
disabilities stand to gain the most from the REACTIVE KEYBOARD. Certain in-
dividuals within this group will find the REACTIVE KEYBOARD a valuable time
and energy saving enhancement (or replacement) for their standard communication
aid when writing or accessing computer systems.

— Darragh, 1988, p. 133

Systems that predict character sequences are appealing because they deal with
any free text. They are not limited, as history mechanisms are, to repeating lines or
other forms of incremental command submission. Yet this generality is also their
weakness when used as a front end to the command-based systems. There is no
guarantee that predictions will form valid command lines, because the underlying
Markov model has no knowledge about (say) UNIX. There is nothing to stop
predictions from being either syntactically malformed or nonsensical.

On the other hand, predictive systems have, for at least one person, proven
effective for csh interaction. Darragh, who is partially paralyzed, mentioned that
RK-BUTTON was (and is) indispensable for his day-to-day computer use. It
provided assistance on over thirty thousand command lines over a two-year period,
and averaged ten character predictions per line (Darragh, 1988, p. 136). He has
received similar comments on its helpfulness from other disabled users. He also
notes an interesting side effect – long descriptive file names are now used instead
of short ones.

4.3 Reuse through programming by example

The schemes discussed so far attempt to facilitate the reuse of individual items
of activity, such as commands, command lines, menu selections, or characters
predicted in context. This is sufficient if incremental activities have a one-to-one
correspondence with tasks the user may wish to repeat later. Often, however, tasks

60 Techniques for reusing activities

are accomplished by sequences of several primitive activities.
Closure is defined as the user’s subjective sense of reaching a goal, of completion,

or of understanding (Thimbleby, 1980). Previous sections have assumed that
closure is associated with each individual user action (the entry of a command or
command line, the selection of a document, and so on). If the task to be redone
involves a sequence of such activities, even though they are all independently
available through a reuse facility, the user would have to decompose mentally
his task into its primitives and choose each of them from the event list. For
example, viewing a specific file can comprise two activities: navigating to the
correct directory, and printing the desired file to the screen. In some cases, it will
be easier for the user to think about and recall these items as a single chunk rather
than as two separate activities.

When tasks are a sequence of activities, they constitute a procedure that can
be specified by the user giving one or more examples of the instance of the se-
quence. The goal of programming by example is to allow sequences and more
complex constructs to be communicated concretely, without the user resorting to
abstract specifications of control and data structure (e.g., in a programming lan-
guage) (Witten, MacDonald, and Greenberg, 1987; Myers, 1986)

The simplest programming by example procedure is a verbatim playback of a
sequence. The user performs an example of the required procedure and the system
remembers it for later repetition. For example, the use of “start-remembering,”
“stop-remembering,” and “do-it” commands enables a text editor to store and
play back macros of editing sequences (Gosling, 1981; Stallman, 1987; Unipress,
1986). Except for these special commands, the macro sequence is completely
specified by normal editing operations. With a little more effort, such sequences
can be named, filed for later use, and even edited (if presented in a human-readable
form). A practical difficulty with having a special mode – remembering mode – for
recording a sequence is that frequently one has already started the sequence before
deciding to record it, and so must retrace one’s steps and begin again.

The ability to generalize these simple macros could extend their power enor-
mously. Some programming by example strategies allow inclusion of standard
programming concepts – variables, conditionals, iteration, and so on – either by
inference from a number of sample sequences, or through explicit elaboration of
an example by the user. To illustrate the latter, an experimental system called
SMALLSTAR has been constructed for the Xerox Star office workstation that
operates according to the direct manipulation paradigm (Halbert, 1981; Halbert,
1984) In the first version of SMALLSTAR, a pop-up menu allowed one to indicate
explicitly the generalization required. For example, icons selected at specification
time are disambiguated by name, by position, or by asking for a similar object. But
because people found it hard to elaborate programming constructs when tracing
through an example, a later version had users employ an editor to specify constructs
after macro composition (Halbert, 1984).

4.3. Reuse through programming by example 61

Reminiscent of the editing capabilities of SMALLSTAR is QUICKEYS, a com-
mercial macro facility for the Apple Macintosh.6 Through a pull-down menu (left
side of Figure 4.11), the user can start, stop, and pause recording sequences, choose
selected macros for playback (there are two shown at the bottom of the menu),
and look at a reference card containing all the macros that have been recorded
previously. Once a macro has been defined, it may be edited. The right side of
Figure 4.11 shows a user editing a macro sequence she has named “Open Database”
(background window). A mouse “click” primitive, which was used to open a win-
dow, has been chosen (middle window), and the user now has the option of having
QUICKEYS find the window by its name on playback, rather than by its position
on the window stack. The problem is that editing takes much detective work to
find the correct primitive, for operations are recorded and presented at a very low
syntactic level (such as a mouse click) instead of its semantic meaning (such as
opening a particular window). Only after navigating through several presentation
screens will the user discover what the mouse click really does.

Other research on programming by example has concentrated on inferring con-
trol constructs from traces of execution given by the user (Witten, MacDonald, and
Greenberg, 1987), and some systems use domain knowledge, teaching metaphors,
and highly interactive interfaces to maximize the speed of transfer of procedures
(e.g., Maulsby and Witten, 1989; Maulsby, Witten, and Kittlitz, 1989; Maulsby,
Witten, Kittlitz, and Franceschin, 1991). However, there has been little research on
ways of naming, filing, and accessing procedures taught by example, and particu-
larly on knowledge and history-based methods of splitting up a stream of activities
into user-oriented “tasks.” This limits the practical use of programming by example
in reuse systems.

The appeal of programming by example is the belief that a user’s activity follows
a preconceived plan that can be encapsulated as a procedure. Intentions are realized
as plans-for-actions that directly guide behavior, and plans are actually prescriptions
or instructions for actions. These plans reduce to a detailed set of instructions
(which may also be subplans) that actually serve as the program that controls the
action. Suchman (1987) disputes this notion by claiming that plans are derived from
situated action – the necessarily ad hoc responses to the contingencies of particular
situations. Initial plans must be inherently vague if they are to accommodate
the unforeseeable contingencies of actual situations of action. It is only the post
hoc analysis of situated action that makes it appear as if a rational plan were
followed. Assuming that user activity on computers does arise from situated action,
then a programming by example system would not suffice by itself as a complete
user support tool, for it would not respond well to the changing circumstances of
situations. When previous actions are collected as fixed goal-related scripts of

6QUICKEYS is produced by CE Software Incorporated.

Figure 4.11. The QUICKEYS menu and several sequence-editing win-
dows.

4.4. Concluding remarks 63

events, flexibility is lost. It should be augmented by a reuse facility that collects
the actual responses to given situations, allowing one to select, possibly modify,
and redo the individual activities.

4.4 Concluding remarks

A reuse facility arranges for submissions entered to the application to be collected
and presented so that they are available for reuse. Three classes of reuse facility
were distinguished in this chapter: history mechanisms, adaptive systems, and
programming by example. A large number of ad hoc implemented designs were
surveyed within this framework, illustrating the diversity of techniques available.
Their appeal is the assistance they offer in any dialog that exhibits recurrence.
Because no semantic knowledge of the domain is usually needed, it is quite a
general approach. However, particular methods appear less than promising because
the cognitive and mechanical effort required to reuse most old submissions is
obviously greater than entering them anew.

The taxonomy of reuse facilities presented in this chapter is oriented toward a
survey of designs, and is certainly not the only structure possible. The mechanism
underlying reuse facilities – monitoring the user’s interaction and maintaining an
internal model of it – has potential for supplying more extensive user support. For
example, Lee (1988, 1990) gives the following eight ways that people could make
use of a history model.7

1. History for reuse allows a person to reuse an old item.
2. Relating input and output is a more specialized form of reuse, for it further

describes and disambiguates the objects and actions of reference in the context
of the dialog.

3. History through navigation allows users to reflect on where they have been
and where they are now, and use it to guide their progress.

4. History through user recovery includes undo capabilities.
5. History for functional grouping lets users group a set of history items into a

functional unit.
6. Recording and playback covers verbatim replay of action sequences.
7. History for consultations and reminders allows the user to consult past actions

and provides the user with reminders.
8. History for prediction helps anticipate and predict what the next user command

would be.

A key deficiency in this general area is the absence of empirical evidence justi-

7Lee’s distinctions cite and incorporate the ones made in this chapter.

64 Techniques for reusing activities

fying designs for reuse facilities, either a priori through knowledge of how people
repeat activities, or post hoc by evaluating their actual use. Nor are there any guide-
lines for how intuitive and empirical knowledge gleaned from one application might
generalize to others. The next three chapters address these deficiencies.

5
Recurrent systems

Schemes for activity reuse are based upon the assumption that the human–computer
dialog has many recurring activities. Yet there is almost no empirical evidence
confirming the existence of these recurrences or suggestions of how observed
patterns of recurrences in one dialog would generalize to other dialogs. The next few
chapters address this dearth. They provide empirical evidence that people not only
repeat their activities, but that they do so in quite regular ways.1 This chapter starts
with the general notion of recurrent systems, where most users predominantly repeat
their previous activities. Such systems suggest potential for activity reuse because
there is opportunity to give preferential treatment to the large number of repeated
actions. A few suspected recurrent systems from both non-computer and computer
domains are examined in this context to help pinpoint salient features. Particular
attention is paid to repetition of activities in telephone use, information retrieval
in technical manuals, and command lines in UNIX. The following chapters further
examine UNIX as a recurrent system, and then generalize the results obtained into
a set of design properties.

5.1 A definition of recurrent systems

An activity is loosely defined as the formulation and execution of one or more
actions whose result is expected to gratify the user’s immediate intention. It is
the unit entered into incremental interaction systems (as defined in Section 1.2.1)
(Thimbleby, 1990). Entering command lines, querying databases, and locating and
selecting items in a menu hierarchy are some examples. Copy typing is not: it is
continuous rather than incremental, and it is not a cognitive activity (at least, not
for the skilled typist).

A recurrent system is defined as an open-ended system in which users predom-
inantly repeat activities they have invoked previously.2 In other words, although
many activities are possible, most (but not all) are repetitions of previous activities
rather than freshly generated ones.

The fundamental notion behind recurrent systems is that activities are repeated.
The frequency of repeats is called the recurrence rate, and it identifies the proba-

1Some of the findings in this chapter were first presented at the 1988 ACM CHI Conference on Human Factors
in Computing Systems held in Washington, D.C. (Greenberg and Witten, 1988b).

2I first conceived the idea of recurrent systems in an earlier work (Greenberg, 1984). Originally called
repetitively accessed databases, it concerned information retrieval of items from a database. The current term
and definition subsumes the previous one.

65

66 Recurrent systems

bility that any activity is a repeat of a previous one. The total activities is a count of
all submissions the user has entered, whereas different activities count only those
that are different. The recurrence rate R over a set of user activities is calculated
as:

R =
total activities � different activities

total activities
� 100%

For a system to be classed as “recurrent,” the recurrence rate may exhibit a moderate
variation across users, provided that the average rate is fairly high.

Although many old activities are repeated, new ones are constantly added to the
repertory. The rate at which new activities are composed and introduced to the
dialog is the composition rate C:

C =
different activities

total activities
� 100% = 100 �R

Activity formation within recurrent systems is open-ended, as there are a very
large number of possible activities available. A dynamic recurrent system is one that
incorporates new activities regularly. They are static when C is close to zero (e.g.,
using commands, Chapter 3). Even when new activities are constantly generated,
only a small subset of the possibilities could be selected by any one user.

One purpose of this chapter is to clarify further what a recurrent system is. A few
systems that fit the definition given in this section are studied and their common
properties extracted. To start with, command use is obviously a recurrent system.
It seems reasonable to suggest that the findings reported in Chapter 3 are also
properties of recurrent systems. First, the set of activities invoked by any particular
user is typically a small subset of the activities usually available. Second, the set
of activities invoked may be disjointed or overlapping for different users of the
system. Finally, different people may repeat common activities at different rates,
and particular activities may be repeated by the same user at very different rates.
The frequency distribution of activity selection is not expected to be uniform.

This definition and list of properties is not a strong one, for the boundary between
recurrent and non-recurrent systems is not distinguished. Such a boundary specifi-
cation, even a “fuzzy” one, would be subjective and would also depend upon other
aspects of the system being investigated. For example, time between recurrences
might be a consideration, where only short-term recurrences are counted but those
repeated only after long intervals are considered different. Still, the properties pro-
vide a reasonable checklist for judging whether particular systems have potential
for reuse.

It would seem that, at least on the surface, recurrent systems are just a weaker way
of denoting patterns of behavior already well described by Zipf’s law. However,
major differences exist. First, many human-oriented observations characterized by
Zipf’s law are based upon cumulative results of the population. One study, for
example, examined the statistics of all terms used to retrieve items over all users of

5.2. Recurrent systems in the non-computer world 67

two separate bibliographic databases, and describes how they conform to Zipf’s law
(Bennett, 1975). Similar large-scale statistics have been applied to many facets of
library science (a list is given by Peachey, Bunt, and Colbourn, 1982). Yet there is
no evidence that the same distribution applies to individuals. Recurrent systems, on
the other hand, are centered around the statistics of activities of individuals, rather
than large groups. Second, Zipf’s law typically deals with very large numbers, and
tends to break down with few observations (see Bennett, 1975 for one example).
Recurrent systems are quite comfortable with small numbers. As will be seen,
patterns within some recurrent systems may be identified by observing a sequence
of less than one hundred actions performed by one individual (see Section 5.2.1).

5.2 Recurrent systems in the non-computer world

Are recurrent systems just artifacts peculiar to computer use, or are they every-
day phenomena in the natural world? This section suggests the latter. Without
belaboring the point, a few natural and reasonable possibilities follow.

� A cookbook has a subset of recipes referred to repeatedly by a single home-
maker. However, usage patterns differ because not all people favor the same
recipes. Some cooks prefer tried-and-true recipes, and thus will use a small set
of recipes many times. Others desire variety and select from a larger recipe set
with less repetition. A similar analogy may be made to selections from a book
of verse, readings in the Bible, or sections and columns read in a newspaper.

� An audiophile listens to different records repeatedly. Some are heard more
than others, and new styles come into favor while old ones fall out.

� Within tool-oriented contexts, tradespeople and artisans use some tools more
often than others.

� Procedures carried out by most office workers are routine. Still, special
procedures are sometimes followed for rarer conditions and exceptions, and
new ones are created to handle unexpected situations.

Empirical evidence supports the existence of recurrent systems in a variety of
task domains. Telephone use is one example, and our investigation is described
in this section. Subsequent sections will illustrate two other examples: retrieving
topics from technical manuals, and entering command lines in UNIX.

5.2.1 Telephone usage – a limited study

Telephone usage is examined as a first example of a recurrent system, where an
activity is simply a number being dialed. This seems a natural choice, for we know
from experience that:

68 Recurrent systems

Table 5.1. Telephone usage statistics

Results per subject
Measures 1 2 3 4 5
Total calls 313 129 119 106 106
Different calls 104 55 60 53 39
Recurrence rate 66.8% 57.4% 49.6% 50% 63.2%

Average recurrence rate 57.4% (std dev = 7:7)

� many calls are to people/firms that have been called before;
� some calls are new ones that have not been made before;
� numbers are called with differing frequencies;
� usage patterns evolve slowly over time.

This section will describe a few simple analyses that determine empirically some
characteristics of telephone usage as a recurrent system.

A small-scale study was conducted previously on individual telephone usage, as
reported in an earlier work (Greenberg, 1984). The intent was to inspect telephone
usage for patterns of recurrences in the numbers dialed. Fourteen telephone users
known to the researcher were asked to keep a list of all calls originating from
their office and/or home telephones. Instructions were to record consistently all
completed calls they had made, including busy or wrong numbers and repeated
calls. The time frame varied from one to three months. Although the original
report summarized results for all subjects, the present analysis removes artifacts
ascribed to subjects who had made relatively few calls. Only those five users who
had made over one hundred calls are described here. Data is also reanalyzed to see
how new calls are generated over time, to review the equilibrium of the apparently
stable recurrence rate, and to see if the frequency distribution of recurring numbers
exhibits temporal recency.

Telephone use by the top five single users was surveyed and compiled, with the
results summarized in Table 5.1. The collected data was surprisingly consistent in
many respects. First, new telephone numbers were dialed regularly, as indicated
by the relatively smooth and seemingly linear lines in Figure 5.1. The horizontal
axis represents the number of calls made, whereas the vertical axis indicates the
number of different calls. This result suggests that telephone use is not restricted
to a few numbers dialed repeatedly, but is, in fact, open-ended.

How many calls are recurrences of previous ones? The recurrence rate R

calculated over all calls made by each subject is noted in Table 5.1. The average
observed value over all users is about 57%.

But how stable is the recurrence rate (or, for that matter, the seemingly linear
composition rate)? What is the relationship between the rate and the number of

Figure 5.1. The number of different calls made vs. the number of calls
dialed so far.

70 Recurrent systems

Figure 5.2. Relation between recurrence rate and the number of calls
made.

phone calls dialed by a single user? The recurrence rate over the number of calls
made was reanalyzed, and the result for the most prolific caller (Subject 1) is plotted
in Figure 5.2.3 The graph indicates that the rate of recurrences rises quickly over the
first twenty calls and less quickly up to one hundred calls. The original report noted
that R then seems to approach an equilibrium. However, a regression analysis
made on the recurrence rate for 150 calls and over indicates a positive correlation
between the rate and the number of calls dialed (r = :661; df = 162; p << :01),
although the rate of increase is small (slope = :012). Because the recurrence rate
R should equal the slope of Figure 5.1 (the composition rate C), the trends seen
there are, in fact, non-linear.

Note that the study observed people who already had established patterns of
telephone use. The initial recurrence values (and their corresponding inflated
composition rate) are low only because some established and highly repeated
numbers are being encountered for the first time. One interpretation of the graph is
that users repeat phone numbers almost immediately, as shown by the rapid initial
rise. Second, some calls are probably repeated over a slightly longer period of time,

3Although the original graph in Greenberg (1984) averaged the data points over slices of ten calls, Figure 5.2
gives a true mapping of the recurrence rate up to each call. Also, only one subject is drawn here for clarity. Plots
of the other subjects showed similar trends.

5.2. Recurrent systems in the non-computer world 71

as revealed by the slow but steady increase in the middle of the curve. Finally,
there is a near cessation of increase in the rate of recurrences after eighty calls.
This indicates that although some calls are repeated over a long time period, a high
number of new and rarely repeated calls are made. For example, the composition
rate C was estimated at 33% for this subject (as shown in Figure 5.1). There seem
to be four general categories of calls: highly popular numbers that are called quite
often; moderately popular ones called infrequently; once-only calls that are never
or very rarely repeated, and new ones never seen before that are incorporated in the
repertory. This view agrees well with introspective expectations.

The original report also examined the frequency distribution of all calls made, by
ranking each subject’s calls by frequency. Of particular importance in the findings
is the decreasing trend in frequency of use over the calls, indicating a diverse
spectrum between highly and rarely repeated numbers. It was suggested that the
same decreasing trend can be loosely modeled by the Zipf distribution, although
the Zipf decrease is significantly more pronounced than in the telephone usage
distribution.

Finally, telephone numbers that have just been dialed are more likely to be
repeated than those dialed long ago. This notion of “temporal recency” is illustrated
by the five frequency distributions, one for each subject, drawn in Figure 5.3. The
method of analysis is described in Section 5.4.2. The horizontal axis represents the
distance of the number about to be submitted from the position of a matching old
one maintained in a temporally ordered list. The vertical axis shows the recurrence
rate for particular distances. For example, 10% of Subject 1’s calls are a repeat of
the last call made, 8% repeat the second from last, 5% the third from last, and so on
down the list. Figure 5.4 draws the same results for Subject 1 in a slightly different
way – the vertical axis is now the running sum of recurrences over distance. For
example, around 41% of all calls are repeats of one of the previous ten dialed. The
horizontal line at the top is R (67%), which, because new calls are also composed
regularly, is the limit of the running sum. The striking feature of both figures is that
the last few calls are more likely to be repeated than any others.4

In summary, the review of this study indicates that telephone usage is a dynamic
recurrent system, and adds the property that the probability of an item recurring is
related to its recency of selection. However, the limited number of subjects polled
over a relatively short time period does not supply enough data to support anything
but general statements about usage patterns.

4Even if this distribution were uniform probability, the last few calls would still exhibit a higher frequency of
recurrence, and could be misconstrued as temporal recency. However, Greenberg (1988a) shows that the artificial
recency effect produced by the uniform probability distribution is far smaller than the recency effects actually
observed, and can be effectively ignored.

Figure 5.3. Recurrences of phone numbers as a measure of distance.

5.3. Recurrent systems in information retrieval 73

Figure 5.4. Cumulative recurrences of phone numbers as a measure of
distance.

5.3 Recurrent systems in information retrieval

A second potential area of high recurrences is in information retrieval. Intuitions
about the recurrence rate of such systems are perhaps not so immediate as with
telephone access. Still, a few arguments for suspecting recurrences follow. First, it
is usually difficult to remember particular details of information retrieved, especially
if it is obscure, technical, or numerical in nature. Retrieval recurrences over short
time periods are therefore likely, because details of a document require constant
reviewing. Second, different information fragments are not sought equally. People
may recall “important” information fragments repeatedly over long time periods.
Finally, previously acquired information may become stale. As information is
rarely static, the same question may be posed repeatedly and the answer checked
for changes. Airline arrival and departure information available through teletext
environments is one example of dynamic information. Another example is the
slowly changing standards described in technical manuals, which become obsolete
over time.

This section reviews how people retrieve topics in one type of information system
– technical manuals.

74 Recurrent systems

5.3.1 Retrieving topics in manuals

Empirical evidence supports the existence of manuals as recurrent systems. M.
E. Lesk, in an analysis of work logs of Boeing engineers, noted that up to 70%
of all lookups of hard copy manuals (e.g., standards, product manuals) were to
specific things the engineers had seen before but had forgotten (reported in Dumais
and Landauer, 1982). The high figure is perhaps not surprising in retrospect, for
technical details found in engineering manuals do not lend themselves to easy
recall.

A previous study shows that topic retrieval in computer-based technical manuals
is also characterized by high recurrences. All usages of the UNIX on-line manual
by students and employees in a computer science department were collected for
one month (Bramwell, 1983) and analyzed for recurrences (Greenberg, 1984). A
total of 4,978 correct retrievals was made by 443 users. The salient findings are
summarized here.

1. The recurrence rate of retrievals was generally high, approaching an average
of 50% for each user after relatively few retrievals.

2. Moderate variation in the recurrence rate was noted between individuals. For
example, users who had made between 17 and 19 retrievals had a standard
deviation of 17.1% over the average rate of 45.2%. Extremes were 12% and
71%.

3. Each user retrieved only a small subset of the topics available.
4. Few common retrievals were noted between users, even when user tasks were

similar.
5. The frequency distribution of the topics retrieved by an individual varied

substantially from user to user. Although no uniform distribution was noted,
the general trend was to access most topics between one and three times, with
a smaller set being called on more often.

In general, one can conclude that retrieving topics in technical manuals is highly
repetitive. The properties of recurrent systems listed so far are also supported. It
is hypothesized that these results generalize to most structured documents, such
as those found in hypertext systems, and to general information retrieval facilities
provided by standard databases. Further work is required to substantiate this
hypothesis.

5.4 UNIX csh as a recurrent system

As mentioned previously, command use is certainly a recurrent system, although
it is a “static” one because C is so low. A separate question is whether complete
command lines submitted to general-purpose command-based environments also
follow the properties of recurrent systems. If they do, what patterns do these recur-

5.4. UNIX csh as a recurrent system 75

rences exhibit? This section investigates statistics of command line recurrences by
subjects using the UNIX csh.

Because commands often act on objects and are qualified with options, it is
important to look at the command line as a whole (see the concluding remarks
of Chapter 3). After introducing some terminology, two questions particularly
relevant to reuse facilities are addressed in this section. Both concern the statistics of
complete command lines entered by the user to UNIX. This is especially important,
for lines are the incremental unit of csh. Also, reuse facilities usually simplify
redoing the complete activity, rather than its isolated components. This section first
examines how often a user actually repeats command lines over the course of a
dialog. Particular attention is paid to the variation in this rate between groups and
between individuals, and its stability over the number of command lines entered.
Second, the probability that the next command line will match a user’s previous
input is described. This is measured as a function of the number of entries that
have elapsed since that input.

In the following discussion, a command line is a single complete line (up to
a terminating carriage return) entered by the user. This is a natural unit because
commands are interpreted by the system only when the return key is typed, and the
complete line is a more detailed reflection of one’s activity than just the command
itself. Command lines typically comprise an action (the command), an object
(e.g., files, strings), and modifiers (options). A sequential record of command lines
entered by a user over time, ignoring boundaries between login sessions, is known
as a history list. Erroneous submissions noticed by csh are not included. Unless
stated otherwise, the history list is a true sequential record of every single command
line typed. Duplicate activities, for example, are included. The distance between
two lines is the difference between their positions on the list. A working set is a
small subset of items on the history list. The number of different entries in the
history list is the command line vocabulary. Although white space is ignored,
syntactically different but semantically identical command lines are considered
distinct.5

5.4.1 Recurrences of command lines

Although Section 3.3 showed that only a few commands account for all actions of
a particular user, it is not known how often new command lines are formed and
old ones recur. This is important, as it is the recurrence rate – the probability that
the next item has been previously entered – that existing reuse facilities exploit
best. One might expect that command lines would recur infrequently, given the

5For example, the command lines ls –las and ls –lsa are treated as different vocabulary items, even though
they mean the same thing. Although this strategy overestimates the vocabulary size, a semantic analysis was
deemed too expensive for the large data set covered.

76 Recurrent systems

limitless possibilities and combinations of commands, modifiers, and arguments.
Surprisingly, this is not the case.

I investigated how often lines are repeated by counting the command line vocab-
ulary size. Let tcmd lines be the total number of command lines entered by the user
(i.e., the size of the history list), and vcmd lines be the vocabulary size, or number of
distinct items in that set. The overall recurrence rate, using this slightly different
terminology, is calculated as described in Section 5.1:

R =
tcmd lines � vcmd lines

tcmd lines
� 100%

Do users extend their vocabularies continuously and uniformly over the duration
of an interaction? If not, then the recurrence rate, measured locally, will change
over time as the user’s history list grows. Furthermore, calculating group means
for R could be confounded by the large variation between the number of command
lines each user enters, which was noted in Table 2.1. As R is a function of vcmd lines

and tcmd lines, it is necessary to investigate how the vocabulary size depends upon
the actual number of commands entered. If users never extend their vocabulary
after some short initialization period, little correlation with tcmd lines is expected. On
the other hand, a strong correlation is likely if new command lines are composed
regularly by a user.

A simple regression analysis was performed by contrasting tcmd lines and vcmd lines

for each subject. The regression line is plotted in Figure 5.5a, where each point
in the scattergram represents the value observed for each subject at the end of the
study period. A statistically significant and strong correlation was found (r = :918,
df = 167, p < :01). The moderate slope (C = 23%) of the regression line makes
the correlation practically significant as well.

It seems reasonable from the scattergram of Figure 5.5a that vcmd lines increases
linearly with tcmd lines, indicating that the recurrence rate is independent of the actual
number of lines entered. This was checked in two ways. The first was a simple
regression analysis of tcmd lines with R. The regression line is shown in Figure 5.5b.
Here, each point represents the recurrence rate observed for each subject at the end
of the study. A statistically significant correlation was found (r = :253, df = 167,
p < :01), indicating that the recurrence rate increases with the number of commands
entered. However, the high variance of data points around the line (r2 = :064),
and its low slope (0.002), makes this finding insignificant for practical purposes.
Consequently, R is considered independent of tcmd lines.

The second and perhaps more convincing way of observing the independence of
the recurrence rate is by examining in detail the vocabulary growth of individuals.
The formation of new command lines is surprisingly linear and regular, as illustrated
by Figure 5.6. Similar to Figure 3.2, and using the same typical users, the horizontal
axis still represents the number of lines entered so far, but now the vertical axis
indicates the size of the command line vocabulary. For example, the Scientist

Figure 5.5. Regression: (a) command line vocabulary size; and (b) the
% recurrence rate vs. the total command lines entered by each subject.

Figure 5.6. Command line vocabulary size vs. the number of commands
entered for four typical individuals.

5.4. UNIX csh as a recurrent system 79

Table 5.2. The average recurrence rate of the four sample UNIX user
groups

Sample name Recurrence rate Range
mean std dev minimum maximum

Novice Programmers 80.4% 7.2 64.7% 91.7%
Experienced Programmers 74.4% 9.7 51.4% 90.0%
Computer Scientists 67.7% 8.2 46.4% 82.0%
Non-programmers 69.4% 8.1 50% 84.3%

Total 73.8% 9.6 46.4% 91.7%

subject has composed close to 1,400 new command lines after 6,000 lines were
entered. The long periods of quiescence and the flurries of new activity seen in
Figure 3.2 are notably absent from Figure 5.6.

Table 5.2 lists the mean recurrence rate, standard deviation, and ranges of R
for each subject group. An analysis of variance of raw scores rejects the null
hypothesis that these means are equal (F (3; 164) = 21:42; p < :01). The Fisher
PLSD multiple comparison test suggests that all differences between group means
are significant (p < :01), except for the Non-programmers versus Scientists. As
the table indicates, the mean recurrence rate for the groups ranges between 68%
and 80%, with Novice Programmers exhibiting the highest scores.

Although recurrence rate depends upon user category, and very slightly on the
number of command lines entered, it is reasonable to simplify this descriptive
statistic by assuming the meanR over all users to be 75% andC of 25%, independent
of tcmd lines. In other words, an average of three out of every four command lines
entered by the user already exists on the history list. Conversely, an average of one
out of every four command lines appears for the first time.

5.4.2 Command line frequency as a function of distance

For any command line entered by a user, the probability that it has been entered
previously is quite high. But how do previous items contribute to this probability?
Do all items on the history list have a uniform probability of recurring, or do the
most recently entered submissions skew the distribution? If a graphical history
mechanism displayed the previous p entries as a list (e.g., HISTMENU, Bobrow,
1986), what is the probability that this includes the next entry?

The recurrence distribution as a measure of distance was calculated for each
user. First, let Rs;d be the recurrence rate at a given distance for a single person,
obtained by processing each subject’s data. Figure 5.7 shows the algorithm used
to obtain all values of Rs;d from a subject’s trace. The mean recurrence rate for a

Given:
� a trace numbered from 1 through n, where n is the last line entered;
� an array of counters used to accumulate the number of recurrences at a

particular distance.
Algorithm:

/* For each item, find its nearest match on the history list and record it */
for (i := 1 to n)

for (j := i–1 downto 1)
if (submissioni = submissionj) then begin

distance := i–j;
counter[distance] := counter[distance] + 1;
break; /* jump out of inner loop */

end
/* The averaged value found in each counter is Rs;d */
for (distance := 1 to n)

counter[distance] := (counter[distance]/n) * 100;

Figure 5.7. Processing a subject’s trace for all values of Rs;d.

5.5. Concluding remarks 81

given distance d over all S subjects in a particular group is then calculated as:

Rd =
1

S

SX

s=1

Rs;d

These group means are plotted in Figure 5.8a. The vertical axis represents Rd, the
rate of command line recurrences, whereas the horizontal axis shows the position of
the repeated command line on the history list relative to the current one. The slight
distortional effects of the uniform probability distribution are ignored. Taking
Novice Programmers, for example, there is a Rd1 = 11% probability that the
current command line is a repeat of the previous entry (distance = 1), Rd2 = 28%
for a distance of two, Rd3 = 9% for three, and so on. The most striking feature of
the figure is the extreme recency of the distribution.

The previous seven or so inputs contribute the majority of recurrences. Sur-
prisingly, it is not the last but the second-to-last command line that dominates the
distribution. The first and third are roughly the same, whereas the fourth through
seventh give small but significant contributions. Although the probability values
of Rd continually decrease after the second item, the rate of decrease and the low
values make all distances beyond the previous ten items equivalent for practical
purposes. This is illustrated further in Figure 5.8b, which plots the same data for the
grouped total as a running sum of the probability over a wider range of distances.
The running sum of the recurrence rate up to a given distance D for a single person
is called RD. Its mean value over a group of subjects is calculated as

RD =
1

S

SX

s=1

DX

d=1

Rs;d

The most recently entered command lines on the history list are responsible for
most of the cumulative probabilities. For example, there is a RD10

= 47% chance
that the next submission will match a member of a working set containing the ten
previous submissions. In comparison, all further contributions are slight (although
their sum total is not). The horizontal line at the top represents a ceiling to the
recurrence rate, as C = 26% of all command lines entered are first occurrences.

Figure 5.8a also shows that the differing recurrence rates between user groups,
noted previously in Table 5.2, are mostly attributed to the three previous command
lines. Recurrence rates are practically identical elsewhere in the distribution. This
difference is strongest on the second to last input, with the probability ranging from
a low of 10% for Scientists to a high of 28% for Novice Programmers.

5.5 Concluding remarks

This chapter introduced the notion of recurrent systems and provided empirical
evidence of their existence in both natural and computer domains. The three

Figure 5.8. (a) Recurrence distribution; and (b) cumulative recurrence
distribution as a measure of distance.

5.5. Concluding remarks 83

diverse examples studied – telephone usage, information retrieval, and command
line interfaces – show remarkable similarity in the way activities are repeated. All
satisfy the (admittedly vague) definition of recurrent systems set out in Section 5.1.
A few common properties of recurrent systems were also stated.

The statistics of UNIX csh use, and to a lesser extent telephone dialing, indicate
that the most recently submitted activities are the most likely to be repeated.
These statistics confirm the potential of reuse facilities in general, and verify the
assumptions of recency made by history mechanisms.

Four major weaknesses and criticisms of the idea of recurrent systems and the
empirical studies reported in this chapter are noted below. First, the definition
of recurrent systems is not precise, as no benchmark values are indicated. This
is intentional, because any values provided would be ad hoc (although observed
values for R seem to range from 40%–80%).

Second, the study of telephone usage is very limited. More subjects are necessary
and a longer observation period is required, especially considering the initial insta-
bility of R over the first one hundred calls. A more rigorous method for recording
calls is required as well. Although subjects say they were diligent in recording
all calls, there was no way to ascertain that they actually did. Also, other factors
should be included in the analysis. For example, what is the effect on the patterns
of calls made by teenagers versus adults? What about business versus personal
calls?

Third, the study of manual usage is very limited. Although many subjects were
available, the relatively small values and the high variance in topic retrievals by
subjects make it difficult to determine statistically significant patterns.

Fourth, undue attention may be paid to recency. Are there better methods for
predicting a user’s next activity? The next chapter tackles this question.

Finally, traces of subjects’ activities in all three studies were not annotated. Why
do people actually repeat activities? Although this chapter observed that they do,
we can only make educated guesses as to the reasons behind their actions.

6
Reuse opportunities in UNIX csh – potential and
actual

In this chapter, I consider the potential and actual reuse opportunities within UNIX.
First, several methods are suggested that could increase the likelihood that the next
submission matches an item in a small set of predictions offered to the user for
review and reuse. All methods are applied to the UNIX traces, and the predictive
“quality” of each method is measured and contrasted against the others. In the
second part of the chapter, I investigate how well the reuse facilities supplied by
the UNIX shell are used in practice.

6.1 Conditioning the distribution

In the last chapter, particular attention was paid to the recurrence of command lines
during csh use, and to the probability distribution of the next line given a sequential
history list of previous ones. We saw that the most striking feature of the collected
statistics is the tremendous potential for a historical reuse facility: the recurrence
rate is high and the last few submissions are the likeliest to be repeated.

One may predict what the user will do next by looking at those recent submissions.
But there is still room for improvement, because a significant portion of recurrences
are not recent submissions. Can better predictions of the user’s next step be
offered? This section proposes and evaluates alternative models of arranging a
user’s command line history that will condition the distribution in different ways.

The recurrence distributions of Section 5.4.2 were derived by considering all
input for a user as one long sequential stream, with no barriers placed between
sessions. We have seen that although a small set of recently entered command
lines accounts for a high portion of repetitions, many others lie outside. Consider
a working set of the ten previous items on the history list. From Figure 5.8b,
there is a C = 26% chance that the next command line has not appeared before,
a RD10

= 47% chance that it has occurred within the working set, and a 27%
chance that it last appeared further back. This section explores the possibility that
the distribution can be conditioned, first to increase the recurrence probabilities
over a working set of a given size, and second to improve the overall “quality”
of predictions offered. The following subsections explain how quality is assessed,
describe a variety of conditioning techniques, and apply these conditions to the
traces that have been collected.

84

6.1. Conditioning the distribution 85

6.1.1 The quality of predictions

Predictions of activities for reuse are only effective when the search for and selection
of an offering is less work for the user than submitting it afresh. Work is therefore
used to measure prediction quality. The smaller the amount of work required for
reuse as opposed to resubmission, the higher the quality of the set of predictions
offered. The selection of a high-quality prediction either reduces the cognitive effort
of reconstructing the original activity or minimizes the physical work required to
enter that activity to the system.

The metric for work introduced here is called MD , and comprises two compo-
nents that estimate a prediction’s quality. The first is RD, the probability that the
desired item appears on a displayed list of length p = D. Its calculation was given
in Section 5.4.2. The second, called cd, is the average number of characters saved
by reusing the matching activities at exactly a particular distance d. Incorporating
string length as a partial indicator of work assumes, of course, that longer strings
are harder to recall and reenter than short ones. MD indicates the average num-
ber of characters saved over all submissions when repeated activities are selected
from a list of candidates of length D. By using MD, predictive methods can be
numerically compared and ranked accordingly.

The calculation of MD and its components proceeds as follows. First, let cs;d be
the average number of characters saved by a subject s per recurrence at distance d,
calculated as:

cs;d =
cs;d

rs;d
:

The term cs;d is the total number of characters saved by the subject reusing all
matching recurrences at a particular distance, and rs;d is the number of matching
recurrences at that distance. When cs;d is averaged over all subjects S, we get cd,
calculated as:

cd =
1

S

SX

s=1

cs;d:

But cd just gives the average characters saved by using a correct prediction at a
particular distance. An alternative approach calculates Md, which includes the
probability that the prediction is correct. More specifically, Md is the mean number
of characters saved at a particular distance over all subjects:

Md =
1

S

SX

s=1

cs;dRs;d;

whereRs;d is a particular subject’s probability of a recurrence at the given distance,
defined in Section 5.4.2 . Note that Md differs from cd as it is the average savings
per submission rather than per recurrence. The final step in calculating MD shows
the cumulative average savings in characters per submission when all D predictions

86 Reuse opportunities in UNIX csh – potential and actual

are available for selection:

MD =
DX

d=1

Md = M
1
+M

2
+ : : :+Md=D:

Both RD and MD will be used in this chapter as metrics for evaluating working
sets of particular sizes, although values of Rd (Section 5.4.2) and cd are included
for reference.

6.1.2 Different conditioning methods

A variety of conditioning methods are described here. These include not only
conditions that are expected to perform quite well, but also weak ones that have
been implemented in existing reuse facilities. For each method I indicate how the
recorded data will be analyzed to assess its effectiveness. The algorithms used to
find Rs;d for each case are not elaborated (they are minor variations of the one
shown in Figure 5.7). Results are presented in the next section and show how
effective – or ineffective – these conditioning methods really are.

Sequential ordering by recency. This conditioning method was described in the
previous chapter, and is simply a time-ordered list of all submissions entered by the
user. The first column of Table 6.1 illustrates the sequentially ordered history list
numbered by order of entry. The most recent submission appears on the top, and
the history list – as with all other examples on the table – is intended to be reviewed
top-down.

There are two virtues of recency. First, the items presented would be the ones
a user has just entered and still remembers. The user knows they are on the list
without having to scan through it. Second, unlike some adaptive methods, there is
no initial startup instability of deciding what to present when only a few items are
available.

Pruning duplicates from the history list. The sequentially ordered history lists
mentioned so far maintain a record of every single command line typed. Duplicate
lines are not pruned off the list. On a history list of limited length, duplicates
occupy space that could be used more fruitfully by other command lines.

There are two obvious strategies for pruning redundancies, as described by
Barnes and Bovey (1986). The first saves the activity in its original location on the
history list (as in HYPERCARD’s recent facility, (Section 4.1.4) whereas the second
saves it in its latest position (as in WINDOW MANAGEMENT WINDOW, Section
4.1.2). It is expected that the latter approach would give better performance, because
not only is local context maintained, but unique and low-probability command

Table 6.1. Examples of history lists conditioned by different methods

Sequential Duplicates removed Frequency order
starting in original latest secondary key secondary key
�/text position position is recency is reverse-recency

14 cd �/figs 12 cd �/text 14 cd �/figs 10 ls 3 10 ls 3
13 print draft 9 graph fig1 13 print draft 14 cd �/figs 2 4 edit draft 2
12 cd �/text 8 edit fig2 12 cd �/text 13 print draft 2 11 edit fig1 2
11 edit fig1 7 edit fig1 11 edit fig1 11 edit fig1 2 13 print draft 2
10 ls 5 cd �/figs 10 ls 4 edit draft 2 14 cd �/figs 2
9 graph fig1 3 print draft 9 graph fig1 12 cd �/text 1 8 edit fig2 1
8 edit fig2 2 edit draft 8 edit fig2 9 graph fig1 1 9 graph fig1 1
7 edit fig1 1 ls 4 edit draft 8 edit fig2 1 12 cd �/text 1
6 ls
5 cd �/figs
4 edit draft
3 print draft
2 edit draft
1 ls
Alphabetic Directory sensitive Commands
duplicates directory context directory context recency,
removed is �/text is�/figs no duplicates

14 cd �/figs 14 cd �/figs 12 cd �/text 14 cd
12 cd �/text 3 print draft 8 edit fig1 13 print
4 edit draft 5 cd �/figs 10 ls 11 edit

11 edit fig1 4 edit draft 9 graph fig1 10 ls
8 edit fig2 13 print draft 11 edit fig2 9 graph
9 graph fig1 2 edit draft 7 edit fig1

10 ls 1 ls 6 ls
13 print draft

with duplicates removed,
events saved in latest position

1 ls 8 edit fig2
4 edit draft 9 graph fig1

13 print draft 10 ls
14 cd �/figs 11 edit fig1

12 cd �/text

Note: In UNIX, users change directories through the cd command. The “�” is shorthand for the home
directory. Following “/”’s indicate sub–directories.

88 Reuse opportunities in UNIX csh – potential and actual

entries will migrate to the back of the list over time.1

Consider, for example, the two pruned event lists in the second major column
of Table 6.1. Both are the same length, which is considerably shorter than the
plain sequential one in the first column. But the order of entries is quite different.
Even in this short list, the disadvantage of saving items in their original position is
evident. Local context is weak (indicated by the scattered event numbers), and the
frequently used ls command line is poorly positioned at the bottom of the list.

Data sets are reanalyzed using both strategies of pruning duplicates from sequen-
tial history lists, where recurring items are either kept in their original position or
moved to their latest position.

Frequency ordering. Perhaps the most obvious way of ranking activities is by
frequency, where the most often-used command line appears at the front of the
history list and the rarest one at the end. This approach is conservative. Old and
frequently used items tend to stay around – unless there is a built-in decay factor –
whereas newer submissions will not appear near the head of the list until they are
repeated as often as the old ones. Still, frequency ordering may do as well as or
perhaps even better than recency.

Although ordering items by frequency is straightforward, it is not clear how to
sort items of identical frequencies. One possibility uses recency as the secondary
sorting key. For example, if the current submission is a recurrence, its frequency
count is increased by 1 and it is relocated before all other recurrences with the
same count. Another approach uses a secondary sort-by-reverse-recency, where
the recurring item is placed at the tail of the list of items with identical frequencies.
Contrasting these two methods gives a bound to the range of recency effects.
Examples of each are shown in Table 6.1, where the number to each item’s right
counts how often that line has been submitted.

It is expected that frequency ordering may do quite well, given that UNIX
command lines often consist of a frequently executed command without arguments.
But probably fewer characters are predicted, because short lines would tend to
dominate the higher frequencies. Another disadvantage of frequency ordering is
that counts must now be associated with every submission. At best, this just takes
up some space and a little CPU time, which matters little in these days of cheap
memory and fast machines. At worst, the derived probabilities associated with a
young history list are quite unstable and may lead to very poor initial predictions,
which could discourage a new user from placing their faith in it (cf. recency).

The data sets are analyzed by ordering history lists by frequency and using two

1Saving recurrencing activities in their latest position only is equivalent to “self-organized files,” where
successfully located records are moved to the beginning of the sequentially accessed file. As briefly discussed
by Knuth (1973), .often-used items tend to be located near the beginning of the file, and the average number of
comparisons is always less than twice the optimal value possible.

6.1. Conditioning the distribution 89

cases of secondary sorting: recency and reverse-recency. Because there is no
advantage in keeping multiple copies of command lines, they are pruned from the
list.

Alphabetic ordering. Sorting activities alphabetically is another possibility. Al-
though items on alphabetic ordered lists are best found by binary search or pattern
matching, surprisingly many systems provide only scrolling capabilities for se-
quential searching. One example is the window management window, described in
Section 4.1.2, which provides it as a display option (Barnes and Bovey, 1986). We
would expect poor performance of a distribution derived from alphabetic ordering.
Letter frequencies aside, it should do no better than a random ordering of events.
Performance is easily evaluated by seeing how many pages of previous activities
would have to be scrolled on average before the desired item is found.

User’s traces were reanalyzed by placing their command lines on a history list
in ASCII order. If a new submission is identical to one already on the list, it is
ignored. An example of an ASCII-ordered list is included in Table 6.1.

Context-sensitive history lists by directory. Users of computer systems perform
much task switching (Bannon, Cypher, Greenspan, and Monty, 1983), where each
task represents an independent or interacting context. (See Section 8.1 for further
discussion.) Because many command line submissions are specific to the task at
hand, it is reasonable to hypothesize that context-sensitive history lists will give
better local predictions.

Ideally, the reuse facility would infer the context of every submission entered
and place it on an appropriate history list, creating a new one if needed. Events
common to multiple contexts could perhaps be shared between lists. The system
would then infer the likely context of the next submission and offer its predictions
for reuse only from the appropriate list.

Associating users’ activities with their tasks or goals is not easy, and such
inferences cannot be made reliably. Instead, a simple heuristic provides a reasonable
guess of the true contexts. UNIX furnishes a hierarchical directory system for
maintaining files. As many user actions reference these files, I hypothesize that the
current working directory defines a context for command lines. This grouping of
command lines by the current directory (or perhaps by the obvious alternative of
windows) is just an estimate – possibly a poor one – of actual task contexts.

When data was collected, each user submission was annotated with the directory
it was run in. The traces were reanalyzed by creating a new history list for each
new directory visited and placing the command line on that list. The recurrence
distance for each submission was then calculated by retrieving the history list for
the current directory of the next submission and searching it for the most recent
match.

The second main column in the lower half of Table 6.1 illustrates the directory-

90 Reuse opportunities in UNIX csh – potential and actual

sensitive condition applied to the sequential input, where each sub-column is sen-
sitive to a particular directory. Most command lines refer to files in that directory,
and would rarely be used in other directories. Some command lines, however, are
common to more than one directory (for example, ls for listing files).

Ordering commands by recency. Chapter 3 showed that most individuals use
few commands, and that the frequency distribution of command selection is very
uneven. It would be interesting to see how a history list comprised of recency-
ordered commands (not command lines) would perform. Although we expect the
probability of a matching prediction RD to be quite high, the characters predicted
per recurrence would be lower, because the rest of the command line is ignored
(see the example in Table 6.1).

User traces are reanalyzed over history lists of commands. Duplicate com-
mands are pruned, with a single copy of the command kept in its position of latest
occurrence.

Partial matches. Instead of the next command line matching a previous one ex-
actly, partial matching may be allowed. This is helpful when people make simple
spelling mistakes, when the same command and options are invoked on different
arguments, when command lines are extended, and so on.

However, the potential benefit is highly user and situation dependent, for the user
must alter the selected sequence before it is invoked. Consider the next submission
s and its partial match to a previous event e on the history list. If selecting and
modifying e is easier and more reliable than entering s, then it is an attractive
strategy. If s is long, for example, and differs from e by a single character, selecting
and fixing e is probably faster. If s is short, it is unlikely that the user would bother.

The possibility of the given pattern retrieving an undesired interposed event
must be considered too. Consider, for example, a user who wishes to invoke the
document formatter roff on the file file.n after submitting the following csh input
lines.

roff file.n
rm *.n
edit file.n

The user enters the csh reuse directive !r, which recalls the last event beginning
with the letter r, and mistakenly executes rm *.n instead of roff file.n. All files
ending with *.n are removed, and the work is lost.

Partial matches by prefix were investigated. Command lines are matched when-
ever it is a prefix of the next submission. If s = “edit fig2 ,” for example, some
partial matches on prefix for e could be “ed ,” “edit ,” “edit fig ,” and “edit fig2 .”

In partial matching, history lists are not altered. Rather, it is the definition of

6.1. Conditioning the distribution 91

recurrence that has changed. Any increase in predictive probability comes at the
expense of fewer useful characters predicted. Effects of partial matching are shown
for a recency-ordered history list both with duplicates retained and with duplicates
pruned.

A hierarchy of command lines and command-sensitive sub-lists. One way of
increasing the effectiveness of a history list is by using existing items on the display
as a hierarchical entry point to related items. More specifically, consider a history
list of command lines where each item can further raise a secondary list of all lines
that share the same initial command (called a command-sensitive list). One first
scans down i entries in the normal list for either an exact match that terminates
the search, or for a line that starts with the desired command. In the later case,
the command-sensitive list is displayed (perhaps as a pop-up menu) and the search
continues until an exact match is found j entries later. The distance of a matching
recurrence is simply i+ j. Given the sequential list in Table 6.1, for example, the
command sensitive sub-list on item 11 would be edit fig1, edit fig2, and edit draft.

Such a scheme could do no worse than the original method of displaying the
history list, and it has the potential to do much better. This method was tested
by using recency-ordering of both the primary and command-sensitive history lists
with duplicates saved in their latest position only.

Combinations. These strategies are not mutually exclusive, and they can be com-
bined in a variety of ways. The bottom half of column 2 of Table 6.1 shows one such
possibility, where the event list is conditioned by directory sensitivity and pruning.
Data sets were reanalyzed using combinations of a few conditions mentioned in
this section.

6.1.3 Evaluating the conditioning methods

Data selection. Conditioning by directory context is no different from standard
sequential history if subjects work only within a single directory. Because not
all subjects used multiple directories, this portion of the analysis was restricted
to the Experienced Programmers, each of whom used several directories.2 All
other groups had subjects who used one directory exclusively (17 of the 55 Novice
Programmers, 6 of the 25 Non-programmers, and 2 of the 52 Computer Scientists).

Each subject is reanalyzed using the afore mentioned conditioning methods and
some of their combinations for redefining both the history list and the method of
determining recurrences.

2Another reason for limiting the number of subjects analyzed is more pragmatic – about four to eight hours of
machine time were required to process a single condition for each group.

92 Reuse opportunities in UNIX csh – potential and actual

Length of command lines and MD. Before delving into details of how each
method performs according to the quality metric, we need to determine the best
performance possible. To start, the average length of command lines is 7.58
characters, where terminating line feeds are not counted and duplicate lines are
included. This was calculated by finding the average line length for each subject,
and averaging those results over all subjects. These numbers will underestimate
the actual characters typed, for editing sequences are not included.

Because reuse facilities can predict only lines that have been entered previously,
it is important to know if recurring lines have a different average length from those
appearing only once. Further analysis shows that the average length of submissions
that already exist on the history list is 5.97 characters, whereas those that appear
for the first time are 12.29 characters long. This is not as surprising as it might
seem at first, for short lines with few arguments are usually more general-purpose
(and therefore reusable) than complex lines. We would expect frequently appearing
lines to be shorter than lines that are rarely or never repeated.

The maximum possible value for MD is therefore R � 5:97=100, for MD is
calculated over all submissions. AsR is 74.4% for Experienced Programmers, MD

for an optimal conditioning method is 4.43 characters predicted per submission.

Results. Results for all conditions are summarized in four tables, each presenting
various distributions over the last fifty items of the history list. Table 6.2 presents the
percentage of the frequency of submissions recurring at a particular distance (Rd),
and Table 6.3 provides the same information as a running sum over distance (RD).
The latter includes the total recurrence rate over the complete history list, which
differs with certain conditions.3 Figure 6.1 graphs the results of Table 6.3. As with
Figure 5.8b, the horizontal axis shows the position of the repeated command line
on the history list relative to the current one, whereas the vertical axis represents
RD, the rate of accumulated command line recurrences, as a percentage.

The next two tables involve the length in characters of recurrences. Table 6.4
shows the average number of characters saved for a recurrence at a given distance
(the value of cd). Table 6.5 displays the metric MD, which shows how many
characters are saved for an average submission. This value accounts for recur-
ring and non-recurring submissions, and assumes that the user can select from D

predictions. Figure 6.2 graphs the performance of each conditioning method over
distance using this metric.

Standard sequential. The last chapter saw an RD10
of 44.4% for the Experienced

Programmer group (also in Table 6.3). The metric MD10
for the same group is 2.48

characters per submission (Table 6.5), which is 55% of the maximum value it could

3The recurrence rate differs when the way of determining matching submissions changes (partial matching,
commands only) and when the history list is split into multiple lists (directory sensitivity).

Table 6.2. Probability of a recurrence over distance for various
conditioning methods

Probability of a recurrence at the given distance d in percent (Rd)
Conditioning Distance

method 1 2 3 4 5 6 7 8 9 10 20 30 40 50
Recency, duplicates saved:
always 6.12 12.29 6.71 4.83 4.12 2.94 2.36 1.97 1.66 1.40 0.59 0.32 0.21 0.16
in original position only 2.53 1.75 1.30 1.08 1.01 0.82 0.79 0.66 0.75 0.61 0.35 0.34 0.32 0.23
in latest position only 6.12 12.82 7.58 5.35 4.93 3.48 2.83 2.38 1.99 1.70 0.59 0.30 0.18 0.14

Frequency order:
second key recency 13.13 7.95 5.24 3.98 3.37 2.83 2.47 2.11 1.79 1.56 0.73 0.49 0.26 0.20
second key reverse recency 13.16 7.74 5.16 3.84 3.20 2.74 2.38 1.91 1.73 1.53 0.74 0.44 0.24 0.16

Alphabetic order:
duplicates removed 1.27 1.00 1.21 1.30 1.02 1.25 0.76 0.87 0.85 0.57 0.68 0.48 0.32 0.52

Directory sensitive by recency:
duplicates included 7.46 13.61 8.20 4.89 3.50 2.73 2.06 1.67 1.52 1.22 0.44 0.28 0.15 0.12
duplicates removed 7.46 14.29 9.39 5.78 4.13 3.11 2.37 2.06 1.53 1.38 0.39 0.18 0.11 0.08

Commands only by recency:
duplicates removed 15.36 19.87 10.89 7.05 5.75 4.09 3.11 2.56 2.21 1.81 0.64 0.28 0.16 0.14

Partial matching by recency:
duplicates included 8.17 13.49 7.61 5.45 4.51 3.35 2.60 2.18 1.85 1.59 0.63 0.34 0.26 0.16
duplicates removed 8.17 14.07 8.60 6.07 5.34 3.89 3.06 2.64 2.26 1.92 0.65 0.33 0.23 0.18

Command hierarchy:
recency, duplicates removed 6.12 13.89 9.35 6.60 5.56 4.03 3.19 2.70 2.26 1.83 0.52 0.22 0.13 0.09

Table 6.3. Cumulative probabilities of a recurrence over distance for
various conditioning methods

Cumulative probabilities of a recurrence up to a given distance d in percent (RD)
Conditioning Distance R

method 1 2 3 4 5 6 7 8 9 10 20 30 40 50
Recency, duplicates saved:
always 6.12 18.41 25.12 29.94 34.06 37.00 39.36 41.33 42.99 44.39 52.67 56.82 59.58 61.47 74.42
in original position only 2.53 4.28 5.57 6.65 7.66 8.48 9.27 9.93 10.68 11.29 15.92 19.58 22.82 26.29 74.42
in latest position only 6.12 18.94 26.52 31.87 36.80 40.28 43.11 45.48 47.47 49.17 58.98 63.51 66.00 67.67 74.42

Frequency order:
2nd key recency 13.13 21.08 26.32 30.29 33.66 36.48 38.95 41.06 42.85 44.41 55.35 60.98 64.31 66.48 74.42
2nd key reverse recency 13.16 20.89 26.05 29.90 33.09 35.83 38.21 40.12 41.84 43.37 53.63 58.85 62.02 63.93 74.42

Alphabetic order:
duplicates removed 1.27 2.27 3.48 4.78 5.80 7.05 7.81 8.68 9.52 10.09 16.53 21.76 25.84 30.16 74.42

Directory sensitive by recency:
duplicates included 7.46 21.07 29.27 34.16 37.66 40.39 42.44 44.12 45.63 46.85 53.52 56.62 58.48 59.69 65.53
duplicates removed 7.46 21.75 31.15 36.93 41.06 44.18 46.54 48.60 50.13 51.51 58.80 61.56 62.93 63.74 65.53

Commands only by recency:
duplicates removed 15.36 35.23 46.12 53.17 58.92 63.01 66.12 68.68 70.89 72.70 82.61 86.83 89.05 90.49 95.24

Partial matching by recency:
duplicates included 8.17 21.65 29.26 34.71 39.22 42.57 45.17 47.34 49.19 50.78 60.16 64.74 67.78 69.93 84.39
duplicates removed 8.17 22.23 30.83 36.90 42.25 46.14 49.20 51.84 54.10 56.02 66.90 72.04 74.94 76.88 84.39

Command hierarchy:
recency, dup’s removed 6.12 20.01 29.36 35.96 41.52 45.56 48.74 51.44 53.71 55.54 64.81 68.38 70.17 71.21 74.42

Table 6.4. Average number of characters saved over distance per
recurrence

The average number of characters saved over all subjects per recurrence at a given distance (cd)
Conditioning Distance

method 1 2 3 4 5 6 7 8 9 10 20 30 40 50
Recency, duplicates saved:
always 5.94 5.04 5.31 5.57 5.79 5.61 6.11 5.84 5.64 5.51 6.26 5.39 4.83 5.78
in original position only 10.60 10.24 9.76 9.51 8.41 8.83 9.49 7.97 8.17 8.00 7.18 6.70 6.11 5.42
in latest position only 5.94 5.06 5.49 5.72 5.86 5.51 5.88 5.76 5.74 5.87 6.21 5.83 5.31 5.67

Frequency order:
second key recency 2.57 3.94 5.34 5.76 5.30 5.58 5.17 6.10 6.45 6.50 6.91 7.61 8.73 8.94
second key reverse recency 2.60 3.93 5.35 5.65 5.10 5.56 5.30 6.19 6.08 6.38 7.31 7.58 7.30 8.15

Alphabetic order:
duplicates removed 3.52 6.67 5.67 5.66 5.66 7.09 6.12 7.10 6.90 6.79 6.33 4.65 5.97 4.84

Directory sensitive by recency:
duplicates included 6.47 5.70 5.62 5.95 6.24 6.08 6.56 6.14 5.61 5.69 6.08 6.17 5.23 5.08
duplicates removed 6.47 5.71 5.76 6.10 6.14 6.05 6.21 6.04 5.88 5.98 6.43 4.81 6.04 4.36

Commands only by recency:
duplicates removed 3.25 2.68 2.82 2.96 3.08 3.00 3.07 3.05 3.06 3.15 2.96 3.05 2.78 2.98

Partial matching by recency:
duplicates included 5.54 4.86 5.02 5.18 5.32 5.22 5.45 5.02 4.94 4.90 5.24 4.09 4.30 3.99
duplicates removed 5.54 4.87 5.18 5.25 5.38 4.99 5.14 5.02 4.99 5.11 4.65 4.27 3.84 4.00

Command hierarchy:
recency, duplicates removed 5.94 5.36 5.85 6.11 6.15 6.23 6.02 6.11 6.30 6.48 5.91 6.33 4.44 4.37

Table 6.5. Cumulative average number of characters saved per
submission over distance

Cumulative average savings in characters of D predictions over all submissions (MD)
Conditioning Distance

method 1 2 3 4 5 6 7 8 9 10 20 30 40 50
Recency, duplicates saved:
always 0.37 0.99 1.35 1.63 1.87 2.04 2.19 2.31 2.40 2.48 2.99 3.25 3.43 3.55
in original position only 0.27 0.46 0.59 0.69 0.78 0.86 0.94 0.99 1.05 1.10 1.48 1.75 1.98 2.20
in latest position only 0.37 1.02 1.44 1.76 2.05 2.25 2.42 2.56 2.68 2.78 3.40 3.69 3.86 3.98

Frequency order:
second key recency 0.32 0.64 0.93 1.16 1.34 1.49 1.62 1.75 1.86 1.96 2.74 3.19 3.49 3.68
second key reverse recency 0.33 0.63 0.91 1.14 1.30 1.45 1.57 1.69 1.79 1.89 2.50 2.99 3.26 3.43

Alphabetic order:
duplicates removed 0.03 0.08 0.15 0.24 0.31 0.43 0.48 0.54 0.61 0.65 1.12 1.45 1.69 1.91

Directory sensitive by recency:
duplicates included 0.48 1.28 1.76 2.05 2.27 2.44 2.57 2.67 2.76 2.83 3.25 3.45 3.57 3.65
duplicates removed 0.48 1.32 1.88 2.24 2.45 2.68 2.83 2.95 3.04 3.13 3.59 3.77 3.87 3.93

Commands only by recency:
duplicates removed 0.50 1.03 1.34 1.55 1.73 1.86 1.95 2.03 2.10 2.15 2.46 2.59 2.67 2.71

Partial matching by recency:
duplicates included 0.45 1.11 1.50 1.79 2.04 2.21 2.36 2.47 2.56 2.64 3.12 3.35 3.51 3.62
duplicates removed 0.45 1.14 1.60 1.93 2.21 2.41 2.57 2.71 2.82 2.92 3.47 3.72 3.86 3.96

Command hierarchy:
recency, duplicates removed 0.37 1.11 1.68 2.09 2.43 2.68 2.88 3.04 3.18 3.30 3.90 4.12 4.23 4.29

Figure 6.1. Cumulative probabilities of a recurrence over distance for
various conditioning methods.

Figure 6.2. Cumulative average number of characters saved per sub-
mission over distance.

6.1. Conditioning the distribution 99

have. These figures will be used as a benchmark for comparing other conditioning
methods.

Pruning duplicates. Although pruning duplicates from the history list does not
alter the recurrence rate, it does shorten the total distance covered by the distribution
(i.e., the history list is smaller). First, how does saving single copies of recurring
activities in their original position on the history list compare with saving items in
their latest position? A quick glance at the tables and graphs shows that the former
gives exceedingly poor predictive performance. Curiously, saving activities in
their original position gave a much higher average length of predicted strings than
any other conditioning method for lines recurring over small distances (Table 6.4).
But it is the low-frequency lines that must contribute most to this average, as high-
frequency lines do not remain near the front of the list. This larger than expected line
length supports the hypothesis that often-repeated lines are shorter on average than
rarely repeated ones. The low probability values associated with those recurrences
reduce any benefit accrued by predicting longer lines. Consider a ten-item working
set. The probabilities RD10

of a recurrence falling in that set are 11% and 49%
for the original and the latest position respectively, and the corresponding values
of MD10

are 1.10 and 2.78 characters per submission. Saving activities in their
original position is clearly ineffective. The remainder of this book assumes that
history lists with duplicates pruned will save the single copy in its position of latest
occurrence.

As the working set size increases, so does the value of RD associated with a
duplicates-pruned list when compared to the standard sequential list (Table 6.3
and Figure 6.1). Pruning duplicates increases the overall probability of a ten-item
working set by 4.8% (RD10

= 49:1% vs. 44:4%), and MD10
is increased by 0.3

characters per submission.

Frequency order. Using recency as a secondary sort in a frequency-ordered list is
marginally better than sorting by reverse-recency. The overall probability of a ten-
item working set is 1.1% higher, and 0.1 character more is predicted per submission.
Because these values reflect the bounds of these two conditions, it is hardly worth
worrying about how to do the secondary sort. Still, whenever frequency-ordered
lists are discussed in the book, the better secondary sort of recency is assumed.

Frequency-ordered history lists do not do as well as strict sequential ones, even
though duplicates are not included in the former. Although the probability of a hit
in a ten-item working set is about the same (RD10

= 44:4%), lines predicted are
shorter (as expected). The metric MD10

is 0.6 characters less per submisson.

Alphabetic order. As anticipated, alphabetic ordering of history lists gives the
poorest performance of any conditioning technique (this assumes sequential search-
ing through the list). With a ten-item display, RD10

= 10:1%, and only 0.65 char-

100 Reuse opportunities in UNIX csh – potential and actual

acters are predicted per submission. If a user were scrolling through this display, a
full one hundred items (or ten pages) must be reviewed on average to match MD10

for the strict sequential list!

Context-sensitive history lists by directory. Creating context-sensitive directory
lists with duplicates retained decreases the overall recurrence rate for Experienced
Programmers from 74.4% in the strict sequential case to 65.5%, because command
lines entered in one directory are no longer available in others. Although this
reduction means that plain sequential lists out-perform directory-sensitive ones
over all previous entries, benefits were observed over small working sets. As
Table 6.2 illustrates, the first three directory-sensitive items are more probable than
their sequential counterparts, approximately equal for the fourth, and slightly less
likely thereafter. The accumulated probabilities RD cross over with a working set
of twenty-seven items (Figure 6.1). With a working set of ten items, directory-
sensitivity increases the overall probability that the next item will be in that set
by 2.5% (RD10

= 46:9%). The length of lines predicted in the directory-sensitive
condition are also longer than those predicted by a strict sequential list, and MD10

is 0.35 character per submission higher.

Ordering commands by recency. When all aspects of a command line are ignored
except for the initial command word, the recurrence rate jumps to 95.2%. The
accumulated probabilities of recurrences are also very high when compared to the
strict sequential list – RD10

= 72:7% vs. 44:4%. But the high predictability is
offset by the low number of characters predicted. MD10

actually drops 0.3 character
per prediction.

Partial matches. Pattern matching by prefix increases the recurrence rate to 84.4%,
where the recurrence rate is now defined as the probability that any previous event
is a prefix of the current one. Because partial matches are found before more
distant (and perhaps non-existent) exact matches, an increase is expected in the rate
of growth of the cumulative probability distribution. This increase is illustrated in
Table 6.3 and Figure 6.1. Conditioning by partial matching increases RD10

of a
ten-item working set by 6.4% when compared to a strict sequential list (Table 6.3),
although lines predicted are shorter (Table 6.4). Still, MD10

is increased slightly by
0.16 character per submission.

A hierarchy of command lines and command-sensitive sub-lists. The history
list comprised of recency-ordered non-duplicated lines and command-sensitive
sub-lists shows the best performance of all conditions evaluated. The accumulated
probability of a ten-item display isRD10

= 55:5% out of the 74.4% possible. MD10

is 3.3 characters per submission, compared to the 4.4–character maximum for an
optimal system.

6.1. Conditioning the distribution 101

Combinations. When conditioning methods are combined, the effects are slightly
less than additive. A few possible combinations are included by removing du-
plicates from both the directory-sensitive and partial matching conditions. Each
improves as expected, as illustrated by Tables 6.2 through 6.5 and Figures 6.1
and 6.2. Where feasible, conditioning methods can be combined even further. For
example, a partially matched, pruned, and directory-sensitive history mechanism
increases RD10

over a strict sequential one by 12.7% with a working set of ten
items (reported in Greenberg and Witten, 1988b).

6.1.4 Discussion

The recurrence rate R provides a theoretical ceiling on the performance of a reuse
facility using literal matches. It is reached only if one reuses old submissions
at every opportunity. However, finding and selecting items for reuse could well
be more work than entering it afresh, especially if it is necessary to search the
complete history list. Pragmatic considerations mean that most reuse facilities
choose a small set of previous submissions as predictions, and offer only those for
reuse. Although the last chapter demonstrated that temporal recency is a reasonable
predictor, the conditioning methods described and evaluated here proved that a few
simple strategies can increase predictive power even further.

We saw that up to 55% of all user activity can be successfully predicted with
working sets of ten predictions for literal matches, depending upon the conditioning
method chosen. Given that R = 75% on average, which is the best a perfect literal
reuse facility could do, this means that the best predictive method described here
is about 75% effective, at least potentially.

When the quality metric is incorporated, we observe that the best method cor-
rectly predicts 3.3 characters per submission (with a working set of ten items),
compared to the 4.4–character optimum calculated previously. Again, the method
is about 75% effective.

In marked contrast, a few conditioning methods perform poorly. Saving du-
plicates in their original position has no benefit, and alphabetic ordering of the
history list is questionable. Although frequency ordering does not fare badly, other
methods give better results.

There is no guarantee that any of the conditioning methods described here will
be effective in practice, for the cognitive and mechanical work required for finding
and selecting items for reuse from even a small list may still be too costly. Research
is required in three areas. First, other conditioning methods should be explored
that further increase the probability of a set of predictions (up to the value of
R). One candidate could use a model similar to that used by the REACTIVE
KEYBOARD (Darragh, 1988) (Section 4.2.2). Second, the size of the working
set should be reduced. Ideally, only one correct prediction will be suggested.
Third, the cognitive effort required for reviewing a particular conditioned set of

102 Reuse opportunities in UNIX csh – potential and actual

Table 6.6. How history was used by the sample groups

Sample Name Users of history Mean rate of using history
actual % %

Novice Programmers 11/55 20% 2.03
Experienced Programmers 33/36 92% 4.23
Computer Scientists 37/52 71% 4.04
Non-programmers 9/25 36% 4.35

Total 90/168 54% 3.89

predictions must be evaluated. One factor is whether the user knows beforehand if
the item being sought appears in the set; otherwise, he may face an exhaustive and
ultimately fruitless search. Another factor is whether the item can be found rapidly.
Given these factors, it is possible that one conditioning technique may give better
practical performance than another, theoretically superior, one.

6.2 Actual use of UNIX history

We have seen that user dialogs are highly repetitive and the last few command
lines have a high chance of recurring – the premise behind most history systems.
There are certainly plenty of opportunities for reuse, especially when appropriate
conditioning methods are engineered into the presentation of items. But are current
history mechanisms used well in practice? And how are they used? This was
investigated by analyzing each user’s csh history use. During data collection, all
csh history uses were noted, although the actual form of use was not. Results should
be interpreted carefully, for they may be artifacts arising from idiosyncrasies of the
csh facilities, rather than from fundamental characteristics of reuse.

The recurrence rate and its probability distribution, studied previously, give a
theoretical value against which to assess how effectively history mechanisms are
used in practice. The average rate of reselecting items through a true sequential
history list (as used by csh) cannot exceed the average value ofR, which was found
to be 74%. By comparing the user’s actual reselection rate with this maximum, the
practical effectiveness of a particular history mechanism can be judged.

6.2.1 Results

Table 6.6 shows how many users of UNIX csh in each sample group actually used
history. Although 54% of all users recalled at least one previous action, this figure
is dominated by the computer sophisticates. Only 20% of Novice Programmers and
36% of Non-programmers used history, compared to 71% for Computer Scientists
and 92% for Experienced Programmers.

6.2. Actual use of UNIX history 103

Those who made use of history did so rarely. On average, 3.9% of command lines
referred to an item through history, although there was great variation (std dev =
3:8; range = 0:05% � 17:5%). This average rate varied slightly across groups,
as illustrated in Table 6.6, but an analysis of variance indicated that differences are
not statistically significant (F (3; 86) = 1:02).

In practice, users did not normally refer very far back into history. With the
exception of novices, an average of 79%–86% of all history uses referred to the
last five command lines. Novice Programmers achieved this range within the last
two submissions. Figure 6.3a illustrates the nearsighted view into the past. Each
line is the running sum of the percentage of history use accounted for (the vertical
axis) when matched against the distance back in the command line sequence (the
horizontal axis). The differences between groups for the last few actions (left-hand
side of the graph) reflect how far back each group prefers to see.4

Because most activities revolve around the last few submissions, the distribution
bears closer examination. The data points in Figure 6.3b now represent the percent-
age of history use accounted for by each reference back. High variation between
groups is evident. Although most uses of history recall the last or second-last entry,
it is unclear which is referred to more.

It was also noticed that history was generally used to access or slightly modify
the same small set of command lines repeatedly within a login session. If history
was used to recall a command line, it was highly probable that subsequent history
recalls will be to the same command.

A few csh users were queried about history use. They indicated that they are
discouraged from using csh history by its difficult syntax and the fact that previous
events are not normally kept on display. (The latter point is important, for it
enforces the belief that candidates for reuse should be kept on a display.) Users
also stated that most of their knowledge of UNIX history was initially learned
from other people – the manual was incomprehensible. Also, the typing overhead
necessary to specify all but the simplest retrievals makes users feel that it is not
worth the bother.

6.2.2 Corroboration and extensions

Another researcher, Alison Lee, also examined history usage within various com-
mand interpreters available to the UNIX environment. Some of her qualitative
findings corroborate and add to the observations noted in this section (Lee and

4Actual figures are probably higher than those indicated here, due to inaccuracies in distance estimates. As the
csh monitor noted only that history was used and not how it was used, the actual event retrieved was determined by
searching backward for the first event exactly matching the current submission. If the submission was a modified
form of the actual recalled event, the search would terminate on the wrong entry. I assume that these are a small
percent of the total.

Figure 6.3. (a) Cumulative distribution of history; and (b) distribution
of history use as a measure of distance.

6.2. Actual use of UNIX history 105

Lochovsky, 1990).

1. There were very few uses of csh history.
2. Those uses made were of the simpler features, the most popular being “!!”

(retrieve the last event) and “!pattern” (retrieve the most recent event beginning
with the given pattern).

3. People rarely retrieved items by absolute or relative event number.
4. Although the history list is available for viewing by special request, users

rarely asked to see it.
5. Modifiers for editing were rarely used. When used, they tended to be of the

form ^pattern1 ^ pattern2^, which does simple sub-string replacement on
the previous submission.

6. Other observed ways of modifying events were by using recalled events as
prefixes or suffixes. This technique allows one to add more parameters to
previous events or to add a new command sequence in a pipeline.

7. Occasional uses were noted of recalling the last word in the previous event
(i.e., !$) and of printing events without executing them.

Lee also looked at tcsh, another history mechanism available to UNIX users that
employs a very simple and familiar emacs-like editing paradigm to retrieve, review,
and edit previous events. Although better use of history is expected because of
the improved editing power and visualization of the history list, only a marginal
increase was noted (although the still-available csh history was used less). The
visual scrolling and editing capabilities available in tcsh were used to some extent.

6.2.3 Discussion

Many people never use UNIX csh history. Those who do tend to be sophisticated
UNIX users. Yet even they do not use it much. On average, less than 4% of all
submissions were retrieved through history out of the 74% potentially possible.
The history facility supplied by csh is obviously poor.

Some reasons for the failure of csh history follow. First, the complex and arcane
syntax discourages its use. Those who did use history indicated that only the
simplest features of UNIX history were selected. As one subject noted, “it takes
more time to think up the complex syntactic form than it does to simply retype
the command.” Also, it takes at least two or more characters to recall an event in
csh. Because most simple UNIX recurrences are short (6 characters on average),
users feel that it is not worth the bother. Second, it is hard to find out about it. Csh
details are buried in a single on-line manual entry that runs to thirty-one pages(!),
the text is quite technical, and examples are sparse. Third, the event list is usually
invisible. Because previous events are not normally kept on the display, frailty of
human memory usually limits recall to the last few items. These deficiencies of

106 Reuse opportunities in UNIX csh – potential and actual

csh hit Novice Programmers especially hard. Even though they have the highest
recurrence rate of all groups and could benefit the most from history, they are
effectively excluded from using it.

It is too early to condemn the ideas provided by csh, because some of the
observations are likely artifacts of using a poorly designed facility, rather than a
human difficulty with the idea itself. Still, it is worthwhile to review some strong
and weak points of the common history methods used.

Retrieval through absolute or relative position. It is fairly difficult to associate
and remember the number of a previous event, because it is an indirect ref-
erence. Visibly tagging events with numbers offers a benefit only for those
interfaces without direct selection and only when no better strategy is avail-
able. Perhaps its sole viable use is as a redundant way of retrieving events
when other selection methods are available.

Scrolling and hidden views. If events are not on display, they will not be asked
for. Hidden history lists were rarely recalled, and little use was made of the
scrolling facilities in tcsh.

Pattern matching. Simple pattern matching, especially by prefix specification,
seems promising as a textual way of retrieving events. But matching is poten-
tially dangerous, as users may accidentally retrieve and execute an interposed
but undesired event that fits the specification.

Simple methods for recall/selection of very recent events. The syntactically
simplest methods are used most to recall very recent events. For example,
the “!!” directive was heavily used, even though it does not recall the most
probable event. This probably reflects the shortness of short-term memory
– users use only “!!” because the last item is the only thing they can both
remember reliably and retrieve quickly. Overloading a reuse facility with
complex functionality would not make it better.

Editing events. Although people do edit command lines as they compose them,
they may not be willing to modify previous events much. Often the cognitive
and physical overhead of recall and editing previous events makes simple
reentry more effective. Still, some editing does occur and probably has some
value.

6.3 Concluding remarks

The first part of this chapter explored further the potential opportunities for reuse
in the UNIX csh. In particular, a variety of conditioning methods were described
and evaluated. Each method used different strategies for choosing a small set of
previous submissions as predictions of the next one. We saw that up to 55% of all
user activity and 3.3 characters per submission can be predicted successfully with

6.3. Concluding remarks 107

working sets of just ten predictions. The best any literal predictive method could do
is R = 75% on average, or 4.4 characters per submission. Although conditioning
methods are about 75% effective, there is still considerable room for improvement.

The number of characters saved per submission may seem quite small. The
skeptic would conclude that reuse facilities are perhaps not worth the fuss. But a
few points should be considered. First, the number of characters saved in practice
would be considerably higher, for the string is already formed and editing is not
necessary. Command line entry involves not only typing the final correct characters,
but also the time it takes to detect and correct typing errors. Actual character savings
are likely double the theoretical ones (Whiteside, Archer, Wixon, and Good, 1982).
Second, recognizing and selecting an activity is generally considered easier than
recalling or regenerating it. We expect a considerable time savings. Third, it may
all depend upon the user’s focus of attention. If he is selecting items from a history
list with (say) a mouse, he may continue to do so rather than switch to the keyboard.
The reverse is also true.

In marked contrast, the second part of this chapter discovered that csh history
is used poorly in practice. Most people, particularly those who are not computer
sophisticates, do not use it. Those who do, use it rarely. Only 4% of all activity
was reused, compared to the 75% possible! And in spite of the esoteric features
available in csh history, only the simpler features were used with any regularity.
It was suggested that the results observed are likely artifacts of using a poorly
designed facility, rather than a human difficulty with the idea of reuse.

7
Principles, corroboration, and justification

The two preceding chapters analyzed command line recurrences with dialogs with
the UNIX csh. Based on the empirical results, the first section of this chapter
formulates general principles that characterize how users repeat their activities on
computers. Some guidelines are also tabulated for designing a reuse facility that
allows users to take advantage of their previous transaction history. The second
section corroborates these principles by a post hoc study of user traces obtained
from another quite different command line system. The final section steps back
from the empirical findings and presents a broader view of reuse.

7.1 Principles and guidelines

This section abstracts empirical principles governing how people repeat their activi-
ties from the UNIX study described earlier. They are summarized and reformulated
in Table 7.1 as empirically based general guidelines for the design of reuse facilities.
Although there is no guarantee that these guidelines generalize to all recurrent sys-
tems, they do provide a more principled design approach than uninformed intuition.

7.1.1 Principles: how users repeat their activities

A substantial portion of each user’s previous activities are repeated. In spite
of the large number of options and arguments that could qualify a command,
command lines in UNIX csh are repeated surprisingly often by all classes of users.
On average, three out of every four command lines entered by the user have already
appeared previously. UNIX is classified as a recurrent system by the definition in
Section 5.1.

This high degree of repetition justifies the intent of reuse facilities. Recurring
inputs should be reentered more easily than the user’s original entry, with the aim
of reducing both physical tedium and the cognitive overhead of remembering past
inputs. Reuse facilities should not be targeted only to experts, as they can help
everyone.

New activities are composed regularly. Although many activities are repeated,
a substantial proportion is new. One out of every four command lines entered
to UNIX csh is a new submission. Composing command lines is an open-ended
activity.

108

7.1. Principles and guidelines 109

Table 7.1. Design guidelines for reuse facilities

Design guidelines
� Users should be able to recall previous entries.
� It should be cheaper, in terms of mechanical and cognitive activity, to recall items

than to re-enter them.
� Simple reselection of the previous five to ten submissions provides a reasonable

working set of possibilities.
� Conditioning of the history list, particularly by pruning duplicates and by further

hierarchical structuring, could increase its effectiveness.
� History is not effective for all possible recalls, because it lists only a few previous

events. Alternative strategies must be supported.
� Events already recalled through history by the user should be easily reselected.

Many modern interfaces provide transient menus as a way of structuring and
packaging common activities. Though useful for appliance-oriented systems (Sec-
tion 1.2.2), this package of favored submissions will not suffice as a front end to the
general-purpose environments addressed in this book. Although the few facilities
shared by users should be enhanced somehow, user composition of new command
lines must be supported as well.

Users exhibit considerable temporal recency in activity reuse. The major con-
tributions to the recurrence distribution are provided by the last few command lines
entered.

As shown in Chapter 4, most reuse facilities are history mechanisms designed
to facilitate reentry of the last few inputs. Systems that do not have explicit and
separate displays of the event list rely on users remembering their own recent
submissions, or on the visibility of the dialog transcript on the (usually small)
screen. Given the high recency effect, we do expect limited success by memory
alone. Yet the principle does pinpoint design weaknesses of existing systems.

First, the second-to-last command line recurs more often than any other single
input. But many reuse facilities favor access to the last entry instead. For example,
typing the shortcuts “redo” and “!!” in the programmer’s assistant and UNIX csh
respectively defaults to the previous submission, and it is slightly harder to retrieve
other items. In history through editing, a user would have to search through two
previous mixings of input and output before finding the second-to-last entry.

Second, the major contributions to the recurrence distribution are provided by the
previous 7�3 inputs. Yet most graphical history mechanisms display considerably
more than ten events. HISTMENU, for example, defaults to fifty-one items, and
window management window is illustrated with eighteen slots (Section 4.1.2).
Considering the high cost of real estate on even large screens, and the user’s
cognitive overhead of scanning the possibilities, a lengthy list is unlikely to be

110 Principles, corroboration, and justification

worthwhile. For example, a menu of the previous ten UNIX events covers, on
average, 45% of all inputs. Doubling this to twenty items increases the probability
by only 5%.

The cost/benefit tradeoff of encompassing more distant submissions could also
be used to tune other predictive systems that build more complex models of all
inputs (Section 4.2). The high recency effect associated with recurrences suggests
that a reasonable number of successful predictions can be formed on the basis of
a short memory. Perhaps a recency-based short-term memory combined with a
frequency-based long-term memory could generate better predictions.

Some user activities remain outside a small local working set of recent submis-
sions. A significant number of recurrences are not covered by the last few items
(about 40% of the recurring total with a working set of ten events). Doubling or
even tripling the size of the set does not increase this coverage much, as all but the
few recent items are, for practical purposes, equiprobable.

Unfortunately it is just these items that could help the user most. Because
their previous invocation happened long ago, they are probably more difficult to
remember and reconstruct than more recent activities. If the command line is
complex, file names would be reviewed, details of command options looked up in
a manual, and so on. Except for systems with pattern matching capabilities and
scrolling – both questionable methods of recall – no implemented reuse facility
provides reasonable ways of accessing distant events. Chapter 8 will explore a few
alternative strategies.

Working sets can be improved by suitable conditioning. A perfect “history or-
acle” would always predict the next command line correctly, if it were a repeat of a
previous one. Because no such oracle exists, we can only contemplate and evaluate
methods that offer the user reasonable candidates for reselection. Although simply
looking at the last few activities is reasonably effective – 60% of all recurrences
are covered by the previous ten activities – pruning duplicates, context sensitivity,
partial matches, and hierarchies of command-sensitive sub-lists all increase cov-
erage to some degree. Combining these methods is also fruitful. But they have
drawbacks too.

Pruning duplicates increases the coverage of a fixed-size list. However, if
sequences of several events can be selected (as in the programmer’s assistant,
Section 4.1.1), pruning may destroy useful sequences. And events no longer
follow the true execution order, confounding attempts to recall them by position.
Pruning problems also arise when the history list serves other purposes. Consider,
for example, the undo facility in the programmer’s assistant. Because side effects
of activities are stored along with the text of the activity, undoing two textually
equivalent items may have different results. In this case, items cannot be pruned
without compromising the integrity of the undo operation (Thimbleby, 1990).

7.1. Principles and guidelines 111

Conditioning the working set on the current working directory may eliminate
useful context-independent items from the history list with only a slight gain in
predictive power. But the usefulness of references may improve, because viewing
the history list may help remind the user of the specialized and perhaps more
complex directives submitted in that context.

Retrieval by partial matching allows a user to select any event and edit it for
spelling corrections or minor changes. There is no guarantee that the editing
overhead will be less than simple reentry. The possibility of erroneously retrieving
an undesired event must be considered too.

When command-sensitive sub-lists are included but ignored, the potential for
reuse is still at least as high as the primary list. Using the attached sub-lists can
only increase the chance of finding a correct match. Still, these sub-lists involve
considerably more mechanical overhead for reuse unless they are on permanent
display, and even then there is a cognitive overhead.

Some seemingly obvious or previously implemented ways of presenting predic-
tions do poorly. Scrolling through alphabetically sorted submissions is ill-suited
to activity reuse. Yet this scheme pervades many modern, popular systems. The
Apple Macintosh, for example, presents a scrollable alphabetic display of files for
selection within its applications. If file use is a recurrent system (which it probably
is), then structuring file lists by temporal recency could give quicker selection,
especially with large file stores.

The previous chapter has shown that saving duplicates in their original position
is an extremely poor predictive strategy for maintaining lists. Yet it is used by
several history systems. It is the only method of reviewing cards visited in HY-
PERCARD, and it is a presentation option in window management window (Section
4.1). Different strategies should be encouraged.

Ordering lists by frequency of use may or may not give any benefit over re-
cency. Although used fruitfully by the ADAPTIVE MENUS system (Greenberg
and Witten, 1985a), the usability and predictive power of that system could perhaps
increase if recent selections were treated preferentially, perhaps by giving them
their own display space on the top-level menu screen.

Predicting commands without their arguments has little value. Although pre-
dictability is increased, the overall quality of prediction drops because mostly short
sequences are offered. Perhaps inclusion of command-sensitive sub-lists could
improve this fault.

When using history, users continually recall the same activities. UNIX csh
users generally employ history for recalling the same events within a login session.
Once an event has been recalled, it should somehow be given precedence.

112 Principles, corroboration, and justification

Functionally powerful history mechanisms in glass teletypes do poorly. UNIX
csh history fails on two points, even though it is functionally powerful. First, most
people (especially novices and non-programmers) never use it. Second, those who
do, use it seldom. Only a fraction of all recurrences are recalled through history.

7.2 Corroboration

The general principles of the previous section are based on the UNIX findings.
There is no guarantee that they generalize to all recurrent systems and applications.
It is useful to see if studies of other systems would produce the same results.

Data on a functional programming language called GLIDE was made available
to the researcher after completion of the UNIX study. Because the principles of
the previous section had already been elucidated, the GLIDE analysis is a post hoc
study. The first part of the section briefly introduces GLIDE and describes the data
collection method and the subjects. The second part lists the analysis performed
and gives the results.

7.2.1 The GLIDE study

A brief description of GLIDE. GLIDE is an exploratory functional programming
environment, supporting a lazy functional language, also called GLIDE (Toyn and
Runciman, 1988). GLIDE programs consist of a collection of definitions and
an expression to be evaluated. Definitions are partitioned into sets called flocks.
GLIDE is built upon UNIX and exploits the UNIX file system, with definitions
being files, and flocks being directories. UNIX commands are accessible from the
GLIDE environment by using the Shell command or ‘!’, which is consistent with
other UNIX-based tools. Although definitions can be composed directly in the
GLIDE environment, they are usually created, maintained, and imported through a
standard UNIX editor. The command set in GLIDE is relatively small: twenty-three
commands in total at the time of data collection (Finlay, 1988).

Table 7.2 gives a mythical and self-explanatory extract of an example GLIDE
transcript. GLIDE prompts are boldface, and comments are distinguished by italics.

Subjects and subject use. GLIDE is used to teach functional programming to
computer science undergraduates at the University of York (U.K.), and is also used
by staff and graduate students in the course of their research. GLIDE usage by
eighty such real users was logged unobtrusively over a three-month period for the
purpose of studying the nature of expertise (Finlay, 1988). For the present study,
twenty students and staff members having large logs were selected from the eighty
participants.

7.2. Corroboration 113

Table 7.2. A simple GLIDE dialog

glide> Edit member The function definition (not shown) is created and
edited in a UNIX file called member.g. Member
checks if an element (its first argument) is contained
in a list (its second argument). The appropriate
boolean value is returned.

glide> Define t1 [1.2.3.5.6] A definition called t1 comprising a list is created.
glide> !cat member.g The user reviews the definition of member.
glide> member 8 t1 Is 8 a member of t1?
False
glide> member 2 t1 Is 2 a member of t1?
True

Data collection. The original data consisted of the complete transcripts of GLIDE
sessions, including commands issued by the user, the system’s response, the func-
tion definitions imported from the editors, and a time stamp of the activity (second
method, Section 2.2.1). The data was reduced for our analysis by stripping all
information except for user input lines. These lines were further manipulated by
removing the ones containing obvious errors, in particular misspellings of com-
mands, incorrect recall of definitions, and syntactical misuse of commands. The
final form of a single subject’s data is a data file containing the subject’s input lines
in time-sequence order. The average data file contained 615 input lines, although
there is much variation (std dev = 492:2).

Analysis. The analysis was similar to the UNIX one described in Chapters 5
and 6, although not nearly as extensive. The recurrence rate R is found and
the probability distributions of recurrences for several conditioning techniques are
detailed. These techniques are sequential ordering by recency with duplicates in
place and duplicates pruned, frequency ordering, and a hierarchy of command
lines with command-sensitive sub-lists. The metrics Rd, RD, Md, and MD are
calculated over each distribution.

7.2.2 Results and discussion

The average recurrence rate R is 50.2% with a standard deviation of 11.1%. Ex-
tremes range from 34% to 71.1%. The average length of a GLIDE input line is
12.6 characters, where terminating line feeds are not counted and duplicate lines
are included. The average length of submissions that already exist on the history
list is 9.7 characters, whereas those that appear for the first time are 15.5 characters
long. Therefore maximum possible value for MD is R� 9:7=100, which is 4.87

114 Principles, corroboration, and justification

characters.
Table 7.3 summarizes the results for selected conditioning methods, where each

row presents the values of the various metrics over the last fifty items on the history
list. Figure 7.1 graphs the metricRD on the vertical axis; the horizontal axis shows
the position of the repeated GLIDE command line on the history list relative to the
current one. Figure 7.2 is similar, except that the vertical axis now represents MD

(cf. Figures 6.1 and 6.2).
The results are quite similar to the results found in the UNIX study. The most

glaring difference is the lower recurrence rate (50% vs. 75%). Part of this difference
could arise from the fact that arguments in GLIDE functions are lists. Because lists
are generally not as persistent as file names, arguments (and their lines) would
not recur as often. Another part of this difference could be an artifact in data
collection, for white space and errors are handled differently. First, although all
unimportant white space was removed by csh in the UNIX study, this was not
done for GLIDE. Recurrences arising from two semantically identical lines with
syntactically different white spaces are not counted as a repeating submission.
Second, errors in the UNIX study were marked when a csh error message was
produced. GLIDE had no such capability, and most semantic errors were not
tagged, although quite a few syntactic ones were removed manually. Because
errors are generally not repeated, the number of unique lines is overestimated.
Still, these artifacts are not expected to change the value of R greatly.1

When conditioning methods are contrasted for GLIDE, they follow the same
rank ordering as that produced by csh use. Although there are fewer recurrences
with GLIDE, the predictive power of the conditioning methods is relatively greater.
For example, up to 43% of all user activity can be successfully predicted with
working sets of ten predictions. Given that R = 50%, which is the best a perfect
reuse facility could do, the best predictive method is 85% effective for GLIDE
recurrences (cf. 75% for UNIX). When the quality metric is incorporated, up
to 4.43 characters are saved per submission when ten predictions are available.
Because the maximum value of MD is 4.87 characters, the best method is about
90% effective (cf. 75% for UNIX).

In summary, despite the numeric differences in the analyses, the principles de-
veloped from the UNIX study are corroborated by subjecting GLIDE to the same
analysis. Although new activities are composed regularly by users (around 50%),
a substantial portion of their activities are repeated (50%). Users exhibit consid-
erable recency in activity reuse in the same way they do with UNIX. The major
contributions are provided by the previous 7�3 submissions, and the second-to-last
command line recurs more often than any other input (Table 7.3). Although some
user activities still remain outside a small working set containing the recent submis-

1The recurrence rate calculated over GLIDE logs including errors is 48.6%, just a few points lower than the
logs with errors removed manually.

Table 7.3. Evaluating various conditioning methods in GLIDE

Conditioning Distance
method 1 2 3 4 5 6 7 8 9 10 20 30 40 50

Probabilities of a recurrence at the given distance d in percent (Rd)
Recency, duplicates saved 5.74 13.00 6.25 4.12 2.55 1.71 1.30 1.10 0.83 0.68 0.33 0.13 0.10 0.09
Recency, duplicates pruned 5.74 13.41 7.15 4.40 2.77 1.77 1.54 1.14 1.03 0.74 0.25 0.18 0.04 0.03
Frequency order 7.28 4.30 3.1 2.95 2.45 2.08 1.76 1.71 1.61 1.36 0.52 0.44 0.21 0.13
Command hierarchy 5.74 15.69 8.34 4.87 2.85 1.80 1.35 1.19 0.87 0.61 0.23 0.17 0.03 0.01

Accumulated probabilities of a recurrence up to a given distance d in percent (RD)
Recency, duplicates saved 5.74 18.74 24.99 29.11 31.66 33.37 34.67 35.78 36.61 37.29 41.44 43.54 44.76 45.62
Recency, duplicates pruned 5.74 19.15 26.30 30.70 33.47 35.24 36.78 37.92 38.94 39.69 43.54 45.58 46.72 47.43
Frequency order 7.28 11.58 14.68 17.63 20.08 22.17 23.93 25.64 27.25 28.61 37.11 41.52 43.97 45.34
Command hierarchy 5.74 21.43 29.77 34.63 37.48 39.28 40.63 41.82 42.68 43.30 46.49 47.97 48.74 49.08

The average number of characters saved over all subjects per recurrence at a given distance (cd)
Recency, duplicates saved 8.16 10.22 10.41 10.80 10.97 8.53 9.80 8.97 7.65 8.18 5.97 5.07 3.23 4.16
Recency, duplicates pruned 8.16 10.20 10.59 10.60 10.20 9.42 9.11 9.09 7.76 6.94 6.08 3.59 2.11 1.30
Frequency order 6.49 8.29 8.63 8.35 8.78 10.32 10.11 10.61 9.81 9.90 7.83 7.84 5.19 5.31
Command hierarchy 8.16 10.65 10.61 10.33 9.97 9.38 8.36 9.00 7.59 8.23 6.50 3.91 1.73 1.35

Cumulative average savings in characters of D predictions over all submissions (MD)
Recency, duplicates saved 0.47 1.88 2.53 2.98 3.26 3.42 3.55 3.66 3.74 3.81 4.17 4.38 4.48 4.55
Recency, duplicates pruned 0.47 1.92 2.69 3.16 3.44 3.62 3.78 3.89 3.98 4.03 4.38 4.55 4.64 4.70
Frequency order 0.47 0.84 1.11 1.37 1.59 1.81 1.99 2.18 2.36 2.50 3.46 3.97 4.23 4.39
Command hierarchy 0.47 2.18 3.07 3.57 3.86 4.03 4.15 4.27 4.34 4.40 4.67 4.78 4.84 4.86

Note: Recurrence rate R is 50.24%. Maximum value of MD is 4.89 characters.

Figure 7.1. Cumulative probabilities of a recurrence over distance for
various conditioning methods.

Figure 7.2. Cumulative average number of characters saved per sub-
mission over distance.

118 Principles, corroboration, and justification

sions, the predictive power of these sets can be improved by suitable conditioning.
Command-sensitive sub-lists are particularly effective.

7.3 Stepping back

The analysis made of the computer systems studied so far views an activity as a
single independent command line. From a purely statistical standpoint, interfaces
that simplify reuse of particular lines have potential to reduce certain tedious aspects
of everyday human–computer interaction. But are activities really independent?
Could sets of activities, for example, be grouped as reusable and perhaps more
effective goal-specific scripts or plans? This section steps back from the empirical
findings gleaned through observations to a broader view of reuse.

7.3.1 Plans and situated actions

A major design premise of some user support tools, particularly in the office
environment, is the belief that a worker’s activity follows preconceived plans and
procedures.2 This views

the organization and significance of actions as derived from plans, which are prereq-
uisite to and prescribe action at whatever level of detail one might imagine. Intentions
are realized as plans-for-actions that directly guide behavior, and plans are actually
prescriptions or instructions for actions. These plans reduce to a detailed set of
instructions (which may also be sub-plans) that actually serve as the program that
controls the action.

— paraphrased from Suchman, 1987

If the premise of preconceived plans is indeed true, then reuse facilities could
be replaced by planning tools. One example of such a tool is OSL, a high-level
office specification language (Kunin, 1980). It allows one to describe algorithms
that capture rationalized goal-related office procedures. Programming by example
is another possibility. These systems allow people to encapsulate activities as a
structured well-defined procedure (Section 4.3). The procedure could be designed
and used immediately, and would be available for reuse any time thereafter. Reuse
facilities, on the other hand, would be useful only after the user starts executing the
details of a plan.

But recent work by anthropologist Lucy Suchman disputes the notion of pre-
conceived plans. Her thesis treats plans as derived from situated action – the
necessarily ad hoc responses to the actions of others and to the contingencies of
particular situations.

2An argument parallel to the one in this section was developed independently by Lee and Lochovsky (1990).

7.3. Stepping back 119

The course of action depends in essential ways upon the action’s circumstances.
Even casual observation of purposeful action indicates that, as common sense formu-
lations of intent, plans are inherently vague as they are designed to accommodate the
unforeseeable contingencies of actual situations of action. For situated action, the
vagueness of plans is not a fault but, on the contrary, ideally suited to the fact that the
detail of intent and action must be contingent on the circumstantial and interactional
particulars of actual situations.

— paraphrased from Suchman, 1987

Suchman suggests that: (1) plans are post hoc rationalizations of actions in situ; and
(2) in the course of situated action, deliberation arises when otherwise transparent
activity becomes in some way problematic.

But where does our belief in plans come from? According to Suchman, our
descriptions of actions as purposeful always come before or after the fact, in the
form of envisioned projections and recollected reconstructions.

We can always perform a post hoc analysis of situated action that will make it appear
to have followed a rational plan, for rationality anticipates action before the fact,
and reconstructs it afterwards. Only after we encounter some state of affairs that we
find to be desirable do we identify that state as the goal toward which our previous
actions, in retrospect, were directed all along.

— paraphrased from Suchman, 1987

Assuming that user activity on computers does follow situated actions, then
reuse facilities are more viable than planning systems. Because reuse facilities
allow one to select, possibly modify, and redo single actions, they respond well to
the circumstances of a situation. When previous actions are collected as goal-related
scripts of events, this flexibility is lost.

7.3.2 Recurrences: natural fact or artifact?

Where do recurrences come from? Are they a natural part of a human–computer
dialog or are they artifacts imposed by poorly designed interfaces? If the former,
then reuse facilities are an essential component of a good interface. If the latter,
they are merely add-on patches; the interface itself should be reconsidered. We
will see that, depending upon the situation, recurrences can be either.

The recency effect seen in recurrent systems is probably due to repetitive actions
responding to interactional particulars of a situation that is changing only slightly.
In a development task, for example, the situation may be debugging, where the
usual responses to particular circumstances comprise a debug cycle. When the
development is complete, the cycle terminates. Debug cycles are seen throughout
the UNIX traces, and seem responsible for the recurrence probability peaking on
the second-to-last submission. Consider this typical trace excerpt from a non-

120 Principles, corroboration, and justification

programmer developing a document.

nroff Heading2 Chapter1 j more
emacs Chapter 1
nroff Heading2 Chapter1 j more
emacs Chapter 1
nroff Heading2 Chapter1 j more
emacs Chapter 1
nroff Heading2 Chapter1 j more
emacs Chapter 1
nroff Heading2 Chapter1 j lpr –Plq &
: : :

The sequence shows the user developing a document by iteratively editing the
source text and evaluating the formatted result on the screen, using the emacs
editor and the nroff typesetter. The user’s evaluation of the situation determines
how often the cycle is repeated. When she was satisfied with the document, she
terminated the cycle by producing a final hard copy.

Another extracted and slightly simplified sequence from a different user illus-
trates program development using the fred editor and the ada compiler.

fred
ada –M concur –o q5.o q5.a repeats 11 times

q5.o repeats 3 times

fred
ada –M concur –o q5.o q5.a repeats 6 times
q5.o

This shows three debug cycles all related to the same development process. In the
first, the user edits some source code until it successfully compiles (eleven cycles),
and then evaluates the executable program. Final tuning of the program is done by
expanding the initial debug cycle to include editing, compilation, and execution.

The actual development cycles seen support Suchman’s thesis of situated actions.
The user’s plan for the development process is necessarily vague, because bugs
and difficulties cannot be predicted beforehand. The developer must, of necessity,
respond to the particulars of each individual situation. These responses appear
repetitious because the situation is altered only slightly after each action.3

3Although repetitions in the UNIX dialog shown appear identical, the changes made within the editor appli-
cation are not repetitious.

7.4. Concluding remarks 121

In the case of debug cycles, it is certain that some recurrences are artifacts that
can be eliminated through different interfaces. Interpreted or incrementally com-
piled programming environments, for example, remove the necessity for repeated
recompilation of the source (see Reiss, 1984 for an example). In other domains,
what-you-see-is-what-you-get text processors and spreadsheets not only remove
the “compile” step from the cycle, but also show the current state of execution. No
distinction is made between the source and developing product, and any changes
update the display immediately.

But other recurrences are not so easily eliminated. Repetitions are often a
natural part of the task being pursued. Design work, for example, is fundamentally
an iterative process. A second example is telephone dialing. The caller may
dial the same number repeatedly when a connection is not made, or he may be a
middleman arbitrating information between two or more other people. Retrieval of
information in manuals is another example of recurrences that arise from repetition
of our intentions rather than from interface artifacts. Or consider navigation on
computers where people must locate and traverse the many structures necessary for
their current context (e.g., navigating file hierarchies and menu-based command
sets, and manipulating windows to find pertinent views). Because context switching
is common, these traversals would recur regularly.

Other recurrences come from long-term context switching. In the UNIX traces,
it is usual to see work on a particular task (say document development) occurring
in bursts. In a single login session, these bursts may be just a single task interrupted
by other dependent or independent diversions. Over multiple login sessions, tasks
are constantly released and resumed.

In summary, some recurrences are artifacts arising from particular aspects of a
system design and implementation. Others are not, for they arise directly from
the user’s intention, independent of the computer system. Perhaps future systems
will minimize the need for reuse facilities by eliminating the artifacts. For the
present, reuse facilities remain a potentially viable and very general way of handling
repetition.

7.4 Concluding remarks

A set of empirically based principles of how people repeat their activities on com-
puters was listed in this chapter. These principles were reformulated as general
design guidelines for the design of reuse facilities. Although there is no guaran-
tee that the principles apply to all recurrent systems and applications, they were
supported by a post hoc analysis of usage transcripts of the GLIDE functional pro-
gramming language. The chapter also discussed whether it is appropriate to treat
activities as single, independent entities. It was argued that the course of action is
a response to the current situation. As a consequence, single activities could more
readily respond to changing situations than a preconceived plan. Finally, it was

122 Principles, corroboration, and justification

argued that recurrences are both natural facts arising from cognitive behavior and
task requirements, and artifacts arising from poor interface design.

The appeal of a reuse facility is its potential benefit for any application dialog
classified as a recurrent system. A reuse facility requires only that submissions
entered to the application can be collected, presented, and selected for reuse.
Because no semantic knowledge of the domain is needed, it is a general turnkey
approach.

8

Organizing activities through workspaces

In every trade a specific way of organizing tools and objects for the craftsman
has been established. Every workshop is equipped with appropriate tools and
organized with respect to the specific working situation. In this way strategies
for the solution of typical problems are at hand for the workers.

— Hoffman and Valder, 1986

This book opened by advocating the common metaphor of tool use for thinking
about command-based systems, where command lines are the tools people employ
to manipulate the materials in their computer environment. The four preceding
chapters pursued the notion that recently used lines, like tools, should be available
for reuse. But reuse is not the only strategy for supporting user activities. It is
evident that people impose some organization on their computer tools and materials,
just as craftsmen do with their physical counterparts. Real workshops support these
organizations through toolboxes for arranging and locating tools, workbenches for
performing specific tasks, shelving and drawers for keeping relevant tools and
materials readily available, and so on. Computing environments, on the other
hand, do little to promote personal organization. A command-based interface is
comparable to an unhelpful clerk who waits for you to name the tool you want,
retrieves the tool (if available) from a separate room, and demands that you return
it immediately after use. At the other extreme, arranging facilities into fixed
taxonomic menus is reminiscent of a totalitarian chaining of tools to a single
location.

One theme of this research is that people mentally structure their activities
on computers, and that a software tool can be embedded into the interface to
support these implicit organizations. Section 8.1 reviews evidence that people’s
activities are loosely related by tasks and by functionality, and can be grouped
accordingly. In particular, a user’s normal computer interaction can be partitioned
into interleaved sets of goal-related tasks. The next section follows with several
relevant implications leading to design suggestions for a workspace – an interactive
software tool that collects and makes available a user’s related materials in one
convenient location. Finally, a few existing implementations that profess to support
user organization are described to give the reader a feel for what is currently
available.

123

124 Organizing activities through workspaces

Table 8.1. A user’s task set for preparing a specific document

Command line Meaning
cd �/Thesis go to the directory containing the desired file
emacs Chapter1 edit the file
spell Chapter1 j more list the spelling mistakes in the file
nroff Heading Chapter1 j more view the formatted file on the screen
nroff Heading Chapter1 j lpr & produce a hard copy of the document on the

standard printer
nroff Heading Chapter1 j lpr –Pci & produce a hard copy of the document on the

printer named “ci”
rm *.BAK remove the backup files created by the editor

8.1 Relating activities

Activities are not necessarily independent of each other, but may be related in many
ways. In particular, users partition their actions and the objects they manipulate
(such as files) into sets of goal-related tasks, called a task set. This was first articu-
lated by Bannon, Cypher, Greenspan, and Monty (1983), who analyzed command
line activity on a UNIX system by asking users to annotate their command histories
periodically with their intentions. Their method and a short sample annotated trace
were detailed previously in Section 2.2.2.

To illustrate the idea of a task set, consider the case of one non-programmer from
the current study preparing a document (a thesis chapter). A review of her trace
revealed that several command lines, listed in Table 8.1, were used consistently for
this purpose. These lines did not always follow in the same order. The activity
selected at any moment from the task set seemed to depend on the particular
circumstances (see Section 7.3).

Tasks are not invoked sequentially, but are interleaved because the user switches,
suspends, and resumes his goals. This is graphically illustrated by Cypher’s analysis
(1986) of the activity flow during one person’s computer use for a single morning,
reproduced in Figure 8.1. His analysis was based on the annotated history records
collected by Bannon, Cypher, Greenspan, and Monty (1983). The boxes and sub-
boxes in the figure represent the duration of the nineteen main activities observed
and their further sub-activities. The user’s progression through and between tasks
is followed by the arrows, whereas activity performance is illustrated by the shaded
areas. Annotations at the bottom describe the task. For example, the session starts
with read mail, switches to reposition window, switches to msg conversation, and
so on (Cypher, 1986). Each task shown may, of course, be made up of one or more
activities.

Further evidence that users interleave task sets is provided by studies of window
systems. Although all activity pertaining to a particular task is often confined to
a single window, this is not necessarily the case. For example, the contents of

1 Read mail 8 Help A 14 Play with windows
2 Reposition window Find note about “fmt” 15 Read new mail
3 Msg conversation Try it out 16 Make a note
4 Check reminders 9 Delete outdated message 17 Save it as a good example
5 Arrange a meeting 10 Mail from Y File it

Check calendar Find history programs Find the sub-bin
6 Delete old messages 11 Fix the clock Describe the example
7 Respond to P’s message Read documentation Locate the text

Send a reply Ask for help 18 Retitle a note
Set up a new account 12 Read over printouts 19 Make a main bin
Log in to remote computer 13 Look at a note

Figure 8.1. A user’s flow of activities for one morning’s computer use,
from Figure 12.1 in Cypher, 1986.

126 Organizing activities through workspaces

multiple windows could be a different software representation of the same task.
Or windows could be implicitly related by the information in one window being
accessed (and perhaps combined with) the information in another (Card, Pavel, and
Farrell, 1984; Greenberg, Peterson, and Witten, 1986). Card, Pavel, and Farrell
(1984) recorded how a user selected windows and suggested that the patterns
observed are reminiscent of the locality of reference behavior when paging virtual
memory (Denning, 1970). Most user activity revolves around frequent references
to a small set of windows, and a window “fault” often signals a transition to another
small set of windows (Card, Pavel, and Farrell, 1984). These findings of Bannon,
Cypher, Greenspan, and Monty (1983), Cypher (1986), and Card, Pavel, and Farrell
(1984) suggest that task switching occurs at many levels: between sequences of
input lines; between particular windows on a screen; and between sets of windows.

These studies do not show how task sets differ between users. Perhaps a clue
can be gleaned from the work of Nielsen, Mack, Bergendorff, and Grischkowsky
(1986), who investigated integrated software usage by professionals in a work
environment. For each professional, they identified the main goals and sub-goals,
as well as the methods used to satisfy the goals. Data was collected through
questionnaires and interviews. Results were as follows.

� Five high-level application programs accounted for 42% of program use over
the population.

� It was not possible to rank the programs accounting for the other 58% at the
population level, as most were used by only a few professionals each.

� Integrated packages were not exploited fully. For example, users chose non-
integrated modules if they were judged more effective in terms of goal achieve-
ment than the integrated version. In other words, users were “choosing a set
of heterogeneous programs and integrating them in their own way.”

Nielsen et al. conclude that integrated programs are not a panacea for communi-
cating with general-purpose computers, for “most current analyses have not yet
developed categories of representation adequate for identifying the task require-
ments of integration”(p. 167). Even so, the large number of different programs
used by professionals and the different ways they were “integrated in their own
way” suggests that there are both subtle and overt differences between the task sets
of users.

Activities are also categorized according to the function they serve, rather than
the particular task they address. By way of analogy, consider a mechanic’s func-
tionally arranged toolbox, where screwdrivers are located in one compartment,
wrenches and sockets in a second, electrical equipment in a third, and so on. Al-
though particular tools may be selected and placed on a workbench for a specific
job (i.e., a task set of tools), the functional arrangement gives a good general or-
ganization. Functional organization is also possible in computers. For example,

8.2. Implications: suggestions for workspaces 127

Hanson, Kraut, and Farber (1984) classified UNIX commands into five general
categories and measured their frequency of use.1 The categories are generic edit-
ing commands that shape text and other objects (36%), orienting commands that
inform users about their working environment (21%), process management com-
mands used to integrate individual commands into more complex units (10%), and
social commands that allow people to exchange information with each other (3%).
The remaining 30% were task-specific commands. Individuals would, of course,
have their own different classifications.

There are many other ways of organizing activities. Subactivities can be collected
and treated as a single unit (e.g., pipelines, shell scripts). Activities may be
categorized not by function but by the object they manipulate (e.g., file-centered).
However, it is beyond the scope of this book to discuss further possibilities.

In summary, empirical evidence and intuitive insight suggest that activities are
related in several ways. First, user activity is partitioned into multiple levels of
interleaved task sets related by the user’s own particular goals. Different users have
different task sets. Second, activities can be associated either by function or by
the object being manipulated. Third, sub-activities can be combined into a single
chunk. It is self-evident that users organize their activities in many (perhaps vague)
ways throughout the computer dialog. The only truly surprising thing is the lack of
computer support for this kind of organizing activity.

8.2 Implications: suggestions for workspaces

Although people organize their activities on computers, many systems either do not
make these organizations explicit, or do so in very restricted ways. Without on-line
support, people must recall or reconstruct through memory the previously estab-
lished set of activities, or they must use existing, perhaps inappropriate, groupings.
And users cannot easily share groupings that could be mutually beneficial.

This book argues that the organization of activities should be made explicit and
available for use through a software tool generically called a workspace. Through
a workspace, users are able to collect, organize, and use their on-line materials,
and switch between tasks. When combined with a reuse facility, users can not only
select items that were recently entered, but could bring in activities recorded in the
more distant past.

Although not new, the notion of a workspace is not as prevalent in the literature
as might be expected. This section starts by surveying the few existing works
of researchers who derived workspaces from empirical analyses. Suggestions
for workspaces identified in these reports are reviewed. Additional suggestions

1Because the frequency of use was determined by population statistics, it is not clear how accurately they
apply to the individual (Section 3.5).

128 Organizing activities through workspaces

believed to be important are described later.

8.2.1 A review of suggestions

The concept of a workspace has been proposed by other researchers, although
the labels given to the work sometimes differ (e.g., workbenches, tool bins, tool
instruments). Researchers seem to have their own reasons for recommending a
strong explicit organization of user activities. The evidence is usually intuitive,
rather than experimentally supported.

For example, Norman (1984a, 1984b) identifies four stages of user activity –
intention, selection, execution, and evaluation – each requiring different interface
support strategies. He suggests that “workbenches that collect together relevant
files and software support in one convenient location” can enhance user activity
in some of the stages noted above ((Norman, 1984b, p. 368). The visibility of
these items provides information that aids both the formation of the intention and
its selection. If items are arranged properly within the workbench, selected items
can then be easily executed. Unfortunately, Norman does not elaborate further on
his workbench idea.

Another example of a workspace recommendation comes from Nakatani and
Rohrlich (1983), who describe a three-layer system of organizing collections of
“soft machines” into a tools structure. A “soft machines” metaphor graphically
realizes special-purpose machine-like interface for certain activities. They suggest
that this scheme may fail if the collection of machines is somehow not organized.

We want the collection organized so that we have easy access to all the machines
needed for the project with no unneeded machines cluttering our work environment

— Nakatani and Rohrlich, 1983, p. 23

They propose a method of integrating links between soft machines by using the
analogy of tools in a workshop. The hierarchy used is a tool bin (which is the entire
set of tools); a workshop (which collects similar tools); and a workbench (on which
the actual work is done). Although they also suggest that this hierarchy should
have a parallel data hierarchy, they do not elaborate any further.

The most comprehensive work to date is that of Bannon, Cypher, Greenspan,
and Monty (1983). Building on their work describing interleaved task sets, they
propose an environment that allows users to arrange activities so that their goals
and sub-goals are easily achieved. They suggest several guidelines.

1. Reduce a user’s mental load when switching tasks.
2. Support suspension and resumption of activities.
3. Maintain records of activities.
4. Allow functional groupings of activities.
5. Provide multiple perspectives on the work environment.

8.2. Implications: suggestions for workspaces 129

6. Allow interdependencies among items in different workspaces.

Because tasks are frequently suspended and resumed, users should be able to
navigate easily between activities (points 1 and 2). This was further elaborated by
Card and Henderson (1987), who add the following to the wish list.

7. Task switching should be fast.
8. Task resumption should be fast.
9. It should be easy to reacquire one’s mental task context.

Workspaces can act as visible placeholders to reduce one’s mental load. They
should save and restore the task state between excursions. Also, the amount of
cognitive overhead when switching tasks should be reduced by allowing the user
to jot down notes and attach them to particular workspaces.

Users may wish to repeat an action identical or similar to one invoked recently
(point 3), a major argument of this book. Bannon, Cypher, Greenspan, and Monty
(1983). Bannon, Cypher, Greenspan, and Monty (1983) suggest that reusable
context-sensitive records of activity should be included within the workspace.

The obvious function of a workspace is to group activities (point 4). These
relationships should be defined by the user, as we will discuss in the next section.

Workspaces are not necessarily independent of one another, and relationships
between them should be supported (points 5 and 6). Multiple instances of par-
ticular items should be allowed, as items from one workspace can be useful in
another. Information in one workspace may be important and/or related to another,
and the display should make interrelations obvious. Items should be collectively
shared among several tasks, and their presentation should be task-specific (Card
and Henderson, 1987).

8.2.2 Additional workspace suggestions

The suggestions in the preceding section, though important, are confined to support
for task switching. The following discussion supplements the list of design sug-
gestions that should be fulfilled by workspaces. It emphasizes the role of symbols,
end-user personalization, and building structures by collecting previous – instead
of anticipated – activities.

Abstracting activities through symbols. Although primitive activities (such as
UNIX command lines) must be recorded in a workspace if they are to be reused,
they need not be presented to the user in their native form. Instead, syntactic
computer actions can be abstracted as symbols known to the user, where these

130 Organizing activities through workspaces

symbols remind users of the meaning behind the action.2 The expected effect is
to minimize the need to translate the users’ desire into the syntactic actions of the
system by providing them with their own meaningful language (Shneiderman and
Mayer, 1979; Perlman, 1984).

When symbols are both visible and selectable, they can be much more useful
than the conventional abbreviations provided by most command-based systems.
For example, a symbol might be a mouse-sensitive item selected from a menu,
panel, or iconic display. When selected, the underlying action is executed. There
is no need for the user to have to recall the name of the symbol or the syntax of the
action invoked.

Symbols are, of course, not new to computer systems. What is novel is how
they can be used within a set of workspaces to bring together related activities.
A collection of symbols may represent the activities that make up a task set or
functional grouping. The collection may be further abstracted as a symbol, which
can itself be included in other collections. The desired effect is to represent a task
set as a collection, and to provide links from one task to another. This supports in-
terdependencies between workspaces. The user either executes particular activities
within one workspace or calls up related workspaces by selecting the appropriate
symbol. Multiple instances of workspaces are supported as well, because links
need not be exclusive.

Symbols can also represent other attributes associated with an activity. Each
entry can be annotated with extra information such as help text or a property sheet.
Depending on how one selects the symbol, the activity may be executed, the help
text displayed, or a property sheet raised for further clarification.

End-user personalization. Who actually builds and maintains workspaces – the
overall structure, the activities included, and the symbols chosen? From the popula-
tion perspective, designers can create default workspaces that are adapted by users
to pursue common task sets. Previous chapters, however, argued that little activity
overlap exists between individuals, implying the need for some level of personal-
ization. Ideally, when a need arises that is not addressed well by the predefined
workspaces, each user may immediately: (a) add, modify, or delete any elements
within a given workspace; (b) create new workspaces or destroy old ones; and (c)
alter the way workspaces are linked together. This capability is called “end-user
personalization.”

End-user personalization should allow individuals, including non-programmers,

2I use the term “symbol” according to its dictionary meaning: “a thing generally regarded as typifying,
representing, or recalling something” (Oxford Dictionary of Current English, 1984). Other researchers have
different definitions. Perlman, for example, describes a symbol as a letter representing a name, which in turn
represents a concept (Perlman, 1984). The symbols here are not necessarily simple letters, but may be any textual
or graphical representation of an activity.

8.3. Implementations 131

to easily choose and arrange the tools and materials in their workspace. This re-
quirement is vital, for designers can rarely predict user activity. Personal groupings
exist (Sections 3.3 and 8.1). Particular users have their own unique task sets, and no
universal scheme can cater to individual idiosyncrasies. Furthermore, user needs,
tasks, and preferences change over time, and so workbenches should be easily
modifiable.

Using old activities to construct workspaces. Users will not take advantage of a
personalized workspace facility if it involves a significant overhead. The interface
must therefore minimize the mechanical overhead of managing workspaces. More
important is the cognitive overhead of forming activities collected by a workspace.
If users must anticipate what they are going to do, then the burden of collecting
the appropriate materials into the workspace will be high. People may not know
precisely what activities are required for their task (Section 7.3). Even when they
do, the activity desired must be composed, debugged, and tested to make sure that it
will perform correctly. A better method would have users collecting their previous
activities.

It was argued in Chapters 4 through 7 that people repeat their activities, and
that a reuse facility has an important role in the human–computer interface. By
merging this facility with a personalized workspace, and by making old activities
also available as workspace items, considerable power can be gained. Users would
not only be able to redo old actions but they could use the history list as the primary
source of tried and tested candidates for their collections. They could select, copy,
and add them directly into their workspace. I believe this novel synthesis is a major
contribution of this research, because the potential benefits are so important. First,
workspace items do not have to be anticipated. Instead, users can perform their
tasks as normal and decide at any time to assemble the relevant previous activities
that make up the task sets. Second, because these items are directly available,
they are recalled rather than composed. Third, they have already been debugged
and tested to some extent. Finally, interaction tedium is minimized, because
modern techniques used for selecting and transferring activities (the cut/copy/paste
metaphor) should take no more than a few seconds of time.

In summary, a workspace should allow a user to collect and abstract through
symbols both new and previously entered activities into meaningful collections.

8.3 Implementations

Organizational strategies are not new to computer systems. Many top-level inter-
faces, for example, provide hierarchical directories for arranging files. Directories
in common are prearranged by the system designer. Individual needs are also rec-
ognized – users may arrange their particular sub-tree of the hierarchy in any way
they please.

132 Organizing activities through workspaces

Similarly, certain interfaces allow related actions to be grouped explicitly. Dedi-
cated function keys are often arranged in clusters (e.g., cursor movement and editing
actions). Attributes of objects may be listed and manipulated within property sheets
(Witten and Greenberg, 1985). Hierarchical menus provide a hard-wired group-
ing of actions, where each menu page is dedicated to some predefined task (e.g.,
file manipulation). Products designed to address particular needs bundle selected
activities into a single package.

Implementations related to workspaces fall into three broad categories: menu-
based taxonomies, object-oriented browsers, and multiple virtual workspaces.
Menus group activities – actions and perhaps their manipulated objects – into
taxonomic chunks. Browsers, on the other hand, provide a rich development envi-
ronment that is strongly tied to the explicit structure inherent in objects produced
by object-oriented programs. Multiple virtual workspaces allow users to collect
and navigate between screenfuls of windows. These three categories are described
in greater detail in the following sub-sections, and are illustrated with a few imple-
mentations. Table 8.2 summarizes how six contemporary workspace designs fit the
suggestions mentioned in the previous section. The list includes WORKBENCH,
a design described in the next chapter. The intent is not to survey all workspace
possibilities, but to give the reader a feel for how some important characteristics
have been implemented.

Structuring activities through menus. Taxonomic menus classify a domain hi-
erarchically and allow the user to navigate through it. In the process, the user
attempts to focus on the desired information by refining the category that is cur-
rently displayed. These menus are familiar to computer users, and have been used
to access information in very large databases (e.g., Videotex systems, Godfrey and
Chang, 1981), and to organize activities in office automation systems (e.g., IBM
AOSS).

A command interface to an operating system can be built using the same kind
of taxonomic structure. For example, MENUNIX shows how an extensive and
flexible operating system interface can be implemented with menus (Perlman,
1984). It allows access to the UNIX system by displaying two menus from which
users can make selections: the file menu, which lists the current working directory,
and the program menu, which lists the programs currently available (Figure 8.2).
Command lines composed through these menus can be modified further using a line
editor at the bottom of the screen, whereas previous submissions can be reselected
through a small but visible history list.

When a file menu entry is selected, MENUNIX tries to do something sensible
with the file. If it is a directory file, the current working directory will be changed.
If it is an executable file, it will be run (after arguments are requested). If it is a text
file, the user’s preferred editor will be called on it. Thus users are able to edit files
and change directories with just the file menu commands.

Table 8.2. Suggestions implemented by existing workspace designs

Property MENUNIX SMALLTALK ROOMS ROOM WCS

Task switching
Reduces mental loads
when switching tasks

Grouped activities saved
in menus

All information retained
between tasks

Window-based
applications & window
attributes saved between
tasks

Task activities are saved
as icons

Task activities are saved
as pop-up menu items

Suspend and resume
activities

No Very slowly through
projects

Rapid task switching
through doors and
Overview screen

Task switching through
doors

Each workbench
represented in its own
window

Multiple perspectives of
the work environment

No Not really. Each project
is independent of the
other

Window collections are
shareable between
workspaces

Not known Multiple instantiations
of the same workbench
are possible

Interdependencies
among items

Menu items need not be
unique between
workbenches

Objects related through
hierarchy

A window-based
application can appear
in any room

Copies of activity icons
can be made and used in
other rooms

Workbench links and
menu items can be
shared

Grouping activities
Functional groupings of
activities

Yes, as items in a menu Yes, as methods in an
object and objects in a
hierarchy

Yes, as collections of
window-based
application programs in
a room

Yes, as activity icons in
a room

Yes, as items in several
pop-up menus attached
to a workbench

End-user personalization
of functions

Not expected Only through
programming

Window attributes and
their applications are
user defined

Icons are acquired
through a “supply room”
and their attributes can
be altered.

All pop-up menu
attributes are user
defined

continued on next page : : :

: : : continued from previous page

Property MENUNIX SMALLTALK ROOMS ROOM WCS

Reuse
Maintain records of
activities

Yes No No No No

Old activities
transferable to
workspace groupings

No No No No No

Symbols
Abstracting activities
with symbols

Yes, through
descriptions and
one-letter symbols

Yes, through class and
message categories,
objects, and message
selectors

Limited. Doors
represent rooms

Icons represent activities
and doors represent
rooms

Yes, with names, pop-up
menu groups, and help
messages

End user personalization
of symbols

No Through programming
only

Rooms and doors can be
named

Room maker allows
rooms to be defined

Names, activities, and
help messages are user
defined

8.3. Implementations 135

Figure 8.2. A stylized MENUNIX screen.

Programs are structured into “workbenches,” and the program menu displays
names (brief descriptions) of the programs in the current workbench. For example,
one programming workbench contains sub-workbenches for general programming
and specific programming languages. Other workbenches gather writing tools,
deal with mail, and so on. When a program menu entry is selected, arguments
are requested and the program is executed. To implement the hierarchy, an entry
in a workbench may point to another workbench (in the same way that an entry
in a directory may point to another directory in the file hierarchy). Selecting one
of these entries will replace the current program menu accordingly. Of course,
one consequence of having a program menu is that the vast selection of UNIX
utilities must be structured somehow into reasonably small subsets fitting into each
workbench; otherwise the menu would become unmanageable. In MENUNIX, this
is the responsibility of the system administrator.

MENUNIX fulfills one of the workspace suggestions by using the workbench
metaphor to gather groups of activities. Yet it fails as a workspace for two reasons
(Table 8.2). First, it does not support most task switching activities. Only one
workbench is visible at a time, and traversing the hierarchical links between them

136 Organizing activities through workspaces

is tedious. Outputs of previous selections are not even available when the next
activity is being composed. Second, the end-user is not expected to personalize the
workbench. But not all programs fall neatly into the workbench paradigm; some
tools may not be in the location in which the user expects to find them.

Object browsers. Whereas command-based systems have a multitude of inde-
pendent and unstructured tools, object-oriented programming environments take
the opposite approach. Although systems differ by varying degrees (Stefik and
Bobrow, 1986), object-oriented languages generally group data into abstract data
types called objects, where “each object (or class of objects) has a set of operations
(methods) to manipulate the data stored in that object” (Hailpern, 1986). These
objects are usually arranged in a hierarchy or lattice, and every object inherits and
builds upon the characteristics of its parents. Objects cannot directly manipulate
either the data or methods attached to other objects. Instead, they send messages
to each other that communicate requests.

A few programming environments take advantage of the highly structured re-
lationships between the objects they contain by providing a workspace – called a
“browser” – for creating, viewing, and manipulating objects. Through browsers,
users can: (a) view and traverse the object hierarchy; (b) view particular object
descriptions, their methods, and related comments; (c) edit the objects and the
methods; and (d) change the relations between objects in the hierarchy. Depending
on the environment and language supported, browsers also have different capabil-
ities. The SMALLTALK browser, for example, differentiates between the object’s
class and instance methods (Goldberg, 1984). LOOPS, on the other hand, sup-
ports multiple inheritance (Bobrow and Stefik, 1983), and the programmer can add,
delete, rename, and split classes, and reorganize the lattice through the browser in
a way that is not allowed in SMALLTALK (Stefik and Bobrow, 1986).

Figure 8.3 shows an example of the SMALLTALK browser in action. As shown,
the browser is made up of five sub-views. The top four are menus that display, from
left to right, class categories, classes, method categories, and message selectors.
The large bottom sub-view is used mainly for editing templates of methods and
class descriptions, although information about the object world is also displayed
there (Goldberg, 1984).

What makes browsers particularly effective is the rigid classification of objects
and actions within the environment. Unlike traditional systems (such as UNIX),
each object understands only a limited set of actions. Similarly, action selectors
(messages) are understood only by a restricted set of objects. A browser allows the
programmer to inspect and use existing sets easily. When programming, objects and
methods are easily added, deleted, and modified. Owing to the interdependencies
between objects, it is vital for the programmer to view their relationships, for the
programmer must know how to extend existing objects, and know which ones will
be affected by any major changes.

8.3. Implementations 137

Figure 8.3. The SMALLTALK browser window.

Although object browsers are elegant workspaces for programmers, it is not
clear whether this type of organization is reasonable for non-programmers. The
browser’s organizational strengths come from revealing the underlying structure of
the object-oriented language, a structure that may be beyond the grasp and interest
of a non-programming end-user. A further detraction is that although objects are
extremely good representations of tightly related structures, they may be ill-suited
for capturing the loosely related activities contained in task sets (Table 8.2).

Multiple virtual workspaces. Window-based systems allow users to manage a
set of windows on a screen, where each screen is considered a single virtual
workspace. A multiple virtual workspace is produced when the system remembers
different screenfuls of window sets and allows transitions between them.

Perhaps the most exciting implementation to date that represents this concept is
ROOMS, which divides groups of window-based applications into collections with

138 Organizing activities through workspaces

transitions among them (Henderson and Card, 1986; Card and Henderson, 1987)
Each screenful in ROOMS is a virtual workspace containing windows running
specific applications. Many virtual workspaces exist, and a user can switch tasks by
supplanting the current workspace with the desired one. Although designed mainly
to reduce “thrashing” effects that occur when one tries to keep desired windows
visible on a small screen, it effectively allows a user to organize collections of
applications and move rapidly between them.

ROOMS brings together tasks and high-level tools.

When there is some task to be done, such as reading mail, writing a paper, or
creating a program, the user gathers a number of tools for doing it. : : :The design
of the ROOMS system is based on the notion that, by giving the user an interface
mechanism for letting the system know he or she is switching tasks, it can anticipate
the set of tools/windows the user will reference and thus preload them together in a
tiny fraction of the time the user would have required : : : the set of windows preloaded
on the screen will cue the user and help reestablish the mental context for the task.

— Henderson and Card, 1986

A single room looks like a standard screen containing a few special icons called
“doors,” which link the current room directly with others. Opening a door follows
the metaphor of changing rooms. Every room also has a back door leading to
the last room visited. One special room called an Overview shows all the rooms
as pictograms and allows the user to navigate between them (Figure 8.4). Six
rooms are shown in the figure, and the windows in each pictogram represent their
actual layout in the room. The pictograms are active, as users may alter the
internal arrangement of miniaturized rooms and redistribute the windows between
the rooms through direct manipulation and the use of the delete, copy, move, and
edit buttons. The last room visited is shown by its shaded label (the “Filing” room).
Some additional points worthy of note are: windows can be shared between rooms,
a window’s presentation and position are linked to the workspace, rooms can be
included in other rooms, windows can be carried from one room to another, and
users can find out what rooms connect.

Henderson and Card (1986) mention that these multiple virtual workspaces are
not new ideas. SMALLTALK, for example, has hierarchically arranged “projects”
that define various working environments, each considered a virtual workspace
(Goldberg, 1984). The CEDAR programming environment supports multiple
“desktops” and allows users to choose between them through a desktop overview.
And another UNIX-based system called room is a simpler version of the ROOMS
metaphor above (Chan, 1984). Here, icons are collected into workspaces, and
each icon either invokes a UNIX process (including parameters) or leads to an-
other room. A special icon called a “room maker” lets a user specify new icons.
The WORKBENCH CREATION SYSTEM is yet another virtual workspace of-
fering that preceded ROOMS (Greenberg and Witten, 1985b). This experimental

8.3. Implementations 139

Figure 8.4. The ROOMS overview screen

interface used windows to provide multiple independent views into workbenches
that collected a user’s activities. What was novel about the WORKBENCH CRE-
ATION SYSTEM was that activities executed through pop-up menus and attached
to the workbenches were user defined and maintained through a specialized direct-
manipulation editor. All important aspects of this system are contained in the design
and implementation detailed in the next chapter. A system somewhat similar to the
WORKBENCH CREATION SYSTEM was developed later by Dzida, Hoffmann,
and Valder (1987).

ROOMS allows users to bundle together windows running high-level applica-
tions (i.e., appliances, Section 1.2.2) with high-level tasks. But as seen in UNIX,
much activity is generated at a low level, in that old lines are reused and new ones
are formed continuously. Because there is no way to save a set of equivalent low-
level activities in ROOMS, its value in a general-purpose environment is probably
not as high as it could be. Informally speaking, ROOMS organizes workbenches
within workspaces, but not the tools contained by each workbench (Table 8.2).
Chan’s room system, on the other hand, does provide this capability, albeit at a
primitive and perhaps tedious level (Chan, 1984) (Table 8.2).

140 Organizing activities through workspaces

8.4 Concluding remarks

This chapter provided evidence that computer users organize their activities in a
variety of loose ways, most notably as collections of interleaved task sets. The
findings suggest the notion of a workspace – a software tool that allows one to
collect and arrange related materials into an explicit structure. Workspaces allow
personalized grouping of activities and rapid task switching between these groups.
Furthermore, activities and their related attributes can be represented by symbols,
and structures can be built by collecting one’s previous – instead of anticipated
– activities. Several implemented designs were summarized and their properties
contrasted in Table 8.2.

This chapter is intended to set the scene for future studies, experiments, creative
design, and evaluations. The work presented here is a pioneering effort, and
is currently incomplete. Empirical efforts for eliciting and understanding user
organizations have just begun. The notions behind a workspace are also weak, for
none have been evaluated and tested to any great extent. For example, no one has
directly investigated user-composed symbols.3 Similarly, it is not clear how well
users can articulate their task sets. What seems reasonable in theory may fail in
practice.

3The closest study is one by Good, Whiteside, and Jones (1984), who suggest that user-derived commands
improve a novice’s ability to interact with a command system.

9
A workspace system: description and issues

Basically, this workbench is composed of a pair of storage cabinets, on which
rests a rugged work top. The exact design of the storage cabinets depends on
the kind of work you do, the kind of tools you use, the amount of space you
have.

— Homeowner’s How-to Treasury, Popular Science, 1976

This chapter describes a design and implementation of a user support tool that
embodies the reuse properties suggested in Chapters 4 through 7, and the workspace
organization of Chapter 8.1 Called WORKBENCH, the system is a graphical
window-based front end to UNIX csh. The facilities and user interface are described
in the first section, along with the rationale behind its design. WORKBENCH is
not an end in itself. Although recently made available to selected members of the
University of Calgary’s Department of Computer Science and now used by several
people, it serves here as an exploration of a workspace design. It is not formally
evaluated; experimental appraisal is neither credible nor necessary at this early
stage. Rather, the intent is to discover how feasible it is to build a workspace, to
note initial pragmatic considerations arising from its use, and to suggest research
areas motivated by problems encountered or envisaged. These issues are covered
in the second section.

9.1 The WORKBENCH system

WORKBENCH is a window-based facility that allows people to reuse and structure
their on-line UNIX csh activities. It runs within the Sunview 4.0 window environ-
ment, and uses only the standard and familiar user interface constructs provided,
such as panels, buttons, pop-up menus, and so on (Sun, 1988). For consistency with
other Sunview applications, no attempt was made to change the “look and feel”
of these constructs. Although it caused a few problems, following this standard
nicely separated secondary interface design issues of window-based applications
from primary aspects of a workspace.

The first sub-section below gives a brief account of the several standard Sun-
view interface constructs used. The subsequent sub-sections provide an overview
of WORKBENCH, describe in detail its activity reuse facility, its organizational

1Some of the ideas in this chapter were presented at the Canadian Information Processing Society (CIPS)
National Conference in Montreal (Greenberg and Witten, 1985a).

141

142 A workspace system: description and issues

capabilities, and finally its underlying architecture.

9.1.1 A brief overview of Sunview

Sunview is a user-interface toolkit that supports creation of interactive text and
graphics-based applications running within a window environment available on
SUN workstations. Although the building blocks supplied are moderately flexible,
their usage in the WORKBENCH design is restricted to follow the standard user
interface conventions pursued by most other Sunview applications. The look and
feel of a few of the Sunview facilities selected are described here – frames, sub-
windows, ttys, panels and their items, alerts, and menus. Programming details are
omitted; they are amply covered elsewhere (Sun, 1988). A passing familiarity with
window systems is assumed.

A frame acts as a window does in most window-based systems. It can be resized,
moved around the screen, shrunk to an icon representation, selected for input, and
so on. A frame is a Sunview object that brings together one or more other objects –
frames or sub-windows – into a common framework so that they can be operated on
as a unit. It can own non-overlapping sub-windows that are constrained to fit within
the frame’s borders, and other sub-frames that are often used to implement pop-up
windows. Within a Sunview screen, a user will typically have several opened and
closed windows on display (closed forms are represented by icons). Only one
window at a time, chosen by moving the cursor into it, can receive textual input.2

Four types of sub-windows are available: canvas, text, panel, and tty. Programs
can draw on a canvas, and text is presented and edited within text sub-windows.
The tty is a terminal emulator, and only one is allowed per frame. Panels are sub-
windows that contain a set of controls, called panel items. Although sub-windows
do not overlap, they can be moved about in the frame under program or user control.

Menus are pop-up lists that display several choices for exclusive selection. Al-
though menus can present non-executable information, a selection usually performs
some system action. By convention, menus appear only when a user depresses the
right mouse key, and disappear on the mouse key’s release. Pointing to a menu item
highlights it, whereas releasing the mouse key on the highlighted choice selects it.
Special pullright menu items, distinguished by an arrow on their right, can display
further menus. These sub-menus appear when the user moves the cursor rightward
on the item.

Although there are many types of panel items, only the few used in the design
are described here – buttons, cycle choices, and text items. Buttons are items
that usually display a framed text string or a graphical image, and are selected by
depressing the left mouse key and pointing to it, which inverts its color. An action is

2Alternatively, Sunview windows can be configured to accept the input focus by clicking a mouse key within
it.

9.1. The WORKBENCH system 143

triggered when the mouse key is released. Moving the cursor off a button deselects
it. Menus may be attached to buttons, and they appear when the right mouse key is
depressed. Next, a cycle choice item allows the user to cycle through choices in a
list. A descriptive text string is displayed on the left, the current choice on the right,
and two semicircular arrows in between. A left mouse key click will cycle through
the available choices one at a time, whereas depressing the right mouse key raises a
menu of possible choices. Finally, text items display a label followed by an editable
string field. Pointing to the field highlights the text and moves a text cursor into
it. Editing capabilities are primitive: the cursor can appear just at the end of the
string, and only backspace, word erase, and line erase are supported. When more
characters are entered than will fit in the field, the displayed string is scrolled to the
left. The presence of hidden characters is indicated by a left-pointing arrow.

Alerts are pop-up sub-frames that display a message and a set of buttons in a
panel. As indicated by their name, they alert the user to some event. Unlike other
sub-frames, the alert takes control of the entire screen until the user responds to it.
These frames are distinguished visually from other windows by a large arrow that
sweeps into them.

The Sunview window system, although popular, is by no means perfect. It
is painfully slow on low-end workstations (e.g., the SUN 3/50), especially for
manipulating and switching between windows and for displaying menus. Certain
interface features are annoying. For example, new windows usually appear at
random screen locations, and several standard Sunview objects are difficult to use
(e.g., scroll bars are functionally overloaded). From the programmer’s perspective,
it is easy to create applications that follow standard Sunview utilities. However,
altering the interface look or behavior is considered difficult. Greenberg, Peterson,
and Witten (1986) discuss broader issues in the design of window management
systems.

9.1.2 An overview of WORKBENCH

The rest of this section describes WORKBENCH. Because print on paper is a poor
medium for explaining highly interactive systems, snapshots of the workstation
screen are used to help convey the nature of the interface. The text is also annotated
with notes indicating why design decisions were made and listing some of the
problems encountered.

WORKBENCH loosely follows the metaphor of a handyman’s real workbench.
It has three visual components on permanent display, presented as the three hor-
izontally tiled sub-windows illustrated and labeled in Figure 9.1. These are the
work surface, the tool area, and the tool cabinet. When the WORKBENCH frame
is closed, it shrinks to a pictogram of a physical workbench, shown by the icon at
the top left of Figure 9.1.

The work surface is the tty sub-window on the bottom running csh, and it is the

Figure 9.1. The normal appearance of the WORKBENCH window.

9.1. The WORKBENCH system 145

main working area on workbench. When it is selected as the focus of attention, all
lines entered through typing are processed by csh in the usual way.

The middle sub-window is the tool area. It includes a reuse facility for storing,
selecting, and editing lines entered to csh, and a tool panel for keeping several
activities on hand independent of history. The tool area is analogous to the surfaces
surrounding a real workbench where recently used and favored tools are kept on
hand. It is a Sunview panel that includes three columns of text items and a button
(Figure 9.1). The first two columns are the reuse facility, and up to eleven lines
from a history list of csh input are displayed there. The third column makes up the
tool panel where up to six favored activities can be stored. Selecting any text item
with the middle mouse button inserts the text into the work surface, which results in
its execution by csh. The left mouse button enables editing, copying, and pasting –
a left-key press highlights the text and internally stores it in a copy buffer, whereas
a shift-left pastes the stored string into a new text item.3 Through copy and paste,
the user can move text from the dynamic history list to the static tool panel.

Note 1. The use of text items by WORKBENCH is non-standard, for
Sunview does not consider them to be buttons. An alternative design
could place a real button next to every text item and use that for selec-
tion instead. However, this adds complexity to the interface and also
consumes more screen space.

Note 2. Although button actions are invoked by clicking the left key on
the mouse, text items use the middle key for an equivalent action. This
is inconsistent. Switching the text item’s left and middle key responses
is not a solution, for it would make WORKBENCH’s treatment of text
items inconsistent with other applications. Neither design is satisfactory.

The tool cabinet is situated in the top sub-window of Figure 9.1. Through it,
the user may open and display one of the many tool drawers available. Drawers
contain both tools and drawer handles. Both are represented as labeled buttons
distinguished by different text fonts. Selecting a tool inserts a UNIX command
line into the worksurface sub-window, whereas choosing a drawer handle opens
a new drawer in the cabinet, replacing the current one. The cabinet icon on the
right allows the user to cycle through the drawers just visited (left mouse button),
and to review and select from a menu of the drawers opened in the current login
session or of all drawers available on the system (right mouse button). Finally,
selecting the edit button on the panel’s right pops up a frame containing an editable
representation of the current drawer.

3This violates the Sunview copy/paste standard, which uses a facility called the selection service. Only time
constraints prevented its proper implementation here.

146 A workspace system: description and issues

Note 3. WORKBENCH by itself is not meant to handle all task switching
properties addressed by a workspace. Rather, it should be available as
a window within a ROOMS-style environment (Section 8.3). Whereas
ROOMS provides ways of collecting and switching between windows
and their associated applications, WORKBENCH provides ways of main-
taining and organizing application- and task-specific details within a
window. Due to time constraints, a ROOMS-style environment was not
implemented around WORKBENCH.

9.1.3 Designing the tool area

Eleven previous submissions are always available for selection in the reuse portion
of the tool area (Figure 9.1). The submissions presented are continuously updated
to correspond to a history list maintained internally by WORKBENCH. The num-
bering corresponds to the order of items maintained on the history list (e.g., item
1 has just been entered). These items are presented in a fish-eye view, where the
font size of the text decreases with its probability of selection. If the user wishes to
view more than eleven items, he may choose the More History button, which raises
a pop-up frame containing thirty-nine further predictions (Figure 9.2, right side).

Note 4. Given the findings of previous chapters, eleven items seems a
reasonable number. They do not consume much screen space and there
is little gained from adding more. Eleven choices may be too many.

Note 5. The fish-eye view is a tradeoff between legibility and screen area.
Although the more probable items are easily read, the small size of items
in the second column may preclude their use. Unfortunately, control of
font size is not as rich as it could be – only three are available in Sunview.

Note 6. The reuse list is numbered and read from the bottom up. Although
top-down presentation may seem intuitively more natural, the current
ordering and addition of new items follows the scrolling direction of the
text in the work surface.

The history list of csh input lines can be presented in several ways. By de-
fault, previous submissions are presented as a recency-ordered list with duplicates
removed. Alternatively, the user may request duplicate items to be shown by tog-
gling the cycle choice item on the workbench property sheet sub-frame – raised
through a pop-up menu attached to the More History button – illustrated near the
bottom of Figure 9.2. The user can also display command-sensitive sub-lists by
raising a context-sensitive menu attached to all text items. Figure 9.2, for example,
shows the sub-list for all the different ways the user has submitted the frequently

Figure 9.2. Ancillary controls of the tool area.

148 A workspace system: description and issues

used cd command. The menu also displays the full view of the current selection,
which is important for long strings that are not completely visible within the text
item. The expansion alone is also available through a non-standard shifted mouse
right-key press.

Note 7. Recency-ordered history lists and command-sensitive sub-lists
follow the design recommendations set out in Chapter 7. Although an
option for showing duplicate items is provided, it seems unnecessary in
practice.

Users may change the behavior of the middle button key on a text item through
the above-mentioned pop-up property sheet. Although the key press will always
insert the text into the work surface, the user can specify whether the line should
be executed (which adds a terminating line feed).

Note 8. Insertion without execution theoretically gives the user a way
of avoiding an erroneous selection by allowing time to reconsider the
choice. But error handling is not so easily solved; this issue is discussed
further in Section 9.2.

Any text item in the reuse area is editable, and the edited version will be executed
upon selection. However, the original form will be maintained properly on the
history list. In Figure 9.2, for example, if item 5 (latex galley) is changed to latex
galley-test and then selected, the new version will then appear as item 1, whereas
the original form moves on to item 6. If the edited item is not selected, it will revert
to the original text after the next update.

Note 9. As previously mentioned, Suntool text items have poor editing
capabilities. This is frustrating, for even simple text modifications are
tedious and usually not worth the bother. The only real value of editing
is that text is easily appended to an item (which supports the partial
matching by prefix method, Section 6.1.2). Sunview will support proper
editing in the near future.

WORKBENCH remembers its current state between sessions in several files. By
default, history is saved in one location only. However, the user can also save (and
optionally restore) the history in different files through the workbench property
sheet (Figure 9.2). For example, using a relative file name will make the history
list directory-sensitive on start-up. Through a pop-up menu attached to the More
History button (not shown), one can save, clear, or load the history from or to a file
at any time during the session.

9.1. The WORKBENCH system 149

Note 10. Chapter 7 indicates that directory-sensitive history lists provide
some predictive benefit. Although saving history in different files lets
users open workbenches primed to certain activities, this probably will
not be used. Directory-sensitivity should be integrated properly as an
option in the next version of WORKBENCH.

Finally, users can type or copy executable lines from the reuse area into any one
of the editable six text items in the tool panel. The text remains in place until it is
next edited by the user, that is, it acts as a tool cache. Copying is fast; several items
can be transferred in a few seconds. Furthermore, items in the tool panel respond
to mouse selections in exactly the same way as do text items in the reuse area.

Note 11. An alternate design of the tool panel considered placing history
selections into empty slots, taking advantage of the fact that users con-
tinually recall the same activity when using history (Section 7.1.1). This
feature was not included due to the danger of overloading the tool panel’s
functionality.

9.1.4 Designing the tool cabinet

The tool cabinet displays a drawer at a time. The drawer’s name appears in the
title bar of the WORKBENCH frame, and its contents are located in the top sub-
window. Entries in a tool cabinet drawer comprise four types, where three are
presented as text buttons and one as a pictogram. The first is a tool that invokes
a Unix command, which is inserted and executed in the work surface upon button
selection. The second is a drawer handle, whose selection will close the current
drawer and open a new one. The other two are special-purpose edit and cabinet
buttons.

A tool has three internal components: an executable string, a short label, and
some help text that describes the tool’s function. Only the executable string is
mandatory. Tool buttons display the label (if there is one), or as much of the
executable string as will fit. At any time, the user can raise a help menu that
displays the help text (if any is available) and the executable command. Figure 9.3
illustrates the help menu for the tool button labeled Edit Refs. The help string Edit
my refer file appears as the first menu item, followed by the executable string gmacs
new. The user invokes gmacs new by either clicking on the button or selecting it
from the help menu.

A drawer handle has only two components: a short label that is also the name
of the drawer to be opened, and a help string. The label is displayed in a serifed
font to distinguish it visually from the sans-serifed tool button. The help menu
works the same way as the one described above, except that no action is displayed.
The button labeled MainDrawer in Figures 9.2 and 9.3 is one example of a drawer

Figure 9.3. Ancillary controls of the cabinet.

9.1. The WORKBENCH system 151

handle. If it were selected, the entries of the current Bibliography drawer would be
replaced by the ones from MainDrawer. The title bar is also updated to reflect the
drawer’s name.

The cabinet pictogram is a button that offers another navigation scheme for
drawers. Raising its menu shows a trail of all drawers visited. As with the
reuse area, open drawers are maintained as a recency-ordered history list without
duplicates. The user can choose a menu item to return to any previous drawer.
Alternatively, clicking on the cabinet button will cycle back through the history list
one drawer at a time. The user may also view and select any drawer available on
the system through a menu raised via the middle mouse key.

Central to WORKBENCH is the method of creating and altering the drawers
and the items they contain. Without the ability to personalize it, the cabinet would
be of limited novelty and would contain no fundamentally new ideas, thus being
simply a way of allowing users to navigate through a predetermined network of
utilities. But the inclusion of an end-user creation/maintenance system provides
an interesting medium in which to explore explicit user personalization in a rather
sophisticated interface. It is essential to success that modification be quick and
easy, for if not, novice users will be denied access to a tool that should make work
much easier for them, and expert users will not alter the support structure to reflect
changing requirements.

The user defines drawers in the first place by filling out and editing a simple
form, raised as a pop-up window by selecting the edit button on the tool cabinet
(Figure 9.3). The top line of the form shows the name of the drawer, whereas each
subsequent line represents the attributes of a single drawer button. The choice item
sets the button type as either a tool or a drawer handle. The three other fields in the
line are editable panel text items that specify the label, action (for tools only), and
help associated with each button. Figure 9.3 shows a snapshot of WORKBENCH
with the current Bibliography drawer opened for editing. The relation between the
drawer’s items as shown in the cabinet and in the form should be self-evident.

Note 12. Users are invited to document their tools when created by at-
taching a meaningful symbol to an action, and by annotating it with help.
This ameliorates one of the most severe drawbacks to explicit person-
alization schemes – that a user becomes confused and disoriented when
faced with another’s model (and perhaps even with his own). Although
there is no check that the user-supplied label and help information is
accurate, the fact that it can be provided should encourage sensible use.
However, attaching help to buttons is non-standard in Sunview.

A user edits or expands an existing drawer by traversing the network in the
normal way and then selecting the edit button, which always displays the current
drawer. New drawers are created by selecting the button labeled New Tool Drawer

152 A workspace system: description and issues

at the bottom left of the form and filling in the vacant fields as desired. Drawers are
linked to each other by changing the item type to a drawer handle and filling in the
appropriate name in the label slot. The user quits the editing session through the
Done Editing button, and an alert box gives him the option of saving or discarding
any changes made.

Note 13. The user has no support for globally examining, modifying, or
removing links between drawers. This lack is quite serious. Section 9.2
will discuss this deficiency and raise other general concerns of user-
created networks.

Note 14. If a user wishes to create an explicit link to an existing drawer,
the user must recall and type it in, a highly error-prone activity. A better
method would attach a menu to the label field of the drawer handle that
lists all the drawers available and inserts the name selected.

A novel and necessary feature of the drawer editor is that activities can be copied
from the history list or tool panel to the current drawer item. This is the same
method used to transfer text within the tool area. In fact, lines can be copied from
one text item to any other throughout WORKBENCH.

Note 15. The current system follows the simple strategy of copying
straight text from one text item to another, a clearly limited approach.
One should be able to select and group multiple fields and multiple lines
for copying as a single entity. This would reduce tedium for the user who,
for example, wishes to package all his tool panel items into a drawer.

The drawer editor described here is a user interface prototyping scheme for
creating simple interfaces with control panels. With it, end-users can easily and
interactively build a window interface for a command-based interactive program.
For example, a UNIX software tool with a plethora of switches to generate different
variants of its behavior can in a matter of minutes be given a smooth, window-based
interface that is controlled by buttons, each having pertinent context-dependent
help. Similarly, activities surrounding a task can be pulled off the tool area and
packaged as a drawer.

9.1.5 Underlying architecture of WORKBENCH

WORKBENCH is an independent UNIX process that communicates with applica-
tion programs. Upon invocation, it creates a unique UNIX socket (Sun, 1986a),
and then spawns a single new csh process. While WORKBENCH is listening for
any messages sent to it, csh searches for and establishes one-way communication

9.1. The WORKBENCH system 153

through the socket. WORKBENCH then becomes a receiver that collects historical
activities directly from csh.

As a sender, WORKBENCH does not communicate directly with csh, but merely
inserts text into the workspace. The current application receives the text as if the
user typed it in himself.

Note 16. Multiple applications running concurrently can be supported
by this architecture, as WORKBENCH can receive messages from any
process that sends to it (although only csh is used in this version). By
maintaining and switching between different history lists, the presentation
of activities on the tool area could then be application sensitive. This
theme is expanded upon later.

History is maintained in a data structure that allows WORKBENCH to present the
list rapidly under three conditioning methods: sequential order showing duplicates,
sequential order with duplicates shown in latest position only, and as a command
hierarchy with command-sensitive sub-lists. Although not particularly elegant, the
data structure serves its purpose quite well. Figure 9.4 illustrates how some of
the lines shown in Figure 9.1 are maintained. As shown, the true history order
is maintained as a linked list, where each node (called a line node) points to its
corresponding command line, maintained separately in a binary tree (far left of the
figure). Many line nodes may point to the same line, because only one copy is
retained. Displaying the n most recently entered lines is simply a matter of getting
the lines attached to the first n nodes at the head of the list.

The method for retrieving n lines with no duplicates shown is slightly more
complex, for it avoids pattern matching as a method to determine if something
has been seen before. It relies upon integer markers stored with every line in the
binary tree and a single global counter, all initialized with values of zero when
WORKBENCH is first invoked. Detecting duplicates is straightforward when each
is set appropriately. When the view of the history list is to be updated, the global
counter is first incremented to make sure that its value differs from all markers.
Each line node is then visited in order. If the marker and counter differ, the item is
presented and the marker set equal to the counter. If they have the same value, then
the item has already been presented. The process terminates when the required
number of items are found or when the history list is exhausted. There is no need
to update nodes that have not been visited.

Command-sensitive sub-lists are maintained separately by using two additional
binary trees (Figure 9.4, right side). One stores unique copies of all the commands
(i.e., first words in lines) seen so far, whereas the other contains all arguments
(remainder of lines). Every node in the binary tree of commands maintains a
recency-ordered linked list of pointers to the appropriate arguments in the other
tree. This becomes the command-sensitive sub-list. Because every line node

Figure 9.4. The data structure used to maintain the history list of activi-
ties.

9.2. Pragmatic concerns and research questions 155

also points to its corresponding command node, finding and retrieving the list of
arguments is fast. Figure 9.4, for example, shows how the last three arguments
used by the cd command are stored (also displayed in pop-up menu of Figure 9.2).
Duplicates are processed in exactly the same way as the duplicate-removed history
list mentioned previously. Again, no pattern matching is required to update the list.

Note 17. Presenting and updating the history list is quite rapid, even
when the auxiliary pop-up history panel is displayed. The user does
not have to wait for the system to catch up with him. Similarly, the
command-sensitive menu appears almost instantly. But given the speed
of most window-based workstations and the relatively small values of
n and of items maintained in history, the data structure used may seem
overly complex and unnecessary. However, an early prototype built on a
Lisp machine performed poorly when items were maintained as a simple
record of lines entered and retrieved through pattern matching.

Note 18. Another and perhaps more elegant data structure uses a single
history list that maintains all pointers internally. For example, one chain
of pointers would lead through the true sequential order; another would
bypass all duplicates, and so on. No counters need be maintained, as
all information is provided by the links themselves. A hash table or
its equivalent would be available for rapid indexing into the structure.
Although this structure is slightly more efficient than the one used, it is
slightly harder to code in the “C” language used for this implementation.

9.2 Pragmatic concerns and research questions

In the design presented here, a workbench metaphor was adapted for a user support
tool that keeps recently used input lines available for selection and provides people
with the capability of organizing their collections of lines. Yet several significant
problems exist. First, serious engineering concerns arise from WORKBENCH
being just a front end to an application. Second, several aspects of the design
raise open research questions that need answering. Both themes are pursued in this
section.

The lack of input redundancy. WORKBENCH provides a way of executing an
input line by a single press and release of a mouse key. Because this eliminates
input redundancy, it is quite difficult for the user to catch erroneous selections.

Consider a person who has written a document after removing an old one, where
the actions displayed in the reuse area are ls, rm document, and edit document. After
editing, the person decides to list the files (ls), but a sloppy selection mistakenly
chooses the command that removes the newly created document. Destroying a

156 A workspace system: description and issues

day’s work would certainly undermine one’s confidence in WORKBENCH, and
could discourage its continued use. The same argument applies, of course, to menus
and buttons.

The problem of no input redundancy is not peculiar to this design, but plagues
any system that allows users to invoke an action in a single step. One sometimes
sees attempts to add artificial redundancy. The tool area, for example, can be
set to insert a line into the work surface without executing it. The user can then
preview the line and accept it by hitting the return key. Similarly, every choice
could be confirmed through an alert box. Yet none are good approaches, for the
act of acceptance often becomes a conditioned response. A better approach would
include undo operations, of which many styles are available (Thimbleby, 1990).
Users could then aggressively explore and pursue their actions, for they would
know that they can backtrack to previous acceptable states at any time.

By itself, WORKBENCH cannot hope to solve this problem, for it is just a front
end to an application that may not have an undo capability.

Collecting and presenting input from different applications. Reuse facilities
must somehow collect a user’s input before it can be presented. One architecture
considered uses a pseudo-tty input filter that collects every line before it is submitted
to the application, and passes a copy to WORKBENCH. This method is general-
purpose and requires no modification of the source code of an application. However,
it has several disadvantages. First, input to some applications may not follow the
pattern of recurrent systems (e.g., lines of free text). However, their entries would
still be collected and presented for reuse. Second, items from all applications
would be presented together, even though it is unlikely that the user could make
use of lines submitted to one application in another (e.g., csh vs. lisp input). Third,
applications have no opportunity to massage input before passing it on. Errors
cannot be treated differently, lines cannot be expanded, inappropriate submissions
cannot be discarded, and so on. Effective reuse requires some applications to
massage their input, because primitive activities may not be demarcated or well
represented as a simple line. In emacs, for example, an activity could be an extended
command line, which is denoted by an <escape-X> prefix. A hierarchical menu
traversal may be represented by the name of the leaf node reached rather than (say)
the function keys pressed.

For these reasons, applications should be responsible for collecting, massaging,
and passing on a user’s input. Non-recurrent systems would not do this, and the
reuse facility would be made application-sensitive by maintaining and switching
between various history lists. Yet this is impossible in the current UNIX envi-
ronment. Source code is rarely available, and the task of modifying even a few

9.2. Pragmatic concerns and research questions 157

key applications is daunting.4 Clearly, an integrated system incorporating history
collection primitives would have to be designed from the bottom up. The SYM-
BOLICS Lisp environment is currently the only general-purpose environment that
embeds and supports a uniform reuse facility across all applications (Symbolics,
1985).

User-defined symbols. The cabinet encourages users to label and add help to all
their tools and drawer handles. Although intuitively appealing, there is no empirical
evidence that this is a good strategy. Do individuals remember the meaning behind
their labels over time? Are help annotations useful? Can a person use a cabinet
created by someone else? These are all open questions.

Forming and maintaining drawers in a cabinet. The cabinet has no inherent
structure of its own. Users can only list all drawers, or chase their own explicit
links between drawers. Because a drawer can link to any other drawer, the navi-
gation space is a network and is potentially complex. Yet it is not known whether
personalized networks are usable in practice. Experimental evidence suggests, for
example, that users of the UNIX hierarchical directory recall only half the names
in their directory areas accurately after being out of touch with it for a lengthy
period of time (Akin, Baykan, and Radha Rao, 1987). Users were also seen to
develop search strategies for misplaced files. However, because the cabinet relies
on recognition rather than recall, it is not clear how well the UNIX results apply.
Again, these are open questions.

The navigational problems of a cabinet are potentially as complex as the ones
found in hypertext systems, and call for an equivalent support structure. At the
very least, the network should be portrayed as a graphical map that allows users to
visit and modify the contents of drawers and their links through direct manipula-
tion. Methods should be incorporated to ensure consistency on modification. For
example, changing a drawer’s name should be reflected by all links.

Generalization. Tools in a drawer (and possibly lines presented by the reuse fa-
cility) could have greater value if their parameters could be generalized. Currently,
WORKBENCH only inserts a line into the work surface, and no facility is available
to prompt for or to generalize its arguments.5

Generalization can be implemented by having the user explicitly mark a vari-
able. Perhaps a prompt would be specified, defaults indicated, a list of available

4Obtaining, understanding, altering, and debugging the sparsely commented and undocumented source code
of csh spanned a four-month period.

5This is not strictly true, for csh provides a way for a command line to get its input from subsequent input
lines. For example, echo “Show what file?”; cat $< will print the prompt Show what file? and use the user’s
response as the argument to the cat command.

158 A workspace system: description and issues

choices provided and displayed as a menu, the input limited to a specific type, and
so on. Information could be presented and retrieved through a pop-up property
sheet attached to the tool. Similar methods have already been implemented to elab-
orate programming constructs after creating a macro by example (Halbert, 1984).
Perhaps the system itself could infer the generalization.

But are users, especially non-programmers, capable of specifying and maintain-
ing these potentially complex behaviors of tools in a dynamic general–purpose
environment? And is it worth their time and effort? No one knows.

10
Conclusion

If I send a man to buy a horse for me, I expect him to tell me that horse’s points
– not how many hairs he has in his tail.

— Carl Sandburg’s Abraham Lincoln

This final chapter will be brief. First, the argument of the book is reviewed. Next,
the original contributions are identified. Finally, new directions for research are
sketched. The individual components of the book are not evaluated or criticized
because this has been done at the end of each chapter.

10.1 Argument of the book

We began with the observation that orders given to interactive computer systems
resemble tools used by people. Like tools, orders are employed to pursue activities
that shape one’s environment and the objects it contains. People have two general
strategies for keeping track of the diverse tools they wield in their physical work-
shops. Recently used tools are kept available for reuse, and tools are organized
into functional and task-oriented collections. Surprisingly, these strategies have
not been transferred effectively to interactive systems.

This raises the possibility of an interactive support facility that allows people
to use, reuse, and organize their on-line activities. The chief difficulty with this
enterprise is the dearth of knowledge of how users behave when giving orders
to general-purpose computer systems. As a consequence, existing user support
facilities are based on ad hoc designs that do not adequately support a person’s
natural and intuitive way of working.

Admittedly, a few recent studies have analyzed people’s behavior when select-
ing orders. However, closer examination shows that they concentrate exclusively
on commands (the verbs of the human–computer dialog), and ignore options (the
modifiers) and other arguments (the nouns or objects) of the command line. Con-
sequently, a new study was undertaken to characterize people’s behavior when
selecting complete command lines.

Repetition of command lines deserved special attention, because of their potential
for reuse. The problem is to identify likely candidates for reuse, and several ways of
conditioning the distribution to enhance predictive power were evaluated. Several
striking characteristics of how often people repeat their activities emerged from
this study. They were abstracted from usage data gleaned from many users of
different classes over a period of months. Reformulated as empirically based

159

160 Conclusion

general principles, they constitute design guidelines for a facility that predicts old
submissions for reuse. A case study of actual usage of a widely available history
system provided a salutary reminder of the need for careful attention to design
details.

So much for history and reuse. The next question was that of organizing activities
by task and by function. An on-line facility called a “workspace” was described
that allows people to gather together their tools for related activities. The problem
is to identify the properties a workspace should have. Because our knowledge in
this respect is limited, the properties were formulated as suggestions, and the list
was augmented by creative ideas from existing designs that seem to capture some
flavor of what a workspace should be.

Based on these suggestions, a system that loosely follows the metaphor of a
handyman’s workbench was designed and implemented. It includes a tool area
made up of a reuse facility and a tool panel, where both recently used and explicitly
cached submissions are kept available for immediate reuse. Through a tool cabinet,
a person can organize his tools in drawers, and link drawers into a network by drawer
handles. Any submission available on the history list can be copied and pasted into
the tool panel or any drawer. Despite its principled design, the system illustrates
that serious pragmatic problems are encountered when user support tools are bolted
on to existing computer systems.

10.2 Contributions

Absolute originality in the field of human–computer interaction is hard to come by.
A very wide spectrum of ideas has been mooted in one form or another; anyway,
human–computer dialogs are analogous to human–human and human–machine
ones that have been developing for eons and studied for centuries. For example,
the idea of a reuse facility is clearly not new. Neither is the idea of a workbench.
MENUNIX, ROOMS, and the SMALLTALK browser, surveyed in Chapter 8, can
all be considered workbenches of one form or another. To find ideas absolutely
original to this research, one must move to a finer grain of analysis.

There are two important fine-grained contributions in this book. One is the
idea of conditioning history by command context to give better predictions. When
combined with removing duplicates from the recency-ordered list, a full three-
quarters or more of all recurring submissions can be chosen from a short history
list (compared to two-thirds for a recency-only list). The quality of submissions
presented is also higher, as measured by the length of text predicted. Because the
order of submission entry is maintained, users can predict the system’s offerings
and its location on the list, and not waste time searching for items that are not
there. The second contribution is the idea of using the history list as a primary
source of tried-and-tested candidates for storage within the workbench organization.
When combined with direct manipulation editing of workbenches (first mooted by

10.3. Looking to the future 161

Greenberg and Witten, 1985b), people can rapidly create, annotate, and modify
their personal workspaces so that they respond to their situated needs.

Aside from these two completely original contributions, there are a number
of others which, though certainly important, have the character of more routine
advances in human–computer interaction.

1. In surveying studies of UNIX usage:
� faults and limitations of all data collection methods have been identified;
� population statistics do not transfer well to individuals;
� command lines are just as important as commands, if not more so.

2. In a new study of UNIX usage:
� growth of a user’s command vocabulary is slow and irregular;
� growth of a user’s command line vocabulary is rapid, linear, and regular;
� recurrence rates for different groups, though different, are quite high;
� the probability distribution of recurrences over a history list is strongly

skewed toward recency of entry;
� methods for conditioning the distribution can be ranked by predictive

quality;
� a case study of UNIX csh history indicates how poorly it performs.

3. In generalizing and validating the study:
� a set of principled guidelines for reuse are offered;
� testing a different system enforced the belief that these principles can be

generalized.
4. In analysis of history systems:

� reuse facilities are categorized and surveyed within a new taxonomy;
� recurrent systems are defined, and UNIX csh is described in that context.

5. In the concept of workspaces:
� people organize their on-line activities;
� several design suggestions for a workspace are elaborated;
� a principled design can be implemented on top of existing systems;
� bolt-on user support facilities are not the complete solution.

10.3 Looking to the future

The scope for future research into reuse facilities and workspaces is large. The
first step, of course, is simply to get these ideas integrated into future computing
systems. In the next decade, I see a blending of the expert-oriented general-purpose
environments of the seventies and the special-purpose appliance interfaces of the
eighties, perhaps through a metaphor similar to the workbench. First-time and
casual users will have a default workbench structure to begin with (created by the
designer through discussion with users and analysis of their generic needs). It is

162 Conclusion

a simple learning progression to go from modifying individual workbenches, to
adding new ones, and finally modifying or creating new support infrastructures.

Of course, tool reuse and organization must be applied to the now-common
graphical interfaces. We believe that many aspects of modern interfaces are little
more than syntactic sugar extensions (but oh so sweet!) to command-based systems.
After all, we see many applications that have literally hundreds of commands that
are accessed via menu and button selection instead of typing. (For example, the
MICROSOFT Word 4.0 word processor for the Apple Macintosh lists almost three
hundred commands in its repertory.) Although recognition and entry of menu items
is easier than remembering and typing commands, the user’s task is still essentially
the same. Menu selections appropriate to the task must be formulated, and the group
of selections required remembered. An excellent recent foray into this area was
made by Maclean, Carter, Lovstran, and Moran (1990), whose research parallels
some of the work presented in this book. Their system provided users of the
graphically oriented Xerox INTERLISP–D environment with tailorable buttons.
In a manner similar to WORKBENCH, users could grab items off a history list,
place it into a button, and then move the button anywhere on the screen.

The exciting possibility of workbenches modifying themselves (possibly through
consultation with the user) would go even further to ensure their effectiveness. I
foresee an intelligent interface monitor that keeps track of user activities and offers
potentially useful workbench configurations on request. When combined with a
knowledge base, the monitor may infer tasks and the collection of tools required
from just a few user actions, possibly through stereotyping with existing models
(Rich, 1983). One consequence is the rapid development of workbenches suitable
for transient user actions. The next step, of course, is to use this infrastructure as a
platform for coaching and advisory systems that detect bad task models and suggest
alternatives.

There is still great scope for new research in user behavior. Although this book
has made a start, little is known about how people use, reuse, and organize their on-
line activities. Present reuse facilities leave considerable room for improvement,
both in their user interfaces and in the predictive methods they incorporate. Other
researchers are now extending the reuse strategies described here. As this book
goes to press, Alison Lee from the University of Toronto is completing her doctoral
dissertation on history tools for user support (Lee, 1992). In particular, she is
examining the possibility that command line recurrences are local to a working set
(akin to the behavior of memory references by computer programs; Denning, 1970),
which may lead to an even better conditioning method than the ones proposed in
Chapter 6. She is also investigating the tradeoff between the mental and physical
effort associated with using history tools. At the University of Calgary, several
researchers are investigating a variety of novel predictive methods, not only for
reuse, but for programming by example systems (Greenberg, Darragh, Maulsby,
and Witten, 1993). Still, our current knowledge of task formation and use is

10.3. Looking to the future 163

inadequate, and inferring a person’s tasks from a trace is surprisingly difficult. It is
not known how one person’s collection of tools can best be shared with others.

The idea of a workspace metaphor is immature. Existing workspace imple-
mentations are not widely available, and not one has been scientifically evaluated.
The viability of richly connected networks for organizing, linking, and browsing
through materials is still an open question, which is now being addressed by studies
of hypertext systems. Finally, surprisingly little is known about personalizable
environments. This gap must be filled if people are to create their own symbols,
annotations, and networks.

Tool use started when animals searched and used the debris of their natural
environment to shape their physical world. It continues as people search and use
the tools of their computers to shape and manage their own intellectual worlds.

A
A sample trace

A portion of a trace belonging to a randomly selected expert programmer follows
in the next few pages. The nine login sessions shown cover slightly over one month
of the user’s UNIX interactions, and include 155 command lines in total.

As mentioned in Chapter 2, all trace records have been made publicly available
through a research report and an accompanying magnetic tape (Greenberg, 1988b).
This report may be obtained from the Department of Computer Science, University
of Calgary, or the author.

Because the raw data collected is not easily read, it was syntactically transformed
to the listing presented here. The number and starting time of each login session
are marked in italics. The first column shows the lines processed by csh after
history expansions were made. The current working directory is given in the
middle column. Blank entries indicate that the directory has not changed since
the previous command line, and the “�” is csh shorthand for the user’s home
directory. The final column lists any extra annotations recorded. These include
alias expansions of the line by csh, error messages given to the user, and whether
history was used to enter the line. Long alias expansions are shown truncated and
suffixed with “: : : ”.

164

Appendix A: A sample trace 165

Command line Directory Annotations

Session 1: Mon Feb 23 16:09
mail � Alias: /usr/ucb/mail

Session 2: Thu Feb 26 11:05
man mklib �

man -k mklib

Session 3: Thu Feb 26 22:06
cd 500 � Alias: ^cd 500 ; set prompt = "[$cwd:t] #!: : :
ls �/500
vhide Alias: echo — .hide directory — ; ls : : :

c Alias: /usr/ucb/clear
ls
e assign9 Alias: emacs assign9
spitbol assign9
e Alias: emacs
spitbol assign9 History used
e Alias: emacs
vhide Alias: echo — .hide directory — ; ls : : :

lpr .hide/graph.spit
cd .hide Alias: ^cd .hide ; set prompt = "[$cwd:t] : : :
lpr graph.spit �/.hide
lpr symbol
cd 500 Alias: ^cd 500 ; set prompt = "[$cwd:t] #!: : :
ls �/500
e assign9 Alias: emacs assign9
e Alias: emacs
spitbol assign9
ls
e Alias: emacs
spitbol assign9 History used
e Alias: emacs
spitbol assign9 History used
e Alias: emacs
ftp vaxc
ls
more assign8.spit
e assign9 Alias: emacs assign9
spitbol assign9 History used
e Alias: emacs
echo poop > file
spitbol assign9 History used
e Alias: emacs
spitbol assign9 History used
e Alias: emacs
spitbol assign9 History used

166 Appendix A: A sample trace

Command line Directory Annotations

Session 3 continued : : :
e �/500 Alias: emacs
ls
e Alias: emacs
spitbol assign9 History used
e Alias: emacs
spitbol assign9 History used
e Alias: emacs
spitbol assign9 History used
e Alias: emacs
spitbol assign9 History used
ls
rm assign8.spit *.bak *.ckp file Alias: mv assign8.spit *.bak *.ckp file /: : :
ls
e file1 Alias: emacs file1
cp file1 file2
e file2 Alias: emacs file2
spitbol assign9 History used
e assign9 Alias: emacs assign9
spitbol assign9 History used
e Alias: emacs
spitbol assign9 History used
e Alias: emacs
more file3
assign9 Error: system – permission denied
spitbol assign9 History used
e Alias: emacs
ls
more file3
rm file3 Alias: mv file3 /.kill/
more file1
spitbol assign9 History used
more file1
e Alias: emacs
spitbol assign9 History used
e Alias: emacs
spitbol assign9 History used
e Alias: emacs
spitbol assign9 History used
more file3
more file1
more file2
e Alias: emacs
spitbol assign9 History used
e merge.error Alias: emacs merge.error
e assign9 Alias: emacs assign9
spitbol assign9 History used

Appendix A: A sample trace 167

Command line Directory Annotations

Session 3 continued : : :
more merge.error �/500
e Alias: emacs
cat assign9
^Acat assign9 History used

Error: execution – command not found
^Acat assign9 History used

Error: execution – command not found
cat assign9 History used
ls
rm *.ckp *.bak merge.error file3 Alias: mv *.ckp *.bak merge.error file3 /: : :
ls
script
lpr typescript
lpr typescript History used
limits

Session 4: Fri Feb 27 13:57
cd 500 � Alias: ^cd 500 ; set prompt = "[$cwd:t] #!: : :
ls �/500
e assign9 Alias: emacs assign9
ls
rm *.bak typescript Alias: mv *.bak typescript /.kill/
ls
rm merge.error Alias: mv merge.error /.kill/
rm file3 Alias: mv file3 /.kill/
ls
cd Alias: ^cd ; set prompt = "[$cwd:t] #! –>: : :
script �

ls
lpr typescript

Session 5: Fri Feb 27 21:50
cd 510 � Alias: ^cd 510 ; set prompt = "[$cwd:t] #!: : :
ls �/510
e rohl machine.p Alias: emacs rohl machine.p

Session 6: Tue Mar 24 10:03
prmail �

who
ls
l Alias: ls -asl ;
morembox Error: execution – command not found
more mbox

168 Appendix A: A sample trace

Command line Directory Annotations

Session 7: Fri Mar 27 15:37
cd 510 � Alias: ^cd 510 ; set prompt = "[$cwd:t] #!: : :
lpr rohl machine.p �/510
lpr rohl compiler.p
spit Error: execution – command not found
lpq
s Error: execution – command not found

Session 8: Mon Mar 30 12:49
ls �

prmail
prmail
cd herr/testass4 Alias: ^cd herr/testass4 ; set prompt = ": : :
ls �yyy/testass4
more README
lpr test*
limits
ls
more test1.rohl
more test2.rohl History used
more test3.rohl History used
more test0.rohl History used
more test0.rohl History used

Error: history – modifier failed
ls
more test*
cd Alias: ^cd ; set prompt = "[$cwd:t] #! –>: : :
ls �

more type*
ls
cd 510 Alias: ^cd 510 ; set prompt = "[$cwd:t] #!: : :
ls �/510

Session 9: Wed Apr 1 11:08
prmail �

cd 510 Alias: ^cd 510 ; set prompt = "[$cwd:t] #!: : :
ls �/510
more sillysort.rohl
limits

B
Summary statistics for each subject

The following pages list a few basic statistics observed for the subjects involved in
the study. Each subject is identified by the name of his group and a number. For
example, “Novice–1” is the first subject of the Novice Programmer group. These
names match the file names found in the publicly available trace data (Greenberg,
1988b).

The statistics include each user’s number of login sessions, the command lines
entered, the different commands used, the csh errors noted, the times history was
used, and the different directories accessed. For example, Novice–1 entered 2,457
command lines over fifty-five login sessions. Of those lines, 213 produced csh
errors. History was invoked thirty-seven times, eighteen different directories were
visited, and sixty-seven different commands were used.

169

Table B.1. Statistics on Novice Programmers subjects 1–35

Novice Login Total Different Errors Times Different
subject sessions command commands noted history directories
number lines by csh was used used

novice-1 55 2,457 67 213 37 18
novice-2 118 1,267 22 58 0 11
novice-3 345 2,337 26 93 0 1
novice-4 61 1,919 32 123 0 4
novice-5 62 593 24 67 0 5

novice-6 74 871 23 44 0 1
novice-7 94 1,039 38 51 98 11
novice-8 92 1,822 13 19 0 3
novice-9 44 853 26 63 0 6
novice-10 64 1,464 42 40 0 3

novice-11 59 256 26 21 2 1
novice-12 438 2,436 19 210 0 2
novice-13 49 652 20 49 0 2
novice-14 156 3,194 67 208 0 27
novice-15 79 1,139 14 48 0 1
novice-16 16 256 12 25 0 1
novice-17 135 1,194 23 59 0 1
novice-18 46 1,088 15 38 0 1
novice-19 103 3,401 59 363 7 4
novice-20 54 418 18 19 1 2

novice-21 44 849 22 42 48 3
novice-22 122 1,893 43 51 0 3
novice-23 90 2,138 30 72 0 2
novice-24 86 849 26 53 0 3
novice-25 169 2,066 13 217 0 1

novice-26 87 1,120 19 60 0 1
novice-27 71 1,195 25 63 1 9
novice-28 123 2,221 31 120 0 1
novice-29 94 1,230 14 44 0 3
novice-30 78 946 20 28 0 3

novice-31 64 2,073 27 102 0 7
novice-32 51 385 20 37 0 3
novice-33 199 3,127 31 106 0 6
novice-34 123 1,276 25 46 4 1
novice-35 90 1,444 22 54 0 6

Table B.2. Statistics on Novice Programmers subjects 36–55

Novice Login Total Different Errors Times Different
subject sessions command commands noted history directories
number lines by csh was used used

novice-36 141 3,213 55 137 0 5
novice-37 88 1,949 36 57 0 32
novice-38 109 839 12 17 0 2
novice-39 74 1,107 34 51 0 3
novice-40 58 967 17 24 0 5

novice-41 86 2,317 15 51 0 1
novice-42 92 1,068 31 33 0 3
novice-43 33 608 18 26 0 1
novice-44 59 1,277 14 40 0 2
novice-45 54 651 17 16 0 1

novice-46 276 4,163 120 372 112 58
novice-47 56 1,316 19 78 0 3
novice-48 23 269 12 9 0 1
novice-49 23 723 20 31 0 1
novice-50 48 985 33 92 0 3

novice-51 42 480 20 20 0 2
novice-52 69 650 22 38 0 3
novice-53 98 1,028 34 41 0 1
novice-54 38 683 19 56 0 10
novice-55 62 1,662 25 40 6 2

Table B.3. Statistics on the Experienced Programmers subjects 1–36

Experienced Login Total Different Errors Times Different
subject sessions command commands noted history directories
number lines by csh was used used

experienced-1 137 3,714 74 298 174 58
experienced-2 25 219 28 11 6 8
experienced-3 28 915 51 42 88 16
experienced-4 151 3,776 59 123 2 29
experienced-5 283 4,015 78 222 35 44

experienced-6 53 757 56 32 0 17
experienced-7 189 5,857 139 612 67 100
experienced-8 134 2,930 74 265 67 54
experienced-9 99 2,351 99 136 86 25
experienced-10 25 446 45 26 1 18

experienced-11 98 1,456 43 86 21 48
experienced-12 66 1,763 70 92 28 17
experienced-13 49 1,109 60 160 25 30
experienced-14 103 1,810 60 153 23 27
experienced-15 14 225 21 12 0 32

experienced-16 41 795 33 22 24 22
experienced-17 85 2,343 67 144 0 32
experienced-18 25 575 27 21 5 9
experienced-19 122 1,807 84 88 163 20
experienced-20 180 4,556 79 370 435 44

experienced-21 100 2,394 76 83 157 54
experienced-22 149 2,814 67 122 325 18
experienced-23 95 2,306 70 119 189 18
experienced-24 114 3,331 132 228 222 62
experienced-25 71 1,465 63 89 11 19

experienced-26 30 679 33 66 0 22
experienced-27 219 1,693 70 54 77 43
experienced-28 440 3,893 93 60 78 24
experienced-29 71 2,214 59 133 59 67
experienced-30 130 2,028 64 110 82 18

experienced-31 68 683 82 38 19 40
experienced-32 65 974 72 87 47 32
experienced-33 59 1,292 55 65 83 14
experienced-34 116 1,869 59 218 206 15
experienced-35 165 4,272 77 169 28 40

experienced-36 60 1,580 70 116 56 54

Table B.4. Statistics on the Scientist subjects 1–35

Scientist Login Total Different Errors Times Different
subject sessions command commands noted history directories
number lines by csh was used used

scientist-1 165 1,856 105 111 54 43
scientist-2 198 2,954 87 149 236 37
scientist-3 133 978 38 69 1 6
scientist-4 238 4,507 112 320 178 114
scientist-5 197 1,563 77 78 18 13

scientist-6 145 1,103 61 49 33 46
scientist-7 13 366 49 28 0 25
scientist-8 61 842 39 51 0 5
scientist-9 256 4,067 89 65 224 42
scientist-10 129 2,024 63 120 77 96

scientist-11 38 205 24 13 0 1
scientist-12 105 2,499 117 52 53 63
scientist-13 108 3,593 45 118 357 25
scientist-14 202 3,433 109 183 23 83
scientist-15 161 1,429 94 81 200 30

scientist-16 74 326 31 29 0 5
scientist-17 95 569 33 38 0 1
scientist-18 144 2,831 71 112 106 74
scientist-19 189 5,584 65 240 6 62
scientist-20 225 2,697 112 189 74 52

scientist-21 81 1,762 82 134 50 102
scientist-22 132 750 45 39 0 12
scientist-23 324 3,360 91 135 52 48
scientist-24 72 1,494 41 55 0 5
scientist-25 415 3,508 112 122 7 113

scientist-26 123 983 65 70 0 24
scientist-27 111 3,817 97 85 102 79
scientist-28 111 765 64 26 20 17
scientist-29 134 2,683 60 243 20 61
scientist-30 180 2,129 77 123 186 56

scientist-31 65 250 20 20 9 3
scientist-32 78 601 36 20 0 9
scientist-33 24 325 16 12 0 3
scientist-34 204 2,639 61 88 15 50
scientist-35 80 1,049 46 29 23 22

Table B.5. Statistics on the Scientist subjects 36–52

Scientist Login Total Different Errors Times Different
subject sessions command commands noted history directories
number lines by csh was used used

scientist-36 275 12,056 181 566 488 202
scientist-37 121 4,187 61 83 121 64
scientist-38 131 3,775 92 168 48 113
scientist-39 119 1,753 76 77 173 40
scientist-40 348 4,605 66 98 0 42

scientist-41 204 2,037 49 36 0 5
scientist-42 298 6,068 133 644 6 158
scientist-43 108 3,106 86 101 0 37
scientist-44 72 1,543 62 84 12 16
scientist-45 40 862 76 59 17 17

scientist-46 294 2,551 92 110 80 89
scientist-47 75 1,229 67 81 9 61
scientist-48 76 819 27 43 0 2
scientist-49 105 1,448 108 97 138 46
scientist-50 138 1,496 75 225 219 18

scientist-51 74 910 43 67 0 51
scientist-52 263 7,705 121 299 231 93

Table B.6. Statistics on the Non-programmers subjects 1–25

Non-progs Login Total Different Errors Times Different
subject sessions command commands noted history directories
number lines by csh was used used

non-progs-1 95 1,622 61 59 0 7
non-progs-2 53 454 16 15 0 2
non-progs-3 85 1,265 38 15 9 7
non-progs-4 133 5,050 70 161 18 89
non-progs-5 77 244 8 11 0 1

non-progs-6 23 177 17 7 0 2
non-progs-7 80 1,231 53 54 3 9
non-progs-8 23 239 32 13 28 14
non-progs-9 73 357 34 23 4 3
non-progs-10 32 495 36 20 0 21

non-progs-11 281 1,848 27 61 0 17
non-progs-12 24 216 19 26 0 4
non-progs-13 30 487 10 5 0 1
non-progs-14 17 201 9 4 1 3
non-progs-15 78 571 15 28 0 2

non-progs-16 46 821 32 26 18 11
non-progs-17 61 848 19 65 0 1
non-progs-18 97 1,403 22 64 0 2
non-progs-19 77 175 15 7 0 2
non-progs-20 137 4,042 81 124 165 30

non-progs-21 25 132 5 7 0 1
non-progs-22 151 1,567 39 56 48 8
non-progs-23 89 1,294 47 48 0 5
non-progs-24 35 542 25 34 0 1
non-progs-25 76 327 9 18 3 1

176 Appendix B: Summary statistics for each subject

This page intensionally left blank

References

Akin, O., Baykan, C., and Radha Rao, D. (1987). Structure of a directory space: A case study with
a Unix operating system. International Journal of Man Machine Studies, 26, 361–382.

Apollo (1986). DOMAIN system user’s guide. Chelmsford, Mass: Apollo Computer Inc.
Bannon, L., Cypher, A., Greenspan, S., and Monty, M. (1983). Evaluation and analysis of users’

activity organization. In Proceedings of the ACM SIGCHI ’83 Human Factors in Computing
Systems, pp. 54–57., Boston.

Bannon, L. and O’Malley, C. (1984). Problems in evaluation of human–computer interfaces: A
case study. In Interact ’84 – First IFIP Conference on Human-Computer Interaction, 2, pp.
280–284., London, UK.

Barnes, D. and Bovey, J. (1986). Managing command submission in a multiple-window environment.
Software Engineering Journal, 1(5), 177–183.

Beck, B. (1980). Animal tool behavior: The use and manufacture of tools by animals. New York:
Garland STPM Press.

Bennett, J. (1975). Storage design for information retrieval: Scarrott’s conjecture and Zipf’s law. In
Gelenbe and Potier (Eds.), International Computing Symposium 1975, pp. 233–237., Amster-
dam. North-Holland.

Bobrow, D. (1986). HistMenu. Lisp User Library Packages Manual, Koto Release. Xerox Artificial
Intelligence Systems.

Bobrow, D. and Stefik, M. (1983). The Loops manual. Palo Alto, California: Xerox Corporation.
Bramwell, B. (1983). An automatic manual. Master’s thesis, Department of Computer Science,

University of Calgary, Calgary, Alberta, Canada.
Burton, R. and Brown, J. (1982). An investigation of computer coaching for informal learning

activities. In D. Sleeman and J. Brown (Eds.), Intelligent Tutoring Systems pp. 79–97. New
York: Academic Press.

Card, S. and Henderson Jr, D. (1987). A multiple, virtual-workspace interface to support user task
switching. In Proceedings of the ACM SIGCHI+GI 1987 Human Factors in Computing Systems
and Graphics Interface, pp. 53–59., Toronto.

Card, S., Pavel, M., and Farrell, J. (1984). Window-based computer dialogs. In Interact ’84 – First
IFIP Conference on Human-Computer Interaction, 1, pp. 355–359., London, UK.

Chan, P. (1984). Learning considerations in user interface design: The room model. Technical Report
CS-84-16, Department of Computer Science, University of Waterloo, Waterloo, Ontario.

Chin, D. (1986). User modeling in UC, the UNIX consultant. In Proceedings of the ACM SIGCHI
’86 Human Factors in Computing Systems, pp. 24–28., Boston.

Cuff, R. (1980). On casual users. International Journal of Man Machine Studies, 12, 163–187.
Cypher, A. (1986). The structure of users activities. In D. Norman and S. Draper (Eds.), User centered

system design: New perspectives on human–computer interaction chapter 12, pp. 243–263.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Darragh, J. (1988). Adaptive predictive text generation and the Reactive Keyboard. Master’s thesis,
Department of Computer Science, University of Calgary, Calgary, Alberta, Canada. Available
as Research Report 88/343/05.

Darragh, J. and Witten, I. H. (1992). The Reactive Keyboard. Cambridge series on human–computer
interaction. Cambridge Unversity Press.

Darragh, J., Witten, I. H., and James, M. (1990). The reactive keyboard: A predictive typing aid.

177

178 References

IEEE Computer, 23(11).
DEC (1985). VAX/VMS DCL concepts manual. Maynard, Mass: Digital Equipment Corporation.
Denning, P. (1970). Virtual memory. Computing Surveys, 2(3), 153–189.
Denning, P. (1971). Third generation computer systems. Computing Surveys, 3(4), 175–216.
Desmarais, M. C. and Pavel, M. (1987). User knowledge evaluation: An experiment with Unix. In

Bullinger, H. and Shackel, B. (Eds.), Human-computer interaction – Interact ’87, pp. 151–156.
Elsevier Science Publishers B.B. (North Holland).

Draper, S. (1984). The nature of expertise in Unix. In Interact ’84 – First IFIP Conference on
Human-Computer Interaction, 2, pp. 182–186., London, UK.

Dumais, S. and Landauer, T. (1982). Psychological investigations of natural terminology for com-
mand and query languages. In Badre and Shneiderman (Eds.), Directions in human/computer
interaction pp. 95–110. Norwood, NJ: Ablex Publishing Co.

Dzida, W., Hoffmann, C., and Valder, W. (1987). Mastering the complexity of dialogue systems by
the aid of work contexts. In Bullinger, H. and Shackel, B. (Eds.), Human-computer interaction
– Interact ’87, pp. 29–33. Elsevier Science Publishers B.B. (North Holland).

Ellis, S. and Hitchcock, R. (1986). The emergence of Zipf’s law: Spontaneous encoding optimization
by users of a command language. IEEE Transactions on Systems, Man, and Cybernetics, SMC–
16(3), 423–427.

Engel, F., Andriessen, J., and Schmitz, H. (1983). What, where and whence: Means for improving
electronic data access. International Journal of Man Machine Studies, 18, 145–160.

Feiner, S., Nagy, S., and van Dam, A. (1982). An experimental system for creating and presenting
interactive graphical documents. ACM Transactions on Graphics, 1(1), 59–77.

Fellers, J. and Fellers, G. (1976). Tool use in a social insect and its implications for competitive
interactions. Science, 192, 70–72.

Finlay, J. (1988). User expertise in a functional programming environment. Technical report,
Department of Computer Science, University of York, Heslington, York. In preparation.

Fitts, P. (1951). Engineering psychology and equipment design. In S. Stevens (Ed.), Handbook of
experimental psychology chapter 35, pp. 1287–1340. New York: John Wiley & Sons Inc.

Glinert, E. and Tanimoto, S. (1984). Pict: An interactive graphical programming environment. IEEE
Computer, 17(11), 7–25.

Godfrey, D. and Chang, E. (1981). The Telidon book. Toronto: Press Porcepic.
Goldberg, A. (1984). Smalltalk-80: The interactive programming environment. Reading, Mass:

Addison–Wesley.
Good, M., Whiteside, D., and Jones, J. (1984). Building a user-derived interface. Communications

of the ACM, 27(10), 1032–1043.
Goodman, D. (1987). The Complete HyperCard Handbook. The Macintosh Performance Library.

New York: Bantam Books.
Gosling, J. (1981). Unix Emacs Manual. Carnegie-Mellon University.
Gowlett, J. (1984). Ascent to civilization: The archaeology of early man. New York: Alfred A.

Knopf.
Greenberg, S. (1984). User modeling in interactive computer systems. Master’s thesis, Department

of Computer Science, University of Calgary, Calgary, Alberta, Canada. Available as Research
report 85/193/6.

Greenberg, S. (1988a). Tool use, reuse, and organization in command-driven interfaces. PhD thesis,
Department of Computer Science, University of Calgary, Calgary, Alberta, Canada. Available
as Research report 88/336/48.

Greenberg, S. (1988b). Using Unix: Collected traces of 168 users. Research report 88/333/45 plus
tar-format cartridge tape, Department of Computer Science, University of Calgary, Calgary,
Alberta, Canada.

Greenberg, S., Darragh, J., Maulsby, D., and Witten, I. (1993). Predictive interfaces: What will they

References 179

think of next? In Extra-ordinary human–computer interaction. Cambridge University Press.
In press. Also available as Research Report 91/448/32, University of Calgary, Alberta, Canada.

Greenberg, S., Peterson, M., and Witten, I. (1986). Issues and experiences in the design of a
window management system. In Proceedings of the Canadian Information Processing Society
Edmonton Conference, pp. 33–50., Edmonton, Alberta.

Greenberg, S. and Witten, I. (1985a). Adaptive personalized interfaces – a question of viability.
Behaviour and Information Technology, 4(1), 31–45.

Greenberg, S. and Witten, I. (1985b). Interactive end-user creation of workbench hierarchies within
a window system. In Proceedings of the Canadian Information Processing Society National
Conference, Montreal.

Greenberg, S. and Witten, I. (1988a). Directing the user interface: How people use command-based
systems. In Proceedings of the 3rd IFAC Conference on Man–Machine Systems, Oulu, Finland.

Greenberg, S. and Witten, I. (1988b). How users repeat their actions on computers: Principles for
design of history mechanisms. In Proceedings of the ACM SIGCHI ’88 Human Factors in
Computing Systems, pp. 171–178., Washington, D.C.

Greer, K., Ellis, M., Placeway, P., and Zachariassen, R. (1991). TCSH: Cshell with filename comple-
tions and command line editing. (Version 6 ed.). Cornell University.

Hailpern, B. (1986). Multiparadigm languages and environments: Guest editor’s introduction. IEEE
Software, 3(1), 6–9.

Halbert, D. (1981). An example of programming by example. Master’s thesis, Department of
Computer Science, Stanford, California.

Halbert, D. (1984). Programming by example. PhD thesis, Department of Computer Science,
Stanford, California.

Hall, K. and Schaller, G. (1964). Tool-using behaviour of the California sea otter. Journal of
Mammalogy, 45(2), 287–298.

Hansen, W. (1971). User engineering principles for interactive systems. In Proceedings American
Federation for Information Processing: Fall Joint Computer Conference, 39, pp. 523–532.,
NJ.

Hanson, S., Kraut, R., and Farber, J. (1984). Interface design and multivariate analysis of UNIX
command use. ACM Transactions on Office Information Systems, 2(1).

Hecking, M. (1987). How to use plan recognition to improve the abilities of the intelligent help
system Sinix Consultant. In Bullinger, H. and Shackel, B. (Eds.), Human-computer interaction
– Interact ’87, pp. 657–662. Elsevier Science Publishers B.B. (North Holland).

Henderson Jr, D. and Card, S. (1986). Rooms: The use of multiple virtual workspaces to reduce
space contention in a window-based graphical user interface. ACM Transactions on Graphics,
5(3), 211–243.

Hoffman, C. and Valder, W. (1986). Command language ergonomics. In K. Hopper and I. New-
man (Eds.), Foundation for Human–Computer Communication pp. 218–234. North-Holland:
Elsevier Science Publishers.

Jorgensen, A. (1987). The trouble with Unix: Initial learning and experts’ strategies. In Bullinger,
H. and Shackel, B. (Eds.), Human-computer interaction – Interact ’87, pp. 847–854. Elsevier
Science Publishers B.B. (North Holland).

Joy, W. (1980). An introduction to the C shell, volume 2c (seventh ed.). Unix Programmer’s Manual.
Berkely, California: University of California.

Kernighan, B. and Mashey, J. (1981). The UNIX programming environment. IEEE Computer, 14(4),
25–34.

Knuth, D. (1973). The art of computer programming: Searching and sorting. Reading, Mass:
Addison-Wesley.

Kraut, R., Hanson, S., and Farber, J. (1983). Command use and interface design. In Proceedings of
the ACM SIGCHI ’83 Human Factors in Computing Systems, pp. 120–124., Boston.

180 References

Kunin, J. (1980). Analysis and specification of office procedures. PhD thesis, Department of Electrical
Engineering, MIT.

Kurlander, D. and Feiner, S. (1990). A visual language for browsing, undoing, and redoing graphical
interface commands. In S. K. Chang (Ed.), Visual languages and visual programming pp.
257–275. New York: Plenum Press.

Leakey, R. and Lewin, R. (1978). People of the lake. New York: Anchor Press/Doubleday.
Lee, A. (1988). Use of history for user support. In F. Lochovsky (Ed.), Office and Data Base Systems

Research ’88. Toronto, Ontario: Technical Report CSRI–212, Computer Systems Research
Institute, University of Toronto.

Lee, A. (1990). Taxonomy of uses of interaction history. In Proceedings of Graphics Interface ’90,
pp. 113–122., Halifax, Nova Scotia.

Lee, A. (1992). History Tools for User Support. PhD thesis, Department of Computer Science,
University of Toronto, Ontario, Canada.

Lee, A. and Lochovsky, F. (1990). Study of command usage in three UNIX command interpreters.
In L. Berliguet and D. Berthelette (Eds.), Work with Display Units 89: Selected papers from
the Second International Scientific Conference. Amsterdam: North Holland.

Lewis, J. (1986). Analysing the actions of unix-users. DAI working paper 188, Department of
Artificial Intelligence, University of Edinburgh.

Maclean, A., Carter, K., Lovstran, L., and Moran, T. (1990). User-tailorable systems: Pressing the
issues with buttons. In Proceedings of the ACM SIGCHI ’89 Human Factors in Computing
Systems, pp. 175–182., Austin, Texas. ACM Press.

Maulsby, D. and Witten, I. (1989). Inducing programs in a direct-manipulation environment. In
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp.
57–63., Austin, Texas. ACM Press.

Maulsby, D., Witten, I., and Kittlitz, K. (1989). Metamouse: Specifying graphical procedures by
example. Computer Graphics, 23(3), 127–136.

Maulsby, D., Witten, I., Kittlitz, K., and Franceschin, V. (1991). Inferring graphical procedures: The
compleat metamouse. Human Computer Interaction, 7(1).

McIlroy, M., Pinson, E., and Tague, B. (1978). The UNIX time-sharing system: Forward. Bell
Systems Technical Journal, 57(6), 1899–1904.

Miyake, N. (1982). Constructive interaction. Technical Report 113, Center For Human Information
Processing, University of California, San Diego.

Myers, B. A. (1986). Visual programming, programming by example, and program visualization: A
taxonomy. In Proceeding of the ACM SIGCHI ’86 Human Factors in Computing Systems, pp.
59–66., Boston.

Nakatani, L. and Rohrlich, J. (1983). Soft machines: A philosophy of user–computer interface
design. In Proceedings of the ACM SIGCHI ’83 Human Factors in Computing Systems, pp.
19–23., Boston.

Nielsen, J., Mack, R., Bergendorff, K., and Grischkowsky, N. (1986). Integrated software usage in the
professional work environment: Evidence from questionnaires and interviews. In Proceedings
of the ACM SIGCHI ’86 Human Factors in Computing Systems, pp. 162–167., Boston.

Norman, D. (1981). The trouble about UNIX. Datamation, 27(12), 139–150.
Norman, D. (1984a). Four stages of user activities. In Interact ’84 – First IFIP Conference on

Human-Computer Interaction, 1, pp. 81–85., London, UK.
Norman, D. (1984b). Stages and levels in human–machine interaction. International Journal of Man

Machine Studies, 21(4), 365–375.
O’Malley, C., Draper, S., and Riley, M. (1984). Constructive interaction: A method for studying

user-computer-user interaction. In Interact ’84 – First IFIP Conference on Human-Computer
Interaction, 2, pp. 1–5., London, UK.

Peachey, J., Bunt, R., and Colbourn, C. (1982). Bradford-Zipf phenomena in computer systems.

References 181

In Proceedings of the Canadian Information Processing Society National Conference, pp.
155–161., Saskatoon, Saskatchewan.

Perlman, G. (1984). Natural artificial languages: Low-level processes. International Journal of Man
Machine Studies, 20(4), 373–419.

Pike, R. and Kernighan, B. (1984). Program design in the UNIX environment. AT&T Bell Labora-
tories Technical Journal, 63(8/2), 1595–1605.

Quarterman, J., Silberschatz, A., and Peterson, J. (1985). 4.2BSD and 4.3BSD as examples of the
UNIX system. Computing Surveys, 17(4), 379–418.

Quercia, V. and O’Reilly, T. (1990). X Windows System User’s Guide, volume 3 of X Window System
Series. O’Reilly and Associates.

Reiss, S. (1984). Graphical program development with PECAN program development systems. In
Proceedings of the ACM SIGSOFT/SIGPLAN software engineering symposium, Pittsburgh,
Pennsylvania.

Rich, E. (1983). Users are individuals: Individualizing user models. International Journal of Man
Machine Studies, 18(3), 199–214.

Ritchie, D. and Thompson, K. (1974). The UNIX time-sharing system. Communications of the ACM,
17(7), 365–375.

Ross, P., Jones, J., and Millington, M. (1985). User modelling in command-driven systems. DAI
Research Paper 264, Department of Artificial Intelligence, University of Edinburgh.

Shneiderman, B. and Mayer, R. (1979). Syntactic/semantic interactions in programmer behaviour: A
model and experimental results. International Journal of Computer and Information Sciences,
8(3), 219–238.

Sleeman, D. and Brown, J. (1982). Introduction: Intelligent tutoring systems. In D. Sleeman and
J. Brown (Eds.), Intelligent tutoring systems pp. 1–8. New York: Academic Press.

Smullen, I. (1978). The chimp that went fishing. International Wildlife, 8(3), 16–19.
Stallman, R. (1981). Emacs: The extensible, customizable self-documenting display editor. ACM

Sigplan Notices – Proceedings of the ACM SIGPLAN SIGOA Symposium on Text Manipulation,
16(6), 147–155.

Stallman, R. (1987). GNU Emacs manual (Sixth Edition, Version 18 ed.). Cambridge, Mass: Free
Software Foundation.

Stefik, M. and Bobrow, D. (1986). Object-oriented programming: Themes and variations. The AI
Magazine, 6(4), 40–62.

Suchman, L. (1987). Plans and situated actions: The problem of human–machine communication.
Cambridge Unversity Press.

Sun (1986a). Inter-process communication primer. Mountain View, California: Sun Microsystems,
Inc.

Sun (1986b). Windows and window based tools: Beginner’s guide. Mountain View, California: Sun
Microsystems, Inc.

Sun (1988). The Sunview system programmer’s guide, version 3.2. Mountain View, California: Sun
Microsystems, Inc.

Sun (1990). DeskSet environment reference guide, Revision A. Mountain View, California: Sun
Microsystems.

Sutcliffe, A. and Old, A. (1987). Do users know they have user models? Some experiences in
the practice of user modelling. In Bullinger, H. and Shackel, B. (Eds.), Human-computer
interaction – Interact ’87, pp. 35–41. Elsevier Science Publishers B.B. (North Holland).

Symbolics (1985). User’s Guide to Symbolics Computers, Volume 1. Symbolics, Inc.
Teitelman, W. and Masinter, L. (1981). The Interlisp programming environment. IEEE Computer,

14(4), 25–34.
Thimbleby, H. (1980). Dialogue determination. International Journal of Man Machine Studies, 13.
Thimbleby, H. (1990). User interface design. New York: ACM Press, Addison Wesley.

182 References

Toyn, I. and Runciman, C. (1988). Glide: An exploratory programming environment for a lazy func-
tional programming language. Technical report, Department of Computer Science, University
of York, Heslington, York. In preparation.

Unipress (1986). UniPress Emacs screen editor: User’s guide. Edison, NJ: Unipress Software Inc.
van Lawick-Goodall, J. and van Lawick, H. (1968). Tool-using bird: The Egyptian vulture. National

Geographic Magazine, 133, 631–641.
Vitter, J. (1984). US&R: A new framework for redoing. IEEE Software, 1(4), 39–52.
Waite, M. (1987). UNIX papers for UNIX developers and power users. Indianapolis, Indiana:

Howard W. Sams & Company/Hayden Books.
Whiteside, J., Archer, N., Wixon, D., and Good, M. (1982). How do people really use text editors?

In Proceedings of the ACM SIGOA Conference on Office Information Systems, pp. 29–40.
Williams, G. (1984). The Apple Macintosh computer. Byte, 9(2), 30–54.
Witten, I. (1982). An interactive computer terminal interface which predicts user entries. In Pro-

ceedings of the IEE Conference on Man–machine Interaction, pp. 1–5., Manchester, England.
Witten, I., Cleary, J., and Darragh, J. (1983). The reactive keyboard: A new technology for text entry.

In Proceedings of the Canadian Information Processing Conference, pp. 151–156., Ottawa,
Ontario.

Witten, I., Cleary, J., and Greenberg, S. (1984). On frequency-based menu-splitting algorithms.
International Journal of Man Machine Studies, 21(2), 135–148.

Witten, I. and Greenberg, S. (1985). User interfaces for office systems. In P. Zorkoczy (Ed.), Oxford
Surveys in Information Technology, Volume 2 pp. 69–104. Oxford University Press.

Witten, I., MacDonald, B., and Greenberg, S. (1987). Specifying procedures to office systems. In
Automating Systems Development Conference, Leicester.

Xerox (1985). The Interlisp-D reference manual – Environment, Volume 2. Xerox Artificial Intelli-
gence Systems, Xerox Inc.

Zipf, G. (1949). Human behaviour and the principle of least effort. Ontario: Addison-Wesley.

Author index

Akin, O., 18, 157
Anderson, S.O., 54
Andriessen, J.J., 51
APOLLO Inc., 47
Archer, N., 17, 107

Bannon, L., 16, 19, 20, 89, 124, 126, 128, 129
Barnes, D.J., 45, 46, 86, 89
Baykan, C., 18, 157
Beck, B., 1, 2
Bennett, J.M., 67
Bergendorff, K.H., 7, 126
Bobrow, D.G., 44, 79, 136
Bovey, J.D., 45, 46, 86, 89
Bramwell, B., 74
Brown, J.S., 37, 38
Browne, D.P., 54
Bunt, R.B., 26, 27, 36, 67
Burton, R.R., 38

Card, S.K., 16, 126, 129, 138
Carter, K., 162
Chan, P.P., 138, 139
Chang, E., 132
Chin, D.N., 38
Cleary, J.G., 27, 53, 54, 56
Colbourn, C.J., 26, 27, 36, 67
Cuff, R.N., 7
Cypher, A., 16, 20, 89, 124, 126, 128, 129

Darragh, J.J., 56, 58, 59, 101, 162
DEC, 49
Denning, P.J., 7, 126, 162
Desmarais, M. C., 18, 38
Draper, S.W., 19, 21, 26, 30, 31, 37
Dumais, S., 74
Dzida, W., 7, 14

Ellis, M., 49
Ellis, S.R., 26
Engel, F.L., 51

Farber, J.M., 11, 15, 19, 26–28, 34–37, 127
Farrell, J.E., 126
Feiner, S., 47, 51
Fellers, G., 1
Fellers, J., 1
Finlay, J.E., 112
Fitts, P.M., 3
Franceschin, V.G., 61

Glinert, E.P., 7
Godfrey, D., 132
Goldberg, A., 7, 136, 138

Good, M., 17, 107, 140
Goodman, D., 51
Gosling, J.A., 60
Gowlett, J.A.J., 3
Greenberg, S., 6, 13, 23, 25–27, 30, 37, 44, 49, 53, 54,

59–61, 65, 68, 70, 74, 101, 111, 126, 132,
138, 141, 143, 162, 164, 169

Greenspan, S., 16, 20, 89, 124, 126, 128, 129
Greer, K., 49
Grischkowsky, N.L., 7, 126

Hailpern, B., 136
Halbert, D.C., 60, 158
Hall, K.R.L., 2, 3
Hansen, W.J., 11
Hanson, S.J., 11, 15, 19, 26–28, 34–37, 127
Hecking, M., 37
Henderson Jr, D.A., 16, 129, 138
Hitchcock, R.J., 26
Hoffmann, C., 7, 14, 123

ipf distribution, 26, 27, 30, 34, 36, 38, 66, 67, 71

James, M., 56
Jerrams-Smith, J., 20
Jones, J., 39
Jones, J.J., 140
Jorgensen, A.H., 20, 21
Joy, W., 13, 23, 42

Kernighan, B.W., 12, 14
Kittlitz, K.A., 61
Knuth, D.E., 27, 88
Kraut, R.E., 11, 15, 19, 26–28, 34–37, 127
Kunin, J., 118
Kurlander, D., 47

Landauer, T., 74
Leakey, R.E., 3
Lee, A., 7, 42, 47, 63, 105, 118, 162
Lewin, R., 3
Lewis, J.M., 17, 19
Lovstran, L., 162

MacDonald, B.A., 60, 61
Mack, R.L., 7, 126
Maclean, A., 162
Mashey, J.R., 12
Masinter, L., 7, 42
Maulsby, D.L., 59, 61, 162
Mayer, R., 130
McIlroy, M.D., 14
Millington, M., 39
Miyake, N., 20

183

184 Author index

Monty, M., 16, 20, 89, 124, 126, 128, 129
Moran, T., 162
Myers, B. A., 60

Nagy, S., 51
Nakatani, L.H., 128
Nielsen, J., 7, 126
Norman, D.A., 14, 128

O’Malley, C., 19, 21
O’Reilly, T., 47
Old, A.C., 21, 30, 37

Pavel, M., 18, 38, 126
Peachey, J.B., 26, 27, 36, 67
Perlman, G., 15, 130, 132
Peterson, J.L., 13, 14
Peterson, M., 23, 37, 126, 143
Pike, R., 12, 14
Pinson, E.N., 14
Placeway, P., 49

Quarterman, J.S., 13, 14
Quercia, V., 47

Radha Rao, D., 18, 157
Rautenbach, P., 54
Reiss, S.P., 7, 121
Rich, E., 162
Riley, M., 21
Ritchie, D.M., 12
Rohrlich, J.A., 128
Ross, P., 39
Runciman, C., 112

Schaller, G.B., 2, 3
Schmitz, H.J.R., 51
Shneiderman, B., 130
Silberschatz, A., 13, 14
Sleeman, D., 37
Smullen, I., 2
Stallman, R.M., 47, 49, 60
Stefik, M.K., 136
Suchman, L.A., 20, 21, 61, 118, 119
Sun Microsystems, 15, 47, 51, 141, 142, 152
Sutcliffe, A.G., 21, 30, 37
Symbolics Inc., 49, 51, 157

Tague, B.A., 14
Tanimoto, S.L., 7
Teitelman, W., 7, 42
Thimbleby, H., 6, 60, 65, 110, 156
Thompson, K., 12
Totterdell, P., 54
Toyn, I., 112
Trevellyan, R., 54

UniPress, 47
UniPresss, 60

Valder, W., 7, 14, 123
van Dam, A., 51
van Lawick, H., 2
van Lawick-Goodall, J., 2
Vitter, J., 47

Waite, M., 12, 14
Whiteside, D.R.W., 140
Whiteside, J., 17, 107
Wilkinson, A., 54
Williams, G., 6
Witten, I.H., 6, 13, 23, 26, 27, 37, 44, 49, 53, 54, 56,

58–61, 65, 101, 111, 126, 132, 138, 141,
143, 162

Wixon, D., 17, 107

Xerox, 42

Zipf, G.K., 27
Zochariassen, R., 49

Subject index

80–20 rule, 27

adaptive systems, 41, 52, 63, 162
adaptive menu hierarchies, 53
ADAPTIVE MENUS, 53–55, 111
and text prediction, 54
PREDICT, 56, 58
REACTIVE KEYBOARD, 56, 59, 101
RK-BUTTON, 56, 57
RK-POINTER, 56

closure, 60
command arguments, 6
command lines

distance between, 75
working set, 75, 84

command options, 6, 75
command-based interfaces, 8, 26, see also UNIX
composition rate, 66

of telephone use, 68, 70
of UNIX csh, 74, 76, 79, 81, 84

computer actions, 4, 65, 75
computer activities, 4, 65
computer platforms

APOLLO, 15, 47
Apple Macintosh, 15, 47, 49, 50, 52, 53, 61, 162
CORVUS, 23
CPM, 15
DEC, 49
DEC PDP-7, 14
IBM, 15, 132
Multics, 15
NeXT, 15
SUN, 15, 47, 142
SYMBOLICS, 49, 51
VAX, 15, 23

computer submissions, 4
computer tool, 6, 7, 39
computers as appliances, 6
computing environments

AOSS, 132
APOLLO DOMAIN, 15, 47
CEDAR, 138
CPM, 15
definition, 6
emacs, 47
GENERA, 49
GLIDE, see GLIDE
HYPERCARD, 49–51, 86, 111
IBM DOS, 15
IBM VM, 15
INTERLISP, 7, 42, 44, 162
JADE, 23
LOOPS, 136

MENUNIX, 15, 132, 135, 160
MICROSOFT Word, 162
OPEN LOOK DESKSET, 47, 51
PECAN, 7
PICT, 7
room, 132, 138
ROOMS, 132, 137, 160
SMALLTALK, 7, 132, 136–138, 160
Sunview, 142
UNIX, 12
VMS, 15, 49
WORKBENCH, see WORKBENCH
WORKBENCH CREATION SYSTEM (WCS),

132, 138
X window system, 47
Xerox Star, 60

data availability, 24
data collection methodologies

by annotating traces, 20
by constructive interaction, 20
by expanding csh command lines, 18, 23
by interviews and questionnaires, 21
by protocol analysis, 20
by recording keystrokes, 17
by recording processes, 19
by session transcripts, 17
by thinking aloud, 20
by traces of user activity, 16
controlled experiments, 11
dealing with subjects, 15
natural studies, 11, 12
problems of, 12, 25

direct manipulation, 15, 121

end-user personalization, 130
ergonomics, 3

frequency distribution, see also UNIX
as a function of command line distance, 79
of activity selection, 66
of telephone use, 68, 71
of the UNIX on-line manual, 74

general-purpose computing environments, 7, 8, 74
GLIDE

a sample dialog, 113
as a recurrent system, 113
introduction to, 112
study of, 112

handyman’s workbench, 10, 123, 143, 160
history list, 75, 81

185

186 Subject index

history lists
conditioned to improve predictability, see recur-

rence distribution
history mechanisms, see history systems
history model, 63
history systems, 40, 41, 63

as a reuse facility, 41
as bookmarks, 51
by editing transcripts, 47

VMS, 49
by navigational traces, 49
by spatial browsing, 47
definition, 8
design principles and guidelines, 108
implementations

BOOMERANG, 52, 53
CHIMERA, 45
command tool, 47
DOCUMENT EXAMINER, 51
emacs, 47
FILE MANAGER, 51
GENERA, 49
HISTMENU, 79
HYPERCARD recent, 49–51, 86, 111
hypertext timelines, 51
INTERLISP HISTMENU, 44, 45
INTERLISP programmer’s assistant, 42
MINIT window management window, 45, 86,

89, 111
pads, 47
UNIX csh, 42, 84, 108, see also UNIX
VERSATERM, 47
WORKBENCH, see WORKBENCH
xterm, 47
zmacs, 49

in glass teletypes, 42, 111
introduction to, 41
using graphical selection, 44

human factors, 3

incremental interaction, 6, 13, 65, 75
integrated systems, 7

managing tools, 3, 39
manufacturing tools, 39
menu interfaces

to system actions, 8
to UNIX, 15

metric for work, see prediction quality

object browsers, 136
object-oriented programming, 136

plans, 118
prediction quality, 84, 85

and working sets, 85, 110
characters saved, 85, 92

programming by example, 41, 59, 60, 63, 162
generalization of macros, 60
inferring control constructs, 61

QUICKEYS, 61
SMALLSTAR, 60, 61
verbatim playback, 60

programming environments, see computing environ-
ments

recency, 81
recency distribution, 71, 81, 83
recurrece rate

in GLIDE, 113
recurrence distribution

conditioned by
command line hierarchy and command-

sensitive sub-lists, 111, 114
context-sensitive history lists by directory,

111, 146, 148
frequency ordering, 111, 114
partial matches of command lines, 111
pruning duplicates, 110, 114, 146
sequential ordering by recency, 110, 114, 146

recurrence distributions, 84
as a measure of distance, 79
conditioned

to improve predictability, 84, 86, 110, 160
conditioned by

alphabetic ordering, 89, 99
combinations of techniques, 91, 101
command line hierarchy and command-

sensitive sub-lists, 91, 100
context-sensitive history lists by directory, 89,

100
frequency ordering, 88, 99
ordering commands by recency, 90, 100
partial matches of command lines, 90, 100
pruning duplicates, 86, 99
sequential ordering by recency, 86, 92

recurrence rate, 65
of command lines, 75
of telephone use, 68, 70
of UNIX csh, 76, 79, 84
over a set of user activities, 66
stability, 68

recurrent systems, 9, 65
dynamic, 66
for command use, 66
in GLIDE, see GLIDE
in information retrieval, 73, 83
in technical manuals, 74
in telephone use, 67, 83
in the non-computer world, 67
in the UNIX on-line manual, 74
in UNIX command lines, 81, 83
of the UNIX csh, 74
static, 66
UNIX, 65

repetitively accessed databases, 65
reuse facilities, 9, 40, 92, see also history systems

design principles, 9
reuse opportunities, 9

self-organizing files, 88

Subject index 187

shell, see UNIX shell
situated actions, 118

tailorable buttons, 162
task set, 89, 124, 129, 132, 149, 162
task switching, see task set
temporal recency, 41
text prediction, see adaptive systems
tool manufacturing, 3, 7
tool use

by animals, 1, 163
by humans, 1, 3, 4, 163

undo, skip and redo, 47
UNIX

aliases, 13, 26
analysis of, 8
combining commands, 14
command line vocabulary, 75, 76
command lines, 74, 75, 81
command vocabulary, 30–34, 38
commands, 26
csh, 13, 23, 26, 74, 83, 84, see also recurrent

systems
how its used, 102

data collection, see data collection methodolo-
gies

frequency distribution of commands, 36, 38
for groups, 27
overlap between individuals, 30
rank order differences, 27

front ends, see MENUNIX,WORKBENCH
hierarchical directories, 89
history system, 13
introduction to, 12
on-line manual, 27, 49, 83, see also recurrent

systems,frequency distribution
pipes, 14, 26
recurrent systems, see recurrent systems
redirecting input and output, 13
relations in command sequences, 34
search paths, 12
shell, 4, 8, 13
sockets, 152
studies of, 15, 16
why it is worth studying, 14

user models, 37
user support tools, 9

UNIX Consultant, 38
using physical tools, 1

videotex, 132

WORKBENCH, 141
architecture, 152
as a reuse facility, 145, 146
components

tool area, 143, 145, 146, 152
tool cabinet, 143, 145, 149, 151
tool drawers, 145, 149, 151, 152

tool panel, 145, 152
work surface, 143

interaction with UNIX csh, 152
its metaphor, 143
overview, 143
pragmatic concerns, 155

working set, see command lines, prediction quality
workspace, 9, 123, 127

guidelines for design, 127–129

Zipf distribution, 26, 27, 30, 34, 36, 38, 66, 67, 71

