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ABSTRACT

In this thesis. post-processing methods for motion artifact suppression in magnetic
resonance imaging (MRI) are investigated. Based on experimental observations. a
generalized motion model is empirically proposed. The non-rigidity or spatially vari-
ant characteristics of motions are taken into account by introducing a distortion
transfer function (DTF). A technique to estimate DTFs directly from corrupted im-
ages is developed. With DTFs identified. a composite image processing method is
proposed to correct ghost artifacts caused by non-rigid periodic motions along the
slice selection axis. There are several image processing tasks involved in this com-
posite method. including contour detection and contour-based region labeling. It is
proposed that contour detection is done by a new technique: the snake. The gener-
alized motion model and the composite image processing method are demonstrated

for both phantom images and an abdomen image with unknown respiratory motion.

1l



ACKNOWLEDGEMENTS

First I would like to thank my supervisor Dr. M. R. Smith for providing me
the opportunity to complete this thesis. His countless hours of help and direction,
his patience. his encouragement and excellent technical writing tips are very much
appreciated. [ gratefully acknowledge the Natural Sciences and Engineering Research
Council (NSERC) of Canada, University of Calgary and Department of Electrical and
Computer Engineering at University of Calgary for their financial support. Many
thanks to L. Chen. S. Krishnan. F. Faghih, T. Mathews and R. Gokaraju for giving
me help about using some programs I needed during this thesis project and thesis
writing. Many thanks to J. Zeng, with whom [ had some helpful conversations about
this thesis.

[ would like to thank my husband Ning for his love, support and encouragement.
My sincere gratitude to my parents, my brother and all those who are supportive in

my life. Thanks to the Kowalski family for their hospitality. kindness and love.

iv



To the memory of my grandfather



CONTENTS

APPROVAL PAGE . . .. .. i ii
ABSTRACT . . .. e e e iii
ACKNOWLEDGEMENTS .. . ... ... ... i iv
DEDICATION . . .. e e e v
TABLE OF CONTENTS . . ... ... . i vi
LIST OF TABLES . . . . ... e i e ix
LIST OF FIGURES . . . ... . e e X
CHAPTERS
1. INTRODUCTION . ... e e et 1
1.1 Thesis Subject. . . . . . . . . . . ... |
1.2 Basics of Magnetic Resonance Imaging (MRI) . .. .. ... ... .. 2
1.2.1 Spin Magnetization . . . . . .. . ... ... .. ... ... .. 2
1.22 Relaxation . . . . ... ... .. L )
1.2.3  Principles of Magnetic Resonance Imaging (MRI) . . . . . .. 5
124 K-spaceData . .. ... .. ... ... ... . S
1.3 Effects of an Object’s Motion on Its K-Space Data and Reconstructed
Image . . . . . . . . e 10
1.4 The Categories of Motion Artifact Suppression Methods in MRI . . . 12
1.4.1 Methods that directly restrain the motion itself . . . ... .. 12
1.4.2  Methods that modify the data acquisition procedures . . . . . 13
1.4.2.1 The gating or synchronizing method . . . . . .. .. 13
1.4.2.2  The averaging method . . .. ... . ... ... ... 14
1.4.2.3  The deliberate ghost positioning method . . . . . .. 14
1.4.2.4 The respiratory ordering of phase encoding (ROPE)
method . ... .. ... ... ... ... 15
1.4.3 Fast Imaging Methods . . . . . . ... ... ... ....... 15
1.4.4 Post-processing Methods . . . . . ... ... .. ... ... .. 15
1.5 ThesisQutline . . .. .. ... ... ... ... 16
2. REVIEW OF POST-PROCESSING TECHNIQUES OF MOTION
ARTIFACT SUPPRESSIONIN MRI ... ........ ... .. ... ...... 18
2.1 Introduction . . . . . . . . ... e e 18
2.2 The Rigid Translational Motion in the Imaging Plane . . . . . . . .. 18
2.2.1 The spectrum shift method . . .. .. ... .. .. ...... 22
2.2.2 The iterative phase retrieval method . ... .. ... ... .. 26
2.3 Rotational Motion ofa Rigid Body . ... .. ... ... ....... 27
2.4 The Motion along the Slice Selection Axis . . ... .. ........ 29

vi



2.5 A Review of Post-Processing Algorithms for Special Motions . . . . . 32
2.5.1 The Discontinuous Motion . . . . . ... . ... ... ..... 32
2.5.2 The Linear Expansion Motion . . . . ... ... ... ..... 32
2.5.3 Riek’s POCS Method for Multislice MR Images . . . ... .. 33
2.6 Work in Our Research Group . . . . . .. .. .. ... .. ...... 34
2.7 SUMMATY . . .+ o v i e e e e e e e e e e e e e e e e e e e e e 35
. A GENERALIZED MOTION MODEL ...................... 36
3.1 Introduction . . . . .. .. .. ... ... 36
3.2 The Generalized Motion Model . . . . .. ... ... .. ....... 36
3.3 The Generalized Motion Model for Non-Rigid Periodic Motions along
/< - 39
3.4 Examples of Distortion Transfer Functions . . . . ... ... ... .. 40
3.5 Summary . .. oL .o e e e e e e e e e e e e 43
. THE THEORY OF SNAKES ... ... ... ... ... .. . .. .. ... 50
4.1 Introduction . . . . .. ... Lo o 50
4.2 Contour Detection Techniques in General Medical Imaging Applications 50
4.3 Mask Operators . . . . . . . . . ... oL 52
4.4 Continuous Active Contour Model . . . . . . ... ... .. ... ... 53
4.4.1 Internal Emergy . . .. . .. . . .. . ... ... 37
442 ImageEnergy . .. .. ... ... ... .. 38
443 External Energy . . . . .. .. .. ..o 39
4.5 Calculation of the Total Energy for the Discretized Model . . . . . . 39
4.6 The Evolution Solution of Smakes . . . .. ... ... ... ...... 60
4.7 LU Decomposition and Linear Equation System Solving . . . . . . . . 61
4.8 SUMMATY . v+« v v i e e e e e e e e e e e e e e e e e e e e 63
. THE IMPLEMENTATION OF THE SNAKE ALGORITHMS . 64
5.1 Introduction . . . . . . . . . . . ... e 64
5.2 The Block Diagram of Qur Implementation of Snakes . . . . . . . .. 64
5.3 Contour Representation . . . . .. .. .. ... ... ........ 67
5.4 The Smoothed Image Gradient . . . . .. ... .. .. ........ 63
5.5 Contour Resampling . . . ... .. .. .. .. ... .. ... .... 63
5.6 Determination of Elasticity and Rigidity Coefficients . .. . . .. .. 74
57 ImageForce . . . ... ... . .o oLl 4
5.8 Stability of Snake Contour . . . . . . . .. ... ... ... ... ... 75
5.9 Contour Detection for the Abdomen Image by Using the Snake . . . . 76
5.10 Contour Ballooning and Its Applications for Obtaining Ghost Contours 76
5.110 Summary . . . ... e e e e e e e e e e 79
. CONTOUR-BASED REGION LABELING ................... 82
6.1 Introduction . . . ... .. ... .. ... 82
6.2 B-spline Curve Fitting . . . .. .. ... ... ... ... ...... 82
6.3 A Full Set of Pointsof a Contour . . . . ... ............. 85
6.4 Region Labeling Algorithm . . . . . . . .. ... ... ... ...... 87



6

7. D
v

=1

~1 =1

‘-l

=1

3

I
1
2
3

4

S WLt

SUMMATY .« & o e v e e e e e e e e e e e e e e e e e e e e e e e e 90
STORTION TRANSFER FUNCTION ESTIMATION........ 93
Introduction . . . . . . . ... .. L 93
Estimation of Distortion Transfer Function for Non-rigid Motion . . . 93
The Windowing Techniques for DTF Estimation . . . . . . .. .. .. 95
The estimated DTFs for a variety of phantom images . . . . . .. .. 97
7.4.1 Observation: Image itself has effects on the accuracy of DTF
estimation . . ... .. .. ..o L o 101
The estimated DTF's for the abdomen image . . . . . . . ... .. .. 101
SUMMATY . - .+ o v e i e et e e e e e e e e e e e e e e e e e 105

8. A COMPOSITE IMAGE PROCESSING APPROACH OF MOTION

ARTIFACT SUPPRESSION. . .. .. ... i 107
8.1 Introduction . . . . . . .. ... . ..o 107
8.2 The Composite Image Processing Method of Motion Artifact Suppression107
8.3 Effects of the Tasks Involved in the Composite Method on the Success

of Motion Artifact Suppression . . . . .. .. ... ... ... .. .. 112
8.3.1 The iterativeapproach . . . . . ... .. ... ... 0oL 114
8.3.2 Effects of estimationof DTF . . . . . . ... ... ... .. .. 121
8.3.3 Effectsofcontours . .. .. .. .. .. ... ... 122
8.3.4 Effects of inaccurately determining distances between ghosts
and the centralimage. . . . . . .. .. ... .. ... 127
8.4 The results with the Real Abdomen Image . . . ... ... ... ... 131
8.5 Summary . . . ... e e e e e e e e 136
9. CONCLUSION AND FUTURE WORK ..................... 137
BIBLIOGRAPHY .. .. . 143

viil



)

N
b

09

oL

e

o

e

(SV]

LIST OF TABLES

Centre position, radius size, angle and intensity parameters of ellipsoids
in the simple phantom image. . . . .. .. .. ... .. ........ 21

Centre position, radius size, angle and intensity parameters of the ellip-
soids in the abdomen phantom image . . . . . ... .. ... ... .. 23

The central energy error remaining Cerror—remain and ghost energy remain-
INg Gerror—remain Of the corrections when DTFs and parameters about
the motions are exactly known . . . . . . . .. ... .. ... ... 119

The central energy error remaining Cerror—remain and ghost energy remain-
INg Gerror—remain Of the corrections when the estimated DTF's are used 123

The central energy error remaining Crror—remain and ghost energy remain-
ing Gerror—remain Of the corrections when the snaked contour are inflated

(A >0) and deflated (A< Q) Apixels . ... ... ... ... .... 124

The central energy error remaining Cerror—remain 2nd ghost energy remain-
1ng G.rror—remain Of the corrections when the distance between the up-
per ghost and the central image is not accurate . ... .. .. .. .. 130

The ghost energy remaining Gerror—remain Of the corrections by Mitsa’s
method and our composite method . . . . . . ... ... ... .. .. 132

X



1.1

3.3

3.4

LIST OF FIGURES

Vector representation of the spin magnetization in a rotating frame of
reference . . . . . . . . L L e e

The field gradients and RF pulses associated with the spin-warp imaging
sequence of 2D Fourier MRI [Wehrliet al. 1988} . . . . .. .. .. ..

The k-space data (upper) and the reconstructed images (lower) for two
phantoms without motion artifacts (left: simple phantom. right: ab-
domen phantom) . . . .. .. ... L Lo Lo

Phantom images with motion corruption simulated by the planar rigid
translational motionmodel . . . . . . ... . ..o oo

Phantom images with motion corruption simulated by the rotational mo-
tionmodel . . . . . ...

[0:s]

24

24

Z plane motion corrupted phantom images simulated by Mitsa’s AM model 30

An abdomen image from an MRI system showing motion artifact with
unknown characteristics . . .. ... ... Lo o oL

A DTF having a form of Gaussian low-pass filter (left) and the correspond-
ing motion corrupted phantom image (right) . ... ... .. .. ..

A DTF having a form of Gaussian high-pass filter (left) and the corre-
sponding motion corrupted phantom image (right) . ... .. .. ..

A DTF having a form of a Butterworth low-pass filter (left) and the cor-
responding motion corrupted phantom image (right). . . . .. . . ..

A DTF having a form of Butterworth high-pass filter (left) and the corre-
sponding motion corrupted phantom image (right) . . ... ... ..

A DTF having a form of radially symmetric Butterworth band-reject filter
(left) and the corresponding motion corrupted phantom image (right)

A DTF having a form of a radially symmetric Butterworth band-pass filter
(left) and the corresponding motion corrupted phantom image (right)

A DTF having a form of a belt Butterworth band-reject filter (left) and
the corresponding motion corrupted phantom image (right) . . . . . .

A DTF having a form of belt Butterworth band-pass filter (left) and the
corresponding motion corrupted phantom image (right) . . . . .. ..

X

45

46



Ut
S}

6.1

6.3

6.4

The Sobel mask operators . . . . . .. . ... ... ............

The contours (right) of the abdomen image (left) detected by the Sobel
mask operators. Note the varying strength of the outer boundary. . .

The block diagram of our implementation of the snake . . . . .. .. ..

Illustration of the existing contour resampling [Lobregt and Viergever
1993]. (a) When the length between two adjacent points is less than a
fixed minimum length, replace the two points by one point. (b) When
the length between two adjacent points is bigger than a fixed maximum
length. insert a new point between the two points . . . . . . ... ..

[llustration of the new contour resampling algorithm. The first resampled
point Vjg is designed to absorb the fragment [g(;_y left by the previous
segment. [g;_1)+!gi = l4es. At the end of the segment there is another
fragment lg;. [g; = P,Piy1 — gi — 2 % l4es- This fragment is suppose to
be absorbed when the next segment is resampled. . . . . . . ... ..

The results of snakes for the abdomen image. (a) Manually obtained
points. (b) The resampled points of (a) used as seed contour for the
snake. (c) Snake contour after 20 iterations. (d) Snake contour after
60 iterations. (e) Snake contour after 100 iterations. (f) Snake contour
after 120 iterations. . . . . . . . . . .. ... Lo

The result of snakes for the phantom image. The manually obtained points
(left) are far away from the boundary detected by the snake algorithm
(after 10 iterations) (right). . . . . . ... .. ... ... ... ....

Contours for the upper and lower ghosts in the abdomen image obtained
by ballooning and shifting the snaked contour of the central image.
Note the aliased lower ghost image. . . . ... ... .. .. ......

Results of the check-and-insert algorithm. (a) Points along the snake
contour. (b) A full set of points obtained by using the check-and-
insert algorithm. (c) The superposition of the snake contour and the
result of the check-and-insert algorithm (d) The full set of points with
the abdomen image as background. . . .. ... ... ... .. ....

The block diagram of the generalized scan-conversion algorithm. The top
two boxes with dotted lines show that the input of this algorithm is
from the output of the B-spline curve fitting algorithms, whose input
is from the output of the snake algorithms. . . . . . .. .. ... ...

Region labeling result (right) of the full set of points (left) . . .. .. ..

Too complex situations for the odd-parity ruleto work . . . . .. .. ..
xi

69

(]

=1
V24

S0

(09}
(V5]



~1
=1

~1

(v4]

=~

The window positions and sizes used to determine the DTF's of the motion
corrupted image . . . . . . ... ... ... ... L

The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of Gaussian low-pass filter and the difference image
betwe=n the theoretical and estimated DTF (right. intensity scaled up
Jtimes) . . . . . . e e e e e e e e e e e e e e e e e

The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of Butterworth low-pass filter and the difference image
between the theoretical and estimated DTF (right. intensity scaled up
Jtimes) . . . .. L e e e e e e e e e e e

The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of radially symmetric Butterworth band-reject filter and
the difference image between the theoretical and estimated DTF (right.
intensity scaled up 3 times) . . .. .. .. ... L.

The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of belt Butterworth band-reject filter and the difference
image between the theoretical and estimated DTF (right. intensity
scaledup Jtimes) . . . . . .. L. L o

The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of Gaussian high-pass filter and the difference image
between the theoretical and estimated DTF (right. intensity scaled up
Jtimes) . . . L e e e e e e e e e e e e e e e e

The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of Butterworth high-pass filter and the difference image
between the theoretical and estimated DTF (right. intensity scaled up
Jtimes) . . . . . e e e e e e e e e e

The estimated DTF (left) for the phantom image corrupted by DTF's
having a form of radially symmetric Butterworth band-pass filter and
the difference image between the theoretical and estimated DTF (right.
intensity scaled up 3 times) . . . . .. ... Lo oL oL,

The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of belt Butterworth band-pass filter and the difference
image between the theoretical and estimated DTF (right, intensity
scaledup 3times) . . . . . .. ... L e

Xil

96

99



7.10 The estimated DTFs based on different image detail. (a) The estimated

DTF by using the right side of the unoverlapped part for the phantom
image with Gaussian low-pass DTFs. (b) The estimated DTF by us-
ing the left side of the unoverlapped part for the phantom image with
Gaussian low-pass DTFs. (c) The estimated DTF by using the right
side of the unoverlapped part for the phantom image with belt Butter-
worth band-pass DTFs. (d) The estimated DTF by using the left side
of the unoverlapped part for the phantom image with belt Butterworth
band-pass DTFs. . . .. .. .. . ... . ... ... ... ...

7.1l The estimated DTF's of upper ghost (left) and lower ghost (right) for the

abdomenimage . . . ... ... ... ... ..

7.12 The window size and position used for DTF estimation for the abdomen

IMAGBE . . v v v e e e e e e e e e e e e e e e e e e e e e

7.13 The estimated DTFs in the abdomen image with different assumed posi-

3.1

22
SV

oL
K

(v 4}
o

tions of the upper (A,) and lower (A,) ghosts. The right and left sides
are for the upper and lower ghosts respectively. (a) when A\; = —73,

; =73: (b) when A; = —68, A; =68: (¢) when A} = —70. A = 70.

Block diagram of the composite image processing method for removing
artifacts associated with motion of a non-rigid body . . . . . . . . ..

(b) shows the corrected images for the phantom images (a) with Gaussian
low-pass DTFs (left) and Butterworth low-pass DTFs (right) respec-
tively when the motion parameters and theoretical DTFs are exactly
known. (c) shows the difference images between the corrected and the
true images (with the intensity scaled up by 65 times) . . . . . . . ..

(b) shows the corrected images for the phantom images (a) with radi-
ally symmetric (left) and belt (right) Butterworth band-reject DTFs
respectively when the motion parameters and theoretical DTFs are
exactly known. (c) shows the difference images between the corrected
and the true images (with the intensity scaled up by 65 times) . . .

(b) shows the corrected images for the phantom images (a) with Gaussian
high-pass DTF's (left) and Butterworth high-pass DTFs (right) respec-
tively when the motion parameters and theoretical DTFs are exactly
known. (c) shows the difference images between the corrected and the
true images (with the intensity scaled up by 65 times). . . . . . . ..

xiii

103

104

106

110

116



o«

oL

e

g

o

1]

oL

(b) shows the corrected images for the phantom images (a) with radially
svmmetric (left) and belt (right) Butterworth band-pass DTF's respec-
tivelv when the motion parameters and theoretical DTFs are exactly
known. (c) shows the difference images between the corrected and the
true images (with the intensity scaled up by 65 times) . . . . . . . ..

The corrected images for the phantom images with DTFs having a form
of Gaussian low-pass filter (a), Butterworth low-pass filter (b). radi-
ally symmetric Butterworth band-reject filter (¢) and belt Butterworth
band-reject filter (d) respectively when the used DTFs are not theo-
retical but estimated . . . . .. . ... ..o L.

The corrected images for the phantom images with DTFs having a form of
Gaussian high-pass filter (a), Butterworth high-pass filter (b). radially
symmetric Butterworth band-pass filter (c) and belt Butterworth band-
pass filter (d) respectively when the used DTF's are not theoretical but
estimated . . . . . .. .. . ...

The corrected (left) and their difference (right. intensity scaled up by
10 times) images between the corrected and the true images for the
phantom image with Gaussian low-pass DTFs when the contours are
deliberately made several pixels smaller or bigger. (a)(b) Using the
snake contour deflated by 3 pixels. (c)(d) Using the snake contour.
(e)(f) Using the snake contour inflated by 3 pixels.. . . . . .. .. ..

The corrected (left) and their difference (right, intensity scaled up by 10
times) images between the corrected and the true images for the phan-
tom image with belt Butterworth band-pass DTFs when the contours
are deliberately made several pixels smaller or bigger. (a)(b) Using
the snake contour deflated by 3 pixels. (c)(d) Using the snake contour.
(e)(f) Using the snake contour inflated by 3 pixels.. . . . . .. .. ..

8.10 The corrected (left) and the difference (right. intensity scaled up by 10

times) images compared to the true image for the phantom image with
Gaussian low-pass DTFs when the distance between the upper ghost
and the central image is not accurate. (a)(b) The used distance = 77.
(c)(d) The used distance = 80 (accurate). (e)(f) The used distance =
S 7

8.11 The corrected (left) and the difference (right, intensity scaled up by 10

times) images compared to the true image for the phantom image with
belt band-pass DTFs when the distance between the upper ghost and
the central image is not accurate. (a)(b) The used distance = 77.
(c)(d) The used distance = 80 (accurate). (e)(f) The used distance =
83 e e e e e e e e e e

Xiv

118

121

126

129



8.12 The corrected image for the abdomen image by using Mitsa’s method.
(a) The corrupted abdomen image. (b) The corrected image by using
Mitsa’s method. (c) the difference image between (a) and (b) with
intensity scaled up by 70 times. This small difference image indicate
littlechangeinimage . . . . . . .. ... ... Lo L 132

8.13 The corrected image for the abdomen image by using our composite method
with A; = —73 and A, = 68. (a) The corrupted abdomen image. (b)
The corrected image by using our composite method. (c) the difference
image between (a) and (b) with intensity scaled up by 7 times . . . . 133

8.14 The corrected abdomen images (left) and the difference images (right. with
intensity scaled up by 7 times) between the corresponding corrected
images and the original abdomen image by using our composite method
with different assumed positions for the upper (A;) and lower (A;)
ghosts. (a) when A; = —73, A2 = 73; (b) when A, = —68. A, = 68:
(c)when Ay =—70. A =70. . .. .. ... L oo 135

Xv



CHAPTER 1

INTRODUCTION

1.1 Thesis Subject

Magnetic resonance imaging (MRI) has displayed great potential in medical imag-
ing since it was introduced in the 1970’s [Wehrli et al. 1988; Slichter 1990]. Compared
with other biomedical imaging techniques, such as ultrasound imaging and x-ray com-
puterized tomography. MRI has the following superior properties [Wehrli et al. 1988:
Kak and Slaney 1988: Shung et al. 1992; Hamilton 1982]: MRI can provide high
contrast images: MRI can easily select an imaging plane in any direction of a human
body: MRI is considered safer than x-ray related imaging techniques.

However conventional MRI techniques. especially two-dimensional Fourier imag-
ing technique. need a long data acquisition time to collect all the data required to
reconstruct a high quality image. During the long data acquisition time. physiological
movements and random body movements of the imaged subject may occur. The sub-
ject’s movements during this scan time affect the acquired data and result in motion
artifacts which degrade the reconstructed image.

How to effectively suppress artifacts caused by motions has been an active topic

in MRI. The existing techniques can be categorized as :

e techniques that directly restrain the motion itself.

techniques that modify the conventional data acquisition procedures.

fast imaging techniques.

e image processing (or post-processing) techniques.

Among these methods, post-processing techniques are very attractive as they re-

quire no changes in the conventional MRI system, nor in the imaging method, nor in



2
the data acquisition procedures. The project for this thesis has been focused on the
post-processing techniques for motion artifact suppression in MRI. The subjects of

the project are two:

l. to investigate a mechanism and the corresponding mathematical model of how

artifacts are introduced
2. to develop post-processing algorithms to suppress artifacts caused by motions.

In this chapter. the basics of MRI are very briefly presented. The effects of motions
on MRI measured k-space data and reconstructed images are then analvzed. The
existing methods of motion artifact suppression in MRI are categorized. Finally the

outline of this thesis is described.

1.2 Basics of Magnetic Resonance Imaging (MRI)

1.2.1 Spin Magnetization

The physical background of MRI is nuclear magnetic resonance (NMR). which is
an interaction between the applied magnetic field and nuclear magnetization of atoms
of the imaged object [Wehrli et al. 1988; Slichter 1990].

The nucleus of an atom has a positive charge and is considered as spinning about
an axis. This spinning nucleus generates a magnetic dipole. which is similar to that
of a bar magnet with its direction parallel to the axis of the spinning. Normally when
there exists no external magnetic field around the object. the dipoles of nuclei take
random directions and cancel out each other. As a whole. the object then shows
no magnetization. However when a static external magnetic field By (called a DC
magnetic field in some books) is applied to the object. the nuclei interact with the
field via their dipoles. The dipoles rotate about the direction of the static field By

at a very specific resonance frequency w. The frequency w is directly proportional to



the magnitude of the static field Bqy. That is
w = “/Bg

where v is a constant called the magnetogyric ratio. This resonance frequency w is
called the Larmor frequency.

A vector model is widely used in the literature to visualize NMR. In this model.
nuclear magnetization is represented as magnetization vectors [Wehrli et al. 1988:
Slichter 1990]. We assume the magnetic field By is in the direction of the z axis.
Then the magnetization M of the atoms is a vector along the z axis as shown in
Fig. 1.1(a). We also assume that the r and y axes rotate about the magnetic field
axis (z axis) at the Larmor frequency. Therefore when a second external magnetic
field B; of the Larmor frequency, and in the direction of the r axis. is applied. the
magnetizaton M is perturbed away from the : axis toward the ry plane by an angle
6 as shown in Fig. 1.1(b). The angle 8 depends on the value and duration 7 of the

second external magnetic field B, as :
0= ",/BIT

The magnetization M, along = axis is reduced and simultaneously a ry plane mag-
netization (also called transverse magnetization) M.y is produced.

The Radio Frequency (RF) pulse required to rotate the nuclei by 90° is called a
90° RF pulse. The magnetization is along the y axis after a 90° RF pulse is applied.
Similarly. an RF pulse capable of rotating the nuclei by 180° is called an 180° RF
pulse and places the corresponding magnetization along the —z axis.

According to the quantum theory, this process of magnetization perturbation is
a process of energy resonance absorption and is an excitation process. In the time
following excitation, the magnetization wants to return to its equilibrium after giving

off energy by a number of relaxation mechanisms.
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(a) The net magnetization of atoms (b) Application of B, the second external
is along the z axis when the object is magnetic field at the Larmor frequency
placed in a static magnetic field B tips the magnetization away from the
in the z direction z axis toward the xy plane by an angle @

Figure 1.1. Vector representation of the spin magnetization in a rotating frame of
reference



(1]

1.2.2 Relaxation

There are two distinct nuclear relaxations that occur following excitation. The
first is related to an exponential recovery of the magnetization M, along the = axis to
its equilibrium values. The second relaxation is associated with an exponential decay
in the transverse magnetization M.

The first relaxation is called spin-lattice relaxation as it is the loss of energy from
the pulse to the surroundings (lattice) as thermal energy. The exponential time
constant is called T}, and describes the rate of return of the M. magnetization to its
equilibrium value.

The second relaxation is called spin-spin relaxation. The corresponding exponen-
tial time constant is T>. Normally T, < T; as the transverse magnetization M.,
decays more rapidly than M, recovers. The signal detected by a nuclear magnetic
resonance (NMR) system is proportional to the transverse magnetization M,.,. Hence
the detected signal following an excitation RF pulse dies away as a result of the T,

relaxation.

1.2.3 Principles of Magnetic Resonance Imaging (MRI)

Nuclear magnetic resonance as a technique has been used by scientists since the mid
1940s. However magnetic resonance imaging (MRI} for medical use did not become
available until 1970s. The key to MRI is encoding the spatial information into the
detected NMR signal. One of the most popular MRI techniques is Two-dimensional
(2D) Fourier MRI, which is very elegant in theory [Wehrli et al. 1988].

The foundation of the 2D Fourier MRI technique is the use of field gradients.
Usually three field gradients G, G, and G., in the z, y and z directions respectively.
are employed. A field gradient G, along the z axis is used to select a cross section

to be imaged. The z axis is also called the slice selection axis. The field gradient G,
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along the y axis is used to encode the spatial information along the y axis into the
phase of the NMR signal. At the end of the period (time t,) for which G, is applied.
the relative phase of a signal from a nucleus depends on the gradient strength G, and

the nucleus position y along the y axis as:
; t"‘l 3
Q= '7!//0 Gy(t)dt = yGyyt, x y

The field gradient G, along the r axis is used to encode the spatial information
along the r axis into the frequency of the NMR signal. When a linear gradient G,
is superimposed on the main magnetic field By. the Larmor frequency « depends on

position along the r axis as:

w =7(Bo +$Gr)

A series of n data points of the NMR signal is recorded in the presence of this G-.
We repeat the procedure with a different value of the gradient . and record a new
set of n data points. which differs from the first set in the initial phases. Repeating
the procedure for m different values of G, produces a data set consisting of m rows
and n columns. The variable along the row is the time and the variable down the
columns is the phase step. Hence the r axis is called the frequency-encoding axis or
read-out axis. The y axis is termed the phase-encoding axis.

In summary, the basic procedure for applying the magnetic fields for generating

an m by n data set during 2D Fourier MRI is:

1. Select a cross section to be the imaged plane by using the : direction field

gradient G..

[SV]
.

Apply a phase-encoding gradient G, for a fixed time.
3. Apply a read-out gradient G, and collect n data points.

4. Change the value of phase-encoding field gradient G, and repeat steps 1, 2 and

3 a total of m times.
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The effect of the applied RF pulses will be discussed in the next paragraph.

Note that the time required for step 1. 2. and 3 is a few tens of millisecond.

However the physics of the spin relaxation demands that excitation using the 90°

pulse can only be repeated on the time scale of a second in order to avoid complete

saturation of the nuclei and as associated loss of signal intensity. The time between

successive excitations, called Tr, must therefore be of that order. Since there are

m phase-encoding steps. the total time required for an imaging procedure is m - Tr.

That is where this MRI data acquisition takes time.

Fig. 1.2 shows a commonly used spin-warp imaging sequence of 2D Fourier MRI

[Wehrli et al. 1988]. The spin-warp sequence works as follows:

[W1]

. The 90° selective RF pulse and field gradient G. are applied to select a cross-

section of the subject as the imaging plane. As a result. all the nuclei in this
plane are excited. The nuclei out of this plane do not resonate to this RF pulse

and will not contribute to the NMR signal.

The time-reversal gradient —G' is used to remove the unwanted effect introduced
by the nonuniformity of the magnetic field. At the end of the time-reversal
gradient. a much larger signal is achieved than that obtained without the reversal

gradient.

. The frequency-encoding field gradient G, and the phase-encoding field gradi-

ent G, are applied to encode the spatial information in the imaging plane into

frequency and phase respectively.

The 180° RF pulse is used to produce a spin echo and the G, read-out pulse is

used for reading out n data points of the NMR signal.

Change the phase-encoding field gradient G, and repeat step 1, 2, 3, and 4 a

total of m times.
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6. An m by n data set is obtained.

90 pulse 180 pulse

RF ] .
| t
slice select gradient
Gz — >
| t
G L-.-| programmable phase-encode gradient

y .
- t

[_——l. - read-out gradient
Gx —
t
NMR —
signal t

Figure 1.2. The field gradients and RF pulses associated with the spin-warp imaging
sequence of 2D Fourier MRI [Wehrli et al. 1988]

1.2.4 K-space Data

Let’s discuss the recorded m by n data set in step 6 in the above section.

Assume the spin density of the imaged cross section at location (r.y) in the imaging
plane is p(x.y) and the phase-encoding field gradient G, at the m** phase-encoding
step is chosen to be proportional to the phase-encoding step m as: G,(m) x m. If
the imaged subject is stationary and if the relaxation effects are neglected, the NMR

signal s(t,m, z.y) from location (z,y) during this phase-encoding step m is given by:

s(t.m, z.y)  p(z,y) exp(—j2rzt) exp(—j2rmy)
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where exp(—j2wzt) represents the frequency term and exp(—j2wym) is the phase
term [Wehrli et al. 1988].

If the selected imaging slice is thin enough. the detected NMR signal s(t. m) during
phase-encoding step m is the summation of all the NMR signals from all locations in

the imaging plane as:

s(t,m) oc//s(t,m,;r,y)da:dyoc//p(x.y)exp(—j?n'.rt)exp(—j‘.?rrmy)d.rdy
yJr yJr

The recorded n data points are given by:
s(n,m) = s(t,m)|t=nat x //p(.r,y)exp(—j?.ﬂ'm:)exp(—j?wmy)d.rdy (L.2)
yJzr

Mathematically the right hand side of Equation 1.2 is the sampled version of
the 2D Fourier transform of p(z,y). the spin density image. Thus the recorded data
3(n.m) at phase-encoding step m is mathematically a row of the 2D Fourier transform
of the imaged cross section. On the other hand. the recorded data itself is a time
series physically. Therefore the recorded data s(n.m) has both time and frequency
properties. It is called k-space data. The elegance of 2D Fourier MRI is that an m
by n data set of the image p(z.y) can be reconstructed by doing 2D inverse discrete
Fourier transform according to Equation 1.2 [Wehrli et al. 1988].

Note that this measured k-space data has complex values. Furthermore it is con-
taminated with noise. Thus the reconstructed image data set is also complex valued
rather than real valued. So when we talk about actual MRI k-space data and recon-
structed MRI images, we are talking about complex data sets. We can manipulate
the k- and image space data sets as complex values prior to the final magnitude image

being displayed.
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1.3 Effects of an Object’s Motion on Its K-Space Data and
Reconstructed Image

A question to ask is how motion of a MR imaged object affects the reconstructed
images and what do the resulting artifacts look like? This problem has been inves-
tigated from different points of view: experiment. physical theory and mathematical
analysis by Schultz et al. [1984]. Wood and Henkelman [1985] and Xiang and Henkel-
man [1993].

Schultz et al. [1984] experimentally investigated the effects of motion on two-
dimensional Fourier MRI. The phantom material with simulated respiratory motions
and volunteers’ abdominal walls with respiratory motions were investigated. The
reconstructed images showed that the respiratory motions introduced both ghosts
and blurring. By ghost we refer to the artifact that has similar structure of the true
image. Blurring represents the smearing that makes the image indistinct.

Wood and Henkelman [1985] studied the problem theoretically and experimentally.
The reconstructed image of a single point was discussed based on the physical back-
ground. The analytical formula of this point spread function (PSF) showed that. even
without motion, the PSF is no longer a Delta function. due to the apodization and the
discrete and finite sampling. Wood and Henkelman [1985] also studied an example
when there existed a periodic translational motion in the r direction. The PSF was
shown to have repetition terms with a uniform separation yg in phase-encoding direc-
tion y. Image ghosts resulted from these repetition terms. Each repetition term was
amplitude modulated differently. The amplitude modulation of each term resulted in

blurring. The distance between two consecutive ghosts, yg, was determined by:

_ Q‘R'FTR
v = 7AGt,

(1.3)

where F is the frequency of the periodic motion. Ty is the time interval between two

consecutive phase-encoding steps. < is the nuclear gyromagnetic ratio. AG and t,
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are the monotonical increment and duration of phase-encoding field gradient G,.

According to Equation 1.3, the following conclusions can be drawn :

e The higher the motion frequency F', the wider the spacing between two consec-

utive ghosts:

e Decreasing either ¢,, the duration. or AG, the step size of the phase-encoding

gradient increases the ghost separation.

Wood and Henkelman [1985] also did experiments with the phantom of an isolated
point. The phantom point was controlled to move with different motion frequencies
and motion amplitudes in the z direction during the data acquisition. The PSF
images were reconstructed from the received MRI data. In experiments. the ghosts
and blurring displayed the same properties as theoretically predicted when the motion
parameters changed.

Xiang and Henkelman [1993] presented the following conceptual framework to view
the effects of motions on k-space data when only inter-view motions are considered.
Assume the imaged slice is selected to be the ry plane at z¢ by manipulating the =
direction field gradient G.. The slice at the fixed spatial location =y changes with
time due to the motion of a moving (dynamic) object, compared to a stationary one.
This means the slice at =5 at the time when the i** row is recorded is different from
that at the time when the next row, (1 + l)"‘ row, is recorded. Thus the selectively
excited slice can be considered as a 2D object whose intensity and shape are changing
with time. These changes can be described by a stack of “movie frames” separated
by the phase-encoding repetition time Tr. This conceptual framework is very useful
to get the compounded k-space data when the relationship between the movie frames
is not regular but arbitrary. According to this conceptual framework. the recorded
rows at different phase-encoding steps are associated to different 2D objects (or 2D

frames).



12
After the effects of motions are studied, the next question is how to remove the

artifacts caused by motions. This is topic of the next section.

1.4 The Categories of Motion Artifact Suppression Methods
in MRI

Generally there are four main types of motion involved in MRI [Wehrli et al. 1988]:

e respiratory motion.
e cardiac motion.
e fluid motion. such as blood flow.

e random patient motion.

Usually the artifacts caused by these motions is complex combinations of ghosts
and blurring. Various methods to suppress artifacts caused by different motions have
been proposed since early 1980s. From a literature search we have categorized existing

methods as:
e methods that directly restrain the motion itself.
e methods that modify data acquisition procedures.
e fast imaging methods.

e post-processing methods.

1.4.1 Methods that directly restrain the motion itself

A direct, simple and effective way to suppress motion artifacts in MRI is. if possible,
to suppress the motion itself during the data acquisition time [Wehrli et al. 1988].

For example, in order to remove artifacts caused by respiratory motion, the breath
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holding method can be used. which requires the imaged subjects to hold their breath
during the scan time.

However patients do not feel comfortable with the method. Sometimes the method
fails due to lack of cooperation from the imaged subjects, such as infants and severely
ill patients. Moreover. the involuntary motions, such as blood flow. are impossible to

hold.

1.4.2 Methods that modify the data acquisition procedures

By modifying the data acquisition procedure, you can choose the way of acquiring
data to suppress artifacts caused by certain motions. MRI radiologists and technicians
have experimented with a variety of techniques. The gating method. the averaging
method. the deliberate ghost positioning method and the ROPE method [Schultz
et al. 1984: Wood and Henkelman 1986: Macgowan and Wood 1996: Constable 1997:

Langenberger and Moser 1997: Kruger et al. 1997] are discussed below in detail.

1.4.2.1 The gating or synchronizing method

Gating or synchronizing is frequently used in MRI [Schultz et al. 1984: Wood and
Henkelman 1986]. The idea is that for periodic motions. an attempt is made so that
every view of k-space data is recorded at the same phase of the motion period.

Respiratory gating is done by monitoring the respiratory cycle. As the chest
dimensions are observed to be more constant during the end expiration, only those
signals acquired during the end expiration are used to reconstruct the image.

Similarly, cardiac gating is accomplished by initiating the MR imaging sequences
according to the R wave of the electrocardiagram. The cardiac volume is relatively
constant during approximately 50 msec immediately following the R wave. The phase-
encoding repetition time is determined by the heart rating.

The method of combining the cardiac gating with respiratory gating is accom-
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plished by initiating the MR imaging sequence 1 msec after the R wave that occurs
during the end expiration. The quality of the reconstructed image is improved very
much by this composite method. However, the problem of the gating methods is that

the data acquisition time increases excessively.
1.4.2.2 The averaging method

The averaging method is to average multiple sets of data that are acquired under
identical conditions except for motion [Wood and Henkelman 1986]. The artifacts in
different data sets acquired at different times and therefore at different motion phases
will be out of phase to each other and can cancel out each other. According to Wood
and Henkelman [1986]. the root-mean-squared error (RMSE) between the reference
point image and the average point spread function (PSF) decreases as the number of
averages increases. Often as many as 18 data sets are averaged in practice.

As with the gating methods, the problem of the averaging method is the increased

data acquisition time.
1.4.2.3 The deliberate ghost positioning method

The deliberate ghost positioning method separates a part of ghosts away from the
true position of the object by adjusting the pulse repetition time in order to avoid
ghost overlapping the true position of the object [Wood and Henkelman 1986].

Note that it is not possible to eliminate ghosts by greatly increasing the separation
yc because any ghosts that should extend beyond field of view (FOV) are folded back
into the image due to aliasing. However if the separation y¢ is a multiple of the FOV.
all the ghosts become superimposed on the true position of the object. In this case,
the image is blurred worst. When the separation is a half-integral multiple of FOV,
all the even-numbered ghosts and all the odd-numbered ghosts are superimposed

separately. In this case it is possible to get better quality image if the FOV is big
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However the limitation of the deliberate ghost positioning method is that an exact
svnchronism between the motion and image acquisition is required. otherwise the

method can be highly unpredictable.
1.4.2.4 The respiratory ordering of phase encoding (ROPE) method

The ROPE method alters the correspondence between physical time and the phase-
encoding step k, from linear relationship [Wood and Henkelman 1986]. The encoding
steps are organized to make the reconstructed image appear as if only one monotonic
movement were executed slowly. The reconstructed image becomes ghost free but

remains blurred.

1.4.3 Fast Imaging Methods

Straightforwardly reducing data acquisition time can reduce the severity of motion
effects on NMR signals and thus reduce artifacts caused by motions. For example.
the imaging scan time of only a few seconds is involved in echo planar imaging (EPI)
[Wehrli et al. 1988: Constable 1997]. However for these fast imaging methods. image

contrast and resolution are often compromised [Wehrli et al. 1988: Constable 1997].

1.4.4 Post-processing Methods

The strategy of post-processing, or image processing, methods is to develop com-
puter algorithms to remove motion artifacts mathematically from degraded data ob-
tained by conventional imaging techniques. The advantage of post-processing meth-
ods is that no change to the conventional MRI system. nor to the imaging method.
nor to the data acquisition procedure is needed. A detailed review of existing post-
processing methods is given in Chapter 2.

As Wood and Henkelman {1986] pointed out, the spatially variant characteristics
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of motion, compounded with the ill-conditioned nature of image restoration. makes
post-processing methods very complex and difficult mathematically. Most of existing
post-processing methods work only for some very simple motions. However when
applied to practical MRI images. these over-simplified, and thus non-realistic. motion
models do not lead to adequate correction of artifacts.

The author spent some time examining the application of 3D filter techniques
[Bruton and Bartley 1986; Bruton and Bartley 1985: Agathoklis and Bruton 1982}
to remove motion artifacts from the k-space data. As this approach did not seem to
be leading to a positive result. the author turned to investigating a new composite
image processing method that was based on an empirical but more realistic motion
model which takes into account the object’s variant characteristics in both time and
space. The non-rigidity of the imaged object was represented by a distortion transfer
function (DTF). This model has been successfully applied to suppress ghosts caused
by non-rigid. periodic motions along the slice selection axis for both phantom images

and an clinical abdomen image.

1.5 Thesis Outline

This thesis is organized in the following way:

In Chapter 2, existing post-processing methods are reviewed in detail. It is shown
that most of existing post-processing methods treated the motion in an over-simplified
way. However when applied to practical MRI images. these over-simplified motion
models often do not lead to adequate correction of artifacts.

In Chapter 3, we empirically propose a generalized motion model which does not
treat motions as rigid as most existing post-processing methods do. The object’s
spatially variant characteristics are taken into account by introducing a distortion
transfer function (DTF).

It is necessary for regions of support to be determined from MRI images in order



17
to determine the DTFs and then correct the motion artifacts. In Chapter 4. a new
contour detection technique: the snake, is studied in theorv. Both continuous and
discretized active contour models of snakes are introduced. In Chapter 5 the imple-
mentation and consideration of snakes is investigated. In Chapter 6. a contour-based
region labeling method is proposed by the author. This new work allows segmentation
of an image based on the snakes contour information.

In Chapter 7, we investigate how to estimate the distortion transfer functions given
a corrupted image.

In Chapter 8, a composite image processing method to suppress ghosts caused by
non-rigid, periodic motions along the slice selection axis is introduced. The strategy
of this composite image processing method for ghost suppression is to make use of
the estimated DTFs and the regions of support of the central image and ghosts. The
correction results for both phantom images and the abdomen image with unknown
respiratory motions are given.

Finally in Chapter 9 this thesis project is summarized and suggestions for future

research are given.



CHAPTER 2

REVIEW OF POST-PROCESSING TECHNIQUES OF
MOTION ARTIFACT SUPPRESSION IN MRI

2.1 Introduction

In this chapter, existing post-processing methods for motion artifact suppression in
MRI are reviewed. A model of translational motion in image plane is mathematically
described. Two methods for suppressing artifacts caused by motions of this model
are introduced. Then a model of planar rotational motion of a non-rigid body and
the corresponding artifact suppression method are presented. A model involving
amplitude modulation (AM) of the k-space data is used to characterize the effect
of periodic motions along the slice selection axis. Finally post-processing work for

motion artifact suppression from a number of other research groups is introduced.

2.2 The Rigid Translational Motion in the Imaging Plane
Many papers have assumptions involving planar rigid translational motions in the

z and y directions [Korin et al. 1989; Hedley et al. 1991b: Zoroofi et al. 1996:

Ehman and Felmlee 1989; Korin et al. 1990]. The following constraints are typically

émployed:
e The motion is rigid. In other words, every point of the object moves identically.

e The motion is translational, i.e. it involves just simple displacements along the

r and y directions.

e The motion is only in the imaging plane with the object remaining in the field

of view (FOV).

Let’s analyze effects of such a motion model on the received k-space data. Assume

the displacement of the object due to translational motion is p(¢) and ¢(t) in the
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z and y directions respectively. The time ¢ is assumed be zero at the beginning of
scanning. The initial displacements are set as: p(0) = ¢(0) = 0. Then the corrupted

signal is given by:

Smotion(ke- k) [ [ pla = pl0)). y = a(t)) exp(=j2(kez + kyy))dzdy  (2.1)

As discussed in Chapter 1, the read-out time for a phase-encoding step is very short
and much less than the repetition time Tr between two consecutive phase-encoding
steps. This implies that intraview motion (during the read-out time) can be ignored
when interview motion (between phase-encoding steps) is present. The relationship
between time t and phase-encoding step k, is linear when the phase-encoding gradient
is monotanically incremented with time. Thus the motion is actually a function of
k, only. That is p(t) = p(ky). q(t) = q(k,). Using the Fourier relationship between
position shift in space domain and phase in frequency domain. we can write the right

hand side of Equation 2.1 as:

I o(x — p(ky),y — q(ky)) exp(—727(kz + k,))dzdy =

J I o(z,y) exp(—27p(ky)z) exp(—j2mq(ky)y) exp(—j2r (k=2 + kyy))dzdy

As we have seen in Chapter 1 in Equation 1.l. s;o—motion(kz.ky). the frequency

data when there is no motion, is given by:
Sna-mation | [ (2. y) exp(=j2m(ksz + kyy))dady

so that

=10(kz.ky)

[
(V)
~—

smotion(kt7 ky) X €Xp Sno—motion(kra ky) (. .

and



A kz, ky) = ')W[krp(ky) + kyQ(ky)] (2.3)

Equation 2.2 shows that the difference between spmotion (kz, ky) and Spo—motion (kz: ky)
is exp(—jé(k:, ky)).- This implies that the planar rigid translational motion only
introduces a phase shift to the uncorrupted frequency data sno—motion(k:.ky) without
altering its magnitude distribution.

To visualize artifacts from such a translational motion, motion corrupted phantom
images can be simulated. To avoid introducing data anomalies [Smith et al. 1997]
the phantom data should be generated directly in k-space rather than Fourier trans-
forming the discretely sampled image data. The k-space technique avoids producing
k-space data with improper digital signal processing characteristics and produces k-
space data equivalent to that obtained actually imaging an object in a real MRI
system. This k-space technique for valid phantom generation will be discussed in
detail in a future paper by Smith and Yang [1998].

Fig. 2.1 shows the directly calculated frequency data (upper) and the corresponding
reconstructed images (lower) for two phantoms when there exists no motion. The
image sizes of these two phantoms and all other phantoms in this thesis are 256 by 256.
The simple phantom image (left) will allow us to see more clearly the basic effects of
the artifacts. This simple phantom image consists of two ellipsoids. whose parameters
are listed in Table 2.1 assuming the image has (0.0) in the centre and extends from -1
to 1 along the z and y directions. In the table, coordinates of the centre of an ellipsoid
in the z and y directions are denoted as X-centre and Y-centre respectively. The radii
in the z and y directions are represented by X-radius and Y-radius respectively. The
angle between the major axis of an ellipsoid and the z coordinate axis is denoted as
Angle. The strength of an ellipsoid is represented by Intensity. The other phantom

on the right is a more complicated Shepp-Logan phantom variant, which is designed



No. | X-centre | Y-centre | X-radius | Y-radius | Angle | Intensity Description
1 0.0 0.0 0.48 0.30 0.0 -5.004 the inner boundary
2 0.0 0.0 0.53 0.40 0.0 5.004 the outer boundary

Table 2.1. Centre position. radius size, angle and intensity parameters of ellipsoids
in the simple phantom image

to mimic many of the characteristics of the human abdomen [Smith and Yang 1998].
The smaller objects are intended to represent lesions or other image features easily
obscured by motion distortion. The parameters about the ellipsoids associated with
forming this phantom are listed in table 2.2.

The k-space characteristics of an object with inter-view motion can be simulated by
using the conceptual framework suggested by Xiang and Henkelman [1993] discussed
in Chapter 1. According to [Xiang and Henkelman 1993]. each measured row of k-
space data set corresponds to a line of the Fourier transform of the imaged object
selected by = = =g at a particular phase-encoding time.

[n case of rigid planar translational motion. where the imaging plane = = =z

changes as p(z — p(ky),y — q(ky)). the Fourier transform of the imaging plane at the

m'" phase-encoding step is:
F(kz. ky) = Flp(z — p(m).y — q(m})))
Thus the k-space data row corresponding to this phase-encoding step m is given by:

S'motian(nvm) = F(k:rsky),k,-:n.ky:mv n= 07 17 —ees *’VJ: -1

where V; is the length of the recorded NMR signal.
For the phantom image when only inter-view motion is considered, the k-space data
set can be generated row by row in the frequency domain directly by the following

pseudo code as:

for(ellipsoid | from 1 to L)
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for(phase-encoding step k, from 0 to N, — 1)
for(read-out step n from 0 to N, — 1)
F(kz. ky) = F(p(z — p(m), y — q(m))
Stmoteon (s M) = F(kzy ky ) ke=nky=m
endfor
endfor
endfor
The motion corrupted phantom data Smotion(n,m) = X5, St on(n.m)

By using this approach, the two motion corrupted phantom images as shown in
Fig. 2.2 were generated with shiftment only along the y direction by setting p(k,) = 0
and g(k,) = 0.05cos(8.0 - 27k, /.V,).

The artifacts display both blurring and ghosts in Fig. 2.2. In our experiments.
we have seen that the distances between ghosts became bigger when the number of
motion cycles increased in agreement with the work of Wood and Henkelman [1985].

The spectrum shift method and iterative phase retrieval method are common arti-

fact suppression methods based on the planar rigid translational motion assumption.

2.2.1 The spectrum shift method

According to the spectrum shift method, the correction of the phase shift is done
by just applying an opposite phase factor ¢(k;,k,) to the motion corrupted data.

1. Correction when motion parameters are known

Korin et al. [1989] studied a very simple case: the motion was assumed to be
linear in time with a known velocity. The k-space data was recorded by placing
the phantom material on a table and translating the table through the gantry at an
operator-controlled speed. As the motion parameters are known, the phase factor
&(kz, ky) is easily calculated according to Equation 2.3. Many data sets from the

experimental system with different motion parameters, such as different velocities



main organs

No. | X-centre | Y-centre | X-radius | Y-radius | Angle | Intensity | description
1 0.0 0.0 0.69 0.54 0.0 6.004 outer wall
2 -0.01144 | -0.01677 0.63 0.51 0.0 -1.987 | inner wall
3 0.0 0.0 0.58 0.45 0.0 2.45 organ |
4 0.0 0.47 0.029 0.025 0.0 5.019 organ 2
5 0.005 0.325 0.17 0.12 0.0 2.45 organ 3
6 -0.24 0.35 0.091 0.05 25.0 2.01 organ 4
7 0.24 0.353 0.080 0.05 155.0 2.01 organ 5
3 -0.28 0.0018 0.286 0.286 28.0 2.43 organ 6
9 -0.1 0.04 0.1 0.07 110.0 0.5 outer wall of organ 7
10 -0.1 0.04 0.08 0.05 110.0 -0.2 organ 7
11 0.3 0.008 0.29 0.288 15.0 2.43 organ 8
12 0.35 0.0 0.140 0.09 40.0 -0.8 wall of organ 9
13 0.34 0.001 0.11 0.076 40.0 0.9 organ 9
14 0.05 -0.35 0.058 0.07 0.0 2.0 wall of organ 10
15 0.05 -0.35 0.055 0.06 0.0 -1.6 organ 10
16 0.05 -0.325 0.115 0.125 0.0 1.31 wall of organ 11
17 0.05 -0.33 0.1 0.12 0.0 -1.8 organ 11
highly detailed left side
No. | X-centre | Y-centre | X-radius | Y-radius | Angle | Intensity | description
18 -0.3 0.4 0.01 0.008 0.0 3.01 detail 1
19 -0.6 0.04 0.008 0.009 30.0 4.01 detail 2
20 -0.62 -0.001 0.01 0.01 0.0 5.01 detail 3
21 -0.6 -0.07 0.01 0.02 0.0 4.01 detail 4
22 -0.38 -0.38 0.015 0.009 0.0 4.01 detail 5
23 -0.49 0.001 0.001 0.007 0.0 2.09 detail 6
24 -0.45 0.14 0.05 0.035 0.0 1.019 structure 1
25 -0.45 0.07 0.052 0.035 0.0 1.019 structure 2
26 -0.45 -0.0 0.0521 0.036 0.0 1.019 structure 3

low detailed right side
No. | X-centre | Y-centre | X-radius | Y-radius | Angle | Intensity | description

27 0.25 -0.45 0.008 0.009 0.0 2.01 detail 7
28 0.54 -0.20 0.01 0.008 50.0 5.01 detail 8
29 0.48 0.001 0.009 0.009 0.0 1.51 detail 9
30 0.20 -0.20 0.009 0.012 20.0 1.01 detail 10
lesions

No. | X-centre | Y-centre | X-radius | Y-radius | Angle | Intensity | description
31 -0.3 0.17 0.03 0.06 20.0 1.019 lesion 1
32 -0.3 -0.20 0.05 0.02 0.0 1.01 lesion 2
33 -0.2 0.15 0.01 0.008 0.0 1.01 lesion 3
34 0.01 0.34 0.03 0.05 0.0 0.41 lesion 4
35 0.002 0.16 0.039 0.039 0.0 2.01 lesion 5
36 0.006 -0.16 0.043 0.043 0.0 2.01 lesion 6
37 03 0.2 0.07 0.04 120.0 0.5 lesion 7
38 0.42 -0.15 0.03 0.05 35.0 0.9 lesion 8

Table 2.2. Centre position, radius size, angle and intensity parameters of the ellipsoids
in the abdomen phantom image



Figure 2.1. The k-space data (upper) and the reconstructed images (lower) for two
phantoms without motion artifacts (left: simple phantom, right: abdomen phantom)

Figure 2.2. Phantom images with motion corruption simulated by the planar rigid
translational motion model
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and directions (or angles), were tested. The experiment results agreed that this rigid
translational motion in the imaging plane only introduces a phase shift in k-space
data.

2. Correction when motion parameters are unknown

Based on the same planar rigid translational motion assumption, Ehman and Felm-
lee [1989] investigated a more realistic case: the motion was arbitrary in time and
the motion parameters were not identical during the data acquisition time. Of course
the problem is more complicated than the above one with motion parameters known.
Ehman and Felmlee [1989] treated the motion as piecewise linear in time. The dis-
placements were different for different views and the phase shifts changed correspond-
ingly. The correction needed to be adaptive.

According to Ehman and Felmlee [1989] the displacement that took place between
different views was measured by using specially encoded “navigator” echoes that
were interleaved with the image sequence. The navigator echo sequence designed to
provide r direction displacement was termed as x-NAV. The NAV echo was similar
to an image echo, except that no phase-encoding was applied. This implies that x-
N AV echo data varies from view to view only if motion along the r axis is present.
The process is handled by doing an one-dimension Fourier transform (1D FT) of
the received navigator echoes and calculating the cross correlation between that of
the current navigator echo and that of a reference echo. The displacement between
the two phase steps is treated equal to the lag of the maximum value of the cross
correlation. Using this approach the motion parameters are measured.

Similarly the y-NAV, xy-NAV and z-NAV can be employed to measure the dis-
placements in the y direction, zy plane and z direction respectively. After the dis-
placements of all views are measured by using the navigator echoes, the correction can
be done by the spectrum shift method. Based on the same planar rigid translational

motion assumption, Korin ef al. [1990] applied that method to three-dimensional
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MRI. Felmlee et al. [1991] developed a method to adaptively compensate for motion
artifacts without use of navigator echoes. They used the phase-encoding image data
itself, rather than the separated non-phase-encoded navigator echoes, to evaluate the
interview displacement along the read-out axis by using the so called edge-detection
algorithm. The process involves first 1D Fourier transforming the measured k-space
data along the r axis to get the hybrid space data set {;(z), where the index j indi-
cates the phase-encoding step. Then the magnitude data |[;(x)| are compared to a
threshold progressively from the outer edge of the field toward the center. The object
~edge” is assigned to the spatial location where the data value exceeds the threshold.
The thresholds are changed empirically along the k, direction on the basis of the
expected signal density. For experiments, the motions are controlled to be planar
rigid translational. The focus of these post-processing methods are how to determine

motions” parameters at each phase-encoding step.

2.2.2 The iterative phase retrieval method

Still based on the same planar rigid translational motion assumption. Hedley et
al. [1991b] proposed the so called generalized projection method to suppress artifacts
with motion parameters unknown. Unlike Ehman and Felmlee [1989]. the generalized
projection method does not need to estimate motion parameters. As the translational
motion introduces only a phase error, Hedley et al. [1991b] employed the Gerchberg
Saxton (GS) method, a general phase correction method. During each iteration of the
GS algorithm, a constraint in frequency domain was imposed to the corrected k-space
data. The constraint Hedley used was that the magnitude of the corrected frequency
data should be the same as that of the measured k-space data. The corrected k-
space data after applied this constraint was inverse Fourier transformed to the space
domain. In the spatial domain another constraint was imposed. The image value

were set to zero outside the ROS of the object. Then the spatial data was Fourier
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transformed back to the frequency domain to start the next iteration.

The GS method was demonstrated by Hedley’s computer simulations to be effective
to remove the artifacts for phantom images.

Later. Hedley et al. [1991a] reported further work on this GS method. This
time they aimed at improving convergence properties by incorporating additional a
priort information specific to their situation. The incorporated a priori information
thev used is that the phase shift should have a linear relationship to k, when this
phase shift is in the range of (—m,+#) and not wrapped. They used a least square
estimate (LSE) to fit a line to the phase shift in the centre of the k-space data. The
phantom with simulated motion in the imaging plane showed that the new algorithm
did improve the convergence rate.

Zoroofi et al. [1995] improved the phase retrieval method by using two successive
steps: first the spectrum shift method was applied to remove artifacts caused by the
r direction motion. Then the phase retrieval method was employed to eliminate the
remaining artifacts caused by subpixel motion in both the r and y directions. The
correction results for simulated motions and experimentally controlled motions were

successful.

2.3 Rotational Motion of a Rigid Body

Zoroofi et al. [1996] studied the motion using a rigid translational and rotational
model. As we already have shown, the rigid translational motion introduces a phase
error and does not alter the amplitude distribution. On the other hand. according
to Fourier theory, rotation of a rigid body about a fixed point in the spatial domain

introduces an identical rotation in the corresponding frequency domain as:

Srotation(Kzy ky) = Sno—motion(kz cos8.(ky)+kysinf.(k,), —k;sinf.(ky)+ky cosb.(k,))
(2.4)

where 6, is the rotational angle, sno—motion(kz, ky) is the true image without motion
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and Srotation(kz. ky) is the k-space data corrupted by the rotational motion.
Equation 2.4 indicates that the rotational motion about a fixed point in the imaging
plane corrupts the MR image with nonuniform sampling in frequency domain.
Fig. 2.3 shows the two phantom images corrupted by rigid planar rotational motion
by using Xiang’s conceptual approach (see previous section). The rotation angle was

designed as: 0.(k,) = 0.005cos(8.0 - 27k, /N, ).

Figure 2.3. Phantom images with motion corruption simulated by the rotational
motion model

If both the translational motion and the rotational motion are considered. then

the corrupted k-space data smotion(kz, ky) can be described by:

Smotion(k:rv ky) = exp(—]zﬂ(p(ky)kr + Q(ky)ky)) ) Srotntion(k.rv ky)

This implies the general planar rigid motion (translational and rotational) of the
object imposes both a phase error and nonuniform sampling on the MRI signal.
The phase error can be easily removed by applying the spectrum shift method or the
phase retrieval method discussed in last section. It was suggested that the nonuriform
sampling be removed by interpolation methods [Zoroofi et al. 1996; Atalar and Onural
1992]. Zoroofi et al. [1996] also tried to estimate the unknown motion parameters

from the corrupted k-space data by minimizing the energy outside the boundary
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of the imaged object. These methods were applied to mathematical phantoms and

demonstrated efficient.

2.4 The Motion along the Slice Selection Axis

Mitsa et al. [1990] published their work about rigid, periodic motion along the
slice selection axis. The motion was modeled as an amplitude modulation (AM) of
the true MRI data without motion. The model. which is also referred to as Mitsa’s
AM model. was derived from the physical background about movement of a point
source. The amplitude modulation factor, representing the motion’s periodicity in
time, is chosen to be an expansion of Fourier series as:

Am, 2anNpk,
c

+oc
Smotion(kre ky) = sno—motion(kz:v ky)[l + _Eo:c Mo 0s ./VyAG + on )] (2.

[§V)
O

where mg is the intrinsic strength of a stationary point source. Am, represents the
change in strength due to the n** harmonic of the periodic motion. Vj is the number of
movement cycles during the entire data acquisition. AG is the step used to increment
k,. N, is the number of phase encoding steps. @, refers to the phase of periodic motion
with respect to the start of data acquisition for the n'* harmonic.

Fig. 2.4 shows the corrupted phantom images of Fig. 2.1 simulated by using Equa-

tion 2.5. Instead of an infinite Fourier series terms. only the first three terms are used

for generating Fig. 2.4:

L +0.5sin( 255 + 0.785) + 0.15sin( 255 + 1.57) + 0.003sin( {53 +3.141)

In Fig. 2.4. ghosts are much more severe than blurring and look like scaled and
shifted versions of the true image of the object.

To identify and then correct for the amplitude modulation factor, the effect of
amplitude modulation factor is emphasized by projecting the k-space data along the
read-out direction. This 1D projection displays peaks in its power spectrum. The

smoothed projection was gotten by using an appropriate notch filter and considered
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Figure 2.4. Z plane motion corrupted phantom images simulated by Mitsa’s AM
model



31

as the 1D projection of the true data without motion. Then the motion kernel was

estimated as the ratio of the raw projection to the smoothed projection. The Mitsa's

post-processing algorithm consists of the following detailed steps:

o

Ot

~1

. Project the magnitude of the measured k-space data along the z direction to form

one line of projection data with respect to position in k,. the phase-encoding
direction. The central 31 columns of data associated with DC component and
low frequency components are removed when projecting the measured k-space

data in order to obtain sharper peaks and a better scaling scheme [Zeng 1996].

Perform an inverse discrete Fourier transform (DFT) to the projected data to

obtain the power spectrum of the projected data.
Identify the energy peaks in the power spectrum related to the motion.

Apply a notch filter to the power spectrum to eliminate the identified motion

peaks.

Fourier transform the peak removed power spectrum to obtain an estimate of

the projection data without motion.

The ratio of the projected data from the measured k-space data to the projection
data with the motion peaks removed is considered as an estimate of the motion

kernel corresponding to the amplitude modulation factor in the motion model.

Divide each row of the measured k-space data by the motion kernel and get the

corrected k-space data.

Reconstruct the image by applying the 2D DFT to the corrected k-space data.

This image is the corrected image with motion artifacts suppressed.
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Hedley and Yan [1992] furthered Mitsa’s work. Their motion model is still the

amplitude modulation model proposed by Mitsa. Instead of using Mitsa’s projection

method. Hedley presented an alternative method of using linear equations to obtain

the motion kernel by minimizing data outside a manually determined region of support
(ROS) of the true image.

2.5 A Review of Post-Processing Algorithms for Special Mo-

tions

2.5.1 The Discontinuous Motion

Wood et al. [1995] studied a special case of head imaging in which the volunteer
subject remained stationary except for nodding his head once during the data acqui-
sition time. Because the motion occurs only during a part of the data acquisition
time and there is no motion during the remainder of the data acquisition time. we
call this discontinuous motion.

Wood et al. [1995] pointed out that the movements caused abrupt changes at the
interface between views along the k, direction. By using the t-test method. the k-space
data can be separated automatically into several segments with some of the segments
without motion, some of the segments with different motion parameters. Then each k-
space segment is Fourier transformed into the image domain in which rotational angles
and translational displacements are measured manually. Then segments with different

motion parameters are corrected separately with their own motion parameters.

2.5.2 The Linear Expansion Motion

Atalar and Onural {1992] modeled respiratory motions as a combination of rigid
translational and linear expansion motions in the imaging plane. As discussed earlier.
the rigid translational motion only introduces a phase error to the true data without

motion. The spectrum shift method or the phase retrieval method can be used to
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compensate the phase error. On the other hand. in the linear expansion motion, there
is no motion at the centre (origin) and the amplitude of the motion is proportional to
the distance from the center. The linear expansion motion changes the rectangular
samples into nonrectangular samples. The correction of the linear expansion motion
requires recovery of the rectangular samples from the nonrectangular samples. Atalar
and Onural [1992] suggested applying interpolation methods. They pointed out that
the positions of the nonrectangular samples were not arbitrary. The samples are
taken on a line but at a different position and the samples on this line are taken
nonuniformly. Thus the recovery of the rectangular samples from the nonrectangular
samples is reduced to two one-dimensional interpolations.

Atalar and Onural [1992] investigated five interpolation methods. The simulation
results demonstrated the efficiency of the methods for mathematical phantom images

corrupted by a combination of rigid translational and linear expansion motion.

2.5.3 Riek’s POCS Method for Multislice MR Images

Riek et al. 1995, 1994] investigated the suppression of artifacts caused by out-of-
plane motions in multislice MRI by using a non-linear method called POCS (projec-

tion onto convex sets). Four constraints were used [Riek et al. 1995]:

e The reconstructed images were real.

The real parts of the reconstructed images had nonnegative values.

Image values were zero outside the region of support.

Errors between the measured and modeled data should be within a confidence

bound.
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2.6 Work in Our Research Group
J. Zeng, a graduate student in Dr. Smith’s group from 1994-1996, devoted her
M.Sc. thesis project to motion artifact suppression by using post-processing tech-
niques [Zeng 1996]. She recorded an abdominal image as shown in Fig. 2.5 by using

the clinical MRI system in Foothill’s Hospital in Calgary.

Figure 2.5. An abdomen image from an MRI system showing motion artifact with
unknown characteristics

The abdomen image was corrupted primarily by unknown respiratory motion.
The artifacts displayed in the abdomen image appeared to correspond to the ghosts
displayed in the corrupted phantom image simulated by Mitsa’s AM motion model

shown in Fig. 2.4. Thus Zeng focused on Mitsa’s AM model and made a number of
improvements to Mitsa's approach:
e A projection power spectrum with higher resolution than by using DFT was

achieved by using an ARMA model [Smith et al. 1986]. Thus the accuracy of

peak identification, and associated artifact suppression could be expected to be

improved.

e The Blackman and Harris (BH) window was introduced to make the notch fil-
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ter smooth. This avoided introducing distortion because of the filtering action

[Harris 1978].

e To automatically detect the peaks. the adaptive algorithm RLS was employed

[Zeng 1996].

However, despite these improvements to Mitsa’s method and many successes with
phantom images. Zeng reported being unable to suppress the motion artifacts for the
abdomen image. She stated in her thesis: Mitsa’s motion model is too simple to

describe correctly the actual abdominal motion [Zeng 1996].

2.7 Summary

To mathematically remove motion artifacts by post-processing algorithms in MRI
is very attractive. The work in this area began from early 1980s. Experimental
and analytical investigations showed that motions during MRI data acquisition cause
artifacts to the reconstructed MRI images. The artifacts could display as blurring
and/or ghosts. Many existing post-processing methods of motion artifact suppression
are based on some simplified assumptions such as rigid translational motions in the
imaging plane. rotational motion of a rigid body in the imaging plane and rigid.
periodic motions along the slice selection axis. The artifacts displayed in the abdomen
image recorded from a real MRI system seemed similar to ghost artifacts generated by
using Mitsa’s AM motion model. However the correction results obtained by using
Mitsa’s approach were disappointing. The problem was pointed out as lack of an
appropriate model for real motions. In the remainder of this thesis we shall discuss

an empirical motion model to better reflect the practical situation.
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CHAPTER 3

A GENERALIZED MOTION MODEL

3.1 Introduction

As reviewed in Chapter 3, the existing post-processing models for motion artifact
suppression are not realistic. Many of the artifact suppression techniques are based
on some over-simplified assumptions about motions and thus often fail to work. [t
is a challenge to propose more realistic motion models and develop corresponding
algorithms that work for not only phantom images but also for real MR images.

In this chapter a general empirical motion model is proposed. The key point of this
generalized motion model is to introduce a distortion transfer function (DTF). a fac-
tor that represents the spatially variant characteristics of the motion or non-rigidity
of the imaged object. Then we show that the existing post-processing approaches dis-
cussed in Chapter 2 are just special cases of the proposed generalized model. Finally
phantom images corrupted by a variety of DTF's are generated to show the different

characteristics of such ghosts.

3.2 The Generalized Motion Model

Let’s examine the abdomen image in Fig. 2.5. It seems true that the displayed
ghosts are very similar to the ghosts simulated by Mitsa’s AM model for periodic
motion as shown in Fig. 2.4. That is natural considering the physical background
that the respiratory motion suffered by the abdomen is a kind of periodic motion
along the slice selection axis. However if you observe carefully. you can see that the
ghosts displayed in the abdomen image are not simply scaled and shifted versions of
the true object image as suggested by Mitsa’s AM model. We attribute the difference
between the actual image and Mitsa’s theoretical model to the fact that Mitsa’s

assumption that every point in the image subject moves identically is not appropriate.
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Mitsa’s treatment of the motion as rigid is not realistic. We would like to present a
new generalized motion model capable of handling motion of non-rigid objects. The
empirical theory behind this generalized motion model is discussed below.

According to Equation 1.1, the k-space data without motion is:
Sno—motion (kz. ky) x //p(r,y) - exp(—j2rrk;) - exp(—j27yk,)drdy (3.1)
yJr
We empirically model motions that occur during the data acquisition as:

-Smotion(kr-ky) x
[ [ ofele.y e k). .y, ke ) exp(—j2maks) - exp(—2myk,)
yJr

'Fout-—of—planc(k.tv ky) ° Fnon—rigid( ktv ky )dl'dy (3'2)

where f.(z.y.k:.ky) and fy(z,y,k;.k,) represent rigid translational motions in the
imaging plane’s r and y directions respectively. Fiut—of—plane(k:,ky) characterizes
rigid motions out of the imaging plane. The possible non-rigid motion is modeled
by introducing another factor Foon—rigia(kz,ky), also called the Distortion Transfer
Function (DTF). The inverse Fourier transform of Fron-rigid(kz,k,) represents how a

point in the image domain is distorted because of the non-rigidity of the object in

motion.

When intraview motions are ignored, view-to-view motions make the various mod-

ulating terms related to motion in time become function of &, only as:

f.r(‘r~y? kz‘-, ky) = fr(xwys ky)v fy(-l'v.% k:l':v ky) = fy(‘t'yt ky)

Fout—o[—plane(kry ky) = Fout—of—-plane(ky) (3'3)

Motion models used by the existing post-processing approaches discussed in Chap-

ter 2 are just special cases of Equation 3.2 as the following shows:

¢ For general rigid motion in the imaging plane

Fnon—rigid(km ky) = 1, Fout-of—-planc(km ky) =1
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e For rigid translational motions in the imaging plane [Korin et al. 1939: Hedley

et al. 1991b; Zoroofi et al. 1996; Ehman and Felmlee 1989; Korin et al. 1990]
Fron—rigid(kz, ky) =1, Fout—of—plane(kz-ky) =1
fe(z, 4 hen ky) = 2 — p(ky)s  ful@,y ko by) = y — q(ky)
so that
Smotion(kz-ky) = Sno-motion(er Ky) - exp(— 2 {kepky) + Ky, )]

where functions p(k,) and g(k,) describe displacements in the = and y direction
respectively. The same conclusion as in Chapter 2 is obtained: only a phase
distortion is introduced to the k-space data in the case of rigid translational

view-to-view motion in the imaging plane.

e For rigid motions along the slice selection axis
Fnon-rigid(k'zy ky) =1
f:(l’,y»kz,ky)-:l', fy(zsyvkrvky)=y
so that
smotion(kra ky) = sno—motion(krv ky) ° Fout—of—plnne(ky)

In addition, if the motion along the slice selection axis is periodic, then the
function Fout—of—plane(ky) becomes a periodic function as suggested by Mitsa et

al. [1990].
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3.3 The Generalized Motion Model for Non-Rigid Periodic
Motions along Z Axis

Our mathematical model Equation 3.2 can be applied generally. However, our
discussion with the abdomen as the studied object is confined to the reconstruction
of images corrupted by non-rigid periodic motions along the : axis.

As we discussed earlier. artifacts caused by periodic motions along z-axis are char-
acterized as ghosts. By the generalized motion model, ghosts from non-rigid body
motion are modeled as distorted replicas of the true image without motion. These
distorted replicas are shifted from and often overlapped with the true or central image
and each other. The displacements of ghosts from the central image are determined
by the number of cycles of the motion that occurred during the data measurement
[Wood and Henkelman 1986]. Therefore, the Fourier transform of the n** ghost image

becomes:

sghastn(k::s ky) = Sno—motion(kr-, ky) : DTFn(kr, ky) . exp(—-j?.rrAnky) (34)

where the A, term is the k-space data’s phase shift related to the relative posi-
tion of the ghost and central image. The motion is fully described by the combina-
tion of this phase term. which represents the motion’s characteristics in time. and
a distortion transfer function (DTF) term. which expresses the motion’s spatially
variant characteristics. Comparing Equation 3.2 and Equation 3.4. we can consider
Fout—of—plane(ky) = exp(—127Anky) and Fron-rigid(kz. ky) = DT Fo(kz, ky)-

As the corrupted image is composed of the true image and all the ghosts, possibly

overlapping in image domain, we have:

smotion(kxv ky) = sno—motion(kzv ky) + Sghost, (kz'y ky) + ...+ Sghosty(k.l‘v ky)
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which reduces to
N
Smotion(Kz- ky) = Sno—motion (kz, ky)(L + Y DT Fu(kz, ky)exp(—j2rAnky))  (3.5)
n=1
where N is the number of ghosts displayed in the corrupted image. For every ghost the
displacement A, and spatially variant characteristics DT F, (k.. k,) may be different.
Mitsa’s model [Mitsa et al. 1990] is just a special case of our generalized motion
model expressed by Equation 3.5. His ghosts appear as pairs with their DT F,,(k:. k,)
identical and equal to the same strength constant, and with their displacements .\,
equal in magnitude and opposite to each other.
Equation 3.5 indicates that there are two parts in the corrupted k-space data: the
k-space data of the true image. Sn,—motion(kr.ky). and the k-space data of all the

ghosts. Sghost(kz. ky). The two parts are related as:

N
Sghost(Kr. ky) = Sno—motion(kz. ky) - Z DT Fy (k. ky)exp(—)27 N ky) (3.6)

n=1
3.4 Examples of Distortion Transfer Functions
To visualize the ghosts caused by non-rigid periodic motions along z-axis. eight
different distortion transfer functions (DTFs) were generated to simulate motion cor-
ruptions. The DTF's were modeled after some simple filter characteristics.
The first DTF was chosen to have the form of a Gaussian low-pass filter to intro-
duce some simple motion blurring into the ghost images. The mathematical descrip-

tion of this DTF is as:

(a3 : -
Fron—rigid(kz. ky) = \/-—,)——Tr—a‘exp(—Dz(knky)/UQ) (3.7)

where a is a scaling coefficient. D(k:.k,), equal to /k2 + k2, is the distance to the

origin point in frequency domain coordinate system. o is the parameter for controlling

width of the filter. The frequency domain image of this DTF with a = 0.6,0 = 25.0
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is shown in Fig. 3.1(left). The image size is 256 by 256. We chose the basic motion
parameters as N = 2, A; = —80. and A, = 80 to mimic the number and positions
of the ghosts in the abdomen image in Fig. 2.5. By putting these parameters into
Equation 3.5. the motion corrupted phantom image corresponding to that shown in

Fig. 2.1(right) is simulated as shown in Fig. 3.1(right).

Figure 3.1. A DTF having a form of Gaussian low-pass filter (left) and the corre-
sponding motion corrupted phantom image (right)

Then a DTF having the characteristics of a high-pass filter was chosen to produce
ghosts that have the form of outlines of the central image. The abdomen image
appears to have ghosts whose high frequency edges are enhanced. Mathematically
the behavior of high-pass filters in passing or suppressing frequencies is exactly the
opposite to that of low-pass filters. The transfer function of a high-pass filter can be

obtained simply by “flipping” that of a low-pass filter, that is:

1
Fuonorigia(kerky) = @~ (1~ o exp(= D ke, )/o7) (3.8)

Fig. 3.2(left) shows the DTF having a form of Gaussian high-pass filter with the
filter characteristics chosen as @ = 0.6, ¢ = 25.0. The corresponding corrupted
phantom image is shown in Fig. 3.2(right).

Comparing the two motion corrupted phantom images in Fig. 3.1 and Fig. 3.2, we

can see clearly the difference in ghost appearance. A DTF having a low-pass filter



Figure 3.2. A DTF having a form of Gaussian high-pass filter (left) and the corre-
sponding motion corrupted phantom image (right)
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form would generate ghosts that are smeared replicas of the central image. However
the DTF having high-pass filter form makes ghosts that have the outline of the central
image but do not have much detail.

Let’s slightly change the profiles of the low-pass filter and the high-pass filter to
examine the sensitivity of the ghost appearance to filter characteristics. A DTF was

chosen to have the form of Butterworth low-pass filter as:

D(k:. ky)

Dq ™) (3.9)

Fnon-rigid(kr~ ky) = a/(l + [

with Do being the cut-off frequency where the transfer function is down 50% from its
maximum value. The order of the filter is m. The bigger m is. the sharper the change
between the passed and suppressed frequencies becomes. With image size = 256 x
256. m = 3, Dy = 25.0 and a = 0.6. the DTF having the form of the Butterworth
low-pass filter of Equation 3.9 is shown in Fig. 3.3(left). The corresponding motion

corrupted phantom image is shown in Fig. 3.3(right).

Figure 3.3. A DTF having a form of a Butterworth low-pass filter (left) and the
corresponding motion corrupted phantom image (right)

The Butterworth high-pass filter is given by:

Do

2m :
D) 10

Fnon-rigid(kzv ky) = a/(l + [
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The frequency domain image with m = 3, Dy = 25.0 and a« = 0.6 is shown in
Fig. 3.4(left). The corresponding motion corrupted phantom image is shown in

Fig. 3.4(right).

I(

Figure 3.4. A DTF having a form of Butterworth high-pass filter (left) and the
corresponding motion corrupted phantom image (right)

Comparing the two phantom images corrupted by two different DTFs having low-
pass filter forms in Fig. 3.1 and Fig. 3.3 respectively, we can not tell much difference
in the appearance of the ghosts by our eyes. The same is true for the two motion
corrupted phantom images in Fig. 3.2 and Fig. 3.4 that use high-pass filter.

Let’s see what kind of artifacts we have if the DTF is chosen to have a form of

radially symmetric Butterworth band-reject filter. The DTF is given by:

D(kz, ky)w

2m K
D?(knsky) — DB ) (3:-11)

Fnon—rigid(krv ky) = Q/(l + [

where w is the width of the band and Dy is its centre. Fig. 3.5(left) shows an
example of this type of DTF when m = 3, Dy = 45.0, w = 35.0 and o = 0.6. The
corresponding motion corrupted phantom image is shown in Fig. 3.5(right). The
ghosts in Fig. 3.5 have the outlines of the central image and at the same time also
keep some detail of the central image.

Let’s see the DTF having a form of radially symmetric Butterworth band-pass

filter. Mathematically a band-pass filter can be obtained by a “flipping” band-reject



Figure 3.5. A DTF having a form of radially symmetric Butterworth band-reject
filter (left) and the corresponding motion corrupted phantom image (right)
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filter as:
D(kz. ky)w

2m 9 14
DZ(kI.ky)_ D(Q)) )) (3.12)

Fnan—rigid(k.rv ky) =a- (1 - 1/(1 +(

This filter’s response with parameters @ = 0.6. m = 3. Dy = 45.0, and w = 35.0
is shown in Fig. 3.6(left). Likewise, the corresponding corrupted phantom image is
shown in Fig. 3.6(right). The ghosts in Fig. 3.6 have very similar appearance as that

in Fig. 3.4 with high-pass filter.

Figure 3.6. A DTF having a form of a radially symmetric Butterworth band-pass
filter (left) and the corresponding motion corrupted phantom image (right)

There are alternative ways to manipulate 2D filters. The following are two exam-
ples of different versions of Butterworth band-pass filters and Butterworth band-reject
filters. Instead of being radially symmetric. the followings are symmetric just to the
k, axis as:

A‘yw 2m . .
Dg] ) (3.13)

Fron—rigia(kz, ky) =af(1+ [k2 _
vy

kyw

m]zm)) (3.14)

Fnon—rigid(k:z:’ ky) =a- (l - 1/(1 + [

Equation 3.13 is the belt Butterworth band-reject filter along the k, direction. The
frequency data of the DTF and the corresponding corrupted phantom image under

the same condition as with the radially symmetric band-reject filter in Fig. 3.5 are
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shown in Fig. 3.7. Equation 3.14 is the belt Butterworth band-pass filter along the &,
direction. The frequency data of the DTF and the corresponding phantom corrupted
image under the same condition as with the radially symmetric band-pass filter in

Fig. 3.6 are shown in Fig. 3.8.

Figure 3.7. A DTF having a form of a belt Butterworth band-reject filter (left) and
the corresponding motion corrupted phantom image (right)

Figure 3.8. A DTF having a form of belt Butterworth band-pass filter (left) and the
corresponding motion corrupted phantom image (right)

Compared with ghosts simulated by radially symmetric band-reject and band-pass
DTFs, the ghosts generated by belt band-reject and band-pass DTFs have outlines
and some detail of the central image in one direction with outlines and some detail in

the other direction missing at some places. This characteristics is very close to that



in the abdomen image in Fig. 2.5.
Based on the phantom images with simulated motion artifacts shown in Fig. 3.1-

Fig. 3.8. the following observation can be drawn:

e The artifacts from different DTF's have a common feature: the ghosts are shifted.

scaled and distorted replicas of the central image.

o There is difference in the appearance of ghosts among different phantom images

corrupted by different DTFs.

e The artifacts arisen from DTFs having the form of low-pass filters might have
been characterized using Mitsa’s AM model if only a small amount of smearing

is introduced.

o The ghost outlines of the phantom image generated by a DTF having the form

of a belt band-pass filter in Fig. 3.8 are closer to that displayed in the abdomen

image in Fig. 2.5.

3.5 Summary

In this chapter first we point out that assuming every point in the imaged subject
moves identically is not appropriate for real MRI cases. Then a more realistic gener-
alized motion model is proposed. The spatially variant characteristics of motions of
the imaged subject is taken into account by introducing a distortion transfer function
(DTF) into the generalized motion model. The existing motion models are shown
to be just special cases of this generalized motion model. Finally phantom images
simulated by using DTFs of the form of different types of filters are shown to have
different ghost appearances. The ghost artifacts arisen from DTFs having the form of
low-pass filters might have been characterized using Mitsa's AM model if less smear-
ing introduced. The ghost outlines of the phantom image generated by a DTF having

the form of a belt band-pass filter as shown in Fig. 3.8 are closer to those displayed
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in the abdomen image in Fig. 2.5. In the next chapter. we shall discuss the theory
and implementation of contour detection by the snakes and region labeling using the
snake contours, which are steps needed before we can determine the DTF's for images

with ghosts and remove the ghost artifacts.



CHAPTER 4

THE THEORY OF SNAKES

4.1 Introduction
Chapter 4. 5. 6 contain theories and implementations about how to detect contours
and how to segment an image into meaningful regions. The main reasons why contour

detection and image segmentation are needed in this thesis are:

1. In Chapter 7, the estimation of distortion transfer functions (DTFs) requires

information about contours of the central image and ghosts.

(]
.

As will be shown in Chapter 8, our composite image processing method to sup-
press motion artifacts requires segmentation information about the regions of
support (ROSs) of the central image and ghosts and how these regions of sup-

port overlap with each other.

The discussion in this chapter begins with basic image segmentation and contour
detection techniques in general medical imaging applications. It is then shown that
the conventional mask operators are not suitable for the motion corrupted abdomen
image. So that a new theory of contour detection technique. the snake. is presented.
The description of snake theory in this Chapter is mainly based on published papers
[Lobregt and Viergever 1995; Kass et al. 1988; Cohen 1991: Ranganath 1995; Wang
et al. 1996; Amini et al. 1990; Staib and Duncan 1992]. The application of snakes
for segmentation will be discussed in Chapter 5 and 6.

4.2 Contour Detection Techniques in General Medical Imag-
ing Applications

Generally in computer vision there are two approaches for segmentation: The first

approach is to locate boundaries or edges of regions. The second is to group points
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into similar regions. which then permits determination of boundaries. The second
approach is not feasible for the MRI motion corrupted images as the central image
and ghosts overlap with each other and the points inside regions do not have unique
objective properties. By using the first approach, the segmentation problem turns

into two steps:

e First. how to get boundaries or, equivalently. how to detect contours:

e Second, how to get regions from boundaries, or how to label regions inside con-

tours.

In general image processing, contour detection is the first step of many image pro-
cessing tasks. such as automatic analysis, image matching. motion tracking. computer
vision and three-dimensional reconstruction. In medical imaging applications. there
are different techniques to accomplish object contour detection. The techniques can

be put into four categories according to Lobregt and Viergever [1995]:

e Completely manual way. A technician will sit before a screen and use a pointing
device (a mouse or a graphics tablet) to draw the desired contour point by
point. To do the job, the technician has to have expert knowledge about the
clinical problem, as well as a certain level of skill in using the available pointing
device. As we can imagine, manual definition of contour is a time consuming and
boring process, which presents a serious bottleneck in processing large data sets.

Moreover, manual contour definition suffers from a very poor reproducibility.

e Fully automatic way. An algorithm run in computer is used to be able to ex-
tract the desired contour automatically. Unlike the completely manual way, the
contours by fully automatic way are reproducible. However so far the available
techniques of contour detection work only when contour information of images

is not very complex. For example when the object’s contour is very clear and
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strong and there is little interference from undesired structures and noise. For
many real medical applications, the existing techniques are not good enough for

fully automatic contouring.

o The way of automated first guess, followed by manually editing. Usually a
rough guess of the contour is obtained by means of some simple techniques such
as thresholding and region growing. Then a technician modifies the obtained
contour manually using not only the information displaying in the image but
also the contextual knowledge about the object’s anatomy and pathology. As
with the completely manual way, the disadvantages of being time consuming and

boring are still there.

e The way of manual rough guess, followed by automatic contour detection. At
the beginning. a rough contour is defined manually using some kind of pointing
device. Then the initial contour is refined automatically by an algorithm. Nor-
mally the influence of the operator on final result is indirect. The disadvantages
of manual approaches are reduced while the advantage of full automatic way is

kept when the same final contour results from various initial contours.

In this project, a potential fully automatic way, the conventional mask operators.
was first tried. After the mask operators were found to fail to work for the real ab-
domen image, a new technique, the snake was employed. The snake contour detection

belongs to category four: manual rough guess followed by an automatic algorithm.

4.3 Mask Operators

Among all the conventional mask operators, Sobel mask operators are very popular
and considered very sensitive to edges [Levine 1985]. The 3 x 3 Sobel mask operators
used for detecting edges normal to the eight compass directions are shown in Fig. 4.1.

Fig. 4.2(right) gives the contours detected by a combination of these eight mask
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operators for the abdomen image (left). From Fig. 4.2(right) we can see clearly that:

o In the abdomen image, the strengths of edges vary largely. At some places, such
as the left and right side contours, the edges are very strong. At some other

places, such as the bottom contour, the edges are very weak and even broken.

e The structures of the inner parts of the abdomen interfere with the outer bound-
ary of the abdomen. Therefore it is difficult to get the outer boundary of the

abdomen by thresholding strengths of edges.

In order to get the continuous boundaries for real motion corrupted MR images.

a new contour detection method: the snake, is suggested.

4.4 Continuous Active Contour Model

According to [Lobregt and Viergever 1995: Kass et al. 1988: Cohen 1991: Ran-
ganath 1995: Wang et al. 1996; Amini et al. 1990; Staib and Duncan 1992]. the
snake. also called an active contour model, is an energy-minimizing spline influenced
by external constraint forces and internal smoothness constraint forces and guided
by image forces that pull the contour toward image features such as edges. In other
words, besides controlled by the edges (image forces), the snake contour can be ma-
nipulated and constrained by some other forces, such as a priori knowledge about
the contour (external forces) and smoothness and sharpness constraints about the
contour (internal forces). The snake paradigm models a deformable contour as pos-
sessing image energy, external energy and internal energy. When the contour is acted
on by these three energy fields. the contour seeks equilibrium at a minimum of total
energy field by moving and changing shape. That is how the technique gets the name
“snake”.

In the remainder of this chapter, we adopt the notations used in Kass et al.’s [1988]

and Ranganath’s [1995] to mathematically describe the continuous active contour



The compass directions:

N

NW NE

Sobel masks for edges normal to the compass directions
(N, NW, W, SW, S, SE, E, NE)

Saobel; Sobel,
121 2 210
™) 000 (NW) 1 0-l
a2 0-1-2
Sobels ] Sobely [~ 7
10 -1 0 -1-2
(W) 202 (SW) L0 -
1 0-1 210
_ o _
Sobels [~ N Sobelg [ u
S S L2 sHe ]l 20
000 10 1
[ 21 012
Sobel-, r ] SObClg [ ]
401 012
(E) 202 (NE) 4001
101 2.0

Figure 4.1. The Sobel mask operators
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Figure 4.2. The contours (right) of the abdomen image (left) detected by the Sobel
mask operators. Note the varying strength of the outer boundary.
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model. Assume a contour is represented parametrically as: V(s) = (Vz(s). Vy(s)).
where V'r and Vy are the r and y coordinates respectively of any point on the contour
and s is the parameter. Conventionally the value of s is chosen to change from 0 to

1 when the contour goes from the beginning to the end. The energy of the contour is

defined as:

1
Esmatetotal = /0 Eanake(V(s))ds

= [ Bl V() + Bl V() + Eimg(V(s) )} (4.1)

where F;,: represents the internal force (or smoothness constraints) which may have
both stretching and bending terms, E;n,, stands for the image force constructed from
some image features to attract the snake into, F.; is the force due to extraneous
constraints which can be derived from knowledge bases and/or users.

The strategy of snakes is to deform the contour to the locations that make the
above total energy a minimum. A contour that fits the image features. a priori
knowledge and smoothness constraints can be obtained by balancing the internal

forces. the external forces and the image forces. We summarize the advantages of

snakes as:

e The energy field provides a flexible mechanism to incorporate information from

different sources and combine them to extract the boundaries.

e Contour connectivity is part of the snake model due to the smoothness con-
straints and the integration of energy along entire length of the contour as dis-
cussed in more detail later. Therefore the snake model has the potential advan-
tage of robustness to image and noise. By using snakes, the problem suffered by
many other contour extraction techniques is overcome. For example the Sobel
mask operators, which use only local edge information, often result in broken

edges when edges are not strong enough at some places.
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These attractive properties make snakes useful in many medical applications, such as
contour extraction for cardiac MRI studies [Ranganath 1995].
The three energy fields associated with the snakes algorithm are discussed one by

one in the following sections.

4.4.1 Internal Energy

The following internal energy expression is widely used in literature[Lobregt and
Viergever 1995; Kass et al. 1988: Cohen 1991: Ranganath 1995: Wang et al. 1996:

Amini et al. 1990; Staib and Duncan 1992]:

Eine = =(&(s)V(s)+ 3(s)Vi(s))

N — N —
Qu

(3)(V2Is(3) + szs(s)) + %B(S)(szu(s) + szss(s)) (4.2)

.

where V,(s) = OV /0s, Vge(s) = 9*°V/ds?. Vz,(s) = dVz/ds. Vys(s) = dVy/0s.
Vizss(s) = 9?Vz/0s2. Vy,(s) = 3*Vy/ds. a(s). 3(s) are weight coefficients.

As described by Kass et al. [1988], the energy is composed of a first-order term
controlled by &(s) and a second-order term controlled by 3(s). These two items
make the snake act like a membrane or like a thin plate respectively [Kass et al.
1988]. Adjusting the weights a(s) and B(s) controls the relative importance of the
membrane and thin-plate terms. A large &(s) penalizes the development of positional
discontinuities and encourages the contour’s tendency to shrink [Ranganath 1995].
Hence af(s) is also called the elasticity coefficient. Similarly a large B(s) discourages
sharp bends in the contour [Ranganath 1995]. Setting B(s) to zero allows the snake
to become second-term discontinuous and develop a corner [Kass et al. 1988]. Thus

3(s) is also called the rigidity coefficient.
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4.4.2 Image Energy

[n order to make snakes useful we need energy functionals that attract them to
desired features in images. There are different image energy functionals which can be
used. The total image energy can be expressed as a weighted combination of different
energy functionals. By adjusting the weights. a wide range of snake behavior can be

created. Kass et al. [1983] gave two examples of image energy functionals as:

e Line Functional. The simplest image functional is the image intensity

[(V(s)) itself. If we set:

Eiine(V(s)) = [(V(5)) - wiine(V ()

then depending on the sign of weight wy;n., the snake will be attracted
either to light lines or dark lines. Subject to its other constraints. the
snake will try to align itself with the lightest or darkest nearby lines.
This energy functional can be used when the desired contour is a line

shape.

e Edge Functional. Finding edges in an image can be done with a simple

energy functional as:
Eegge(V(s)) = =| 7 [(V(s))?

This causes the snake to be attracted to contours with large image
gradients.
When only the features of lines and edges are considered, the image

energy is the combination of the line functional and edge functional as:

Eimg(V(5)) = Eline(V(5)) + Eeage(V(s))



4.4.3 External Energy

Besides the internal energy and image energy, the external energy takes the extra-
neous constraints into account. a priori knowledge is a common source of extraneous
constraints. For example we can manually give the snake some point locations which

the final contour has to pass through.

4.5 Calculation of the Total Energy for the Discretized Model

Based on the above discussion about internal energy. image energy and external

energy. the total energy is given by:

Esnake—-total = _1'/1 ( )(V IJ( )+V yS( ) dS + / IB ‘tSS( )+V2y33(3))d8

+ / Eeze(V()) + Eimg(V(s)))ds (4.3)

The desired contour can be found by minimizing the above total energy.

The above energy equation is for continuous cases. For digital images. Equation 4.3
has to be discretized. The standard O(h?) derivative approximations are widely
used in the literature [Lobregt and Viergever 1995; Kass et al. 1988: Cohen 1991:
Ranganath 1995; Wang et al. 1996; Amini et al. 1990; Staib and Duncan 1992]. The

notations used in this section follow Ranganath [1995].

1 N-—-1 N-1 N-1

Esnake—total = 37 ZO &(IVi- Vol + 535 g Bi(Viet=2Vi+ Vi) +h Z_;, Ei(V
(4.4)
where h is the space step of the discretization and the contour is uniformly sampled
at N points along the contour, V; = V(8)|s=ir, Eie = Eimg + Eext-
To get the desired contour that minimizes the above energy, we set 9 Esnake—totat /OV.

i=0,1,.... N —1, to zero. Thus:
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JE;
av,

= Vi(ai + aigr + Bic1 + 46: + Bi1)

+Vioi(—a; — 28, — 25;)

+Vin(—aiv1 — 26; — 28:41)

+Vi2(Bict +vig2Bi1); 0SS V-1 (4.5)
where o; = &,/h2. 8 = 3;/h*.

If we consider closed contours with periodic boundary conditions: V5 = Vy. V., =

V'v_1, the above equation can be compactly written in matrix notation as
AV+F=0 (4.6)

where
JE,. _ oF,. OF;. _ _ -
v ‘[av.z avy]‘[f“ fryl =F (+4.7)

The coefficient matrix A is a pentadiagonal matrix and composed of entries from

the coefficients of V;_, to V., in Equation 4.5. Equation 4.6 is simply a statement of
the fact that. at equilibrium. the combined external force and image force F balances

the internal snake forces AV.

4.6 The Evolution Solution of Snakes

The final contour has to meet Equation 4.6. As it is hard to directly solve Equa-
tion 4.6, an alternative approach is used. We can make Equation 4.6 dynamic and
more general by assigning mass density to the snake and allowing the kinetic energy
developed to be dissipated by friction [Ranganath 1995]. According to Ranganath

[1995], the dynamic equation corresponding to Equation 4.6 can be written as:
EVi+4Vi+ AV +F =0

where ¢ represents time of evolution, £ is the mass density and ¥ is the dissipative

constant. V,, = 82V /82, V, = gV /dt.
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Discretizing the above equation in time by using O(k?) derivative approximations

evaluated at (n — 1)At and rearranging, we get:
-F(Voo)=(A+pl+90V, — 2u+ )V + Va2

where we have defined p = fi/(At)? and v = §/2A¢. Normally ¢ is set to zero for

simplicity. Therefore the above equation can be written as:
(I+7A)Vo =V +7F(Vay) or AVa=V.  +7F(V.)  (43)

where 7 = 1/u is called the step size in time of evolution. V,. V,_; and V,_, are
the sampled point coordinates at time nAt, (n — 1)At and (n — 2)At respectively. In
addition we have:

A=I+7A (4.9)

when Equation 4.8 stabilizes and the term dV /dt tends to zero with V,, =V, _;. the

solution of Equation 4.8 is also the solution to the static problem in Equation 4.6.

4.7 LU Decomposition and Linear Equation System Solving

Equation 4.8 is actually a linear equation system. To solve a linear equation
system, LU decomposition method is widely used.

In this section the LU decompositon method is introduced in order to solve the
linear equation system described in Equation 4.8. The notations in this section are
based on [Cheney and Kincaid 1994].

Assume a system of n linear equations in n unknowns is represented in compact

form as:

The same system can be written in a matrix form as:

Ax=b
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where coefficient elements a;; form a n x n square matrix A. the unknowns r; and
the right-hand side elements b; form two n x 1 vectors x and b respectively.

The theory of linear equation system shows that the n X n matrix A can be
decomposed into a product of two simple matrices: one unit lower triangular matrix

L and the other upper triangular matrix U as:

i o . . 0
o,y 1 .. .0
l31 [32 1 .. . 0
L =
| lnl ln2 ln3 1 j
[ Uy U2 U3 - - - Ui ]
0 Ugz U223 . . - U
0 0 uas U3n
U=
L 0 0 0 e e . Unn J

In short. an LU decomposition of matrix A is refered to as:

A=LU

The unit lower triangular matrix L and the upper triangular matrix U can easily
be obtained from the forward naive Gaussian elimination process. The matrix L
consists of all the multipliers located in the positions of the elements they annihilated
from A , of unit diagonal elements and of 0 upper triangular elements. The matrix U
is upper triangular (not necessarily unit diagonal) and is the final coefficient matrix
after the forward elimination phase is completed.

Using LU decomposition, the linear system Ax = b can be rewritten in another
way as:

LUx=b
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Then the problem is simplified to solve two simple triangular systems:
Lz=b, Ux=z

z can be obtained by pseudo code as:
51 =b
for( i from 2 to n)
5 =bi— i) Lz
endfor

Likewise. x can be obtained by pseudo code as:

In = En_
Unn
for (i from n-1 to I by step -1)

Lp = (30— iy WiiTs)
endfor

4.8 Summary

The strategy of snakes is to locate positions of a minimum energy field. The en-
ergy field is actually an integration of several different kinds of energy along the entire
contour. There are usually three kinds of energy: image energy from image features,
external energy from extraneous knowledge or constraints and internal energy from
the smoothness constraints about the contour. The advantages of snakes include:
flexible mechanism to incorporate all kinds of information about the boundary; con-
tour connectivity; and robustness to noise. For computation. discretized snake models
are required. The solution of a discretized snake model can be obtained by solving a
linear equation system evolutionarily. A method, called LU decomposition method.
for solving linear equation systems is also described.

In the next chapter we will use these concepts involved in this chapter to implement

the snake algorithm.
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CHAPTER 5

THE IMPLEMENTATION OF THE SNAKE
ALGORITHMS

5.1 Introduction

The previous chapter (The Theory of Snake) was a summary of published work
[Lobregt and Viergever 1995; Kass et al. 1988; Cohen 1991: Ranganath 1995: Wang
et al. 1996: Amini et al. 1990:; Staib and Duncan 1992]. Although presentation
on the theory behind the snake is done well in these papers, considerable work was
necessary to modify the algorithms to work for motion corrupted MRI images. The
block diagram and procedures of our implementation are first given in this chapter.

Then considerations about the implementation are discussed in detail. including:

e contour representation;
e contour resampling;
e determination of snake coefficients:

e stabilities of snakes.

Then it is shown how to apply our implementation of the snake to detect contours
of the central image for the motion corrupted abdomen image in Fig. 2.5. Finally a

ballooning algorithm is suggested to be used for obtaining contours of ghosts.

5.2 The Block Diagram of Our Implementation of Snakes
Since details of other authors’ implementation of the snake algorithms are not
provided in their papers, we have given detailed information of our algorithms.
The block diagram of our implementation of snakes is shown as Fig. 5.1. The

steps of this implementation follow. Additional detail is given in later sections of this

chapter.
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. Input all the required parameters and coefficients: the elasticity coefficient o;

and the rigidity coefficient 8; in Equation 4.5, the step size T in Equation 4.8, the
desired length [;., between two consecutive evenly spaced points on a contour
for the resampling algorithm, and the cut-off frequency of the low-pass filter for

smoothing the input image.

Use the low-pass filter to smooth the image and thus the edges of the image.
This smearing provides more flexibility to choose the initial contour. That is the

initial contour does not have to be exactly placed close to the desired contour.

. Input the number of starting points M* (i = 0 at this time) and the starting

points P§. Pf. ... . P.{t--v which are supposed to be in the vicinity of the desired
contour. These points are usually obtained manually and do not have to be

evenly spaced.

Resample the M* points Pg, P}, ... , P;,._, to obtain N* equally spaced points

Vi, Vi, ..., Vi._, in order to gather information evenly along the contour.
Compose the N x N' matrix A according to Equation 4.5.

Calculate the image forces at the V' locations of the evenly spaced points along

the contour and obtain the image force vector F' according to Equation 4.7.

Use the LU decomposition method to solve the linear equation system

AP+l = Vi 4 rF(Vi) as presented in Equation 4.8. The solution is N new
points Pgt'. P{*!, ... . P! . These points determine a new contour which is
supposed to be closer to the desired contour. The new points may be unevenly

spaced.

. stop after a given iteration time or when some other criteria is met. Otherwise

set M*+! = N' and treat these N points Py*!, P{*!, ... | Pi}! as intial points



and go back to step 4 for the (i + 1)** iteration.

All these steps are discussed below in detail in the remainder of this chapter.

‘ image

Input snake coefficients, iteration
time, desired length for resampling,
low-pass filter’s cut-off frequence
for smoothing the image

Y

Smooth the image

Input initial M' points P
(i=0)

—

y

Resample

y evenly spaced N! points V'

Compose matrix A

i=i+l *
* Calculate image force vector
- - F
Ml+l = N?
I Y

LU decomposition method
to solve
the linear equation system

N' new points Pi*!

No

i > iteration time ?

Figure 5.1. The block diagram of our implementation of the snake
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5.3 Contour Representation
At the beginning of a snake algorithm, we only have a few manually located points
along the initial contour. How do we represent the contour given points along it?
According to Foley et al. [1996], starting at an arbitrary point on the contour and
tracing once around it yields a sequence of points: Py, Py, ..., Pv_;. A typical text
file for representing a contour has the form as N, (zo.y0). (xi.y1). (T2.42). ...
(rv—1.yn—1). where .V is the number of sampled points on the contour. (z;.y;).i =
0......V — . are coordinates in the horizontal and vertical directions respectively. For
digital images in computers, the coordinate system is usually an integer Cartesian
coordinate‘system. The pixels lie at intersections of the grid lines.
To display a contour corresponding to the text file NV, (zo,y0), (T1,y1): (T2, y2).
. (rx—1.Yy~n—1). an image array needs to be constructed. For example. if the points
on the contour are flagged by a flag value and other points are set to zero, the image
array for displaying the contour can be constructed by the following pseudo code as:
for(y from top to bottom)
for (z from left to right)
Intensity(z,y) = 0:
endfor
endfor
for (contour point i from 0 to N-1)
Intensity(z;,y;) = flag value
endfor
[n this thesis project, starting points along initial contours for snakes are drawn
manually by using the image displaying program called “Viewdiff” developed in our

lab.
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5.4 The Smoothed Image Gradient
As discussed in section 5.2, before the snake evolution begins. a low-pass filter
is applied to smooth the image. That is because in this project we found when
the desired edges or boundaries were very sharp and gradients a distance away from
the sharp edges were almost zero, the snake algorithm was provided with no clue
about which direction led to the maximum gradients or minimum energy. Moreover
sometimes when the seed contour was a fairly large distance away from the desired
contour. the evolution may converge to an undesired local energy minimum position.
To allow snakes to be attracted to the equilibrium from far away, image gradients
need to be smoothed. This image smoothing can be done in frequency domain by a
low-pass filter. The low-pass filter used in this project is a Gaussian filter as:

1 u® + v?

exp(—
V2o p( 202

where o is the standard deviation. We typically used o values 10.0-80.0 for images of

H(u.v) =

size 256 by 256 depending on how much smearing was required. A small ¢ leads to a
narrow filter bandwidth and a more blurred image edges.

With the image energy so blurred. the snakes were attracted to the energy min-
imum direction from very far away, but sometimes did a poor job of localizing the
edges. In this case, we can repeatedly run the snake algorithm more than once. That
is the output points of this run is sent to the input of the next run with a reduced
o. Slowly reducing the blurring can lead the snake finally to the accurate energy

minimum position.

5.5 Contour Resampling

As discussed in section 5.2, step 4 of our snake implementation is resampling. The
goal of resampling is to obtain the evenly spaced points along a contour needed for
discrete snake algorithms given some randomly spaced points. The issue of resampling

is mentioned in the literature about snakes. However only one paper states in some
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detail how the resampling is done. In [Lobregt and Viergever 1995], the resampling
is implemented as a two-pass process. The first pass checks along the entire contour
if any segment length has become shorter than a given minimum length. If this is
the case, this edge segment is removed from the contour by replacing the two vertices
on both ends of this segment by one single vertex at a position exactly in between
the replaced vertices as shown in Fig. 5.2(a). The second pass checks again along
the entire contour. but now for segments with length larger than a given maximum
length. Such an edge segment is divided into two shorter ones of equal length as

shown in Fig. 5.2(b).
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Figure 5.2. Illustration of the existing contour resampling [Lobregt and Viergever
1995]. (a) When the length between two adjacent points is less than a fixed minimum
length. replace the two points by one point. (b) When the length between two adjacent
points is bigger than a fixed maximum length. insert a new point between the two
points

The contour resampling of [Lobregt and Viergever 1995] is easily demonstrated
to be very weak. First oscillatory behavior can happen in which the vertices are

repeatedly removed in one resampling action and inserted again in the next. Second
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the length between two resampled points changes from point to point and is not equal
to the desired length l4.,. In other words, the resampled points are not evenly spaced
at exactly the same interval l4.,. To solve these two problems. a new resampling
algorithm was developed for this thesis project.

Let’s discuss our new resampling algorithm. Assume we have M starting points
along a contour. The M starting points are ordered as: Py, Py..... Pyy~1. where Py is
the first point at the beginning, Pys—; is the last point at the end. Since the contour
is closed, we have Py = Py, P_; = Par—:1. It does not matter which point is treated
as the first point. Pz; and Py; are the r and y coordinates corresponding to the %
starting point P;(: =0,1,..., M —1). The idea of our resampling algorithm is not just
to adjust the starting points by removing and inserting as in [Lobregt and Viergever
1995]. but to resample all the points along the segments Py Py, PiPs. .... Py_2 Py,
and Pyr—; Po and make the length between two adjacent resampled points equal to
l4es. We start from point Fy. The first resampled point V5o along the first segment
between PP, is simply chosen to be FPy. There are ng more resampled points along

this first segment. where ng is determined by:
ng = trunc(lo/lges)

where trunc() is the function of rounding a float number towards the nearest integer
that is not bigger than this float number. [y is the length of this first segment and
equal to the distance between P, and P;.

The next ng resampled points Vor, Vo2, ... , Von, lie on the segment Py P;. Their

coordinates can be determined by the following equation as:

V'.’Bok - P.’l?o _ V‘yok - Pyo _ k *ldes
Pry— Pzy  Py1—Pyo o

k= 1, ...s Ng

As [y is often not equal to integer times of /4, there is a fragment left between the

resampled point Vg, and P;. This fragment, denoted as [go, is equal to rem(ly/lzes)
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and less than l4.,. where rem(a/b) is the function of obtaining remainder of division
a/b. The fragment [ is suppose to be absorbed when we resample the next segment
P P,. At the beginning of segment P, P;, we assign another fragment denoted by [p;
to make [g; + [go = l4es. where g, is also less than [4.,. Thus the coordinate of the

first resampled point Vj¢ along segment P, P, is determined by [g, as:

Vi — Pry _ Vyo — Py _ g1
Pl’g—P.L'l Pyg—PyI l]_

where [g; = l4es — lgo. The length [, of segment P, P> is equal to
V(Pri— Pra)? + (Py, — Pyn)2.

Assume the length of the segment P, P,y is [;. : = 0,1,.... M — 1. The fragment

left by the previous segment P,_;FP; is [g(i-1). If {; is not big enough to satisfied
l[; > lges — lE(i-1), there are no resampled points along the segment. The fragment [g;
needed to be absorbed by the next segment is increased to {g(;—1)+/i: Otherwise if {; is
big enough to satisfy ; > l4.s — [g(i-1), there are resampled points along the segment
P; P, as shown in Fig. 5.3. The first resampled point Vjg is designed to absorb the
fragment [g(;—,) left by the previous segment. The distance between P, and Vjg is
denoted by [g;. The other resampled points are chosen to make the distance between
adjacent points equal to [4.,- At the end of the segment. there is usually a fragment
lg;. less than l4.,. left between the last resampled point and Py, .

The corresponding coordinates V'z;; and Vy;; of the j** resampled point along the
segment P; Py, can be calculated by the following pseudo code as:

l; = \/(Pi, - Pl’i+1)2 + (Py,- - PI,'+1)2

i = lyes — lg(i-1)
Lf(l; 2 Ug:)
n; = trunc((l; — (g:i)/ldes)
total number of resampled points along PPy, = n; +1

for (7 from 0 to n;)
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VIIJ_PII — Vy.J—Py. — igti=lg. .
PI:-{-I_P-’:! Py:-{—l-Pyl - {,

endfor
lgi=1li—lgi—n;-lies
endif
elseif (I; < Ig;)
n; = —1 so that the number of points (n; +1) =0

lgi = li + lgi-y)
endelseif
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Figure 5.3. [llustration of the new contour resampling algorithm. The first resam-
pled point Vj is designed to absorb the fragment [g(i_;) left by the previous seg-
ment. [gi_1) + {Bi = l4es- At the end of the segment there is another fragment [g;.
lgi = P;P;yy — lg; — 2 x l4es. This fragment is suppose to be absorbed when the next

segment is resampled.

Note that by this method, handling the last segment Py _, P, may be different
from other segments. That is the last fragment [g(ar—1) can not be absorbed. If we
just leave this fragment there, then the two resampled points Voo and Viar—1yn,,_,

may cramp together when Ig(ar_) is very small compared to the desired length /4.
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This problem can be suppressed by manipulating the last resampled point Viyr—ijn,,_,

according to two different conditions as:
o If lg(ar-1) < 3lies, then just simply drop the last point Viar—iyny,_,-

o If lgar—1y > Llis. the last resampled point Viar—1jn,, , is moved to the centre
( ) 3 P P ( Jnar—i

between the penultimate resampled point V{yr_1)(n,,_,-1) and the first resampled

point lgg. which is also the first starting point F;. The coordinates of the

adjusted last resampled point are given by:

Vrim-tyny_, = =(Vear=1ymny_-1) + V' Zoo)

S| = N o

Vysr-tny_, = =(Vyar-1)na—-1 + Vyoo)

t

We have gone through the main idea of our resampling method in the above discussion.

Let’s turn to a detailed steps involved in this method.

1. Input M. number of starting points, the coordinates of all starting points:
(Pzx;, Py;),i = 1,..., M —1, and the desired length between two resampled points:

ldes-

!\D

Begin with i = 0 and set [g(_,), the fragment left by the last segment. to zero.

3. Calculate the total number of the resampled points along the segment P;P;y;.

the coordinates of the resampled points, and the fragment [g; left.
4. check if : > M — 1 (if all the segments are handled).

e if NO, go back to step 3.
e if YES, adjust the last resampled point and stop the program.
As shown in the block diagram of the snake implementation in Fig. 5.1, this resam-

pling algorithm is used at the beginning of each new iteration in the snake algorithm

because:
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e At the first iteration the starting points. often obtained manually. are likely to

be randomly spaced.

o The points obtained by solving the linear equation system at the end of each
iteration may cluster into a dense structure at certain places where there is a low
energy field and the snake may fail to work on small objects with low resolution.
Thus the resampling algorithm is applied after each iteration to ensure the points

for next iteration are evenly spaced.

5.6 Determination of Elasticity and Rigidity Coefficients

As discussed in section 5.2 of the snake algorithm. we need to use a elasticity
coefficient o; and a rigidity coefficient J; to compose matrix A. During this project.
we found a; and 3; had great importance for the behavior of the snakes when the
iterations continued as was also indicated in the literature [Lobregt and Viergever
1995: Kass et al. 1983: Cohen 1991: Ranganath 1995: Wang et al. 1996: Aminiet al.
1990: Staib and Duncan 1992]. If a; and 3; were very large, the internal energy had
a major influence and the image forces had small effect. This resulted in the curve’s
shrinking to a point. On the contrary. if a; and 3; were too small. the image energy
had a major influence and the smoothness constraints had too small effect.

Unfortunately we have not found any theoretical formula for determining appro-
priate snake coefficients in the literature. In this project we experimentally found a
good way to choose these coefficients is to make the entries of matrix A all have the
same order of magnitude. For example, if step size 7 was chosen as 1 as required
for the stability of the snakes (see later), then choosing the coeflicients as constant

a; =0.5—1.5and 3; = 0.5 — 1.5 worked well.

5.7 Image Force
As discussed in section 5.2, step 6 of the snake algorithm requires calculation of

the image force vector F'. The image energy used in this project was the sum of the
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absolute Sobel gradients in all compass directions as:
8
Eimg(Vz. Vy) = = 7 I(Ve, V)| = = D |Sobeli(I(Vz. V)| - wa(d)
=1

where wg(i) was the adjusting weight for the i** Sobel mask operator.

The image force corresponding to the image energy in discretized form is:

OF:m 1 . ) ) .
F.= 1% = §(Eimy("r. +1.Vy) = Eimg(Vz, — 1. V,))
0Eimg 1 ; .- -
F, = ETh = 3(E,-mg(‘/,,.l. Vie +1) = Eimg(Vz,. Vy, — 1)) (5.1)
W ~

5.8 Stability of Snake Contour

One important concern about the implemented snakes is stability. Will the snake
be locked to the desired boundary accurately without missing some boundary and
without being trapped by noise?

Our experiments in this project agreed with Cohen'’s [1991] discussions. Even when
an initial guess is close to an edge, it may not be led to the edge during the iteration.
According to Equation 4.8, the position, V,, at nt? iteration is obtained after moving
V.- along vector TF(V,_) and then solving the system, effectively smoothing the
curve. If TF(V,_,) is too large the point V,_, can be moved far from the desired
minimum and never come back. Thus the curve can pass through the edge and then
make large oscillations.

To solve this instability. Cohen [1991] suggested to normalize the image force by
taking Foorm = —7(F/||F||). where v is a weight coefficient. When 7+ is chosen as
on the order of one pixel, TF,,m is about one pixel. Thus when a point is close to
an edge point, the point will move about one pixel at a time and will not miss the
edge. This implies the curve is attracted to the edge and stabilizes.

In this project the snake’s instability of missing some boundary and being trapped
by noise was reduced significantly by normalizing the magnitude of image force and

making 7y = 1 as predicted by Cohen {1991].
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5.9 Contour Detection for the Abdomen Image by Using the
Snake

So far. we have discussed our implementation and considerations for the snakes
in a theoretical manner. Now we apply this implementation of the snakes to the
motion corrupted abdomen image as shown in Fig. 2.5. As we already showed in
the last chapter the conventional Sobel mask operator failed to extract a continuous
contour for this image. In this section, we show that our snake implementation pro-
duces a much better contour of the central image for this abdomen image. Fig. 5.4(a)
shows the manually obtained points in the vicinity of the central image at the begin-
ning of the snake algorithm. Fig. 5.4(b) shows the corresponding resampled points.
Fig. 5.4(c)(d)(e) and (f) show the snaked contours after 20. 60. 100 and 120 iterations
respectively. The used snake coefficients were: a = 0.53,3 = 1.0. 7 = 1.0. v = L.0.
The process of the snake evolution is very obvious from Fig. 5.4(b)-(f). The seed
contour in Fig. 5.4(b) at the very beginning of the snake is far away from the desired
contour. After 120 iterations, the snake is gradually attracted to the desired contour
even at places where edges are very weak. Note that as shown in Fig. 5.4(f). the
points of the snaked contour are not exactly at the sharpest edges everywhere along
the contour. That is because the energy minimization of the snake is global. but not
local. As is shown later in this thesis this will not affect the success of our compos-
ite method as long as the contour is continuous and close enough to the sharpest
edges. Fig. 5.5 shows the initial contour (left) and the snaked contour (right) after
10 iterations for the phantom image.

5.10 Contour Ballooning and Its Applications for Obtaining
Ghost Contours

As shown in Fig. 2.5, it is clear that contours of ghosts will be difficult to achieve

by using directly the information displaying in the corrupted image as ghosts are very

weak and smeared. To overcome this difficulty. contours of ghosts are considered as
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Figure 5.4. The results of snakes for the abdomen image. (a) Manually obtained
points. (b) The resampled points of (a) used as seed contour for the snake. (c) Snake
contour after 20 iterations. (d) Snake contour after 60 iterations. (e) Snake contour
after 100 iterations. (f) Snake contour after 120 iterations.
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Figure 5.5. The result of snakes for the phantom image. The manually obtained
points (left) are far away from the boundary detected by the snake algorithm (after
10 iterations) (right).
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shifted and enlarged versions of that of the central image in this project as ghosts
are often smeared and possibly enlarged. We proposed a contour ballooning method,
which can be used to calculate any contour’s enlarged versions.

Let’s discuss this contour ballooning method. By ballooning contours. we mean
points along original contours are moved a certain distance A in the direction of the
normals at locations of these points. Movement toward the inside part of a contour
is called deflating. Movement toward the outside part of a contour is called inflating.

Assume points along an original contour are Py, Py, .... Pyy_; and the corresponding
ballooned points are By, By, ..., Byr-1. First of all we need to determine the normals.
The normal at point P; is considered to be the normal of the line defined by points
P,_; and P,y,. Thus B; can be determined by:

For inflating:
Br; = (Prioy+ Pzit1)/2 = t(Pyiv1 — Pyi-1)

For deflating:
Bz; = (Pzioy + Priy1)/2 + t(Pyiyr — Pyioy)
Byi = (Pyi-y + Pyiy1)/2 — t(Priy1 — Pxiy)

wheret = A/\/( Pz;_y — Pzi1)? + (Pyi-1 — ¥i+1)?, A is the ballooning distance from
P; to B;.

Fig. 5.6 shows the shifted and ballooned (A=5 pixels) versions of Fig. 5.4(f) for
the upper and lower ghosts in the abdomen image. Using this contour approach, it
is straightforward to account for the ghost image aliasing that occurs when a ghost’s

shifted contours appear in both the upper and lower portions of the image.

5.11 Summary
In this chapter, our implementations of the snakes, based on the discretized snake
model and the evolution solution of a linear equation system, is discussed in detail.

The issues associated with our implementation of the snakes include:



Figure 5.6. Contours for the upper and lower ghosts in the abdomen image obtained
by ballooning and shifting the snaked contour of the central image. Note the aliased
lower ghost image.
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e To attract snakes far away from the desired edges, a Gaussian low-pass filter was
used to blur edges. By repeatedly running the snake algorithms more than once
with reduced blurring of edges, snake contours could be gradually locked to the

desired edges.

e To ensure points along a contour were evenly spaced for the snakes, a new re-

sampling algorithm was proposed.

e The selection of elasticity coefficient and rigidity coefficient had great influence

on the behavior of snakes.
e The normalized image force gave better stability to snakes.

Finally it is shown that by using our implementation of the snakes. continuous
contours are achieved for the central images of both the abdomen and phantom
images. Contours of the ghost images are considered as ballooned versions of the
corresponding central images.

In the next chapter we will discuss how to use the snake contours of the central and
ghost images to segment the corrupted image prior to determining of the distortion
transfer function (DTF) and the composite method of motion artifact suppression.
We shall show how to take the snake contour information and. using a new approach.

segment the image.
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CHAPTER 6

CONTOUR-BASED REGION LABELING

6.1 Introduction

In the papers describing the snakes the authors normally are satisfied with knowl-
edge of the contour. In this thesis we need to proceed further and segment the image
into various regions. In this chapter we show how to use the contour information (dis-
cussed in previous two chapters) to identify various segments of an image data matrix
prior to using this information in determining the distortion transfer function (DTF)
and correcting motion artifacts. We will provide details of how we modified a com-
puter graphics scan-conversion method to label image regions given known contours.
For this approach to be successful, a complete (full) set of points on the contour is
required. We show how to use a modified B-spline algorithm to guarantee this full set
of points. The use of this approach is demonstrated by labeling the various regions

of a motion corrupted MRI image.

6.2 B-spline Curve Fitting

[t is well known in computer graphics that unless a full set of contour points is
known. scan-conversion algorithms will self-destruct. This problem is also present in
this MRI application. This instability is overcome by applying B-spline to the snake
contour information.

As discussed in the last chapter, what we obtain after applying the snake algo-
rithms is M discrete points that lie on the desired boundary of an object. However
normally a few of discrete points do not represent a contour completely and uniquely.
To describe a contour completely, a continuous curve representation is required. The
task of getting a continuous curve representation from known points is called curve

fitting. In this project, a so-called B-spline curve fitting method is employed. The
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discrete contour points obtained by the snake algorithms were sent to the B-spline
algorithms as control points in order to get a continuous representation for the con-
tour.

B-spline is a very popular method for curve fitting and interpolating. There are

superior properties for B-spline [Foley et al. 1996; Dierckx 1982], such as:
e B-splines have good continuity.

e B-splines’ coefficients depend on just several control points. This property is

called local control property of B-spline.

With B-splines, an entire curve consists of several curve segments. Each curve
segment is expressed by a weighted sum of polynomial basis functions. In this project.
the uniform cubic B-splines are used. By the cubic B-spline. not only the curve itself
but also its first-degree and second-degree derivatives are continuous. Assume we
know a set of m+1 control points. Cy, C}.Co,....Cn.m > 3. on a contour (for a closed
curve the control points are easy to create by repeating the points Cy, C, (> at the end
of the sequence so that the control points look like this: Co,Cy.Cs.....Crp. Co. Cy. Co.
A curve is represented by m — 2 cubic polynomial curve segments Q3. Q4. ....Qm
when we use a uniform B-splines. Each cubic polynomial is completely defined by
four adjacent points out of the m +1 control points. For example, @3 is defined by C,
C,. Cy and C3. While Q4 is defined by C,, C,, C; and Cy. Generally Q;,3 <i < m,
is defined by the four control points C;_3,C;-2,C;-; and C;. Thus. the cubic B-spline

geometry vector Gig, for segment @Q); is defined as:

Cios
Gs, =| g |3gism

Ci

If we define T; as the row vector [t* t2 ¢ 1], where ¢ is the variable of these polynomial



and t € [0, 1), then the cubic B-spline formulation for curve segment Q; is :
Qi(t)=T:-Mpg,-Gp,, 0<t<1 (6.1)

where Mg, is called B-spline basis matrix. The polynomial coefficients for each curve

segment are exactly the same for uniform cubic B-splines:

-1 3 =31
113 -6 3 0

Ms, =213 0 3 o
1 4 1 0

The so called B-spline blending functions Bpg, are given by the product of T; - Mp,.
The blending functions for each curve segment are also exactly the same for uniform

cubic B-splines:

Bs, = T-Mg, =[Bs,_, Bs,, Bs., Bs.,]
l 2
= g[—ﬁ +3t2-3t+1 I -6t2+4 =3 +3+3t+1
= %[(1 —t® 33-62+4 -3 +3°+3t+1 ], 0<t<l

Thus the closed continuous contour has a complete representation as segments Q3.
Q4. .--» @m, each of which is represented by a continuous polynomial as in Equa-
tion 6.1. The curve is continuous not only within each segment but also at the
joint points between segments. For example, at the joint point between segment
Q: and segment Q;y1, 3 < i < m, we have Q;(1) = Qi41(0). Q1) = Q:41(0) and
Qi(1) = Q;:,_I(O). Joint points at @;(1) = Q;4+1(0) are called knots.

As Cheney and Kincaid [1994] stated, in general, the fitted curve does not have
to pass through the control points. Curve segment @); begins somewhere near con-
trol point C;-, and ends somewhere near control point C;—;. The B-spline blending
functions are everywhere nonnegative and sum to unity, so the curve segment Q; is

constrained to the convex hull of its four control points. Just as each curve segment

is defined by four control points, each control point influences four curve segments
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(except for those at the beginning and end of the sequence Co, (. ....Cy, in the case
of nonclosed curves). Moving a control point in a given direction moves the four
curve segments it affects in the same direction. The other curve segments are totally

unaffected. This is the local control property of B-splines.

6.3 A Full Set of Points of a Contour

As discussed in the above section, a continuous expression can be obtained from
M discrete points along a contour by using the B-spline curve fitting algorithm. The
question discussed in this section is how to make use of this continuous expression
to represent a closed contour in digital form completely and uniquely. In order for a
digital scan conversion algorithm to work, a full (complete) set of points is required.
By a full set of points, we mean all the points where the integer grid lines (pixel loca-
tions) intersect with the continuous curve. This indicates the horizontal coordinate
distance and vertical coordinate distance between any two adjacent points P; and
P+ in a full set of a contour should not be greater than one pixel. In other words.

only the following three cases are allowed:

casel { lP’J _PI,—xl =0:
) [Py,_Py,-ll’:'l?

: IPr "'P.r_.l_—-l:,
case? : 1 2=t
{ IP!IJ - P!Ij—l, = O;

Q. IP.Z'] - .r,_ll = 1: .)
casel : { P, — Pyt | = 1; (6.2)

If we were dealing with a simple line or an ellipse shaped object, then an investiga-
tion of the Bresenham algorithm for line drawing would be appropriate [Foley et al.
1996]. However in this thesis we are considering a line drawn to a general cubic curve
which is not handled by a Bresenham algorithm. In addition since these calculations

are performed offline, a highly efficient algorithm is not necessary.
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In this project, a full set of points is obtained by giving parameter ¢ appropriate
values. We developed a check-and-insert algorithm for this purpose. The algorithm

works as follows:

1. Start with the first polynomial curve segment @3 by setting { = 3 and reset the

sequence number. j, for the inserted points along this segment to zero.

[

. Stop if i > M — 1, meaning all the polynomial curve segments are handled.

3. Calculate 2\;. the bigger of the horizontal and vertical coordinate distances be-
tween Q;(0) and @;(1). The default step size At; for this segment Q; is given by
At; = 1/AD;.

4. Set t =0, P, = @;(0) and At = At; at the beginning of a new segment Q;.

Ut

. Increase t by At.

6. Go back to step 2 with ¢ = ¢ + 1 for the next segment if { > 1. meaning the

segment @; is complete.

7. Calculate a potential inserted point using P = Qit).

-

[v 8]

. Check if Equation 6.2 is satisfied or not.

e If YES, insert the point P as the next point along the curve by setting

i =j+1and P; = P. Set At = At; and go back to step 5 to search for the
next point.

e If NO. meaning At is still too big for calculating the next point. Calculate
AD, the larger of the horizontal and vertical coordinate distance between

the potential point P and P;.

9. Draw t back by subtracting At. Set the new step size (smaller) At = At/AD.

Increase t by At and go back to step 6 for a new try.
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We applied this check-and-insert algorithm to the contour points of the abdomen
image obtained by the snakes in the last section. Fig. 6.1(a) shows the contour points
obtained by the snakes. Fig. 6.1(b) shows its fully interpolated contour by this check-
and-insert algorithm. Results in Fig. 6.1 indicate our approach of obtaining a full set
of points is successful.
Note that by the check-and-insert algorithm some interpolated points obtained by
using incremented ¢ values may be rounded to the same integer points. This is not
going to be a problem as it makes no difference if a contour point is labeled once or

twice or more times in our region labeling algorithm discussed below.

6.4 Region Labeling Algorithm

Now that a full set of points on the boundary of a region has been determined.
the next step is to decide which pixels are inside the region and label them with a
flag value in order to form the region. In this project a fast region labeling algorithm
based on a computer graphics generalized scan-conversion algorithm is proposed.
The foundation of this generalized scan-conversion algorithm is the odd-parity rule
in computer graphics [Foley et al. 1996]. The odd-parity rule says: to determine
whether a region lies inside or outside a given region, choose as a test point any point
inside the particular region. Next, choose a ray that starts at the test point and
extends infinitely in any direction. If this ray intersects the region outline an odd
number of times, the region is considered to be interior. If the ray intersects an even
number of times, the region is considered to be outside the contour. Our generalized
scan-conversion algorithm does not perform the odd-parity test directly. Instead. the
odd-parity rule is efficiently applied to an entire row of adjacent pixels that lie either
inside or outside the contour.

In scan-conversion techniques, the scan lines are of 1-pixel width. Without loss

of generality, let’s assume the scan lines run from left to right in horizontal direction
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(a) (b)

Figure 6.1. Results of the check-and-insert algorithm. (a) Points along the snake
contour. (b) A full set of points obtained by using the check-and-insert algorithm.
(c) The superposition of the snake contour and the result of the check-and-insert
algorithm (d) The full set of points with the abdomen image as background.
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(the z direction). The scanning is taken successively from the very top of the contour
image to the very bottom of the contour image. For each scan line the intersected
points between the scan line and the contour from left to right are recorded. If the
intersection is a single point, it is treated as a valid intersection. The corresponding
z coordinate is considered as the span extremum and the parity is converted. At
the beginning of each scan line, we are outside the region of support of the MRI
central image. There is no intersection and the parity is set to even. After a valid
intersection. the parity is converted to odd, which means a span inside the contour
begins and the left span extremum zpeq4in is recorded. If the next intersection is also
a single point. the parity is converted from odd back to even. which means this span
inside the contour ends and the right span extremum z.,4 is recorded. The span from
Lhegin tO Tend 1S labeled as interior and the searching for a new interior span begins.
Normally for a closed contour, the number of intersections is even. In other words.
the intersections appear as pairs.

However the situation get more complicated in practice when the contours are
much more complicated than polygons, normally considered in computer graphics
applications. One problem we met in our experiments is where the contour segments
are horizontal and parallel to the scan lines. If that happens. the intersected points
are no long isolated points but many points clustered together and the odd-parity
rule fails to work. To overcome this difficulty, we generalize the way of defining
valid intersections. A cluster of intersecting points, which must be a segment of
contour, is treated as one single valid intersection for the odd-parity rule. By a cluster
of intersections, we mean the horizontal coordinate distance between the adjacent
intersected points is 1-pixel. The block diagram of this generalized scan-conversion
algorithm is shown in detail in Fig. 6.2. The top two boxes with dotted lines in Fig. 6.2
show that in this project the input of the generalized scan-conversion algorithm is

from the output of the B-spline curve fitting algorithms, whose input is from the
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output of the snake algorithms.

The generalized scan-conversion algorithm works well in this project. Fig. 6.3 gives
the labeling result of the central image’s contour in the abdomen image. As we will
see later. this labeled region is treated as the region of support of the central image
and notated as R. in Chapter 8 when the composite method is discussed.

However we also notice that this generalized scan-conversion algorithm does not
fit for all cases mathematically as the odd-parity rule may fail at some special situa-
tions. Fig. 6.4 shows examples that the odd-parity rule can not handle appropriately.
Although all the three contours have three valid intersections at the scan line, the
interior spans are different for these three contours. Fortunately that does not happen
often. Most of our practical cases were not too complicated for the scan-conversion

algorithm.

6.5 Summary

Given some points on a contour, the B-spline curve fitting algorithm can be applied
to get a complete (full) set of points along the contour. Based on the full set of points.
the region inside the contour is labeled using our new segmentation approach based on
a generalized scan-conversion algorithm. The odd-parity rule in computer graphics is
the foundation of this generalized scan-conversion method. In the next two chapters
this region labeling method is used for determining distortion transfer function (DTF)

and during the suppression of motion artifacts.
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b e —_— e —_— - ._'._ _________ ]
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| A full set of contour points from the B-spline algorithms |
L e e - —— - — _'._ _________ .

old-even-flag = even =141
Xbegin=0, Xeng=0, X|35=0 B

A Xias=Xnew

intersection search
from left to right
a new intersection Y.
found?
convert the odd-even flag back
record X ew
old-even flag=
odd or even ?
N.
flag the span convert back the convert back the
(Xbegin ~ Xiasd) odd-even flag odd-even flag Xend=Xnew
Xpegin=Xnew Xend=Xnew

-

L max: the number of scan lines.
Xijast Xpew:  the x coordinates of the last and this intersections respectively

Xbegin »Xend: the left and right span extremums respectively

Figure 6.2. The block diagram of the generalized scan-conversion algorithm. The top
two boxes with dotted lines show that the input of this algorithm is from the output
of the B-spline curve fitting algorithms, whose input is from the output of the snake
algorithms.



Figure 6.3. Region labeling result (right) of the full set of points (left)

NN
o X

(a) (b) (c)

Figure 6.4. Too complex situations for the odd-parity rule to work
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CHAPTER 7

DISTORTION TRANSFER FUNCTION ESTIMATION

7.1 Introduction

In this chapter, a method of estimating distortion transfer functions (DTFs) di-
rectly from motion corrupted images is proposed and investigated. The results of
applying this approach to phantom images corrupted by a variety of DTFs are given.
We describe our observations on what limits the accuracy of the DTF estimation. Fi-
nally DTF's estimated by using this approach for the abdominal image with unknown
respiratory motion are given.

A paper based on this chapter has been submitted to [EEE Trans. on Medi-
cal Imaging. The article is entitled “Using a MRI Distortion Transfer Function to
Characterize Motion of a Non-rigid Object” by Yang and Smith [1998].

7.2 Estimation of Distortion Traunsfer Function for Non-rigid
Motion

The problem to be investigated in this section is: how to determine all the pa-
rameters and DTF's of all the ghosts given a corrupted MR image? There are three
parameters that need to be determined (Equation 3.5) in order to identify the char-

acteristics of ghosts:
e VN, the number of ghosts in the corrupted image.

e A,,n=0,1,..., N—1: the distance between the n'* ghost image and the central

image.

o DT Fy(kzyky), n =0,1,...,N — 1: the distortion transfer function of each ghost

image.
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In this project, Nmajor, the number of major ghosts. and A,.n = 1.2.... Npajor-

distance between the n'* ghost and the central image, were manually estimated di-

rectly from the corrupted image. Zeng and Smith [1994] reported a procedure to

analyze the position of the ghosts by characterizing the modulation in the project

k-space data. However this automated approach typically fails when the images are
smeared because of the non-rigid motion.

A major difficulty lies in providing an estimate of the DT F,, for each ghost image.

Mathematically, the distortion transfer function is from:
DTFn(krv ky) = Fg"—centred(k.rv ky)/Fno—-motion(krs ky) (TI)

where Fy,_ientred(kz. ky) and Fro—motion(kz,k,) are the Fourier transform of the n'’
ghost image shifted A, to the position of the central image and the central (correct)
image respectively. By moving the ghost image to the position of the central image.
we are removing Mitsa’s phase factor in the image domain.

However the typical overlapping of the central and ghost images means that the
calculation of DT F,(k:,ky) can not be performed directly. We use Fourier trans-
forms of the unoverlapped parts of the ghost and central images instead of that of
the whole ghost and central images to avoid performing the above operation (Equa-
tion 7.1). Using Fourier transforms of the unoverlapped part of the n** ghost and the
corresponding unoverlapped part of the correct image. an estimate of DT F, (k. k,)

is :

—_
=1
.
(]

—

DTFest,,(kxﬁ ky) = f([gn—unoucrlap—ccntred(zv y))/]:([c—unoverlap(-rv y))

where [y, _unoveriap—centred (Z.y) is the unoverlapped parts of the n't ghost shifted A,
back to the position of the central image. I.—unovertap(Z,y) is the corresponding un-

overlapped parts of the central image.
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There is resemblance between the estimation of the DTF represented by Equa-
tion 7.2 and the short time Fourier transform in the one-dimensional case in that
they both use part of the signal to get frequency information when it is impossible to
use the whole signal.

However we found that estimates of DTF by using Equation 7.2 directly are often
not accurate enough. That is not hard to understand because the unoverlapped parts
have the effect of imposing artificially sharp edges to the central and ghosts’ images.
These artificial edges generally introduce undesirable digital processing characteris-
tics [Harris 1978] into the deconvolution in Equation 7.2. In the next section we
discuss a windowing technique to reduce these undesirable characteristics caused by

the artificial edges and increase the accuracy of the DTF estimation.

7.3 The Windowing Techniques for DTF Estimation
By applying a window onto the unoverlapped parts of the central and ghost image.
Equation 7.2 can be approximated by:

7 Iy f([gn—unouerlp—centred(l'~y) . wnd[(;r, y)) -
DT Fenelberb) = 50 senarp (4] - wond (2. 4) (3

where wnd,(z,y) is a two-dimensional window function.

One-dimensional windowing techniques are discussed in detail by Harris [1978].
Normally the Hanning, Hamming and 3-term Blackman profiles are better than rect-
angular profiles in terms of a highly concentrated central lobe with very low sidelobe
structure. We have generated suitable 2D windows. A complication in this applica-
tion is choosing the best location for the window centre to make optimum use of the
information in the image. We chose the size and position of the windows to maxi-
mize the area windowed but still avoid any overlapped portions in order to make full
use of the unoverlapped parts. As shown in Fig. 7.1, the unoverlapped parts are of
pie shaped for object such as the human abdomen whose cross section has a shape

similar to an ellipse. Also because the edges of ghosts contain more comprehensive
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information about motion, the centres of the windows are chosen close to the edges
but goes slightly inside the object. As to forming two-dimensional windows. we chose
to make the 2D windows radially symmetric about their centres in this project. The
reason is because which direction contains more useful information about the motion,

and thus should be emphasized, varies from image to image.

Figure 7.1. The window positions and sizes used to determine the DTFs of the motion
corrupted image

The Fourier transform of the DTF represents how each individual image point is
convoluted with a distortion point spread function. Simple application of DT F .., (kz, k,)
leads to a distortion point spread function that is unrealistically infinite in extension.
This has the effect of enhancing noise induced instability. We reduced the effect of
the instability by limiting the size of the distortion point spread function so that the

estimated DT F(k.,k,) was given by:

DT Fea, (kzo ky) = Flundy(z,y) - F (DT Fesr, )] (7.4)

where wnds(z,y) is the second window applied in the image domain.
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In some situations, such as in presence of high noise, this additional windowing

could make the ghost image lose intensity relative to the central image. In this

situation, it would be necessary to introduce a compensation factor into the DTF to
ensure the ghost intensities remain correct.

In the next section. we apply this DTF estimation method represented in Equa-

tion 7.4 to phantom images corrupted by a variety of DTF's.

7.4 The estimated DTF's for a variety of phantom images

In Chapter 3. we mentioned generation of a series of motion corrupted images
using a variety of different DTFs. We applied Hanning windows to isolate selected
portion of the ghosts and central image using the window centres and sizes (radius is
about 30 pixels) as shown in Fig. 7.1. The second spatial domain window wnd,(z.y)
used to suppress noise effects on the distortion point spread function was fairly wide
with a radius of 25 pixels. The estimated DTFs for phantom images corrupted by a

variety of DTF's are shown in Fig. 7.2 - Fig. 7.9.

Figure 7.2. The estimated DTF (left) for the phantom image corrupted by DTF's hav-
ing a form of Gaussian low-pass filter and the difference image between the theoretical
and estimated DTF (right, intensity scaled up 3 times)

Fig. 7.2 - Fig. 7.9 show clearly that the estimated DTF's are rather accurate, which

indicates our method for estimating DTFs directly from the motion corrupted images



Figure 7.3. The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of Butterworth low-pass filter and the difference image between the
theoretical and estimated DTF (right, intensity scaled up 3 times)

Figure 7.4. The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of radially symmetric Butterworth band-reject filter and the difference
image between the theoretical and estimated DTF (right, intensity scaled up 3 times)

Figure 7.5. The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of belt Butterworth band-reject filter and the difference image between
the theoretical and estimated DTF (right, intensity scaled up 3 times)
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Figure 7.6. The estimated DTF (left) for the phantom image corrupted by DTF's
having a form of Gaussian high-pass filter and the difference image between the

theoretical and estimated DTF (right, intensity scaled up 3 times)

o

Figure 7.7. The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of Butterworth high-pass filter and the difference image between the

theoretical and estimated DTF (right, intensity scaled up 3 times)

.
N
!
i
!

_

Figure 7.8. The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of radially symmetric Butterworth band-pass filter and the difference
image between the theoretical and estimated DTF (right, intensity scaled up 3 times)
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Figure 7.9. The estimated DTF (left) for the phantom image corrupted by DTFs
having a form of belt Butterworth band-pass filter and the difference image between
the theoretical and estimated DTF (right, intensity scaled up 3 times)
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is feasible. It is also noticed that the estimation of DTFs having forms of low-pass

filters is more accurate than others.

7.4.1 Observation: Image itself has effects on the accuracy of DTF esti-

mation

Our experiments indicate that for accurate determination of the DTF there must
be sufficient detail in the unoverlapped portions of the central and ghost images.
Fig 7.10(upper) and (lower) show the experimentally determined DTF's for the phan-
tom images corrupted by DTFs having a form of Gaussian low-pass filter and belt
Butterworth band-pass filter respectively. The left hand side DTFs were estimated
by using only left side unoverlapped part. While the right hand side DTFs were
estimated by using only the right side unoverlapped part. From Fig. 7.10 it is clear
that the estimated DTFs from the left side unoverlapped parts are more accurate
than that from right side overlapped parts, which suggests the accuracy of DTF esti-
mation is related to whether there was high detail (left) or low detail (right) present
in the portion of the central image uncorrupted by motion artifacts. The ideal. but
not practical. case is that the unoverlapped part only consists of an isolated point
in 2 homogeneous background. In this case the distortion of the isolated point will

accurately describe the distortion in all directions associated with the DTF.

7.5 The estimated DTFs for the abdomen image
For real MRI images, usually nothing is known about the motion except the cor-
rupted images themselves. From the abdomen image itself as shown in Fig. 2.5, the

parameters about the ghosts were estimated as:
e N = 2 as two major ghosts can be seen clearly in Fig. 2.5.

e As mention earlier, the automated approach for analyzing the positions of ghosts

proposed by Zeng and Smith [1994] fails when the images are smeared because



Figure 7.10. The estimated DTF's based on different image detail. (a) The estimated
DTF by using the right side of the unoverlapped part for the phantom image with
Gaussian low-pass DTFs. (b) The estimated DTF by using the left side of the unover-
lapped part for the phantom image with Gaussian low-pass DTFs. (c) The estimated
DTF by using the right side of the unoverlapped part for the phantom image with
belt Butterworth band-pass DTFs. (d) The estimated DTF by using the left side
of the unoverlapped part for the phantom image with belt Butterworth band-pass
DTFs.
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of the non-rigid motion. In this project. the distances :\; and A\, between
the upper and lower ghosts and the central image in the abdomen image were
manually measured to be A; = —73 pixels for the upper ghost and A, = 68
pixels for the lower ghost. This was done by recognizing some most visible
structures or features in both the central image and the ghost and then manually
measuring the distance between these two copies of the structures or features.
For example the upper boundary of the abdomen were easily seen in both central
image and the upper ghost after colormap manipulation. These distances for the
upper and lower ghosts from the central image differ unexpectedly by 5 pixels.
much greater than any expected experimental error (+1 pixel). The physical
mechanism behind this phenomenon is not vet known. However this difference

does offer another reason behind the failure of Mitsa’s model, which predicts

these distances to be identical.

e The estimated DTFs for the abdomen image are shown in Fig. 7.11. The used
window positions and window sizes are shown in Fig. 7.12 and were slightly

smaller than those used in the phantom observation.

Figure 7.11. The estimated DTF's of upper ghost (left) and lower ghost (right) for
the abdomen image
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Figure 7.12. The window size and position used for DTF estimation for the abdomen
image
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The estimated abdomen DTF's in Fig. 7.11 look similar to belt band-pass filters.
That agrees with our earlier observation: the ghost outlines of the abdomen image are
very much like the ghost outlines displayed in the phantom image with DTF having
a form of belt band-pass filter. Again the physical background of this belt band-pass
filter characteristics of DTF's of the abdominal motion is not immediately known.

In this project. we also experimented with different assumed positions for the upper
() and lower (A;) ghosts. Fig. 7.13(a)(b) and (c) show the estimated DTFs when
A= =73 Ay =73 A = —68, Az = 68 and A} = —70, A, = 70 respectively.
Compared to the estimated DTFs with actually measured distances Ay = —73 and
A, = 68 as shown in Fig. 7.11, there is no significant differences between the estimated
DTFs with the different pairs of A; and A, in the experiments. They all have similar

belt band-pass filter forms.

7.6 Summary

The distortion transfer functions (DTFs) can be estimated from the corrupted im-
age directly by deconvoluting the unoverlapped part of the ghost by the corresponding
unoverlapped part of the central image. However for the deconvolution to be stable.
windowing techniques are used to avoid the undesirable effects of artificially sharp
edges imposed on the unoverlapped parts and to avoid the instabilities induced by
noise. The estimated DTFs for phantom images indicate that this method of DTF
estimation is efficient provided there is sufficient detail in the image. The estimated
DTFs for the abdomen image were found to be belt band-pass filters. This agrees
with the observation that the ghost outlines of the abdomen image are very similar
to that of the phantom images corrupted by DTFs having forms of belt band-pass
filters. The physical explanation to this characteristics of the abdominal motion is

not known.
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(a)

(b)

(c)

Figure 7.13. The estimated DTF's in the abdomen image with different assumed
positions of the upper (A;) and lower (A;) ghosts. The right and left sides are for
the upper and lower ghosts respectively. (a) when A, = —73, A, = 73; (b) when
Ay = —68, Ay = 68; (¢) when Ay = 70, A, = T70.
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CHAPTER 8

A COMPOSITE IMAGE PROCESSING APPROACH OF
MOTION ARTIFACT SUPPRESSION

8.1 Imntroduction

A composite image processing method for motion artifact suppression in MRI
is proposed in this chapter. Then experiments are designed to examine how the
tasks involved in this composite method impact upon the artifact suppression results.
Finally the correction results for the real abdomen image are presented.

The submitted paper “Using a MRI Distortion Transfer Function to Characterize
Motion of a Non-rigid Object” by Yang and Smith [1998] used some of the results
presented in this chapter.

8.2 The Composite Image Processing Method of Motion Ar-
tifact Suppression

Motion artifact suppression becomes very easy if the central image (true image)
does not overlap with any ghost. In this simple, but not practical case, motion
artifacts can be easily removed by putting zeros outside the region of support (ROS)
of the object. However in practice the central image and ghosts overlap with each
other and the difficulty is how to separate this overlapped part. A composite method
of motion artifact suppression is proposed for non-rigid periodic motions along the
slice selection axis. The strategy of this composite image processing method is to
gradually tune the correct partition for the overlapping between the central image
and ghosts by making the estimated central image and ghosts satisfy the generalized
motion model regarding variant characteristics of motions in both time and space.

Let’s state some notations first. Srecorded Stands for the recorded (or measured)
data in k-space, which is corrupted by motion. I corded is the reconstructed image of

Srecorded, Which can be achieved by applying the discrete Fourier transform on Syecorded-
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S. and [, are the frequency domain data and space domain data of the central image
respectively. S, and [, are the frequency domain data and space domain data of
the ghosts respectively. R. represents the region of support (ROS) of the central
image. R, stands for the ROS of ghosts. Ryn. is the part of R, that overlaps with
the ROS of the central image. Rypc is the part of R, that is outside ROS of the
central image. Hence the region of support of ghosts is given by: R, = Rync + Rygic-
This implies the ghosts in space domain can be divided into two parts: [,,,, and [,,,.

where [,,,, represents the ghosts part outside the ROS of the central image. [, is

Jout
the ghosts part overlapped with the central image. In other words. [,,, = [, € Ryn..
Iy,.. = [; € Ryppe. Ry, the ghosts part outside the ROS of the central image can be
obtained straightforwardly by superimposing R,qp. onto the corrupted image /.ecorded-
However. getting [, . the overlapped part of ghosts with ROS of the central image.
needs more elaboration.

At the beginning of the composite method. :V: the number of ghosts displaying
in the corrupted image and the distance A,, n = 1.2,..., V. between each ghost and
the central image must be measured from the corrupted image. Then R., R,n. and
Rypc are obtained by using the snakes and region labeling algorithms as discussed in
Chapter 4-6. Then DTF's for all ghosts are estimated as discussed in Chapter 7.

Assume we have a rough estimate of ghosts I} at the i** iteration. The next

estimate I_;“, which is expected to be a better estimate of ghosts. can be obtained

by two different paths:

e In path 1, we make use of the fact that the ghost part outside the ROS of
the central image is known and unchanged. The (: + 1)** estimate of ghosts is

composed of two parts: the unchanged part [, ,, and the overlapped part [‘+!

g'"pathl
from [;. That is:
i+1 7 =+l i+1
[g‘"pathl - [9 € Rgnc [gpathl - [Qout + [ginpalhl (8'1)
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e By path 2 the generalized motion model and the frequency domain information
available from the current estimate of the ghosts are used to generate a new

estimate.

i _ ¢ L — ]
Sg - 'F[[g] Scpalh2 = recorded — Sg

where wam is the i*h estimated frequency data of the central image. Note that

the ROS of S'fpn , s space domain data. I is likely no longer R. but the

Cpath Cpath2’
whole field of view when S does not provide a correct estimate of ghosts. The

h estimated central image with ROS bounded can be obtained as:

II =I' €R.

Cpath2 Cpath2

where [’ = F-$

epach2 path]
The frequency domain data S:.'pmz of the i** estimated central image with ROS
bounded is:

St = FI! ]

Cpath2 Cpath2

Then making use of the generalized motion model Equation 3.4, we have:

\f

o+l —_ —j2rAnk
bgpalhl - " Cpach Z DTF A l.' ) e‘(p 1eF Y

i+1 - —1 t+l R
[gpath2 - f [ gpath] (8'2)

The (i + 1)** estimate of ghosts can be considered as the average of the estimates

from the two different paths:

[;-l-l ([l-{-l + [i+l ) (8.3)

9pathl 9path2
That means the (¢ + 1) estimate of ghosts takes into account information about the

generalized motion model and the ROSs and should be a better approximation than

the i** estimate provided the used generalized motion model and ROSs are correct.
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Figure 8.1. Block diagram of the composite image processing method for removing
artifacts associated with motion of a non-rigid body
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The block diagram of this composite method is shown in Fig. 8.1.

The detail steps of the method are:

1.

I~
.

=1
.

oL

10.

Inverse Fourier transform the measured motion corrupted k-space data S,..orded

and obtain the corrupted image [ ecorded-
Manually measure N and A,, n=1.2.....N, for all the ghosts.

Apply the snake algorithms and region labeling algorithms to the corrupted

image. [ ecorded- to obtain R., Ry, Ryn. and Ryge.

Superimpose Ryps. onto the corrupted image, /ccordes and obtain I, . which
is the portion of ghosts that lies outside the ROS of the central image and

considered as accurate.

The i** iteration begins with an initial estimate S¢, the frequency data for the
g q )

ghosts. At the beginning of iteration. i = 0, set 53 to zero.

By path 1, inverse Fourier transform S} to obtain [}, an estimate of the ghosts

in image domain.

Superimpose Rync to I; and obtain [;m ot ghost portion that is overlapped
pa

with ROS of the central image.

. Merge I; " with [, .. by Equation 8.1 and get a new estimate of the ghosts:
inpae
t+1
Ipathl”®

. By path2, subtract S; from the recorded k-space data S,ecrdeq and obtain a

ROS unbounded central image’s frequency data: Sipmz.

to obtain its corresponding image domain data

Inverse Fourier transform S;
path2

fi Wi
P

Cpath2 Cpath2

is ROS unbounded, meaning that the ROS of | sy 1S the whole

field of view.



I1.

13.

14.

16.

. Fourier transform [}
pat

and obtain the ROS bounded image I

. i
Superimpose R. onto [i Cpatnz®

h2

., to obtain its frequency data 57 .

Apply the motion model Equation 8.2 and obtain a new estimate of frequency

data for ghosts: Si*!

“~ Gpath2*

to obtain its corresponding space domain data.

Inverse Fourier transform S;+!
path2

i+1
[gpalh2 -

Stop the iteration if defined iteration-stop condition is satisfied. In our exper-
imental investigation, since we are not looking for a highly efficient algorithm.

we simply chose to stop after a fix number of iterations. ié,,a, is put out as

h2
an estimate of the central image for quantitative evaluation. Otherwise average

the estimates as Equation 8.3 to obtain [;‘“, a new estimate of ghosts for next

iteration.

Fourier transform [‘*' to obtain its corresponding frequency data S'*!. Go
g o ~ g

back to step 5 and start the (¢ + 1)* iteration.

8.3 Effects of the Tasks Involved in the Composite Method

on the Success of Motion Artifact Suppression

As we discussed above, in our composite method for motion artifact suppression

there are several image processing tasks involved, including:

1.

The estimation of N: number of ghosts and A,, n = 1,2,..., V. the distance

between each ghost and the central image.

2. The estimation of contours of the central image and ghosts followed by segmen-

3.

tation of R, Rgnc and Ryp,.

The estimation of the distortion transfer function DT F,.n = 1,2, ..., N, for each

ghost.
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Generally the success of motion artifact suppression by this composite method is
dependent on every task involved. We defined two metrics to evaluate the success of

correction in this project.

e The central energy error remaining, Cerror—remain- Was defined as the ratio of
central difference energy after correction and before correction. Corror—remain

can be calculated by:

Cerrar—remain =

100% * Z llcor:'ecied(-l'v y) - [truc(-tay)lz/ Z Ilcorrupted(zay) - [true(-rvy)lz
(z.y)ER. (z.y)ERC

where R. is the region of support (ROS) of the central image. It ue(Z.Y). Lcorruptea( 2. Yy)-
[orrected(Z. y) are the intensities of the true image without any motion artifacts.

the motion corrupted image and the corrected image respectively.

This measure, Cerror—remain, iS better than comparing the normalized mean
square difference of the corrected and uncorrected images relative to the true
image. The normalized mean square difference is grossly biased by the signal
energy associated with the portion of the central image undistorted by ghosts.
Cerror—remain Shows how much percentage of the remaining difference energy that
is still there after correction compared to before correction. If there is no cor-
rection, Cerror—remain Stays at 100%. If the correction is perfect, Cerror—remain
becomes zero. This means the distortion in the central image is completely re-
moved so that central part of the corrected image is exactly the same as that of

the true image.

Cerror—remain is important because it is associated with the distortion in the cen-
tral image used for diagnosis. Unfortunately Cerror—remain I1s not available for
real MRI images as true images typically are not available in real MRI appli-
cations. To overcome this problem another metric, the ghost energy remaining,

was defined.
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e The ghost energy remaining, Gerror—remain, Was defined as ratio of the ghost

energy outside R., the region of support of the central image. after correction to
before correction. Mathematically Gerror—remain is given by:

Gerror—remain = 100% * Z [Lcorrectea(, y) |2/ Z Heorruptea(2. )
(z.y)€R. (z.y)€R.

Ry—remain 1s a good indication for the success of ghost suppression outside R.
showing how much percentage of the ghost energy that is still remained after
correction compared to before correction. The smaller Ry, emain is. the more the
artifacts are suppressed. FRg_remain becomes zero when the artifact suppression
is complete outside the region of support of the central image. While Ry_remain

stays at 100% when no artifacts are suppressed at all.

Cerror—remain is available for both phantom images and real MRI images. If we
can show that Cerror—remain tracks Gerror—remain for phantom images. we can
assume a similar behavior for the medical images. Thus an improvement in
G error—remain indicates an expected improvement in C.rror—remain- 10 many algo-
rithms used to suppress ghosts, Gerror—remain 1s artificially set to zero and this
relationship between Gerror—remain @0d Cerror—remain 15 Not available. However
since our algorithm attempts to characterize both the ghosts and central images,
Gerror—remain 1s Dot forced to zero and remain a valid metric of the success of the

artifact suppression.
The following experiments are designed to investigate how the tasks impact upon
the suppression results.

8.3.1 The iterative approach

For the phantom images corrupted by a variety of distortion transfer functions

(DTFs) as shown in Fig. 3.1 - Fig. 3.8 in chapter 3, the motion parameters are
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N =2, A = —80. A, = 80. With these parameters and the theoretical DTFs. the
corresponding corrected images by using our composite method are shown in Fig. 8.2
- Fig. 8.5. The central energy error remaining Cerror—remain and the ghost energy

remaining Gerror—remain are listed in Table 8.1.

Figure 8.2. (b) shows the corrected images for the phantom images (a) with Gaussian
low-pass DTFs (left) and Butterworth low-pass DTFs (right) respectively when the
motion parameters and theoretical DTF's are exactly known. (c) shows the difference
images between the corrected and the true images (with the intensity scaled up by
65 times)
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Figure 8.3. (b) shows the corrected images for the phantom images (a) with radially
svmmetric (left) and belt (right) Butterworth band-reject DTF's respectively when the
motion parameters and theoretical DTFs are exactly known. (c) shows the difference
images between the corrected and the true images (with the intensity scaled up by

65 times)



(c)

Figure 8.4. (b) shows the corrected images for the phantom images (a) with Gaussian
high-pass DTFs (left) and Butterworth high-pass DTF's (right) respectively when the
motion parameters and theoretical DTF's are exactly known. (c) shows the difference
images between the corrected and the true images (with the intensity scaled up by
65 times)
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Figure 8.5. (b) shows the corrected images for the phantom images (a) with radially
symmetric (left) and belt (right) Butterworth band-pass DTFs respectively when the
motion parameters and theoretical DTF's are exactly known. (c) shows the difference
images between the corrected and the true images (with the intensity scaled up by
65 times)
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DTFs’ form

Cerror—remain (%)

Gcrror-remain (%)

Gaussian low-pass filter 0.0009 0.003
Butterworth low-pass filter 0.002 0.004
Butterworth band-reject filter (radially symmetric) 0.007 0.006
Butterworth band-reject filter (belt) 0.007 0.00
Gaussian high-pass filter 0.4 0.7
Butterworth high-pass filter 0.5 0.7
Butterworth band-pass filter (radially symmetric) 0.6 1.3
Butterworth band-pass filter (belt) 0.5 1.5

Table 8.1. The central energy error remaining Crror—remain a0d ghost energy remain-
ing Gerror—remain Of the corrections when DTFs and parameters about the motions

are exactly known
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As shown in Fig. 8.2 - Fig. 8.5, the distortion associated with the non-rigid motions
are reduced. The small objects that were blurred by motions and hardly seen in the
corrupted images become clearer. That suggests the iterative approach is success-
ful. Detailed examination shows that the correction results for the phantom images
corrupted by DTFs having a form of low-pass and band-reject filters are better than
those having a form of high-pass and band-pass filters. The metrics Cerror—remain and
Gerror—remain 10 Table 8.1 agree with this observation. We think this limitation is
mainly due to the merging of the latest estimate I}  of the ghost image that had

been overlapped by the central image, with the known. accurate ghost image data

I

Gout *

Simple replacement of the data I  into the original ghost image works well.
but has a tendency to generate a central image with the outer ghost contours super-
imposed upon it. This is because the two parts of the ghost image are discontinuous.
which generates artifacts in k-space that disrupt the iteration’s convergence. However
a smoothing merging is difficult to achieve across the changing contour between the
overlapped and non-overlapped portions of the images.

Note that the ghost energy remaining Gerror—remain tracks the central error remain-
ing Cerror—remain Well as shown in Table 8.1. An improvement in C,yror—remain always
goes with an improvement in Gerror—remain- Cerror—remain Was from 0.3 to 2.0 times of
Glerror—remain- 10 the experiments, we also defined Cyssg. the normalized mean square
difference of corrected image relative to the true image as:

Cuse =100.0% * D |Leorrected(T:¥) = Lirue(z.0)*/ D iruel®
(z.v)eR. (z.y)€R.
we found that this normalized mean square difference was a poor indication for the
success of ghost suppression. For example, our visual system and the difference images
between the corrected images and the true image all indicated that improvement for
the phantom image with Gaussian low-pass DTF's was much better than that with belt

Butterworth band-pass DTFs. However the Cyssg numbers, 0.0005% for the phantom



DTFs’ form Cerror—remain(%) G:rror—remain (%)
Gaussian low-pass filter 0.009 0.004
Butterworth low-pass filter 0.02 0.006
Butterworth band-reject filter (radially symmetric) 0.03 0.01
Butterworth band-reject filter (belt) 0.02 0.006
Gaussian high-pass filter 1.0 0.9
Butterworth high-pass filter 1.3 0.9
Butterworth band-pass filter (radially symmetric) 3.7 3.0
Butterworth band-pass filter (belt) 35 2.3

Table 8.2. The central energy error remaining Ce ror—remain and ghost energy remain-
ing Gerror—remain Of the corrections when the estimated DTF's are used

image with Butterworth belt band-pass DTFs and 0.0002% for the phantom image
with Gaussian low-pass DTFs, both were very small. The reason was these C\y/sg
numbers did not take into account the severity degree of corruption before correction.
Actually the normalized mean square difference of uncorrected image relative to the
true image was 22.3% and 0.09% for the phantom images with Gaussian low-pass
DTFs and belt Butterworth band-pass DTFs respectively. That is the corruption for
the phantom image with Gaussian low-pass DTFs was more severe than that for the

phantom image with belt band-pass DTFs.

8.3.2 Effects of estimation of DTF

Fig. 8.6 and Fig. 8.7 show the corrected images under the same conditions as in
section 8.3.1 except the used DTF's are not the theoretical ones but the estimated
ones as shown in Fig. 7.2 - Fig. 7.9 in Chapter 7. The corresponding central energy
error remaining Cerror—remain and ghost energy remaining Gerror—remain are listed in
Table 8.2.

These results indicate that the more accurate the DTFs used during the artifact
suppression, the better the correction results. We have noted that great detail in

the unoverlapped parts of the image leads to better estimate of the DTFs. In addi-



Figure 8.6. The corrected images for the phantom images with DTFs having a form of
Gaussian low-pass filter (a), Butterworth low-pass filter (b), radially svmmetric But-
terworth band-reject filter (¢) and belt Butterworth band-reject filter (d) respectively
when the used DTF's are not theoretical but estimated
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Figure 8.7. The corrected images for the phantom images with DTFs having a form
of Gaussian high-pass filter (a), Butterworth high-pass filter (b), radially symmetric
Butterworth band-pass filter (c) and belt Butterworth band-pass filter (d) respectively
when the used DTFs are not theoretical but estimated
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tion. we can also see from Table 8.2 that an improvement in ghost energy remaining

G error—remain g0€S With an improvement in central energy error Cerror—remain-

8.3.3 Effects of contours

As discussed earlier in Chapter 4 - 3, the snakes are gradually attracted to the
desired contour from far away even at places where edges are very weak. However not
all the points are exactly at the sharpest edges along the contour because of the global
optimization of the snakes. We investigated the effects of inaccurracy in the contour
upon motion artifact correction. Fig. 8.8 and Fig. 8.9 show the correction results for
the phantom images with DTFs having a form of Gaussian low-pass filter as shown in
Fig. 3.1 and belt Butterworth band-pass filter as shown in Fig. 3.8 respectively. The
same conditions as in section 8.3.1 are used except that the contours of the central
images were deliberately made several pixels smaller or bigger. The corresponding
central energy error remaining Ce,ror—remain a0d ghost energy remaining Gerror—remain
are listed in Table 8.3.

The results indicate that the corrections become even better when the snaked
contour of the central image is slightly inflated 1-3 pixels in terms of Cerror—remain and
Gerror—remain- On the other hand the corrected image appearance, Cerror—remain and
Gepror—remain all indicate that the corrections become much worse when the contours
are deflated. That is because the distortion in the corrected image is more obvious
when the region of support (ROS) goes towards inside the object than that when ROS
goes towards outside the object. Therefore in this project we inflated the snaked
contour about 3 pixels for the composite correction algorithm to ensure that none
of the points along the contour goes inside the object. However we kept the ghost
contours in order to avoid causing extra inflation. The contour inflation and deflation
were done by using the contour ballooning algorithm discussed earlier in Chapter 6.

Again it is noticed the greatly decreased sensitivity of the approach when trying to



(a) ~(b)

(c) (d)

(e) (£)

Figure 8.8. The corrected (left) and their difference (right, intensity scaled up by
10 times) images between the corrected and the true images for the phantom image
with Gaussian low-pass DTFs when the contours are deliberately made several pixels
smaller or bigger. (a)(b) Using the snake contour deflated by 3 pixels. (c)(d) Using
the snake contour. (e)(f) Using the snake contour inflated by 3 pixels.



126

(a) (b)

(c) (d)

(e) (£)

Figure 8.9. The corrected (left) and their difference (right, intensity scaled up by 10
times) images between the corrected and the true images for the phantom image with
belt Butterworth band-pass DTFs when the contours are deliberately made several
pixels smaller or bigger. (a)(b) Using the snake contour deflated by 3 pixels. (c)(d)
Using the snake contour. (e)(f) Using the snake contour inflated by 3 pixels.



Form of DTF A (pixels) | Cerror—remain (%) | Gerror—remain (%)
Gaussian low-pass filter 3 0.0009 0.003
Gaussian low-pass filter 2 0.0005 0.01
Gaussian low-pass filter 1 0.003 0.2
Gaussian low-pass filter 0 0.03 0.2
Gaussian low-pass filter -1 0.2 1.1
Gaussian low-pass filter -2 0.9 2.2
Gaussian low-pass filter -3 2.1 3.5
Butterworth band-pass filter (belt) 3 0.5 1.5
Butterworth band-pass filter (belt) 2 1.0 4.7
Butterworth band-pass filter (belt) 1 2.6 41.6
Butterworth band-pass filter (belt) 0 10.4 49.1
Butterworth band-pass filter (belt) -1 60.5 63.0
Butterworth band-pass filter (beit) -2 69.1 58.5
Butterworth band-pass filter (belt) -3 256.6 a7.2

[V
=1

Table 8.3. The central energy error remaining Cerror—remain ald ghost energy remain-
ing Glerror~remain Of the corrections when the snaked contour are inflated (A > 0) and

deflated (A < 0) A pixels



Form of DTF Distance (pixels) Cerror—remain (%) Gerror—remain (%)
Gaussian low-pass filter 77 1.0 0.1
Gaussian low-pass filter 78 0.5 0.06
Gaussian low-pass filter 79 0.07 0.01
Gaussian low-pass filter 80 0.009 0.004
Gaussian low-pass filter 81 0.07 0.009
Gaussian low-pass filter 82 0.3 0.03
Gaussian low-pass filter 83 0.6 0.05
belt Butterworth band-pass filter 77 7.1 3.2
belt Butterworth band-pass filter 78 5.5 2.9
belt Butterworth band-pass filter 79 4.7 2.7
belt Butterworth band-pass filter 80 3.5 2.3
belt Butterworth band-pass filter 81 4.4 2.4
belt Butterworth band-pass filter 82 5.6 2.5
belt Butterworth band-pass filter 83 7.8 2.8

Table 8.4. The central energy error remaining Cerror—remain and ghost energy remain-
ing Gerror—remain Of the corrections when the distance between the upper ghost and

the central image is not accurate

correct phantom images with DTF's of simple characteristics.

8.3.4 [Effects of inaccurately determining distances between ghosts and

the central image

If the distances, A,,, (n = 1,2,..., N), between ghosts and the central image are
not accurate, how are the estimated DTFs and the iterative process affected? Ex-
periments were made under the same conditions as in Section 8.3.2 except that the
distance A, used for estimating DTF and for the iterative algorithm were deliberately
made one or two pixels smaller or bigger. Fig. 8.10 and Fig. 8.11 show the corrected
and their difference images compared to the true image for the phantoms with DTFs
having a form of Gaussian low-pass filter and belt Butterworth band-pass filter re-
spectively. The corresponding central energy error remaining Cerror—remain and ghost
energy remaining G ror—remain are listed in Table 8.4.

The results indicate the following:
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(a) (b)

(c) (d)

(e) (£)

Figure 8.10. The corrected (left) and the difference (right, intensity scaled up by
10 times) images compared to the true image for the phantom image with Gaussian
low-pass DTFs when the distance between the upper ghost and the central image
is not accurate. (a)(b) The used distance = 77. (c)(d) The used distance = 80
(accurate). (e)(f) The used distance = 83.
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(a) (b)

(c) (d)

(e) (£)

Figure 8.11. The corrected (left) and the difference (right, intensity scaled up by 10
times) images compared to the true image for the phantom image with belt band-pass
DTFs when the distance between the upper ghost and the central image is not ac-
curate. (a)(b) The used distance = 77. (c)(d) The used distance = 80 (accurate).

(e)(f) The used distance = 83.
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e The composite method still worked even when the estimation of the distances was
not accurate. As shown in Table 8.4, the greatest central energy error remaining

is 7.8% and the greatest ghost energy remaining is 3.2%.

e The correction with inaccurate distances is not as successful as that with accurate
distances. That is error in estimates of the relationships between ghosts and
the central image can not lead to perfect artifact suppression by the composite

method.

8.4 The results with the Real Abdomen Image

To demonstrate the feasibility of the generalized motion model and the composite
image processing method, the abdomen image in Fig. 2.5 was tested.

For comparison, the correction results by using Mitsa’s method are shown in
Fig. 8.12. The central energy error remaining is not available as the true image
is not known. The ghost energy remaining was calculated to be 99.2%. meaning
ghost energy is hardly suppressed outside the region of support of the central image.
It can be seen from the corrected image that the central image almost stayed the
same, meaning there is little correction.

As discussed earlier, from the corrupted image, two major ghosts can be seen
clearly. The distances between the ghosts and the central image in the abdomen
image are manually measured to be 73 pixels for the upper ghost and 68 pixels for
the lower ghost. The DTF's estimated directly from the abdomen image were shown
in Fig. 7.11 in Chapter 7. The snaked contour for the central image and the contours
of ghosts obtained by inflating that of the central image are shown in Fig. 5.4 and
Fig. 5.6 respectively in Chapter 5. The region of support of the central image, R..
is obtained by our region labeling approach and was shown in Fig. 6.3 in Chapter 6.
By using our composite method with these motion parameters, DTFs for the upper

and lower ghosts and region information about the central image and ghosts, the
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correction results were obtained as shown in Fig. 8.13. The ghost energy remaining
is 31.7% as shown in Table 8.5, meaning less than 1/3 ghost energy remained and
about 2/3 of the ghost energy outside the region of support of the central image was
removed. From the corrected image as Fig. 8.13(b), it is obvious that the ghost energy

is significantly suppressed.

(a) | (b)

Figure 8.12. The corrected image for the abdomen image by using Mitsa’s method.
(a) The corrupted abdomen image. (b) The corrected image by using Mitsa’s method.
(c) the difference image between (a) and (b) with intensity scaled up by 70 times.
This small difference image indicate little change in image
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(c)

Figure 8.13. The corrected image for the abdomen image by using our composite
method with A; = =73 and A; = 68. (a) The corrupted abdomen image. (b) The
corrected image by using our composite method. (c) the difference image between
(a) and (b) with intensity scaled up by 7 times

Motion artifact suppression method | Cerror—remain (%) | Gerror—remain (%)
Mitsa’s method 99.2
Our composite method 31.7

Table 8.5. The ghost energy remaining Gerror—remain Of the corrections by Mitsa’s
method and our composite method
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With the same conditions as for Fig. 8.13 except different distances A; and A,
between the ghosts and the central image and different estimated DTF's, we experi-
mented the composite method of motion artifact suppression for the abdomen image.
We used A, = —-73, A, = 73 and the corresponding estimated DTFs shown in
Fig. 7.13(a) for Experiment 1, A; = —68 and A, = 68 and the corresponding esti-
mated DTFs shown in Fig. 7.13(b) for Experiment 2, A, = —70. A\, = 70 and the
correspending estimated DTFs shown in Fig. 7.13(c) for Experiment 3 respectively.
The corrected and difference images are shown in Fig. 8.14(a)(b) and (c). The ghost
energy remainings were measured to be 30.3%, 32.5% and 31.5% for Experiment 1.
2. 3 respectively. These results basically agree with our observations to the phan-
tom images discussed in Section 8.3.4 except the correction for the abdomen image
is less successful than that for the phantom images. The author think there are at
least three possible factors related to the reason why the correction for this abdomen

image is less successful than that for the phantom images:

e The accuracy of the estimated DTFs. The unoverlapped parts of the abdomen
central image and ghosts don’t seem to have enough detail to provide information

of the motion in all directions.

e The way of merging in the iteration algorithm. As we pointed out when we
discussed the phantom image with DTFs having a form of belt Butterworth
band-pass filter. there is a tendency to disrupt the iteration’s convergence when

simple replacement was done for merging.

e The complex characteristics of the motion. It may be possible there exist more
than one non-rigid motion across the abdomen. In this project, only one non-

rigid motion was taken into account.

Further research work is certainly required to investigate all possible factors in-

volved in the complicated motion artifact suppression problem for real MRI images.
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Figure 8.14. The corrected abdomen images (left) and the difference images (right,
with intensity scaled up by 7 times) between the corresponding corrected images and
the original abdomen image by using our composite method with different assumed
positions for the upper (A;) and lower (A;) ghosts. (a) when A; = =73, A, = 73;
(b) when A; = —68, A, = 68; (c) when A, = —70, A, = 70.
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8.5 Summary
The composite image processing method of motion artifact suppression described
in this Chapter is based on the generalized motion model, regions of support infor-
mation obtained by the snake algorithms and estimates of the DTFs. The success of
motion artifact suppression is therefore related to all these image processing tasks.
For fast evaluating the success of motion artifact suppression, we defined the central
energy error remaining Cerror—remain and the ghost energy remaining Gerror—remain-
This composite method gave excellent results for severely motion corrupted phan-
tom images when the estimates were accurate: The central energy error remain-
ing Cerror—remain Was 0.0009-0.007% and ghost energy remaining was 0.003-0.006%
for phantom images with DTFs having forms of low-pass and band-reject filters:
For phantom images with DTFs having forms of high-pass and band-pass filters.
Cerror—remain a0d Gerror—remain Were 0.4-0.6% and 0.7-1.5% respectively. Under the
same condition except that motions’ parameters and DTFs were estimated rather
than theoretical, the correction results were not as perfect as in the case of theoret-
ical DTFs but still very good: Cerror—remain a0d Gerror~remain Were 0.009-0.03% and
0.004-0.01% respectively for the phantom images with DTFs having forms of low-pass
and band-reject filters; For phantom images with DTFs having forms of high-pass and
band-pass filters. Cerror—remain 20d Gerror—remain Were 1.0-3.7% and 0.9-3.0% respec-
tively. As to the real abdomen images with unknown respiratory motion. the motion
artifacts were significantly suppressed by our composite method with the ghost energy
remained of 31.7%, compared to that of 99.2% by Mitsa’s method. Although further
research work is required for better correction, these results indicated that the gen-
eralized motion model and the composite image processing method had a promising
potential for correcting both phantom images and the abdomen image with unknown

respiratory motion.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

In this thesis, post-processing methods for motion artifact suppression in magnetic
resonance imaging (MRI) were investigated. When existing post-processing methods
were reviewed, it was clear that many existing methods modeled human body motions
as rigid despite the obvious fact that the human body typically was not rigid. These
oversimplified, thus nonrealistic, motion models did not lead to adequate corrections
when applied to real MR images.

Based on experimental observations, a new generalized motion model was empir-
ically proposed. The non-rigidity or spatially variant characteristics of motions was
taken into account by introducing a distortion transfer function (DTF). The existing
motion models were shown as just special cases of this generalized model. A com-
posite image processing method was proposed to correct ghosts caused by non-rigid
periodic motions along the slice selection axis. There were several image processing
tasks involved in the composite method, including contour detection and contour-
based region labeling and estimation of DTFs for ghosts.

As the outer boundaries of motion corrupted MR images were often weak, even
broken at some places, contours detected by conventional contour detection meth-
ods, such as mask operators, were not continuous. To solve the contour continuity
problem, a new technique, the snake, was investigated. The strategy of snakes was to
locate positions of a minimum energy field. The energy field was actually an integra-
tion of different kinds of energy along the entire contour. There were usually three
kinds of energy: image energy from image features, external energy from extraneous
knowledge or constraints and internal energy from the smoothness constraints about

the contour. The advantages of snakes included: flexible mechanism to incorporate
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all kinds of information about the boundary; contour connectivity; and robustness to
noise. For computation, discretized snake models were required. The solution of a dis-
cretized snake model was obtained by solving a linear equation system evolutionarily.
[n the implementation of snakes, some issues were considered. such as contour rep-
resentation, contour resampling, forces choosing, elasticity and rigidity coefficients
optimization, image gradient smoothing and stabilities. Continuous contours were
achieved for the abdomen image by our implementation of the snakes.

With contours identified, a method, called a generalized scan-conversion method.
was proposed by the author to label regions. This generalized scan-conversion method
was based on the odd-parity rule from computer graphics. The problem began with
a few sampled points on a contour. For the success of the generalized scan-conversion
method, a complete set of points on a contour was required, which was achieved by
using the cubic B-spline curve fitting and interpolating algorithms. This generalized
scan-conversion region labeling method was fast.

A method of estimating distortion transfer functions (DTF) directly from the
corrupted images was proposed. The DTFs were estimated as the deconvolution of
the unoverlapped part of the ghost and the corresponding unoverlapped part of the
central image. To avoid the undesirable effects of artificially sharp edges imposed on
the unoverlapped parts and to reduce the instabilities induced by noise, windowing
techniques were employed. Phantom images corrupted by a variety of mathematical
DTFs were used. The estimated DTFs of the phantom images indicated this method
of DTF estimation was effective. The estimated DTF's for the abdomen image looked
like belt band-pass filters, which agreed with the observation that the ghost outlines
of the abdomen image were very similar to that of the phantom images corrupted by
DTFs of belt band-pass filters. The physical explanation to this characteristics of the

abdominal motion is not known.
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The strategy of the composite image processing method for ghost suppression was
to make use of the estimated DTF's and the regions of support (ROS) of the central
image and ghosts. With this knowledge it was possible to make the estimated central
image and the estimated ghosts satisfy the generalized motion model. Pictures of
the corrected images and some associated metrics were provided. We defined central
energy error remaining as ratio of the difference energy in the region of support of
the central image after correction to before correction. The ghost energy remaining
was defined as ratio of ghost energy outside the region of support of the central image
after correction to before correction.

This composite method gave excellent results for severely motion corrupted phan-
tom images when the estimates were accurate: The central energy error remain-
ing Cerror—remain Was 0.0009-0.007% and ghost energy remaining was 0.003-0.006%
for phantom images with DTFs having forms of low-pass and band-reject filters:
For phantom images with DTFs having forms of high-pass and band-pass filters.
Corror—remain a0d Gerror—remain Were 0.4-0.6% and 0.7-1.5% respectively. Under the
same condition except that motions’ parameters and DTFs were estimated rather
than theoretical. the correction results were not as perfect as in the case of theoret-
ical DTF's but still very good: Cerror—remain 20d Gerror—remain Were 0.009-0.03% and
0.004-0.01% respectively for the phantom images with DTF's having forms of low-pass
and band-reject filters; For phantom images with DTF's having forms of high-pass and
band-pass filters. Cerror—remain 20d Gerror—remain Were 1.0-3.7% and 0.9-3.0% respec-
tively. As to the real abdomen images with unknown respiratory motion, the motion
artifacts were significantly suppressed by our composite method with the ghost energy
remained of 31.7%, compared to that of 99.2% by Mitsa’s method. Although further
research work is required for better correction, these results indicated that the gen-
eralized motion model and the composite image processing method have a promising

potential for correcting both phantom images and the abdomen image with unknown
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respiratory motion.

In short, the contributions of this project were:

1.

o

Ut

Generalizing the existing motion models by introducing a distortion transfer

function (DTF).

Proposing methods to accurately estimate DTFs for non-rigid motions directly

from corrupted images.

Investigating and implementing the active contour models: snakes and imple-
menting these snake algorithms for contour detection for corrupted MR images

for motion artifact suppression purpose.

Proposing a new approach for motion corrupted MRI image segmentation by

using the snake contour information.

Proposing a new generalized scan-conversion algorithm to label regions given a

few points on a contour.

Proposing a composite image processing method to remove ghosts caused by

non-rigid period motions along the slice selection axis.

The framework of this composite image processing method were demonstrated

feasible for both phantom images and the abdomen image with unknown respiratory

motions. However, a number of limitations in the implementation of this composite

method were identified, which remain to be investigated in future work in this area.

L.

2.

How to automatically estimate the number, position and intensity of ghosts in

the corrupted images.

The implied deconvolution associated with DTF estimation requires applications

of windows [Harris 1978] to maintain stability. The problem of automating the
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determination of the optimal window shape or characteristics remains to be

investigated.

. The accuracy of estimation of distortion transfer function (DTF) depends on the

details present in the non-overlapped portion of the ghost and central image. An

approach to identifying the optimal size and location of these areas is required.

Theoretical guidelines to determine the elasticity coefficient and rigidity coeffi-
cient needed for the snake algorithm should be investigated further to get more

stable and more reproducible contours.

By the generalized scan-conversion region labeling method, more considerations
should be made in case of more complex contours in order to avoid any exceptions

to the odd-parity rule.

. Although we can accurately estimate the DTFs having a form of high-pass and

band-pass filters. the reason behind our ability to correct the corresponding
images with less success than for images with DTFs having a form of low-pass

and band-reject filters needs to be investigated.

A more interesting challenge would be to extend this composite post-processing

framework of motion artifact suppression.

1.

o

It would be worthwhile to investigate how to estimate motions’ parameters, such
as number of major and minor ghosts and distances between the ghosts and the
central image, and how to estimate motions’ distortion transfer functions when
motion’s periodicity becomes less obvious when the ghosts overlap more severe

and when the motion artifacts become more blurred.

It would be an attractive topic to investigate the possibilities of using the esti-

mated distortion transfer functions (DTFs) for valuable medical diagnosis pur-



pose.

. It would be extremely valuable if different non-rigid motions across the imaged
object are taken into account. In our current work, all parts of the imaged object
are assumed to undertake an identical non-rigid motion. However in practical
cases, it is possible that different parts of the imaged object may undertake
different non-rigid motions. Then mathematically the distortion transfer func-
tions should the function of position. That is in the generalized motion model
in Equation 3.2, Fion_rigid(kz. ky) should be Fropn—rigia(kz. ky.z.y). What is the
best approach to incorporate this information into the corrected image? This

however, is likely to be an extremely difficult task.
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