THE JADE APPROACH TO
DISTRIBUTED SOFTWARE DEVELOPMENT

Brian Unger, Alan Dewar, John Cleary and Graham Birtwistle
Department of Computer Science
The University of Calgary
Calgary, Alberta, Canada T2N IN4
UUCP: ...!{ihnp4,ubc-vision }'alberta'calgaryunger
ARPA: unger.calgary. ubc@csnet-relay
CDN: unger@calgary

ABSTRACT

Jade is an environment that supports the development of
distributed software. Components may be written in any of a
number of different languages. A common inter-process
communication protocol provides a uniform interface among the
components. A window system allows the us;: to interact with
many different processes at once and allows for multiple views
of the same process. A hicrarchical graphics system is provided
for use with documentation and programming, and for support of
monitaring. The non-determinism of distributed systems may be
controlled in order to provide repeatability of executions and to
aid in prototyping real-time distributed software. Finally, the
formal specification of inter-process events in Jade is supported
by a communications protocol verifier, allowing run-time
consistency checking. We describe these tools and their use in
the development of distributed software for the control of a
simulated system of parking lots.

1. INTRODUCTION

The Jade environment may be seen as consisting of four
levels: the hardware level, the kernel level, the programming
level, and the prototyping level. Each level provides support for
the next. Figure 1 shows how the various components of Jade fit
into these levels. Below, we describe the levels, proceeding
bottom-up. We use the parking-lot problem as 2 running
example to illustrate the facilities offerred at the various levels.

Hardware and kernel levels

The central unifying coocept underlying the Jade
eavironment is the Jade Inter-Process Communication protocol,
or Jipc (pronounced as ‘‘gypsy’’) [Neal 1984), which is a Thoth-
like protocol {Cheriton 1979). Jipc interfaces have been written
for Unix 4.2 and for a stand-alone multi-tasking kernel. The
Unix version is currently rumning on the Vax 117780 and SMI
Sun. The stand-alone kernel runs on 68000-based systems: the
Corvus Concept, the MTU, and the Cadlinc Sun.” A port is
currently underway to the Mesh Machine [Cleary 1983]. Jipc
messages can be sent over any TCP/IP link, between processes
on the same machine, across Omninet, and via shared memory on
the Mesh Machine. At the software end, 2 Jipc interface is
provided for each of five different languages: Ada, C, Lisp,
Prolog, and Simula. Ewbimnofllipcmngzhalp:z
type, which must be integer, real, characker, string, atom, block,

id Cooversion between different representations of
these types on different machines is performed automatically by

Programming level

At the programming level, a number of facilities exist for
support of program development A window syssem, including
virma]ncrminzlwindows,nﬂowslbeuscrmimuuwithmany
different processes, possibly on different machines, & once. A
hierarchical graphics system is available for use with graphical

applications. A pumber of standard monitors, both textual and
graphical, are provided for general use. ing of
events is provided in such a way that the user may

monitor consoles specific to particular applications or debugging
techniques.

Prototyping level

ing of distributed software is supported by a
formal ificaion language for the description of allowable
Jipc events. A protocol-verification tool allows run-time
checking to be performed in order to ensure that the executing
system conforms to the specification. The distribution of
componeats of a software system on a target architecture may be
simulated using a different actual distribution. The inter-process
interactions faithfully conform to the way they would appear in
the target system. Finally, work i also underway on the
implementation of a time-warp [Jefferson 1982, Jefferson 1983)
version of Jipc {Cleary 1985).

A distributed parking-lot control system

The examples in this paper are drawn from a simulation of
a distributed parking-lot control system, which could serve as a
prototype for a real system In the simulation, there are a
number of parking lots, cach having a fixed capacity. Each lot
has a single entrance/exit gate which is controlled by a processor
dedicated to that lot. Cars arrive at the lots at random intervals,
wishing to park for a random length of time.

A car ammiving at a lot causes a request to be made for .
space in the lot If such space is available, the car is allowed to
enter and park. If no more ing spaces remain, the parking
lot sends a request to each of the other lots in turn, until it is able
to reserve a space for the car elsewhere. In the event that there
is no available space anywhere, the car simply leaves.

The parking-lot simulation makes a number of simplifying
assumptions about the behaviour of its . Parking-lot
computers are assumed 1 remain mnu all times
C b

among cars mad E;hn; -lot computers is
assumed to be reliable. A car which has a spece reserved for it
in another lot must eventually show up at that lot, and a car
which finds no space available for it must leave the system.
While these would not be wise assumptions to make in a real
system, they do enhance the simplicity and clarity of the example
system. In an actual complete mplementation, additional error-
checking code would be added © handle violations of these
assumptions.

The parking-lot contro] simnlation makes use of a pumber
of different processes. Each car is represented by a single
process.  Each parking lot is comprised of three processes: a
manager process which keeps track of the current occupancy and
any reservations; an ear process which accepts requests 10 the
parking lot and buffers these until the manager asks for them;
and a handler process which acts as the parking lot’s interface to
the outsidc world. The car process is nceded in order to avoid
the potcntial deadlock which would exist if two managers tried to



Protocol . Time Concurrent PrOtOt ino
Verification Pjipe Warp Prolog Level JPINg
Window Virtual
Toolbox Terminal Mona Jagged

\ l Programming
Level
Window Monitor & .
System Controller Jaggies
Ada C Lisp Prolog Simula
- . |
\ i / -
—. | — Kernel
Unix 4.2 Workstation Kernel
P — ———— Eorvus =Y — |
- o H e ..unY [ ‘! ; il
Vax s v Vax |, MU L Jjees L Hardware
=I L_ __l LeVEI
“—— 10 Mbs s

]

Figure 1. Jade Compooents and Structures



ik 10 zach other at the same ume. each docking on the other's
7eply  The handler process allows for the separation of the
¢vtemnal-world interface from the internal deaiis of the system.

II. JIPC AND THE WINDOW SYSTEM

The primary communications primitives provided by Jipc
include send, receive, receive_any, forward, and reply. A
sending process places data into a Jipc buffer, then invokes the
Jipc send call 10 send the buffer 10 2 specified process. The send
is a blocking send, and awaits a reply before returning control o
the sender. This allows for synchronization among the various
processes in the system.

Inordulomoeivea]ipcwsagc,:pmcessexecuml
receive of receive_any call. The receive call is for receiving
from one specified process, while receive_any allows a message
from any process to be received. If a process executes a receive
before the process from which it is attempting to receive has sent
it 2 message, then the receiving process goes blocked until such a

tely. The receiving process

then extract information from the buffer sent o it, perfform $
computations, and place new data into its buffer, comprising the
information in the reply. A reply call transmits the receiver’s
buffer to the original sender. When the reply amives at the
sender, the sender is unblocked and allowed o continue
execution, with its buffer cootaining the contents of the reply
message.

A receiving process need not reply directly to its sender,
but may delay the reply and receive more messages from other
processes, or it may forwudthem:ivedmcsuﬁwmother
process. In this case, it is the responsibility of the process w
whichthemagemforwmbd\ocommamply.

Jipc provides routines for process creation, destruction, and
searching, as well as the above communication primitives. These
activities are confined to the specific Jipc system in which the
process is executing. * Different groups of processes may thus
co-exist without interfering with each other, by using different
Tipc systems.

rFigmeZlhowsmeumpl:ofhowmsacommunica:
via Jipc. Excerpts of the manager and ear as well as
the entire handler process, are shown here. jgg

is created by a creator process (not shown), and it in tum creates
the car and handler processes. i

to the handler, and vice versa. Both of these process ids are then
sent to the creator, which eventually replies with a message
cmtainingmcpmccssidsofallofmewprminme
system.

The Jade window system is composed of a number of
processes which communicate among themselves and with user
via Jipc. Currently, it runs on top of the stand-alome
xpckﬂ'nelmdtequirainadditionabit-mzppedmonochmm
display. Work is underway to integrate it with the SMI San
window system under Unix 4.2.

arbiuzrynnmhaofwindowsmybcaumdfaamiay

purposes. Virtual terminal windows all ix;
a console window allows the user to obtain information t
and exert control over various aspects of the workstation; and
othawindogvsll}ovycodetobedown-lmdedmmn on

" associated with it a transf

Application programs Tav create their own POp-up menus
and associated help windows 5y sending requests to the window
manager process on the worksiauon on which theirr windows
reside. A different set of menus 15 associated with each window.
The program may detect any events occurring in a window by
requesting this information from the window manager. These
events include menu sclections, the <:am:cb‘1 llation of ‘u:bcmo}
pressing or releasing the monse point tioa, changing the size
the window, and destroying the window. The window
also allows direct output, both wextal and graphical, © be done
0 a2 window.

prototype software.

IIl. GRAPHICS

The Jade graphics ies (Wyvill 1984), is based
fnphiaroutincsforuubylppﬁcaﬁonpmgmmmdmonim
aggi muﬁnesmzybemwddimdyvixCqulog
su ﬁnecaﬂs.ainothulmgnaguviaﬁpcmasagalol
lagginpmcess.'rbehimhicalmm‘oflaggiesnmm
picmmcanbecmmdvhicbmcomprisedno(mlyof
graphical primitives but also of other sub-pictures. Recursive
inclusion of pictures is allowed, and is controlled at plot time by
global and local recursion Himits. -

The simplest Jaggies primitives are the pbim, line, arc and
circle. Text is available in :‘ number of different fonts, with the
user having the capability of installing special-purpose private
fonts as well. Boxes may be drawn which are cither wire-frame
or solid stwri:mgamwppmedmsomecxmmough

Jaggies is primarily a vecior graphics system.

FAchpdmitiveorsnb—picmninacomposit:picnmhas
determines bow it is
incloded in the composite z
comhimﬁonsoﬂhemndardmhﬁm,mﬁon.mdaﬁng(x
and Y axes scparaely). A picture may also have an associated
color transform. Since the Jade workstations are

t monochrome,
colors are currently represented by different patterns.  For
insunce.alinemaybesolid.dumd,bhck,minvisibh

A 32-bit damm is also associated with each Jaggies picture.
'!'hisdammisnotuedbykgiaindf,butmybenbyhe
gﬂhﬁm progam to store  additional ication-specific
information related to the pictare. Fainsnnces,hlsﬁme
representing a specific process in 2 simulation might its
datum set to point 10 the state variables of that process. Retrieval
of pictares by application data is also possible.

M&oogh]nggiummlymydmpleylphnlhpu
dirccdy(gatbccoo:dinmdapoinhdcvice).itml
pumber of routines for manipulating the coordinates i receives.
The raw device i
com:dimwsinmofﬂtdisphyedpicm. Following this,
mnnnesmybcinvokedvhid:vmmunasetofinsamaof
sub-pictures which have parts close to the indicated point. Thus,
pickingwithamwscispocibh

Jaggies pictures may be constructed and edited interactively
bymdmcmediu.m[Wyvﬂl 1984]. Esscatially,



T trooees 4 2 ; * aer troness tdg 97 stner satking Toca ®
© trotess 3 ¥ nandler process i4s 97 this zarcing tae ®
;_process id sreator id * proess id of sreator of this systez ¢/

initialize(1d)

int

|

id;

char ear_name| J_MAX_PROCESS_NAMEs!]; )
char  handler_name(J MAX_PROCESS_NAMEe1l;
iot i;

J_initialise(); /* initislize as a Jipc process */
creator_id = j parent process();

(void) sprintf(ear_name, “earfd”, id);

(void) sprintf(handler name, "handlerfd". id);

By _ear = j create process(ear name, “ear”, 0); /® create the ear */
®y_handler = j_create_pmceaarhandler_mo, “handler”, 0); /* create the handler */

/* ear.c %/

?nitialiu()

J_putp(my_ear); /* inform handler of ear process id */
J_send(my_handler);

J_mtp(my_bandler); /* infors ear of handler process id ¢/
J_send(my_ear);

J_yutp(ly_ear); /* inform creator of ear & handler process ids */
J_putp(wy_handler);

J_send(creator_id);

for (i=0; i < no_of lots; i++) | /% get ear process ids of other parking lots */
| ear process(i] = J_getp(); /® (from creator's reply) o/
J_initialise(); /* initialize as a Jipc process */

my_manager = J parent process();

J_receive(my manager); /% get bandler process id from manager */

my_handler = ) getp():
J_reply oull(my manager);

/® bandler.c®/

finclude <Jjipc.h>

nain()

J_yrocess_id my_ear, sender id;

J_initialise(); /* initialize as & Jipc process */
J_receive(j parent process()); /* get ear process id from manager */
wy_ear = j getp();

J_reply_null(j_parent process());

for( ; ; ) |

sender id * j receive_any();/* receive apy car event */

J_send(my_ear]; /% direct the message to the ear process */
j_reply(sender_id); /* transmit manager's reply to the car process */

Figure 2. Communication via Jipe



HEM LN

Figure 3. Jagged



Jagged provides the user with 3 mouse-and-menu :nterface o the
Jaggies subroutnes. Pnmutive and composite pictures may be
created and transformed. then wnitten to files for later retrieval by
an application program which will make use of them. A typical
Jagged session 1s shown in Figure 3.

A Prolog-based graphics language, Growl [Cleary 1984),
has been implemented on top of Jaggies. Growl aliows the
construction of hierarchical pictures from within a Prolog
environment. Growl and Jaggies are very similar in their
capabilities, but are different in their semantics. For instance,
Growl makes use of the backtracking feature of Prolog to define
the different sub-pictures within a composite picture. Growl has
been used in conjunction with a graphical debugger for Prolog
[Dewar 1985].

IV. MONITORING

Monitoring in Jade is provided at the Jipc level in such a
way that the need not take any special action
whatsoever in order to make application programs monitorable.
Instead, the Jipc system automatically passes information oo
certain Jipc events to monitoring processes, as described below
and as shown in Figure 4. In this figure, three processes running
on Machine 1 and two processes on Machine 2 comprise Jipc
System 28, while three processes oo Machine 3 comprise Jipe
System 42. A Jipc system is a distributed concurrent
No modifications to program source are required for Jipc events
to be monitorable. If the user wishes to disable this feature, this
may be done by linking the program with a non-monitored
version of the Jipc library.

Jipc System 28

Machine 1

Machine 2

Jipc ever: dewection

The Jipc events which are considered monitorable are those
which are concerned directly with inter-process interactions.
These include sending, receiving, replying, receiving a reply,
scarching for a named process, and creating or destroying a
process. The manipulation of message buffers, in preparation for
sending 2 message or after receiving a message, is considered o
be of interest only to the manipulating process and is therefore
not monitored by Jipc. A special Jipc primitive is provided
whereby a program may explicitly signal the occurrence of a
particular application-defined event Such an event is monitored
but has no effect on the executing program.

Wheaever 2 monitorable Jipc event occurs, the event, along
with any associated buffer or other information, is sent to a
ial channel process. There is onc channel process for each
Jipc system on each machine. Chanmel processes are created
automatically, as neceded, by the Jipc kemel The channel
process forwards the information it receives to any consoles
present  Consoles may be written by the user to perform
special-purpose monitoring functions. A number of standard
consoles are provided Al monitoring communication between
user processes, channels, controller (defined below) and consoles
is via standard Jipc messages (themselves non-monitored). Thus,
all features of the Jade environment are available to anyone
constructing a console or controller. In particular, & message can
be received from channels on many machines, allowing
monitoring of truly distributed systems. Typically, each console
displays its output in a separate window.

Jipc System 42

Machine 3

Channel

Controller

Consoles

Windows

Channel

Consoles

Windows | ‘ ; i

Figure 4. Monitoring Jipc Events



Controiler processes

The user may nsen a comroiler process between the
channel processes and the consoles. If such a process 1s present,
cach channel wil] send :nformauon only to the controller. The
controller can then filter out uninteresting events  before
forwarding monitoring information to the individual consoles.

Another use for a controller is to exercise control over the
executing system of Jipe processes. Since each process awaits a

distributed computing environment. A specific onder of execution
may be consistently reproduced, allowing debugging and testing
of xnusual circumstances 1 take place.

Standard monitoring consoles

A textual monitor is available which simply displays each
cvent that occurs, along with the contents of any associated
buffer. An example of output from this monitor is shown in
Figure 5. A more sophisticated monitor, Mona [Joyce 1985},
provides a graphical representation of the executing system.

are represenied by labelled boxes, with inter-process
communication denoted by i

process AscanbeseenfromFlgmG,thisgnphical
feprescntation gives the aser a much more complete and intuitive
view of the ovenall sysiem state at any time. In this figure, for

nsance. iocan easiy be seen that earl has ust received a
message from manageri, whiie manager2 and handler? have each
sent ear? a message which has not yet been received. The Jade
window system, along with menus and help windows. may also
be seen in thus figure.

In addition to these consoles which portay Jipc events to
theusa.aconsoletlsoeximfamcordin;awqumeeolemn
for later playback. Playback is achieved by simply sending the
mdedmuwmechanndm:minvoﬁngmymﬂm
consoles desired. The channel process does not distinguish
bctwemru”ipceventsandthoscsemloitlspmofphybxk,
% 1 faithful reproduction of the events is guaranteed.

Detection of communication deadlock is ible and has
been implemented as a console. 'l'besokmonofmis
coasole 15 to keep track of the communications taking place and
report to the user whenever deadlock occurs. Similar consoles
could easily be implemented to perform other high-level error-
detection functions.

Application-specific monitoring consoles

vaxb.managerO: send: to vaxb.ear0

vaxb.earO: receive any

verb.manageri: send completes: reply received (null message)
vaxb.ear2: reply: to vaxb.manager2 T
varb.earO: receive any completes: message from vaxb.managerd
vaxb.manageri: send: to vaxd.ear!

vaxb.manager2: send completes: reply received

vaxbd.ear2: receive_ any

vaxb.earO: reply: to vaxb.managerQ
vaxb.ear!: receive any completes: sessage from vaxb.manager!
vaxb.manager2: send: to vaxb.ear?

vaxb.earO: receive any

vaxdb.sanagerQO: send completes: reply received

vaxb.eari: reply: to vaxb.manager!

vaxb.ear2: receive any completes: message fros varb.sanager?
vaxb.managerO: send: to vaxb.ear2

vaxb.manager!: send completes: reply received

vaxb.eari: receive any

vaxb.ear2: reply: to vaxb.handler?
vaxb.manageri: send: to vaxb.ear?
vaxb.handler2: send completes: reply received
varb.ear2: reply: to varb.manager2 (mull message)
varb.handler2: reply: to varb.simulator?

vaxb.ear?2: receive any

vaxb.manager2: send completes: reply received (mull message)

vaxb.handler2: receive any

vaxb.simulator2: send completes: reply received

Figure . Textual Monitor



¢ UTER

vaxb.managerd vaxb.managert vaxb.monager2
\ ;
/
/
vaxb.eq vaxb.ear1 earl
HEW BINDOY
vadp.handlerd & .hondlert
voxb.simuyfotor0 vaxb.sim r1 vaxb —
Refreshed. JJ
Console for cued
. 3 1 [] S Fleaner
4 1 19 L s not allow Laanacen
* UTERM - vaxb ttye3 itored processes to
e any more
% jipth icoamunication calls
Franz Lisp, Opus 38.79 until the Continue -
. [selection is chosen
Lithe <> Jipth/2 (aonitored), at . —
~> (load ‘create.l) —
[load create.l) -
t -
~> (create 8 3)
t

-).

Figure 6. Graphical Monitor



Szlection made.

.

Figure 7. Special-Purpose Monitor



V. FORMAL SPECIFICATION

Having a formal specification of the allowable interactions
between processes provides a number of advantages o the
developers of a distributed software system. The specificanon
scrves as documentation and as a means of communication
between developers. Different modules may be developed
independently, with each module being designed to conform 10
the specification. Test cases for the system may be suggesied
both by the specification itself and by the of writing it
Finally, run-uime checking of an executing system may be
performed 10 ensure that its actual behavior is consistent with its
expected behavior. These functions are provided by the Jipe

Description Language, JDL, and its associated run-time verifier.

JDL allows a system designer to specify formally a number
of aspects of a Jipc system. A JDL specification counsists of three
parts:  process descriptions, buffer descriptions, and cvent
descriptions. The process descriptions specify all
present in the system, and allow related processes to be
loge:hamdmfamdmulchnforp;lgom event
descriptions.  Buffer descriptions specify the buffers which may
be used in Jipc messages. Finally, event descriptions make use
. ofproousandbuﬁerdescripﬁmsbdescribemcﬁpcm

which are allowed. Figure 8 shows an example of the JDL
specification for the parking-lot system.

There are some subtletics of inter-process communication
that JDL cannot represeat. For instance, two classes of processes
may exist with each process in the first class having a single

'gprmsinthesecmdchsswithwhichi_lm

specified by explicitly enumerating all possible process names in
each class and providing identical rules for each pair of
processes, but this is not always feasible or even possible in a
real system. A more sophisticated extension to JDL is needed if
-this level of refinement is required of specifications.

Since the run-time verifier i written i Prolog
translates JDL specifications into Prolog clauses, it would be a
sm:gh(:fm'wnrd matter to allow the full power of Prolog
gupumme inl&remixed with JDL Iptions. s

would introduce ion 10 write ions of the
desmg:on in Prolog, md%ag thus aem’”fxffm"&“’
Since a simple specification may result i

been produced [Jade 1985), Volume IV of which provides

number of refinements, each provably consistent with the

previous level. Such a support environment should great]
enhance the software-development process. ¢

ACKNOWLEDGMENTS

Funding for the Jade project has been provided by the
Natural Sciences and Engineering Research Council of Canada.
We are also grateful to the Naval Research Laboratory for
providing us with the use of an SMI Sun workstation. The Jade
staff and affiliated faculty members and students at the University
of Calgary have contributed greatly, providing a stimulating
rescarch environment within which Jade was developed. We

would particularty ke o acknow the many significant
contributions of Radford Neal nth:;dfano'

REFERENCES

Cheriton, Dq.]}g, Maicolm, MA,, relen, LS, and Sager, GR
(Febi 1979) "Thoth: a portable real-time operating system”
Commmwrzcgn'om of the Associazion for Computing Machinery, 22
(2) 105-118.

Cleary, J.G., Wyvill, BLM,, Bintwistle, G., and Vatti, R. (1983)
“Design and Analysis of a Parallel Ray Tracing Computer” in
Proceedings of the XI Association of Simula Users Conference.
Paris.

Cleary, J.G. (1984) A distributed graphics system implemented in
Prolog. Research Report 84/173/31, Department of Computer
Science, University of Calgary.

Cleary, J.G., Lomow, G.A., Unger, BW., and Xiso, Z (August
1985) "Jade’s IPC Kemnel for Distribuied Simulation” in
Proceedings of the Association of Simula Users Conference.
Calgary, Alberta.

Dewar, AD. (1985) A Graphical Debugger for Prolog. MSc
Thesis, Department of Compater Science, University of Calgary.

Jade (October 1985) Jade User's Manual, Vohaone |: Developing
Distributed Systems in Jade, Volume II: The Jade Workstation,
Volume [ll: The Jade Graphics Sysiem, Volime IV: An Example
Sysiem, Volume V: The Workstation Based Editor. Technical
Reports, Department of Computer Science, University of Calgary.

Jefferson, D. and’ Sowizral, H. (December 1982) Fast Concurrent
Simudation Using the Time Warp Mechanion, Part I: Local
Comrol. Technical Report, The Rand Corporation, San Diego,
California.

Jefferson, D. and Sowizral, H (August 1983) Fast Concurrent
Simulation Using the Time Warp Mechanism, Part I1: Global
Control. Technical Report, The Rand Corporation, Santa Monica,
California.

ce, J. and Unger, B.W. (January 1985) “Graphical Monitorin,
:?Dimibmed Systems” in Proceedings q&eSCSCo:fmmwsl
Al, Graphics, and Simulation. Sea Diego, California.

Meddin, P. and Bochmana, G.V. (January 1983) "On the
Construction of Submodule Specifications 20d Communication
Protocols” ACM Transactions on Programming Languages and
Systems, 5 (1) 1-25.

NLEL l&.lmo;rg,uG).A., Peterson, M., » B.W,, and Witten,
Experience am  mter-process
eommumca)l;on protocol i a distribuked i

prognmming
environment” in Proceedings of the Canadian Information
Processing Society Session *84. Calgary, Alberta

Wyvil, BLM (March-Apdl 1977) “Pictures-68
Software—Practice and Experience, 7 (2) 251-261.

Wyvill, BLM,, Neal, R., Levinson, D., and Bramwell, R. (May
1984) "JAGGIES—a Distributed Hierarchical ics System"” in
Proceedings of the Canadian Information Processing Society
Session '84, pp 214-217. Calgary, Alberta.

Mk 1"



-an3zer * zanager”: -- 7" mm%cnes anvy 3ingle chataster
vear> = ear”;

<randler> = handler”:

<parkingiot> = <manager> OR (ear> IR <handler>:

(simuletor> = simulator?;

{creator> = creator;

BUFFERS:
BXTEBRNAL:
null = (); -- an eapty buffer
initialise! = (P: <handler>); -- any handler process
initialize2 = (P: Cear> ; P: <handler));
initialize3 = (P*: Cear>); -- 3€T0 Or WOTe ear processes
initialized = (P: <handler> ; I); -- & handler process and an integer
check_measage = (S: “check_info"); -- an exact string

event = (S: ONE OF "enter”,"leave”, "transfer”);

reply_event » (S: ONE OF "reject”,"accept”,”ok","direct™; P®: <handler>);
request_space = (S: "request”; P: <ear>);

reply_space = (S: ONE OF "reply yes”, "reply no"; P®: <handlerd);

BVEN?S:
creator CREATE <simulator);
creator CREATE <manager);
<(manager> CREATE <handler>;
{manager> CREATE <ear>;

<(mapager> SEND creator USING jinitialige2;
creator RECEIVE <manager> USING initialize2;
creator REPLY <manager> USING initialise3;
(manager> REC_REPLY creator USING initialise3;

creator SEED {simulator> USING initialized;
C¢simulator> RECRIVE creator USING initialized;
<simulator> EBPLY creator USING null;

creator REC_REPLY <sisulator> USING null;

<(manager> SEND <handler> USING initialige3;
<handler> RECEIVE <manager> USING initialize3;
<handler> RRPLY C(manager> USING pull;
<{manager> REC_REFLY <handler> USING null;

<manager> SEED <ear> USI¥NG initialise!;
<ear> RECRIVE <(manager> USING initialigel;
Cear> REPLY <manager> USING pull;
<manager> REC REPLY <ear> USING null;

(simulator> SEND <handler> USING event;

<handler> RECBIVE <simulator> USING event;
<bandler> SEND <ear> USING event;

Cear> RECEIVE <handler> USING event;

Cear> REFLY <handler> USING reply event;

<handler> REC_REPLY <ear> USING reply event;
<handler> REFLY <simulator> USING reply event;
<simulator> REC REPLY <(handler> USING reply_ event;

<msnager> SEND (ear> USINC check message;
Cear> RECEIVE <(manager> USING check message;
Cear> REPLY (manager)> USING event;
<manager> REC_REPLY Cear> USING event;

Cear> REFLY <manager> USING request space;
<manager> KEC REFLY <ear> USIEG request space;
Cear> REFLY (manager> USINC reply space;
<{manager> REC_REPLY <ear> USING reply space;

<{manager> SEND <ear)> USING reply event;
(manager> SEND <ear)> USING request_space;
<(manager> SEED <ear> USING reply space;
<ear> RECEIVE <manager> USING reply_event;
<eer> RECEIVE (manager> USING request space;
<ear> RECEIVE <(manager> USIRG reply_space;
Cear> REPLY <{manager> USING null;

<(manager> REC REPLY <esar> USING null;

Figure 8. JDL Specification



