
UNIVERSLTY OF CALGARY

The Effect of Amount of Software Reuse on Defect Severity

in Real-Time C-Base Environment

Sheng Ouyang

A THESIS

SUBMITIED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE

DEGREE OF MASTER OF SCIENCE IN ELECTRICAL. ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

CALGARY, ALBERTA

MARCH, 2000

O Sheng Ouyang, 2000

National library If 1 of Canada
Biblioth&que nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON KIA ON4 Ottawa ON K1 A ON4
Canada Canada

Your Me Vofte reUrence

Our lile Notre rdfdrence

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

L'auteur a accorde une licence non
exclusive pennettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film7 de
reproduction sur papier ou sur format
electronique .

The author retains ownership of the L'auteur conserve la propriete du
copyright in this thesis. Neither the droit d'auteur qui protege cette these.
thesis nor substantial extracts &om it Ni la these ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent 6tre imprimes
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Abstract

An empirical investigation on the effects of software reuse on the severity of software

defects is presented in this thesis. Tine results for the empirical analysis came from three

red-time projects from a North-American teIecomrnunicadons company.

Unlike the results from many published papers, the analysis results from this thesis do

not show convincing evidence of software reuse benefits. Strong correlation is lacking

between the amount of software reuse and all levels of software defects severity. The

only exception is that the number of Ieve13 severity of software defects shows a strong

negative correlation with reuse level,

The empirical study of this thesis suggests that software reuse will not decrease defect

density at the different severity classes in every project. As a result, a practical question

to be addressed in the future studies is in what kind of project will there be a guarantee of

measurable benefit as a result from software reuse,

Acknowledgements

A thesis takes quite some time and effort to write.

I must thank my beautiful girlfriend and my farnily for their understanding and

support,

I would aIso like to thank my two supervisors, Dr. Mike Smith and Dr. Giancarlo

Succi, for their patience and helpful comments,

Table of content

... .. Abstract 111

.. Acknowledgements i v . .
List of Tables ... vll ...
List of Figures .. vlll
List of Abbreviations and Acronyms used in this thesis .. ix
1 Introduction .. 1

1.1 Objectives .. 1
3 1.2 Motivations-
3 1.2.1 Cost and benefits of software reuse .. -

1 - 2 2 The need for more software reuse data .. 4
1.3 Reasons for choosing the current projects ... 5
1.4 Organization of the thesis .. 6

2 The current Software Reuse and Software quality metrics-..... 8
.. 2.1 Introduction 8

2.2 Current software reuse measurement ... 8
... 2.3 Amount of reuse 11

2.4 Modeling the Effects of Amount-of-Reuse .. 14
2.5 Introduction to software quality metrics .. 16

... 2.5.1 Software quality metrics 16
2.6 Summary .. 19

.. 3 Software attributes measurement 20
.. 3.1 Introduction 20

.. 3.2 Size of components attributes 20
3.2.1 Lines Of Code ... 20

77 3.2.2 Halstead Volume ... --
77 ... 3.3 Software quality attributes --

.. 3.4 Software complexity attributes 23
... 3 -5 Amount-of-reuse attributes ..-. 27

.. 3.5. 1 Reuse Frequency. .. 27
.. 3 .5.2 Reuse Level 28

3.5.3 Reuse Density ... 28
.................... 3.5.4 Examples on Reuse Level, Reuse Frequency and Reuse Density 29

3.6 Summary .. 30
4 Statistics for software analysis ... 31

... 4.1 Introduction 31
... 4.2 Simple variable descriptive statistics 31

4.3 Statistical tests .. 34
4.3.1 Pearson's correlation .. 36

4.4 Graphical representation -- "A picture is worth a thousand words" 37
4.4.1 Box plot - also called the box-whisker plot ... 37
4.4.2 Normal Curve Histogram 3 8
4.4.3 Scatter diagram ... 39

... 4.5 Simple linear regression analysis 40
... 4.5.1 Compute the correlation coefficient 41

4.5.2 Scatter diagram ... 42
4.5.3 Linear regression .. 42
4.5.4 Checking the hypotheses .. 45

4.6 Summary ... 47
5 Application analysis ... 48

5-1 Introduction ... 4 8
5.2 Context of the study ... 48

... 5.2.1 The three projects 48
5.2.2 Experimental design ... 50
5.2.3 The research hypotheses ... 50

... 5.2.4 Mode of reuse 51
5.2.5 The data collection process ... 52

5.3 Descliption and analysis of the results ... 52
.. 5.3.1 Descriptive analysis 52

5.3.2 Overall descriptive analysis .. 61
... 5.3.3 Correlation Analysis 62

5.3.4 Scatter Diagram Analysis ... 65
.. 5.4 Development of a linear model 65

5.4.1 Hypothesis verification ... 66
5.5 Discussion of the results .. 69

5.5.1 Internal validity: ... 69
... 5 .5.2 External validity - Generalization of the results: 69

5.6 Conclusion ... 70
6 Bootstrapping .. 71

6.1 Introduction .. 71 . .
6.2 Bootstrap pnnc~ple ... 71

6.2.1 Bootstrap Correlation's distribution ... 72
... 6.2.2 Standard deviation using bootstrap 73

6.2.3 Bootstrap confidence interval .. 73
................... 6.2.4 Bootstrap's Linear Regression analysis (Slope & y-intercept) 74

6.2.5 Jackknife technique ... 75
... 6.3 Bootstrap Analysis 76

6.4 Summary .. 78
7 Conclusions .. 80

7.1 The work done in this thesis .. 80
7.2 The conclusions drawn from the analysis .. 80
7.3 Recommendations for future works ... 82

... 8 References 8 4
.. 9 Appendix: A .. 8 8

10 Appendix: B ... 89

List of Tables

............................. Tabie 2.1. Current software reuse metrics 9
Table 2-2: General Amount-of-reuse metrics ... 12
TabIe 2.3. Effects of amount-of-reuse models ... 15
Table 3.1. Classification of functions of exampIe 1 29
Table 3.2. Amount-of-reuse of example 1 .. 29

................................. Table 4.1. Regression coefficients for E m r vs . DD3 in example 4 44
Table 5.1. Features of the three projects 49
Table 5.2. Experimental design .. 50

.. Table 5.3. Simple descriptive statistics for project size 54
.. Table 5.4. Simple distribution statistics for project size 54

Table 5.5. Simple descriptive statistics for number-of-defects .. 56
.............................. Table 5.6. Simple distribution statistics for number-of-defects 56

Table 5.7. Simple descriptive statistics for defect densities .. 58
Table 5.8. Simple distribution statistics for defect densities ... 58
Table 5.9. Simple descriptive statistics for amount-of-reuse .. 60

... Table 5.10. Simple distribution statistics for amount-of-reuse 60
... Table 5.1 1: Project 1 Pearson Correlation results 62

Table 5.12. Project 2 Pearson Correlation results ... 62
Table 5.13. Project 3 Pearson Correlation results ... 63

... Table 5.14. Summary of the signif cance of the correlations 63
......................... Table 5.15. Correlation between ERF? and DD-3 in the three projects ,,, 65

.. Table 5.16. Regression coefficients for the three projects 66
Table 5.17. Durbin-Watson coefficient .. 68
Table 6.1. Bootstrapping techniques ... 77

. Table 6.2. Bootstrapping correlation data vs actual correlation data 77
................................... Table 6.3. Bootstrap's y-intercept data vs . actual y-intercept data 77

Table 6.4. Bootstrap's slope data vs . actual slope data .. 78

vii

List of Figures

.. Figure 1.1. Relative-cost-of-writing-for-reuse 3
........................... Figure 3.1. Flow chart for calculating McCabe cyclomatic complexity 26

Figure 4.1. Box plot for E m 2 of example 2 37
Figure 4.2. Histogram for ERD2 of example 2 .. 38
Figure 4.3. Scatter plot between ERDz and DD3 40
Figure 4.4. linear regression function for ERDz vs . DD3 in example 4 44

.. . Figure 4.5. Residual plots for ERDl vs DD3 in example 4 46
.-. Figure 4.6. Standardized residual histogram for E m z vs DD3 in example 4 47

Figure 5.1. Time frames of the three projects .. 49
Figure 5.2: Linear regression lines of DD3 and E m 2 for project I (a), project 2 (b), and

... project 3 (c) 66
Figure 5.3: Standardized residual histogram for project 1 (a), project 2 (b), and project 3 .

(c) .. 67
..................... Figure 5.4. Residual plots for project 1 (a), project.2 (b), and project 3 (c) 68

List of Abbreviations and Acronyms used in this thesis

DD
DDi
ERL

Defect density
Defect Density at severity class i
External Reuse Density

ERF
ERL
H V
LOC
MCC
RCR
RCWR
RD
RF
RL

External Reuse Frequency
External Reuse Level
Halstead Volume
Lines Of Code
McCabe Cyclomatic Complexity
Relative Cost of Reuse
Relative Cost of Writing for Reuse
Reuse Density
Reuse Frequency
Ruse Level

1 Introduction

I . 1 Objectives

Software reuse is the process of implementing or updating software systems using

existing software assets (Department of Defense, 1996). Software reuse can be applied to

any phase of the project, such as design, coding, and testing stages. The types of reuse

can be with data, documents, source code and so on.

Poulin (1997) has said that software reuse can increase software reliability and quality

and that, in the long run, it can decrease the development and maintenance costs of a

software system. However, there is currently very little empirical validation of this

commonly held belief.

There are studies relating software reuse to the number of defect reduction (Frakes

and Succi, 1997), the defect density reduction (Succi and Benedicenti, 1998), and the

productivity improvement (Melo et al., 1996). There are also studies relating reuse to

time to fix defects and to phases in which defects have been introduced and detected

(Thomas et al., 1995). However, the effect of the amount of software reuse on defect

density for the various severity classes has never been analyzed. This thesis is a

contribution to overcome this lack of knowledge, Three real-time telecommunication

applications projects of a North American multinational company were analyzed. Defects

are classified in different classes according to their severity. Effects of amount-of-reuse

are measured by reuse density, reuse frequency, and reuse level- The effects of amount-

of-reuse on the different defect classes are studied in the following chapters. In this

thesis, we attempt to accept or to reject the following hypothesis.

I. There is an inverse correlation between amount-of-reuse and defect density.

2. There is an inverse correlation between amount-of-reuse and defect density at

different severity classes.

2

The independent and dependent variables in the metrics for analyzing Amount-of-

Reuse and Software quality will be discussed in detail in later chapters.

1.2 Motivations

Software reuse process is a relatively new field- There are a lot of 'myths' about

software reuse (Tracz, 1994), such as code reuse results in huge increases in productivity

or that reused software is the same as reusable software, Therefore there is a need for

more data to verify the effects of software reuse on different areas of software process.

Many of the reuse data and reuse metrics are related to cost and benefit of software

development.

1.21 Cost and benefits of software reuse

The goal of reusing software in a business is to save money. The money can be saved

from shortened development time, through higher productivity, to Lower maintenance

costs. Since saving money is an important factor in the decision for developing a software

reuse practice, it is important to know the potential cost of producing reusable

components and the potential saving from reusins those components.

In general, reusing a software component takes less effort than developing the same

component from ground up. However, there is still a cost associated with software reuse.

A reusable component usually takes more effort to develop- The extra cost of writing for

reuse may result from the production of better documentation or from doing better

testing. Beside the extra cost of developing reusable software, there are still other costs

relating to reusing a software component, such as the extra time required to search for the

reuse function.

2 Relati~~e-cost-of-reuse (RCR)

The relative-cost-of-reuse (RCR) is the portion of the effort that it takes to reuse a

component without modification versus writing it from scratch (Poulin, 1997)- It is

generally a lot cheaper to reuse components already developed by other people. However,

there are still costs associated with reusing software. The costs of reuse mainly come

from understanding and integrating various reusable components into existing projects.

The costs vary from one project to another, depending on the complexity of the project.

Usually, the more complex a system is, the more diff1cuIt it is to integrate reusable

components. The relative-cost-of-reuse can be estimated from one's own past experience

or from a similar published project. in general, the relative-cost-of-reuse is about 0.20

(Poulin, 1997).

1.2.1.2 Relative-cost-o f-w nlting-for-reuse (RC WR)

Software reuse is not a silver bullet. i n general, it is more expensive to develop a

reusable component than a non-reusable component. The additional costs of making a

software reusable are being broken down as below (Tracz, 1994).

25 % For additional generalization
15% For additional documentation
10% For additional testing
5% For library support &d maintenance
60% Additional cost of making something reusable

Figure 1-1 : Relative-cost-of-writing-for-reuse

The relative-cost-of-writing-for-reuse (RCWR) varies from one type of project to

another. Like everything else, the more complex a component is, the more expensive it is

to design for reuse. In general, writing reusable software takes 60% additional cost to

developed as shown in Figure I. I. The data related to RCWR can come from one's past

experience, or from the public domain.

1.2.2 The need for more software reuse data

Most of the software reuse papers published are on the successful results of various

software reuse projects:

A study done on 8 medium-size management information systems by the

University of Maryland shown that productivity increases by 20 LOC per hour for

every 10% reuse rate increase (Melo et al., 1995)-

An analysis done a n 8 medium scales Ada projects in the NASA's Goddard Space

Flight Center shows 88% reduction in rework cost using verbatim reuse

components (Thomas et al-, 1995).

Frake and Succi (1997) found a strong positive correlation of 0.76 between

software quality on a 10 point scale (10 = best) and amount of reuse on four

industrial sites.

Gaffney and Cruickshank (1992) found a strong positive correlation of 0.99

between percentage of code reuse and productivity (LOCRabor-month) in 50

different development sites.

An analysis done on the student projects in the University of Maryland showed a

strong negative correlation of -0.62 between reuse ratio and error density

(Devanbu et al., 1996).

There are few published software reuse failure cases. One of the high profile software

reuse failure cases is the blow up of the European's Ariane 5 rocket in 1996 (Lion, 1996).

Part of the software used in the inertial reference system in Ariane 5 rocket was reused

from the earlier version of Ariane 4. The reused code crashed after the horizontal velocity

of the new rocket exceeded its 16-bit integer storage. The blow up of the Ariane 5 rocket

caused the European space agency billions of dollars in the loss of hardware and business

opportunities.

One can not guarantee that software reuse always saves money because of the extra

costs (relative-cost-of-wn'cing-for-rezrse) and benefits (relative-cost-ofrerise) of software

reuse. However, there are few reports related to the failures of the software reuse

5

program, i.e., the failure of the Araine 5 rocket (Lion, 1996)- One has to wonder that if

software reuse is redly the magic bullet as suggested in most published papers, or is more

data is needed. An empirical study on three real-time real industrial projects will be done

in the following chapters to see if software reuse really decreases software defect density.

Lower defect density may correspond to lower development costs.

7.3 Reasons for choosing the current projects

Software systems are continually getting more complex and more expensive to build.

Therefore more and more companies are trying to use various software reuse techniques

to increase productivity, to reduce development cost, and to improve their software

quality (Poulin and Caruso, 1992). However, software reuse is not for everyone. The

success of reuse is dependent on many factors, such as low overhead cost, favorable

software domain and management support for reuse (Isoda, 1996)- Therefore, it is

important to choose the right project to analyze software reuse. The three projects studied

in this thesis have several factors that should contribute to the success of a software reuse

project (Frakes, 199 1)-

Narrow and well-defined domain: The reuse components should be targeting a

narrow and well-defined domain. In this thesis, the domain was a C-base real time

communication environment. Usually, the narrower a domain is, the more likely a

component will be reused. Reusable components in a narrow domain are not

designed to do everything. They are only intended for use in a particular

environment. Therefore, the components are usually less complex, cheaper to

write, and easier to reuse. As a result, the overhead cost of producing and using

reusable components will be lower in a narrow, well-defined domain project.

Slowly changing domain technology: A fast changing domain technology means

a rapidly decaying usefulness of the reusable components. In some special cases,

the development cost for reuse is higher than the saving due to the fast

depreciation time. For example, it hardly makes any business sense to create

reusable components for a dying product. Usually, the slower the domain

6

technology changes, the longer the recapture time is and the cheaper the reuse

components are. The current technology domain of the case study did not change

rapidly. First, the three analyzed projects were developed in 'C7 language, not

some old dying language. Secondly, the development cycle is very long, four

years from beginning to finish.

Economies of scale in market: Building a reusable component is expensive.

Therefore, reusable components are built when they are going to be reused

frequently. In software cases, a reusable component is often a function that is

being used over and over again as a building block of another function. Therefore,

it makes sense to spend more effort in developing components that are more

likely to be reused. The current product in the case study has more than one

variant, and is going to have even more variants in the near future, Therefore, the

economic scale is good. It makes sense to analyze and to develop reusable

components for later reuse,

Type of reuse: There are two types of reuse, reusing a component with

modification and reusing a component without modification. Reusing a

component without modification is a lot better than reusing a component with

modification. This is because the developer does not have to spend time to modify

old components and to test the new modified components. Due to the difficulty of

collecting information on modified components, only verbatim reuse of

components is going to be analyzed in this thesis.

1.4 Organization of the thesis

The thesis is organized as follows.

Chapter 2: Current software reuse and software quality metrics are introduced in

this chapter. Special attention is given to discuss one of the software reuse

metrics, amount-of-reuse, and its relationship between software quality and

software development costs.

Chapter 3: Five software attribute measurements used in the correlation analysis

and linear regression are discussed in this chapter. The five software attributes are

lines-of-code, Halstead7s Volume, defect severity, McCabe cyctomatic

complexity of a program and amount-of-reuse measures.

Chapter 4: Various software analysis techniques used in the thesis are

in troduced. The analysis techniques include simple descriptive techniques,

graphical representations, and correlation and regression analysis.

Chapter 5: An empirical investigation on the three projects is done in this

chapter. The empirical investigation consists of context study of the projects,

description and analysis of the statistical results, development of a linear model

and discussion of the results,

Chapter 6: Bootstrapping methods and the bootstrapping analysis of the results

of this thesis are presented in this chapter. The bootstrapping analysis is intended

to improve the analysis results from Chapter 5.

Chapter 7: Summaries of the thesis and the ongoing research are discussed in this

final chapter.

2 f he current Software Reuse and Software quality metrics

2.1 Introduction

There are many stated benefits to reuse software (Poulin and Caruso, 1992), such as

the increase in software reliability and quality. However, there are few published results

on software reuse- Three C-based projects will be analyzed in this thesis in order to

provide more data on the effects of software reuse.

The current metrics on software reuse and software quality are presented in the

current chapter- First introduced are various metrics to measure software reuse. One of

the software reuse metrics, amount-of-reuse, is then discussed in more detail, Next

discussed are various software models used to analyze the relationship between amount-

of-reuse and software quality, and the relationship between amount-of-reuse and software

development costs. Finally discussed are various software quality metrics that can be

used to analyze the effects of the amount of software reuse.

2.2 Current software reuse measurement

There are currently many metrics in use to measure and to anaIyze software reuse,

Frakes and Ten-y (1996) use five different types of metric to analyze software reuse: cost-

benefit analysis, maturity assessment, amounts of reuse, failure model analysis,

reusability assessment, and reuse Iibrary metrics, In generat, most of the commercial -
software reuse metrics are in one way or another related to the cost of software reuse.

Some of the metrics for measuring software reuse are listed in Table 2-1.

Metric
Project-level's Return on investment - ROI
Poulin and Caruso. 19921

Definition
The sum of cost saved through reuse minus
the additional develo~ment cost,

2.2-1.1.1 Corporate-level 's Return on
investment - ROI (PouIin and
Caruso, 1992)

I Caruso, 1992) I minus the actual cost of development using I

2.2-1.1.2 The sum of the net present value
on each of the project level ROI over the
years.

Defense information system agency's
Return on investment - ROI (Poulin and

Effort of developing the project with a11
verbatim (without modification) code

I I expected cost that the producer incurs in 1

Net Cost Saved - NCS (Poulin and Caruso,
1992)

different types of reuse code (verbatim,
modified).
The sum of the development cost of the
reusable components minus the sum of the

2.2.1-1.3 Quality of Investment - Q

I Cmso, 1992) I minus actual cost of project with reuse vs. I

producing the reusable components,
The ratio of reuse benefit to the consumer

(Poulin and Caruso, 1992)
Benefit investment - BI (Poulin and

vs, the reuse investment by the producer.
The ratio of cost of project without reuse

I Cruickshank, 1996) I vs. the relative saving resulted from I
I Break-even point - N (Gaffney and

cost of producing reusable components.
The reIative cost of creating reusable code

Amount of Reuse - Reuse% (Poulin et nl-,

Each of the above software reuse metrics are calculated using different types of data,

One can not say that one type of reuse metric is superior to another type of reuse metric

integrating the reused code.
The percentage of Reused verbatim Source

1993)

because each of the metrics measures software reuse from different angles. There are two

requirements in choosing a suitabIe software reuse measurement in this thesis:

The data can be obtained through this company's database or from its software

programs.

The data are objective, and can be collected through an automated process.

Instructions from external repositories
(RSI) to the sum of RSI and shipped source
instructions (SSI),

Based on the above criteria, the rnetrics in Table 2.1 are reviewed. A key issue in

Table 2.1 : Current software reuse metrics

deciding the type of metric used in this thesis is whether the required data are available

10

from the database of the telecommunication company whose process is analyzed in this

thesis.

Project-level's ROI (Poulin and Caruso, 1992) requires the calculation of various

software related costs. The classification of costs is not objective since Poulin and

Caruso do not provides a detail definition of the costs. Furthermore, the company

database does not contain any information related to the cost of the project.

Corporate-level's ROI (Poulin and Caruso, 1992) also requires the calculation of

cost which is currently not available from :he company's database.

Defense information system agency's ROI (Poulin and Caruso, 1992) also

requires the calculation of cost, which is currently not available.

Net Cost Saved (Poulin and Caruso, 1992) requires the estimation of the number

of times that an item is going to be reused in the future. Such estimation is

subjective-

* Quality of Investment (Poulin and Caruso, 1992) requires data related to the reuse

investment by the producer and to the reuse benefits to the consumer. Neither is

currently available in the company's database.

Benefit investment (Poulin and Caruso, 1992) also requires the calculation of

cost, which is currently not available.

Break-even point (Gaffney and Cruickshank, 1996) requires the knowledge of

various relative reuse costs, which are currently not avaiIable-

Amount-of-Reuse (Poulin et al., 1993) metric requires the calculation of the

number of instructions in a reused component and the size of the project. Even

though the data on the lines of code is not available in the company's database,

the LOC can be retrieved automatically by a software program. Currently, there is

a software program called WebMetrics tool (Succi et al., 1998) that can retrieve

the data needed in the amount-of-reuse calculations.

As was shown in Table 2.1, different types of reuse metrics require different types of

data in their calculations. As shown by the above analysis, the company's database

contains only enough information to caIculate one of the metrics, amount-of-reuse metric,

11

discussed in Table 2-1. This thesis will use amount-of-reuse metric to calculate amount of

reuse after the projects were finished.

2.3 Amount of reuse

Different classes of measures exist for software reuse (Frakes and Terry, 1996).

"Amount-of-reuse" is one of the software reuse measurements. The "amount-of-reuse"

metric represents "how much" reuse is inside a given software system. In general, the

amount-of-reuse metric in a system is the ratio between the amount software objects

reused and the total size of software objects (Poulin, 1997)- The objects can be files,

functions, etc, The size of the objects can be measured in LOC, Halstead Volume (HV)

(Halstead, 1977), etc. There are many ways to implement the amount-of-reuse, each of

which provides a different aspect, ranging from how much code is reused to how often it

is reused, Multiple measures of amount-of-reuse provide different perspectives on how

people reuse components, and allow for a more balanced and complete picture of the

effects of reuse (Ferri et al., 1997).

Some of the proposed amount-of-reuse measures from various literatures are listed in

Table 2.2.

Table 2.2: General Amount-of-reuse metrics

Metric
Fraction New and Extensively
Modified Components -FNEMC
(Agresti and Evanco, 1992)
Reuse Percent -Reuse% (Poulin
et nl., 1993)

Reuse Level -RL (Frakes and
Terry, 1994)

Reuse Frequency -RF (Frakes
and Terry, 1994)

Application Reuse Percentage -
AppReusePerc(S) (Chen et al.,
1995)
Reuse Rate -RR (Basili et al.,
1996)
Reuse Size and Frequency -Rsf
(Devanbu et al,, 1996)

Reuse Module size and
Frequency -RMsF (Sadahiro
Isoda, 1996)
Proportion of Reuse, R (Gaffney
and Cruickshank, 1992)

Reuse Density -RD (Benedicenti
et al,, 1997)

The above metrics examine at the amount-of-reuse from different points of view.

Each of metrics uses different types of data during calculation. There are two

requirements in choosing an amount-of-reuse metric in this thesis:

The result is objective; that is that the calculation can be done automatically by a

tool called WebMetrics tool (Succi et al., 1998)-

Definition
Percentage of new or extensively modified
compilation units over total number of
compilation units.
Percentage of Reused verbatim Source
Instructions from external repositories (RSI) to
the sum of RSI and shipped source instructions
(SST)-
Percentage of different items reused verbatim
more than a given number of times vs total items
used.
Percentage of references to items reused verbatim
more than a given number of times vs total
references.
Ratio of Reuse(S) to Size(S), where S is the
system. Reuse(S) is the sum of the entities that S
refers to.
Percentage of code reused verbatim or slightly
modified within the system.
Percentage of code savings from reusing verbatim
existing components vs. expected total size of the
code with no external reuse and just one internal
use per item defined-
The LOC of a reused module, and the times that it
is being reused

Ratio between the lines of code reuse in an
application and the total lines of code of the
application,
Normalized number of items reused verbatim
more than a given number of times.

13

The calculation does not require data that are not avaiIable in the company's

database.

Based on the above criteria, the amount of reuse metrics in Table 2.2 are reviewed:

The FNEMC metric (Agresti and Evanco, 1992) requires the knowledge of

"extensively modified" code, which is not available in the company's database

and can not be measured automatically.

The Reuse% metric (Poulin et al., 1993) needs to have the data on the library

source code and the repository code in order to separate the new code from the

modified code and new code from the reused code. Unfortunately, the information

on the library repository codes are not in the company's database and can not be

calculated by the WebMetrics tool (Succi et al., 1998)-

The RL and RF metrics (Frakes and Terry, 1994) use the verbatim items in the

project for the calculation. The information on the C-functions can be collected by

the WebMetrics too1 (Succi st al., 1998) automatically.

The AppReusePerc(S) metric (Chen et al., 1995) is similar to the Reuse% metric

that needs to have data on the library source code and the repository code which

are currently not available.

The RR metric (E3asili et al., 1996) requires the knowledge of "sIightIy modified"

code, which is not avaiIabIe in the company's database and can not be measured

automatically,

The Rsf metric (Devanbu et al., 1996) requires knowledge of the size of code

without reusing any functions- This requires the calcuIations of the size of all the

library functions which can not be done by WebMetrics tools (Succi et al., 1998).

The RMsF metric (Sadahiro fsoda, 1996) is like the Rsf metric that needs to

know the size of all the library functions which can not be done by WebMetrics

tool (Succi et al., 1998).

The R metric (Gaffney and Cruickshank, 1992) needs to have the data on the

Iibrary source codes which are not in the company's database and can not be

calculated by the WebMetrics tool (Succi er al., 1998).

14

The RD metric (Benedicenti er al., 1997) requires the knowledge of verbatim C-

functions; which can be collected by the WebMetrics tool (Succi et al., 1998)

automatically from the database-

The company's database only provides data to calculate reuse level. reuse frequency

and reuse density. Any other amount-of-reuse metrics need to use data that is currently

not available. Furthermore, reuse level, reuse frequency and reuse density can be

calculated by using a program called WebMetrics tool. As a result, it was decided that

RL, RF, and RD were the best metrics to measure the amount-of-reuse metrics in this

thesis.

2.4 Modeling the Effects of Amount-of-Reuse

An effective application of software reuse requires a quantified model of its effects. A

general software reuse model has not yet been defined. However, several project specific

models have been identified that link attributes of the amount-of-reuse to attributes of

quality and productivity. Table 2.3 lists some of the project-specific models that have

been identified in the past few years.

I (Agresti and
, Evanco,
i 1992)
(Basili et al.,
1996)

(Gaffney
and
Cruicks hank
, 1992)

(Devanbu et
al., 1996)

(Frakes and
Succi, 1997)

(Succi md
Benedicenti,
1998)

1 Independent
1 variables
FNEMC

Reuse rate

Dependent
variables

Defect density

Defect density,
rework, and
Productivity

Structure
of model

Log-
Linear
model
Linear
model
with non-
parametric
testing

Findings

Higher levels of FNEMC
result in higher defect
density
Higher reuse rates are
correlated with higher
productivity, lower defect
density, and numbers of
rework-

Labor-month
per function
points, and unit
cost

Error density,
percentage of
rework, and
productivity

Linear and
log-linear
model

Log-linear
model

Higher reuse level and
reuse frequency

Larser reuse percent
corresponds to lower
development unit cost and
smaller labor-month per
function point
Larger reuse size and
higher reuse frequency
correlate to lower error
density and higher
~roductivitv.

Software
quality rating

Density of
customer
complaints

Linear
model

model corresponds to lower

parametric

with Non-
parametric

I I testing
Table 2.3: Effects of amount-of-reuse models

corresponds to higher
quality ratings and lower

As shown in Table 2.3, that there are many studies relating the effect of the amount-

of-reuse. However, the effect of software reuse on defect density levels for van-ous

severity classes has never been analyzed. In order to overcome this lack, it is proposed to

analyze the relationship between the amount-of-reuse and defect-density levels for

various severity classes. Defect-severity is one of the indicators for software quality. By

introducing different software quality metrics in the following chapter, defect-severity is

16

shown to be the most suitable metric to measure software quality based on the available

data in this thesis,

2.5 Introduction to software quality metrics

Software reuse can be used to improve the quality of software, There are many ways

to define software quality. Different people define quality according to their own special

needs. William defines software quality as the degree to which the software processes

desired attributes, such as reliability, maintainability, flexibility and so on (WiIIiam et al..

1992). All those software quality aspects can be measured by different metrics.

Reliability is chosen as the measurement for software quality in this thesis. Reliability is

classified as software quality in this thesis. This chapter is intended as a background

discussion on various current software quality metrics. By highlighting the strengths and

limitations of each quality metric, defect density is shown as the most suitable metric to

measure software quality for this thesis-

2.5.1 Software quality metrics

In the eyes of many managers, software quaIity directly translates to development

cost, time to market, or customer response time. One example of the time related metric

is called spoilage (Fenton and Pfleeger, 1996). Spoilage is very popular among Japanese

companies, and is calculated as below:

time to fi- post / release defects
system - spoilage =

total system developnrent time

Currently, there is no information on the actual time spent to fix errors in the

company's database.

Besides using time metrics, software quality can also be measured by its cost. The

example of a cost related quality metric is the calculation of portability (Fenton and

Pfleeger, 1996).

resource needed to move system to target envirenment
portabi l i~ = 1 -

resource needed to create system

Despite its benefits, the actual reuse cost is not easy to calculate. Furthermore, there is

currently no information on cost in the company's database.

Most of the quality metrics measure software quality after a project is done. However,

there are other types of metrics that can be used to predict the quality of a future project.

One of such metrics is COQUAMO, sponsored by the European Strategic Progam for

Research in Information. COQUAMO estimates software quality based on the

observation of quality in the previous projects implemented by the same organization

(Kichenham, 1989)-

Software quality can also be measured in terms of software complexity. Usually, a

complex program has more errors than a simple program. Thus, a complex system often

has lower quality. Software complexity can be measured by many metrics, such as

McCabe cyclomatic complexity metric, Henry and Kafura's fan-in and fan-out

measurement (Card and Agresti, 1998), or Hutchens and Basili's Data binding (Selby and

Basili, 199 1). Due the abilities of the WebMetrics tool (Succi et al., 1998) to collect data

on McCabe cyclomatic complexity, it is decided in this thesis to use McCabe cyclomatic

complexity as one of the measurements for software quality- McCabe cyclomatic

complexity will be discussed in more detail in Chapter 3 -4: Softrvare cornple.xitv

attn'bcctes.

Due to the shortcomings (time estimation, resource estimation, or software quality

prediction) of the various software quality rnetrics discussed above, defect-density was

chosen as another software quality measurement in this thesis. There are many benefits in

using defect density metric. First, defect-density is one of the most widely used quality

metrics. Next, defect-density is a direct measurement of software quality. Moreover,

defect-density can be used in every stage of the development process. The data needed to

calculate defect-density are in the company's database, or are available through the

WebMetrics Too1 (Succi et al., 1998)-

Defect density of a systems S, DD(S), is defined as the ratio between number of

defects (of a given class) in S and the size of S:

N~trrzber of Defects in S
DD(S) =

Size of S

Defects can be classified according to different perspectives, such as the origin, the

cost to fix, how severely they affect the behavior of the system, and so on. The company

provided the data for this thesis chose to classify defects into different classes of severity.

Defect density can be specialized to specific classes of severity. The 'Defect Density"

for a given severity class i (DDi) is calculated as follow:

Nrmber of Defects of Seven-ty i in S
DOi (S) =

Size of S

Clearly the summation over all the defect density of the different severity classes is the

global defect density:

ODi (S) = DD(S)
i

The classifications of the defects in this thesis are discussed in Chapter 3.3: Software

Qualim Attribt~tes. The defects are classified according to five different types of severity

in this thesis. The product size used in the defect density at the different severity classes

@Di) calculations is lines of code. The defect density metric will be used in the later

chapters to analyze three C-based projects.

2.6 Summary

Current software reuse measurement was introduced in the first section of this chapter

of this thesis. By comparing weaknesses from various software reuse metrics, the

amount-of-reuse metric was chosen as the best one for measuring software reuse. Next,

various types of amount-of-reuse rnetn'cs were discussed, Reuse density, reuse frequency

and reuse level are chosen as the metrics for measuring amount-of-reuse because of the

Iimitations of the company's database. Finally, based on the software quality metrics

discussion, it was decided to use defect severity and McCabe cyclomatic complexity as

software quality measurements in this thesis,

3 Software attributes measurement

3.1 ln froduction

Software metrics can be used to collect and to analyze various kinds of software

project data. The properties of data are called attributes. It is important to have well-

defined software attributes measurements in order to avoid comparing apples with

oranges during analysis.

In the following sections of the current chapter, there are definitions of five different

software attributes, which are used in various software reuse and software quality metrics

later in the thesis. The five software attributes are lines-of-code, Halstead's Volume,

defect severity, McCabe cyclomatic complexity of a program and amount-of-reuse

measures.

3.2 Size of components attributes

3.2.1 Lines Of Code

Software reuse and software quality measurements both contain the size of

component attributes. There are many ways to measure the size of a program, ranging

from lines-of-code GOC), memory required, to code size in Kbytes- LOC is the most

commonly used among those measurements. There are many ways t o measure lines-of-

code. Therefore, it is important to understand how LOC is being measured in this thesis

and in the industry, in order to avoid comparing the data with the same attributes, but

with different definitions.

Before counting or comparing Iines-of-code, it is important to know what type of

language is being used in a program. The size of the code is greatly influenced by the

type of language. Usually, assembler code has the largest LOC count, while fourth-

generation language and visual programming have the lowest lines-of-code counts,

Therefore, it is important to compare the LOC of one language of one program with the

2 L

LOC of the same Ianguage of another program- Three software projects written in C are

analyzed in this thesis. It would be inappropriate to compare the results reported in this

thesis with other projects developed in different languages.

After understanding the language type, the next step is to measure the lines-of-code

in a program. The basic lines-of-code was calculated by simply counting the number of

lines of the code in a source program. Therefore, the whole data collection process for

Iines-of-code can easily be reproduced and automated, There are many benefits in

measuring LOC. For example, the size of design may provide an indication of the size

of code, and the size of code may be used to predict the development cost of a project.

Despite the advantages of using lines-of-code as a software measurement, there are

some weaknesses associated with this- First, there are many ways to count LOC- Lines-

of-code can be counted by the number of instructions in a program. LOC may also

contain the number of blank lines, comment lines, and declarations. As a result,

different ways of counting LOC can produce very different results. In this thesis, LOC

is measured by counting the number of semicolons in the source code (Humphrey,

1995). Moreover. blank lines, comment lines, and declarations are ignored in this thesis,

as they are not considered as software reuse.

Lines-of-code is used in most of the software metric measurements. Therefore, it is

important to know that there are different factors, which may affect the find counts of

lines-of-code. Some of the factors are listed below (Fenton and Pfleeger, 1996).

I. Some instructions are harder to write than others.

2. The final program may contain dead code and test code.

3. One instruction may contain several sub-instructions.

4. Documentation also takes effort to write. Documentation is important for the

understanding and maintenance of the software.

22

This thesis only considers code reuse. The size of software is measured by lines-of-

code. The LOC calculation is based on the assumptions that all the instructions take the

same amount of effort to write, and the program does not contain any dead code or test

code.

3.2.2 Halstead Volume

Halstead Volume (HV) (Halstead, 1977) was conceived to approximate the amount of

memory space required by a program. Helstead theorized that each program could be

defined as a collection of tokens. Each token can be classified as either an operator or an

operand (Mills, 1988). To compute HV, it is necessary to count the number of different

operators (n I) and operands (n2) and the total number of operators (N I) and operands (Nt)

that appear in a program. The Halstead Volume H V is calculated as follow.

Studies have shown that the values of LOC and H V appear to be linearly related and

equally vdid as relative measures of program size (Mills, 1988).

3.3 Software quality attributes

Software quality means different things to different people. For example, customers

may see the lack of software quality as the number of crashes a program has over a

period of time, while designers may see the lack of software quality in the same program

in terms of documentation quaIity as they are modifying the program. This thesis

measures software quality in terms of defects discovered after the product is released

from the programmers and is in the hands of the testing team.

Several definitions of "software defect" exist. Following the definition of Humphrey

(1990), a defect is defined in this thesis as the improper program conditions that are

generally the result of an error. Defects used in this thesis are detected by testers during

23

the testing phase of a system, that is, after the coding of the system has been completed

and before the system is delivered to customers

Defect density levels for various severity classes are analyzed in this thesis. Chapter

2.5.1 contains general definitions of Defect Density for different severity classes (DD;).

The defects are classified according to the definitions defined by the company, which

provides the data used in this thesis. This company uses a 5 point ordinaI scale to classify

defect by severity, from 1 -the most serious defect, to 5 -the least serious defect. A

generic definition of each point follows:

Seven'ty 1: unrecoverable failure of the software

Severity 2: system operations can be recovered by powering down and powering

up the system

Severity 3: part of the system feature does not work as specified

Severity 4: usability problem

Severity 5: cosmetic deficiency

Once the defect severity is classified, the next step is to count defects according to the

defect severity levels discussed above. The plain count of number of defects does not

provide a comprehensive view of how well the system has been developed. In general, a

larger system is usuaIIy more complicated. Thus, a larger system has a larger number of

defects. Therefore, the notion of defect density was introduced (Fenton and Pfleeger,

1996). Defect density is the ratio between the number of defects in a system and the size

of a system. Defect density can refer either to the whole set of defects or to specific

classes of severity; both types of defect density were analyzed in this thesis.

3.4 Software complexity attributes

A software system can also be measured by its complexity in addition to lines of code

and software defects. As with software quality, there are also many views on software

complexity. Fenton defines two types of complexities, the complexity of a problem and

24

the complexity of a solution (Fenton and Pfleeger, 1996)- Each type of complexity has its

own measurements. For example, function points for measuring the complexity of a

problem, and McCabe cyclomatic complexity for measuring the complexity of a solution.

Software solution complexity, simply called the software complexity in the following

chapters, is analyzed in this thesis.

There are many ways to measure the complexity of a solution. The complexity can be

measured in turns of con trol-flow structure, data-flow structure and data structure (Fenton

and Pfleeger, 1996). The control-flow structures approach measures the execution of the

sequence of the instruction in the program. The data-flow structure approach follows the

creation and the modification of a single data item. On the other hand, the data structure

measures the internal makeup of a data item (object). The projects measured in this thesis

do not have complicated data stmctures, or data handling features. Therefore, only

control-flow structure is used to measure the software complexity.

The McCabe cyclomatic complexity is used to measure the control-flow structure of

the program in this thesis. McCabe cyclomatic complexity is one of the most popular

ways to measure complexity. Its unit is called cyclornatr'c cotnple-.ty of a progranz-

McCabe cyclomatic complexity is based on the flow chart. A flow chart consists of nodes

and edges. A node is a software command, or a decision in the program. An edge is the

line connecting one command to another structure (Fenton and Meeger, 1996). The

McCabe cyclomatic complexity MCC i s calculated as follow.

MCC=e-n+2

where

e = edges

n = nodes

Example I is a small program in a single fiIe.

/ / a small program file, fi1es.c

extem int S tudentMark;

extern void output (char *string) ;
extern void kickoutstudent () ;
extern void award () ;
int getMark () { return StudentMark) ;

Main ()
C

int FinalGrade = getMark () ;

if (FinalGrade c 50)
C

output ("Failrr) ;
kickoutstudent () ;

1
else
C

if (FinalGrade > 80)
output ('Honour") ;

else
output ("Pass") ;

1
output ("Done") ;
exit() ;

The flow diagram of example 1 is shown in Figure 3.1.

FinalGrade =
getMark0

Figure 3.1: Flow chart for calculating McCabe cyclomatic complexity

+
output ("Fail")

v v v

kickoutstudent () output ("Honour") output ("Pass")

I

output ("Done") 4

27

Based on Figure 3.1, the e = 11, n = 10 and the cyclomatic number of example 1 is 3.

3.5 Amount-of-reuse atfribufes

Based on the discussions in Chapter 2.3, Reuse Frequency (Frakes and Terry, 1996),

Reuse Level (Frakes and Terry, 1994) and Reuse Density (Benedicenti at ul., 1997) are

used in this thesis to anaIyze the relationship between amount-of-reuse and software

quality.

3.5.1 Reuse Frequency

Reuse Frequency (RF,) is the ratio between the number of references to Iower level

items reused verbatim more than a given number of times (the threshold t) inside a higher

level item (UF,) and the total number of references to Iower level items in the higher

level item (TF) (Frakes and Terry, 1997):

Only C code is used to analyze the amount of reuse in this thesis, where the reused

lower level items are the C functions, the higher level items are the files. File is the unit

of modularization in C in this thesis,

Reuse Frequency can be further divided into Internal Reuse Frequency (IRF,) and

External Reuse Frequency (E m) . This is done by separating in the computation of UFt

the reuse items coming from inside and from outside the working environment. Poulin

(1997) considered internal reuse as a good programming practice. Following Poulin

(1997) only reuse coming from outside the scope of the project was considered in this

thesis: ERF, in this case. Along the lines of (Frakes and Terry, 1994), the value of the

threshold t is set to 2, that is, an item is considered "reused" if it used more than twice.

2 8

3.5.2 Reuse Level

Reuse Level (RL,) is the ratio between the number of lower level items reused

verbatim more than a given number of times (the threshold t) inside a higher level item

(UL,) and the total number of lower items in the higher level item (TL) (Frakes and Terry,

1997):

The reused lower level items are the C functions in this thesis, while the higher level

items are the files, the unit of modularization in C,

Reuse Level can be further divided into Internal Reuse Level (IRL,) and External

Reuse Frequency (ERL,). This is done by separating in the computation of UL, the reuse

items coming from inside and from outside the working environment. Following Poulin

(1997), only reuse coming from outside the scope of the project is considered in this

thesis: Therefore, it is decided to only focus ERF,. Along the lines of (Frakes and Terry,

1994), the value of the threshold t is set to 2.

3.5.3 Reuse Density

Reuse Density (RD,) is the ratio between the number of references to lower level

items reused verbatim more than a given number of times (the threshold t) inside a higher

level item (UF,) and the size of the higher level item (ST) (Benedicenti et ai., 1997):

The same considerations made for Reuse Frequency and Reuse Level apply to Reuse

Density. It was decided to use E m 2 , that is, External Reuse Density referring to items

coming from outside the scope of the project and using 2 as the threshold. The size of the

higher level item, the file, is measured in Lines Of Code (LOC), counting the number of

semicolons in the source code (Humphrey, 1995).

3.5.4 Examples on Reuse Level, Reuse Frequency and Reuse Density

Table 3.1 provides a summary on the functions in example 1 in terms of internal or

external function, and the number of references made to each function-

Output0
KickOutStudent()

Award()
Exit()

Ge tMark()

Table 3.2 provides a summary of the results of the amount-of-reuse of example 1. The

detailed calculations of the results are as follows.

0
1
2

There are a totaI of 3 different types of functions (lower Ievel items) used within

higher level items (f2el.c) of example 1. Inside the main function, there are 2 external

and 1 internal functions used- The threshold 0 of ERLo is 2/4. Of the 2 external functions,

only function Output(), is used more than once. Therefore, the results of E m I and El&

are 1/4.

Table 3.1: Classification of functions of exampIe 1

External
External
External
In tern a1
Internal

There are a total of 6 references to the functions (lower level items) withinfi1el.c

(higher level items) of example 1. Function Output0 is referenced four times, while

function KickOutStudentO and function GetMark0 are only referenced once. Therefore,

the result of ER.& is 517. Of the two external functions, only function Output() is

referenced more than once. Thus, the results of ERLI and E& are 417.

4
1
0
1
1

Table 3.2: Amount-of-reuse of example 1

214
114
1/4

517
417
417

5/12
4/12
4/12

30

The size of the higher level item (filel-c) of example 1 is 11 lines of code by counting

the number of semicolons in the source code (Humphrey, 1995)- The same logic in the

number of reference calculation for Reuse Frequency applies to Reuse Density. Thus, the

result of ERLo is 5/12 and the results of E m I and E& are 4/12.

3.6 Summary

The definitions of the five software variables used in later parts of this thesis were

defined in this chapter. The five types of software variables are lines-of-code and

Halstead Volume for measuring size of component, defect severity for measuring

software quality, McCabe cyclomatic number for measuring software complexity and

reuse level, reuse frequency and reuse density for amount-of-reuse measurement.

4 Statistics for software analysis

4.1 Introduction

With the raw data on a software process collected and categorized, statistical analysis

can then be used to represent characteristics of the current data, and to predict trends in

the data. Spreadsheet programs and statistical packages can be used to automatically

analyze and graphically display the data. However, it is still important for users to

understand the techniques available and to know when to chose an appropriate analysis

techniques,

This chapter is intended as a tutorial to discuss the techniques used to analyze the data

set in this thesis. First introduced are the various simple descriptive techniques used to

represent statistical data associated with the population set from which the data is drawn.

Discussed next are the statistical test techniques used to verify if a sample set indeed

represents the population set together with graphical representations of the data

characteristics. Finally there is a brief introduction to correlation and regression analysis

appIied in a software-engineering context.

4.2 Simple variable descriptive statistics

The basic descriptive statistical analysis techniques to numerically describe data sets

are: mean, median, mode, quartiles, variance and standard deviation. These numerical

representations provide a simpIe way of representing the data set. Several examples of

using basic descriptive techniques to represent data are demonstrated with the simple data

set of example 2.

Example 2: Project C has 34 files. External reuse densities of threshold 2

(ERDd of each of the 34 fiIes of project C are shown in Table A.1 in the

appendix

32

The mean is the average of a data set. The mean is defined as the sum of all the data

divided by the number of data point. The mean works the best in an evenly distributed

data set. Any extreme values will influence how well the mean represents characteristics

of the data set. The mean of example 2 is equal to 0.241. As the mean is close to the rnid-

point of the data set, and there are no real extreme values, the mean characterizes

represents this data set weIl.

Another way to represent the data set is to use the median. Median is the rniddIe

value in an ordered set. In the above example, the median is 0.244. For the data set that

has an even number of values, the median is calculated by averaging the two middle

values. On the other hand, mode is the most commonly occurring values- Unlike mean

and median, a data set can have more than one mode- Example 2 has three modes: 0.234,

0.372 and 0.283.

Mean and median are very useful in analyzing the characteristic of the set. However,

they alone still can not represent the full picture of the data set under some circumstances

as shown by example 3.

Example 3 has two data sets, data set 1 and data set2. Data set l = (-4, -2, -1,O, 1,

2,4) and data set2 = (-400, -200, -100,0, 100,200,400).

The values for the mean and median of example 3 are both equal to zero. However,

these two data sets are quite different from each other. Therefore, one will need another

way to represent the data that just using the mean and median,

The quartile is another statistical term used to represent the characteristics ~f an N-

point data set by separating the data set into four equal parts. The first, or Z t h , quartile

represents the data at the position of (N + 1) /4. The second (50th) quartile, almost

identical to the median, represents the data at the position of (N + 1) /2. The third (75h)

quartile represents the data at the position of 3 (N + 1) /4. The quartiles of example 3,

3 3

(-2,0, 2) and (-200,0,200) describe the data sets better than the mean or the median, The

quartiles not only show the difference, but also the dispersion of the data set. For

example, the quartiles of example 3 show that 75% of the data are less than 2, and 25 5%

of the data are Iess than -2 in data set 1.

The range represents the data set from yet another angle. The range is the difference

between the largest and the smallest value in the data set. Using the range easily

highlights the difference between the data sets in example 3. The ranges in example 3 are

equal to 8 and 800 respectively. Both quartile and range are used in the box plot diagram

(discussed later) to help graphically visualize the distribution of the data set.

A Iimitation of the quartiles and range measure is that they are used to characterize

the variations of the whole data set based on the characteristics from a few data points.

Another type of variation measure called variance overcomes this weakness. Variance

looks at the variation of the whole data set. Variance is the sum of the squared difference

between each individual value (Xi) and the mean of the data (X,,,) over the total number

of the data (N).

The standard deviation is the square root of the variance. The advantage of standard

deviation over variance is that the deviation has the same units as the original data. For

example, the standard deviation shows the variation of data set1 is 100 times larger than

the variation of data set2 in example 3. The standard deviations are 2.646 and 264.6

respectively.

34

The kurtosis measures the "peakness" of the bell-shape curve of the data distribution.

Thus, the smaller the kurtosis, the flatter the bell curve is, In other words, a small kurtosis

means the data is uniformly distributed, and a large kurtosis means that the data is

concentrated around its mode. There are several methods for calculating the kurtosis. The

kurtosis formula presented here is called the coeflcienr of peakedness, (MerriI1 and

Fox, 1970).

Skewness is used to measure the symmetry or lack of symmetry of a distribution. In a

symmetric distribution, 50% of the data is on the left side of the mean and 50% of data is

on the right side of the mean. As a result, the mode, the median and the mean are the

same- In general, a large positive skewness means there are many large extreme data in

the data set. On the other hand, a negative skewness means there are more small data than

large data in the population. Zero skewness means a perfect symmetric distribution.

There are several methods for calculating the skewness. The skewness formula presented

here is called the Pearsonfan coeficient of skewness (Parsons, 1974).

4.3 Statistical tests

The basic descriptive methods described in the previous section do not show how

well the data set actually represents the whole population. Usually, the data set is only a

sample of the whole population. Therefore, there is a difference between the calculated

characteristics of the known data and the characteristics of the actual data. As a result,

35

there is a need to do a statistical test to see how wetl the calculated result represents the

real population data set.

Most of the statistical tests are based on the central limit theorem (Cangelosi et al.,

1983). The central limit theorem states that as the sample size grows larger, the sample's

distribution gets closer and closer to the true distribution, In other words, the mean of a

iarge sample size is close to the mean of the population regardless of the shape of the

population. Based on the properties of the central limit theorem, statistical tests can infer

the hypothesis, No, of the population from a sample of data-

There are five basic steps for doing the statistical test (Cangelosi et al., 1983).

I. Formulate a null hypothesis about Ho (equaiity hypothesis)

2. Formulate an alternative hypothesis (inequality hypothesis)

3. Select a level of significance

4. Perform the test to determine if a relationship really exists

5. Check the significance against the required significance. Accept the hypothesis of

step I if the result is greater than the required significance- Otherwise, accept the

hypothesis of step 2.

There are many tests that can be performed in step 4, such as parametric correlation

test for normally distributed data sets (Frakes and Succi, 1997; Succi and Benedicenti,

1998), and the non-parametric correlation test for non-normal data set (Basili et al.,

1996). The test for normality is discussed in chapter 4.5.4.4. The amount and the

characteristics of the data from the target company suggests the use af parametric

correlations and linear models. Parametric techniques are robust to deviations from

normality (Cochran, 1947); Briand et al. (1996) contains an in depth discussion on the

use of parametric methods in software engineering.

4.3.1 Pearson's correlation

The Pearson's correlation can be applied to a normally distributed data set. In a

normally distributed data set, residuals are normaIly distributed. A residual is the

difference between the actual dependent value and the estimated dependent value

obtained from using the linear regression formula. Pearson's correlation is also known as

the sample coeficient of correlation. The sample coefficient of correlation r is calculated

as follow,

where Xi and Yi are the values of the independent and independent values of the N point

date set.

The interpretations of the coefficient of correlation are shown below.

r = 0: no correlation between the independent and "assumed" dependent variables

what so ever

r = 1 : complete positive correlation

r = - 1: complete negative correlation

Pearson's correlation can provide an actual representation of the linear association

between two variables in a large normal population set. However, in a small data set

environment, the accuracy of the value of the coefficient of correlation is highly

dependent on the normality of the data set. By removing a few of the extreme values in a

small size data set can dramatically change the value or even the positivefnegative sign of

the coefficient of the correlation. There is a technique called bootstrapping that can be

used to determine the range of validity of the correlation. The bootstrapping technique

will be discussed in Chapter 6.

37

4.4 Graphical representation -- "A picture is worth a thousand words".

Despite the strengths of the number representations and statistical tests, a graphical

representation can more easily convey information to readers. Many kinds of graphical

representation can be used in data analysis. The most commonly used ones are box plots,

histograms, and scatter plots.

4.4.1 Box plot -- also called the box-whisker plot

The box pIot graphically displays the previously discussed descriptive data, median,

quattiles, maximum, and minimum as shown in Figure 4.1

ERD2

Figure 4.1 : Box plot for E m l of example 2.

The 'box' is bounded by the values of the 25th percentile and 75" percentile. The line

drawn through the box represents the median, The area within the box is the theoretical

place where all the data points are likely to be found if the distribution is normaI. The

'whisker' lines are the lines from the 2sth percentile to the minimum value and from the

75th percentile to the maximum value.

Currently, there are a number of different definitions for the minimum and maximum

values- Some authors define them as the actual minimum and maximum values of the

whole data set. On the other hand, in this thesis, the SPSS software definition is followed-

3 8

In this definition, the maximum value is taken as the 75'" percentile plus 1.5 times length

of the box, and the minimum value as the 25" percentile plus 1.5 times length of the box.

Finally, the box plot uses asterisks to show the extreme values that are outside the

whisker lines.

Figure 4.1 shows the box plot for example 2. The median, 0.244, is at the center of

the box in Figure 4.1. The absence of any asterisks in the box plot shows there are no

extreme values in the data set.

4.4.2 Normal Curve Histogram

Normal curve histogam is one type of the available bar plots. A bar plot consists of

evenly spaced vertical bars on a horizontal line. The height of each vertical bar in the

histogram-corresponds to the number of data values that falls in a particular range in the

data set. Frequency zero does not have a vertical bar. Histograms are used only when the

variables in the data set can be meaningfully grouped. Unlike a basic histogam, a normal

curve, calcuIated from the same data set as the histogram, is superimposed on top of the

histogram used in this thesis. The formula for drawing a normal curve can be found in

many statistic textbooks, such as the one by (Carlson and Thorne, 1997). The additional

normal curve in a histogram heIps to highIight the distribution of the data set. The normal

curve can be caIculated from the mean and the variance of the data set (CarIson and

Thorne, 1997). Figure 4.2 below shows the histogram for example 2-

Figure 4.2: Histogram for ERDz of example 2.

Unlike the box plot where only the median and quartiles are used to represent the data

set, more data values are used in Figure 4.2 to show the data distribution in finer details,

and also displays the data set in a normalized bell curve. Despite its strengths, a normal

curve histogram still can not display each individual value and the relationship between

the variables.

4.4.3 Scatter diagram

Unlike the histogram, the scatter diagram is a graphical tool used to show the

relationships of two types of variables, dependent and independent variables. The

dependent variable is plotted on the Y-axis, usually catled the 'y' variable. The

independent variable is plotted on the X-axis, called the 'xT variable. The data points in

the diagram are not connected together by a Iine.

A scatter plot shows the general trends of a system, i.e. increasing, decreasing or

random. By looking at the points, one may be able to visualize if there is a relationship

between dependent and independent variables, and if the relationship is positive or

negative.

Example 4: Project C has 34 files. Table A.2 in the appendix contains two types

of project C data, threshold 2 external reuse density (ERD?) and priority 3 of

defect density (DD3).

In Figure 4.3, the points are grouped in a manner that suggests a slight negative

relationship between the threshold 2 external reuse density (E m 2) and the priority 3 of

defect density (DD3) for example 4. The scatter diagram shows that the more extemal

code reuse a file has, the less errors the file is going to have. Furthermore, the scatter plot

shows an extreme data point of (0.059,O. 11 1). This extreme data point may affect the

accuracy of the Pearson correlation value. The Pearson correlation value will be lower in

this case.

ERD2

Figure 4.3: Scatter plot between ERD2 and DD3

4.5 Simple linear regression analysis

There are other types of analysis techniques that use a mathematical equation to

represent a data set, and to predict the trend from the data set. Linear regression technique

is chosen for use in this thesis to analyze the data set. Linear regression analysis provides

an easy, yet effective way by attempting to represent a data set by using a mathemat id

equation, Y = aX + b.

There are also other benefits in using linear regression (Hamburg, 1970).

I . To provide estimates of values of dependent variables from the values of

independent variables.

2. To obtain a measure of error involved in using the regression line as the basis for

estimation. If the differences between the estimated values and the actual values

are small, then the regression line can accurately represent the actual data set.

However, if the differences are large, then the regression line can not accurately

represent the actual data set.

41

The correctness of using linear regression on a data set is dependent on four

hypotheses (Benedicenti et al., 1997). The four hypotheses will be discussed in more

details in Chapter 4.5.4.

1. Linearity

2- Homoscedasticity

3. Normality

4, Independence of error

There are four steps in doing linear regression:

1. Compute the correlation coefficient. (for more detail, see chapter 4.5.1)

2. Plot the scatter diagram. (for more detail, see chapter 4-52)

3. Compute the regression equation and its standard emor of estimate of the

dependent values, Y. (for more detail, see chapter 4.5.3)

4. Check the correctness of the linear regression function using the four hypotheses

listed above. (for more detail, see chapter 4.5.4)

These 4 steps are illustrated in the following subchapters for verifying a negative

relationship between the threshold 2 external reuse density (ERD?) and the priority 3 of

defect density (DD3) for example 4.

4.5.1 Compute the correlation coefficient

Computing the correlation coeffficient is the first step in doing simple regression

analysis. The correlation coeficient can be used to check if a strong relationship redly

exists between the dependent and the independent variables. There are many statistical

techniques that can be used to calculate the correlation coefficient. Some of the

techniques are Pearson's coefficient, Kendall's tau-b, Spearman's correlation. Kendall' s

tau-b and Spearman's correlation are used to analyze non-normally distributed data set.

Pearson's coefficient was used in this thesis because it was assumed that the data sets are

normally distributed- Using the formuIa provided in Chapter 4.3, the Pearson's

42

coefficient of the relationship between ERD2 and DD3 is -0.3907, which identifies the

presence of a significant negative correlation- A weak correlation means it is statistically

irnpossi ble to determine if a relationship really exists between the dependent and the

independent variables.

4.5.2 Scatter diagram

Strong correlation coefficient signals that a linear relationship may exist, For non-

linear relationship, scatter diagram is the simplest technique to check whether o r not a

relationship does exist. By looking at the shape of the scatter diagram, one may be able to

tell if there is a relationship between dependent and independent variables. If there is a

relationship, one also can choose the corresponding function to represent the data points

according to the shape of the graph. For example, the represented function can be a

logarithmic or a simple linear regression function. For example, Figure 4.3 shows that

there is an inverse linear relationship between the threshold 2 external reuse density

(E m) and defect density for severity class 3 (DD3) for example 4.

4.5.3 Linear regression

4.5.3.1 The linear regression equation

After the scatter diagram showed that a linear relationship may exist, the next step is

to use a mathematical linear equation, Y = aX+b, to represent the data set. In the

equation, Y = aX+b, X is the independent variable, and Y is the dependent variable. The

independent variable X i s assumed to contain no measurement errors. The dependent

variable Y is assumed to contain all the random errors associated with the measurement.

In real life, it is almost impossible to use the linear regression function to predict the

exact value of the dependent variable because few data has perfect linear relationships.

There are many ways to calculate the linear regression equation. The simplest and

quickest way is to first draw a straight line by hand that best represents the dots in the

43

scatter diagram. The slope 'a' and the Y intercept 'b' can then be calculated based on the

straight line.

Although it is simple to produce, a hand-drawn line has several drawbacks. First, it is

almost impossible to draw the best Iine to represent all the dots in the scatter diagram-

Secondly, this is not a reproducible process as no two people can draw an identical line in

exactly the same place

One of the most popular mathematical techniques to calculate the best regression

equation is caIled the least-square method.

There are many benefits of using the least-square method. First, it is a reproducible

process that aIIows different people to arrive at the same result. Moreover, it can produce

a Iine with a minimum sum of error between the actual Y and the predicted value. The

slope and the y-intercept of the linear regression function are calculated below.

where

b = the estimate of slope of the regression line

a = the estimate of Y intercept of the regression line

Xi = the value of the independent value

= the value of the dependent value

n = the number of observations

The linear equation for example 4 is shown below in Figure 4.4 and Table 4.1. Table

4.1 shows the values of the Y intercept and the slope of the regression line. Figure 4.4

44

shows a negative linear relationship between two variables, DD3 and ERD2. As shown in

Figure 4.4, a mathematid equation is good at predicting the trend of the data. However,

it is important to know that the equation may be only valid in a certain time frame or a

certain condition as shown by example 4 in chapter 4 -43 and Figure 4.3-Figure 4.4.

Table 4.1: Regression coefficients for ERDt vs. DD; in example 4

I a
Project 1 I -0.037

ERD2

Figure 4.4: linear regression function for ERDl vs. DD3 in example 4

b
0.0 16

4.5.3.2 Cornprrtirtg the standard error of estimate of dependent variable, Y

In most cases, linear regression function can not fit all the dots in the scatter diagram

perfectly. Therefore, error exists between calculated value and actual value. In general,

the smaller the error is, the better the line represents the actual data relationship. If the

value of error is equal to zero, then the regression line exactly matches the data set. The

average value of error can be represented by the standard error of estimate o F dependent

variable. The formula to calculate the standard error of estimate of dependent variable Y

is shown beIow.

where

S , = the standard error of estimate of dependent variable Y

f i = actual value of the dependent variable

Xi = actual value of the independent variable

n = number of observations

The standard error of estimate of dependent variable represents the average error. The

smaller the standard error of estimate is, the better the regression line representing the

actual data set is, When the standard error of estimate is equal to zero, all the dots in the

scatter diagram lie exactly on the regression Iine-

4.5.4 Checking the hypotheses

It is assumed there is a linear relationship existing between X and Y. Linearity can be

verified by having significant linear correlation. For example, as shown by the linear

correlation in Chapter 4.5.3, there is a linear relationship existing between variables

E m 2 and DD3 in example 4.

4.5.4.2 Horn oscedasticity

Linear regression assumes that the standardized residuals do not change much with

each independent value. Komoscedasticity can be checked by plotting the residuals over

the mean residual value for each dependent variable hypotheses (Benedicenti et al.,

1997), or by visual inspection of the linear regression plot. For example, the analysis of

the linear regression plots in Figure 4.5 does not show evidence of any major changes in

the patterns of the residues.

Residual i

Figure 4-5: ResiduaI plots for ERDz vs. DD3 in example 4

4.5.4.3 Independence of error

The assumption of independence of error is that each error is independent. The error

is the difference between the estimated dependent value and the actual value. The

independence of error can be verified by using Durbin-Waton statistic, which is a test for

serially correIated or autocorrelated residuals (Carlson and Thorne, 1997). The Durbin-

Waton statistic measures the correlation of each residual and the residuals proceeding and

following it (Benedicenti et al., 1997). When the estimated correlation is zero, the

Durbin-Watson statistic is 2. Values close to 0 indicate positive autocorrelation, Values

close to 4 indicate negative autocorreIation. The Durbin-Watson value for example 4 is

2.192, which reveals only slight autocorreIation.

4.5.4.4 Normality

It is assumed that the value of the dependent value Y is normally distributed for each

value of the independent variable X. Normality can be checked by using a standardized

residual plot and by using a standardized residual histogram.

Histogram

Dependent Variable: DD3

Regression Standardized Residual

Figure 4.6: Standardized residual histogram for ERD2 vs. DD3 in example 4

Except for one extreme value, the histograms in Figure 4.6 show that the standardized

residuals in example 4 are approximately normal

By using linearity, normality, homoscedasticity and independence of error, a sound

linear model was verified between the dependent variable DD3 and the independent

variable E D a of example 4.

4.6 Summary

Various statistical techniques and their strengths and weaknesses are discussed in this

chapter. Furthermore, the reader was presented with a way that uses a combination of

several statistical techniques to represent and to analyze the data set:

1. Use simple variable descriptive statistical techniques, such as mean and median,

to describe the data set numerically.

2. Use statistical test, such as Pearson's correlation for normally distributed values,

to see how the data set represents the whole population.

3. Use various graphical techniques, such as box plot, to improve the data

representation,

4. Use correlation and regression analysis to arrive at a mathematical equation to

represent the data set and to predict the future trend.

5 Application analysis

5.1 Introduction

The results on an empirical investigation on the effects of software reuse on the

severity of software defects from three "C-based projects are presented in this chapter-

The three "C-based projects were created by a multinational company producing real

time telecommunication applications. Names and details of the company and of the

timing of the three projects are omitted for confidentiality reasons.

From this empirical investigation, it is hoped to verify that for each project under

study the following hypotheses:

1. There is an inverse correlation between amount-of-reuse and defect density.

2. There is an inverse correlation between amount-of-reuse and Defect Density at

different severity classes @Di).

5.2 Context of the study

The analysis done in this thesis refers to three projects run by a multinational

company producing real-time applications for telecommunications. Information foIIows

on the general context of the study, with specific attention to the collected measures, the

experimental design, the research hypotheses, the modes of reuse considered, and the

data collection process.

5.2.1 The three projects

In the remaining of the thesis, the three projects are referred to as "project 1,"

"project 2," and "project 3-" The vast majority of the features in each project were written

in "C". Assembly language was used only for the low-level control of the hardware- Only

the "C" portions are analyzed in this thesis because most of the software reuse occurs in

such portions and the complete data on the Assembler portions are not available-

49

Table 5.1 contains information on the projects' components written in C where most

of the software reuse occurs. . Details on the development time and effort, the size in

lines of code -measured counting the number of semicolons, and the number of files are

provided in Table 5.1, Furthermore, the relative time frames of the three projects are

provided in Figure 5.1. The specific timing is omitted for confidentiality.

Calendar Time

1-1 Project 1

Effort
Size
No. of Files

1-1 Project 2

Project 1
4 vears

1-1 Project 3
I I I i I I I > Year

0 I 2 3 4 5 6

Table 5.1: Features of the three projects

900 person days
12,926 LOC
29

Figure 5.1: Time frames of the three projects

Project 2
1 vears

The company organized the development of the three projects in three development

teams. The three development teams consisted of a baIanced mix of people with at least a

BSc in either computer science or eIectrical engineering, and with up to seven years of

programming experience. During the development process, the number of developers in a

team ranged from 3 to 5 persons. The assignment of people to teams can be considered as

following a random pattern since the teams were roughly equivalent in terms of

knowledge, skills and working environment.

Project 3
2 vears

300 person days
10,014 LOC
12

All three projects exhibit a low number of lines of code produced per person day, to

be expected with the real-time requirements of the target applications. The company

400 person days
16,478 LOC
3 4

50

considered the even lower figures of project 1 a natural consequence of the fact that this

was the first project undertaken by the firm in the target real-time application domain.

5.2.2 Experimental design

One-short experiment design is used in this thesis (Succi et al., 1998). One-short

experiment design is a one-time only collection process. Within each project for each file,

the amount-of-reuse rnetrics (E m 2 , E m , and ERD?) were compared with defect density

and defect density at the various severity levels, (DDi), (Table 5.2). Other relationships

between amount-of-reuse measures and defect measures were also sought, Relations

between "conventional" measures (LOC, MCC and HV) and defect measures were sought

to determine the original and the new contribution of amount-of-reuse measures to the

expranation of defects and defects severity (Table 5.2). The definitions of the metrics

were discussed in Chapter 3 in detail.

I Halstead Volume (HV) I I

External Reuse Densitythehotd2 (ERD2)

External Reuse Frequency ,bah,,, (ERF2)

External Reuse Level (ERL2)

Lines Of Code (LOC)

McCabe Cyclornatic Complexity (MCC)

Table 5.2: Experimental design

Defect density (DD)

Defect Density at level i (DDi)

5.2.3 The research hypotheses

Because of limited data involved, it is not possible to prove that an actual relationship

between amount-of-reuse and software quality actually exist. However, it is statically

possible to prove that a relationship is not there. Therefore, this thesis framed statistical

questions in terms of null hypotheses. The hypotheses of possible rejections of each

project are listed below:

1- There is not a correlation between external reuse density at threshold 2 (E m 2)

and Defect Density (DD) and Defect Density at the different severity classes

@Di) +

2, There is not a correlation between external reuse frequency at threshold 2 (E m 2)

and Defect Density (DD) and Defect Density at the different severity classes

(DDiI-

3. There is not a correlation between external reuse level at threshold 2 (E&) and

Defect Density (DD) and Defect Density at the different severity cIasses @Di).

As in several studies in software engineering (Me10 et a!., 1996), the a-level for

significance was set at 0.05 in this thesis.

5.2.4 Mode of reuse

As mentioned in Chapter 3.5, the reuse focus of this study is around external code

reuse (ERD, E R F and ERL), that is, code reuse coming from outside the scope of the

current project (PouIin, 1997).

Developers of the three projects took advantage of an existing company library

containing domain specific functions. However, the company did not have a reuse

process in place. All the reuse was "ad-hoc," based on the decisions of the individual

developers to reuse existing functions or procedures instead of creating their own new

ones. The content of the reuse library also evolved without control over the duration of

the projects. For these reasons, it is not possible to distinguish between the reuse coming

from the domain library and the reuse coming from other libraries. The figures on ERF?,

E m and E& metrics discussed later in the thesis include both forms of reuse from the

domain and from other libraries.

5.2.5 The data collection process

The company employed a product verification team to verify the proper behavior of

products. The product verification team was entirely separated from the product

development team, and had its own independent process. The product verification team

specialized in testing the product before it reached major milestones, such as a beta

release, or the final product release. Each time a defect was found, the file containing the

defect was identified, a severity was assigned, and the relevant information was entered

in a company database,

The defect data have been extracted from the company database after the completion

of the work of both the development team and the product verification team. Therefore,

the extraction has not created any bias to the usual development process.

The general software measures and the amount-of-reuse measures were collected

using WebMetrics tool (Succi et al., 1998), an internal software measurement collection

tool.

It would have been interesting to analyze also the actual effort needed to fix each

defect. Unfortunately such data were not properly recorded in the database.

5.3 Description and analysis of the results

5.3.1 Descriptive analysis

One of the topics discussed in this thesis is how many significant digits should be

choosing in order to represent the values. For this needs error limits. The error limits can

be calculated by using bootstrap, which will be discussed in chapter 6. The data in the

various analysis tables in the current chapter are currently expressed in four significant

digits as typical of many published data. The dispersion used in the following tables

contains the minimum and the maximum values of the data,

5.3.1.1 Project size analysis

5.3.1.1.1 Descriptive data analysis of project size

Table 5-3 and Table 5-4 below contain the statistic results of the size measures for

projects L,2, and 3 respectively. From Table 5.3, it can be seen that project 2 has

unusually large means comparing to project 1 and project 3. Furthermore, project 2 also

has larger standard deviations- The larger standard deviations signal that the nreans may

not represent the real data set as well as other projects. The large means and standard

deviations may be contributed by the facts that project 2 has the largest nzinimzrrn values

(Table 5.4): and smallest number of files - less than half as many files as project 1 and

project 3 (Table 5.1). Moreover, there are very high kurtosis for projects I and 3 (TabIe

5.4). The high kurtosis means that the data points are more concentrated around the

means. Finally, projects 1 and 3 also present large positive skewness (Table 5.4). A large

positive ske~vness means there are more large extreme data then smaIl extreme data in the

data set,

Table 5.3: Simple descriptive statistics for project size

Table 5.4: Simple distribution statistics for project size

55

5.3.1.1.2 Graphical descriptive analysis of project size

The project size histograms and the box-plots for projects 1 ,2 and 3 are shown in

Figure B.1 to Figure Bd in appendix. The unusually skewed distributions of the size data

for project 1 and project 3 are graphically displayed in the size histograms- The

skewnesses of project 1 and project 3 are due to higher percentage of outliers as shown

by the box-plots Figure B.4 - Figure B.6-

5.3.1.2 Nrrm ber-o f-defects analysis

5.3.1.2. L Descriptive data analysis of number-of-defects

Table 5.5 and Table 5.6 beIow contain the statistic results of the number-of-defects

measures for projects 1, 2, and 3 respectively. Table 5-5 shows that project 1 has

unusually large number-of-defects by having large nzearzs, median and rnav*rnunzs. The

larger number-of-defects of project 1 may be due to the fact that project 1 is the first one

of a series of projects undertaken by the company. Furthermore, project 1 also has the

largest standard deviations (Table 5.5) and dispersion (Table 5.6) of the three projects.

The Iarger standard deviation and dispersion show that the nzeans in project 1 may not

represent the real data set as actually as projects 2 and 3. Moreover, projects 1 and 3 have

higher kzu-tosis (Table 5.6). The high kurtosis means that the data points are more

concentrated around the means. Finally, all three projects show a noticeable skewness

(Table 5.6).

Table 5.5: Simple descriptive statistics for number-of-defects

5.3.1.2.2 Graphically descriptive analysis of number-of-defects

The histograms and the box-plots for the number of defects of projects 1.2 and 3 are

in Figure B.7 to Figure B. 14 in appendix, The box-plots from Figure B. 1 1 to Figure B, 14

show project 1 and project 3 have higher percentage of outliers. The more extreme

number-of-defects of projects 1 and 3 maybe due to the fact that projects 1 and 3 have

more files as shown in Table 5.1 and the larger dispersion as shown Table 5.6.

5.3.1.3 Defect densities analysis

5.3.1.3.1 Data descriptive analysis of defect densities

The number-of-defects alone will not show the whole picture of the quality of the

software. Software quality can be looked at from the defect density point of view. Table

5.7 and Table 5.8 below contain the statistic results of the defect density measures for

projects 1, 2, and 3 respectively. As shown in Table 5.7, project 1 has unusually high

defect density by having large means and rnarimzrms. Furthermore, project 1 also has the

largest standard deviations of the three projects (Table 5.8). The larger startdard

deviation signals that the means in project 1 may not represent the real data set as actually

as projects 2 and 3. Finally, projects 1 and 3 have high h~crtosis and large positive

skewness (Table 5.8).

5.3.1.3.2 Graphically descriptive analysis of defect densities

The histograms and the box-plots for the defect densities of projects 1,2 and 3 are

shown in Figure B.15 to Figure B.22 in appendix. The histograms show that project 3 has

a more skewed distribution. Furthermore, the box-plots from Figure B. 19 to Figure B.22

show project 1 and project 3 have higher percentage of outliers.

5.3.1.4 Amount-of-reuse analysis

5.3- 1.4.1 Descriptive data analysis of amount-of-reuse

Table 5-9 and Table 5.10 below contain the statistic results of the amount-of-reuse for

project 1, project 2, and project 3 respectively. Table 5.9 and Table 5.10 show that all

three projects are very similar in terms of software reuse by having similar statistic data.

The only major different is projects 1 and 3 are positively skewed (Table 5.10)-

61

5.3- f -4.2 Graphically analysis of amount-of-reuse

The histograms and the box-plots for the amount-of-reuse of projects 1 ,2 and 3 are

shown in Figure B.23 to Figure B.28 in appendix, The histograms show that all three

projects have distributions close to normal, Furthermore, there are few extreme data of

amount-of-reuse in all three projects as shown by the box-pIots from Figure B.26 to

Figure B.28.

5.3.2 Overall descriptive analysis

As shown by the statistic tables, the histogams and the box-plots, all values from

projects I and 3 have skewed distributions, except for the amount-of-reuse- Those

extreme values may affect the results of the correlation analysis and the slope and y-

intercepts calculations of the Iinear equation in the later sections.

The numbers of defects in severity 1 and in severity 5 classes are low. The

classifications of various severities were provided in Chapter 3.3. The low numbers of

defects in severity 1 and severity 5 may be contributed by the following reasons:

Severity I: the software systems were de s i eed to deal with critical scenarios; the

developers proceeded very carefully, trying to avoid all possible situations where

the failure in the software resulted in failures or suspensions of service of the

surrounding systems.

Severity 5: the requirements for the GUTS of the three projects were very simple:

the company was concerned about the Cunctionality and the reliability of the

resulting systems and not of creating fancy user interfaces.

Given the low number of severity 1 and severity 5 defects, it is not possible to draw

any meaningful conclusion about defects in severity 1 and severity 5. Therefore, severity

1 and severity 5 defined defects were not considered in the following analysis.

The analysis proceeds as follows: First are the significance levels of the correlation

between amount-of-reuse and defect-density measurement calculations, The significance

levels are used to determine whether the variation in defects can be explained by

''~onventional'~ software measures- The conventional software measures are classified as

the Lines of Code (LOC), McCabe Cyclornatic Complexity (MCC) (McCabe, 1976) and

the Halstead Volume (HV) (Halstead, 1977). The three software measurements are

defined in Chapter 3. In this way, it is possible to determine the original contribution of

measures of reuse to the explanation of Defect Density and Defect Density at the

different levels @Di). Where a si pificant correlation exists, a further investigation is

proceeded to determine the feasibility to develop a linear model.

5.3.3 Correlation Analysis

Table 5.1 1, Table 5.12, and Table 5.13 contain the correlations between amount-of-

reuse measures and defect measures and between "common" software measures and

defect measures. An asterisk, "*", identifies correlations that are significant at the 0.05

level.

ERFl
E m 2
LOC
MCC
HV

0-0 1
0.11
0 -02

LOC
MCC

H V

Table 5.1 1 : Project 1 Pearson Correlation results

0.08
0.06

-0.46*
-0.42*
-0.22

Table 5.12: Project 2 Pearson Correlation results

0.08
0- 13
0.0 1

-0.22
-0 -24

-0.26
-0.17
-0.32

-0.52
-0-50
-0.59*

-0.39"
-0.28
-0.25

-0.25
-0.26

-0.24
-0.27

-0.0 1
-0.04
-0.08

-0 -3 5
-0.33
-0.44

1 LOC I -0.10 I -0- 13 I -0.07 f -0.16 I
MCC -0.10 -0-14 -0.09 1 -0.17

The results of the correlation analysis are summarized in Table 5.14. A "yes"

1 HV

identifies the presence of a significant correlation, while a "no" signals the absence of a

-0-09 I -0.14 I -0.08 I -0.17

significant correlation. For easiness of read, the cells containing the "yes" of significant

Table 5.13: Project 3 Pearson Correlation results

correlations have been bolded and grayed.

Table 5.14: Summary of the significance of the correlations

Significant correlations are presented only between:

I. Extemal reuse frequency of threshold 2 (ERF2) and Defect severity 3 density

(DD3) in all the projects.

2. External reuse frequency of threshold 2 (ERF?) and Defect density (DD) in

projects 1 and 3.

3. External reuse level of threshold 3 (ERL.?) and Defect severity 3 density (DD3)

and in projects 1 and 3.

4. External reuse level of threshold 3 (ERL?) and Defect density (DD) and in

projects 3-

5. External reuse density of threshold 2 (E m) and Defect severity 3 density (DD3)

in project 3.

6. Halstead Volume (HI') and Defect severity 3 density (DD3) in project 3.

It is evident that there is a systematic presence of significant correlations only

between ERF? and DD3, which occurs in all three projects. Therefore, the linear

regression was done only between the extemd reuse frequency of threshold 2 (E m ?) and

the defect severity 3 density (DD3).

As mentioned in Chapter 2, defect density (DD) is calculated as:

DD = DDi + DD? + DD3 + LID4 + DD5

Therefore, it is interesting to determine if the correlation between ERF? and DD is

only a result of the correlation between ERF? and DD3. To do so, we separate the

contribution of DD_1 from DD defining DD-3 as:

00-3 = DD - DD3 = DD] + LID2 + DD4 + DD5

Table 5.15 contains the resuft of the correlation between ERF2 and DD-3. No

significant correlation is present which indicates defect severity 3 errors has significant

correlation only with E w ,

Table 5-15: Correlation between E R f i and DD-3 in the three projects
ERF2 VS. DD-3

5.3.4 Scatter Diagram Analysis

As shown in Figure 5.2, the data points of projects L,2 and 3 can be represented by

linear regression functions,

5.4 Development of a linear model

The next step in the analysis is to determine a linear model of the kind:

D D 3 = a x E R f i + b

Project 1
-0- 123

A univariate linear regression involving E m as independent variable and DD3 as

dependent variable reveals that in each project there is linear relation between the two

variables (Figure 5.2).

Project 2
-0-1 11

Project 3
-0-121

Figure 5.2: Linear regression lines of DD3 and ERF2 for project 1 (a), project 2 (b),
and project 3 (c)

Table 5.16 contains the regression coefficients for the three projects. All the six

coefficients are significant at the 0.05 level.

[Project 1 I -0.047 0.046 1 0.016

--

Table 5.16: Regression coefficients for the three projects

Project 2
Project 3

5.4.1 Hypothesis verification

To have a sound linear model, it is necessary to verify linearity, normality,

homoscedasticity and independence of error (Benedicenti et nl., 1997). The following

hypothesis verifies the linear relationships between external reuse frequency at threshold

2 (ERF2) and priority 3 of defect density (DD3).

-0.017
-0.023

0.0 15
0-0 19

0.004
0.010

Linearity: There is a linear relationship existed between variables ERf i and DD3 in

each project,

Normality: The distributions of the residuals of each project in Figure 5.3 are

approximately normal.

Histogram

Dependent Variable: DD3

Histogram

Dependent Variable: OD3

Regression Standardized Residual Regression Standardized Residual

Histogram

Dependent Variable: DD3
161 I

Regression Standardized Residual

Figure 5.3: Standardized residual histogram for project I (a), project 2 (b), and project 3

Hornoscedasticity: The analysis of the linear regression plots in Figure 5.4 does not

show evidence of any major changes in the patterns of the residues. The lines in the

middle of the residual plots in Figure 5.4 are the means of the residues.

Residual i Residual i

Residual i

Figure 5.4: Residual plots for project 1 (a), project 2 (b), and project 3 (c)

Independence of error: The Durbin-Watson coefficients in Table 5.17 reveal only

slight autocorrelation in project 1 and 3. However, project 2 does exhibit strong

positive autocorrelation which means the residuals for consecutive observations in

project 2 may be correlated.

Table 5.17: Durbin-Watson coefficient

The Hypothesis verification shows that there are grounds to support linear models in

Project I and 3, while the situation for Project 2 is unclear.

5.5 Discussion of the results

5.5.1 Internal validity:

To avoid any bias introduced by the data collection process, the data was analyzed

only after the data collection was done by an independent product verification group.

Thus, the designers and the testers are not aware of the data analysis plan. Furthermore,

to avoid bias, the product verification group was made up by a team of well train testers

who verified only the finished programs from the programmers. The defects were

identified and recorded according to the company's guidelines. The assignment of the

group followed what can be considered a random pattern: the team compositions were

equivalent, consisting of both experienced and inexperienced progarnmers according to

the standard company patterns. Altogether, these facts have ensured the overall internal

validity of the study,

5.5.2 External validity - Generalization of the results:

The results described in this thesis are significant at the 0.05 level. The results of

projects 1, 3, and 3 are:

There is no correlation between amount-of-reuse (ERD?, ERF?, E m ?) and defect

density (DD).

There is a linear relationship only between external reuse frequency at threshold 2

(ERF2) and Defect Density of priority 3 errors (DD3).

The priority 3 error is defined in Chapter 3.3 as part of the system feature does not

work as specified. The conclusions resulted from the statistical analysis process can not

by itself extended to the entire population in general, but to projects that have one or

more similar parameters, Namely:

Real time C language projects

Business oriented application

Project with tracking mechanism

Defect classifications by severity

5.6 Conclusion

An analysis of three real-time C projects in the telecommunication domain from a

North American company has no strong evidence that amount of reuse significantly

negatively correlates with defect densities of every severity level. However, it seems that

one relationship does exist between amount of reuse and software defect density at

severity class i, (ERF? and DD3).

The generalizability of the results is unclear. It is possible that the results are

extensible to a larger population of real-time systems, however, more data are required-

The results of the data analysis will be discussed more in chapter 7.

6 Bootstrapping

6.1 ln troduction

Basic statistical techniques work best when there is a large amount of data, However,

there are many situations in which it is impossible or too expensive to collect a Iarge

amount of data. In such a case, a technique called bootstrap can be used to analyze the

small amount of data in which the conventional statistic is not valid (Zoubir and

Boashash, 1998). Bootstrap technique is used in this chapter to improve the accuracy of

the results discussed in the previous chapter using conventional techniques.

First introduced me the bootstrap technique used in this thesis, namely: bootstrap

mean of correlation cdculation, standard deviation calculation, confidence interval

calculation and linear regression analysis using bootstrap technique. Next, there is a brief

introduction to jackknife technique, which is similar in principle to bootstrap. Finally, the

results of using the bootstrap technique are presented and discussed.

6.2 Bootstrap principle

Efron first introduced the bootstrap as a new way to estimate standard error (Efron

and Tibshirani, 1993). When there is not enough data to provide a high confidence level,

an analyzer would often repeat the data coIlection process multiple time to improve his

confidence. Bootstrap applies the same principle in the way of computer calculation

(Efron and Tibshirani, 1986). Instead of repeating the collection process, bootstrap

creates multiple data sets; each containing randomly reassigned data from the original

sample. As a result, the basic principle of bootstrap is to randomize data so the result will

have a Monte Carlo distribution (random distribution). The bootstrap estimation will be

closer to the actual population as the number of re-samples or bootstrap replicate data sets

approach infinitely large. However, an infinite resample size is impractical. Since the

choice of the re-sample size directly affects the estimation accuracy, it is important to

choose the right re-sample size. The choice of re-sample size is highly dependent on the

72

type of data being estimated. Usually, a re-sample size of 100 is sufficient for estimating

the standard of error, and a sample size of 1000 is needed for calculating a confidence

interval since the confidence interval is a more ambitious measurement (Efron B, 1979).

6.2.1 Bootstrap Correlation's distribution

Efron and Tibshirani (1993) show two ways of calculating regression correlation,

pairs-method and residuals-methods. Pairs-method is used in this thesis because it is Iess

sensitive to assumptions than residuals-method (Efron and Tibshirani, 1993)-

Example 5: A basic bootstrap correIation distribution calculation between external

reuse frequency at threshold 2 (E m) and priority 3 of defect density (DD3) of

project 1 is shown below:

1. Use ERF? and DD3 of project 1 as a sample data set where ERF2={0.565, 0.593

. . . 0,652) and where DD3={0.027, 0-024 .-. 0-006), each consists of 34 observed

data and have a correlation of -0.460.

2. Randomly select a pair of data, ERFzi* from ERFr which in this case, E r n i * =

0.683, and DD3[* from DD3 which in this case, DDJi* = 0.004. Note, ERFti* and

DDJi* are being selected from E R E and DD3 with replacement.

3. Repeat step 2,34 times to create a bootstrap re-sample, which in this case is

ERF2*={0.6S3, 0.303 . . . 0.546) and DD3* ={0.004,0.015 . .. 0.052) consisting

of the same size of random data from both ERF2 and DD3. The re-sample size 34

is the total size of the observed data,

4. Calculate a new bootstrap correlation U* between ERF2 and DD3 based on the

data sets from step 3.

5. Repeat step 2, 3,4, rn times to get Ul*, ..., U,,,*. Note, nz should be a large

number, usually greater than 30. In this example, rn is 1000.

6 The UI*,. . . , Urn* is the bootstrap's estimated correlation distribution between

ERF2 and DD3.

73

A bootstrap mean would be similar to the actual mean in a random data set. A vast

different bootstrap mean with its actual mean may signal an abnormal data distribution.

The bootstrap correlation distribution mean between ERF? and DD3 is the mean of the

data distribution set in example 5's step 6. The bootstrap correlation distribution mean is

-0.458 which is close to the actual correlation, -0.460, as calculated in the previous

chapter.

6.2.2 Standard deviation using bootstrap

The steps f ~ r calculating standard deviation using bootstrap are identical to the steps

shown in example 5. The only difference is in step 6 . Instead of estimating the mean, the

standard deviation is cdculated by using the following formula:

where: rn = re-sample times which is 1000 in example 5

u*; = re-sample item which in this case is ERF2* in example 5

o = standard deviation

At lease two significant digits are need to separate one result from another based on the

bootstrap data analysis done in Table 6.2. Therefore, all the data are going to be

represented in two significant data in the following sections. Based on the data from

example 5, the bootstrap standard deviation is 0.19.

6.2.3 Bootstrap confidence interval

Zoubir and Boashash (1998) showed several ways of using the bootstrap to calculate

confidence interval and hypothesis. Example 6: Confidence interval for mean of

correlation using bootstrap is shown below.

74

1. Use ERF2 and DD3 of project 1 as a sample data set where ERF2={0.565, 0.593

. .- 0.652) and where DD3={0.027,0.024 . . - 0-006), each consists of 34 observed

data and have a correlation of -0.46.

2. Randomly select a pair of data, Emzi* from ERf i which in this case, E m * =

0.683, and DDJi* from DD3 which in this case, DD3i* = 0.004. Note, EREzi* and

DDJi* are being selected from ERfi and DD3 with replacement.

3- Repeat step 2 ,34 times to create a bootstrap re-sample, which in this case is

E~*={0.683,0.303 . . . 0.546) and DD3* ={0.004,0.015 . .. 0.052 } consisting

of the same size of random data from both E m and DD3. The re-sample size 31

is the total size of the observed data.

4, Calculate a new bootstrap correlation U* between ERFt and DD3 based on the

data sets from step 3.

5. Repeat step 2, 3,4, rn times to get Ul* ,..., Urn*. Note, m shouId be a large

number, usually greater than 30. In this example, nz is 1000.

6 Sort the bootstrap estimates in ascending order such that UI* < U2* < . . .< U1OOO*-

For example, the sorted list may look like -0.87, -0.84 ,...., -0.033.

7. Calculate the confidence interval from the sorted list in step 6. The confidence

interval is (ERF,l, ERFC2), where cl = r?zn / 2, and c2 = m - cl + 1. 'm' is the

number of the estimation, and 'a' is the confidence level. For example, when a =

0-05, and nz = 1000, we get clz =-0.70, and = -0.19.

The actual statistic correlation is -0.46, and bootstrap standard deviation is 0.19. The

range of the correlation, -0.46M.19, is within the bootstrap confidence interval of (-0.70,

-0.19). It is 95% confidence to say that the correlation between ERF2 and DD3 is -

0.46M. 19.

6.2.4 Bootstrap's Linear Regression analysis (Slope & y-intercept)

Zoubir and Boashash (1998) showed several ways of using the bootstrap to do linear

resession analysis. Example 7 for using bootstrap to calculate slope and y-intercept is

shown below.

1. Use ERF2 and DD3 of project I as a sample data set where ERFz={0.565, 0.593

. . . 0.652) and where DD3={0.027,0.024 - - - 0.006), each consists of n = 34

observed data and have a slope of -0.047 and y-intercept of 0.046.

2. Randomly select a pair of data, ERFZi* from E m which in this case, ERFZi* =

0.683, and LIDJi" from DD3 which in this case, DDjri* = 0.004. Note, ERFZi* and

DD3i* are being selected from E m 2 and DD3 with repIacement.

3. Repeat step 2, 34 times to create a bootstrap re-sample, which in this case is

ERFz*=(0.683, 0.303 . . . 0.546) and DD3* ={0.004,0.015 . . . 0.052) consisting

of the same size of random data from both E m and LID3. The re-sample size 34

is the total size of the observed data,

4. Using the formulas below to calculate a new bootstrap slope (S*) and y-intercept

(yC) using the data from ERF2* and DD3* from step 3 (Cangelosi et al., 1983).

slope = ~C-CCXX~Y) n (z x2)- (x x)?
C Y y - intercept = - -
slope

5. Repeat step 2,3,4, m times to get SI* ,..., S,* and get yI* ,..., y,,*. Note, nz should

be a large number, usually greater than 30. In this example, nz is 1000.

6. Calculate the standard deviation and the 95% confidence interval of the slope and

y-intercept based on the list from step 5. The standard deviations in this example

are, slope=0.020 and y-intercept=0.014. The confidence interval in this example

are, slope=(-0.093 ,-0.0 10) and y-intercept=(0.02 1,0.077).

6.2.5 Jackknife technique

One of the weaknesses in using the bootstrap technique is that there is no limit on

how large a random sample should be. Therefore, one may need to try several random

sample sizes in order to find the one that produces the result with the needed actuality.

76

Besides bootstrap, there is another technique called jackknife that always uses a fixed

number of sampling. The jackknife can be thought of as a linear approximation to the

bootstrap (Efron and Tibshirani, 1993). The steps in doing jackknife are almost identical

to doing bootstrap. The only difference is that jackknife draws n samples of size n-1 each

time without replacement from the original sample of size n (Zoubir and Boashash,

1998).

Unlike the bootstrap formulas for calculating standard deviation in Chapter 6.2.2, The

jackknife for estimating the standard deviation is:

where: rn = re-sample times

u*i = re-sample item

o = standard deviation

As shown above, jackknife has fixed re-sampling times, nr. Thus, the analyzer using

jackknife technique does not have to make an educated guess on the re-sample times as in

the bootstrap case. However, jackknife method would be useless if the data can not be

approximated linearly (Efron B, 1979). Furthermore, there is some estimating efficiency

lost in using jackknife (Efron and Tibshirani, 1986). As a result, bootstrap technique is

used in this thesis to calculate the means, standard deviations and confidence intervals.

6.3 Bootstrap Analysis

Table 6.1 provides a summary on various bootstrapping techniques that will be used

in this thesis,

TabIe 6.1: Bootstrapping techniques

Bootstrap type
Bootstrap Correlation Mean (Efron
and Tibshirani, 1993)

Bootstrap Std. Deviation (Zoubir and
Boashash, 1998)

Bootstrap Confidence Interval (Zoubir
and Boashash, 1998)

TabIe 6.2 - Table 6.3 below contains the comparisons between bootstrapping data and

the actual statistic data. Furthermore, the tables below also list the results of standard

deviation and 95% confidence interval calculations for correlation analysis and linear

regression analysis done on ERfi and DD3.

Definition
The mean of the 'rn ' correlations of 'n '
randomly selected data with replacement of
the same original size n.
The standard deviation of the 'm '
correIations of 'n ' randomIy selected data
with replacement of the same original size r z ,
The 95% confidence interval of the 'm '
correlations of 'n ' randomly selected data
with replacement of the same original size n.

Table 6.2: Bootstrapping correlation data vs. actual correlation data

Table 6.3: Bootstrap's y-intercept data vs. actual y-intercept data

Table 6-4: Bootstrap's slope data vs. actual slope data

Actual slope
Bootstrap slope

Std Dev of the slope
Upper 95% slope confidence interval
Lower 95% slope confidence interval

As shown in Table 6.2 - Table 6.4, the ranges for the 95% confidence interval are all

very large. Therefore, even though the confidence intervals for project 1 ,2 and 3 overlap

Project 1
-0 -047
-0,047
0.020
-0,010
-0.093

that alone still can not prove the statistic results on the three projects are related.

However, the values, actual correlation + standard deviation, of the three projects are all

Project 2
-0-0 17
-0.015
0.009
0.0059
-0.025

within their 95% confidence intervals respectively. Thus further strength the conclusion

Project 3
-0 -023
-0.024
0.012
-0 -004
-0.05 1

from the previous chapter that there is a strong negative correlation between ERF? and

DD3. The large difference between the actual correlation and the bootstrap correlation

mean can be explained by the fact the project 2 has very few data points, only 12 data

points. Thus, the extreme data points have a large effect on the actual correlation

calculation. Unlike the correlation data in Table 6.2, the bootstrap data of the three

projects, y-intercept and slope, in Table 6.3 and Table 6.4 are all larger than their

standard deviation, which could be interpreted as that the amount of reuse may affect

defect density differently in the three projects.

6.4 Summary

The results from the bootstrap analysis show that there is a negative relationship

between external reuse frequency at threshold 2 (ERFt) and priority 3 of defect density

(DD3) in all three projects. However, the effects of amount of reuse, ERF2, on defect

density at severity class 3, DD3, in three projects may not be the same because the linear

relationship of one project is not identical to the linear relationship of anther project as

shown in the bootstrap analysis.

79

Theoretical and practical work have shown that bootstrap methods are potentially

superior to large-sample technique (Zoubir and Boashash, 1998)- However, care should

still be given in using the bootstrap. Like any other estimation techniques, its accuracy is

also greatly dependent on the sample set- Furthermore, the bootstrap method should be

used as an alternative, rather than as a replacement for the standard statistical procedures.

7 Conclusions

7.1 The work done in this thesis

Investigate is done in this thesis to see whether or not software reuse decreases the

Defect Density of different severity levels, DDi, in three real-time telecommunication

projects. In doing so, I not only need to use various statistic techniques, but also have to

develop programs to calculate correlation, and to do bootstrapping.

Various software reuse and software quality rnetrics are presented in the beginning of

this thesis as background information. After that, five software attributes used in the

metrics calculation in the analysis section of the thesis are defined in Chapter 3. The five

sofiware attributes are lines-of-code, Halstead's Volzme, defect seventy, McCrtbe

cyclornnric c~rnple~~ity of a program and amormt-of-rezlse measures. After the discussion

of the metrics and their atrributes, various statistic techniques used to discribe and to

analyze the data sets of this thesis are then introduced. Once the background information

is introduced, empirical investigations are done on the three-telecommunication projects

using previous introduced statistical techniques. The statistical techniques contain

descriptive techniques, graphical representations, and correlation and regression analysis.

Finally, bootstrapping techniques are used to improve the analysis results using normal

statistical techniques.

7.2 The conclusions drawn from the analysis

Software reuse benefits are found in many published papers. In general, the benefits

are lower development cost (Thomas er al., 1995), increased productivity (Gafhey and

Cruickshank 1992). and lower defect density (Succi and Benedicenti, 1998). Significant

errors and defect density decrease as a direct result of software reuse are reported in

many software development stages and in many publications as shown below:

81

Agresti and Evanco (1992) saw a positive Log-Linear relationship between

FNEMC (fraction of total compilation units that are new or extensiveIy modified)

and higher defect density.

Me10 et a!, (1995) saw that higher reuse rate decreases the emor density.

(BasiIi et al., 1996) found that higher reuse rates correlates with lower defect

density.

Devanbu et al. (1996) concluded that a negative Log-linear relationship existed

between reuse size and error density, and between reuse ratio and error density.

Frakes and Succi (1997) reported that higher reuse level and reuse frequency

correlates with higher quality ratings and lower levels of defects and deltas.

Succi and Benedicenti (1998) saw higher reuse density corresponding to lower

customer complaint density,

Unlike most published software reuse results, si,onificant correlations between amount

of reuse (reuse level, reuse frequency and reuse density) and Defect Density at different

severity levels are not found in this thesis. The only exception is a strong correlation

shown between reuse frequency and Defect Density at the third severity level @D3). The

third severity level error is defined in Chapter 3.3 as part of the system feature does not

work as specified. Due to the small number of files involved, 75 files in 3 projects, it is

not possible to draw a general conclusion that software reuse has no effects on software

quality in tenns of Defect Density at level i. However, the results of this thesis do point

out that using software reuse will not guarantee immediate software quality improvement

in every software project.

There are many factors that may contribute to the discrepancy between the results of

this thesis and other papers that reported various software reuse benefits. One of factors

maybe because people usually do not report an undetermined relationship. Therefore, the

papers that have published are the projects that showed a strong negative relationship

between software reuse and software quality. However, a few reports did mention an

undetermined or positive relationship between software reuse and software quality while

82

at the same time showing the other software reuse benefits, i-e., lower development cost,

One of such paper is by Devanbu et a[., (1996) who reported a positive relationship

between reuse level and error density.

Another reason, that may contribute to the negative showing of a strong correlation

between amount of reuse and software quality in this thesis, may be due to the fact the

company does not have a software reuse process. Poulin (1997) states that such "ad-hoc"

type reuses, copying and modifying software or component, have limited benefits. In the

"ad-hue" type reuse, the reused components have to go through the same testing, and

documentation as the new components.

7.3 Recommendations for future works

Some suggestions for the continuation of the work of this thesis are to analyze what

the type of software process and what kind of projects that will show a strong negative

correlation between amount of software reuse and software Defect Density at the

different severity classes @Di):

Analyze the effects of language on software reuse: "C" does not have as many

features to facilitate software reuse as the fourth generation languages; such as

Java, or as the third generation languages; such as Ada. Therefore, it would be

interest to compare the results from the projects written in "C" with the projects

written in the newer generation of languages to see how much effects do the type

of language have on Defect Density at the different severity classes @Di).

Analyze the effects of software process on software reuse: A company with a

software reuse process will save more money in the long term than a company

using "nd-hoc" software reuse (Poulin, 1997). By comparing projects produced

under software reuse process with projects written under "ad-hoc" process, the

effects of amount of reuse on software Defect Density at the different severity

classes under different software processes will be highlighted.

83

Analyze the effects of project environment on software reuse: Different types of

component take different amount of amount of effort to be reused (Poulin, 1997)-

Therefore, it is fair to assure different types of project also take different amount

of effort to be reused. For example, software reuse may produce fewer benefits in

a telecommunication environment than in a window environment,

Bootstrap use:

- The bootstrap correlation mean of project 2 in Table 6.2 agreed with project 1

and 3's bootstrap correlation means, but its actual correlation mean did not

agree with the results from project 1 and 3. Therefore, which result should be

used to represent the data set?

- By removing the influence of the extreme values in the data set, bootstrap

correlation mean of project 2 looks similar to the correlation means of other

projects in Table 6.2. What would happen to the results in other papers when

bootstrap is used, and the extreme results are not rejected? Also, what would

the Pearson correlation results be, if bootstrap were used in Table 5.1 1 - Table

5-13?

- Take into consideration when the bootstrap confidence limits are wide.

8 References

I. Agresti, W.W., and W. M. Evanco, "Projecting Software Defects From Analyzing

Ada Designs," IEEE Transactions on sofrware engineering, Vol. 18, No. 11, pp. 988-

997, Nov 1992,

2. Aron A,, E.N. Aron, "Statistics for the Belzavioral and Social Sciences, " Prentice

Hall, 1997-

3 . Basili, V., L. Briand.. and W.Melo, "How Reuse Influences Productivity in Object-

Oriented Systems," Communication of the ACM, 39(10), Oct 1996.

4. Benedicenti, L., G. Succi., and T. Vemazza, "Guidelines to Determine the Impact of

Code reuse on Productivity," University of Genova, DIST-LIPS-TR-97002, Mar

1997-

5. Briand, L., K. El Emam, S . Morasca "On the Application of Measurement Theory in

Software Engineering," Empirical Sofhyare Engineering, l(i), 1996.

6. Bryant, Edware C., "Statistical analysis," Second edition, McGraw-Hill Book

Company, 1966-

7. Cangelosi E-V., P.H. Taylor., and P.F. Rice, "Basic Statistics: A ReaI World

Approach," 3rd edition, West Publishing Company, 1983.

8. Card, D.N., and W. W. Agresti, "measuring software design complexity,"

J.Syst.Sofiware Vol 8, pp. 185-197, Mar 1988.

9. Carlson W.L., and B. Thorne, "Applied Statistical Methods for Business, Economics,

and the Social sciences," Prentice Hall, 1997.

LO. Chen, Y., B. Krishnamurthy, K. Vo, "An Objective Reuse Metric: Model and

Methodo logy," Fzph European sofrware engineering Conference, 1 995.

1 1. Cochran, W.G. "Some Consequences when the Assumptions for the Analysis of

Variance Are Not Satisfied," Biornetrics, 3, 1947.

12. Conte, S . , H. Dunsmore, V. Shen, "Sojhvare Engineering Metrics a~zd Models,"

Benjamin/Cummings Publishing Co, 1986.

13. Department of Defense Program Manager's Reuse Issues Handbook, Feb 19, 1996.

85

14. Devanbu, P., S-Karstu., W. Melo, and W. Thomas, "Analytical and Empirical

evaluation of Software Reuse Metrics," 18th International Conference on Software

Engineering, 1996.

15. Efron B, "Bootstrap methods: Another look at the Jackknife," The I977 Rietz lectzrre,

The Annals of Statistics, Vol 7, No 1, 1-26, 1979.

16. Efron, B and R.J Tibshirani, "Bootstrap Methods for Standard Errors, Confidence

Intervals, and Other Measures of Statistical Accuracy," Statistical Science, Vol 1, No

1,5477, 1986.

17. Efron, B and R.J Tibshirani, "An Introduction to the Bootstrap," Chapman & Hall

Inc., 1993,

18. Fenton, N.E., and Shari Lawrence Pfleeger, "Software Metrics: A rigorous &

Practical Approach," Second Edtion, PWS Publishing Company, 1996.

19. Fem, R., R. Pratiwadi., L. Rivera., M. Shakir., J. Snyder., D. Thomas., Y. Chen., G.

FowIer., B. Krishnamurthy., a ~ d K. Vo, "Software Reuse Metrics for an Industrial

Project," Proceedings of the 4"' International Sytnposilcrn of sofhyare Metrics, 1997.

20. Frakes, B., and G. Succi, "An Empirical Study of Reuse, Quality, and Productivity."

1997.

2 1. Frake, W., and C. Terry, "Reuse Level Metrics," Proceedings 3rd intemarional

conference on Sofivare Rezcse, 1994.

22. Frakes, W., and C. Terry, "Software reuse: Metric and Models," ACM Compzcting

Szcrveys, Vol. 28, No. 2, pp. 415-435, June 1996,

23. Gaffney, J.E., and R.D. Cruickshank, "A general Economics Model of Software

Reuse," Proceedings of the 14th International Conference on Sofnyare Engineering,

1992.

24. Hamburg, M., "Statistical analysis for decision making," Harcourt, Brace & World,

Inc., 1970.

25. Humphrey, W.S., "Managing the Software Process," Addison Wesley, 1990.

26. Kichenharn, B, "Measuring software quality," First annzial sofnoare qzeality

workshop, Aug. 1989.

86

27. Lion, J.L., "ARCANE 5 Flight 501 Failure, Report by the Inquiry Board," Paris, 19

July 1996.

28. McCabe, T,, "A Complexity Measure," IEEE Transactions on Sofnyare Engineering,

2(4), 1976.

29. Melo, W.L., L.C. Briand., and V. R. Basili, "Measuring the impact of Reuse on

Quality and Productivity in Object-Oriented System," Technical report, Univ. of

Maryland, Dep. Of Computer science, ColIege Park, MD, USA 20742., pp. 1-16, Jan

1995.

30. Menill, W.C., and K.A. Fox, "Introduction to Economic Statistics," John Welley &

Sons Inc, 1970.

3 1. Mills, Everdd E, "Software metrics," SEZ curriculum modrrle SEI-CM- 12- 1. I, Dec

1988.

32- Pazer, Harold L., and Lloyd A. Swanson, "Modern Methods for statistical analysis,"

~~358-366.

33. Pearsons, Robert, "Statistics For Decision Making,*' Harper & Row Publishers, 1974.

34. Poulin, J. S "Measuring software reuse, principles, practices, and economic models,"

Addison-Wesley, 1997.

35. Poulin, J., J. Caruso, and D. Hancock, ''The business Case for Software Reuse," IBM

System Jorirnal32(4), 1993.

36. Sadahiro I,, "Experience Report on Software Reuse Project: Its Structure, Activities,

and Statistical Results," ACM 0-8979 1-504-6/ 92/ 0500-0320 1.50., pp. 320-326,

1992,

37. Selby, R.W., and V-R-Basili., "Analyzing error-prone system structure," IEEE Trans.

sofivnre Eng., vo1.17, pp. 141-152, Feb 1991.

38. Succi, G., L. Benedicenti, C. Bonarnico, T. Vemazza, 'The Webmetrics Project -

Exploiting 'Software Tools on Demand'," Proceedings of the 1998 World, 1998.

M~dticonference on Systemics, Cybernetics, and Informatics, Orlando, FL, 1998.

39. Succi, G., L. Benedicenti, T. Vemazza, "Analysis of the effects of software reuse on

customer satisfaction in an RPG Environment," Szibmitted for publication, 1999.

40- Thomas, WiIliarn M., Alex Delis., and Victor R. Basili, "An analysis of errors in

reuse-oriented development environment," 1995.

41, Tracz, Will, "Software reuse myths revisited," IEEE 0270-5257, 1994.

42. Zoubir A.M., and B. Boashash, 'The Bootstrap and its Application in Sigr~al

Processing," IEEE signal processing magazine 1053-5888/98/$10.00., pp.56-76 Jan

1998-

9 Appendix: A

Table A. I: Original data

- -

Table A-2: Reuse data

6. Appendix

Appendix B contains the graphical representations of the data set of the three projects

analyzed in chapter 5. The graphical representations contained in this appendix consisted

of histograms and box plots. The diagrams are used to graphically display the project

size, number-of-defects, defect-density and amount-of-reuse data. The techniques of

using histogram and box plot were introduced in chapter 4, while the interpretations of

the graphical representations shown below are in chapter 5. A brief summery of the

figures is shown in Table B. L below.

Number-of-defects

Defect densities

Amoun t-of-reuse

Table B.1: Summery of figures in reference B

LOC LOC LOC

Figure B.1: LOC histograms for project 1 (a), project 2 (b), and project 3 (c)

MCC MCC MCC

Figure 8.2: MCC histograms for project 1 (a), project 2 (b), and project 3 (c)

I1 s g g s g 0&"
g g o o o 0 0

0 , c D g z o " 0 ?-

Tolal # of S4 Defects Tolal # of 54 Defecls Tolal # of S4 Defecls

Figure B.9: Total # of S4 defects histograms for project 1 (a), project 2 (b), and project 3 (c)

Total # of defects Total # of defects Total # of defects

Figure B.10: Total # of defects histograms for project 1 (a), project 2 (b), and project 3 (c)

Tolal # of S4 Defect Tofal # of S4 Defect Tolal # of S4 Defect

Figure B.13: Total # of S4 defects box plots for project 1 (a), project 2 (b), and project 3 (c)

Total # of defects Total # of defects Tola!# of defects

Figure B.14: Total # of defects box plots fur pro,ject 1 (a), project 2 (b), and project 3 (c)

Figure B.19: DD2 box plots for project 1 (a), project 2 (b), and project 3 (c)

Figure B.20: D 4 box plots for project 1 (a), project 2 (b), and project 3 (c)

Figure 8.21: DD4 box plots for project 1 (a), project 2 (b), and project 3 (c)

Figure B.22: DD box plots for project 1 (a), project 2 (b), and project 3 (c)

Figure B.23: ERDt histograms for project 1 (a), project 2 (b), and project 3 (c)

Figure B.24: ERF2 histograms for project 1 (a), project 2 (b), and project 3 (c)

