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ABSTRACT 

This study addresses the problem of the quantification of the risk involved in 

predicting future production of hydrocarbon reservoirs, using numerical simulation 

techniques. Automatic History Matching (based on nonlinear regression), has been 

employed in order to arrive at the best reservoir parameters estimates for a given 

reservoir structure. 

By using typical techniques from statistical analysis (and statistical properties 

of multi-variable nonlinear regression estimates), the error bounds (95% confidence 

intervals) of the predicted production rates of a given reservoir are readily determin-

ed. These confidence intervals incorporate the uncertainty of all reservoir parameters, 

used in the automatic history matching and hence, a realistic measure of the uncer-

tainty in the model predictions of the future reservoir performance is obtained. 

The proposed extrapolation method was incorporated into a Black Oil Simula-

tor. The resulting simulator has been tested in numerous reservoir models. A com-

prehensive set of simulator runs are reported in this thesis, namely a typical five spot 

pattern, where the effect of the space discretization error and the degree of implicit-

ness is investigated, the reliability of horizontal well performance on a field scale and 

the effect of impermeable barriers like shales and faults is examined. 
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CHAPTER 1 

INTRODUCTION 

1.1 Reservoir Simulation 

Reservoir Simulation is a highly specialized blend of engineering , physics, 

mathematics, numerical analysis, chemistry, and systems programming. Reservoir 

simulation is the implementation of the above sciences, where a computer model 

transforms the measured data into a computed reservoir performance. The basic com-

ponents of a reservoir simulation are presented in Fig 1.1 adopted by SPE Reprint 

Series 1986, where the dashed line separates the data (above the line) from the model 

(below the line). 

The mathematical model consists of a set of partial differential equations with 

initial and boundary conditions. These equations describe the fluid flow inside porous 

media, the mass transfer between the phases, the gravity, capillary and viscous forces, 

that are present in a reservoir. The boundary conditions result from the assumption 

that the reservoir is an isolated region and there is no flow at the external boundary. 

Typical initial conditions originate from the assumption that initially the reservoir is 

at the state of equilibrium, with each phase having a zero velocity. 

In general these equations can not be solved analytically. They can only be 

solved numerically, by replacing, for example, the differential equations with finite 

difference equations. This can be done by assuming that the reservoir is composed 

by a number of discrete volume element (grid blocks) and the computations are made 

to determine any changes of the state variables in each volume elements, over many 
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discrete time intervals (timesteps). The above assumption, discretization, is an ap-

proximation of the real reservoir, and it is subject not only to truncation errors, that 

are proportional to the order of the grid spacing and timesteping (numerical dis-

persion), but to loss of information, since we are able to assign only one value of 

porosity or permeability to each of the volume element. The result of discretization 

is a set of nonlinear algebraic equations. These equations are still intractable. Lineari-

zation is always required to produce a set of linear algebraic equations which can be 

solved by a variety of direct and iterative methods for the primary variables, such as 

pressures, fluid saturations, temperature and composition. 

1.2 Incentives for Reservoir Simulation 

According to Mattax and Dalton (1990) the main motivation for reservoir 

simulation is the increase of oil and gas recovery, through better reservoir management. The 

knowledge obtained by reservoir simulation can be used for optimizing the produ-

ction strategy of the reservoir. 

The major benefits of a reservoir simulation study are: 

• Improving our understanding of the reservoir. Obtaining vital informa-

tion about the major flow mechanisms, the degree of heterogeneity, the 

external boundaries of the reservoir, the existence and strength of an 

aquifer, is crucial to the reservoir management. 

• The engineer has the ability of comparing the reservoir performance 

under alternative depletion strategies, without any expensive pilot 

tests. 

• The reservoir simulator can be used for prediction of the future re-

servoir performance. This is very important especially for Enhanced 

Oil Recovery (EOR) procedures. 

• Modelling of critical well rates can help us to avoid water conning or 

gas cusping. 
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• Reservoir simulation can be a very powerful tool for decision-making, 

performance monitoring, and timing of the reservoir management. 

It is obvious that the quality of a reservoir simulation study, will always 

depend on the availability and quality of past production data. The more accurate the 

data the more confidence can be placed on the resulting match. The need of good 

reservoir data becomes even more pronounced in EOR procedures (Elasyed et al Oct. 

1993, Baker 1993). 

1.3 Steps in a Typical Simulation Study 

A complete reservoir simulation study may take considerable time to con-

clude. All studies, of this nature, follow simple steps in order to incorporate all the 

necessary information of the given reservoir. These steps are summarized below: 

• Definition of the problem. In this stage the objectives and the scope 

of the study should be determined. 

• Data Review. Screening and organization of the gathered data is ne-

cessary, since they have often been collected for a number of loosely 

related reasons. Usually these data have been obtained by seismic 

tests, pressure transient analysis, well log analysis, core displacement 

and PVT tests, production history e.t.c. 

• Construction of the model. The data that have been congregated so 

far, have to take the form of an input ifie for the specific simulator. 

Time or cost constraints frequently impose compromises on the type 

of simulator to use and on the design of the model. The level of sophi-

stication of the model should be the result of an optimized trade off. 

• History Matching. This is the most time consuming step. The objective 

is to replicate the reservoir performance, with the simulation model as 

closely as possible. Simulation of pressure transient tests can be benefi-

cial especially when there are insufficient data about the reservoir. 
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• Prediction the future performance and analysis. Once an acceptable 

history match has been achieved one uses the simulator to predict the 

future production of oil, gas and water, the total recovery, the position 

of the displacing fronts, the breakthrough times and the pressure 

profiles of the reservoir. 

• Conclusions and report. 

1.4 History Matching 

History matching can be a time-consuming, expensive and frustrating proce-

dure, since the reservoir performance results from numerous interactions, which 

usually are difficult to comprehend. The difficulty increases as the degree of heteroge-

neity of the reservoir increases. 

The purpose of history matching is to improve the accuracy or confidence of 

the predicted reservoir performance. To do so effectively, one needs to know which 

parameters to adjust, how to adjust them and the influence of the parameter on the 

predicted performance. Nevertheless having obtained a set of reservoir parameters 

that match the past reservoir performance does not in itself mean that those parame-

ters will provide an accurate prediction of reservoir performance. Thus the confidence 

in the prediction of the future reservoir performance, following a history match, will 

depend on the confidence that one has in the values of the reservoir parameters. 

1.4.1 Current Approach 

In general, the data that are history matched are bottom hole and well head 

pressures, WOR, GOR, gas and water arrival times, fluid contact movement and fluid 

saturations measured in cores. 
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Currently the engineer should use his own experience and judgement to 

obtain a history match. It is therefore a trial and error procedure to ascertain the 

optimum value of the reservoir parameters. 

1.4.2 Motivation for Automatic History Matching 

Currently, as it has been stated above, extensive experience and erudition of 

the important parameters is required from the engineer, for a successful simulation 

study. At the same time, the computer advances have led to the reduction of the 

computer costs, while the manpower costs are becoming increasingly high. The obje-

ctive, therefore, is to make history matching more facile to the engineer, by letting the 

computer do all the trial and error runs. This will allow the engineer to spend more 

time on the interpretation of the results, rather trying to obtain an acceptable match. 

Attempts to accomplish an automated version of history matching, have produced 

numerous algorithms, many of which will be discussed briefly in a later chapter. 

It should be noted, though, that having a systematic parameter estimation 

scheme does not mean that history matching should be automatic with nothing left 

to the discretion of the engineer. The engineer should establish which parameters are 

to be adjusted to match a given variable and determine the constraints on the value 

of the parameters (Parish et al., 1993). 

1.5 Problem Statement 

Generally, all the algorithms adjust the reservoir parameters according to 

predetermined guidelines. The quality of the obtained match is quantified in terms 

of an objective function, a relationship that reflects the difference between the observ-

ed and calculated values of the matching variables. The goal is to find the reservoir 

model that minimizes the value of the objective function. This process is generally 

referred to as "automatic history matching", or "inverse simulation". 
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Using least squares (LS) estimation, the objective function is defined as: 

S(k) = [(t1) -y(t1,k)IT W ['(t1) - y(t1,k)1 
j=l 

where 5r(t1) represents a vector of m measurements at observation time t1, n0 is the 

number of observation times, y(t1,k) represents the vector of corresponding model 

predictions and W1 is an mxm, user supplied, positive definite, symmetric weighting 

matrix. 

Tan and Kalogerakis (1991), have pointed out that the role of the weighting 

matrix is essentially to normalize the data, so that all the measurements are of the 

same order of magnitude. On statistical grounds, this is the correct choice if the error 

in the measurements is proportional to the magnitude of the variable, that is, if we 

have a constant percentage error. 

Any spatially discretized reservoir model, can be represented by a set of 

ordinary differential equations which are of the form: 

dx = f (x(t),u(t),k) 
it-

(1.2) 

where x is an n-dimensional vector of state variables (e.g. pressure and saturations 

at all grid points), x0 is the initial state and u represents all user specified variables 

(e.g. injection flow rates, production rates, etc.). The rn-dimensional output vector, y, 

is related to state vector x through a relationship of the form: 

y(t) = C x(t) 

where C is a constant rnxrn matrix. 

(1.3) 
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1.6 Outline of Thesis 

This thesis begins with an introduction (Chapter 1) to the objectives of reser-

voir simulation, the steps required for a complete reservoir simulation study and the 

"inverse simulation" problem. 

The mathematical structure of the reservoir simulation models is presented in 

chapter 2. A brief insight of the governing equations of reservoir simulation models, 

the discretization techniques, the boundary conditions, the well models and finally 

the methods of solution according to the degree of implicitness is provided. 

Chapter 3 presents a review of the literature. Methods that have been used in 

the past for automatic history matching, are introduced. Previous works on algorithm 

development, identifiability of parameters, incorporation of prior information and the 

employment of constraints are cited and analyzed. 

The parameter estimation techniques are introduced in chapter 4. The ad-

vantages and disadvantages of each method are analyzed. A detailed description of 

the method that has been used throughout this project, is also provided. 

Chapter 5 provides the methodology for determining the error bounds of 

forecasted well and field performance. Also a comparison between Gauss-Newton 

method and Simulating Annealing in chemical kinetic models is presented. 

In chapter 6 a simple 5-spot homogeneous system is examined. The perfor-

mance of the algorithm to history match and predict the future production of a 

reservoir is investigated. The effect of the degree of implicitness and the dimensions 

of the grid block dimensions on the forecast of the performance of the reservoir is 

explored. 
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In chapter 7 the simulator was tested on heterogeneous reservoirs. The degree 

of heterogeneity was varied, employing models which are naturally fractured, have 

randomly placed discontinuous shales and sealing faults, or impermeable barriers. 

Chapter 8 summarizes the conclusions of this project. Advantages and dis-

advantages of the Gauss-Newton method, the benefits of employing the Automatic 

History Matching in field development and the key parameters that ensure a suc-

cessful implementation are listed. 



CHAPTER 2 

MATHEMATICAL FORMULATION OF RESERVOIR 

SIMULATION MODELS 

2.1 Introduction 

The reservoir simulation models can be categorized into four distinct classes; 

namely, the black oil models, the compositional models, the miscible displacement 

models and the thermal models. Although the governing equations in the above 

models, appear to be different, they are all based on the equation of continuity, using 

different simplifying assumptions. 

In this chapter the theoretical and practical aspects of mathematical models 

that are in use, will be discussed. 

2.2 Governing Equations 

2.2.1 Equation of Continuity 

The basic equations, that govern the fluid flow inside the porous media are 

obtained, by combining several physical principles, namely: 

• Conservation of mass 

• Conservation of momentum 

• Conservation of energy (first law of thermodynamics) 

• Equations of State 
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The conservation of mass is considered to be the basis of all the reservoir flow 

equations. It states that the rate of mass accumulation in a grid-block is equal to the 

mass rate entering the grid-block, minus the mass rate at which if flows out of the 

grid-block, as it is shown at Fig. 2.1. 

(Rate of Mass In) - (RateofMass Out) = (Rate of Mass Accumulation) (2.1) 

For the three dimensional flow case the mass balance for a volume element 

would be: 

((P U) i - (pu)L+X)Ay Az = .(p) Ax Ay Az (2.2) 

Adding similar terms for the y and z direction, dividing by AxAyLtz and taking 

the limit as the dimensions of the volume element approach to zero results: 

- (pu a a - --(p u) = (p ) (2.3) _ ax )- - (pu ) 
Y az . 

or simply by using vector notation: 

- V (pu) = 
Tt 

(2.4) 

The left hand side of the above equation is simply the net rate of influx per 

unit volume. Therefore one can say that the increase of density in a small volume is 

equal to the rate of mass influx divided by the volume. 

If we consider a multiphase system, (oil and gas), then the above equation 

becomes: 
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- V (P. U. + pu) = ((D (P. S. + P, S")) (2.5) 

For a multi-component system the equation of continuity must hold separate-

ly for each component. In order to do so we have to introduce the concept of mass 

fraction of each component in each phase in the equation. If cot,, and fOgi are the mass 

fractions of the component i in the oil and gas phase the equation of continuity will 

become: 

- V (p t((D(p.(o,S 0a,1u01 + Pg(0gj hlgj) = +p COS )) (2.6) 
ggg 

If we consider a multi-mechanism system, where the flow occurs, due to 

different mass transport mechanisms, like convection and dispersion the continuity 

equation becomes: 

V.(p Oiuc 
0 of 0 

+ Pg% 1 - V (P Co + Pg0)81t1) = 

((p0a,s0 + PgU)gjSg)) 
.i' 

(2.7) 

where the superscripts c and d denote the velocity due to convection and dispersion 

respectively. 

2.2.2 Additional Equations 

Auxiliary equations are required in order to solve the system of mass balance 

equations for each element volume, at each time-step. These are the conditions that 

make sure that the sum of saturations of each phase, and the sum of the mole fra-

ctions of any component for all the phases is equal to unit. Also, density and viscosity 

of any fluid should be a function of the phase pressure and composition. Relative pe-

rmeability curves are the main source of nonlinearities, in the solution procedure. 

They are considered as functions of phase saturation. The capillary pressure couples 
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the phase pressures and it is always equal to the difference, between the non-wetting 

phase pressure and wetting phase pressure. Reservoir parameters, such as perme-

ability and porosity, are functions of reservoir pressure and direction. Finally the 

equilibrium values (k-values) are functions of pressure and composition for a given 

temperature. 

The convective velocity is given by the Darcy's law, while the dispersion 

velocity by the Fick's law as shown: 

and 

kk 

UI 

pcquIi = - K11 V(p1q1) 

(2.8) 

(2.9) 

where K is the ratio of the moles of a component in the gas and in the oil phase. 

2.3 Black Oil Models 

Black oil models are the most commonly used models in reservoir simulation 

studies. Black oil simulators are based on the following assumptions: 

• Up to three phases are considered to be present in the system (oil, gas 

and water). 

• Up to three components are considered, namely, oil, gas and water. 

• The dispersion is negligible. 

• The oil component is assumed to be only in the oil phase, the gas 

component could be present in the gas phase, as free gas and in the 

oil phase, as dissolved gas. Finally water component is only present 

in the water phase. 
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• The formation volume factor and the solution gas oil ratio are fun-

ctions of the reservoir pressure only. Also functions of pressure are the 

oil and gas compressibility and the viscosity. 

The implementation of the above assumptions is represented in the following 

equations for the liquid and the vapour hydrocarbon phase: 

-V. fkk )  aIS1 
I (VPL - YL) - at(¼ BL ) ILBI 

-v.(IiVBV kk  (Vp, - YvVh)J 

- a(Sv 

at BV 

with additional equations: 

- . kkrL R. (Vp - 

PtBL 

+ 8( SLR 
atBL 

SL +Sv =1 - Sw and 

YLVh)J 

PV - PL P 

The subscripts L and V refer to the liquid and vapour phase. 

(2.10) 

(2.11) 

(2.12) 

The simulator (DRS, SIMTECH Consulting Services Ltd.) used, throughout the 

course of this project, belongs in this category of models. DRS is a three phase, three 

dimensional, black oil reservoir simulator. 

2.4 Discretization of Flow Equations 

The partial differential equations, that describe the fluid flow, must be solved, 

according to the appropriate boundary conditions. The numerical solution is obtained 

by replacing the partial differential equations with finite difference approximations, 

that are amenable to solution by digital computers. The error involved by the above 
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approximation is called truncation error, because of using truncated Taylor's series. 

The impact of the truncation error on the solution of the equations is called numerical 

dispersion or diffusion. The model is divided into a discrete number of grid blocks and 

the time domain is divided into discrete time intervals. The form of the discretized 

flow equations has been presented in numerous textbooks (Crichiow 1977, Settari and 

Aziz 1979, Peaceman 1977, SPE Monograph 1990). The final form of the finite dif-

ference equation, if one considers the well injection and production rates, of a black 

oil simulator, for oil is: 

V. (IS 
=(_)A( 0) AT .M0[A(p0)1 - gp0AD1] + At B 

0 

similarly, the water and gas equation is: 

AT .M[A(p)1 - gpAD] + (a ) (_..V L) A ( W) 
£W14 At B i,j 

W 

AT•Mg[A(Pg)j,j - gpgAD1jl + AT R5 M 0[A(p0)1, - gp0AD11 + (q)1, 

V.. ( s bSR 
( ') A ( g ) +(  OS) I At B ' BO 'ii 

(2.13) 

(2.14) 

(2.15) 

where AT is the difference of physical transmissibility between adjacent grid blocks, 

B1, i=o, w, g formation volume factor of oil, water and gas respectively, R. solution 

GOR, Al' pressure drop, AD depth difference, p density, g acceleration of gravity, q 

volumetric flow rate, At length of time-step, S, i=o, w, g saturation fraction of oil, 

water and gas respectively. 

2.5 Well Models 

The well which penetrates the petroleum reservoir is our only window into 

the vast unknown to which we most diligently attribute rock and fluid properties, 



17 

make predictions, and perform all the other engineering  calculations that comprise 

the scope of reservoir engineering (Crackle 1977). 

Analytical solutions for single phase radial flow of a cylindrical region around 

the well of radius r have been discussed thoroughly by Aziz and Settari (1979). 

Peaceman (1978) presented the expression for the well production rate, under the 

assumption of the fluid is incompressible, with influx on the external boundary re: 

Q = _ wt - av (2kAz) 

j.L(in '0 ri,,) 
(2.16) 

where r0 is the effective (equivalent) radius, which is the radius at which the steady 

state flowing pressure for the actual well is equal to the numerically calculated pres-

sure of the well block. Peacenian (1978) proved that the equivalent radius is equal to 

0.2Lx for a square grid block, and for a non-square grid block is given by: 

r0 = 0.14 (&2 + Ay2) (2.17) 

Peaceman (1983) has also extended the analysis to include anisotropic perme-

ability and an expression for the effective well-block radius in terms of Ax, Ay, k and 

k. Williamson and Chappelear (1981) further developed the source representation for 

a variety of circumstances. According to Settari (1993), the ultimate solution to the 

problem of modelling a well would be to eliminate the use of well index, by using 

griding techniques that represent the boundaries directly, or to use grid refinement 

to the point where the difference between the well flowing pressure and the block 

pressure is insignificant. Special griding techniques is a recent area of research. Pedro-

sa-type grids have been used in modelling vertical and horizontal wells, while, Voro-

fbi-type (Heinemann et al., 1991) grids have been used in reservoir simulation be-

cause of their ability to represent complex geological patterns and well boundaries. 

Finally for multiphase production well, the source/sink representation must 

be modified to calculate the production of each phase properly. 
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2.6 Solution Methods 

The most common methods of solution of the mass balance equations are: 

• IMPES solution 

• Semi-Implicit method 

• Adaptive Implicit method and 

• Fully Implicit method 

2.6.1 IMPES Solution 

In this method the phase pressures and saturations are calculated sequentially. 

This is done, by combining all the single phase equations into a single multiphase 

equation based on pressure. Initially the pressure equation is solved implicitly and 

then the model calculates saturations in an explicit mode. This procedure was intro-

duced by Stone et al (1961). 

One main limitation of the IMPES solution, is that it is conditionally stable. 

Such limitations result from the explicit treatment of capillary pressures and the 

transmissibffities, which are the strongest nonlinearities involved. Aziz and Settari 

(1979) developed expressions for the maximum time-step, that can be used in order 

to avoid any instabilities. For example the method is stable with respect to transmis-

sibilities only when: 

Pore Volume 

df (2.18) 

where is the fractional flow of water and QT is the total flow rate of water. 
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2.6.2 Semi-Implicit Method 

This method exhibits increased stability, which results from estimating mo-

bility factors at the new time step by extrapolation simply by using the knowledge 

of the shape of the fractional flow function1. A common method that is used is the 

linear extrapolation, even if the fractional flow curve is not linear: 

f?'41 = fn + df (S 1 - S?') 
0 o as 0 0 0  

2.6.3 Fully Implicit Method 

(2.19) 

This procedure involves the simultaneous solution of the partial differential 

equations for flow of oil, water, and gas to obtain the pressures in each phase. The 

saturations of each phase are calculated implicitly using capillary pressure relations. 

All the state variables in the equations are in the n+1 time level. 

This method is very complex, computationally intense, but unconditionally 

stable. It has, also, extensive computer storage requirements. 

2.6.4 Adaptive Implicit Method 

This method is considered as a variant of the fully implicit method. Rather 

than providing a fixed degree of implicitness in every grid-block at every time-step 

or iteration, the adaptive implicit method operates with different levels of implicitness 

in adjacent grid-blocks. Each variable is therefore treated explicitly, or implicitly 

according to the magnitude of it's gradient with respect to space and time. 

flow of a phase is the ratio of the production rate of that phase over the summation of the 
production rates of all the phases present in the reservoir 
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2.7 Comparison Between the Solution Method 

In general, many areal problems, can be handled with lIvIPES-type formula-

tion, especially in systems where the capillary pressures are smaller compared to the 

viscous forces. If that's not the case, then a more stable solution should be more ap-

propriate. 

The modelling of undersaturated oil reservoirs needs a certain degree of im-

plicitness in order to handle rapid gas movements, when the pressure drops below 

the bubble point. 

The adaptive-implicit method invokes only the necessary level of implicitness 

an a cell by cell basis. For black oil reservoir simulation problems, the method provi-

des substantial reduction in computer processing costs, yet provides the stability 

characteristics of the fully implicit method. Also the method can reduce computer 

storage requirements to approximately those levels associated with the IMPES me-

thod (Thomas et at; 1983). 

Modelling of thermal processes, naturally fractured reservoirs, or even gas 

conning problems, requires more stability, and therefore the fully implicit method is 

more suitable. It is, very important though, to remember that the fully implicit me-

thod produces the highest numerical dispersion than any other method. On the other 

hand, IMPES method adds less numerical dispersion to the solution compared to 

semi-implicit, fully-implicit or adaptive-implicit, method. 



CHAPTER 3 

LITERATURE REVIEW 

With the continuous development of powerful workstations and desktop 

personal computers, a renewed interest in automatic history matching procedures can 

be observed in the past few years. Nevertheless, the literature available in this area 

is considerably limited, because of the intricacy that the automatic history matching 

problem exhibits. 

For the minimization of the objective function two different approaches have 

been widely used, nonlinear regression and optimal control methods. Recently the 

simulated annealing has also been proven to be a reliable procedure. In practical 

applications always some form of regularization, is required to overcome the very 

serious problem of ill-conditioning, particularly as the number of parameter increases 

to more than ten or so. A problem is called ill-conditioned when, significant changes 

in the reservoir parameters, does not cause a significant change of the objective func-

tion. 

3.1 Methods Used for Automatic History Matching 

3.1.1 Nonlinear Regression Analysis 

In a nonlinear regression method, the derivatives of the objective function 

with respect to each variable are analyzed concurrently to determine the optimum 

direction for the parameters. The effects of all variables on each residual are included 
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simultaneously. These methods include the method of Steepest Descent, the Gauss-

Newton method, the Quasiinearization method and the Newton's method. 

One common characteristic of all the above methods is the calculation of the 

sensitivity coefficients. These are the partial derivatives of the reservoir variables 

(pressures, saturations, temperature) with respect to the unknown parameters. These 

coefficients are usually obtained by numerical differentiation. Each parameter is 

perturbed independently and a full simulation run is made to evaluate the sensitivity 

of the reservoir variables to the parameter. This procedure must be repeated for all 

the parameters for each iteration. Therefore if there are k parameters to be estimated, 

the simulator should perform (k+1) runs to determine the sensitivity coefficient for 

each iteration. Gavalas et al (1976) discusses briefly the computational trade-offs in 

the various ways of calculating sensitivity coefficients. 

All the above methods are iterative procedures. A typical iterative sequence 

is as follows: given an initial value of k° of the parameters and the objective function 

S(k°), we seek a new value of k" which is closer the minimum, in the sense that 

S(km) < S(k °). Once k" has been obtained, we proceed to find, k, k, k,..., each, 

in turn, having the property of being closer to the minimum. In the class of methods 

which have proved to be successful for parameter estimation, the formula used for 

finding the new value of the parameter is: 

V ) = k° - 7Rg (3.1) 

where ? is a scalar, R is a matrix and g the gradient vector of the S (dSldk). The 

matrix R pre-multiplies the vector g, twists g in vector space to produce a new vector. 

Therefore matrix R determines the direction to go from ?, on the other hand, 

being a scalar defines how far along this direction to go and determines the length 

of the step. 

The choice of R = I constitutes the method of steepest descent. It converges 

slowly in most practical problems. The choice of R, as the inverse of the Hessian 

matrix, G, constitutes 
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R =[a2S  = G 1 
ak2 

(3.2) 

the Newton-Raphson method. It performs well when one is near the minimum, but 

suffers from two major difficulties: 

• Except near the minimum, a step taken along the Newton-Raphson 

direction is not guaranteed to reduce S, no matter what value is cho-

sen for 

• the method requires the computation of second derivatives of S, which 

usually is a laborious procedure 

Finally if: 

and G is given by: 

M 

G11 2E 
j4 ur.. ak, 

(3.3) 

(3.4) 

the method is called Gauss-Newton method. It can be seen from equation (3.4) that the 

Gauss-Newton method uses an approximation of the second derivatives. 

Quasilinearization method is very similar to Gauss-Newton method. Both are 

best known for their quadratic convergence to the optimum. The major problem, of 

quasiinearization, according to Seinfeld et a!; (1970), Seinfeld et a!; (1974), and Kalo-

gerakis (1983) is its small region of convergence. 

Jacquard and Jam (1965) were among the first researchers to develop a system 

of automatic interpretation of the pressure measurements. They proposed a method, 

in which, starting from the relation which exists between a local perturbation of 

permeability and its effect on the velocity potentials in the wells, they determined by 
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successive approximation the modification to be made to the permeability map by 

fitting the least squares between the measured pressures and the pressures indicated 

by the mathematical model. 

Slater and Dutter (1971), Thomas et al. (1972), Kalogerakis and Luus (1983 A), 

Kalogerakis (1983B) have also developed variants of gradient and Gauss-Newton 

method. Specifically Slater and Dutter proposed a modification of Jacquard and Jam's 

method that reduces the time required to obtain the solution. 

Dogru et a! (1977) used nonlinear regression theory to determine the effect of 

erroneous parameter estimates in the future prediction of reservoir pressures. 

Smith et al. (1993) and Watson et al. (1990) used nonlinear regression theory 

to improve reservoir characterization of a fractured reservoir. Savioly et al. (1991) has 

also applied nonlinear regression analysis in automatic history matching of well test 

data. 

3.1.2 Optimal Control Methods 

The second type of parameter estimation technique, that has been applied to 

automatic history matching problem, is the optimal control methods. Chen et al (1974) 

and Chavent et al (1975) published algorithms that use this approach. 

The optimal control methods require the solution of a set of adjoint ordinary 

differential equations together with the ordinary differential equations of the model. 

It therefore requires two simulation runs per iteration for each parameter. These 

methods exhibit linear convergence properties. It is therefore obvious that when the 

number of parameters exceeds a certain level, or when the model is highly nonlinear, 

then these kind of methods are very computationally demanding. 
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Watson et a! (1980) modified an automatic history matching algorithm, which 

was based on optimal control approach, to account for joint estimation of spatially 

varying permeability and porosity and coefficients of relative permeability functions 

in two phase reservoirs. 

Dogru et al (1981) used second order optimal control method to investigate the 

computational effort that it is required to determine the sensitivity coefficients in a 

two dimensional, single fluid model. Dogru, found that the nonlinear regression met-

hods should be preferred over the optimal control methods when the number of 

parameters is less than the number of ordinary differential equations that have to be 

solved. This is usually the case, especially when a zonation approach is used. As the 

number of parameter increases optimal control methods become more economical 

than the nonlinear regression methods. 

Wasserman et a! (1975) modified the standard optimal control technique to 

treat multiphase problems. 

Yang et al (1987) applied optimal control methods to two-phase, one and two 

dimensional models. He increased the rate of convergence by using metric methods. 

3.1.3 Regularization Procedures 

The process of estimating unknown properties, such as porosities and permea-

bilities, in a mathematical reservoir model, to give the best fit to measured pressure 

or other production data, is mathematically ill posed. This ill-posed nature coupled 

with the large number of unknown parameters cause numerous difficulties in its 

solution. The principal approach that has been used to alleviate the ill-conditioning 

in the parameter estimates is to decrease the number of unknown parameters and, 

if possible to utilize any available prior information to constrain the values of the 

unknown parameters. 
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The regularization of an ill-posed problem consists of modulating the original 

problem to a well-posed one, whose solution approximates the solution of the origi-

nal problem. Lee et al., (1986) used as the regularization formulation of parameter 

estimation the norm of the parameter in an appropriate Hilbert space. This is measure 

of the "non-smoothness" of the estimated parameter. The customary history matching 

least squares objective function is augmented with an weighted function. The aug-

menting term exerts a penalty action against anomalous oscillations in the parameter 

estimates. Eventually the objective function looks like: 

'SM = jts + Pa -tsr (3.5) 

where JLs is the sum of the least squares term, JST is the stabilizing function and 

is a weighting coefficient to reflect the degree of importance given to Js. The theore-

tical details of regularization are described by Kravaris et al (1985; 1986). 

Palatnik et al (1990) proposed a form of regularization in complex geological 

models (history matching problems in filtration theory). 

Other authors proposed simpler forms of regularization. Kalogerakis and Rein 

(1983) used Marquardt's modification to increase the region of convergence of the 

algorithm. 

3.1.4 Simulated Annealing Method 

The simulated annealing method has been applied, as a parameter estimation 

procedure, to automatic history matching. The idea of annealing came from the obser-

vation of how nature optimizes the placement of atoms in a lattice when a material 

sample is slowly cooled. When this happens the atoms find the lowest energy con-

figuration possible, yielding a very regular structure. On the other hand when the 

temperature is reduced rapidly (quenching) the atoms settle down in places far away 

from the optimum, yielding a very irregular structure. A slow reduction of tempera-

ture, corresponds to permitting non-improving moves to be selected with a certain 



27 

probability, which diminishes as the objective function diminishes. Thus the simulated 

annealing method is an uphill climbing method, because it allows the objective function, 

at some point, to take higher values and eventually permits the system to "climb out" 

of local minima. Eventually the algorithm converges to the global minimum. A 

schematic diagram of the simulating annealing is shown in Fig. 3.1 

Ouens et al (1992A; 1992B; 1992C; 1992D; 1993), have used simulated anneal-

ing method to improve reservoir characterization, by determining reservoir pa-

rameters, like porosity and permeability. Ouens et al (1992E) applied the algorithm 

to a simplified reservoir-plus-aquifer model where more than 50 subsurface properties 

have been estimated by inverse modelling. Other applications of simulating annealing 

methods include the simultaneous estimation of relative permeability and capillary 

pressure curves from two phase laboratory corefloods by Quens et a! (1992 E) and the 

development of the inverse modelling procedure on the CO2-foam pilot area of the 

East Vacuum Grayburg/San Andres Unit (EVGSAU) by Sultan A.J. et a! (1993). 

Ghori et al (1992) has compared the simulated annealing method with three 

other geostatistical methods (source point method, fast fourier transform method and 

the turning band method) for generation of property distribution. The comparison of 

the four methods has shown that the simulated annealing method produces the best 

fit of the experimental variograms regardless of the type of variogram. However, one 

fact was certain - simulated annealing methods were slower than any other stochastic 

model. 

3.1.5 Other Methods 

A special category of methods, known as global optimization methods, has 

also been developed. This category is comprised by the following approaches: 

The neural network modelling is based on the early work of McCulloch and 

Pitts (1943) and Rosenblatt (1962) 
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Figure 3.1 Schematic diagram of the Simulating Annealing method. (After 
Ownes, 1992 A) 
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• Genetic algorithms introduced by Holland (1975), Liepins (1992), Walbridge 

(1989) and Hajela (1992). These algorithms are based on the process of mating, 

mutating and selecting. They are, essentially random search algorithms, with 

the ability to accumulate all the knowledge gained from the previous itera-

tions 

• Tabu search introduced by Glover (1977, 1986). In this method when a local 

minimum is reached the algorithm structures the operation of its embedded 

heuristic in a manner that permits it to continue. This is accomplished by 

forbidding moves with certain attributes (making them tabu) and choosing 

moves, from the remaining ones that are mostly appealing in some optimal 

fashion. 

• Random Walk Method. This approach is based on generating a sequence of 

improved approximations to the minimum. The search pattern is totally ran-

dom and each step is accepted only if the objective function is less then the 

one in the previous iteration. 

Hirasald (1975) provided tools to influence coefficients for adjusting reservoir 

properties of simple models. As the degree of complexity of a model increases, more 

sophisticated history matching methods are required. 

Coats et al. (1970) presented a method that employs the least squares and 

linear programming techniques to determine a reservoir description from given 

performance data. The reservoir properties were supplied by a random number 

generator. 

Hird K.B. et al. (1992) used a conditional simulation technique to constrain 

areal permeability fields to typical statistical information (i.e., permeability histogram, 

spational correlation and well data) and indirectly to waterflood well performance 

(i.e., oil and water producing rates, water injection rates and water-oil ratios). 
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3.2 Identifiability of Parameters 

The estimation of reservoir properties is inherently an in-conditioned problem 

(one not having a unique solution), because of the large number of unknowns relative 

to the available data. In order to demonstrate the importance of estimating correctly 

the reservoir properties the following general rules of thumb in reservoir engineering 

are summarized below: 

• The parameters that have a significant effect on depletion by solution gas 

drive are: the extent of the reservoir, the bubble point pressure, the gas-oil 

relative permeability, the porosity and the absolute permeability. The gas-oil 

relative permeability has a strong impact on the produced GOR. The absolute 

permeability will influence the well productivity and the production rates. 

Porosity estimates will determine the original oil in place and the distribution 

of the latter will influence both the individual well GOR and the pressure. 

• The parameters that have a significant effect on waterflood performance in-

clude the initial waterflood movable oil in place, initial gas saturation, water-

oil relative permeability, water-oil capillary pressure, stratification, permeabi-

lity anisotropy, porosity and permeability distribution. 

The above examples demonstrate how closely the reservoir properties are 

related and the impact that each one has on the final production rates of a hydrocar-

bon reservoir. Shah et al. (1978) investigated the accuracy of the estimated porosity 

and permeability obtained in reservoir history matching using covariance analysis. 

Dogru et al (1977) used nonlinear regression the determine the effect of erroneous 

parameter estimates obtained from well testing on the future prediction of reservoir 

pressures. 
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3.3 Incorporation of Prior Information and Constraints 

Farouq Ali et al. (1988) pointed out that:" the most serious problem in automatic 

history matching is the tendency to construct ill-conditioned systems of equations Ax=b. By 

the very nature of the history-matching problem, inherent uncertainties exist in both A and 

b, because they are based on a measured performance history. This problem therefore can only 

be treated by incorporating some a priori information about the solution vector x". 

Any information available from geology studies, core tests, seismic and pres-

sure transient analysis, or log interpretation, can be used to set bounds in the estima-

ted parameters. This way the engineer may prevent the parameter estimates to attain 

unrealistic values. 

Carter et al., (1974) and Coats et at., (1970) used inequality constraints in order 

to restrict the parameter estimates. The latter found out that quite often the parameter 

values were very close to the upper or lower bound. Farouq All et al. (1988) asserted 

that this is caused because the bounds are not symmetrical about the true values of 

the estimated parameters. 

Yang et al., (1991) used a Bayesian approach to estimate relative permeability 

curves, in a two dimensional two phase model. A relative weight was considered, 

which was given to the production data and prior estimates so that the final estimates 

are least different from the prior estimates without compromising the match of reser-

voir production data. The optimum weighting factor was estimated in an algorithm 

based on observation of slope changes of the minimum objective function obtained 

from many regression run using various weighting factors. The same author (Yang 

et al., 1987) incorporated inequality constraints with variable metric methods, in a two 

dimensional, two phase model. 

Finally Neuman et al (1979) and Cooley (1992) incorporated prior information 

about the estimated parameters, in the objective function, in the field of underground 

hydrology. 



CHAPTER 4 

PARAMETER ESTIMATION TECHNIQUES 

The problem of parameter estimation to find the unknown model parameters 

of a given model, by matching the model predictions with the actual measured data, 

in some optimal fashion. Therefore the parameter estimation techniques could be 

viewed as optimization procedures, whereby the unknown parameters are obtained 

by minimizing the chosen objective function. 

In general any mathematical model can be described by a set of algebraic 

equations, or by a set of differential equations. Depending on whether the parameters 

are linearly or non-linearly related to the output vector the models are characterized 

as linear or non-linear models. 

The algebraic equation models are of the form: 

y = f(x, k) (4.1) 

where y is the output vector of the model (measured data), x is the vector of the state 

variables and k is the vector of the unknown parameters. 

The differential equation models are more complicated and computationally 

demanding. If the state variables are functions of time, then the model is characteriz-

ed as dynamic. The general form of these models is: 

dx - 

- f(x(t),u(t),k) / x(0)=x0 
dt 

(4.2) 
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where x is the n-dimensional state vector, ; is the given initial state, k is a p-dimen-

sional vector of unknown parameters and u represents all user specified variables. 

The rn-dimensional output vector y is related to the state vector by: 

y(t) = C x(t) 

where C is a constant mxn matrix. 

(4.3) 

The automatic history matching of a hydrocarbon reservoir is a typical non-

linear parameter estimation model. The model is described by a set of partial differe-

ntial equations (continuity equations as described in chapter 2), the output vector y 

is comprised of production rates, the state variable vector x consists of values of 

pressures and phase saturations and finally the parameter vector k contains values 

of porosity and permeability. Automatic history matching procedures have also been 

used for estimating relative permeability curves and rock and fluid parameters from 

core flood tests. 

4.1 Model Forms for Parameter Estimation 

4.1.1 Least Squares Estimation 

The unknown parameters are estimated by matching the measured data and 

the output of the model, in some optimal manner. If 5r(t1) are the measurements of the 

output vector for different times ti and y(t) is the output vector of the model the error 

involved in each phase of the parameter estimation procedure is: 

C (ti) = 9(t) - y(t1,k) (4.4) 

Using the least squares technique, an objective function S(k) is defined as the 

sum of the squares of errors as shown: 
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S(k) = [9t) .- y(t1,k)]T W [5'(t1) -y(t1,k)1 
i=1 

(4.5) 

where no is the number of the observation times, and W1 is an mxm positive definite, 

symmetric matrix of weighting factors which may vary with time. 

Depending on the selection of W we have: 

• Simple Least Square Estimation if W=I (minimization of the sum of squares of 

errors). 

• Weighted Least Square Estimation if W1=W (using constant weights) and 

• Generalized Least Square Estimation if W1=W1 (using non-constant weights) 

Usually the choice of W1 depends on the distribution of the errors. Namely 

one should select W1 such that: 

W 1 = C0V1[c(t1)] 

where COV is the covariance matrix of the errors. 

4.2 Gauss-Newton Method 

(4.6) 

One of the most efficient methods in parameter estimation is the Gauss-New-

ton method. 

In general any reservoir model can be represented by a set of differential 

equations which have the form: 

dx = t (x(t),u(t),k) / x(0) =x0 
dt 

(4.7) 

where x is the n-dimensional state vector (e.g. pressures or saturations), x0 is the 

given initial state, k is a p-dimensional vector of unknown parameters and u repre-
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sents all user specified variables (e.g. flow rates, pressures, etc). The rn-dimensional 

output vector y is related to the state vector by: 

Y(t) = C x(t) 

where C is a constant mxn matrix. 

(4.8) 

If we suppose that the estimate OR of the unknown parameter vector is avai-

lable at the r iteration, using the Taylor's series expansion we can obtain yl), at the 
(j+1)' iteration as a linear function of 

(Ix— ak 
\T'T iaxy1(t) =y(t) + j 1j) (k" -k) 

Substitution of eq. (4.9) into eq. (4.8) yields: 

y(i1l)(t) = C x(t) + CG(t)ik 1 

where G(t) is the nxp sensitivity matrix. Substituting y 1(t) into the performance 

index in eq (4.5) and setting s/ k (j+1) = 0 we obtain a set of linear algebraic equations 

which have the form: 

(4.9) 

where: 

and 

A b 

N 

A = E G T(t) CT W 1 C G(t) 
i1 

b =E G T(t)C Tw.{(t.)_y(t.,k (P)] 

The new parameter estimate is obtained from: 

(4.10) 

(4.11) 

(4.12) 

(4.13) 
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= 0 + 2 Aj( ('+') 
(4.14) 

where ? is the step-size with 0≤A.≤1. The step size in chosen either by the bisection 

rule or through a cautious step-size policy. 

The sensitivity coefficient matrix C is obtained by differentiating both sides 

of the model equation (4.10) with respect to the parameter vector k to yield: 

1 dG(t) Iaf'T af G(t) T 1 dt = L•) 
with initial conditions: 

(4.15) 

G(t) = o (4.16) 

The method computes an approximation of the Hessian matrix without cal-

culating any second derivatives of the model equations. A schematic diagram of the 

Gauss-Newton method is shown in Fig. 4.1 

The advantages of the Gauss-Newton method are: 

• Exhibits quadratic convergence 

• Does not require calculation of any second derivatives. 

• One can compute statistical information from the Gauss-Newton matrix, at 

convergence in order to provide reliability estimates of the final values of the 

parameter. 

The solution of the eq. (4.11), strongly depends on the how dose the initial 

guesses of the parameters are to the optimum. The problems associated with the 

quality of the initial estimates are: 

• The may correspond to a wrong direction 

• The change of may be in the right direction, but large in ma-

gnitude (excessive over-stepping) and 

• The state equations may be numerically unstable at k + ik(j+1). 
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4.3 Incorporating Prior Information and Penalty Function 

If additional information is available for certain parameter values from core 

data analysis, well tests, geological studies or any drilling information, then we can 

incorporate this information into the objective function, in order to bias the parameter 

search in favour of parameter values and condition the problem. The impact of this 

a priori information is decreasing as the number of observations increases (Tan and 

Kalogerakis 1992). The objective function is augmented to: 

where S 0(k) is: 

S(k) = S(k) + S (k) prior 

Sprior (k) = (k - k)T W (k - k) 

(4.17) 

(4.18) 

where W, is the covariance matrix of the probability distribution of the unknown 

parameter. Equation (4.14) is derived under the assumption that our prior knowledge 

of the parameter vector k can be summarized in the form of a multivariable normal 

distribution with mean k and covariance matrix W 4. The latter is often a diagonal 

matrix with elements j=1, ...,p. 

In addition hard constraints on the parameters can be incorporated in the form 

of a penalty function if required (Tan 1991). For instance the porosity can take values 

between 0 and 1. There is no guarantee that the final estimates of the parameters will 

be within logical boundaries. In order to make sure that the estimated parameters will 

not reach extremal values a penalty function can be incorporated into the objective 

function as shown: 

S(k) = S(k) + S (k) + S (k) 
prior penalty 

where: 

(4.19) 
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npar 1 1 

k — k. niax 1 

(4.20) 

The penalty function is responsible for increasing the value of the objective 

function when the parameters are close to their physical boundaries. Inside the fea-

sible region of convergence the effect of the penalty function is minor. 

Both the prior information and the penalty function affect the elements of the 

main diagonal of the matrix A in eq. 4.11. resulting in a numerically superior matrix, 

since the condition matrix is decreased. 

Core analysis can give us useful information regarding the reservoir, namely 

porosity and permeability distribution around the wells and even relative permea-

bility curves. Among the preceding parameters, porosity values are considered to be 

the most reliable information. On the other hand, relative permeability curves, since 

they depend on numerous factors, like wettabifity, direction of saturation changes and 

rock properties, are the least reliable. In this work we concentrate on searching suita-

ble values for porosities and permeabilities. The adjustment of relative permeabifities 

from history matching data will be the focus of a subsequent thesis. Here we assume 

that the relative permeability curves obtained from the lab are sufficiently accurate. 

One of the first priorities in any reservoir engineering study, is to determine the 

relationship between porosity and permeability using the results from the core analy-

sis. Such prior information can only be used in automatic history matching to provide 

reasonable initial guesses for the parameters. The converged values represent the 

effective porosity and permeability which depend strongly on the chosen reservoir 

zonation, structure and reservoir complexity. Typically one prefers to have a few 

parameters in order to maintain rather simple reservoir descriptions. 

4.4 Parameter Covariance Matrix 

Once the series k", k, kg>, ...k, have converged to k', under the hypothesis 

that the model is adequate and the measurement errors, e1, taken at time t=t1 are 
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independently distributed with zero mean and covariance Cov(e)= aeW 1, the cova-

riance matrix of the parameters is given by: 

Cov(k) = cf A 

where the matrix A is evaluated at k* and an estimate of the Ge2 is obtained from: 

y2 = S(k*) 
e 

where v are the degrees of freedom (Nm-p). 

(4.21) 

(4.22) 



CHAPTER 5 

PREDICTION OF FUTURE PERFORMANCE WITHIN CERTAIN 

CONFIDENCE INTERVALS 

5.1 Inferences on Well Production Rates 

Let as consider one well that is producing from different layers. The produ-

ction rate from the ith layer is given by the following equations: 

(P BH + H  -  Q01 = WP M0  Pblk) 

B 
0 

Q =WPM(P +H-P 'E+RQ gi gBH block/ g so 

= WP M 
(PBH + H - 1:block) 

B W 

(5.1) 

(5.2) 

(5.3) 

where H is the weilbore head pressure, M, i=oqw is the mobility of oil, gas and water 

and the well productivity index (WP) is given by: 

WP, = 2irKh 

(R 
in R I_.. +F skin 
(  

Therefore the total production rate from the well can written as: 

(5.4) 



42 

Q1 Q.(x,k) = E Q1' i=o,g,w 
i=1 

where NL is the number of the layers that the well is completed at. 

(5.5) 

At any point in time, t, where the state variables, x(t), and the sensitivity 

coefficients, G(t), are available, the sensitivity of the cumulative production rate can 

be readily obtained from solving the following equation: 

dQ IaQC1r G(t) + IaQ1-izj 

and the behaviour of the well production around the k' is simply: 

r r 

Q(k,t) = Q(k ,t) + dQ (k-k *) 
Lak 

(5.6) 

(5.7) 

where the derivatives have been evaluated at k=k' and at time t. Taking variances 

from both sides we obtain: 

2 IQC 
QC COV(k) I  aQ-j (5.8) 

Having the standard error of estimate, we can readily obtain the (l-a)% con-

fidence intervals of Q at time t as: 

where: 

Q (t) ≤ Q(k, t) ≤ Q (t) (5.9) c,mim c,max 

Q (t) = Q (k ,2a t) - t: (5.10) 
c,min 
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Q c,max(t) = Q C(K 5 t) + t:/2 Qc 

and ta/a" is obtained from the t-distribution tables for v=Nm-p degrees of freedom. 

If v is greater than 30, we can simply use 1,96 for t( corresponding to the 95% 

confidence intervals. 

5.2 Overall Reservoir Production 

(5.11) 

While evaluating alternative depletion strategies, the reservoir engineer is 

often interested in the total production rate from all wells rather than individual well 

production. Hence it is often of interest to develop confidence intervals for the total 

production rate. 

Due to the correlation of the individual well production rates through the 

governing reservoir equation of mass flow, we cannot simply sum up the variance 

calculated for each well to obtain the variance of the overall reservoir production rate. 

Instead, we must first compute the total production rate as: 

= (5.12) 

where N is the number of wells and Q1 is the production from the I 1 well. Using 

the equation (22) the total production rate becomes: 

where: 

Q,(k,t) =Q 0(k 5,t) + FdQ iJ 
[dk 

N 

Q,0(k , t) = Q 1(k t) 

k_ks) 
(5.13) 

(5.14) 
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Again taking variances from both sizes of the equation 27 we obtain the variance of 

the total reservoir production rate as: 

tot = F, I 
[ [ dk "i COV(k) : [•d_•I_ 

and the (1-a)% confidence interval of Q, ,., at time t are as follows: 

≤ Q(k, t) & Qc,tot,max(t) 

where: 

Q c,tot,max'0 = Q,(k , t) + ta/2 Qc,tot 

4.\ fl (\ fv 
'c,tot,mhn' ( 'c,tot'k ' ' a/2 Qc,tot 

where c = o, g, w 

5.3 Implementation Considerations 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

It should be noted that the partial derivatives used in the calculation of the 

above noted variances depend on time t and hence, these variances should be com-

puted simultaneously with the state variables and sensitivity coefficients by the 

simulator. The confidence intervals of the cumulative production of each well and the 

total reservoir are calculated by integrating Q,mmi' Q, max . for 1 = 1, Nw, Q, tot mirk 

and QC, tom, c = o, g, w, with respect to time. 

5.4 Multiple Reservoir Descriptions 

With the help of automatic history matching procedure the reservoir engineer 

can arrive at several plausible history matched descriptions of the reservoir. These 
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descriptions may differ in the grid block representation of the reservoir, existence of 

sealing or non-sealing faults, or simply different zonation of constant porosity and 

permeability. 

For each of these reservoir characterizations, we can compute as described 

previously, the expected, the minimum and the maximum total production rates. In 

addition, to each one of these models we could assign a probability of being the 

correct one. This probability should be the result of other geological information 

available at hand as well as the plausibility of the values of the estimated parameters. 

In a nutshell, given the expected, minimum and maximum total oil production 

rates, Q0, tot (r), Q0, t4 mm (r), Qo, tot, max (r) and the prior probability, Pb(r) for the rth model 

to be the correct one, we can estimate the expected overall field production rate from: 

N 

E[Q0,(t)] = E Pb(r) Q(r) o,tot 
r1 

N. 

E Pb(r) Q(r) o,tot,min 
r1 

E[Q0,,(t)] = E Pb(r) Q(t) o,tot,max 
r=1 

(5.19) 

(5.20) 

(5.21) 

where Nm is the number of the alternate models. The above computed min/ max 

limits represent the (1-a)% confidence intervals when all plausible reservoir descrip-

tions are taken into account. As described previously, one can compute the risk level 

a to meet a certain to meet a certain desired production level. 
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5.5 Convergence Testing of the Proposed Algorithm in Chemical Kinetic Mo-

dels. 

A more thorough investigation was attempted in order to ascertain the con-

vergence behaviour of the Gauss-Newton method, using chemical kinetic models. It 

was also of great interest to compare the Gauss-Newton method (Gradient technique), 

with the Annealing method, which can be categorized under the Direct search met-

hods. 

The problems that have been employed were based on typical chemical engi-

neering processes, used by Kalogerakis and Luus (1983). 

5.5.1 Example 1 

This example addresses the pyrolytic dehydrogenation of benzene to diphenyl 

and triphenyl: 

2C6H6 C12H10 + 12 

C6H6 + C2H10 c c18J-J14 + 112 

The two parameter model,initially proposed by Hougen and Watson (1948) 

is described by the following equations: 

dx 
=  dt -r 1 -r2, x1(0)=1 

dx2 r1 
-r2, x.2(0)=O 

-aT -i 

where: 

(5.22) 

(5.23) 
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ri =ki [ 2 2-2x1-] 
- x2  

3k1 

2 - 2x1 - x2 
r2=k2[xi_(1_xi_2x2)  9k2 ] 

(5.24) 

(5.25) 

with x1 and x2 being the pound moles of benzene and diphenyl per pound-mole of 

pure benzene feed. The parameters k1 and k2 are to be obtained by minimizing the 

deviation of the simulated estimates of the system variables, from the experimental 

measurements. The optimum values of parameters k1 and k2 are found to be 355 and 

401 respectively, in only four iterations. Figure 5.1 presents the confidence intervals 

of the simulated variables x1 and x2 for the converged values of the parameters k1 and 

k2. From the graph it is apparent that the upper and the lower boundary of the 

simulated variables approach asymptotically the experimental data curve, as time 

progresses. This kind of behaviour is an indication that the model has reached the 

steady state. It can be also seen that the match between the experimental measure-

ments and the simulated variables is perfect. 

The same problem was solved by using a Simulated Annealing Method. The 

algorithm converged to almost the same values of the parameters k1 and k2(355.1 and 

402), but it was significantly demanding in computation time. Figure 5.2 shows a 

scatter plot of the parameter values estimated by the Annealing method. It also 

illustrates the approximate region of convergence in the k1 - k2 plane. Figure 5.3 

shows the surface plot of the objective function (sum of square of errors) for ap-

proximately the same region of convergence of the parameters. The local minima of 

the objective function could potentially be regions of convergence. In order to over-

come such problems different initial values of the parameters were examined when 

the Gauss-Newton method was used. The latter method converged to the optimum 

values of the parameters from different initial guesses, but the further the starting 

values were from the optimum the more iterations were required, until the con-

vergence criteria were met. 
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5.5.2 Example 2 

An isothermal CSTR with complex reactions used by Lapidus and Luus (1967) 

and Rao and Luus (1972) for optimal control studies is the second example. The five 

parameter model is described by the following equations: 

dx1 

dt 
= k5 - qx1 - k1x1x2 - k4x1x6 x1(0) = 0.1883 (5.26) 

dx2 
-  dt = 7.0 - qx2 - k1x1x2 - 2k2x2x3 , x2(0) = 0.2507 (5.27) 

dx3 
- = 1.75 - qx3 - k2x2x3, x3(0) = 0.0476 
dt 

dx 
= -qx4 + 2k1x1x2 - k3x4x5 , 

dt 

dx5 

dt 

dx6 

dt 

where: 

= -qx5 - 3k2x2x3 - k3x4x5 , 

x4(0) = 0.0899 

x5(0) = 0.1804 

(5.28) 

(5.29) 

(5.30) 

= -qx6 + 2k3x4x5 - k4x1x6 x6(0) = 0.1394 (5.31) 

dx7 
dt = -qx7 - 2k4x1x6 x7(0) = 0.1046 (5.32) 
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q = 8.75 + k5 (5.33) 

The values of the parameters, initially assumed are, k1=17.6, k2=73.O, k3=51.3, 

k4=23.O and k5=6.O. Using these values, synthetic measurements of the observed 

variables were obtained by integrating the above equations. Two study cases were 

examined. In the first all the model variables were matched, while in the second we 

pretended that only four variables were observed (y1 , y, y5 , y6). In the last case the 

variables are presented in Fig. 5.4. 

In the first case the Gauss_Newton converged after 15 iterations to the correct 

values of the parameters. Due to the increased number of the unknown parameters 

the method was more computationally demanding than in the first example. Also the 

more the variables one attempts to match the better the solution he gets, but the 

solution is harder to find. In all the study cases the initial values of the parameters 

where generated by: 

= [i + aE] k, 

where E1=diag(1,1,I,l,l), E2=diag(1,1,1,1,1), E3=diag(1,1,1,1,I), E4=diag(1,1,1,1,1), 

E5=diag(1,1,1,1,1), E6=diag(1,1,1,1,1) and the maximum value of a denotes the region 

of convergence along the chosen direction (given by the E1 terms). Figure 5.5 presents 

the 95% confidence intervals of the matched variables for the first study case. The 

convergence behaviour of the Gauss-Newton method, in the second case study, along 

six different directions is presented in Table 5.1. The results in Table 5.1 are identical 

with the ones presented by Kalogerakis and Luus (1983). Finally the annealing al-

gorithm has also converged to the optimum values of the parameters. All the me-

thods reduced the objective function (sum of squares of errors) to values close to 

O.79x10 °9. 

(5.34) 
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Table 5.1: Region of Convergence of the Gauss-Newton Method - Example # 2 

Direction a Number of iterations 

(1., 1., 1., 1., 1) 15 10 

160 11 

290 16 

310 18 

70 9 

10 9 

5.5.3 Summary 

Two methods of optimization were compared, using simple chemical kinetic 

models. Both methods converged to the optimum values of the parameters for the 

problems tested. The Gauss-Newton method exhibits quadratic convergence and the 

region of convergence appears to be the same as the one found by Kalogerakis and 

Luus (1983). Also the 95% of the confidence intervals of the model variables were 

estimated, using statistical information obtain by the Gauss-Newton method. 

The Simulated Annealing method, as a global optimization method, overcomes 

the limitations of the gradient methods (when the initial guesses of the parameters 

are far from the optimum and regarding the maximum number of the parameters to 

be estimated). Nevertheless the CPU requirements were found to be one order of 

magnitude greater from the one of the Gauss Newton method, even though the 

Simulated Annealing method does not require the computation of the sensitivity 

coefficients. This was expected since the Simulated Annealing searches the whole 

parameter space and the search method is random. Using annealing for providing 

initial estimates of the parameters for the Gauss-Newton method seems to combine 

the advantages of both worlds. Such an approach would be numerically stable and 

computationally efficient. Development of computers with parallel computing capa-
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bifities will make methods, like Simulated Annealing, genetic algorithms, neural 

network and tabu search more attractable 

The confidence on the predicted model variables depends on the number of 

the unknown parameters. The bigger the number the greater the uncertainty of the 

model predictions. 



CHAPTER 6 

APPLICATION TO A 5-SPOT SYSTEM 

6.1 Introduction 

In an attempt to formulate a more realistic matching problem, a finer grid 

block representation of the reservoir (actual model) is used in order to produce 

synthetic data, assuming a certain permeability and porosity distribution. These 

measurements are used by the Automatic History Matching Program to determine 

porosity and permeability distribution of a simplified model of the reservoir (po-

stulated model). This approach enables us to examine the effect of approximating 

porosity and permeability distributions, encountered in an actual reservoir with much 

simpler reservoir models. After determining the values of the parameters, the 95% 

confidence intervals are estimated, using the parameter covariance matrix, Cov(k). 

6.2 Overview of the Actual Model 

This example is similar to the problem described by Jahns (1966). The actual 

model is comprised by a II x 11 x 2 grid block system, which is shown schematically 

in Fig. 6.1. As seen the actual model, is a typical 5-spot pattern and has three zones 

of constant permeability and porosity. The shadowed area represents the quarter 

element of symmetry. This was done in an effort to decrease the computational time. 

The PVT data were taken from a typical Alberta heavy oil. Table 6.1 presents 

the formation volume factors (Bo, Bg, Rs) and the oil and gas viscosity with respect 
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to pressure. The relative permeability curves of the actual model are shown in Figure 

6.2. 

100 ft 

• 1 

zone 1 

100 ft 

zone 2 zone 3 zone 3 zone 2 

,1 

zone 1 

zone 3 zone 2 zone 1 zon 1 zone -2. zone 3 

4O. 5 0.22 0=0.12 

k= 20 md k=40 md k= 15 md 

Figure 6.1 Grid Block Representation and the Zonation Used for the Actual Mo-

del. 
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Table 6.1: PVT Data of the Actual Model. 

Pressure 

psia 

Rs 

scflbbl 

Bo 

bbl/bbl 

1IBg 

scflbbl 

Oil viscosity 

cp 

Gas viscosity 

cp 

14.70 1.4678 1.01867 5.22 79.037 0.00816 

300.00 39.7366 1.03585 114.45 48.627 0.00947 

400.00 54.4297 1.04245 156.57 41.750 0.00996 

500.00 69.4747 1.04921 200.94 36.235 0.01045 

600.00 84.8061 1.05609 247.70 31.762 0.01097 

800.00 116.1640 1.07017 348.93 25.053 0.01203 

1000.0 148.2730 1.08459 460.88 20.349 0.01315 

1200.0 180.9937 1.09929 582.95 16.927 0.01432 

1400.0 214.2314 1.11421 712.48 14.359 0.01553 

1600.0 247.9185 1.12934 844.51 12.380 0.01679 

1800.0 282.0035 1.14465 972.69 10.820 0.01807 

2200.0 351.2130 1.17573 1197.4 8.544 0.02074 

The wells are operated under different operating constraints, like maximum 

bottom hole pressure, minimum oil production rate and maximum injection pressure. 

The injector is completed in the lower layer while the producer in the upper one. This 

completion strategy was adopted in order to maximize the total oil recovery. 

For history matching purposes we assumed that production data were avai-

lable for the first 1096 days (about three years). The actual model was used to ge-

nerate artificial observations (monthly) which were subsequently corrupted by Gaus-

sian noise, simply by adding random generated numbers of small magnitude to the 

model variables. All the assumed models were simulated by employing quarter 
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element of symmetry. 

In reservoir simulation, one of the most difficult numerical problems as-

sociated with the displacements under unfavourable mobility ratios, is the grid orie-

ntation effect. The grid orientation effect results from one of the common assumptions 

in a reservoir simulator, that the flow does not occur diagonally between grid blocks. 

Such a supposition has severe repercussions, since the shape of the displacement 

front is distorted and no longer radial. Several methods have been reported in the 

literature for reducing the grid orientation effect (Settari 1993). In all models consider-

ed in this project the grid orientation effect was assumpted negligible. 

6.3 Overview of the Postulated Models A & B. 

As postulated models we consider a llxllxl reservoir, which is shown in 

Figures 6.3 and 6.4. As seen both models have the same grid block dimensions, but 

different zonation of porosity and permeability distribution. Model A has two zones, 

thus the number of the unknown parameters is four. Model B has three zones and 

therefore six parameters. Both models have only one layer and the PVT data are 

exactly the same as the ones in the actual model. The wells are operated under 

pressure and production constraints and a skin factor has been introduced to the 

producer due to partial penetration. 

By employing the Automatic History Matching for each of the postulated 

models, we were able to estimate the values of the unknown parameters. The con-

verged values of the porosity and the permeability of each zone, for both models, are 

presented in Table 6.2. 

2Mobility ratio is defined as the mobility of the displacing phase divided by that of the displaced 
phase 
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Table 6.2 

Postulated Model A Postulated Model B 

Zone Porosity Permeability (md) Porosity Permeability (md) 

#1 0.23 16.0 0.24 16.6 

#2 0.13 22.1 0.31 28.8 

#3 - - 0.07 16.3 

Converged Values of the Parameters for the Postulated Models. 

The quality of the obtained match for the oil, gas and water production rates 

of the model A is presented in Figure 6.5. 

Once the parameter covariance Cov(k) has been calculated, we can perform 

one pass with the simulator to determine the 95% confidence intervals. The 95% con-

fidence intervals of the Model A for the cumulative oil, gas and water production are 

presented in Figures 6.6 and 6.7 and for the Model B in Figures 6.8 and 6.9. From the 

preceding figures it is evident that the error boundaries of the forecast, for both 

models, deviate considerably from the forecasted cumulative production. These confi-

dence intervals incorporate the uncertainty of all the estimated parameters of the 

postulated models. It was not in our intentions to improve the reservoir characteriza-

tion. In order to reduce the deviation of the minimum and maximum forecasted 

performance, one has to incorporate all the available information about the actual 

model. Data from core analysis, log interpretation, seismic and outcrop studies are 

crucial, not only to suggest good initial estimates of the parameters to be evaluated, 

but to better condition the matrix A in Equation 4.11. One can say, as a rule of thu-

mb, that the greater the number of the parameters to be estimated, the wider the 

bounds between the minimum and maximum of the forecasted production, however 

we can compensate this effect, by using all the available prior information. 
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6.4 Varying the Degree of Implicitness 

An attempt was made to determine the effect of the degree of implicitness on 

the quality of the obtained match and the prediction of the future performance. In 

order to do so, we ran model B, employing the same converged values of the porosi-

ties and the permeabiities, and then we ran the model using the fully implicit and 

the IiMPES formulation. Since IMPES method is unstable for large timesteps, a sta-

bility time was calculated using eq. 2.18. The results of the obtained match for the oil 

production rate are presented in Figure 6.10, varying the degree of implicitness. As 

seen the obtained match is adequate regardless the discretization method used. Minor 

improvements in the performance of the preceding models could have been achieved, 

if the automatic history matching parameters had been changed. However, it was our 

intention to examine the effect of the degree of implicitness on the same model. 

Figure 6.11 presents the maximum boundary of the cumulative oil production, using 

the three methods. It can be seen that the maximum cumulative oil production for the 

fully implicit and the adaptive implicit model are fairly close together, while the 

IMPES model exhibits a big deviation after the first one third of the production. On 

the other hand the minimum oil cumulative production, for all the model, presented 

in Figure 6.12 doesn't exhibit such deviation. Such behaviour using the ]MFES for-

mulation can be attributed to instabilities regarding the calculation of the sensitivity 

coefficients and not the estimation of the pressures and saturations of each grid block. 

It should be noted that the model, which is run using the IMPES formulation does 

not exhibit any instabilities as it is shown in Figure 6.10. 

6.5 Varying the Grid Block Dimensions 

The effect of the grid block dimensions on the prediction of the future produc-

tion was also investigated. Figures 6.13 and 6.14 present a comparison of the oil, gas, 

and water production rates and the 95% confidence intervals of the cumulative oil 

production for a 4x4, 6x6 and lixil grid block system. The converged values porosity 

and permeability were kept constant. The increase of the grid block dimension was 
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approximately 225% for the 6x6 model and 450% for the 4x4 model. Keeping the 

parameters constant the sum of square of errors increased as the dimensions of the 

grid block increased, due to numerical dispersion. Nevertheless the maximum error 

boundaries of the cumulative oil production rate were smaller as we increased the 

grid block dimensions. This was caused by averaging saturations over larger areas 

as we increase the grid block sizes. In fact the earlier breakthrough of the 4x4 model 

suggests that the bigger the grid block dimensions the less accurate the simulation 

is. This effect is called numerical dispersion and causes the displacement front to smear. 
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CHAPTER 7 

APPLICATION TO HETEROGENEOUS RESERVOIRS 

7.1 Reliability of horizontal well performance 

For this case study we have adopted the model, used by Collins et al (1992), 

to examine the performance of horizontal wells in a thin reservoir where both gas 

cusping and water conning are important. In the following sections we first use a 

finer grid representation of the reservoir (the "actual model") in order to produce 

synthetic data (production rates and bottom hole pressures), which are subsequently 

used by the automatic history matching program to estimate the porosity and perme-

ability distribution of the reservoir (postulated models) and eventually determine the 

95% confidence intervals of the future production rates. 

7.1.1 Overview of the Actual Model 

The reservoir is comprised by a 10x12x8 grid system. A schematic diagram of 

the reservoir including grid block dimensions (x, y and z direction) is presented in 

Figure 7.1. The porosity and permeability distribution of the actual model are present-

ed in Table 7.1 and Figure 7.2, The vertical permeabilities are taken equal to one 

tenth of the horizontal ones. As Brigham (1990) has shown this level of anisotropy 

does not necessitate the use of equivalent welibore radius corrected for anisotropy 

(r ) and therefore the effective drainage radius is taken by the Peaceman's formula. 

Four injectors have been used at the corners of the reservoir in order to simulate 

production under an active water drive. All the injectors have been completed at the 

top 80 ft of the bottom layer. 
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The PVT data, the relative permeabilities and the capillary pressures are those 

reported by Collins et al (1992). Figure 7.3 presents the relative permeability curves 

assumed in the Actual Model. 

Table 7.1: Porosity and Permeability Distribution of the Actual Model from Top 
to Bottom. 

Layer Thickness (ft) Porosity Permeability 
(md)* 

1 30 0.087 
1=1 , J=1,2 0.100 

60 
1=1 , J=1,2 72 

2 20 0.097 
I=1,2 J=1,4 0.112 

75 
I=1,2 J=1,4 90 

3 20 0.120 
1=1,3 J=1,6 0.138 

125 
1=1,3 J=L6 150 

4 20 0.200 
1=1,5 J=1,7 0.230 

300 
1=1,5 J=L7 360 

5 20 0.200 
1=1,7 J=1,8 0.230 

300 
1=1,7 J=1,8 360 

6 20 0.150 
1=1,8 J=1,9 0.172 

175 
1=1,8 J=1,9 210 

7 30 0.107 
1=1,9 J=1,10 0.150 

101 
1=1,9 J=1,10 122 

8 100 0.092 
1=1,10 J=1,11 0.106 

51 
1=1,10 J=1,11 62 

me shown values apply to the whole layer expect at the specifies grid bloc 
for which a different value is provided 

The history matching was based on the production and pressure data obtained 

over the first 1250 days of operation. Gaussian noise with zero mean and variance I 

(stb/d, scf/d and psia) was added to the artificial data, in order to generate more 

realistic observations. The production rate by the actual model during the next 4 year 

period was also computed to be compared with the prediction of the history matc-

hing models. 
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Figure 7.3 Relative Permeability Curves of the Actual Model 
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7.1.2 Postulated Models A, B and C 

As postulated models A and B, we have considered a 6x9x6 reservoir shown 

in Figure 7.4. As shown the postulated models are considerably smaller than the 

actual model. This was done in an effort to simulate a more realistic situation. The 

vertical permeabilities are also taken equal to one tenth of the horizontal ones. 

Throughout this case study a zonation approach has been used, with respect to the 

porosity and permeability distribution of the postulated models. 

The three postulated models considered, have the same grid block representa-

tion of the reservoir, however a different zonation for porosities and permeabilities 

is employed. In particular model A assumes a simple zonation for porosities and 

permeabilities, namely, it is comprised of three zones: the first corresponds to layer 

1, the second zone corresponds to layers 2, 3 and 4 and, the third zone corresponds 

to layers 5 and 6. Hence in this case there are three porosities and three horizontal 

permeabilities, i.e., a total of six parameters to be estimated. Model B assumes six 

permeability and porosity zones, each corresponding to a layer of the postulated 

reservoir. Hence Model B requires a total of 12 parameters (six porosities and six 

permeabilities) to be estimated. 

The major assumption in model C is that the reservoir rock is naturally fra-

ctured. The model is considered to be comprised of two superimposed continua, the 

matrix and the fracture system. The reservoir model lies within the validity of Kaze-

mi's model. (Kazemi and Merril 1979, Gilman and Kazemi 1983). In the postulated 

reservoir model both fractures and matrix have non-zero permeability and porosity. 

Each matrix blocks is assumed to be completely surrounded by fractures and cannot 

communicate directly with adjacent grid block. The fracture system is assumed to be 

the only conduit of flow towards the producer. Flow also occurs between the matrix 

and the fracture system. Drainage and imbibition between the matrix and the fra-

ctures are the key factors for the estimation of the total recovery of the model. It is 

well known that such a model is not quite realistic since, the matrix blocks "float" and 

do not touch each other, whereas in reality the fractured media supports substantial 
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rock stresses. Nonetheless, these are typical assumptions used by the majority of dual 

porosity simulators. In this case, there are three unknown porosities and three per-

meabiities for the fracture system and another set of three porosities and permeabili-

ties for the matrix system. 

The whole study of the above models is composed by two steps. Initially we 

employ the automatic history matching capabilities of the simulator in order to arrive 

at the optimum values of the parameters. The estimated porosities and permeabifities 

for the postulated models are listed in Tables 7.2, 7.3 and 7.4. In all cases the algorit-

hm converged to unrealistidily high relative values of porosity. This was expected 

since all the postulated models lack pore volume compared to the actual model. 

Finally, using the values of the estimated parameters and their covariance matrix, we 

estimate the 95% confidence intervals of the history matched production rates as well 

as the future production rates. The results for the model A are shown in Figures 7.5 

and 7.6, for the model B in Figures 7.7 and 7.8 and for the model C in Figures 7.9 

and 7.10. 

Table 7.2: Estimated Porosities and Permeabilities for Model A 

Layer 

Porosities l'ermeabilities 

Estimated 4, Standard 
Dev. (%Y 

Estimated Kh 
(md) 

Standard 
Dev. (%) 

1 0.663 4.92 35.8 2.61 

2,3 &4 0.217 5.27 115 0.38 

5 & 6 0.114 23.2 40.0 0.89 

nor lc.nowiectge assumea: (Y,=O.Ub and 0kh= 

As seen, for all the models the history matched period is practically the 

same. Of course the 95% confidence intervals are larger as the number of the un-

known parameter increases. In addition in Table 7.3, it is shown the effect of the prior 

information on the estimated standard deviation of the parameters which in turn 

have a strong effect on the computed 95% confidence intervals (Figure 7.11). 
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Table 7.3: Estimated Porosities and Permeabilities for Model B 

Layer 

Porosities Permeabilities 

Estimated 4 Standard 
Dcv. (%) 

Estimated Kh 
(md) 

Standard 
Dev. (%) 

I 0.86 4.99 
19.9 

35.8 
16.1 

2 0.186 15.1 
60.1 

115 4.01 
5.12 

3 0.186 11.5 
18.1 

116 1.2 
1.41 

4 0.177 14.2 
55.6 

115 7.5 
8.87 

5 0.0915 31.2 
113 

40.1 23.2 
26.9 

6 0.243 29.4 
114 

39.9 1.07 
2.62 

Ynor J.cnowiectge assumea: a=u.0 and Ykh=U mw 
Prior Knowledge assumed: cy=0.2 and akh=200 (md) 

The quality of the obtained match for the models B and C is demonstrated in 

Figures 7.12 and 713. It can also be seen that as the forecasting time increases sub-

stantially, so does the uncertainty in the estimates. The fact of extrapolation is always 

risky and the deviation increases as we move further away from the history matched 

region. 

Comparing the two postulated models B & C, one can see that even though, 

the estimated 95% error boundaries of the model C are tighter than the ones from 

model B, the deviation of the production as we move further from the history matc-

hed period is becoming significant for the model C, especially for the first 1750 days 

after the history matched region. It can also be seen that the water production rate 

exhibits the greater deviation. This is expected since naturally fractured reservoirs 

exhibit an earlier water breakthrough than a single porosity system. The forecasted 

production rates for the model C, eventually become similar to the ones of the actual 

model. 
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Table 7.4: Estimated Porosities and Permeabiities for the Fractured System and 
Matrix System 

Layer 

Porosities Permeabilities 

Estimated Standard 
Dev. (%) 

Estimated Kh 
(md) 

Standard 
Dev. (%) 

Fractured System 

1 0.005 6.78 262 0.25 

2,3 &4 0.005 6.78 231 0.33 

5 & 6 0.005 6.78 246 0.32 

Matrix System 

1 0.759 19.5 1.5 1.49 

2,3 &4 0.196 40.4 1.5 1.49 

5 & 6 0.116 36.1 1.5 1.49 
nor isnowiecige assumeci: a0=u.s anct kh=UU kM 

Going one step further one can improve the characterization of the reservoir 

by estimating the geometrical attributes of the fractures in postulated model C. 

Finally the intrinsic permeability, the fracture width and the size of the matrix blocks 

can be regarded as independent parameters. The values of the preceding parameters 

are presented in Table 7.5, for different regions of the reservoir. Also, since a decrea-

se of the capillary pressure, results in encouragement of imbibition between the 

matrix and the fracture blocks, one can adjust the water-oil ratios, by considering the 

capillary pressure as a parameter to the model. 

Deciding, which of the above models is the best representation of the " true"  

reservoir is a function of incorporating all the available "soft" data into the postulated 

models. Data resulting from geological and geostatistical studies, log and seismic 

interpretation and well test analysis can be crucial in selecting the best production 

scenario. Comparison of the recovery estimates for the three postulated models is 

presented in Table 7.6 
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Table 7.5 Geometrical Attributes of the Fracture System for the Actual Model. 

Layer Grid Block 

Index (I, J) 

MatrixBlock 

Dimensions (ft) 

Fracture 

Width( m) 

Intrinsic Per-

meability (D) 

K=1, 5, 6 1=1,6 J=l to 9 254545 50 6975 

K=1, 5, 6 1=2,3,4,5 J=1 to 9 44x44x44 88 21360 

K=2, 3, 4 1=1,6 J=1 to 9 14x14x14 28 2282 

K=2, 3, 4 1=2,3,4,5 J=1 to 9 254545 50 6975 

Table 7.6 Comparison of Recovery Estimates Between the Actual and the Three 
Postulated Models 

Recovery Estimates after 2708 days of production 

Actual Model Model A Model B Model C 

Predicted Recovery 32% 31.00% 31.3% 25.0% 

Maximum Recovery - 33.24% 31.9% 31.6% 

Minimum Recovery - 29.39% 30.7% 19.0% 

Overall, as seen from Figures 7.7 to 7.12, we can only make "useful" predi-

ctions for a rather short horizon where all models perform well. Once the forecasting 

time increases substantially, so does the uncertainty in the estimates. The fact that ex-

trapolation is always risky is demonstrated in Figures 7.14 and 7.15 where we com-

pare the expected production rates from the" actual" reservoir with those predicted 

by Model B. As sees, the deviation increases as we move further from the history 

matched region (first 1250 days). 
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7.2 Case Study - Horizontal Shale Barriers 

This case study involves a tilted waterflooded reservoir with shale barriers. 

The goal is to examine the effect of shales on the performance of horizontal wells. 

Again an actual model was used to produce synthetic data (production rates and bot-

tom hole pressures), which are subsequently used by the automatic history matching 

program to estimate the porosity and permeability distribution of much simpler 

postulated reservoir models 

7.2.1 Overview of the Actual Model 

The actual model is an undersaturated reservoir, which is comprised by a 10 

x 12 x 4 grid system. Figure 7.14 present a schematic diagram of the reservoir model 

including the grid block dimensions (x, y and z direction). Table 7.7 presents the 

porosity and the permeability distribution of the actual model, a schematic of which 

is shown in Figure 7.15, for the second and the forth layer. The vertical permeabffities 

are assumed to be equal to the one tenth of the horizontal ones. The reservoir exhibits 

a dip of 0.30%. In the upper part of the structure a horizontal well of 1500m has been 

completed, while in the lower part there are two injectors. This configuration has 

been adopted in order to simulate production under an active water drive and exami-

ne the effect of the shale barriers in the production scheme. The effect of the hydrau-

lics of the horizontal well was assumed, to be negligible. The PVT data and the rela-

tive permeability curves have been taken from the second comparative problem of 

SPE. Figure 7.16 presents the assumed relative permeability curves. Shale layers of 

infinitely small thickness, have been assigned randomly to each of the layers of the 

reservoir, by modifying the vertical transmissibilities. The x and y dimensions of 

these barriers are identical to the ones of the grid blocks of the reservoir, while the 

thickness was assumed to be very small. Neither the producer nor the injectors have 

intercepted any of the preceding layers. 
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Figure 7.15 Schematic Representation of the Porosity and the Permeability Distri-
bution of the Second and Forth Layer of the Actual Model. 
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The history matching has been based on the production and the pressure data 

obtained over the first 1096 days of operation. Again, Gaussian noise was added to 

the artificial data, in order to create more realistic observations. The frequency of the 

shale barriers for all the layers of the actual reservoir was assumed to be constant and 

equal to 36 per reservoir layer.. Figure 7.17 pictures the shale barriers (shaded areas), 

for the first two layers of the reservoir. 

Table 7.7: Porosity and Permeability Distribution of the Actual Model - Horizon-
tal shale barriers (from Top to Bottom). 

Layer Thickness (It) Porosity Permeability (md) 

1 25 0.2 300 
1=1 , J=1,2 0.23 1=1 / J=1,2 360 

2 10 0.12 125 
1=1,2 J=1,4 0.138 1=1,2 J=1,4 150 

3 55 0.097 60 
1=1,3 J=L6 0.12 1=1,3 J=1,6 72 

4 75 0.087 75 
1=1,5 J=1,7 0.10 1=1,5 J=1,7 90 

7.2.2 Postulated Models A & B 

In this case two postulated model have been considered. Their main difference 

is the assumed zonation. Model A has five zones and a total number of parameters 

10, while Model B has only two zones and four parameters. Both models are represe-

nted by a 10 x 12 x 2 grid block system. The assumed zonation of the parameters for 

both models is shown in Figure 7.18. The first two layers of the actual model are 

combined in the first layer of the postulated model. The models are also inclined and 

it is assumed that are free of any impermeable barriers. The goal of this 3-D study is 

to investigate the sweep efficiency of water in a reservoir where there are no perme-

ability barriers and thus determine the effect of the shale barriers on the performance 

of the horizontal well. The converged values of the parameters for model A and B are 

listed in Tables 7.8 and 7.9. 
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A) Shale Represantation of the first layer 
to the surface 

B) Shale Represantation of the second layer 

Figure 7.17 Frequency of the Shale Barriers for the First Two Layers of the Actual 
Reservoir - Plan View. 
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onverged Values of the Parameters of the Postulated Model A. 

Region 

----- 

Estimated 
Porosity 

Standard Dev. 
(%) 

Estimated 
Permeability (md) 

Standard Dev 

zone #1 0.229 9.3 174.78 0.20 

zone #2 0.099 43.4 64.016 17.0 

zone #3 0.012 109.0 58.733 17.4 

zone #4 0.128 15.0 36.173 2.27 

zone #5 0.127 44.15 
— 

33.431 
911(1 14 

11.6 

nor knowledge assum ed 04 U.L a.nu kh—uI 

Table 7.9 Converged Values of the Parameters of the Postulated Model B. 

Region Estimated 
Porosity 

Standard Dev. 
(%) 

Estimated 
Permeability (md) 

Standard Dev 
M. 

zone #1 0.229 1.58 100.00 0.024 

zone #2 0.015 

.1 nor ge assum a4=O.2 and a&2UO md. knowled 

6.88 20.00 

ed  

1.12 

Figure 7.19 and 7.20 show the quality of the obtained match for the above 

values of the parameters, for each postulated model. Figures 7.21 to 7.24 show the 

95% confidence intervals of cumulative oil, gas and water production, for a prediction 

period of six years. From the preceding figures it is apparent that the greater the 

number of the parameters the greater the error boundaries of the cumulative oil, gas 

and water cumulative production. 
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7.3 Application to a reservoir with a sealing fault. 

One of the most common type of heterogeneity in hydrocarbon reservoirs is 

sealing faults. They play a dominant role in the overall production scenario since, 

they isolate different regions of the reservoir, or act as an impediment that retards the 

fluid flow in certain directions. Sealing faults can be detected by well testing, seismic 

exploration and geological surveying. When faults are non-sealing, they can be an 

important conduit for fluid flow. In reservoir simulation no flow boundaries can be 

modeled by either modifying the permeability between two adjacent grid blocks, or 

by using transmissibility multipliers to control the flow from one block to another. 

In this section the effect of a no flow boundary on the reservoir performance 

is examined, using the automatic history matching procedure. Again an actual model 

was used to generate synthetic data, which was subsequently history matched by se-

veral postulated models. The postulated models were based on different assumptions 

regarding the shape of the faults. This approach was followed, in an effort to examine 

the sensitivity on the shape and the extension of the fault on the predicted production 

by these models. 

7.3.1 Overview of the Actual Model 

The schematic diagram of the actual reservoir, including grid block dimen-

sions, is shown in Figure 7.25. The reservoir is represented by a 26x14x2 grid system 

and an impermeable boundary extends halfway across the reservoir partially separa-

ting the producer one (Prod #1) from the water injector (Inj #1). The effect of the 

impermeable boundary is to delay the water breakthrough of the first producer (Prod 

#1), which is located closer to the injector than Prod #2. The model is comprised of 

two layers. The first layer has a thickness of 40 ft, while the second 20 ft. In Figure 

7.23 is also shown the path of the injected water towards the Prod #1. The porosity 

and the permeability distribution is shown in Figure 7.26. The porosity is assumed 

to be the same for the two layers, while the decrease of the horizontal permeability 
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Figure 7.25 Grid block representation of the Actual model. 
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Figure 7.26 Porosity and Permeability Distribution of the Actual Model. 
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between the first and the second layer is approximately 10%. The vertical to horizo-

ntal permeability ratio was assumed constant and equal to 0.1. The modelling of the 

impermeable boundary was accomplished by using transmissibility multipliers bet-

ween adjacent grid blocks. The reservoir is initially undersaturated with a connate 

water saturation. The reservoir fluid properties are identical to those used in the 

Second SPE Comparative, Chappelear et al (1986). The relative permeability 

curves are identical to the ones in Figure 7.16 

Grid refinement techniques where used in all the wells. The producers were 

completed in the first layer and the operating constraints were variable, depending 

on gas-oil ratios, bottom hole pressures and oil production. Prod #2 was shut-in, 

when the watercut exceeded the limit of 95%. This occurred after one year of produ-

ction. However the operating constraints of that well were such, that it would come 

on line again, when its watercut would be smaller than the maximum value. The in-

jector was completed in the second layer and was operated under a constant injection 

rate, subjected to maximum injection pressure. 

For history matching purposes, we assumed that the production data were 

available for the first 1430 days (4 years). Figure 7.27 shows the production perfor-

mance of the two wells of the actual model. 

7.3.2 Postulated Models A, B and C 

Numerous postulated models without any impermeable barriers were tested, 

without being able to obtaining an acceptable history match. The reason was that 

both producers were exhibiting early water breakthrough. Postponement of the water 

breakthourgh was achievable either by altering the permeability and the porosity in 

the inter-well zones, or by modifying the oil-water relative permeability data. Chang-

ing the values of the permeability and the porosity resulted in very small values of 

porosity and permeability, even in the zones where wells exist, and hypothetically we 

have a better knowledge of the distribution of the parameters (core samples, log 
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analysis, pressure transient tests). Figures 7.27 shows that Prod #1 does not produce 

any water for the first 550 days, even though it is located closer to the injector, com-

pared to prod #2. Prod #2 was shut in after 365 days of production due to high 

watercut (95%). Therefore one has to assume that there has to be some sort of impedi-

ment to flow between Prod#1 and Inj#1 which makes water to follow a more tortuous 

path. All the postulated models considered in this section are based on different 

assumptions on the shape and the extend of the impermeable barriers, which are 

implemented in these models. 

Breakthrough times, watercuts and whether the producer #2 will come back 

on line were considered to be the most crucial parameters in accepting a postulated 

model. The operating constraints of the producers, for all the postulated models, 

consisted of constant monitoring of the watercut and production under maximum oil 

rate and minimum bottom hole pressure. 

The postulated model A was represented by a 7x4x1 grid block model. A 

comparison of the postulated model A with the actual reservoir is shown in Figure 

7.28, where the first is superimposed on the second. As seen the postulated model is 

significantly smaller then the actual reservoir. This was done in an effort to simulate 

a more realistic situation. In the preceding figure it is also shown the four zones of 

porosity and permeability and the shape and extension of the presumed fault. Hence, 

there are eight parameters to be estimated and their converged values are presented 

in Table 7.10. The vertical permeabilities of each zone, were also taken as one tenth 

of the horizontal ones. 

Table 7.10 Estimated Porosities and Permeabilities for Postulated Model A. 

Zone Estimated 
Porosity 

Standard 
Dev. (%) 

Estimated Perme- 
ability (md) 

Standard 
Dcv (%) 

zone #1 0.047 26.90 1360.00 0.11 

zone #2 0.292 5.90 9950.00 0.09 

zone #3 0.035 12.70 95.00 0.50 

zone #4 0.935 2.50 450.00 0.41 
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Figure 7.28 Comparison of the Postulated Model A with the Actual Reservoir, 
where the First is Superimposed on the Second. 
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In postulated model B we have assumed the same grid block representation 

but different zonation, shape and extension of the impermeable barrier as that of 

postulated model A. Figure 7.29 shows the model B superimposed on the actual 

model and the zonation used. Each zone has two parameters, one porosity and one 

permeability and thus model B has ten parameters totally. Table 7.11 lists the con-

verged values of the parameters in this model. 

Table 7.11 Estimated Porosities and Permeabilities for Postulated Model B. 

Zone Estimated 
Porosity 

Standard 
Dev. (%) 

Estimated Perme- 
ability (md) 

Standard 
Dcv (%) 

zone #1 0.073 23.80 2000.00 0.05 

zone #2 0.047 28.90 19.00 0.38 

zone #3 0.913 5.67 622.00 1.37 

zone #4 0.226 46.32 350.00 2.26 

zone #5 0.294 13.77 47.00 1.11 

Model C is based on the Model B. The only difference is that the fault seals 

the upper left part of the reservoir from the lower left one. A grid block representa-

tion of model C is shown in Figure 7.30. The converged values of the parameter of 

this model are listed in Table 7.12. 

Table 7.12 Estimated Porosities and Permeabilities for Postulated Model C. 

Zone Estimated 
Porosity 

Standard 
Dcv. (%) 

Estimated Perme- 
ability (md) 

Standard 
Dcv (%) 

zone #1 0.074 13.35 700.00 0.31 

zone #2 0.046 22.37 25.00 0.44 

zone #3 0.938 5.24 618.00 0.98 

zone #4 0.241 46.96 9000.00 0.21 

zone #5 0.303 19.89 47.212 1.18 
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Figure 7.30 Comparison of the Postulated Model C Superimposed on the Actual 
Model. The Arrows Indicated the Flow Path of the Injected Water. 
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As seen from the tables 7.10 to 7.12, porosity and permeability values vary 

significantly for all the models. High values of porosity are expected, since all the 

postulated models lack in pore volume compared to the actual model. The high 

values of permeability are mostly related to the assumed shape of the fault in each 

postulated model. Thus the injected water in model A has to follow a longer path 

compared to the actual model and in order to arrive to Prod #1 after 600 days of pro-

duction the permeability of the zones #1 and #2 has to be high. If reservoir characte-

rization was the primary objective, the first step would be the match of the original 

oil in place (0011') between the actual and the postulated models. All the converged 

values of the parameters are relative values and they incorporate information re-

garding the assumed complexity of the postulated models. 

The quality of the obtained match for the preceding models is presented in 

Figures 7.31 to 7.33. As seen, the behaviour of all postulated models for the history 

matching period is practically the same, regardless of the assumptions made about 

the extension and the shape of the sealing fault. 

The 95% confidence intervals of the total cumulative production of oil, gas and 

water are shown in Figures 7.34 to 7.36. The predictions were made for six years after 

the end of the history matching period (four years). From the preceding figures, it is 

obvious that the maximum boundary of the cumulative oil, gas and water production 

for model C appears to exhibit the greatest deviation from the cumulative production 

of the actual model. This was considered be an indication that the producer #1 is not 

completely isolated from the injector, by the impermeable barrier. Nevertheless the 

confidence intervals of all the models are fairly tight for a short period of time after 

the history matching (approximately two years). Figures 7.37 to 7.39 present a com-

parison of the forecasted oil, gas and water production rates of the postulated models, 

with the ones of the actual model. All the models predicted perfectly the actual 

performance of the producer #1 and producer #2 never came back on line. 
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CHAPTER 8 

CONCLUSIONS 

A new extrapolation model has been developed, in reservoir characterization, 

using the Gauss-Newton method. A reservoir simulator (DRS)3 has been modified to 

account for automatic history matching, and prediction of future reservoir perfor-

mance within certain confidence intervals (95%). The following conclusions can be 

drawn when using this procedure: 

1. The Gauss-Newton and the simulated Annealing method were tested on 

chemical kinetic models. Both algorithms converged to the global minimum. Simu-

lated Annealing was found to be insensitive on the initial estimates of the parameters 

and their maximum number and finally ideal when there is no reliable prior informa-

tion regarding the parameter distribution, since it is a global optimization method. 

Also adapting the simulating Annealing method into a reservoir simulator is an easy 

task, since it does not require the computation of the sensitivity coefficients. The 

major drawback of the method was found to be the tremendous CPU requirements, 

which probably makes is intractable for most practical cases. Combining the two 

methods, simulated Annealing for investigating the whole range of the parameters 

and suggesting their best values as initial estimates to the Gauss-Newton method, 

seems to be a promising alternative. 

2. The selection of the initial estimates of the parameters and the reservoir zona-

tion is very important and rests solely at the engineer's discretion. Intuition and 

experience seem to be the only weapons that one has. 

3. In some cases the algorithm converged in unrealistic values of porosity and 

permeability. This is expected, since all the postulated models were purposely chosen 

to be considerably smaller than the actual ones. On the other hand, the high values 

of permeability, are mostly related oi the assumed complexity of the postulated 

'DRS is a commercial black oil, three phase, three dimensional reservoir simulator 
(SIMTECH Consulting Services Ltd.) 
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models. It was not our intention to improve the reservoir characterization of the 

postulated models. We simply refer to the problem of non-uniqueness of the reservoir 

simulation. Even if the actual model varies considerably from the postulated ones, we 

can often obtain a perfectly acceptable history match and examine the future be-

haviour of these models under different depletion scenarios. Using a zonation ap-

proach we can arrive to simple reservoir descriptions that duplicate the actual reser-

voir performance. Of course the number of the parameters in a real test case would 

be greater and therefore the uncertainty of the forecast would increase. In such cases 

the importance of any prior information is becoming significant for "conditioning" the 

matrix A of the Equation (4.11). Additionally the sweep efficiency varies for each 

model since it strongly depends on the reservoir heterogeneity, anisotropy, the mobi-

lity of the displaced fluids, the physical arrangement of the injection and the produc-

tion wells, the type of the rock matrix in which oil, gas and water exists. 

4. It was found that the error boundaries, for the same set of porosities and 

permeabffities were gradually increased as the level of implicitness was decreased. 

Thus, using the IMPES formulation the maximum confidence interval of the cumula-

tive production exhibits the greatest deviation due to instabilities in estimating the 

sensitivity coefficients 

5. In all the test cases the algorithm converged to the "effective" values of the 

parameters. The converged values strongly depend on the presumed zonation. 

6. The calculated confidence intervals, around the expected reservoir behaviour, 

incorporate all the uncertainty of the estimated parameters. As a rule of thump, one 

can say that the larger the number of the estimated parameters the greater the estima-

ted confidence intervals. Overall future predictions can be made for a rather short 

horizon, where the postulated models perform equally well. Once the forecasted 

period increases substantially, so does the uncertainty in the estimates. After all, 

extrapolation is always risky. 

7. The time required for the engineer to obtain an acceptable match and the 

predictions of the future performance of a model, is relatively short. Thus, one can 

spend more time evaluating the performance of the reservoir under different deple-

tion strategies, instead of struggling to get one match and eventually only one fore-

cast. 
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APPENDIX A' 

A.1 Detailed Description of the Dual Porosity Model Used. 

In order to determine whether Kazemi's model is valid for the reservoir 

examined in this part, one has to check the validity range of the above model using 

the following equations: 

= k r2 > 1.OxlOKi  

where: : the shape factor (eq A.5) 

km: permeability of the matrix 

r: the weilbore radius 

Kf: effective permeability 

k > O.lmd 
M 

(A.4) 

According to the above equations, one can conclude that the considered 

reservoir lies within the validity range of the Kazemi's model (worst case scenario 

2=3.666x1O4 and the converged value of km=1.5 md). 

The expressions used in this part for the calculation of the fracture and matrix 

parameters are based on a common assumption that the density of fracturing is suffi-

cient such that average "continuum" properties exist for volume elements, which are 

large compared to discrete fracture features. Then the system is represented by two 

superimposed continuous media, fractures and matrix. In the model that was con-

sidered in this study both fractures and matrix have non-zero porosity and permeabi-

lity. Flow takes place in the fracture network, and between fracture and matrix. Each 

matrix block is assumed to be completely surrounded by fractures and cannot com-

municate directly with adjacent matrix blocks. Obviously, such a model is not quite 

realistic because the matrix blocks "float" and do not touch, while in reality the frac-
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hired media supports substantial rock stresses. However, such kind of model has 

been the basis for majority of dual porosity simulators. 

Kazemi's model was derived from Warren Root theory. The waterflood be-

havior is analogous to Warren - Root pressure transient theory. That is, as the matrix 

and the fracture permeability approach each other the waterflood behaviour became 

similar to a single porosity system. This is similar to a pressure build up or draw-

down test in Warren and Root theory. 

The total effective permeability of a fractured reservoir is calculated from the 

following equation: 

K L+Ko 
K - TM F 
T L 

where: KT is the total effective permeability of the system 

KM is the permeability of the matrix (md) 

K. is the permeability of the fracture (md) 

o is the width of the fracture (microns)and 

L is the size of the matrix cubic blocks (ft) 

(A.5) 

From the equation (A.2) one can calculate the product of the permeability of 

the fracture times the width of the fracture. At the same time assuming parallel 

smooth plates and neglecting turbulence and roughness of the fracture walls we can 

use Poiselle's law: 

KF = 54 * 109 d (A.6) 

The fracture porosity (ØF) is calculated from the following equation: 

0 
F 10 (2-L10) 

where: OF: porosity of the fracture (%) 

co: width of the fracture (microns) 

L: length of the matrix blocks (in) 

(A.7) 
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The shape factor based on Kazemi's model is given from the following equa-

tion: 

f 
1 1 1 

y=4 

L2 L2 L2 
S X  Y Z 

I 

I' 
a2 

(A.8) 

Figure A.1 Schematic Representation of the Matrix and theFracture Continuum. 

where: L, L, L are the dimensions of the matrix blocks according to Fig. A.1 

The existing Black Oil Model simulator (DRS) can be set up to account for 

dual porosity model in two ways: 

Using the available special connection option. Special Connections are 

responsible for "superimposing" the grid-blocks of the matrix system 

with the equivalent grid-blocks of the fracture network, by specifying 

non-standard transmissibility multipliers. 
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By placing the fracture system on top of the matrix system and trying 

to get rid of the gravitational effects, that come from a total height 

difference of 420ft. 

In the special connection case the model consisted of two different regions, 

fractures and matrix. Each region had 12x9x6 grid blocks and they were placed side 

by side. Therefore the total number of grid blocks of the whole reservoir was 24x18x6. 

The wells were placed at the fracture system in order to gain a higher productivity 

index, due to the high permeability of this region. The non-standard transmissibility 

multipliers for the x-direction are calculated by the following equation: 

o (AX yAz) kkd 

TMULT=! = 

TX Ày Az k k,.1 

Ax IIIB1 

- aAx2 (A.9) 

In the layered reservoir case the two different regions were connected 

vertically. No fluid flow was permitted inside the matrix layer and the transmis-

sibility multiplier for transfer of fluid among the fracture-matrix system is calculated 

by the following equation: 

TZ = a Az2 (A.1O) 

It should also be noted that the relative permeability to oil and water curves 

in the fractures cover the full spectrum of saturations from 0 to 1, and they are straig-

ht lines. The matrix capillary pressure is always much greater than the fracture capil-

lary pressure, which is always zero. 


