
THE UNIVERSITY OF CALGARY

Implementation of the Functional Architecture

TIM

BY

Michael Johann Hermann

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

December, 1891

© Michael Johann Hermann 1991

1+1
National Library 6ib1io(hèque nationale
of Canada du Canada

Canadian Theses Service Service des thêes cariadiennes

Ottawa. Canada
KIAON4

The author has granted an irrevocable non-
exclusive licence allowing the National Library
of Canada to reproduce, loan, distribute or sell
copies of his/her thesis by any means and in
any form or format, making this thesis available
to interested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor
substantial extracts from it may be printed or
otherwise reproduced without his/her per-
mission.

Cmacta19+1

L'auteur a accordé une licence irrevocable et-
non exclusive permettant 'a (a Biblióthéque
nationale du Canada de reproduire, préter,
distribuer ou vendre des copies de sa these
de quelque manière et sous quelque forme
que ce soit pour mettre des exemplaires de
cette these a (a disposition des personnes
intéressées.

L'auteur conserve (a propriété du droit d'auteur
qui protege sa these. Ni (a these ni des extzaits
substantiels de ceHeci ne doivent être
imprimés ou autrement reproduits sans son
autorisation.

0-315-75214-9

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "Implementation of the Functional

Architecture TIM", submitted by Michael Johann Hermann in partial fulfillment of

the requirements for the degree of Master of Science.

Dr. G. M. Birtwistle, Supervisor
Department of Computer Science

Date Decerriber 13, 1991

11

A&
D(J. Kendall
Department of Computer Science

Dr. P. C. K. Kwok
Department of Computer Science

q. c<,i

Dr. P. Prusinkiewicz
Department of Computer Science

Dr. L. E. Turner, External Examiner

Department of Electrical Engineering

Abstract

Functional languages have enjoyed increasing popularity over the last few years, due

to their advantages from the viewpoint of user, verifier, and implementer. There

has likewise been an increase in the demand for special purpose architectures to

efficiently execute them.

The abstract functional architecture TIM (Three Instruction Machine) is a devel-

opmental culmination in both sides of the dichotomy formed by notational represen-

tation for functional languages and procedural evaluation for functional architecture.

TIM was proposed by Jon Fairbairn and Stuart Wray at Cambridge University, and

is a compact and efficient frame-based graph reduction processor which executes

SuperCombinators.

This thesis is an attempt to give TIM a concrete architectural form, with partic-

ular emphasis on the general 'design issues and methods of attack to be addressed in

designing a functional architecture for practical application. Improvements in speed,

efficiency, and implementability of the abstract machine are made, via changes to

the organisation of memory, the structure of physical objects, and the contents of

the instruction set.

Finally, I make some arguments as to the accessibility of the architecture, its

merits as a research tool and a representative of a new sub-class of functional ma-

chine.

111

Acknowledgements

I would like to express my deepest appreciation to my supervisor Graham Birtwistle,

whose unfailing help and encouragement made this degree possible. Many students

have enjoyed the benefit of your support and genuine concern, Graham, and I'm

grateful for these and your eternal patience and enthusiasm.

A special thanks to my love Patricia Garner, who has supported me during the

most difficult times and helped me see the light at the end of the tunnel. Your turn

next, Hon.

Thanks to my parents, Gail and Kip, who respectively kept me there and got me

there in the first place. A truly bright person is Cindy, who has always cared and

will always 'deny it. The most capable guy I know is Arnold, who has taught me far

more about life and people than I can gauge (he also cooks a mean brunch!). And,

Paula is a true optimist who showed me the need for a balanced outlook.

Jon Fairbairn and Stuart Wray created the base on which this thesis is built;

for this and their early help, I thank them. A lot of folks in the lab have made it

interesting and enjoyable: Todd Simpson, Glenn Stone, Inder Dhingra, and Brian

Graham. In particular, thanks to Cameron Patterson (an insightful, determined and

thoroughly nice guy), for the opportunity to work on the ultimate sieve machine.

Sieving über alles! Konrad Slind has been an acerbic wit, and the source of insightful

commentary on my ideas and good common sense (sometimes we even talked about

work). Simon Williams is an expert without par in VLSI, hardware design, TjX

and more importantly motorcycles, who initiated me to the finer points of zooming.

Thanks to Dan Marken for the early start in hardware, and Mrs. Olive Corriveau

for a warm hearth and home.

Last but not least are Masoud Sahebkar, Winslowe Lacesso (hey, Windows!),

Ian Olthof, David Pauli and Anja Haman who have been (variously) compatriots,

co-conspirators, guides, rogues, confidantes, and always friends.

Financial support for this work was provided by the Alberta Microelectronic Cen-

ter, the National Sciences and Engineering Research Council of Canada and the

University of Calgary.

iv

Contents

Approval Page ii

Abstract iii

Acknowledgements iv

List of Tables viii

List of Figures fl x

1 Introduction 1
1.1 Functional Languages 1
1.2 Functional Architectures 4
1.3 The Three Instruction Machine 7
1.4 Contributions of the thesis 8
1.5 Structure of this thesis 9

2 Functional Programming 11
2.1 The Lambda-calculus 12

2.1.1 The Pure .\-calculus 13
2.1.2 Practical Aspects 14
2.1.3 Theoretical Implications 16
2.1.4 Strengths and Limitations 18

2.2 Combinatory Logic 20
2.2.1 Strengths and Limitations 23

2.3 Lazy Evaluation, Sharing, Strictness Analysis 24
2.3.1 Lazy Evaluation and Sharing 24
2.3.2 Strictness Analysis 25

2.4 Supercombinators 26
2.4.1 Strengths and Limitations 29

2.5 Functional Language Summary 31

3 The Three Instruction Machine 33
3.1 Functional Architecture 33

3.1.1 Environments and the SECD Machine 34
3.1.2 Graph reduction and the Combinator Machine 39

v

3.1.3 Summary 42
3.2 Three Instruction Machine 43

3.2.1 The Three Instruction Rationale 44
3.2.2 Architectural blocks 46

Code memory 46
Frame Heap 47
System stack 50

3.2.3 The Basic Instruction Set 51
3.2.4 TIM code compilation 53
3.2.5 Ground Types and Operations 55

ALU instructions 56
3.2.6 Implementing Laziness 56
3.2.7 Summary 59

4 Structural Optimisations 62
4.1 Optimisations to TIM 63
4.2 Design Philosophy 65
4.3 An Alternative TAKE 71
4.4 A Stack foi Marks 74
4.5 Context Changes and Closures 77
4.6 Conglomerate Frames 79
4.7 Conglomerate Frames and Tandem Mark Stack 80
4.8 Summary 82

5 Secondary Optimisations 84
5.1 Frame Design 84

5.1.1 The Frame Control Word 85
5.1.2 Self-Contained Closure Frames 87

5.2 Marks and Updating 92
5.3 Objects and Direct Instructions 95

5.3.1 Reimplementing ENTER ARG instructions 95
5.3.2 Eliminating the SELF Instruction 99

5.4 Instruction Format Design 102
5.5 Summary 106

6 Summary and Conclusions 107
6.1 Contributions of the Thesis 107
6.2 Future Work 109
6.3 Final Comments 111

vi

• Bibliography 113

Appendix A Simulation Tool: TIMSIM 122
A.1 Application to the TIM 122
A.2 TIMSIM Package Characteristics 124
A.3 Structure of TIMSIM 126

A.3.1 Resource: N u m 127
A.3.2 Resource: Signal 129
A.3.3 Entity: ComLink 130
A.3.4 Entity: Logic 133
A.3.5 Trace Facility 135
A.3.6 User Interface 136

Appendix B Simulation Environment 138

Vii

List of Tables

2.1 Size Complexity of Combinatory Logic 23

3.1 Translation semantics for TIM code 54
3.2 TIM built-in operators 56
3.3 TIM instruction set 60

4.1 Breakdown of Memory Accesses by Operation 68
4.2 Overview of Material 71
4.3 New TAKE and ALLOC costs 73
4.4 Worst-case heap consumption with/out conglomerate suspensions 80
4.5 Memory Usage for Conglomerate Frames and Mark Stack 81

5.1 Overview of Material 85
5.2 The Standard TAKE Instruction 88
5.3 New RESTORE and TAKE instructions 91
5.4 Sources of "Direct" Instructions 95

A.1 class Num interface 129
A.2 class Signal interface 129
A.3 Signal Resolution Rules 131
A.4 class ComLink interface 131
A.5 class Logic interface 134
A.6 class TFlag 136
A.7 Varieties of Trace Flags 136
A.8 TIMSIM library package hierarchy 137

viii

List of Figures

1.1 The simplest TIM program 8

2.1 Pure A-calculus BNF 13
2.2 A-calculus conversions 13
2.3 A-calculus if-then-else 14
2.4 Impure A-calculus partial BNF 15
2.5a Developing a non-recursive definition 15
2.5b Fixed-point equivalence 16
2.5c Evaluation under Y fixed-point operator 16
2.6 Name-Capture 19
2.7 Combinatory Logic BNF 20
2.8 Basic Combinators and A-calculus equivalents 21
2.9 SKI A-abstraction rules 22
2.10 Example of SKI abstraction 22
2.11 Example of Lazy Evaluation 24
2.12 Supercombinator definition 27
2.13 Effect of parameter ordering on produced supercombinators 29

3.1 SECD registers 35
3.2 The SECD environment 35
3.3a Function call instructions in SECD 36
3.3b Function preparation and application in SECD 36
3.4 Recursive function preparation SECD 38
3.5 The Graph Representation 40
3.6 Graph Reduction 40
3.7 Graph Reduction with Sharing 41
3.8 Argument graphs built with code sequences 47
3.9 Standard graph reduction 48
3.10 Context frames are graph node conglomerates 49
3.11 The frame scheme 50
3.12 An example using Turner Combinators 53
3.13 Supercombinator and TIM code 54
3.14 Example TIM code translation 55
3.15 Ground Type Operator Code 57
3.16 Update marker in the stack 58

ix

4.1 Basic Logical Memory Structure of TIM 70
4.2 The reimplementation of TAKE 72
4.3 Mark Storage Methods 75

5.la Instruction-level frame structure 86
5.lb Frame with FCW 86
5.2 Suspension restart vectors 89

5.3 FCW for self-contained frames 89
5.4 Proposed test for degenerate marks 94
5.5 Options for tag bit placement 99
5.6 Forms of the machine value object (SELF) 101
5.7 The TIM instructions 102
5.8 Main TIM instruction formats and opcodes 104
5.9 TIM ALU instruction opcodes 105

A.1 class Num 128
A.2 class Signal 130
A.3 class ComLink 132
A.4 Sample Logic block 134
A.5 class Logic 135
A.6 class TFIag 135

B.1 Overview of Environment 139
B.2 Version control information 143

x

Chapter 1

Introduction

In this chapter I introduce functional programming languages, outlining the main

advantages and drawbacks these have over other programming language styles. From

this I explain the need for machines specialised to execute functional languages, and

describe the salient features of such functional architectures. The focus of this thesis

is the Three Instruction Machine (TIM), of which I give a brief overview, and state

the goals of my thesis work on TIM. I conclude with a list of the contributions of

this work, and an outline of the thesis text.

1.1 Functional Languages

Functional programming. languages derive their name from the basic operation in-

trinsic to their structure, that of applying a function to a single argument to produce

a result:

fa = r

(r may itself be another function). Functional programs consist entirely of such

function definitions, which execute exclusively through the application of one to

another.

The fundamental difference between functional languages and their ancestors in

computer science arises from their mathematical nature: they contain no variables.

While imperative languages such as Pascal and C use variables to maintain state

through assignment, applicative languages maintain state only as local arguments

to the currently executing function. Furthermore, the content of this state remains

invariant, and is valid, only during the lifetime of the function call.

A more subtle distinction of functional languages is their strong basis in the

1

CHAPTER 1. INTRODUCTION 2

mathematical theory of computation. As opposed to the post facto derived math-

ematical basis of imperative languages, applicative languages have evolved from an

abstract notation or semantics called A-calculus. This has bestowed them with some

surprising and very beneficial characteristics:

Convenience The applicative programming environment is very simple to use. The

absence of variables removes the effort normally required to define the type and

scoping of storage. Functions are "first-class" entities, which may be treated

as arguments, produced as results, and applied to other functions. This is a

powerful tool that makes programming more intuitive, and makes programs

more succinct and expressive. Conventional programming structures such as

lists and abstract data types still exist. The result is a class of languages

with clearer semantics, fewer details to look at, more compact and expressive

operations, and shorter development times.

Typing and polymorphism These form a hierarchy of compile-time techniques

that provide an additional convenience feature to the programmer. Type refers

to the class of information represented, ranging from base types (ie. integer)

to conglomerate types specifying functions or abstract data structures. The

techniques range from simple type checking based on user-specified type infor-

mation, to type inference in which the compiler automatically resolves all type

information itself. Polymorphic types incorporate "wild cards" which match

other types, allowing the re-use of single function definitions on multiple types.

By rigorously enforcing rules of function application and usage, the compiler

quickly flags "type clash" errors, while simultaneously guaranteeing that no

(often costly) run-time type errors can occur.

Nondeterminism and optimised execution This encompasses a number of ar-

eas such as lazy evaluation, strictness, and sharing analysis. "Laziness" or non-

determinism allows computations to be postponed until absolutely necessary,

preventing unnecessary work and providing bonuses such as infinite structures

and partial evaluations. To avoid redundant work, each computation result

CHAPTER 1. INTRODUCTION 3

may be shared amongst all references to that work. Strictness analysis deter-

mines which work must be done, so that the extra overhead of laziness and

sharing can be avoided where unnecessary, and work may be more optimally

scheduled.

Correctness Software verification is assuming growing importance, but faces dif-

ficult complexity problems. Imperative languages suffer from "side-effects"

(unforeseen state changes amongst sections of code) and semantic weaknesses

that complicate program proofs. In contrast, the lack of variables and applica-

tive semantics of functional languages make them attractive to the verification

community.

Simple parallelism The underlying)-calculus notation provides some character-

istics, illustrated by the lack of "side-effects", which allow for arbitrary exe-

cution mechanisms (including n-ary parallelism), and arbitrary partitioning of

any functional program. This makes functional languages very attractive for

multi-processing environments.

Functional languages have left their infancy as a de facto standard set of features and

capabilities have emerged. Languages such as Miranda [Tur85], Hope [BMS8O] and

SML [HMM86, Har86] are far better than their predecessors. Functional languages

are still not as competitive as they could be with their imperative counterparts, partly

from a lack of exposure in the user community. Improvements in the clarity and

versatility of semantic structures, provision of larger standard function libraries, and

educating users on-the functional programming style will encourage expanded use of

functional languages. However, the largest problem is that of providing comparable

compiler efficiency and execution performance.

The advantages lof functional languages don't come for free. On a first approxi-

mation, the use of local state, and the applicative style itself make functional pro-

gramming more expensive in terms of memory usage and the degree of "copying"

(of local state) that is required. In the search for performance, software has tradi-

tionally migrated to hardware; with the settling of functional languages, and their

CHAPTER 1. INTRODUCTION 4

unique execution requirements, the design of special-purpose functional architectures

is a logical undertaking.

1.2 Functional Architectures

The major business of any architecture is the movement and storage of data. Hard-

ware is simply a crystallisation of algorithm, and a physical machine must reflect

the execution behaviour and storage use patterns of the source language which it

evaluates. The patterning of physical structure after logical structure is thus central

to the success of any architecture.

Backus [Bac78] makes this observation with regard to "conventional" architec-

ture, grouping Von Neumann and Harvard style machines together as variants on

the familiar Central Processing Unit (CPU)-.Bus—Memory theme. On this alone the

argument would fail, as this structure is common to nearly all computer architec-

tures. However, Backus continues by arguing that the imperative programming style

on which these machines is based is deeply ingrained in their design. The seman-

tics of imperative programming naturally engender the use of such simple things as

single-word wide instruction streams, user-accessible general purpose registers, and

so forth. Further, this natural reflection of structure forever colours the character

and capabilities of these architectures towards the service of the imperative style.

It follows that functional languages should have their own native style of archi-

tecture, which would execute them with greater utility. In many cases, a target

non-native architecture can provide unnecessary obstacles to the efficient execution

of a functional language. These obstacles frequently manifest themselves in instruc-

tions that require specialised sequences of non-native operations or unique logical

structures; a good illustration is tag manipulation. Thus even a simple implemen-

tation of a functional architecture will be better than a non-native machine, if the

basic needs of functional languages are being served, and the transistor budget is

not being wasted on unnecessary functions.

What are these basic needs? The logical characteristics of functional languages

indicate the physical form that a generic native functional architecture should take.

CHAPTER 1. INTRODUCTION 5

There are a number of observations from which the general nature of a functional

architecture is derived:

Applicative style The functional style encourages short-bodied and short-lived

functions. The resulting sustained high rate of function calls predicts a need

for rapid context changes, with attendant copying operations and movement

of logical entities. This predicates large amounts of storage with fast access

times, and extensive CPU support for executing function calls.

Allocatable store The transient nature of most storage usage, and the additional

storage requirements for laziness and sharing, means there must be at least one

(and perhaps several) groups of allocatable logical storage elements. There will

certainly be firmware/hardware support for allocation and garbage collection,

including special control and storage use information. In some instances, the

use of multiple physical memories may be beneficial.

Simple instruction sets Due to the proximity of functional languages to their

common ancestor A-calculus there is a small "semantic gap" [Mye78] between

language and machine. Programs typically compile into a handful of basic

operations, where the operations themselves usually require only a 0- or 1-

operand specification (typically a constant or a reference to memory). Thus,

the instruction set of the CPU will be small and limited in scope, there will be

no user-reachable general purpose registers, and inost details of the CPU will

be hidden from the user.

Complex internal structure In contrast with the last point, while instruction

decoding may be simplified, the instructions themselves often represent highly

complex operations. When using techniques such as lazy evaluation and shar-

ing, many internal tests and the movement and manipulation of much informa-

tion is necessary, especially for those instructions controlling context changes.

Such instructions will naturally require many clock cycles, the use of internal

book-keeping registers, and a correspondingly more complex control unit.

CHAPTER 1. INTRODUCTION 6

Limited locality In comparison to their imperative cousins, we can expect ap-

plicative languages to exhibit much different memory reference patterns. Spa-

tial and temporal locality will be affected by the rapid function calls, arguing

against the utility of hardware accelerators (such as caching) as they are com-

monly used in conventional architecture. Improving memory performance will

present new challenges to the hardware designer.

Hooks for parallelism With the isolation of functions from each other, parallel

execution is made more tenable by the lack of code interdependence. While the

scheduling of instructions on a fine-grained multiple execution unit processor

would still retain about the same difficulty, breaking the program into function-

sized chunks or larger for scheduling on a coarse-grained multiprocessor is much

easier.

To summarise, the semantics of functional languages places special emphasis

on the quantity and structure of storage, the uses to which it is put, and the

efficient movement of data within and between the CPU and memory. Judging

by the large numbers of abstract functional architectures that have been designed

[Hen8O, CGMN8O, Tur84, Car84, Joh87, CCM87, Tra85], these lessons have not been

lost on the functional programming community. A few of these abstract machines

have also been built [Sto85, Sch86, Ram86, GWB89].

A full blown implementation of a functional architecture would be able to make

use of the same performance enhancements that have been used in other architec-

tures for years. A speed-optimised machine design would use microcoding for the

complex instructions and subsidiary concurrent operations, pipelining to accelerate

the data and control paths, virtual memory and hardware allocation/collection of

memory for the more storage-consumptive execution, control unit redundancies to

hold multiple contexts and enable faster function calls and returns, and instruction

and data memory caching. However, while these are all valuable tools to use, the

critical effort comes in designing the machine concept properly for the functional

programming paradigm.

CHAPTER 1. INTRODUCTION 7

1.3 The Three Instruction Machine

The Three Instruction Machine (TIM) was proposed by Jon Fairbairn (Cambridge

University) and Stuart Wray (Olivetti, UK). TIM is an abstract functional machine

tailored to execute a specialised form of X-calculus called Combinatory Logic (specif-

ically SuperCombinators, see Chapter 2). TIM uses graph reduction as an evaluation

mechanism, a technique in which a program is distributed in a logical tree struc-

ture, and execution proceeds through a "pruning" process that gradually evaluates

portions of the program and replaces them with their results. This is a common

mechanism amongst functional architectures, but TIM is distinctive in both the way

that it represents programs as graphs, and the method it uses to evaluate them.

The major drawbacks with previous graph reduction schemes are the amount of

time spent traversing the tree structure, and the amount of memory consumed in its

representation. TIM uses an innovative approach to abstract most of the program

code from the graph, leaving essentially only the call-structure of the program. This

greatly abbreviates the tree structure. In addition, TIM. supports nondeterministic

evaluation and sharing, addressing the unique control problems of each within the

new graph reduction scheme.

The three TIM instructions are called PUSH, ENTER, and TAKE. These roughly

represent the three stages in a function call:

1. PUSH some number of arguments to the function into temporary storage.

2. ENTER (call) the function, the code portion of the new context.

3. TAKE the supplied function arguments, as the environment portion of the

context.

So for the generic functional program, the instructions operate as in Figure 1.1.

There are also a host of built-in ALU operations.

The abstract machine is outwardly simple, but it holds a few surprises for the

unwary. "Three Instruction Machine" is a somewhat deceptive title, as there are ac-

tually a few variants or "flavours" of both PUSH and ENTER, which specify the type

of logical entity being referenced (Ic. a constant, a combinator "function" reference,

CHAPTER 1. INTRODUCTION 8

fa == r

PUSH a
ENTER I
TAKE 1

(return) r

Figure 1.1: The simplest TIM program

or a proper argument). Since TIM implements sharing, there are supplementary

arguments to each instruction that provide control information, and specify which

computations are shared.

The basic instructions have very different complexity; while some instructions

are very simple and execute in one or two machine cycles, others are very complex

and can take tens of cycles. Thus some instructions are natural bottlenecks, and

will draw heavily on hardware resources to prevent detrimental effects to machine

performance.

However, the basic abstract machine is reasonably straightforward. The most

complex problems arise from implementing the many architectural optimisations

that are discussed in Chapters 4 and 5. TIM holds a number of challenges for the

designer charged with implementing the abstract definition as a practical working

architecture.

1.4 Contributions of the thesis

The goals of this thesis are:

1. to evaluate potential improvements to the abstract architectural definition of

TIM, and

2. provide a concrete design for selected best optimisations.

The central contributions of the thesis are:

1. evaluation of a number of optimisations to TIM proposed in the literature, and

where applicable, comparison of reported results to replicate or refute.

CHAPTER 1. INTRODUCTION 9

2. evaluation of a number of optimisations proposed by the author.

3. specification of some improvements to the abstract TIM design.

4. design of the instruction format, logical objects and a partitioned memory

system to support the storage and high throughput needs of the TIM processor.

5. development of a DEMOS-based [Bir79] logic simulation package, with perfor-

mance measurement instrumentation and design debugging support.

1.5 Structure of this thesis

Chapter 2 is an introduction to functional languages, their theoretical character-

istics, and some practical examples of their use. I quickly examine the un-

derlying notation of)-calculus, touching on the work of Church and Rosser,

the specialisation of)-calculus to combinators, and place special emphasis on

SuperCombinators, the source notation of TIM. A brief discussion of "lazy"

evaluation of expressions, sharing analysis and strictness analysis is included.

Chapter 3 outlines the abstract TIM machine as proposed by the original develop-

ers. I initially describe two notable functional architectures which have been

built, which represent opposite ends of the spectrum of functional architec-

tures, and illustrate two important components in the TIM architecture. I

explain the philosophy of the TIM machine, describe the structures and ba-

sic instruction set, additional instructions for ground types, and those used to

implement lazy evaluation.

Chapter 4 begins with a brief overview of the set of possible optimisations, fol-

lowed by the design issues in TIM, goals I have specified for the design and a

design philosophy developed to attain them. The bulk of this chapter discusses

structural optimisations surrounding the TAKE instruction, covering aspects of

context changes, creation and maintenance of sharing information, and the up-

dating of shared results. Approximately one half of this material is new and

original work, in the form of extension and analysis.

CHAPTER 1. INTRODUCTION 10

Chapter 5 focuses on lower-level optimisations, and implementation of the TIM

machine including the instruction set and use of storage. I propose a new

model of the frame heap and a new instruction, used to speed context changes

and the use of shared evaluations in TIM. Approximately 90% of this material

is new and original.

Chapter 6 summarises the contributions of this thesis, outlines some possible future

work, and gives some final comments.

Chapter 2

Functional Programming

Functional programming has developed in the areas of software notations, evaluation

strategies, and hardware structures, with growth in one area encouraging growth in

the others. This is no accident; in functional programming the notation encodes its

own evaluation algorithms, and hardware is simply a hardwired form of algorithm.

Thus functional language and special architectural support are intimately related.

In the past, mainly notations and methods of evaluation were explored, and the

interest in hardware was limited to the pervasive abstract machine. Now that some

stable notations and evaluation strategies have settled out of the previous work, real

hardware is being more aggressively explored for the next efficiency gains.

The purpose of this chapter is to illustrate key concepts of functional languages,

by examining the notational genealogy of the Three Instruction Machine. This will

supply the background information necessary for the reader to understand the first

two of the three facets of TIM: notation (supercombinators), methods (lazy evalua-

tion, sharing) and structure (stack-based graph reduction), preparatory to concen-

trating on the third in Chapter 3.1.

I will outline the development of notations up to supercombinators, illustrating

the gradual improvements in efficiency and discussing some of the tools used to

achieve these gains. A great deal of work has gone into understanding functional

languages, how best to apply them to problems, creating type inference mechanisms,

and so forth. Much of this work has been aided by the fact that all functional

languages have a common mathematical basis, from which each may gain the same

power, and be amenable to the same analysis techniques. This basis is the A-calculus,

and it is the intrinsic properties of A-calculi that are in large part responsible for the

success of functional programming languages.

11

CHAPTER 2. FUNCTIONAL PROGRAMMING 12

The knowledgeable reader may safely skip this chapter. Those who wish to know

more are referred to [11ug89], which outlines the arguments for functional program-

ming, and [Kle81], which gives an historical account of its development. [Bar81b] is

a comprehensive introduction to the A-calculus, and [CF58, CHS72] are the standard

references for combinatory logic. [HS86] treats theoretical aspects of the above, while

[Pau87] and [Sto77] focus on program verification and typing of functional languages,

respectively. [Gor88] is a teaching text for semantic analysis which covers A-calculus,

combinatory logic and supercombinators. [BW88], and more so [Pey87] and [FH88]

are comprehensive, broad overviews of functional programming, including notations,

evaluation strategies and architectures.

2.1 The Lambda-calculus

Functional programming got its start from a simple notation called the Lambda

Calculus or A-calculus. The A-calculus is a formal abstraction originated by Church

[Chu41] to provide a theoretical basis for mathematics, a task for which it proved

inadequate [Ros84]. It lay dormant for many years, before computer scientists found

that it was useful for reasoning about computation and the semantics of algorithms.

A-calculus could be used to separate program syntax (how an algorithm is written)

from program semantics (how the algorithm operates, and what it does), isolating

the meaningful from the extraneous.

An early exploration by Landin used the A-calculus to provide an operational

semantics for ALGOL6O [Lan65a, Lan65b}, with which ALGOL6O programs could

be understood and verified correct through "abstract evaluation". This developed

from previous work where Landin introduced the use of A-calculus as a semantic

analysis notation, and created an abstract machine called the SECD which could

execute the new notation directly [Lan64]. The notion of a language which held

both a "program" and the method of its execution implicit in the program definition

was to become central to the field of functional programming, and A-calculus was to

become the common denominator in much of the research to follow.

CHAPTER 2. FUNCTIONAL PROGRAMMING 13

2.1.1 The Pure A-calculus

The "pure" A-calculus has only three constructs, as they appear in Figure 2.1. These

are argument names (any tag symbol V introduced in an abstract function), func-

tion applications (read as function E1 applied to argument E2, where E is any

A-expression), and abstract function definitions, in which V is the tag name for zero

or more occurrences of an argument in the function body E. These three semantic

structures are the simplest expression of the essentials of functional computation,

and form the common denominator for all functional languages.

I (E1E2)
AVE

(argument name)
(function-argument application)
(abstract function)

Figure 2.1: Pure A-calculus BNF

To evaluate an A-calculus expression, it is converted to another semantically

equivalent form; the "conversion" rules (see Figure 2.2) governing A-calculus are

likewise few and simple. The first and third, a-conversion and a-conversion, are

used to rename a argument, and to add or delete arguments as needed, respectively.

The most important rule is /3-conversion, which applies functions to arguments. The

notation "E1 [E2/x]" is short for "the expression E1 with argument expression E2

substituted for all free occurrences of x". In other words, reading from left to right

this retrieves the outside argument E2, "binds" it to the internal argument name x,

and replaces free occurrences of the symbol x within E1 by the expression E2.

Ax.E Ay.E[y/x] (renaming)
where x is not free in E)

(Ax.E1)E2 44 Ei[E2/x] (function application)

Ax.Ex E (argument abstraction
where x is not free in E)

Figure 2.2: A-calculus conversions

CHAPTER 2. FUNCTIONAL PROGRAMMING 14

The execution of A-calculus programs is called "reduction", and uses the left-to-

right forms of fl-conversion and 77-conversion with the normal or-conversion. Exe-

cution proceeds as a search for reducible expressions, or "redexes", which are then

rewritten using the rules. As an example, consider a simple predicate:

Operation
if false then A else B

' (Atxy.txy) false A B

(false AB)
= (Axy.y) A B

(Ay.y)B

=4B

Comment

(if = Aixy.txy)

(3 fl-reductions)
(false = Axy.y)

(fl-reduction)

(fl-reduction)

Figure 2.3: A-calculus if-then-else

The process of "reduction" implies that the size of the expression is reduced,

but this is not always the case. Program execution is complete when we run out of

redexes or further applications of the rules to existing redexes no longer change the

expression; this is known as "normal form".

Despite its simplicity, every computable function can be expressed in A-calculus

("Church's Thesis", [Chu36]). That is, it possesses the same power as any other

programming language in use. As with "if-then-else", integers, lists, pairs, datatype

constructs and others can all be expressed in terms of the A-calculus, albeit ineffi-

ciently.

2.1.2 Practical Aspects

In practice, a fourth construct (Figure 2.4) is added to the pure A-calculus. Constants

are used for ground types and their atomic operations, such as the natural numbers

and the operations +, —, x, /.
Implementing recursion in the A-calculus is a sticky problem. Unlike higher-level

languages, A-calculus is nameless apart from the tags used for arguments. A recursive

'Pure A-calculus is restricted to an inefficient unary integer representation; this is a common
practical optimisation.

CHAPTER 2. FUNCTIONAL PROGRAMMING 15

E

IC (constant)

Figure 2.4: Impure A-calculus partial BNF

function refers to itself, and so cannot be directly expressed in the)-calculus. We

must use a "trick" to provide recursion, by converting recursive functions into a; non-

self-referential form, in which the function obtains its own definition as an argument.

This argument is then used for the "recursive" function call. As an example, consider

a recursive multiply function (Figure 2.5a):

mpy =A p q . if (p = 0) then 0 else (q + (mpy (p - i) q))
let M=Afp q. if (p = 0) then 0e1se (q + (f (p -1) q)) (a-conversion)
then mpy = M mpy (by definition)
and mpy =Y M (using a fixed-point function)

Figure 2.5a: Developing a non-recursive definition

To provide the copies of the function definition as needed, we use the artifice

of a "fixed-point operator". Denoted "Y", each time this operator is applied to an

argument, it returns a copy of the argument as well as the original application. Thus

the initial application pair remains unchanged:

24.

The (Yf) pair is a fixed-point of M, and is in effect a catalyst for the recursive

computation, moderating it but remaining unchanged. To see how a recursive func-

tion is translated, we start with the definition of a recursive function called mpy

(Figure 2.5a). First 18-conversion is used to abstract away the function name, and

replace it with an argument; the external parameter "mpy" represents the mpy func-

tion definition needed for a recursive call to succeed. The last step is to discard

the function name, and add the Y operator to implicitly replace it with the mpy

definition. Simplified, the process is as in Figure 2.5b.

Under execution, the fixed-point pair (YM) is applied to the regular function

arguments, and immediately rewrites itself as the function M applied to the fixed-

CHAPTER 2. FUNCTIONAL PROGRAMMING 16

mpy = mpy-body mpy-body = A m n. if... mpy

4'M mpy M = A f . mpy-body [f/ mpy]
=YM
= M (Y M) proof: invoke Y
= M mpy proof: mpy = Y M

Figure 2.5b: Fixed-point equivalence

point pair and the other arguments. Execution continues with the body of M. See

Figure 2.5c.

mpy 3 2
Y M 3 2
M (V M) 3 2 (invoke Y)
[Afpq. if(p=O) then O

else (q+ (f(p -1) q))J (V M) 32
if (= 3 0) then 0 else (2 + ((V M) (3 - 1) 2)) (apply arguments)
2 + ((V M) 2 2) (resolve predicate)
2 + (M (Y M) 2 2) (invoke V)
2+([Afpq. if ... f(p-1)q](VM)22) (the full definition)

2+ (2+ (2 + ((V M) 02)))
6

Figure 2.5c: Evaluation under Y fixed-point operator

Mutually recursive functions are handled by encapsulating the definitions as a

single argument, to be extracted for function calls as needed.

One A-expression definition' for V is (Ah.(Ax.h(xx))(Ax.h(xx))) and others have

been suggested by [CF58, C11S72, Bar81b]. [Hud89] states that fixed-point operators

are inadequate for typed A-calculi and non-standard evaluation mechanisms, and

suggests other methods of implementing recursion.

2.1.3 Theoretical Implications

The mathematical basis of A-calculus is responsible for many of the assets of func-

tional languages, mainly through the ease of developing and extending formalisms.

The greatest asset of the A-calculus is derived from a set of basic results called the

2from [Pey87], pg. 26

CHAPTER 2. FUNCTIONAL PROGRAMMING 17

"Church—Rosser" properties [CR36]3, which address the evaluation of A-expressions

and their convertibility one to another:

Theorem 1 (Church-Rosser) Given two A-expressions X and Y, if X ., 1',

then there exists a A-expression Z such that X Z and Y Z.

Corollary 1 (Church-Rosser) No expression can be converted to two distinct nor-

mal forms.

Theorem 2 (Church-Rosser) If A red B, and B is in normal form, then there

exists a normal order reduction from A to B.

Theorem 1 states that any two interconvertible ("." denotes any a-, /3- or

it-conversions) expressions will have a common result expression through reduction

("" using /3,i-reduction). More generally, a single expression may be evaluated

in many different ways, but all the interim results are interconvertible, and so will

(eventually) reduce down to a single result. An inductive argument on theorem 1

states this clearly in corollary 1, where normal form means "fully evaluated".

Theorem 2, or the "Normalisation Theorem", states if an expression can be re-

duced down to its normal form, then there is a well-defined method of reduction that

always attains the normal form. Normal-order reduction always applies /3-reduction

to the leftmost-outermost redex first, until no more such redexes exist.

Taken together, these three statements provide two guarantees:

1. evaluate the redexes of an expression in any order. If the evaluation produces

a result (doesn't loop infinitely), the result is correct.

2. if you evaluate a (terminating) expression in normal order, you will terminate

with a result, and that result will be correct.

The same holds for any operations we split in pieces and do in parallel (the most

obvious place being amongst arguments at a function application).

The practical upshot of the Church-Rosser theorems as they apply to A-calculus,

and by extension to all functional programming languages, is that the evaluation

3more accessible proofs are available in [CF58, HLS72, HS86]

CHAPTER 2. FUNCTIONAL PROGRAMMING 18

mechanism we use is immaterial to our results. We can break a program up in any

way we want, execute the pieces in any order, and if we get a result, it is guaranteed

to be correct.

In other words, functional programs can be broken up and mapped onto a parallel

processor in any arbitrary manner, so we can attain the benefits of concurrent eval-

uation without the typical costs of partitioning and communication. The A-calculus

asset of cheap parallelism is precisely what motivates much of the continued interest

in functional programming.

2.1.4 Strengths and Limitations

There are a few practical problems involved when considering the A-calculus as

a notation that would be executed in a real or abstract machine. The size of

A-calculus programs, increases compared to that of the original source program. Even

when ground types and associated operations are included, the nameless nature of

A-calculus requires that function bodies be replicated wherever they are called. Even

so, A-calculus code expansion is not that much worse, symbol for symbol, than with

imperative-style machine code on Von Neumann machines.

A-calculus programs consist of many very small-bodied functions, and this trans-

lates to an abundance of function calls, all of which are 'short. Aside from ground

type operations, evaluating A-calculus programs consists almost entirely of function

calls. Qualitatively, this means that most effort is spent rearranging complex expres-

sions simply to filter arguments "down" to where they are needed. In addition, the

use of fixed-points for recursion is expensive, as each recursive call requires that the

function be copied in its entirety.

The largest cost' is the use of /3-reduction to evaluate each function call, as it

is inherently expensive. Substituting arguments requires a time-consuming search

for variable names throughout the body of the A-expression, which can be several

thousand symbols at the start of a program. /3-reduction is also susceptible to

the "name-capture" problem [Pey87], which arises when one or more symbols in

a substituted expression become erroneously bound to remaining parameters. As

illustrated on the left in Figure 2.6 below.

CHAPTER 2. FUNCTIONAL PROGRAMMING 19

With capture
(Ax.(Ay. + x y)) zi 3

. y.+yy) 3

+33

== 6

X

X

Without capture
(Ax.(Ay. + x y)) y 3 V1

(.Ax.(Aw. + x w)) w 3 v'

(Aw.+w)3 V/

:4 +y 3 v/

Figure 2.6: Name-Capture

The argument y is substituted for the locally free argument name x in the first

/3-reduction and has become bound to the local parameter y. It should remain a

"free variable" at this level (although it may be bound by a surrounding expression).

To prevent this name clash, cr-conversion is used to rename y prior to substitution,

as shown on the right in Figure 2.6. Thus, /3-reduction is made more expensive by

having to detect name clashes and apply cr-conversion as needed. Performing this

task over an entire program is very expensive in time and memory usage.

Of course, many of these problems may be reduced by an intelligent implemen-

tation of the evaluation methods. A machine architecture proposed by DeBruijn

[DeB72] uses annotated variable names and an environment-lookup method to track

the positions of argument symbols in the body of an expression, to avoid searching

and quickly detect name clashes. Aiello and Prini [AP81] maintained expensive run-

time variable scoping lists for each expression, and extensively applied ce-conversion

to avoid name-capture. Both of these machines resorted to reincarnating information

that the A-calculus had originally abstracted out, and using more intelligent eval-

uation mechanisms than simple term-rewriting. However, the real problem is with

the notation; the use of /3-reduction, and the raw numbers of function calls must be

avoided.

While the A-calculus is not a very good implementation language, it is a good

notation for representing and reasoning about programs. For this reason, many func-

tional programming implementations currently rely on A-calculus as an intermediate

functional language (IFL). Higher-level functional languages are translated down to

A-calculus, where type inference and similar tasks are performed, and from there

CHAPTER 2. FUNCTIONAL PROGRAMMING 20

translated to a specific implementation language for evaluation. In the rest of this

chapter, we look at some more suitable implementation languages.

2.2 Combinatory Logic

Combinatory Logic (CL) predates the A-calculus in the search for an abstract theory

of mathematics, and was developed independently by Schonfinkel and Curry [Cur29,

Sch24, Ros84]. Summarily discarded, CL lay dormant for many years until Petznick

EPet701 revived it by suggesting it as the basis for a computing engine. The modern

use of combinators in computer science stems mostly from Turner [Tur79a, Tur79b]

who expanded upon the original set of combinators and developed an abstract graph-

reduction machine to execute them.

The Combinatory Logic notation contains only constants, combinator names and

application (Figure 2.7).

E ::= C (constant, combinator name)
I (E1E2) (application)

Figure 2.7: Combinatory Logic BNF

The definition of a combinator is a A-expression which contains no occurrences

of a free variable. For example, "A1,.yx" would not be a combinator since x oc-

curs free in the abstraction, and makes the expression prone to name-capture. Each

combinatory logic program is formed of combinators represented only by name, the

actual A-expression definitions being "hidden" from the user. In this sense, combina-

tory logic is variable-free A-calculus, where combinators are fixed reduction formulae,

used in combination to implement larger, more complex A-expressions. Only a finite

set of these combinators are used for any given application, so that each may be

hard-wired into the evaluation mechanism. This and the lack of free variables means

that the expense of fl-reduction and substitution is avoided, making CL a potentially

attractive replacement for A-calculus.

The basic set of combinators are called S, K and I (Figure 2.8). These encode the

CHAPTER 2. FUNCTIONAL PROGRAMMING 21

Sfgx = fx(gx) (distribute and apply)
Kxy = x (elimination)
Ix = x (identity)

S Af.gs.fx(gx)
K Axy.x
I Ax.x

Figure 2.8: Basic Combinators and A-calculus equivalents

simple operations necessary to manipulate symbols in the manner of computation,

and are sufficient to represent any computable function. Actually, I is a convenience,

and only S, K are necessary [Sch24, Cur29], as demonstrated:

/ SKKx Kx(Kx) x = Ix '. SKK=I

Lacking substitution, combinators must control the movement of arguments di-

rectly. The equivalent of a A-expression in CL is a string of combinator applications,

Aaia2... .body =(...((CiC2)C3) ... C)

which on execution will incrementally accept, copy and rearrange arguments.

For example, when evaluating an application PJ1E2 in environment o, both E1

and E2 must be evaluated in o before application:

Ea = (E1E2)o (E1o)(E2o)

Once an application E = (E1E2) has been stripped of all argument names, it

must be reconstructed to "automagically" restore arguments to their correct places.

This is the task of the S combinator:

SEo = SE1E2o (Eiu)(E2o)

lithe argument a does not appear in the sub-expression (trivially, when the expres-

sion is a simple constant), K is used to eliminate the argument(s):

KEcT=KCcT=C

Lastly, I is used where the argument is passed on unchanged.

CHAPTER 2. FUNCTIONAL PROGRAMMING 22

The procedure for translating A-calculus to combinatory logic is known as bracket

abstraction. The abstraction rules for the simple SKI logic (from [Gor88}) are shown

in Figure 2.9. Rules 1-3 parse the A-expression "(•••)", deleting A-abstractions and

identifying variables "(x)" to be removed. Rules 4-7 parse the expression a second

time to convert appearances of the variables to combinators which will restore the

appearances on execution. The notation "(x) E" denotes the abstraction of a variable

name "x" from expression "E".

1) (x)=x
2) (E1E2) = (E1)(E2)
3) (Ax.E) = (cc) (E)

4) (x)x=I
5) (cc)y=Ky
6) (x)M=KM
7) (cc) (El E2)= S((x) E1.) ((x) E2)

atomic
parse the parts of the application seperately
parse the A-abstraction

cc matches itself
cc is not found here
M is a combinator
abstract the application

Figure 2.9: SKI A-abstraction rules

Thus, A-abstraction converts an interpreted A-expression, into a string of CL rules

that explicitly manipulate parameters. Applied to a A-program, the entire expres-

sion will eventually become "flattened", consisting of one long string of combinators

which expects to receive all the top-level program inputs in the same order as previ-

ously. Figure 2.10 illustrates the abstraction process and resulting code for a simple

example.

(Afa.faa) = (f) (Aa.faa)
= (f) (a) (faa)

(f) (S((Kf)I)I)
S(S(KS)(S(S(KK)I)KI))KI

Figure 2.10: Example of SKI abstraction

CHAPTER 2. FUNCTIONAL PROGRAMMING 23

2.2.1 Strengths and Limitations

The major advantage of Combinatory Logic is that it dispenses with variables in

order to avoid both /3-reduction and substitution, the most expensive components of

A-calculus evaluation. Complex A-expressions can now be represented using a small

fixed set of simple reduction rules. The rules can thus be "hard-wired" into the

evaluation algorithm, whether this is in an abstract machine, or as microcode in a

real architecture.

Unfortunately, the basic SKI combinator set is too fine-grained. The restricted

capability of these simple operators means much execution time is spent simply re--

arranging expressions to slowly filter arguments "down" to where they are needed.

Also, there are high associated memory costs (see Section 3.1.2), and the same over-

head as A-calculus for the basic evaluation mechanism and implementing fixed-point

recursion.

It is possible to do better by modifying the set of combinators, and using the new

combinators to optimise inefficiencies in the abstraction process. Many such alterna-

tive logics have been proposed [Abd74, Abd76, Tur79a, Tur79b, Ken82]. However,

while it is tempting to design new combinators for every special case that arises, the

usefulness of each is difficult to predict, and each addition complicates the already

costly translation algorithm; Joy [Joy84] has shown that optimising combinator code

is NP-complete, and that in any case, fixed-set combinatory logics have unpromising

size complexities (see Table 2.1, where n is the A-expression size, and m is the num-

ber of variables being abstracted). These limitations have led to the development of

combinators tailored to the program code, or supercombinators (see Section 2.4).

worst case O(n3m) (unadorned SKI logic)
typical case E)(nm2) (Turner[Tur79a] logic)
best case O(n log m) (theoretical best achievable)

Table 2.1: Size Complexity of Combinatory Logic

CHAPTER 2. FUNCTIONAL PROGRAMMING 24

2.3 Lazy . Evaluation, Sharing, Strictness Analysis

Lazy Evaluation (or laziness), sharing and strictness analysis are a collection of

concepts intrinsic to the convenience and efficiency of functional programming. I

have neglected these thus far, but they are necessary to understanding the material

that follows.

2.3.1 Lazy Evaluation and Sharing

In conventional programming languages, arguments t' a function can be evaluated

either before application of the function (call-by-value) or after (call-by-name). Each

method can suffer from inefficiency, call-by-value when an argument is evaluated and

subsequently left unused, and call-by-name when each use of the argument requires

a re-evaluation.

Lazy evaluation does exactly what its name suggests, postponing the evaluation

of a named argument until its value is required. Furthermore, once an argument is

evaluated, the result is retained for future use, which is known as sharing. Typically,

laziness/sharing is implemented by representing argument bindings with a pointer

to the argument, rather than the argument itself. Figure 2.11 shows this pictorially.

(x.\y. IFx>OTHEN (* xx) ELSE(+xy)) (fib 4) (fib a)

..IF(> O)ThENr) ELSE (+) (fib 8)l

,(fib 4)I

..IF(0) THEN ELSE (+ I) J(fib 8)I

'ifi
_CJ i
-25

(fib 8)

I rn

Figure 2.11: Example of Lazy Evaluation

This "call-by-need" method avoids needless work both for unused arguments (as

with y) and redoing work for multiple occurrences of an argument (as with the three

uses of x). There are degrees to the laziness concept: ie. full laziness is an important

goal of functional language implementations. Full laziness avoids the construction of

CHAPTER 2. FUNCTIONAL PROGRAMMING 25

multiple instances of the same expression. As an example, consider the expression

below:

(\y.x. + (*2y)x)E

(\x. + (*2E)x)

This is a partial application, so named because only one argument is supplied. The

result is the function that adds *2E to x, where laziness will postpone the evaluation

of E. If this partial application is shared amongst two or more contexts that will

supply the x argument, the first to execute will trigger E's evaluation, but each

would be forced to evaluate the local subexpression *2E. Full laziness will avoid this

needleth work, by constructing only one instance of the subexpression and treating

it lazily.

The overhead of implementing laziness and sharing is non-trivial. There are the

costs of suspending and "storing" argument evaluations, passing pointers, and up-

dating arguments with results. Distinguishing between an unevaluated and evaluated

argument requires some variety of book-keeping, which becomes more complicated

when (as seen above) the argument is not a simple expression but a partial applica-

tion. Similarly, sharing of expressions adds to the complexity. The needless use of

sharing (and laziness) for expressions or arguments which are only used once can be

avoided by tabulating the dependencies of expressions on its neighbours. Unshared

code can then be moved into the body of the expression that requires it. An analo-

gous, but much more general technique is used to restrict the application of laziness

and sharing, and is described in the next section.

Section 3.1 will discuss some of the methods for implementing laziness and shar-

ing.

2.3.2 Strictness Analysis

The cost of laziness is enough that when it can be avoided, it is worthwhile. Expres-

sions sometimes require an argument to produce a result, and it is cheaper to eagerly

evaluate the argument, while maintaining sharing. Such expressions can be detected

using a body of theory called strictness analysis. Informally,

CHAPTER 2. FUNCTIONAL PROGRAMMING 26

A function f is strict in an argument x if and only if

the value of x is necessary to produce the value of f.

For example, operations such as integer addition are always strict in all of their

arguments (ie.. "Ax.Ay. + xy") since a result for each is needed for an expression

result. The expression "Axns. if x then n else s" is strict only in x, so nothing is

gained by lazy evaluation of x. Strictness analysis is an interpretive technique that

predicts only argument evaluations which are mandatory, so that these arguments

may be automatically executed as soon as is practical.

2.4 Supercombinators4

Supercombinators were introduced by Hughes [Hug84] when he combined a new tech-

nique called lambda-lifting (A-lifting) with full laziness to produce custom combin-

ators. The motivation is prohibit free variables so as to allow simultaneous substi-

tutions, while avoiding the limitations of small combinators. Rather than mimic a

A-calculus expression with a composition of fixed-set combinators, the A-calculus is

reorganised so each abstraction has the characteristics of combinators, and trans-

lated directly. These supercombinators have more variables and larger bodies, so

that more substitutions can be done simultaneously.

Supercombinators form a proper subset of the infinite set of all possible combin-

ators, and have the same semantics (see Figure 2.7). The definition (Figure 2.12) of

a supercombinator differs slightly from that for combinators, to specify in rule (2)

that the entire A-calculus program contain no free variables.

For example, the A-calculus expression Afa.faa is already a supercombinator,

which can be translated directly and named "R".

Afa.faa -* Rfa = faa

Conversely, Ay.Ax. + x(*yy) has y as a free variable of the inner abstraction, which

must be bound to make it a supercombinator.

4This section draws from the structure and examples of Chapter 13 in [Pey87].

CHAPTER 2. FUNCTIONAL PROGRAMMING 27

A supercombinator S is an expression of the form

S = Ax1.Az2. •

where E is not a A-calculus abstraction, and

1. S contains no free variables.

2. Any lambda abstraction in E is a supercombinator.

3. n > 0, ic. S can be a simple constant.

Figure 2.12: Supercombinator definition

Lambda lifting is the translation process that converts).-calculus to supercom-

binators. It binds all free variables in an expression, in effect "lifting" them to the

same level as the other variables in the abstraction. By applying i7-conversion to

create a new y abstraction, the free variable is removed from the expression (where
AL

denotes the .\-lifting translation):

Ay.Ax. ± x(*yy) AL)ty.yx. + x(*yy)),

The translation continues as follows:

Ryx = +x(*yy)

Ay = Ry

Ryx = +x(*yy)

Ty = Ry

Main = T

(Ay.(Ayz. + x(*yy))y)

(Ay.Ry)

Which can be simplified by noticing that Ty = Ry implies that I = R, and so we

can remove T to have Main = R.

In practice, we would also like to maintain full laziness, which means that com-

mon subexpressions must be sharable. We can have full laziness and better super-

combinators besides by noticing that not just variables but sub-expressions can be

"free", usually the portions of the X-expression immediately surrounding free vari-

ables. These can likewise be lifted out, just as with variables. In the case of fully lazy

lambda-lifting, we are only concerned with maximal free expressions (MFE's), which

are the largest free subexpressions that can be identified. The expressions below all

CHAPTER 2. FUNCTIONAL PROGRAMMING 28

have their MFE's underlined:

(Ay.Ax. + x(*y y)) (Ay.Ax.+(*y y)x)

(Ax.(Ax.x)x) (Ax.Ay. + y(*(*xx)3))

MFE's are precisely the common subexpressions that can be shared between one

or more evaluations. Lifting the MFE of the last example, the result is:

Rwx = +xw

Ay = R(*yy)

Rwx =

Ty = R(*yy)

MainT

(Ay.(.\w. + w)(*yy))

The decision as to which variables or MFE's are lifted first can greatly affect both

the size and numbers of translated supercombinators. To decide lifting order, lexical

level numbers (LLN) are assigned to each unit of the A-expression, as follows:

1. the level number of constants and the "empty" A-abstraction are 0.

2. the LLN of a variable is the LLN of the A-abstraction that binds it.

3. the LLN of a A-abstraction is 1 more than the number of textually-enclosing

A-abstractions.

This concept is intrinsic to the A-lifting procedure working effectively. In the

example of Figure 2.13, BODYXYZ = +(*yx)(+z(*yy)) (note that y is free). The

LLN's of the variables and subexpressions appear respectively above and below the

A-expression:
0 1 2 0 0

Ax.Az.

1 2

2

The idea behind ordering parameters is that we wish to make MFE's and the

resulting supercombinators both larger and fewer. For A-lifting, ordering parame-

ters according to increasing lexical level numbers means abstracting the "most free"

variables first. Since freer variables have more flexibility for later A-lifting, they are

CHAPTER 2. FUNCTIONAL PROGRAMMING 29

Ax..\z.BODY,, LLN(y) = 0, LLN(z) = 1, LLN(z) = 2

Rxyz = BODYVYZ

Rxyz = BODYayz
Tyx = Rxy
Ty

Incorrect A-lifting order

Az.BODY (\xyz.BODY)xy
but LLN(z) > LLN(y)!

AL
.Az.Rxy (ix.Rxy)y

2 definitions

Ryxz = BODY
\x.Ryx

Ryxz = BODY
Tyx = Ryz
Ty

Correct A-lifting order

z.BODY
v'LLN(z) < LLN(y)

\a,.Ryx 4 (Ayz.Ryz)y

Ryxz = BODY, since Tyx = Ryz I- T = R
Ry 1 definition

Figure 2.13: Effect of parameter ordering on produced supercombinators

the natural choice for lifting first to get them "out of the way" so we can concentrate

on the more constrained variables which remain. These less free variables are those

bound at "inner" levels, and can be thought of as having "fewer degrees of freedom"

for manipulation. These will be lifted later, and appear later in the list of supercom-

binator parameters. Informally, A-lifting follows the natural flow of arguments and

function calls in the source A-calculus, resulting in fewer and more efficacious super-

combinators. Figure 2.13 shows two possible ways to lift the example expression,

where the second makes use of LLN's to reduce the number of supercombinators

produced.

2.4.1 Strengths and Limitations

Importantly, the use of recursion with supercombinators is now very much simpler,

since supercombinators are themselves named, and may reference each other directly.

There are a few variants of the translation process that produce slightly different

CHAPTER 2. FUNCTIONAL PROGRAMMING 30

code, but with self-referential supercombinators, there is no need to resort to crude

artifices such as fixed-point operators.

Lambda-lifting and the use of MFE's conspire to compact the supercombinator

code we produce while maintaining full laziness. The rearranged applications are

more economical in the movement of parameters and the flow of work. Redexes thus

incorporate more work, and are less frequently reduced, improving both the time

and space costs of execution. The translated code contains more redexes than the

)¼-calculus source, but far fewer than that when using straight combinatory logic. Joy

[Joy84] has shown that when allowed an "infinite" set of combinators, the number

of combinators definitions introduced is 0(m), where m is the number of variables

being lifted. This compares favourably with the typical size complexity of 0(m 2) for

fixed-set logics.

In some cases,)s-liftingin order to retain full laziness is counter-productive. This

can result in larger supercombinator redexes which can slow execution and/or exces-

sive numbers of supercombinators being produced (the latter being the combinatory

logic problem we originally wished to avoid). It is sometimes cheaper to allow some

extra work by not A-lifting fragments of shared code when nothing is gained. De-

pendency and strictness analysis are also used to restraiii laziness, and there are

a number of smaller special-case refinements to the translation process. The fea-

tures which moderate laziness are expensive and place more work on the compiler,

in addition to the tasks of type inference, pattern matching, etc.. Supercombina-

tor translation can produce multiple solutions, with a lot of latitude in efficiency

from one translation to another; I suspect that deriving an optimal supercombina-

tor translation is NP-complete (judging from the similar result for fixed-set logics

derived in [Joy84]).

Laziness, the overhead of sharing, and strictness-derived eager evaluations man-

ifest themselves as annotations to supercombinators, to properly direct their eval-

uation at run-time. The many "special cases" that can arise at runtime imply a

more complex architecture, with more scratchpad registers, machine instructions,

microcode, and .memory structures to implement the required techniques.

More importantly, the underlying architecture will have to be changed. Whereas

CHAPTER 2. FUNCTIONAL PROGRAMMING 31

a small set of combinators could be "hard-wired" as machine microcode, supercom-

binator programs are all large, unique collections of redexes with varying size and

complexity. The execution architecture must be able to store and interpret the su-

percombinators themselves in some way. A few general approaches are:

• by expressing the supercombinators as microstore control words, and designing

the machine to have a loadable control store which is rewritten for each new

program (imprudent).

• by expressing them as individual graphs whose operations are implicit in their

structure (inefficient).

• by expressing them in terms of some developed machine language which are

instructions to control the CPU and storage of the machine.

These topics are discussed in greater detail in the next chapter.

2.5 Functional Language Summary

Backus [Bac78] distinguishes between A-calculus-based and higher-level or pure func-

tional languages, and asserts that the semantic advantages of A-calculus can be ob-

tained without expressing programs at any time in the A-calculus. While pure func-

tional languages may be ultimately superior, they are outside the scope of this thesis.

However, as notations go A-calculus is certainly the most elegant in its simplicity,

and combinatory logic is conceptually fascinating for its behaviour. Supercombina-

tors have elements of both, but are chiefly a practical compromise. A-calculus has

been used as an intermediate functional language (IFL) with success for over 20

years [Lan64, Mos75, Pau87, Pey87], a task into which it has today settled. The

advantage of an IFL is the common bridge it forms between pure functional lan-

guages and A-calculus-based notations, and the work that has been done on these

notations. Thus, all functional languages benefit from the set of software, hardware,

analysis techniques and optimisations that have been developed for A-calculus-based

notations.

CHAPTER 2. FUNCTIONAL PROGRAMMING 32

We have examined the notations of A-calculus, combinatory logic and supercom-

binators, and shown their development to have been motivated by a search for more

compact and efficient evaluation behaviours. The move from A-calculus to com-

binators reduced the cost of function calls by substituting simple application for

/9-reduction, at the expense of greatly increased numbers of applications. The move

to supercombinators reduced the sheer numbers of function calls, still the most ex-

pensive component of the functional language equation, it being the cusp around

which most work is done, in a compiler or a machine program. The next chapter dis-

cusses the development of hardware and evaluation mechanisms to provide efficient

implementations of supercombinators, and describes the Three Instruction Machine

as one culmination of these efforts.

Chapter 3

The Three Instruction Machine

Over the last decade, functional programming has become an established field, with

standardised languages such as SML, Miranda, HOPE and recently Haskell. As with

previous paradigm developments in computer science, there is an impetus for func-

tional language operations and constructs to migrate into hardware. Motivated by a

need for greater efficiency and higher execution speeds, a number of special purpose

functional architectures have been designed. In their turn, these have become active

research instruments that encourage new designs, and the development of better and

more capable functional languages. In this chapter, I describe the abstract Three

Instruction Machine, one of the latest developments in the functional architecture

field.

3.1 Functional Architecture

To properly explaiii how TIM works, I must illustrate a few key concepts, namely

term rewriting, closures and 'environments, stack-based evaluation, graph reduction

and finally the "frame-based" evaluation of TIM. To simplify this task, I give an

overview of two representative architectures from the literature, the SECD machine

and the Combinator Machine. This will contrast the environment and stack-based

architecture of the SECD, with the graph reduction architecture of the Combinator

Machine, and pre-instruct the reader on the underlying concepts of TIM, which

draws on elements of both.

The underlying concept of all functional language evaluation is term rewriting,

the process by which an expression in whatever form is recognised to match some

equivalent (and hopefully "simpler") form. The expression is rewritten to the new

33

CHAPTER 3. THE THREE INSTRUCTION MACHINE 34

form, and rewriting continues until no more "simpler" form exists. The concept that

all functional language expressions and their simpler or "reduced" forms are equiv-

alent is implicit to functional programming. Evaluation methods, whether utilising

environments, graph reduction or whatever, are simply ways to implement this un-

derlying term rewriting. The common requirements of all of these methods are: to

represent the expression so it may be manipulated; delay the substitution of argu-

ments and easily bind them when needed; and to control and remember the order of

expression evaluation.

3.1.1 Environments and the SECD Machine

Originally introduced by Landin [Lan64], the stack-based SECD machine was one of

the first attempts at a functional architecture. I consider here the version proposed

by Henderson [Hen8O], whose instruction set is tailored to execute a limited dialect

of LISP called LispKit [HJJ83a].

The source language has a static scoping and contains no global definitions or

variables, with definitions supplied prior to use in an enclosing LET (or recursive

LETREC) block. With variables and definitions, the machine maintains an environ-

ment to facilitate substitutions. Definitions of variables are stored in the environ-

ment, and variables become run-time references to the current environment, whose

run-time structure is controlled explicitly by the compiled instructions. The SECD

instructions and machine code programs closely match that of the source code; this

small semantic gap means that abstract interpretation of the source and actual ex-

ecution appear nearly identical. The machine has integer and list operations, and

instructions for function entry/exit and support for recursion.

SECD is an acronym from the designations of the four principal registers in the

architecture (Figure 3.1). Every structure in the machine is formed of dyadic objects

in lists, after the s-expressions of LISP. The environment E maintains a nested set

of contexts for each function called, which are formed of the argument lists for each

function. E is a list of lists (Figure 3.2), indexed by a pair of numbers "(m.n)"

denoting the n ' member of the m"-deep, context (the 01h context is the argument

list for the current context).

CHAPTER 3. THE THREE INSTRUCTION MACHINE 35

Stack S: holds intermediate results when evaluating expressions, argument lists and
closures prior to a function call, and function return results.

Environment E: stores the context for the current expression. All definitions in
the function are bound to some location in the environment.

Control C: holds the current SECD machine code expression to be evaluated,
stored as a list. C is a pointer into the code list, and acts like a program
counter.

Dump D: used to store the contents of the other registers on context changes,
pending their return.

Figure 3.1: SECD registers

)
(2.0) (2.1) (2.2)
(1.0) (1.1) (1.2)

E -+ ((0.0) (0.1) (0.2)

Figure 3.2: The SECD environment

The Henderson SECD machine contains 21 instructions, fifteen di these being

basic integer and list operations, predicates and a branching "decision" function. All

work is in reverse polish form on the contents of the stack, and assumes the previous

preparation of necessary arguments. Three variants of the LD (load) instruction are

used to place objects on the stack. These may be constants (LDC), bindings for

variables from the environment (LD), or function closures (LDF). A closure is simply

the combination of function body (code) and an environment to supply any pending

bindings in the body.

The most interesting instructions are the 5 concerned with function calls. A

function call, or application, requires that the function arguments and a closure be

placed on the stack S. The arguments are supplied as a list constructed (including

any necessary eager evaluations) prior to the call. For non-recursive functions, the

L D F (load function) instruction then places on the stack the function body (following

it in the code stream C), and a reference to the current environment E. These three,

elements are all that is needed to execute the function. The call proceeds with the

AP (apply) instruction, which will execute a context change by saving the current

contents of S, E, and C onto the dump D, and distributing the arguments and closure

CHAPTER 3. THE THREE INSTRUCTION MACHINE 36

into the state registers. The function body resides in C, the environment resides in

E and the argument list is added as the first (ot) level of the new environment.

On completion, a single result will remain on the stack and the last instruction in

the code stream will be RTN (return), which will reinstate the last saved context

in D, with the resulton top of the old stack contents. Thus the SECD is much

like the familiar Von Neumann machine, with the exceptions that all structures

are held as s-expressions, function code is "carried around" with each function call

site, and environments are passed through pointers, in total. Figure 3.3a describes

the function call instructions as state-transitions in the SECD, and Figure 3.3b an

example of a non-recursive function call.

S

((fun-env) args.$)
(res)

e
e

e'

(LDF fun).c d - (fun.e).s
AP.c d -+ nil

RTN.c (sec).d - (res.$)

e
(args.env)
e

C

fun
C

d
(sec). d

d
s e DUM.c d - a (nil.e) c d

((fun.(nil.e)) args.$) (nil.e) RAP.c d - nil (args.env) fun (sec). d

Figure 3.3a: Function call instructions in SECD

S

p

FUN ENV

11 12

Function Body

a! a2

11 '3

j:2P.c JJ: d

T T
nil a!

11

a2

12

e

Figure 3.3b: Function preparation and application in SECD

When only enclosing definitions and the argument bindings of elder functions

are required, the current environment E is sufficient for the function closure. To

properly execute a recursive function, it must have access to its own definition. The

SECD constructs a circular list in the environment prior to the function call to make

CHAPTER 3. THE THREE INSTRUCTION MACHINE 37

it self-referential, using the DU M (dummy) and RAP (recursive apply). instructions.

First, D U M is used to push a dummy environment on the stack, an object containing

nil. The recursive function definition(s) are placed on the stack with LDF, as if they

were an argument list, but each closure references the (dummy. E) environment rather

than just E. A "priming" function is then pushed, and RAP is executed. RAP be-

haves precisely as AP does, with the exception that instead of pushing a new object

on the environment to hold the code body "arguments", it rewrites the top object

(the dummy) with these. In other words, DUM pre-allocates the new environment

for the coming function call, but leaves it empty. All subsequent preparations for

the function use the dummy environment. RAP completes the process by unpacking

the arguments and priming closure, places the arguments on top of the closure en-

vironment to form the new environment, and overwrites the dummy physical object

with this new environment. This completes the circular structure, as each member

of the new environment references the top of the new environment (see Figure 3.4).

The priming function we now execute will simply load (one of) the newly recursive

definitions onto the stack for the coming real application and exit. Execution then

continues with gathering of arguments for the recursive function and execution of a

regular AP, and the RAP is never executed more than once for each set of recursive

functions.

The SECD is somewhat like a high-level language (HLL) machine, in that there

is very little difference between its instructions and those of the source language.

This is more a function of being based on a purely functional language rather than

being .X-calculus-based. However, the language is very simple, limiting the usefulness

of SECD as a general-purpose architecture.

SECD uses an environment to implement variables and bindings, and thus avoid

the expense of substitution in 3-reduction. In addition, SECD dispenses with cum-

bersome fix-point operators for implementing recursion, by directly creating self-

referential environments. The fact that machine code is interpreted, rather than

the structure of the execution expression (as with .\-calculus evaluation) makes the

SECD more efficient in machine cycles and memory consumption.

One major drawback is the use of s-expressions for all storage. There is no

CHAPTER 3. THE THREE INSTRUCTION MACHINE 38

FUN ENV

11

nil e

Primer Function

L. Argument List

 F

S
V

9

12

tt

a2

h
I

al, a2,.. • function closures

j:RAP.c J: d

nil e

V al

JIm

g

02

h
I

Jr

1112

-d

-

CHAPTER 3. THE THREE INSTRUCTION MACHINE 39

a few new instructions to provide function "wrappers" that delay and then force

their execution [Hen8O]. Control of suspensions, updating and providing fully lazy

evaluation complicate the implementation further.

The notion of the SECD is a good one, but it was meant as an abstract research

vehicle, and not a real architecture, a fact reflected in the limited language and

impractical design philosophy. The SECD has been built on a full-custom monolithic

IC [HBGS89, SBGH89]. Related machines are the Categorical Abstract Machine

(CAM) [CCM87] and the Functional Abstract Machine (FAM) [Car83, Car84].

34.2 Graph reduction and the Combinator Machine

A conceptually simple way to achieve laziness and sharing is to use graph reduction a

an evaluation scheme. First suggested by Wadsworth [Wad7l](ch. 4), this method

distributes the entire code expression into a tree of allocatable nodes, with each

node being either a branch, or a terminal holding one or more code symbols. In

practice, the expression will be "curried" as follows, Fxyz = (((F2)y)z) to make the

context of each node into an explicit application of a "function" to an "argument".

Figure 3.5 shows an example expression and corresponding graph. Graph reduction

proceeds with a (usually) depth-first preorder search of the graph for the leftmost-

bottommost reducible expression. The path of the search (or parse of the expression)

at any time forms the "spine" of the graph, and is retained so that the arguments

of the redex are accessible, and our path through the graph may be retraced. The

redex itself is defined by the terminal symbol ("head") of the search; this will match

one of a set of rewrite rules encoded in the machine. Each will require a certain

number of arguments, which immediately precede the head in the graph, and may

be accessed from' the spine. The redex is then the subgraph which holds the head

and the arguments it requires to be reduced. When recognised, the redex is rewritten

according to the rule, and reflected in the graph by overwriting the root node of the

redex with the reduced graph. Figure 3.6 shows the example graph (a) with spine,

and its reduction (b).

Sharing of expressions is done simply by passing a reference to the subgraph in

question, and updating happens automatically when the subgraph is reduced and

CHAPTER 3. THE THREE INSTRUCTION MACHINE 40

R x y (K w z)
= ((R x) y) ((K w) z)

Rabc = ab(ac), Kab = a]

Figure 3.5: The Graph Representation

the root of the redex overwritten. Since only a pointer, to the cell is shared, only

a single execution will be performed. Furthermore, the graph does not differentiate

between expressions and results, relying on the redex search to detect reducible

expressions. Laziness is thus implicit in graph reduction, with the evaluation of

expressions automatically postponed, right up until the first redex which shares it

requires the result to be reduced. No extra annotations to control the suspension and

continuation of evaluations are necessary, and the graph thus implements laziness

and sharing in a nearly transparent way. Figure 3.7 shows the reduction of a shared

expression in the example.

(a) (b)

Figure 3.6: Graph Reduction

As an example of a graph-reduction architecture, I consider the machine of Turner

CHAPTER 3. THE THREE INSTRUCTION MACHINE 41

Figure 3.7: Graph Reduction with Sharing

[Tur79a, Tur79b, Tur84], which he suggested while repopularising the use of combi-

natory logic. This Combinator Machine uses a fixed set of combinators as rewrite

rules based on the basic set of SKI (see Section 2.2) to reduce combinatory logic

programs. The architecture itself is very simple, consisting of only:

• a large allocatable store with garbage collection,

• a stack to hold the "spine" of the evaluation,

• a set of rewrite rules, microcoded as "instructions".

Nearly all the complexity of the machine is in the microcoded combinators,

which consist only of microoperations that manipulate the spine, examine the graph

through the spine, allocate new nodes, and rewrite the contents of existing nodes.

Depending on the combinator, several memory cycles are necessary to search back

through the spine for the arguments, retrieve the references desired, allocate any new

nodes, and overwrite the root of the redex.

The combinator machine implementation of graph reduction has a few inadequa-

cies. First, only a finite library of combinators can be held in microcode at any time,

and their complexity is limited, thus restricting the capability to use more or larger

combinators. To implement recursion, the combinator machine uses a fixed-point

operator such as Y (see Section 2.1.2) to construct a circular self-referential graph.

CHAPTER 3. THE THREE INSTRUCTION MACHINE 42

A subtle problem arises here when it is realised that reduction is inherently "destruc-

tive" to the combinator program. The recursive function must not be overwritten

if it is to be used more than once, and the simplest (and most expensive) solution

is to force Y to copy its function for successive calls. For each node in the recursive

definition, this incurs an extra traversal, allocation and garbage collection, and since

most programs are contained entirely within recursive definitions, this results in an

immediate doubling of execution cost [Her87].

Maintaining a stack to hold the graph spine consumes significant memory band-

width, considering bow quickly the stack contents change at the site of reductions.

Fortunately, the stack can be easily avoided by using a technique known as pointer

reversal [Sch86], in which the nodes of the graph hold the spine temporarily by

referencing the last node visisted.

The major drawbacks are not the responsibility of the combinator machine, but

due to graph reduction, and combinatory logic itself. While graph reduction is very

versatile, and allows any variety of expression to be executed with automatic full

support for lazy evaluation and sharing, the cost is high. Allowing any node to be

shared, suspended and updated is unnecessary and very expensive. When applied

to fine-grained combinatory logic, graph reduction spends most of its time simply

reorganising the graph rather than doing "useful" work, and most of this effort is

expended on supporting laziness that won't be needed.

A number of combinator machines based on graph reduction have been designed

and built. The earliest was the Cambridge SKI Machine (SKIM) [Sto83, Sto85,

CGMN8O], built from discrete components. More recently Ramsdell at MITRE

Corp. fabricated the CURRY Chip [Ram86J, a full-custom monolithic device. The

NORMA machine [Sch86] includes many of the graph reduction optimisations men-

tioned, including a cache memory for the spine.

3.1.3 Summary

The SECD machine represents everything as s-expressions, and consumes similar

resources compared to the combinator machine using graph reduction. The basic

SECD does not have laziness, sharing, or simple structure, so in other words, it pays

CHAPTER 3. THE THREE INSTRUCTION MACHINE 43

all of the costs of graph reduction without enjoying any of its benefits.

On the other hand, the graph reduction that forms the core of the Combinator

Machine is elegant, but an overkill. Not all expressions (or portions thereof) need be

shared, updated with results, or lazily evaluated. Since these are all expensive tasks

to perform and regulate, it makes more sense to recognise those expressions that will

possibly be shared, and only spend the resources on these. While Henderson's SECD

has no support for laziness, the combinator machine has too much.

3.2 Three Instruction Machine

The Three Instruction Machine (henceforth TIM) is a functional architecture de-

signed to execute supercombinators. It was initially presented as an abstract ma-

chine by Jon Fairbairn (Cambridge University) and Stuart Wray (Olivetti Research

UK) {FW87]. TIM uses a unique application of graph reduction technique to per-

form normal-order fully lazy expression evaluation. The machine supports eager

evaluation where it is expedient, and minimizes the overhead of passing unevaluated

expressions with its simple, elegant design.

The TIM machine contains elements of both graph reduction such as in the

combinator machine, and stack-based environment machines such as the SECD. Its

nearest competitor is the G-Machine, which may loosely be described as an SECD

machine with support for updating. Rather than being a hybrid of SECD and

combinator machines, TIM is more of a graph reduction architecture which utilises

environments.

The remainder of this chapter will discuss the abstract machine as proposed,

describing the reasoning that goes into TIM's unique design, the three core instruc-

tions and their variants, the translation mechanism from supercombinators to TIM

machine instructions, and the additional instructions to implement ground types,

lazy evaluation and sharing.

CHAPTER 3. THE THREE INSTRUCTION MACHINE 44

3.2.1 The Three Instruction Rationale

The priority goals in the design of the TIM abstract machine were to achieve graph

reduction without the graph, and make reduction as efficient as possible. To this

end supercombinatory logic (SCL) was employed as code.

There are two expensive inter-related tasks that we will want to avoid if we are

to make graph reduction more efficient:

1. Copying graph expressions for execution, to protect the original expression.

2. Constructing graphs on each reduction only to have them discarded or imme-

diately parsed and rewritten.

The point behind using a graph is reduction, which happens when we overwrite

the root node of a graph expression with its result (thus yielding the familiar ad-

vantages of sharing, etc.). Thus, if we can dispense with the graph nodes that will

never be rewritten, we can save the costs of allocation, collection, and traversal of

the expression which they form. TIM greatly reduces the costs of graph construction

and reduction by avoiding them. Instead, only function closures are held in environ-

ments rather than embedded in a graph. As with graph nodes, environment entries

are updatable.

Supercombinators require only a local environment, with arguments and pointers

to access other environments (through continuations) passed around as arguments.

The operations implicit in the structure of supercombinators can be performed with

only a few machine instructions, replacing complicated supercombinator rewrite rules

with individually simple operations that perform the same task. Thus the expense of

constructing and interpreting graphs holding mostly code is removed by abstracting

the code out of the graph.

The designers of TIM built the machine around two central concepts. The first

is that everything in the machine be built around a single logical structure that

would be used to represent everything. This is a closure object, comprising a pair of

references, one to a code expression and one to an environment for the expression.

Ultimately, objects will be a pair of words holding two pointers to storage in a real

CHAPTER 3. THE THREE INSTRUCTION MACHINE 45

machine; Second, that 'the instructions of the machine focus on function application,

the nexus around which most work is done in functional programs.

The placement of the instructions breaks this work up into three distinct phases:

PUSH prepare arguments on the stack

ENTER enter the new context

TAKE retrieve arguments

The three instructions (really instruction types, as there are many "flavours"

of each) are used to construct combinator contexts as needed, and execute them.

As we shall see below, the use of a machine macrocode to moderate the graph

reduction process, rather than the raw combinators, yields some particularly effective

optimisations towards a more efficient implementation of sharing.

Since any node may be the root of a combinator evaluation, it is usually impossible

to determine a priori if an arbitrary node will not be overwritten (and is thus a

.candidate for possible optimisations). However, some progress can be made. Certain

nodes will hold evaluated expressions or constants, and will not need updating, so

we should try to dispense with these. Similarly, many graph reductions are very

simple rearrangements of arguments; for instance, each simple combinator represents

a needless cost in graph construction and especially traversal, when one considers

that we just had each of these arguments "in our hands" (on the graph reduction

spine) a moment ago. Taking this one step further, in lazy graph reduction arguments

are passed as pointers to graph expressions, which are evaluated or discarded as the

applied combinator dictates. If possible, we would like to entirely avoid constructing

the argument graphs until they are needed.

The only place we need to overwrite a node, is precisely where the result of the

expression is shared amongst other expressions. The central idea is this: if we can

detect sharing ahead of time, we should (ideally) be able to allocate, reduce and

update only these shared nodes. Each such individual will "hold" its expression

(in some as yet undefined non-graphical way) and be overwritten after evaluation

with a result sub-expression or constant. Of course, an expression graph contains

more than just nodes holding subexpressions, it also controls the computation. Once

CHAPTER 3. THE THREE INSTRUCTION MACHINE 46

these interconnecting graph links are abstracted away, we will need some method of

maintaining these prior associations.

An SCL program contains an arbitrarily large number of unique, arbitrarily com-

plicated supercombinators. Furthermore, these combinators are distinguished from

their simpler counterparts by having names by which they may reference themselves

and their brethren. The standard local context formed by combinator parameters is

now augmented by a single, large global context of all the supercombinators. Where

combinators may only rearrange or replicate their own arguments, a SC definition

may introduce new symbols in their definitions as well. In effect, supercombinators

are very much like functions, and this observation has great bearing on design of the

TIM.

3.2.2 Architectural blocks

Code memory

Existing graph reduction machines rely on microcode to implement a small fixed

library of simple combinators, and the control algorithm. This both creates and

is controlled by the graph it traverses when it recognises and initiates reductions,

rewrites nodes with results, and continues to search for other reductions. Given

the complexity of a supercombinator program, and the fact that most of the graph

structure is now gone, microcode seems inadequate to the task of implementing TIM.

Using graph expressions to interpret and reduce other graphs is impractical, so we

are left with the need for some variety of "macrocode" to describe how to rewrite

each graph. This instruction set will stand between the supercombinator source code

and the TIM microcode.

Figure 3.8 shows the old and new situations, where u*T denotes the transfor-

mation between schemes. Supercombinators are compiled into this TIM code, to

become graph-evaluation formulae. These are stored as sequential vectors in a linear

program code memory or CMEM (not in an allocatable store as s-expressions),

indexed by a program counter or 1t1.

CHAPTER 3. THE THREE INSTRUCTION MACHINE 47

Figure 3.8: Argument graphs built with code sequences

Frame Heap

These frames hold objects, and are referred to by objects. Objects code frame

can be updated with new code and frame for any shared code which has been eval-

uated.

The Frame Heap provides part of what we need to remove argument graphs, but

we must still address keeping track of arguments and the rest of the computation.

Consider a generic recursive combinator such as the following:

REC a = (TEST a)(TERM a)(REC a)

which takes a single argument a, and uses a boolean expression (TEST a) to select

between either a terminal expression (TERM a) or another recursion (REC a). Fig-

ure 3.9 contains a single iteration of this function as a standard graph reduction,

where the rectangles represent nodes, and the triangles abbreviated sub-expression

graphs.

Aside from the multiple allocations and traversals, the essential work of the reduc-

tion can be seen with the three node rewrites that occur (marked "0" in Figure 3.9).

Returning to the notion of supercombinator as function, we can think of these as

context change boundaries in the function call history. In this example, we execute a

bit from REC, make a call to the function TEST with argument a, which constructs

a context for itself (we assume) and a while later returns to the original context with

CHAPTER 3. THE THREE INSTRUCTION MACHINE 48

Figure 3.9: Standard graph reduction

the result F (false). Here, the return result uses (TERM a) and (REC a) as arguments,

and selects the latter fragment as the one to obtain control of the processor.

Recalling the description of graph reduction (Section 3.1.2), a spine is used to

keep track of the computation by stacking visited nodes. The spine consists of

two conceptual pieces: the local graph, and all the rest. Most of the time we are

concerned with the former, where the currently executing combinator is held, along

with pointers to its arguments and the expression root (rewriting) node. This "local"

part of the graph/spine forms our context, while the remainder holds our execution

tree, and tells us where to work next when the current sub-expression is evaluated.

During execution, we need some place to hold at least the local context, without

the benefit of a graph. This is necessary for two reasons, first that we must be able

to perform our "node" updates somewhere, and second that supercombinator appli-

cations are no longer "indivisible". That is, contexts must be maintained between

excursions to other contexts, whilst evaluating sub-expressions passed as arguments.

In orthodox architectures, function arguments are held in an "activation record".

Now that we are employing the concept of combinator-as-function, this is a reason-

able idea to use in the TIM. On initiation, each supercombinator will require some

number of arguments n; once these are located (see below), the TIM permanently

stores these arguments (in order) in an activation record called a frame. The graph

CHAPTER 3. THE THREE INSTRUCTION MACHINE 49

structure is now converted to look something like that which appears in Figure 3.10,

where each frame represents a combinator application that has been (at least par-

tially) evaluated. The dashed boundaries denote closures, with code pointers and

frames combined.

Figure 3.10: Context frames are graph node conglomerates

The Three • Instruction Machine contains a large physical memory, called the

frame heap or HMEM, in which to store all of the frames for all of the active

contexts in a program execution. The memory is a garbage-collected store from

which variable size context frames are allocated. The frame associated with the

currently executed context is always referenced by the machine register Current

Frame or CF. The combination of a supercombinator code address, and a frame

holding its' arguments, is known as an object, and is sufficient to completely describe

a machine context. Thus the machine register pair PC ICF1 tells us everything
we need to know. The new arrangement appears in Figure 3.11.

It is important to mention that all arguments to a combinator will themselves be

combinators, continuations of combinators, or constants and that each will'have its

own set of arguments. With reference to Figure 3.11, SC, is a "new" combinator,

and so has no arguments associated with it as yet. On the other hand, SC.,and

are partial evaluations of combinators which have already been started and so

own some arguments. Should SC evaluate an argument, the code at that re-entry

point will "continue" execution in the argument context, providing the needed result.

CHAPTER 3. THE THREE INSTRUCTION MACHINE 50

Figure 3.11: The frame scheme

Thus objects holding code and frame references are the units of communication in

the TIM, for every argument, every frame inhabitant, and the current context.

System stack

Having abstracted the code away from the graph, and dispensed with those portions

that hold arguments and represent the local context, we now turn to dealing with

the spine. The spine of the graph (and the stack normally used to hold it) performs

the important task of he the calling tree, so that execution can continue

in the correct context after an argument evaluation. Further, without the use of

microcoded operations, we cannot call a supercombinator in a single machine clock

cycle. Its arbitrary arrangement of arguments must be compiled together one cycle

at a time, which requires some sort of a temporary staging area.

So while it would be nice to delete the spine, the TIM maintains a vestige in

a system stack. This stack deals exclusively with objects (as before), is held in

a linear memory called SMEM, and its top is referenced by the machine register

(see Figure 4.1). Aside from temporary storage for combinator arguments

(the only remnant of the local-context portion of the spine), the stack is also used

for ALU operations, to hold return results of evaluations, and continuations. These

last are placed on the stack prior to a combinator call or argument evaluation by the

ARGP

CHAPTER 3. THE THREE INSTRUCTION MACHINE 51

parent context, as a "return address" for the child context when it completes with

a result. A continuation is accessed either explicitly as an argument subsequently

entered, or by virtue of running out of code in the PC, and retrieving the first

available continuation on the stack.

3.2.3 The Basic Instruction Set

The three instructions of the TIM architecture each have several options, used to

specify the instruction argument source, and any optional behaviours. In the follow-

ing descriptions, instructions make make reference to the following logical entities:

"COMB," used to designate a combinator code sequence. These are always "new"

combinators, having no arguments and thus no context other than the usual

initial flat-domain of combinator definitions. Instructions will always use a

CMEM pointer to the beginning of the supercombinator, and the implicitly

used frame is always null or 0.

an argument of the currently executing combinator. Instructions with this

designator find their referents in the current frame RF].

"LABEL," a continuation of the current combinator. Combined with the current

frame, labels form re-entry points used by a child context as one of its argu-

ments (lazy argument passing) or a return address.

"CONST," a machine constant, used to represent ground types such as integer,

boolean, lists, etc. (see Section 3.2.5).

Here, I describe the machine instiuctions using the notation of [FW87], with the

exception of objects. This is a semantic description of the instructions as machine

state transitions. Examples will revert to a concrete representation using machine

registers and pictorial descriptions. The machine state appears as a four-tuple:

{ Program Code, Current Frame, Stack, Frame Heap}

with code and stack shown as a list "[... ; ...; ...]", object internals as

frames as a1,a2, ... ,a

cz f and

", where the abbreviations C, A, and F are used for code,

CHAPTER 3. THE THREE INSTRUCTION MACHINE 52

argument stack and frame heap. Following the path of a function application, the

first task is to provide arguments to the combinator via the stack.

The PUSH instruction is used to place arguments on the system stack, drawing

from several sources. The arguments can be continuations, code labels, combinator

references, or passed arguments (from the frame of another context further up the

call tree).

PUSH ARG n Place the nth object of the current frame on the stack. In other words,

one of the current arguments is pushed on the stack.

{[PUSH ARG i; C], f, A, F [f : ... ,a,... {C,f,[a;A],F}

PUSH COMB c Push a combinator closure, codeptr 0 , where codeptr is the

address of the code for combinator "c", and 0 is the empty environment (ie.

"c" will retrieve its own arguments to form an environment).

{[PUSH COMB l;C],f,A,F} => {C', f, c ;A] , F}

PUSH LABEL 1 Push a continuation of codeptr CF (the current execution con-

text), where codeptr is the address of label '1" in the current combinator.

{[PUSH LABEL l;C],f,A,F} {C,f, 1 f A] , F}

The ENTER instruction is responsible for executing a context change, where the

context may be either a new combinator, a suspension of a shared argument, or a

continuation in a calling parent context. Whichever of these the context is, it is

represented as a code+frame object, retrieved from one of two places, and becomes

the new PC and ith

fr

CF

 [f :

ENTER ARG i Enter the argument object in the current ame.

f[ENTER ARG i; C], f, A, F Cj Ii

ENTER COMB c Enter the combinator "c" (
address, and the environment is empty.

] I .

CHAPTER 3. THE THREE INSTRUCTION MACHINE 53

The TAKE instruction fulfills the second half of the context change when neces-

sary. For a fresh call to a combinator, the environment is initially empty. TAKE will

pop the desired number of arguments from the stack, allocate a new frame of that

size, place the arguments into the frame, and force P1 to reference the new frame.

{[TAKE n;C],fo,[ai,..., an, A],F} =. {C,f1,A,F' [fi a1,... , a j}
These six basic forms of the three instructions form the normal order evaluation

mechanism for TIM. Figure 3.12 demonstrates the execution of the Turner combina-

tor expression SKKx, where the TIM code for S and K appears in Figure 3.13. On

the left are the two registers defining machine state, the program counter and current

frame. The argument stack appears on the right, as well as new frames allocated

from the frame heap. The evaluation proceeds as "SKKx = Kx(Kx) * z".

S

S+1 f

5+2 f

S+3 f
K

K+1f

Ca, Ix

ARGP

K K C,: Ix
0

Si f 0

C,: Ix Si Ii
C,: fa, Si fi

0

0

0

0

HMEM

0

f:

f:

K K C,: fa,

C,: Si fi

Figure 3.12: An example using Turner Combinators

3.2.4 TIM code compilation

The translation mechanism to convert from supercombinator source code to the TIM

instruction code is quite straightforward, at least for the basic instruction set. For

example, the TIM code representations for the two familiar combinators S and K

appear in Figure 3.13.

The denotational semantics of the translation appear in Table 3.1, adapted from

[FW87]; sharing and strictness analysis add significant complexity and have been

neglected. The source code is a set of supercombinator definitions, of the form

CHAPTER 3. THE THREE INSTRUCTION MACHINE 54

Kxy = x K: TAKE 2
ENTER ARG 1

take two arguments
execute second
take three arguments
a continuation for (yz)
push z
apply x to [z;Si;A]
push z
apply y to [z;A]

Sxyz = xz(yz)

S: TAKE 3
PUSH LABEL Si
PUSH ARG 3
ENTER ARG 1

Si: PUSH ARG 3
ENTER ARG 2

Figure 3.13: Supercombinator and TIM code

= exprj" followed by the main expression of the program. Each supercombinator

is shown as a A-abstraction to represent the argument list. G parses the definitions,

C generates code for each supercombinator, P generates PUSH instructions, and E

the ENTER instructions.

G[c1 = expri; next]c =

G[expr]o

CEAai . . . a.exprJc7
Ceie2Io
C[atomIo

P[ajlo
P[cJo
P[kJo
P[exprJ7

E[cJo

G[next](cr[expr1/C])
C [expr10

= [TAKE n; C[esprjci]
= [PIe2Jo; C[eiJo1
= EatomJo

[PUSH ARG i]
[PUSH COMB (C[c(c)]c)]
[PUSH CONST (k)]
[PUSH LABEL (C[ezpr]c)]

. [ENTER ARG i]
[ENTER COMB (C[o(c)1o)]

Table 3.1: Translation semantics for TIM code

As example of the compilation output appears in Figure 3.14. The function

from n, which produces an infinite list of numbers "n : n + 1 : n + 2 : ..", is
compiled first to a supercombinator and thence to TIM machine instructions. Note

that we assume a "standard library" of supercombinator support functions has been

defined and compiled for the use of programs. These are integer, boolean, list and

I/O operations that are provided beforehand (see Section 3.2.5).

CHAPTER 3. THE THREE INSTRUCTION MACHINE 55

from n = n : from (n + 1) original source code
from n = (cons n (from (+ n 1))) supercombinator code

TIM machine code
(cons

FROM: TAKE 1
PUSH LABEL FROM1
PUSH ARG 1
ENTER COMB CONS

(
FROM1:

from (+ nl)))
PUSH COMB FROM

PUSH ARG 1
PUSH CONST I
ENTER COMB +

Figure 3.14: Example TIM code translation

3.2.5 Ground Types and Operations

Of course, TIM must include ground types such as integers, booleans and lists to be

useful. The original designers chose to maintain consistency with the object concept

in the representation of ground types. Machine constants take the form of objects,

with the constant held in the frame reference half of the pair. The constant object

is distinguished from regular closures by the contents of the code reference, a special

instruction called SELF: SELF k . The larger purpose of the SELF instruction

is to make a constant appear to have the same operational behaviour as a regular

closure. When TIM attempts to evaluate a constant, it must recognise it and swap

to an alternate context. Constants can be directly enterea as passed arguments, or

arrived at after a string of strict operations. In either case, the current evaluation is

complete, and it is time to return to the previous context; this will have been saved

as a continuation on the stack, immediately preceding the entrance to this context.

Thus when executed, SELF has the sole task of swapping itself with the first object

it finds on the stack. The two instructions dealing with ground types are:

PUSH COMB k is used to push a constant onto the stack, as a SELF object.

{[PUSH CONST k;C],f,A,F}=. {C' f) L SELF k

SELF construct a SELF object with the contents of the LE1 as precision, swap with
the first object on the stack, and enter the stack object.

{SELF, k, cx fx ,A} 7F} {cx,fx, SELF k ,A] , F}

CHAPTER 3. THE THREE INSTRUCTION MACHINE 56

ALU instructions

Some of the basic operations from the TIM machine can be executed almost directly

in hardware. These ALU instructions are the strict operators from the source lan-

guage (those that require both their arguments to produce an answer), and consist

of the familiar mathematical, list manipulation, and boolean operations we expect in

any functional language. The operation P is used to define a pair, the left and right

members of which are accessed with the L and R operators, respectively. Mathemat-

ical and boolean operations (like comparison) can be built in, along with branching

operations for the selector IF, and so on. The operators included in the original

abstract TIM are shown in Table 3.2. It should be noted that the various operand

types (integer, character, list cell, pair) are recognised only at the source level, type

inference and checking at compile-time obviate run-time machine type mechanisms

and checking.

+ - x % integer
= 34 ≥> boolean (int)

P L R pairs
opt-in opt-out 10

&& II <<>>'•- logical
<≤ = / ≥> boolean (char)
hd tl null lists

get-file append-to-file make-file delete-file file handling

Table 3.2: TIM built-in operators

Although the strict machine operations are built into the architecture, just like

any other function they require a supercombinator "wrapper" to evaluate the argu-

ments. Each argument is processed and placed on the stack in turn, before invoking

an ALU operation to produce a result (that for "+" is denoted "#+", for example).

A stencil for an n-argument strict operation appears in Figure 3.15.

3.2.6 Implementing Laziness

TIM already provides call-by-name evaluation, by using suspensions to postpone the

evaluation of arguments and alternate sections of supercombinators. These suspen-

sions can be passed freely wherever they are needed to share expressions. All that

2Extracted from the Ponder system of Fairbairn and Wray [FW86]

CHAPTER 3. THE THREE INSTRUCTION MACHINE 57

op: TAKE n

PUSH LABEL op
ENTER ARG 1

0p1: PUSH LABEL op2
ENTER ARG 2

PUSH LABEL op,
ENTER ARG n

op: #aluop

Frame the context

Process argument 1

Process argument 2

Process argument a

execute ALU operation

Figure 3.15: Ground Type Operator Code

remains is to store the value of shared expressions so that they are evaluated but a

single time. There are three modifications to the instruction set of TIM necessary

to implement laziness, to ENTER, TAKE and PUSH.

Recall from Section 2.4 that only arguments are ever shared in a fully lazy set

of supercombinators, since any expression which may be shared is)%-lifted to a new

combinator definition. The result of a shared argument will always be either a

constant (the trivial case) or a partial application. This can be visualised in the

examples below, using the S supercombinator as context where its third argument

is shared. In each case the third argument T will be eventually reduced to a new

form 1'. The first example produces a constant, while the second results as a partial

application (the supercombinator T' which "adds 6 to its argument").

SCCT = (+23) 3 SçCT' = 5

SCCTx = (+(*23)x) 3 SCC,T'x = (+6x)

To ensure that updating is performed properly, a shared expression must be

distinguished from regular expressions, the expression result must be recognised when

it is available, and the original location of the expression overwritten with this result.

Since a shared expression is always retrieved from an argument slot in some frame,

the result should be written over that same frame slot. The particular frame and

argument to update is known at the time that the argument is pushed onto the

stack. In TIM this update information is held in a mark, shown as

CHAPTER 3. THE THREE INSTRUCTION MACHINE 58

which is placed onto the stack immediately before a shared evaluation begins. The

supercombinator compiler determines which arguments are potentially shared (using

a "when in doubt" method). A modification to the ENTER instruction enables it to

place marks:

f[ENTER ARG i; C] , f, A, F [f: ...' ci Ii ,... 11 =•- fci,fi, [f z

Of course, the entry occurs in a child closure passed the shared expression as an

argument, and the update information is no longer available to the child context.

TIM must link the entry to the argument push, and a modification to the PUSH

instruction provides the update location. Instead of pushing the literal argument,

an indirection containing the appropriate ENTER instruction is pushed:

{[PUSH ARG i;C],f,A,F}p {C, fl ENTER ARG i I ,A] , F}

This insures a mark referencing the original frame slot is pushed onto the stack

at evaluation time. In Figure 3.16, if the combinatbr c requires 3 arguments, we have

a shared partial application, in this case retrieved from the mt argument of frame

1. On execution, c will attempt to consume extra arguments, and be prevented by
doing so when its TAKE instruction encounters the mark.

IPCI 1E] [ARGP

C A Cl fi C2 f2 f M 13

Figure 3.16: Update marker in the stack

The shared application is saved in a form that can be reconstructed on demand.

This suspension has two elements: i) a special update frame allocated to hold the

arguments until needed, and ii) a code sequence "created" to restore the arguments

from the update frame to the stack, and enter the combinator. For the available

arguments i less than requested, a modified TAKE instruction now provides TIM

with sharing:

CHAPTER 3. THE THREE INSTRUCTION MACHINE 59

{[TA KEn;C],f,[ai,...,a, f mA] , I
JP, f,, A, F [j: ..., P f fy: ai,..., ail }

where P=[PUSH ARG i; ... ;PUSH ARG 1; TAKE n; C]

It should be noted that a suspension is the same as a continuation, except for its

originating at runtime as a shared evaluation. After TAKE has saved the application,

the current context will be the first to access the suspension. First, the arguments

of the update frame will be restored to the stack in original order. TAKE will again

attempt to get the full ri arguments (and may discover another mark) and execu-

tion will continue into the body of the supercombinator with the next instruction C.

Any other closure passed (an indirection to) this argument will now enter the sus-

pension, and reconstruct the partial application for itself, specialising it to whichever

arguments it chooses to place on the stack.

One of the immediately suggested optimisations in the original TIM machine is

to maintain both lazy and eager versions of the instructions, so that the expense

of lazy evaluation can be avoided where possible. In the full instruction set that

appears in Table 3.3, the eager or unshared versions are denoted "UNS'.

3.2.7 Summary

On first examination, the TIM architecture compares favourably with both SECD

and Combinator Machines. TIM does significantly more than the SECD with far

fewer instructions, due mostly to the universal use of objects. The abstract machine

applies the salient features of graph reduction while avoiding the needless expense of

the naïve global approach in the combinator machine. Recursion is simplified by the

use of supercombinators which have names, thereby avoiding fixed-point operators.

In fact, much of the work of implementing full laziness has already been done for

TIM by using supercombinators as source code.

However, the TIM instructions encode quite complex operations (notably TAKE),

despite their conceptual simplicity. The instruction modifications for sharing appear

to require self-modifying code, and objects which contain both references and packed

CHAPTER 3. THE THREE INSTRUCTION MACHINE 60

{[PUSH ARG UNS i;C],f,A,F[f:

{[PUSH ARG i;C],f,A,F} = {c,i,

{[PUSH COMB l;C],f,A,F} {C, f,

{[PUSH LABEL I;C],f,A,F} =.{c,i,

{[PUSH CONST k;C],f,A,F} {c,i,

{SELF, k, c7, f , A] , F} . {CXI A7

f[ENTERARGUNSi;c]fA,F[f:fci ,] I #- Jcj, fi, A, F}

{ [ENTER ARG i; C1 , 1, A, F If Ci j , ..J} f Cil ii, I
{[ENTER COMB c;C],f,A,F}

{[TA KEn;C],fo,[a1,...,a A], F}

{ [TAKE n; C], f, [a,, ..., a, f m A] F [1:

fP, f,, A, F If

,a,... } = {C,f,[a;A],F}

,A] , F} ENTER ARG i f

C

1 I

A] , F}

A],F}

,A] F}

,A] , F}

SELF k

SELF, k

I 2

{c, 0, A, F}

= {c, fl, A,F [Ii:

I

,A] , F}

..., P
fy fy

11

where P = [PUSH ARG i; ... ;PUSH ARG 1; TAKE n; C]

11

Table 3.3: TIM instruction set

instructions, a situation we would like to avoid. The three disparate storage spaces

are necessary to the function of TIM, but present a wide latitude for efficient im-

plementation options. Developing approaches to designing these will be the focus of

the following chapters.

Argo [Arg88] has suggested many notational and hardware optimisations for TIM,

a number of which will be addressed below. Chin [JGCH89, C3H89] has developed

an abstract machine which is a hybrid of logic programming and functional archi-

tectures. This machine allows logic clauses and functions to be interchanged freely,

and performs both resolution techniques and TIM-style expression evaluation.

The interested reader is referred to the following for further study of functional

architecture, and machines related to TIM. The Johnsson G-Machine [.Joh84, Joh87,

Kie85] is a predecessor of the TIM machine, which I characterize as an environment-

CHAPTER 3. THE THREE INSTRUCTION MACHINE 61

based SECD machine with support for graph reduction (whereas TIM is designed

to do graph reduction with environment support). The G-machine has spurred a

number of refinements, such as the spineless G-Machine [BPR88, Pey88], and the u-

G-machine [AJ89, Aug88, Bur88], a shared memory multiprocessor. An architecture

currently under development is the GRIP machine [PCSH87], a shared memory par-

allel graph reducer. George [Geo89] suggests an abstract machine for multiprocessor

graph reduction, derived from the G-Machine and focusing on parallel evaluation of

strict arguments. An early survey paper not limited to functional architectures is

[Veg84].

Chapter 4

Structural Optimisations

In this and the succeeding chapter, I discuss a number of optimisations to the TIM

architecture, some of which are novel and some of which have already appeared in

the literature, mainly in the work of Fairbairn and Wray [FW87, WF89] and Argo

[Arg89].

I begin with a brief overview of the set of proposed optimisations, pointing out

that set which is within the scope of this work. I then outline some of the architectural

design issues in TIM, propose a set of objectives that define an efficient and practical

hardware implementation, and present a more appropriate design philosophy directed

towards achieving this goal.

The remainder of Chapter 4 is concerned roughly with structural issues surround-

ing the context change, specifically those operations performed during or near the

TAKE instruction, including the creation of sharing information and updating of

results. Approximately half of this material is new and original work.

Chapter 5 will be concerned with issues much closer to the practical implemen-

tation details of TIM. An assortment of optimisations concerned peripherally with

TAKE and deferred from Chapter 4, and a host of small practical optimisations rang-

ing over marking, result updating, and the SELF instruction are covered. A novel

design for the TIM frame is developed, along with an instruction format, main mem-

ory hierarchy, and control unit with microcode. The majority of this material is

original work.

Most of those proposals that have been put forward are directed at the abstract

TIM. In contrast, I analyse each optimisation from an architectural design perspec-

tive.

62

CHAPTER 4. STRUCTURAL OPTIMISATIONS 63

4.1 Optimisations to TIM

For historical interests, the predecessor to TIM is the PONDER machine documented

in [Fai86]. In the initial TIM paper [FW87], a number of suggestions for future im-

provements to the abstract machine were outlined. For the most part these were

immediately obvious simple changes that were not pursued in any detail. In sub-

sequent work, more complex improvements have been presented, and some of the

initial work developed further. However, nearly all the work aimed at the abstract

TIM neglects practical issues. Elegant improvements to the abstract design may well

result in inelegant hardware design, and incur practical design problems. Further-

more, previous work has used a "shotgun" approach for TIM improvements; I try to

unify the chosen diverse optimisations into a single underlying design philosophy.

The original TIM paper of Fairbairn and Wray [FW87] suggested a handful of

optimisations for dealing with marks, update frames, and regular frames. Some good

tricks to use in a hardware implementation are also mentioned. Most of these small

changes are covered and credited below. A more detailed and readable description of

the TIM machine, its links to lazy evaluation, and details of implementation appears

in [WF89]. The ideas already presented for marks and update frames are extended,

and the paper introduces the use of a stack for marks, a method of deferring mark

operations to cut down on marking and the expense of handling them, and a way

to use a single frame for all updatees recognised on a TAKE. These are all treated

herein.

Both of the above papers also discuss the benefits of sharing and strictness analy-

sis, which deal with the most efficient application of the normal order or lazy versions

of the instructions. If an expression is not shared, normal order instructions are used

to PUSH and ENTER it. For those evaluations which do not need to be updated,

the code may be reorganised to place the task in question at the end of a list of

internally strict operations. Sharing and strictness analysis restrict the costs of shar-

ing to where it is necessary, and limit the memory and bandwidth consumption of

frames, marks, and updates. These are software techniques which fall mainly within

the domain of the compiler writer. While I avoid the techniques behind the prudent

CHAPTER 4. STRUCTURAL OPTIMISATIONS 64

use of the instruction set, the examination of alternative versions of the instructions

or details of implementation are within the scope of the thesis.

Argo [Arg89] provides the most thorough treatment of the TIM architecture to

date, and includes experimental results lacking in [FW87J and [WF89}. Argo covers

most of the optimisations suggested previously, focusing on optimisations to the

instruction set. The first half of the paper concentrates on reducing memory activity

in TIM in both the heap and stack, with treatments of partial applications and "fully

applied" combinators. The second half presents a redesign of TIM that involved a

different implementation of sharing, new markers and a method to place frames on

the stack. The changes used to produce the "G-TIM" machine rely on analysis

techniques that are likewise outside the scope of this thesis.

Each of the optimisations from the literature which I address, and those that I

suggest, is presented using the following format:

Rationale a brief introduction of the problem, a rationale for the optimisation, and

the explanation of its operation,

Implementation suggested modifications to the optimisation and implementation

options, ending with a critique suggesting the best approach(es), and covering

any possible significant effects on other parts of TIM and other optimisations,

Results the analysis and tesiing strategy (where necessary), and the results sug-

gested by the experiments.

The symbols ED and e are sometimes used to represent the pros and cons, respectively,
of a particular approach.

Each result is presented as an estimation of the efficacy of the optimisation. For

the original ideas, I compare the new approach to any competitors in the literature,

or provide a prediction on measurable improvement. Optimisations suggested in the

literature are first subjected to a practical design process, considering all possible

implementation options including original ones,, and then a judgement on the imple-

mentation is made through simulation or analysis. In some cases, literature results

are contradicted or weakened enough to be rejected outright, and I suggest an al-

ternative optimisation; however, many of these can be accommodated with slight

CHAPTER 4. STRUCTURAL OPTIMISATIONS 65

modifications to allow acceptable implementation. This is especially true of those

which are mutually derived and have appeared in the literature since the inception

of this work, for which I have a different view of the appropriate hardware methods

to be applied.

4.2 Design Philosophy

Throughout this work, I have tried to maintain a design philosophy for the TIM,

in order that the changes proposed and subsequently judged for effectiveness could

be fitted into a cohesive whole. There is thus a bias in the design towards those

optimisations that are useful and can be easily integrated together. Thus, defining

the design philosophy under which these determinations were to be made was key.

This presents a problem, since we can not easily draw on existing work to de-

velop this philosophy. A quick survey of where we stand with the TIM machine

would place us somewhere above the Reduced Instruction Set Computer (RISC)

paradigm in complexity, but below the Complex Instruction Set Computer (CISC)

definition. TIM does not reside in the continuum of systems conveniently described

by the RISC and CISC extremum, since it contains elements foreign to both. Thus,

the majority of Von Neumann-grounded knowledge on how to build a machine is not

directly applicable. Within functional architectures, the nearest relation to TIM is

the G-Machine [Joh84} (see Section 3.2.7). This older architecture implements lazy

evaluation and sharing under graph reduction, while attempting to treat the inher-

ent inefficiency problems of the graph. Unfortunately, the great failing of the various

incarnations of the G-Machine is that each has a large number of instructions and

contains many special-case optimisations. In comparison to TIM, the G-Machine

presents a highly contrived "retrofitted" appearance, making the machine overly

complicated and prone to suffer from the weight of its own instruction set and com-

piler requirements. To summarise, not only is the nearest competitor to TIM not

very useful for developing a design model, there is very little concrete design work

extant for functional architectures at all. Thus, I had to return to first principles to

provide a well-integrated design philosophy for TIM.

CHAPTER 4. STRUCTURAL OPTIMISATIONS 66

Design Objectives The central goal, as with any architecture, is to achieve a

good balance of three qualities: it should be small, efficient and "clean". The size of

the architecture is important since the implementation will likely be limited by time

and cost. Unnecessary design complexity should be avoided, to make the hardware

amenable to verification, and reasonably easy to layout and simulate. The architec-

ture will eventually be implemented as a single monolithic device, where a simpler,

smaller design will translate to a more modest transistor budget, and directly af-

fect the number of man-hours necessary to build the chip, and meet the predicted

performance goals.

Thus, the "keep it simple" principle as used here means that more promising,

more easily prototyped optimisations should be tried first over the more complex

and risky variety. This will translate to more effectively pursued design and imple-

mentation. In addition, standardised design using implicitly conservative estimates

on the quality of the eventual fabrication technology and of peripheral system hard-

ware. It should be possible to use average "off-the-shelf" memory chips, interface

components, and support hardware. The performance of TIM should not depend

on having the fastest or densest fabrication technology, or the best memories or

intelligent controllers.

The proposed changes and optimisations to TIM should contribute to the over-

all throughput of the architecture. This translates to higher MIPS1 ratings, lower

memory consumption, less garbage collection and so forth. Few functional archi-

tectures are competitive with commercially available Von Neumann machines, and

even fewer have published MIPS ratings (an admittedly Von Neumann concept of

questionable use with functional architectures). Absolute quantitative measurements

are not practical without a candidate fabrication technology and at least a tentative

system design, so optimisations are weighed on their ability to compete with each

other, in the three qualities mentioned above. I use these objectives to define a good

working design for TIM within the confines of an M.Sc. thesis, while the eventual

implementation and comparison with conventional technologies is left to future work.

As for keeping expense and implementation difficulty low, the set of potential

'Millions of Instructions Per Second

CHAPTER 4. STRUCTURAL OPTIMISATIONS 67

improvements has been ordered according to the same criteria. For example, "paper

changes" that modify the behaviour of the abstract machine come before the design of

complex hardware solutions. Namely, reducing the number of update frames created

by TAKE ("Conglomerate Frames") is cheaper and easier than designing a heap cache

and boosting memory bandwidth.

The last quality, that of being "clean", cannot be specified precisely. Hardware

designers have named this concept variously as "style", "elegance", "orthogonality",

and a host of other descriptives. Esentially, it boils down to how well the architecture

holds together, while minimizing waste of hardware resources, and smoothing the flow

of instructions and data amongst resources. A continual emphasis on homogeneity

throughout the design process, for the instruction set, control unit, datapath, buses

and registers, can help them all work well together. The absence of loose-ends and

special cases means the absence of "irritants" around which performance hits and

bottlenecks may form, since the use of hardware in the time domain is more balanced.

Design Issues in TIM There are a number of implementation problems posed

by TIM, but the two major ones are:

1. the wide disparity in task responsibilities amongst instructions, and

2. the very heavy memory cycle demands of each instruction.

The first problem is best characterized by comparing the TAKE instruction with

for example PUSH CONST. TAKE will need tens and sometimes hundreds of micro-

operations as opposed to the three or four required by to push a constant onto the

stack. Instructions exhibit widely disparate execution times, types of logical tasks,

and hardware and memory usage patterns. This is the case not only for these two

extremes, but between different flavours of the same instruction, and for different

execution contexts (marks and updates make TAKE widely variant). If the goal is to

provide high throughput and the best use of the available hardware resources, how

does a hardware designer balance the needs of these two unorthogonal instructions?

The majority of the remaining material in this chapter is concerned with optimising

the tasks TAKE performs, in order to provide a good basis for a fast implementation.

CHAPTER 4. STRUCTURAL OPTIMISATIONS 68

The second problem is the overriding concern with all design decisions in the TIM

architecture. In all phases of execution, TIM is memory intensive (see Figure 4.1).

Each operation accesses two or more logical memory partitions at least once, and

in the case of all partitions but CMEM each access is four bytes wide. All of the

optimisations discussed in both Chapter 4 and Chapter 5 are involved in some ca-

pacity with reducing the number of memory accesses, or improving on the speed or

usefulness of each access.

Operation CMEM
R

HMEM
R W

SMEM
R W

MMEM
R W

PUSH ARG UNS 1 1 1
PUSH ARG 1 1
PUSH LABEL 1 1
PUSH COMB 3 1
PUSH CONST 3 1
SELF 1 1 1
ENTER ARG UNS 1 1
ENTER ARG 1 1
ENTER COMB 3
TAKE (no marks) 1 a n
TAKE (marks) 1 n+m a In
RESTORE 1 r+1 r

Table 4.1: Breakdown of Memory Accesses by Operation2

Philosophy of TIM Despite its being called a functional architecture, TIM is

built out of the same hardware as any other computer, and must be treated as such.

All design methods employed and most of the optimisations discussed herein have

been used before,. but applied to conventional Von Neumann machines. While the

techniques are not new, they have been selected carefully to be appropriate to the

structure of TIM.

Process and Tools At the initial stage, the process of choosing and exploring op-

timisations was a subjective one. Those optimisations which looked "good", on their

own and especially in concert, were chosen for examination. All optimisations are

'This table mentions a new instruction "RESTORE" (see Section 5.1.2) and assumes the machine
instruction format described in Section 5.4.

CHAPTER 4. STRUCTURAL OPTIMISATIONS 69

judged mainly from paper analysis, and argument of the pros and cons of each, con-

cerning aspects of the implementation, effects on other optimisations and portions of

the design, and so forth. This summary of trade-offs usually yielded a clear conclu-

sion as to the efficacy of the proposed improvement. In cases where the conclusion

was unclear, simulation of the architecture was used. Rather than do the thousands

of simulations for a statistically solid conclusion, I sought to get an indication which

side of the scale the optimisation in question falls on. Thus, the subjective analysis

of the modification combined with some supporting tests, would yield the conclusion

that the modification is promising, and worth further examination.

To facilitate simulations, I have designed and implemented a register-level hard-

ware simulation tool called TIMSIM, based on the object-oriented language SIM-

ULA and the DEMOS simulation package. TIMSIM is described in some detail in

Appendix A, while Appendix B describes the TIM simulation environment and in-

cludes a sample simulation run. The results derived from simulation came in two

basic varieties: qualitative and quantitative. Qualitative results about the basic

behaviour of TIM are useful to substantiate the arguments for or against an optimi-

sation or aspects of the implementation. These results would be dynamic instruction

execution frequencies, memory consumption, and the like for a set of representative

test programs. For instance, if there is a very effective but expensive modification

to an instruction such as PUSH COMB, and this instruction has a low execution

frequency, the result argues against the global usefulness of the optimisation.

Quantitative tests are used to test whether the optimisation, when fully imple-

mented, provides better performance or not. These use. the three stage process of

hypothesis, experiment design, and interpretation of results. In these tests the spe-

cific change is modeled for comparison against its competitors or the unoptimised

version. The comparison will always test the rationale of the optimisation, usually

a potential improvement to memory consumption or reduced memory activity, and

often a generic increased execution speed. Optimisations sometimes have palpable

effects on the performance of other optimisations, and where these relations are

not easily characterized on paper, simulation will sometimes give an indication of

whether or not optimisations work well together. In some cases, there is quite a

CHAPTER 4. STRUCTURAL OPTIMISATIONS 70

64K
bytes

CMEM

Ii Ii+1 Ii+2 143
PC

64K
addr

SMEM IArgBaseI

MarkTarget IMarkUmft1
256K
bytes I

64K
addr

a,gpr I heappfr IMarcP1

MMEM MarkBase

HMEM FrameBasel

256K
bytes
64K
addr

CF J4.

IFramaFreeI

Figure 4.1: Basic Logical Memory Structure of TIM

bit of "blurring" between optimisations. These relations are treated as they arise,

inevitably leading to some apparent redundancy between sections.

Throughout this and the next chapter, I have assumed that the logical memory

partitions CMEM, HMEM, SMEM and MMEM have been assigned storage in a single

physical memory as pictured in Figure 4.1. Each object is 32 bits wide, split into

two 16 bit pointers to CMEM and HMEM. The code memory CMEM is 8 bits wide

and contains 2" .(64K) addresses, while the frame heap HMEM is 32 bits wide and

holds 216 objects. The argument stack SMEM and mark stack MMEM are also both

32 bits wide, and their extent depends on the run-time placement of the stack bases.

CHAPTER 4. STRUCTURAL OPTIMISATIONS 71

Sec Contents Source Comments
4.3 An Alternative TAKE

Stack Cache
ALLOC with status flag

[FW87]
(pg.41)
[Arg89]
(pg.106)
Author alternative solution
Author alternative

implementation
4.4 A Stack for Marks [FW87]

[WF89]

(pg. 148)
[Arg89]
(pg.105)

Author

concept introduced
concept of limit registers

concept mentioned

analysis and design
4.5 Context Changes

and Closures
various

46 Conglomerate
Frames

[FW87],
[WF89]

multiple suspensions
held in one frame

Author Analysis, design, results
4.7 Conglom. Frames and

Tandem Mark Stack
Author Analysis, design, results

Table 4.2: Overview of Material

These object and memory widths were selected arbitrarily as the minimum needed

for a practical implementation of TIM, and are easily expanded.

The contents of the remainder of this chapter and their attributions are sum-

marised in Table 4.2.

4.3 An Alternative TAKE

Rationale This optimisation deals with "fully applied combinators", those which

have all of their arguments pushed onto the stack, and are immediately applied. As

defined in the literature [WF89, Arg89], the rationale is to avoid the use of the stack

by pushing arguments directly into a pre-allocated frame. This is an excellent idea

for avoiding the use of the stack for constructing argument lists and reducing the

bandwidth demands on storage.

I can see a possible further justification in support of this optimisation, relating

CHAPTER 4. STRUCTURAL OPTIMISATIONS 72

to the implementation of the Y operator in [FW87]. The first instruction is "TAKE

1 and extend it to two", which could be easily accomplished with a pre-allocated

frame that can be filled in later. This avoids creating two new special flavours for

the TAKE. Conversely, a largish microcode sequence for Y may be a faster and more

compact solution, but is perhaps unjustified as Y is executed only once per function,

and forms part of a one-time startup cost. In any event, the point is moot since it is

not necessary to use Y at all in the TIM machine, as all the supercombinators have

names, and the storage of interim results is automatic with the call to TAKE in each

function head.

Implementation The proposed optimisation breaks the normal TAKE instruction

into two pieces:

TAKE n =

ALLOC n
take 1

*n
take 1
PTAKE

Figure 4.2: The reimplementation of TAKE

where the first instruction allocates a frame of size n, the last ("Preallocated TAKE")

replaces the normal TAKE at the function .head and simply causes CF to point to the

new frame, and each singleton take represents one of the PUSH operations that would

normally place its argument on the stack. This is in fact a new instruction (shown

as HEAP PUSH in [Arg89], and PUSH ARG n INTOFRAME within the PONDER

machine of [Fai86]). The compiler writer must recognise where fully applied combin-

ators occur to substitute the ALLOC and PUSH instructions, and supply an alternate

entry point to the function that invokes PTAKE to simply assume the preconstructed

frame.3

Results In essence, as implemented in the literature this optimisation requires

three new instructions be added to the repertoire, and compiler effort to utilise

3[Arg89] overlooks the necessity of placing the PTAKE in the function body.

CHAPTER 4. STRUCTURAL OPTIMISATIONS 73

them. The result is a lessening of stack usage. [Arg89] states that the result is

an approximate 50% saving in stack memory activity for fully applied combinators,

but no results on execution speed or the effect on code memory were available. For

those situations where the compiler applies the optimisation, using the instruction

format of Section 5.4, Table 4.3 shows the instruction and memory cycles consumed.

The notations "Xr" and "Xw" will be used frequently throughout this thesis. They

represent memory read and memory write cycles respectively, where "X" may be any

of C (code or CMEM), H (heap or HMEM), or S (stack or SMEM).

original Cr Hr Hw Sr Sw candidate Cr Hr 11w Sr Sw

PUSH ARG a 21001

PUSH ARGa1 2 1 0 0 1
ENTER COMB I 3 0 0 0 0

f:TAKEn 1 0 n n 0

n + 2 insts 2n+4 n n n n

ALLOCn 1 0 0 0 0
HEAP PUSH a1 2 1 1 0 0

HEAP PUSH a 2 1 1 0 0
ENTER COMB I 3 0 0 0 0

f:PTAKE 1 .0 0 0 0

n + 3 insts 2n+5 n n 0 0

Table 4.3: New TAKE and ALLOC costs

To judge the efficacy of this optimisation we need to determine the typical value

of n, the frame size for fully applied combinators. Although time did not permit a

determination of the frequency of fully applied frames in representative programs,

some information can be gathered from just static analysis. Static analysis yields the

result that the average frame size is 2 (size = 1.86, o• = 1.98). For n = 2, this implies

that on average four stack operations (2 read, 2 write) are saved in TAKE, while one

more instruction cycle (including a CMEM access) are spent. Thus for most function

closures, with no information about what proportion are fully applied, the added cost

of three new instructions, and an extra entry point on each function in question, is

not a profitable tradeoff compared with the number of PUSH instruction cycles saved.

Note that we must have either a fourth new instruction to avoid clashing of entry

points, or the inelegant fix of having PTAKE jump over whatever instruction follows.

The question which has been asked is "Does adding these new instructions help?",

whereas the question should be "What is the best way to cut down memory activity

CHAPTER 4. STRUCTURAL OPTIMISATIONS 74

preceding and during the operation of taking function arguments?" This task may be

better much better served by a more utilitarian approach, that of using an internal

stack cache to buffer arguments on-chip temporarily (see Section 6.2); this avoids

new instructions completely, and serves all applications of the PUSH instruction. In

any case, the optimisation as it stands above can be fax better implemented using

the following scheme, which uses a single new instruction and incurs less control unit

complexity. ALLOC behaves as before, allocating a frame of appropriate size on the

heap, and sets an internal status flag "HEAPDIRECT". While HEAPDIRECT is set,

all PUSH instructions redirect their referents to the new heap frame, and the first

call to TAKE will simply swap CF pointers and reset the flag. This is more efficient,

easier to implement, and more transparent to the user.

4.4 A Stack for Marks

Rationale This idea has been suggested in the initial TIM paper [FW87], and each

paper on TIM thereafter [WF89, Arg89]. To indicate that the result of a computation

is shared amongst multiple contexts, a mark is inserted in the stack. The shared

result will be a partial combinator application, and the mark delineates the partial

application from regular stack parameters. On the first attempt to specialise the

remaining parameters, the TAKE instruction of this combinator will detect the mark,

and perform an update. Updating is performed as an interrupt process, creating a

suspension frame which holds the stack arguments above the mark, and updating

with the closure of this suspension and the current code. After completion of the

interrupt, the current context resumes execution.

The following problems arise with processing of marks:

1. potential bandwidth saturation on the system stack and heap (CMEM and

H M EM respectively),

2. quick checks for marks are impossible since they are mixed with arguments,

3. creating suspension frames quickly and efficiently is difficult when the TAKE

must be interrupted.

CHAPTER 4. STRUCTURAL OPTIMISATIONS 75

These problems occur during the time-critical context change. We wish to accelerate

the processing of marks, and achieve some measure of load-balancing to relax the

demands placed on ArgP, CMEM and H M EM.

Implementation A proposed partial solution is to place marks in a separate stack

of their own. This list of HMEM addresses (frame pointer ± offset) would be com-

bined with CMEM addresses that indicate mark placement amongst the arguments.

The first choice for mark stack storage is in CMEM, at the end of the program code

and growing upwards towards the system stack. CM EM would be addressed with two

additional CPU registers MarkP and MarkBase, to hold the top and base of the mark

stack. Possibly, the first mark(s) would be cached in the CPU, to save a CMEM read

cycle or two, depending on the average number of marks that a TAKE must process.

If this is unity, then caching only the first mark, or perhaps only the placement

address is sufficient to give a speedup in most cases.

a,

42

mark f,# n'

ab

mark r'+ n"
a4

Old Stack

 ArgP

f,,# n"

f,+ n'

a

a,

MarkP

86

a4

With Mark Stack

ArgP

Figure 4.3: Mark Storage Methods

The utility of this optimisation depends on exactly how the suspension creations

are micro. In any case, we will need to have a clear copy of the stack arguments from

which to build suspensions and the TAKE frame; either we build the TAKE frame

CHAPTER 4. STRUCTURAL OPTIMISATIONS 76

first, and construct suspensions from it as needed, or start building the TAKE frame

and on encountering a mark make it a suspension frame, copying from this to restart

the TAKE frame. The latter uses less overhead to keep track of things. However,

both of these will use a lot of H M EM bandwidth for all the heap—heap copying. In the

interests of load balancing, we would like to keep our clean copy of the arguments

in CMEM, for copying to HMEM. This will be most helpful if HMEM and CMEM

are physically separate memories (optimisation 6.2), but it is still useful in making

the best use of the internal hardware (ArgP, MarkP, MAR, MDR) and simplifying

microcode. Referring to Figure 4.3, keeping our clean copy in the old version of the

stack is costly, as we have to keep reading over old marks. Trying to squeeze marks

out of the arguments as we update them, or relocating the clean copy somewhere

other than the heap (such as a CPU stack cache) would seem to be self-defeating

in view of the average frame size and occurrence of marks. In the new version with

a mark stack, repeated stack—heap copying seems obviously the way to go, starting

with the smallest suspensions and working towards the complete TAKE frame.

There are the following advantages and disadvantages to this approach:

ED a tag bit is avoided. Mixed marks and arguments would have to be distin-

guished from each other. This saves address space available with each pointer,

extra hardware, and micro to check the tags.

during TAKE, presense of marks in the local stack can be checked immediately,

via a simple address comparison.

a simpler update algorithm, less organisation needed to keep things straight.

ED concurrent access of stacks and heap memory with dual physical memories.

Otherwise, address generation can at least proceed concurrently.

e the cost of additional CPU registers MarkP and MarkBase, the logic for address
comparison, and microcode. Possibly also registers to keep the first mark

MarkTarget, or at least its stack referent MarkLimit local to the CPU.

E) although the discussion suggests an update algorithm that will roughly balance
the use of HMEM and CMEM, not much bandwidth is actually saved. We

CHAPTER 4. STRUCTURAL OPTIMISATIONS 77

look to the use of conglomerate frames and accelerated TAKE instructions

(optimisations 4.5, 4.6) to eliminate redundant use of HMEM. See Table 4.5

for a summary of the heap and stack memory cycles used when the mark stack

optimisation is interrelated with use of conglomerate frames.

Results A number of simple experiments and data collection tasks are needed to

determine the utility of this optimisation, and quantify its effect on performance:

1. Quantify with respect to average latency of the TAKE instruction across test

suite.

2. Examine variants of update algorithm to find which best uses memory band-

width.

3. Measurements to be made with and without the use of conglomerate frames

(optimisation 4.6).

4. As to the caching of marks, find standard deviation for number of marks within

individual TAKE instructions, and as a function of the argument to TAKE.

5. Also find the average separation of marks on the stack for each TAKE, and the

ratio of TAKE instructions with marks to those without.

Cache size should be optimal for the average number of marks we can expect; cache

cost will be optimal if we have prevalently singleton marks, and we can get away

with storing only the current MarkLimit.

45 Context Changes and Closures

Rationale The TAKE optimisation reflects a misconception about what makes

TIM a good architecture. TIM uses a processing model based on universal objects,

and the unrecognised trade-off cost is a loss of processor homogeneity and greatly

increased complexity in the instructions, arising from the problems of trying to fit

everything into the object model. The solution to this problem is not to break

instructions (and their component tasks) up into smaller units, but rather to simplify

CHAPTER 4. STRUCTURAL OPTIMISATIONS 78

and reduce the number of tasks being performed, or in lieu of this, to reallocate tasks

to machine instructions in a different way.

The vast majority of the work in TIM is performed immediately before, during

and after function application, particularly in the TAKE instruction. In this section

I will cover a number of ways to streamline the execution of the TAKE instruction.

Of course, the greatest cost of any memory operation is a memory access, whose

latency stalls the processor. The task then is to reduce latency, or reduce memory

accesses. In relation to the TAKE instruction, the first can be accomplished with

parallel memory accesses or memory buffering. The application of these well-known

and established techniques to TIM is covered below in Section 6.2 and Section 6.2.

In this section I cover a couple of small tricks applied to the TAKE instruction.

Although small, these optimisations are of a more practical and promising variety

than that of Section 4.3, and provide a suitable introduction to the next section.

Implementation - common updates Two or more marks on the same stack

address can be updated with the same f c This is since they

reference the same frame and will wish to recover the same number of objects.

Implementation - initial TAKE (Due to [WF89]) Whereas with normal sus-

pensions a sequence of push instructions (or micro transfers) is used to copy the

suspension on top of the specialising arguments already in the stack, this is not

necessary with the initial TAKE context. Regardless of the suspensions needed in

the current TAKE, we can immediately pull all the arguments required (shared or

otherwise) into the new frame. Marks are processed essentially independently, and

the current context will be entered directly, using this frame, once the work is done.

Results For "initial TAKE", there is a minimal implementation cost involving

changes to the microcode only. We save all the cycles needed to push the suspension

contents back onto the stack, and re-execute the now unmarked TAKE. The first

optimisation is even easier to implement in the microcode. In both cases, the op-

timisations are simple and effective, requiring only changes to the microcode. This

is the key to their success: rather than change what the instruction is doing, the

CHAPTER 4. STRUCTURAL OPTIMISATIONS 79

optimisatioiis change how they are doing it.

4.6 Conglomerate Frames

Rationale (Due to [FW87], [WF89](pg. 149)) Multiple marks in succession can

be treated optimally by creating a single update frame, and sharing this amongst

all.

Implementation The previous optimisation which updated two or more redun-

dant marks with the same suspension frame is the "base case" of this (less intuitive)

optimisation. Instead of creating a new suspension frame for each marked stack loca-

tion, we use a single suspension frame for all of them. In fact, we use the same frame

as the current context. No confusion will arise, since marked arguments which have

been updated will share successively larger slices of the same suspension frame, but

cannot side-effect each other. Each updatee will only "copy out" (optimisation 5.1.2)

as many objects from the suspension frame as each needs, on top of the specialising

arguments already in the stack, and immediately TAKE the lot.

The following summarise the utility of this optimisation:

Heap usage is greatly reduced, and these H M EM access cycles are removed at

the time-critical context change. Garbage collection is likewise more infrequent.

Cost to implement the optimisation is essentially nil, requiring only changes to

the microcode. A summary of the heap bandwidth savings appears below.

E) Conglomerate frames are at odds with another optimisation designed to save
cycles at suspension restart (optimisation 5.1.2). Here, microcode uses the

frame size held in the frame control word(FCW) to quickly reload the suspension

(either to stack or new frame), avoiding the execution of a vector of push

instructions. Obviously, this will not work unchanged when different sized

suspensions coexist in the same frame.

CHAPTER 4. STRUCTURAL OPTIMISATIONS 80

Results The expected savings for an individual TAKE instruction are as follows;

given the following definitions,

n number of objects in subsequent TAKE

mi number of marks at the i1h object

sgn'(x) = 1 if x > 0,0 otherwise (inverse signum)

the cost of creating a suspension for each set of shared stack elements, measured as

object write cycles to the heap, is:

((i+1).sgn_1(mi)+mi) + n+1

i=1

The sum is what each new suspension (i objects plus a frame status word) costs to

build, including the update writes. The second term is the cost of the frame which

we TAKE. Using the conglomerate frames gives us a cost of

i=1

cycles. In the worst case (every argument to the TAKE is marked), and factoring out

the identical costs of redundant marks, we have:

original optimized

(1(i+1).sgn1(m)+m)+n+1

(E1(i+1)1+1)+n+1
(1i)+2n+n+1

0(n 2) .

(Eim)+n+ 1

i1)+n+ 1
2n+1

2n+1

0(n)

Table 4.4: Worst-case heap consumption with/out conglomerate suspensions

Of course, we also save many read cycles of the heap and/or stack to copy from one

suspension to another.

4.7 Conglomerate Frames and Tandem Mark Stack

Rationale The obvious usefulness of the two optimisations of a mark stack and

conglomerate frames should complement each other, and provide increased efficiency.

CHAPTER 4. STRUCTURAL OPTIMISATIONS 81

Implementation The update mechanism is related to the method by which we

store and manipulate marks. Table 4.5 summarises the memory cycle costs in CM EM

and HMEM, for both read (R) and write (W) cycles. The two general update mech-

anisms "Heap-Heap" and "Stack-Heap" are those described along with the Mark

Stack optimisation (Section 4.4), when using conglomerate frames there is only one

ordering for performing updates. Note that the symbol rn (as before) refers to a

mark, which is the same size as an object (16 bits f + n, 16 bits CMEM address for

stack limit). Thus marks, update targets, and regular arguments each take identical

work for read or write cycles.

Update Mechanism Original Rank

Heap —+ Heap W

R

[Ei(2i" + 1) . s9n'(mj) + m] + (n + i)b
(L1m1)+n

4th

Stack —+ Heap W

R

[EL1(i + 1) sgn 1(mj) + m} + (n + .1)c
E1 (E1 m5 + i sgn'(m1))

5th

Conglomerate Frames W

R
(Et l m) + n + 1
E?-im+n
Using Mark Stack

Heap —+ Heap W

R

[E1(2i + 1) . 8gn 1(mj) + m] + (n + 1)
(im j)+n_1d

3rd

Stack — Heap W

R

[E(i + 1) . 8gn 1(mj) + m] + (n + 1)
i . sgn_l(m)e + m1

2nd

Conglomerate Frames W

R
rn + 11+ 1

L1m+n
1

6R/W cycles
bSum of the stack-heap W cycles
'The TAKE
dTop mark is cached

'Reads for susp. frames
1MarkStack reads

Table 4.5: Memory Usage for Conglomerate Frames and Mark Stack

Results The conclusion from Table 4.4 seems to be that the presence of a Mark

Stack is immaterial to the usefulness of conglomerate frames. Note the ranking

for each update mechanism, which I have derived mainly from the cost equations

CHAPTER 4. STRUCTURAL OPTIMISATIONS 82

but which include subjective judgement as to the efficiency and elegance of the

mechanisms.

To verify the conclusions of this analysis, there is a complex experiment to per-

form. In addition, a useful exercise in safety would be functional simulation over the

test suite, to verify that conglomerate suspensions do not side-effect each other, es-

pecially during garbage collection and further updating through child contexts. The

real execution speed up can be measured in terms of the simple dynamic execution

profile of our test suite, with which the cost equations can be scaled. This will not

change the conclusion, only the strength of it.

4.8 Summary

In this chapter I have applied standard, well-understood and accepted arguments to

a new architecture, to judge the relative usefulness of optimisations to TIM during

the TAKE region of the instruction life-cycle. Building from optimisations suggested

in the literature, I have provided either an alternative implementation (s) to each

optimisation or an entirely new approach to accomplish the same task. I have also

developed an implementation of two major optimisations, conglomerate frames and

a mark stack, and analysed the behaviour of the two individually and together. I

have provided a deeper analysis of optimisations than hitherto done by others, and

over half of the material presented is new and original, in the form of additions,

refinements and alternate approaches.

In all cases, my conclusions have been argued based on observation and subjective

analysis. Most obervation has taken the form of static program analysis, supported

by some simulation to provide dynamic results. Since simulations are time-consuming

both to design and run, it was not possible to fully cover all aspects of dynamic

program behaviour. To provide statistically significant results requires huge numbers

of simulations, both of my version of TIM and versions from the literature. Instead, I

have settled for an indication that my arguments are correct, using a small assortment

of typical programs. The results given here denote where future, more thorough work

should be done.

CHAPTER 4. STRUCTURAL OPTIMISATIONS 83

If I were- to select the "best buys" of these optimisations, I would avoid those

optimisations such as splitting TAKE into multiple instructions, and concentrate

my efforts on the underlying work. In almost all cases, this is the high bandwidth

consumption. Rather than moving memory accesses around, it is better to reduce the

numbers or shorten the extent of memory accesses. To this end, the most promising

optimisation is the use of conglomerate frames, and simple optimisations to the

algorithm of the TAKE instruction. The use of a mark stack is useful, but loses its

cost vs. benefit tradeoff when implemented beside conglomerate frames.

Chapter 5

Secondary Optimisations

In this chapter, I discuss aspects of TIM at the machine-instruction and register-

transfer levels. Roughly half of the material below takes the form of optimisations,

differing from those in Chapter 4 only in their being further removed from the high-

level TAKE instruction and context changes. Although these optimisations relate

to high-level instructions, they cover low-level hardware representations of objects

and implementation methods that in some instances require small changes at the

instruction-level. The remainder of the material covers the implementation of TIM,

including design of the instruction set format, structure and use of heap frames, and

the treatment of some difficult uses of objects in the original version of TIM.

As in the previous chapter, optimisations are presented in the form of a ratio-

nale, implementation and results. In some instances, I have built on simpler

optimisations previously suggested in the literature. Table 5.1 below summarises the

chapter material, the majority (approximately 90%) of which is new. Of particular

interest is the new heap frame model I have developed, and a new TIM instruction

called RESTORE which I have designed. All of the elaborations on optimisations, new

optimisations, design arguments and design specifications presented in this chapter

are original work.

5.1 Frame Design

A good hardware implementation of frames is key to providing good performance in

the TIM machine. In some situations, a relatively small change in the hard-ware at the

register-level enables improvements to the way instruction-level tasks are performed.

These methods are not always obvious from the instruction level of the machine, and

84

CHAPTER 5. SECONDARY OPTIMISATIONS 85

Sec -Contents Source Comments
5.1

5.1.1
5.1.2

Frame Design Hardware support for frame
heap and suspensions

Frame Control Word Author Store control/status info
Self-Contained
Closure Frames
Suspension object stored
in frame
Combinator address
stored in frame
Frame status bit, new
RESTORE instruction

[WF89]

(pg.149)

Single generic code vector
used to restart suspensions

Author Quicker restart

Author Dispense with code vector

5.2 Marks and Updating
"Degenerate" marks

Author Improved mark handling
[WF89] Handle marks on stack top

RESTORE method Author Fix flaw in [WF89]
5.3

5.3.1

5.3.2

Objects and Direct
Instructions

Handling of special-
purpose objects

ENTER ARG
Tagging methods

Author Direct mark placement
Author Options and evaluation

SELF Author Deleting all usage
5.4 Instruction Format

Design
Relative Addressing
Formats and Opcodes

Author Constraints and treatment

Author Applied to PUSH LABEL
Author Instruction formats, opcodes,

addressing modes

Table 5.1: Overview of Material

are most useful when they can be accomplished with changes only to the microcode

and structures hidden from the user with no modifications to the instruction set

necessary.

5.1.1 The Frame Control Word

Rationale The normal notion of a frame (Figure 5.la) suffers from practical lim-

itations. For instance, without some notion of the frame size, a garbage collection

mechanism would not be able to properly deallocate the variable-size frames stored

in the heap. This and other information pertaining to the low-level characteristics

of the frame are useful to retain.

CHAPTER 5. SECONDARY OPTIMISATIONS 86

Implementation Each frame should then have an extra object-sized word associ-

ated with it to store such information as the frame size, and other status, control and

garbage collection information which is outlined in following sections. This frame

control word (FCW) will be the first object in the frame (Figure 5.lb).

Figure 6.1a: Instruction-level frame structure

H L

.f'ani.e

FCW

C f

C f

C f

framef

•....•...•:•: framek

HMEM

31 . 16

G -
1514 1312 87 0

FCW

Figure 5.lb: Frame with FCW

Although an in-depth treatment of garbage collection is beyond the scope of this

thesis, it is useful to mention the minimum that is required in the TIM machine by

way of garbage collection bits. Fairbairn and Wray [FW87] mandate a bit pattern

be stored beside 'each label (or rather entry point) in a TIM program, to specify

CHAPTER 5. SECONDARY OPTIMISATIONS 87

which arguments of the current frame are used by each code fragment. Besides the

GC mark bit (G) for the frame, a mark-collect scheme using these patterns would

require a bit vector to specify which arguments of the frame are bereft of references,

and which are active, for the collection phase. The FCW is the ideal place to store

such a vector.

Results The cost of this optimisation is fairly high, considering that each frame

holds an extra object and frames are typically small. However, the FCW is not

accessed as frequently as are the other words of the frame, being used only for

garbage collection and during other relatively infrequent operations. Furthermore,

the storage costs of the FCW can be reasonably amortised over the benefits of the

optimisation in the next section.

5.1 • 2 Self-Contained Closure Frames

Rationale When restarting suspensions, TIM relies on a sequence of PUSH ARG

instructions prefixing the combinator entry, to restore the suspension frame contents

to the stack on top of the arguments specialising the shared partial application. The

use of a code vector for performing this task is particularly inefficient for several

reasons:

1. the code vectors themselves consume memory space.

2. the PUSH AR, sequence must be executed for each re-awakened suspension.

3. the microcode for TAKE which processes marks must be able to generate CM EM

addresses into the vector of PUSH instructions.

The literature has suggested two simple optimisations in this area, which I outline

below. I modify the second literature optimisation to be more efficient, and then do

away with PUSH ARG vectors altogether. This improved approach is made possible

by the use of a FCW.

Implementation (1) The first problem is the expense of storing "restart vectors"

in CMEM. Fairbairn and Wray [FW87, WF89] have suggested initially that rather

CHAPTER 5. SECONDARY OPTIMISATIONS 88

than have a-vector of PUSH ARG instructions for each number of shared arguments

for each combinator, TIM use instead a single vector of instructions for each com-

binator. For some combinator "C", the suspension and vector "F" are "created" by

the TAKE instruction (Table 5.2).

I[TA K E n; c] , f.,, [a, , ... 7ail f M A] 7F[f:

IP, fv, A, F If : P fy) ...)fy: all ... aill

where P = [PUSH ARG i; ... ;PUSH ARG 1; TAKE n;c]

...,am,... I I

Table 5.2: The Standard TAKE Instruction

The symbol P will then be a reference into this vector, starting at the appropriate

PUSH ARG instruction depending on the number of shared arguments. The vector

takes the form of that in Figure 5.2a. For a combinator which takes n arguments,

the maximum number of shared arguments requiring a suspension frame is n - 1.

The vector is shovn here as it would appear in CM EM starting at address F, where

(C)H and (C)L indicate the high and low portions, respectively, of the address of

the symbol C in CMEM. The vector consumes (P+1 - Po + 1 = n + 2) locations in

CM EM. The microcode for TAKE generates the correct pointer P into the vector for

installation in the updated object.

Wray [WF89] then suggests that a single vector can be used for all combinators. If

each suspension stores as it's first argument the entry point of the shared combinator,

the code vector in Figure 5.2b can be used to restart all suspensions. Here,M is the

maximum frame size over all combinators in the code image, the first argument holds

the combinator address, and the maximum number of shared arguments is M - 1.

The literature then reduces storage use to a single vector of PUSH ARG instructions

consuming PM-1 - P0 + 1 = M locations, and simplifies the microcode significantly

by limiting address generation to a single well defined area of the program memory.

However, we can do better. For instance, a more elegant implementation is to

call the entry point argument 0, and avoid the recompilation effort to slide all the

arguments down one slot in the frame, using an ENTER ARG 0 to recover the context

CHAPTER 5. SECONDARY OPTIMISATIONS 89

P0
.P1

Pn-2
P.-1
Pn

Pn+1

PUSH ARG n-1
PUSH ARG m-2

PUSH ARG 1
ENTER COMB
(C)H

(C)L

=

P0
P1

PUSH ARG M
PUSH ARG M - 1

PUSH ARG 2
ENTER ARG 1

CMEM

CMEM

(a): Old method (b): Generic method

Figure 5.2: Suspension restart vectors

after restoring shared arguments to the stack. This misses the point, however, since

the largest cost is not CMEM consumption, but the dynamic costs of executing these

instructions at run-time.

Implementation (2, 3) The second and third problems are addressed by making

further use of the frame control word. Previous approaches have not recognised that

the frame pointer in the entry-point object is ignored, since the first task of the

reawakened combinator is a TAKE. If only the code pointer is significant, and we

have unused bits in our FCW, we store the entry point there. My reimplementation

of the optimisation places the code pointer "9" in the upper half of the frame control

word (only) for suspension frames, and adds a status bit called "S" which when set.

indicates that the frame is a suspension (Figure 5.3).

I G

31 16 15 1413 12 87

Figure 5.3: FCW for self-contained frames

10

This self-contained closure means we no longer need use a sequence of PUSH ARG

instructions to put the suspension arguments on the stack. Upon executing an

updated slot, the status bit S in the frame the object references is checked to see if

the frame holds a suspension. The number of arguments in the frame, the arguments

CHAPTER 5. SECONDARY OPTIMISATIONS 90

themselves, and the entry point of the suspended combinator are all available in the

frame. A microcode subroutine can be called as an interrupt process, when the S

flag is set.

This approach is very good, because we dispense completely with storing and

executing the PUSH ARG code vector each time a suspension is restarted. Microcode

generates the appropriate heap and stack addresses, and issues the memory cycle

requests. Less important, but still more efficient and elegant, is that microcode is

spared generating any CM EM instruction addresses whatsoever.

One problem remains, that of handling conglomerate frames. TIM must still be

able to restart arbitrary portions of the suspension, ranging from no arguments up

to the full suspension, without the use of the code vector to push the correct number

of arguments to recreate the partial application. Notice that thus far, the contents

of the code pointer in the updated object have been left unspecified, and we are not

subject to any limitations in defining them to solve this problem. For s the size of

the conglomerate suspension frame (number of arguments), and r the size of some

suspension to be restarted (0 ≤ r < s), there are a few possibilities for specifying r

at runtime.

Place r in code pointer and rely on the suspension flag bit in the frame to

initiate the restart. This is a poor solution, since it is a completely new use of the

code pointer in objects, and would contort the decision process of the microcode.

Any object being entered would have to have it's frame fetched first, so as to check

the S bit is clear, before using the code pointer to fetch an instruction from CM EM

(or after fetching it but before executing it).

Use a TAKE r instruction referenced by the code pointer. The TAKE would be

modified to recognise when CF points to a suspension frame and modify its behaviour.

Rather than retrieve arguments from the stack, it would get them from the current

frame, and jump to the code pointer I in the FCW with the new (partially filled) frame.

This would be good, in that it avoids use of the stack (see below) for restarting

suspensions. However, this is yet another task for TAKE to perform. The TAKE

instruction (TAKE n) at the top of the restarted combinator must not take it's

CHAPTER 5. SECONDARY OPTIMISATIONS 91

arguments as normally, but recognise that it has been passed a partially-filled frame

and take only the balance of the arguments needed (n - r). Using TAKE is a difficult

and inelegant approach.

Create a new instruction for initiating suspension restarts, called RESTORE,

which is used only by updated arguments pointing to conglomerate suspensions. For

a restoration of r arguments from a conglomerate suspension frame f*, the RESTORE

and modified TAKE instructions appear in Figure 5.3. Here, the notation label

denotes a conglomerate frame holding the CM EM address corresponding to the entry

point label.

{[RESTORE r], f*, A, F [f* :

I[TAKE n; co] ,f, [a, , ... *ail I M
RESTORE i,f,A,F

where c —+ [TAKE n; Co]

1} for r ≤ 8

,A] F[f:

f:

Jy

...,am,... I} for O<i<n

]} RESTORE i
Ji'

Table 5.3: New RESTORE and TAKE instructions

Results The new instruction and frame structure, combined with the use of a

frame control word streamline the restarting of suspensions. The capability of using

a single suspension frame to represent multiple shared partial applications of the

same combinator has been maintained, with the cost of a single instruction added to

the instruction set. RESTORE simplifies the semantics of the TIM machine, while

maintaining their original intent. The instruction itself is simple to implement in

microcode, and has the same "boxed" format as other instructions (and is subject

to the same optimisations, see Section 5.3).

There is room for further refinement of this optimisation, which minimizes the use

of the stack given an appropriate memory structure (HMEM and CMEM physically

CHAPTER 5. SECONDARY OPTIMISATIONS 92

independent-, see Section 6.2). Identical in intent to the treatment of "fully applied

combinators" in [FW87] and [Arg89] , this improvement requires that the FCW also

hold the size n of the combinator frame. When executing RESTORE r, the microcode

will directly allocate a new frame of size n, transfer r arguments from the suspension

frame into it, and complete the frame with n - r arguments from the stack. The

entry point held in the FCW is made to point to the instruction following the TAKE

ii since it's job has been done.

5.2 Marks and Updating

Rationale The most critical cost-time locale in TIM is the context change -

nearly all of the real work that goes on in the machine happens here. Inspection of

static code indicates context changes occur roughly every 3-4 native machine instruc-

tions, with most of these being inexpensive continuations. The remainder involve

TAKE, the more expensive and complicated variety. Apart from allocating a frame

to hold the environment, marks for shared contexts must be updated, suspension

frames created, garbage collection invoked, etc. The control unit and all logical par-

titions of memory are intensively used. The literature has suggested a number of

inter-related optimisations of the mark updating process to save H M EM space and

reduce memory bandwidth consumption during this crucial time. This section iden-

tifies them, and evaluates their use in the proposed implementation of TIM, with

particular emphasis on relationship to frame design.

There are a handful of tricks to improve the processing of marks, creation of

suspension frames and the updating of share sites. This reduces to enforcing single

sharing overheads for multiple recipients: we wish to stage only one marking task,

rather than one for each recipient of the shared result. There are several ways to

accomplish this:

1. through static analysis, encoding only the first evaluation with a PUSH ARG n

instruction, leaving the rest as PUSH ARG UNS [FW87, WF89].

2. 1 suggest ENTER SHARED ARG check if the argument has been evaluated to

CHAPTER 5. SECONDARY OPTIMISATIONS 93

a machine value (SELF k). In this case the mark placement is aborted (and

indeed the entry, see Section 5.3.2).

3. checking for marks on the top of the stack when changing contexts [FW87,

WF89]. I call these "degenerate" marks, as they are updated with the new

context itself prior to the context change.

4. A subset of this is when a SELF is being executed with a. degenerate mark. I

assume machine value object is written both to the stack and the mark referent

prior to swapping contexts with any continuation on the stack.

All but (3) are unaffected by the design changes I have made, and the methods by

which I have implemented other optimisations. The treatment of degenerate marks

is flawed in the original application to TIM, but can be implemented with my new

design for frames.

Implementation (3) "Degenerate" marks are those which require updating while

they reference the first element on the stack. These occur in two special cases, both

of which are handled the same way. Since no new suspension is required, the target

of the update is overwritten directly with the code pointer and frame addres of the

current context

The simpler instance when the shared evaluation in question results in a single

combinator C which is not a partial apjlication. Since there are no shared arguments

above the mark, it would be pointless to create a suspension frame. The microcode

for TAKE can easily test for a mark on top of the stack, and update the mark target

with the current context. In this case, that will be the combinator address (which

PC CF

location contains the current TAKE instruction) and the null frame (ie. C 0).
The more complex instance occurs when we have recreated a suspension, only

for TAKE to discover that there were no arguments above the mark. The suspension

required by this mark is exactly what we began executing, and so when this situa-

tion is detected, the update target can be overwritten with the context defining the

suspension. One obvious way this situation can arise is when the updated argument

is reentered in the same context or some subsequent context to which it is param-

CHAPTER 5. SECONDARY OPTIMISATIONS 94

eter; a second shared ENTER ARG instruction places a mark before rebuilding the

suspension. [WF89] talks of placing a test for marks at the top of the stack, before

the regular suspension code, as in Figure 5.4.

<test for marks and update if necessary >
PUSH ARG i
PUSH ARG i — i

PUSH ARG 1
ENTER COMB C

Figure 5.4: Proposed test for degenerate marks

Results One problem with the solution as stated is that the exact form of the test

for marks is not specified. If this is a new instruction, then each combinator would

need a restart vector for each number of arguments, starting with the test. If it is

some task installed in the microcode for the ENTER ARG instruction, then how do

we detect that we are about to enter a suspension, and must test for marks at the

top of the stack?

Happily, we have already dispensed with the PUSH ARG vector (see Section 5.1.2),

allowing a workable 'implementation of a previously untenable optimisation. For

TAKE, a simple test in the microcode is all that is required, as before. For suspen-

sion restarts, the old TIM was constrained to use such sequences of instructions to

resume suspensions. However, with the new RESTORE instruction of Section 5.1.2,

a simple microsubroutine addition to the microcode is all that is required, providing

a simple and elegant implementation.

It is good that the cost of this implementation is low, as it may be that [WF89]

overestimates the possibilities for this situation (ie. suspensions encounter degen-

erate marks only via their own ENTER). If this is the case, then a much better

solution is to modify the microcode for the ENTER SHARED ARG instruction to test

CHAPTER 5. SECONDARY OPTIMISATIONS 95

for suspensions and abort mark placement when they are discovered.

5.3 Objects and Direct Instructions

In this section I address those instructions which appear to be created at run-time,

and appear to be stored within objects. These are ENTER ARG f (the lazy

version) and SELF k 1, produced by the TIM instructions in Table 5.4.

{[PUSH ARG i;C],f,A,F} = {C, f,

{[PUSH CONST k;C],f,A,F} {c,f,

ENTER ARG i I

SELF k ,A] , F}

,A] , F}

Table 5.4: Sources of "Direct" Instructions

In previous implementations [FW86, FW87, WF89] these were assumed to be

regular code memoEy addresses to instructions in the program image. I argue that

these would be better left as boxed or packed instructions simply because of the

frequency with which they are executed, and outline the best of several optional

methods of implementation.

5.3.1 Reimplementing ENTER ARG instructions

When using PUSH to pass a shared context argument to another context, it is not the

actual context argument that is pushed, but an object with an indirect reference to

it. This indirection takes the form of an ENTER SHARED ARG instruction combined

with the same frame specification. When this special object is later entered in

some other context, the ENTER instruction inside will push a mark to indicate the

argument is shared, and then enter the argument as usual. The indirection to a

shared ENTER is necessary so that both the argument and its original location are

available at the time the mark must be laid on the stack.

In previous implementations, the deferred ENTER instruction is stored in CMEM

and the object references this instruction with the appropriate address. The compiler

'and possibly RESTORE n (see Section 5.1.2), although its inclusion is not necessary to this
discussion.

CHAPTER 5. SECONDARY OPTIMISATIONS 96

generates all possible applications of deferred ENTER instructions, and places them

in a reserved portion of the program object code image, against their potential use

at run-time. There are a few problems with this implementation of the marking

scheme:

• The microcode of the PUSH instruction must calculate the address of the cor-

rect deferred ENTER at runtime,

• Without a loadable microstore, all programs must have a certain portion of

CME M reserved for these instructions, imposing maximum limits on arguments

and frame sizes,

• The full instruction cycle used and the CM EM storage used to store these

instructions is wasteful, especially considering that every shared argument must

use a deferred entry.

Implementation There are two ways we can go to address these problems, (i) we

can try and adapt the hardware design to make the current method of marking more

efficient, and (ii) we can rethink the implementation of marking.

To make marking more efficient (i), the immediate approach to dealing with

the indirect instruction is for microcode to accommodate a hashing algorithm that

converts a PUS H. A RG n instruction and the size of the referenced frame into a C ME M

address. Depending on the program, less than 1K of memory in TIM is reserved

for the ENTER instructions, and thus a particular argument n in a frame of m

objects would be firm-wired to a particular memory location. The microcode to

calculate the appropriate address would not be excessively complex, especially if the

ENTER SHARED ARG instruction fits in a single byte (see Section 5.4), implying a

1-1 mapping of instructions to addresses. The lowest bytes in code memory could

be filled with the ENTER instructions, and the address is directly calculated from

the argument n and inserted into the pushed object.

However, if we are to rethink the marking scheme (ii), the goal is to avoid the

instruction cycle while limiting added complexity. There are two approaches to

consider:

CHAPTER 5. SECONDARY OPTIMISATIONS 97

boxed we retain the use of the ENTER instruction, but as a boxed instruction within

the object, or

"shared" tag we dispense with the indirection, pushing the original argument on

the stack, and use some sort of signal to indicate that a mark should be de-

posited on the stack when we next encounter this object.

The shared tag option as stated is invalid, since it does not contain the argument

location information needed to construct a mark. Any method that includes this

information is functionally equivalent to the boxed instruction option, and may as

well make use of the self-same instruction and its microcode. In any event, the shared

tag method would require a respectable amount of recompilation effort that is not

justifiable within the scope of this thesis, and changes to the original TIM laziness

instructions that are regressive.

Settling on the boxed instruction option, it is obvious that a tag is required here

as well, to distinguish the direct type of object from the normal code-pointer variety.

Upon execution, the boxed option skips the CM EM instruction fetch, and decodes

the contents of the code-pointer portion of the object directly, containing an ENTER,

SELF or other instruction. The signal is given through the use of a tag bit within

the object.

Potential tagging methods in TIM A system designer can consider a tag bit

as one more bit that we could be using for addressing. Whether we add tags to the

existing storage width, or we allocate them from within the existing word width,

each additional tag has to be stored and represents a halving of the useful address

space. For the sake of argument, I assume we allocate a bit "D" from the existing

object format. Tag bit set indicates the code pointer portion of the object should be

sent directly to the instruction register (I R) for decoding.

On the other hand, we can use a range of addresses in the code pointer (ie. OxFFFX

= OxFFFO-*OxFFFF) to denote a direct instruction. The instruction fetch register

(IFR) would perform a test for addresses in this range, and abort the instruction

fetch when a match occurs. The problem here is that we need at least 8 bits for the

instruction in question (ENTER SHARED ARG). The number of direct instructions

CHAPTER 5. SECONDARY OPTIMISATIONS 98

(with arguments) we need consumes bits in the pointer in competition with the

memory address consumption. For example, allocating the CM EM addresses in the

range OxFFEO4-+OxFFFF will double the potential instruction codes to 32, and consume

an additional 16 addresses of storage. Explicitly mapping a subset of the CM EM

addresses to our small selection of special instructions is inefficient and expensive to

test at run-time. Reallocating any portion of the 16 bit pointer for identifying bits

indicates three possible approaches, none usable:

• the ID is a vector index meaning we have to go out to memory anyway for the

instruction,

• the ID is a code for the instruction, meaning we must execute some form of

costly hashing algorithm on it to yield the desired instruction, or

• the ID is an 8-bit instruction itself, which means that the instruction format

and opcodes must use the same bit patterns as the addresses for the reserved

region of memory. This wastes memory, and contorts the instruction format.

Returning to the use of tag bits, there are a few options for placing the tag,

depending on the design of objects and memory. If the logical memory CM EM

shares a physical memory with one or more logical memory partitions, then part of

every code address is ignored. For instance, if we assume the physical memory is

split between code in the lower half, and stack/heap in the upper half, then only code

addresses in the range Ox0000+4Ox7FFF are, valid. Thus, the most significant bit of

the code pointer in every object can be used as a tag with impunity (Figure 5.5a),

which when set indicates the object is a direct instruction. The other way we can go

is to use a bit from the frame address. The most obvious place is the least significant

bit of the frame pointer. Considering that all heap frames are at least two objects

in length (a FCW and one argument), using the lsb of frame addresses as a tag

bit implies that all frames must begin on an even address boundary. Figure 5.5b

illustrates the scheme. The disadvantage here is that the heap may suffer from

significant external fragmentation if the majority of frames are of odd length.

CHAPTER 5. SECONDARY OPTIMISATIONS 99

(a):
31 30

D caddr faddr

(b):
31

16 15 0

caddr faddr D
16 15

Figure 5.5: Options for tag bit placement

10

Results It is not clear whether the effort to eliminate extra instruction cycles

for ENTER ARG is worth the benefit, when using tag bits. Performing a direct

decode of the instruction address pointer as an interrupt process based on the pointer

contents is a poor competitor, since it is inelegant and will cost almost as much as it

saves. More importantly, it will not mesh well with the approach taken for the SELF

instruction in the next section.

5.3.2 Eliminating the SELF Instruction

Rationale In TIM, the instruction SELF is used to represent and manipulate ma-

chine values, and its implementation is intended to maintain consistency with the

universal object philosophy. There are a number of improvements to the way TIM

handles SELF, which all involve avoiding having SELF appear in the instruction reg-

ister by interpreting SELF not as an instruction but some variety of object marker.

These optimisations indicate a need for a better representation of machine values

in TIM since they all attempt to "design around" the current implementation. The

central issue is to provide a consistent, efficient way to distinguish constants from

regular objects. TIM will still hold values within objects, but a SELF instruction is

not strictly necessary.

Implementation Machine values are encountered in only three ways: (i) as found

on the stack as an argument to a machine operation, (ii) at the end of a machine

operation, where it is necessary to change contexts to a closure on the stack, or (iii)

as a frame argument which is entered. In each case, there is no need to explicitly

execute a SELF, only to recognise the object as a machine value and perform the

appropriate action.

CHAPTER 5. SECONDARY OPTIMISATIONS 100

One way to avoid executing SELF is to use strictness analysis. Normally, machine

operations have supercombinator wrappers that ENTER each argument in insure the

operation is applied to reduced machine values. [FW87] and [WF89] have stated that

while strictness analysis generally applied does not yield significant improvements,

the benefits are there for expressions over machine values that have been found to be

strict. For these, only the arguments to the strict expression are entered and placed

on the stack. More conventional code consisting of straight machine operators sans

wrappers operates exclusively on the contents of the stack until the strict expression

is reduced. This is a good optimisation, but is a compiler technology outside the

scope of this work; I am concerned with those cases where we are not sure if the

argument has been evaluated or not.

For (ii) above, the situation is very simple. All ground type operations currently

evaluate their arguments, and place the result Ic in the PC and CF as

Afterwards, the SELF performs the a context change by swapping itself with (hope-

fully) the continuation on top of the stack. The optimisation is then to have all

ground type operations perform the context swap themselves directly. The machine

operation does a microcode jump to the segment for SELF, which is modified to

locate the constant in the accumulator or alu, and to construct the SELF machine

value object. Note that this scheme works whether the machine operations are being

used strictly or not.

For (i) and (iii) above, the situation is the same, since machine operations enter

their arguments just as any other combinator. The approach we should use is to have

the microcode for ENTER check the argument it references after the fetch, to see if

it is a machine value. If so, the context change is aborted and the object stored in a

temporary register. Normally, the SELF would be decoded after the context change,

and cause a swap of contexts with the top of the stack:

SELF Ic

{ SELF, k, Ca, iv ,A],F} SELF k ,A] , F}

The interrupt process would perform the same task, placing the top element of

CHAPTER 5. SECONDARY OPTIMISATIONS 101

the stack into the PC and CF, and overwriting it with the contents of the temporary

register. In other words, ENTER ARG jumps to the microcode for SELF when it

detects a machine value, again slightly modified as mentioned above.

Thus, the SELF formalism is retained only as an object label. The only problem

remaining is how to "mark" an object as one holding a machine value. We can not

use the best placement of the tag bit in Section 5.3.1, since this consumes a bit

of the frame pointer, used here as precision for the value. So, we must resort to

some manipulation of the CM EM code address. In the unadorned TIM, a convenient

location for the SELF instruction would be CMEM[0x0000] = SELF, and all machine

value objects would point to the first byte location in CMEM. To avoid the fetch,

we can test for the address equal to Ox0000, indicating the object holds a machine

value, and should be treated as shown above. It is very easy to do a "test for

zero" in hardware very quickly, in parallel with the instruction fetch stage. This

interpretation of the object format appears in Figure 5.6a.

(a):

(b):

caddr = 0x0000 k
31 16 15

Address Exception

a

OxCO opcode k
31 2423 I 1615 0

OxO0 SELF

Address Exception with Boxed Opcode

Figure 5.6: Forms of the machine value object (SELF)

For consistency, a possible additional change is to allocate the 8-bit opcode 0x0O

to the SELF instruction; this leaves the microcode open to use the code pointer as an

address, an identifier for machine values, or the actual instruction to beexecuted.

Results Using the scheme above, all interactions with machine values avoid not

only an instruction cycle, but the decode of the "boxed" instruction as well.

CHAPTER 5. SECONDARY OPTIMISATIONS 102

*

*

*

PUSH ARG

PUSH ARG UNS

ENTER ARC

ENTER ARG UNS

TAKE

RESTORE

PUSH COMB

ENTER COMB

PUSH LABEL

PUSH CONST

SELF

<machine op

TRAP

HALT

arg

arg

arg

arg

arg

arg

* new instructions

cmem addr

cmem addr

cmem addr

Ic

Standard
Instruction
Set

&&, II, <<, >>, —,
<, , =, 4f ≥, >,

P, L R, HID, TL, NULL
opt_in, opt_out

Ground Type
Operators

number

Specials

'I,

Figure 5.7: The TIM instructions

5.4 Instruction Format Design

This section will discuss the decisions I have made to minimize the size of the physical

instructions in TIM, and optimise the mapping of instructions to opcodes. The over-

riding goal is to use as little CM EM space as possible to represent each instruction,

while meetingthe requirements of the machine as laid out by the optimisations. The

original concept of TIM implies an instruction roughly the size of an object, with

byte- or word-sized arguments. The logical appearance of the TIM instruction set is

as in Figure 5.7.

CHAPTER 5. SECONDARY OPTIMISATIONS 103

The two-initial constraints I have imposed is that the instruction opcode should

fit in one byte, and that arguments should be placed within the byte if at all possible.

This is not unreasonable, as there are only 37 instructions to be represented, and

only a handful require a full-word argument. The following observations drove the

design of the instruction formats:

• full words (16 bits) are required for combinator addresses and constants, as

this is half-object size we are using.

• all of the argument/frame handling instructions should have the same format

(PUSH ARG, ENTER ARG, TAKE and RESTORE).

• argument numbers for frame handling instructions do not need 16 or even 8

bits of storage. Static analysis of program code from the PONDER [Fai86]

environment demonstrated that the maximum frame size ever used contained

24 arguments, and the average size was only 2. This indicates a very liberal

number of arguments can be represented using 11092241 = 5 bits.

• it would be advantageous if the opcodes can be assigned so that 5 bit arguments

are reserved for these instructions within the 1 byte opcode.

• although PUSH LABEL appears to need a 16 bit full-word combinator address,

the labels referenced in these instructions are spatially local to the instruction

address (PC) and always at a higher address. A single byte would yield a

PC-relative offset of 256 forward CM EM addresses, which is sufficient for all

programs observed. A 5-bit offset stored within the instruction byte would give

32 forward CMEM references, which may be sufficient.

The complete list of instructions and opcodes appears below in Figure 5.8.

Following the same philosophy as that for Huffman coding, the design of the

instruction set format should be tailored around the most frequently used instruc-

tions. In this way, the representation of instructions is allowed to emphasise those

instructions which require advantages in shorter formats, reduced decode times, and

simpler execution. I thus concentrated on the PUSH ARG, ENTER ARG, TAKE and

CHAPTER 5. SECONDARY OPTIMISATIONS 104

1 X n nn n
7 6 54

00
01
10
11

0

01 X n nn n
7 54

0
1

0

001
7 54 0

000 001 ox
7

ENTER ARG n
ENTER ARG, UNSHARED n
PUSH ARG n
PUSH ARG, UNSHARED n

TAKE n
RESTORE n

PUSH LABEL I

CADDRH CADDRL
54 21 0 7 07

0 ENTER COMB c
1 PUSH COMB c

000 001 lx
7

0

DATAH DATA L
54 21 0 7 07

0 PUSH CONST k
1 (unused)

000 000 x
7 54 21 0

0 0 SELF
0 1 HALT

0001 XXXX

00001 XXX
7 6 S 4 3 2

0

TRAP
NOP

Argument-Indexed

EADDR = CF + n + 1
1 <= n <= 32

Frame Control

EARG=n
1 <= n <= 32

PC-Relative

EADDR .= (PC) + I + 1
(PC)+2 <= EADDR(I)

<= (PC)+34

Absolute Address

EADDR = ((PC) + 1 (PC) + 2)

Data Immediate

EADDR = ((PC) + 1, (PC) + 2)

Control

Arithmetic/Logical

(see Figure 5.9)

Figure 5.8: Main TIM instruction formats and opcodes

CHAPTER 5. SECONDARY OPTIMISATIONS 105

RESTORE instructions. Each of these can fit its argument specification within 5

bits, and together (with shared and unshared versions) there are 6 instructions. I

separated the PUSH and ENTER argument instructions from the frame handling in-

structions. The first use the equivalent of register-indexed addressing mode, which I

call ARGUMENT INDEXED. The second uses the argument as a frame size speci-

fication, which I class as FRAME CONTROL.

In the PUSH LABEL 1 instruction, the label is encoded as a 5 bit offset in an

instruction classed PC-RELATIVE. Note that at run-time following the decode, the

PC holds the CMEM address pointing after the instruction (PC + 1. Furthermore,

since labels never reference the instruction immediately following the PUSH LABEL,

and all labels are forward references, we can get one extra address of offset. Thus the

labels which are encoded fall into the range (PC) + 2 ≤ 1 ≤ (PC) + 34. At run-time,

the address which is pushed is thus (PC) + offset + 1.

0001 0 xxx
7 4 3 2 0

0001 1 xxx
7

0 0 0 #+ (add)

0 0 1 #- Oul) b)
0 1 0 #
0 1 1 #1 (div)
1 0 0 #% (rem)

1 0 1 #<< •asr• 1 asi1 0 #>>
1 1 1 #- (not)

00001 0 X
7 3 2 1 0

4 3 2 0

ALU Operations

0 0 0 #&& (and)
0 0 1 #11 (or)
0 1 0 #< (It)
0 1 1 #<= (leq)
1 0 0 #= (eq)
1 0 1 #1= (neq)
1 1 0 #>= (geq)
1 1 1 #3. (gt)

00001 1 X
7

0 0 #P (pair)
0 1 #L (left)
1 0 #R (right)
1 1 #opt_in (i/o read)

Function Support

321 0

O 0 #HD (list car)
0 1 #TL (list cdr)
1 0 #NIL (list pred)
1 1 #opt_out (i/o write)

(#<op> is the assembler mnemonic for ground type instructions)

Figure 5.9: TIM ALU instruction opcodes

For the ENTER COMB and PUSH COMB instructions, a full word follows the

CHAPTER 5. SECONDARY OPTIMISATIONS 106

instruction containing the absolute CM EM address of the combinator. The ABSO-

LUTE ADDRESS made instructions fetch the address and change contexts immedi-

ately.

The PUSH CONSI k instruction is called DATA IMMEDIATE, and behaves sim-

ilarly to ABSOLUTE ADDRESS, fetching the full-word operand following the in-

struction.

The CONTROL instructions are SELF, HALT, TRAP and NOP, and consume a

single byte, having no operands.

The ALUinstructions consume the remaining 24 available opcodes, and are listed

in Figure 5.9.

5.5 Summary

In this chapter I hire suggested a number of optimisations to the instruction and

register level of the TIM machine. I have created a new model for heap frames that

allows a shared partial combinator application, or suspension, to be stored so that

it can be restarted much more easily and quickly than in previous implementations.

I have also introduced a new instruction called RESTORE to facilitate this optimisa-

tion, while maintaining the semantics and flavour of TIM. I have covered a number

of small optimisations to the placement and processing of marks, to ensure these

are still possible with the different designs specified in Chapter 4 and Chapter 5,

and have found that in one instance ("degenerate" marks) the RESTORE instruction

simplifies the optimisation. I have suggested a range of approaches to removing or

reducing the effect of "direct" instructions, using tags or other markers to make the

operations needed implicit to the object, and found it is not worth the effort, except

with the SELF instruction. Finally, I have analysed the needs of the architecture

for a physical instruction set and developed a set of compact instruction formats.

A PC-relative mode for TIM combinator labels was introduced, and the opcodes

allocated to the main, ALU, and special instructions of TIM were summarised.

Chapter 6

Summary and Conclusions

6.1 Contributions of the Thesis

In this thesis, I have provided some new approaches to the TIM implementation

problem, and extended some of the existing work. The improvements and optimisa-

tions have covered a range of areas in the TIM architecture. Chapter 4 dealt with

those improvements closely related to the construction and storage of heap frames,

while the lower-level firmware, hardware and microcode optimisations were confined

to Chapter 5. Chapter 5 also oulines a new heap frame model I have devised to

simplify the usage of shared results, and a new TIM instruction called RESTORE to

be used with the frame model. To test the optimisations and designs presented, an

instrumented hardware simulation package called TIMSIM was developed at an early

stage of the research (Appendices A, B).

Following the introduction, the next chapter (Chapter 2) provided an in-depth

introduction to functional languages and architectures. The discussion of functional

programming notations leading to SuperCombinators was to give the reader a clear

understanding of the environment upon which TIM operates. Particular emphasis

was placed on those elements of the functional architectures which are common with

the Three Instruction Machine, presented in order to give the reader a notion of the

"evolutionary path" in functional programming that has led to TIM.

A significant portion of the text was dedicated to a thorough description of the

TIM abstract definition (Chapter 3), with emphasis on relating the TIM instructions

and structures back to their higher-level functional language counterparts. In this.

way, the reader was to be given an intuitive understanding of the TIM abstract

architecture, and the usefulness of the TIM approach.

107

CHAPTER 6. SUMMARY AND CONCLUSIONS 108

The core of the thesis began with a discussion of the design philosophy I have

applied to the TIM architecture, emphasising the importance of task optimisation

and treatment of memory bandwidth demands. Chapter 4 was dedicated to ana-

lyzing three major and two minor optimisations to the context change and update

mechanisms in TIM. Operating upon the major firmware structures of TIM, these

optimisations have been suggested in the literature. My contribution has been exten-

sion of the previous work to specify a practical design, and analysis of the usefulness

of the optimisations. I determined that efforts to break the TAKE instruction (Sec-

tion 4.3) up are useful, but not as rewarding as simple changes to the way that TAKE

operates (Section 4.5). An implementation of a stack for update marks was proposed,

and analysis of its costs and savings (Section 4.4) performed. The use of a single

frame conglomerate of shared combinator suspensions was discussed, and found to

be a useful and essentially costless optimisation to the TIM machine. Lastly, I anal-

ysed the effects of implementing the two most promising optimisations in tandem,

and determined that the effort is not warranted, as the presense of a mark stack is

immaterial to the usefulness of conglomerate frames.

In Chapter 5, I concentrated on a number of original optimisations to the TIM

abstract design, and specified design information for a number of areas of TIM. I

have specified a new model for frames that includes status and control information

(Section 5.1.1). The use of the new self-contained frame model facilitates 'a new

optimisation to restarting shared combinator suspensions, which allows such sus-

pensions to avoid over half of the previous memory accesses (Section 5.1.2). I have

defined a new machine instruction called RESTORE to implement the new restart

procedure, which is simple and easy to add to the TIM assembly code and to ma-

chine microcode. I verified that the new frame design and restart mechanism works

with certain useful optimisations to mark creation and mark updating from the lit-

erature (Section 5.2). Certain usages of TIM instructions are inefficient and make

inelegant use of microcode and TIM objects; I analyse several ways of reimplement-

ing the ENTER ARG instruction as used in marking operations (Section 5.3.1), and

the SELF instruction used to represent machine values and initiate context changes

(Section 5.3.2). Finally, I present the design for a compact and efficient instruction

CHAPTER 6. SUMMARY AND CONCLUSIONS 109

format, including a new relative addressing mode, and several special instructions

(Section 5.4).

6.2 Future Work

There are a large number of potential paths for further research on the TIM architec-

ture. This thesis has suggested some "good bets" for optimisations and implementa-

tion details. A direct continuation of my thesis work would be to greatly extend and

refine the simulations of TIM to gather statistically significant evidence to support

or refute my conclusions with greater certainty. This would be followed by a first

draft design of a VLSI chip and subsequent fabrication, so as to construct a real

Three Instruction Machine system. The eventual goal is to benchmark TIM against

other real functional architectures, providing empirical evidence of the merits and

shortfalls of TIM.

Alternatively, the scope of this exploration could be widened to include memory

design, advanced implementation techniques, and so forth. I have done some initial

exploration in these areas, which is outlined below:

Storage Design The demands on storage in TIM mandate high memory speed

and bus bandwidth, to achieve respectable performance. TAKE in particular makes

intensive use of both stack and heap, but all operations involve accesses to two or

more logical memory partitions.

[FW87, WF89] suggest splitting the heap from the stack, motivated by the sug-

gestion of direct memory transfers during the TAKE operation. There are a number

of additional reasons to assign separate physical memories to the logical memory

partitions that I have used. The fact that heap storage is an allocatable heap, while

all other memories are simple storage, means support for garbage collection is wasted

the partitions reside in common storage. If interleaving and caching are applied to

TIM, each partition may require different cache line widths and bandwidth. The

initial implementation assumes that all logical partitions exist in one physical mem-

ory, as in Figure 4.1. The next option is to isolate the heap HMEM partition from

others, and the most promising (and expensive) arrangement is to assign 'a separate

CHAPTER 6. SUMMARY AND CONCLUSIONS 110

physical partition for code, heap, and stacks.

Interrupt Processing Because TIM will operate in the real world, it must be able

to deal with real-time events and exceptions. Against this potentiality I have done

the initial work to develop an interrupt-processing mechanism. This would be used

for input/output operations (through the opt-in and opt-out supercombinators used

in code from the PONDER environment [Fai86]), control unit exceptions, direct

memoryc-+memory transfers as described in this section, and any other interface

applications. The typical implementation would have traps hardwired to a jump

vector loaded with trap handler entry points.

Advanced Implementation Techniques Hardware accelerators and bandwidth-

enhancing memory design techniques can be applied to TIM as well as any other

architecture, with the observation that the common understanding of bottlenecks

will likely not apply. All of the following techniques will require deeper modeling

of TIM to obtain information to tailor the application of these techniques to TIM.

The required information at a minimum includes extensive measurements of the

spatial and temporal locality of each type of memory reference, knowledge of the

size and lifetime of supercombinator and suspension contexts, and a number of other

dynamic execution parameters. The techniques I suggest are listed starting with the

least complex and most promising.

Instruction Prefetch With a bus 4 times the width of the basic instruction unit,

it would make sense to fetch all 4 consecutive bytes of memory and hold them

within the CPU, to speed instruction fetches. To simplify the microcode control

of the fetching, the buffer could be made 8 bytes long (or twice the bus width),

with valid program code being read through each half alternately.

Frame Buffer Frame heap memory write accesses exhibit a higher degree of spatial

and temporal locality than heap reads, due to TAKE and suspension frame

creations. Subsequent read accesses (excluding suspension restarts) are more

spread out. This observation leads to the potentially useful addition of a frame

buffer, not to be confused with a frame cache, but which is an interim approach.

CHAPTER 6. SUMMARY AND CONCLUSIONS 111

Two benefits are derived: (i) frame creations occur in the frame buffer first,

and the actual heap write cycles can be spread out over subsequent instructions

which do not make use of the heap, (ii) reads of the current context arguments

do not have to go to heap memory, useful when one considers that arguments

are accessed immediately after creating a new current frame. A change to

a new context would flush any remaining portion of the frame buffer as an

interrupt process.

Stack Buffer As with the last modification, this reduces bandwidth consumption

by retaining some number of the top elements of the stack in the CPU. This

requires heavy simulation to determine the appropriate size of the buffer and

quantify it's benefits, and some complexity is involved in optimistically fetching

into and writing out the buffer when it is necessary. This modification would be

of benefit to most machine instructions, and certainly to speeding up argument

list stacking and subsequent TAKE's. A stack buffer would form an interim

approach prior to using smart memory controllers and direct memory- memory

transfers as suggested in [FW87].

Frame Heap Cache Analogous to multiple register sets in RISC [Pat85, Tab87]

technology, the frame buffer modification is extended to a full caching scheme,

so that contexts may be retained for reading and writing within the CPU. I

suspect that 4-8 cache slots would be mandated by simulations, but that the

benefits derived would not be much gre.ter than with a simpler 1-2 slot frame

buffer, as above.

In addition memory interleaving would make more bandwidth available by speed-

ing up all of the high-spatial locality operations, particularly when used in conjunc-

tion with the buffering schemes suggested above.

6.3 Final Comments

I have proposed a design for TIM encompassing the essential elements of a practical

implementation. The design techniques and hardware tools that I have applied to

CHAPTER 6. SUMMARY AND CONCLUSIONS 112

TIM are well known and understood, derived from the vast body of knowledge aris-

ing from the study and practice of conventional computer architecture. TIM must

compete not only with other functional machines, but also with the established con-

ventional technologies (as do functional languages). It may be that abstract func-

tional machines are ultimately best implemented by programming their operations

into conventional high speed microprocessors, to make use of the knowledge and

economy of scale advantages in an established industry.

For the present time, TIM is a promising architecture for the efficient execution

of functional languages. This practical design combined with realistic performance

goals should provide..a simple and fast implementation of TIM, when fabricated as

a concrete machine in VLSI silicon.

Bibliography

[Abd74] Syed Kamal Abdali. A Combinatory Logic Model of Programming Lan-
guages. PhD thesis, Computer Science, University of Wisconsin, April
1974.

[Abd76] S. K. Abdali. An abstraction algorithm for combinatory logic. Journal
of Symbolic Logic, 41(1):222-224, March 1976.

[AJ89] Lennart Augustsson and Thomas Johnsson. Parallel graph reduction
with the (u, G)-machine. In Proceedings of the Conference on Func-
tional Programming Languages and Computer Architecture, pages 202-
213, Imperial College, London, September 1989. ACM, Addison-Wesley.

[AP81] L. Aiello and G. Prini. An efficient interpreter for the lambda-calculus.
Journal of Computer and System Sciences, 23:383-424, 1981.

[Arg88] Guy Argo. The G-TIM: a refined Three Instruction Machine. In Thomas
Johnsson et al., editors, Proceedings of the Workshop on Implementation
of Lazy Functional Languages, number 53 in Programming Methodol-
ogy Grol.!Lp Technical Reports, Aspens, Sweden, September 5-8 1988.

Chalmers University of Technology and University of GSteborg.

[Arg89] Guy Argo. Improving the Three Instruction Machine. In Proceedings of
the Fourth Conference on Functional Programming and Computer Ar-
chitecture, pages 100-115, Imperial College, London, September 11-13
1989. ACM.

[Arm89] James R. Armstrong. Chip-Level Modeling with VHDL. Prentice-Hall,
Englewood Cliffs NJ, 1989.

[Aug88] Lennart Augustsson. The u-G-machine. In Thomas Johnsson et al., edi-
tors, Proceedings of the Workshop on Implementation of Lazy Functional
Languages, number 53 in Programming Methodology Group Technical

Reports, Aspens, Sweden, September 5-8 1988. Chalmers University of
Technology and University of G6teborg.

[Bac78] J. W. Backus. Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs. Communications
of the ACM, 21(8):613-641, August 1978.

113

BIBLIOGRAPHY 114

[Bar81a] Mario R. Barbacci. Instruction Set Processor Specifications (ISPS): The
notation and its applications. IEEE Trans. on Computers, C-30(1):24-
40, January 1981.

[Bar81b] H. P. Barendregt. The Lambda Calculus - Its Syntax and Semantics.
North-Holland, Amsterdam, 1981.

[Bar82] Mario R. Barbacci. An introduction to ISPS. In Daniel P. Siewiorek,
C. Gordon Bell, and Allen Newell, editors, Computer Structures: Prin-
ciples and Examples, chapter 4, pages 23-38. McGraw-Hill, New York,
1982.

[BdHP86] Alan Bundy, Den du Boulay, Jim Howe, and Gordon Plotkin. The
researchers' bible. DAT Teaching Paper 4, University of Edinburgh,
September 1986.

[BGJ89] C. Birtwistle, B. Graham, J. Joyce, S. Williams, M. Brinsmead,
M. Keefe, W. Kroeker, B. Liblong, and W. Vollmerhaus. The SECD
Machine on a Chip. In mt. Conf. on CAD and CC, Beijing, 1989.

[Bir79] C. M. Birtwistle. Discrete Event Modelling on Simula. Macmillan Press,
London, 1979.

[BMS8O] R. M. Burstall, D. B. MacQueen, and D. T. Sannella. HOPE: An experi-
mental applicative language. In LISP Conference Record, pages 136-143,
Stanford CA, 1980. Stanford University.

[BPR88] Geoffrey L. Burn, Simon L. Peyton Jones, and J. D. Robson. The spine-
less C-machine. In Proceedings of the Conference on LISP and Func-
tional Programming, Snowbird, Utah, July 25-27 1988. ACM.

[Bur88] Geoffrey L. Burn. A shared memory parallel G-machine based on the
evaluation transformer model of computation. In Thomas Johnsson
et al., editors, Proceedings of the Workshop on Implementation of Lazy
Functional Languages, number 53 in Programming Methodology Group
Technical Reports, Aspens, Sweden, September 5-8 1988. Chalmers Uni-
versity of Technology and University of Göteborg.

[BW88] Richard Bird and Phillip Wadler. Introduction to Functional Program-
ming. Series in Computer Science (C. A. R. Hoare ed.). Prentice-Hall,
London, 1988.

[Car83] Luca Cardelli. The Functional Abstract Machine. Technical Report
TR-107, AT&T Bell Laboratories, Murray Hill NJ 07974, 1983.

BIBLIOGRAPHY 115

[Car84]

[CCM87]

[CF58]

[CGMN8O]

[Che84]

[CHS72]

[Chu36]

[Chu41]

[CJH89]

[Coe89]

[CR36]

[Cur29]

[DeB72]

-Luca Cardelli. Compiling a functional language. In Proceedings of
the Conference on LISP and Functional Programming, pages 208-217,
Austin, Texas, August 6-8 1984. ACM.

G. Cousineau, Pierre-Louis Curien, and Michel Mauny. The Categorical
Abstract Machine. Science of Computer Programming, 8:173-202, 1987.

H. B. Curry and R. Feys. Combinatory Logic, volume I. North-Holland,
Amsterdam, 1958.

T. J. W. Clarke, P. J. S. Gladstone, C. D. MacLean, and A. C. Norman.
SKIM - the S,K,I Reduction Machine. In LISP Conference Records,
pages 128-135, Stanford, CA, 1980. Stanford University.

Marina C. Chen. A methodology for hierarchical simulation of VLSI
systems. Research Report YALEU/DCS/RR-325, Yale University, Com-
puter Science Department, August 1984.

H. B. Curry, J. R. Hindley, and J. P. Seldin. Combinatory Logic, vol-
ume II. North-Holland, Amsterdam, 1972.

A. Church. An unsolvable problem of elementary number theory. Amer.
J. Math., 58:345-363, 1936.

A. Church. The calculi of lambda-conversion. In Annals of Mathematics
Studies, volume 6. Princeton University Press, NJ, 1941.

Shiu-Kai Chin, Damir A. Jamsek, and Paul R. Humenn. 5th genera-
tion logic programming architectures. 24 month report, CASE Center,
Syracuse University, Syracuse NY 13244, 1989.

David Coelho. The VHDL Handbook. Kluwer Academic Publishers,
Norwell MA, 1989.

A. Church and J. B. Rosser. Some properties of conversion. Transactions
of the American Mathematical Society, 39:472-482, 1936.

H. B. Curry. An analysis of logical substitution. Amer. J. Math., 51:363-
384, 1929.

N. DeBruijn. Lambda-calculus notation with nameless dummies, a tool
for automatic formula manipulation. Indag. Math., 34:381-392, 1972.

BIBLIOGRAPHY 116

[Fai86] Jon Fairbairn. Making form follow function - an exercise in func-
tional programming style. Technical Report 89, University of Cambridge
Computer Laboratory, Corn Exchange Street, Cambridge, England CB2
3QG, June 1986.

[FC88] Richard M. Fujimoto and William B. Campbell. Efficient instruction
level simulation of computers. Transactions of the Society for Computer
Simulation, 5(2):109-124, April 1988.

[F1188] Anthony J. Field and Peter G. Harrison. Functional Programming. In-
ternational Computer Science Series. Addison-Wesley, 1988.

[FW86] J. Fairbairn and S. C. Wray. Code generation techniques for functional
languages. In Proceedings of the Conference on LISP and Functional

Programming, pages 94-104, Cambridge, MA, August 1986. ACM.

[FW87] Jon Fairbairn and Stuart C. Wray. TIM: A simple, lazy abstract machine
to execute supercombinators. In Proceedings of the Conference on Func-
tional Programming and Computer Architecture, number 274 in Lecture
Notes in Computer Science, pages 34-45, Portland, OR, September 1987.
Springer-Verlag

[Geo89] Lal George. An abstract machine for parallel graph reduction. In
Proceedings of the Conference on Functional Programming Languages
and Computer Architecture, pages 214-229, Imperial College, London,
September 1989. ACM, Addison-Wesley.

[Gor88] Michael J. C. Gordon. Programming Language Theory and its Implemen-
tation. Series in Computer Science (C. A. R. Hoare ed.). Prentice-Hall,
London, 1988.

[GWB89] B. Graham, S. Williams, G. Birtwistle, J. Joyce, and B. Liblong.
The CDL/Mossim for Henderson's SECD machine. Research Report
89/341/03, Computer Science Department, University of Calgary, 1989.

[Har86] Robert Harper. Introduction to Standard ML. LFCS Report Series ECS-
LFCS-86-14, Department of Computer Science, University of Edinburgh,
November 1986.

[HB84] Kai Hwang and Faye' A. Briggs. Computer Architecture and Parallel
Processing. McGraw-Hill, New York, 1984.

BIBLIOGRAPHY 117

[HBGS89] M. J. Hermann, G. Birtwistle, B. Graham, and T. Simpson. The Ar-
chitecture of Henderson's SECD Machine. Research Report 89/340/02,
Computer Science Department, University of Calgary, Alberta, Canada
T2N-1N4, January 1989. Prepared under Contract No. W2213-8-
6362/01-SS with the Department of National Defence, 78 pages.

[Hen80] P. Henderson. Functional Programming - Applications and Implemen-
tation. Prentice-Hall, London, 1980.

[Her87] Mike. Hermann. An Exploration of Functional Architectures. Undergrad-
uate research project report, Computer Science Department, University
of Calgary, Alberta, Canada T2N 1N4, April 8 1987.

[HJJ83a] P. Henderson, G. A. Jones, and S. B. Jones. The LispKit manual, vol-
ume 1. Technical Monograph PRG-32(1), Oxford University Computing
Laboratory, 1983. See also [HJJ83b].

[HJJ83b] P. Henderson, G. A. Jones, and S. B. Jones. The LispKit manual, vol-
ume 2. Technical Monograph PRG-32(2), Oxford University Computing
Laboratory, 1983.

[HLS72] J. R. Hindley, B. Lercher, and J. P. Seldin. Introduction to Combinatory
Logic. Cambridge University Press, London, 1972.

[HMM86] Robert Harper, David MacQueen, and Robin Milner. Standard ML.
LFCS Report Series ECS-LFCS-86-2, Department of Computer Science,
University of Edinburgh, March 1986.

[11S86] J. R. Hindley and J. P. Seldin. Introduction to Combinators and the
)t-calculus. Cambridge University Press, London, 1986.

[Hud89] Paul Hudak. Conception, evolution and application of functional pro-
gramming languages. ACM Computing Surveys, 21(3) :359-411, Septem-
ber 1989.

[Hug84] R. J.. M. Hughes. Why functional programming matters. Technical Re-

port 16, Programming Methodology Group, Dept. of Computer Science,
University of Göteborg, S-412 96 Göteborg, Sweden, November 1984.

[Hug89] R. J. M. Hughes. Why functional programming matters. The Computer
Journal, 32(2):98-107, 1989.

BIBLIOGRAPHY 118

[JGCH89] amir Jamsek, Kevin J. Greene, Shiu-Kai Chin, and Paul R. Humenn.
WINTER: WAMs in TIM expression reduction. In Ewing L. Lusk and
Ross A. Overbeek, editors, Proceedings of the North American Confer-
ence on Logical Programming, volume 2, pages 1013-1029. MIT Press,
1989.

[Joh84] Thomas Johnsson. Efficient compilation of lazy evaluation. ACM SIC-
PLAN Notices, 19(6):58-69, June 1984.

[Joh87] Thomas Johnsson. Compiling Lazy Functional Languages. PhD thesis,
Department of Computer Sciences, Chalmers University of Technology,
Göteborg, Sweden, 1987.

[Joy84] M. S. Joy. On the Efficient Implementation of Combinators. PhD thesis,
University of East Anglia, September 1984.

[Ken82] J. R. Kennaway. A new combinator set. Technical report, University of
East Anglia, 1982.

[Kie85] Richard B. Kieburtz. The G-machine: A fast, graph-reduction evalua-
tor. In Conference on Functional Programming Language and Computer
Architecture, pages 400-413, Nancy, France, 1985. IFIP.

[Kle81] Stephen C. Kleene. Origins of recursive function theory. Annals of the
History of Computing, 3(1):52-67, January 1981.

[Knu86] Donald E. Knuth. The TjXbook. Addison-Wesley, Reading, MA, 1986.

[Lam86] Leslie Lamport. JtTEX: A Document Preparation System. Addison-
Wesley, Reading, MA, 1986.

[Lan64] Peter J. Landin. The mechanical evaluation of languages. Computer
Journal, 6(4):308-320, January 1964.

[Lan65a] P. J. Landin. The correspondence between ALGOL6O and Church's
Lambda Calculus, Part 1. Communications of the ACM, 8(2):89-101,
February 1965.

[Lan65b] P. J. Landin. The correspondence between ALGOL6O and Church's
Lambda Calculus, Part 2. Communications of the ACM, 8(3):158-165,
March 1965.

[Leh85] Axel Lehmann. Hybrid and hierarchical simulation of computer systems.
In A. Jávor, editor, Simulation in Research and Development, pages 217-
221. North-Holland, Amsterdam, 1985.

BIBLIOGRAPHY 119

[Mos75] Peter D. Mosses. Mathematical Semantics and Compiler Generation.
PhD thesis, University of Oxford, 1975.

[Mye78] G. J. Myers. Storage concepts in Software-Reliability-Directed computer
architecture. In 5th Annual Symposium on Computer Architecture, pages
107-113. ACM SIGARCH, 1978.

[Pat85] D. A. Patterson. Reduced-Instruction Set Computers. Comm. ACM,
pages 8-21, January 1985.

[Pau87] Lawrence C. Paulson. Logic and Computation: Interactive Proof with
Cambridge LCF. Number 2 in Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 1987.

[PCSFI87] Simon L. Peyton Jones, Chris Clack, Jon Salkild, and Mark Hardie.
GRIP - a high performance architecture for parallel graph reduction. In
Proceedings of the Conference on Functional Programming and Computer

Architecture, number 274 in Lecture Notes in Computer Science, pages
98-112, Portland, OR, September 1987. Springer-Verlag.

[Pet70] G. W. Petznick. Combinatory Programming. PhD thesis, University of
Wisconsin, 1970.

[Pey87] Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages. Int'l Series in Computer Science. Prentice-Hall, Lon-
don, 1987.

[Pey88] Simon L. Peyton Jones. The spineless tagless G-machine. In Thomas
Johnsson et al., editors, Proceedings of the Workshop on Implementation
of Lazy Functional Languages, number 53 in Programming Methodology
Group Technical Reports, pages 145-156, Aspens, Sweden, September
5-8 1988. Chalmers University of Technology and University of Göteborg.

[Poo87] R. J. Pooley. An Introduction to Programming in SIMULA. Computer
Science Texts. Blackwell Scientific Publications, Oxford, 1987.

[Ram86] John D. Ramsdell. The CURRY chip. In Proceedings of the Conference
on LISP and Functional Programming, pages 122-131, Cambridge, MA,
August 1986. ACM.

[Ros84] J. Barkley Rosser. Highlights of the history of the lambda-calculus.
Annals of the History of Computing, 6(4):337-349, October 1984.

BIBLIOGRAPHY 120

[SBGH89] -T. Simpson, G. Birtwistle, B. Graham, and M. Hermann. A Com-
piler for LispKit Targeted at Henderson's SECD Machine. Research Re-
port 89/339/01, Computer Science Department, University of Calgary,
Alberta, Canada T2N-1N4, January 1989. Prepared under Contract
No. W2213-8-6362/01-SS with the Department of National Defence, 80
pages.

[SBN82] Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell. Computer Struc-
tures: Principles and Examples. McGraw-Hill, New York, 1982.

[Sch24] Moses Schönfinkel. Uber die bausteine der mathematischen logik. Math.
Annalen, 92:305-316, 1924. (Translated to English in [Sch67]).

[Sch67] Moses Sch6nflnkel. On the building blocks of mathematical logic. In Jean
van Heijenoort, editor, From Frege to Gödel: A Source Book in Math-
ematical Logic, 1879-1931, pages 355-366. Harvard University Press,
Cambridge, MA, 1967.

[Sch86] M. Scheevel. NORMA: A graph reduction processor. In Conference
on LISP and Functional Programming, pages 212-219, Cambridge, MA,
August 4-6 1986. ACM.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press, 1977.

[Sto83] W. Stoye. The SKIM microprogrammer's guide. Technical Report 40,
University of Cambridge Computer Laboratory, Corn Exchange Street,
Cambridge, England CB2 3QG, October 1983.

[Sto85] William Stoye. The Implementation of Functional Languages using Cus-
tom Hardware. PhD thesis, Cambridge University (Magdalene College),
Cambridge, UK, May 1985. Available as TecliReport 81, University of
Cambridge Computer Laboratory, Corn Exchange Street, Cambridge,
England CB2 3QG.

[Tab87] Daniel Tabak. Reduced Instruction Set Computer - RISC - Architecture.
Industrial Control, Computers and Communications Series. John Wiley
& Sons, 1987.

[Tra85] K. R. Traub. An abstract parallel graph reduction machine. In Pro-
ceedings of the 12 th International Symposium on Computer Architecture,
volume 12, pages 333-341, Boston, MA, June 17-19 1985. IEEE.

BIBLIOGRAPHY 121

[Tur79a] D. A. Turner. Another algorithm for bracket abstraction. Journal of
Symbolic Logic, 44(6):267-270, June 1979.

[Tur79b] D. A. Turner. A new implementation technique for applicative languages.
In Software - Practice and Experience, volume 9, pages 31-49. John
Wiley and Sons, September 1979.

[Tur84] D. A. Turner. Combinator reduction machines. In International Work-
shop on High Level Computer Architecture, pages 1-13, Los Angeles, CA,
1984.

[Tur85] D. A. Turner. Miranda: A non-strict functional language with poly-
morphic types. In Proceedings of the Conference on Functional Pro-
gramming Languages and' Computer Architecture, volume 201 of Lecture
Notes in Computer Science, pages 1-16, Nancy, France, September 1985.
Springer-Verlag.

[Veg84] S. R. Vegdahl. A survey of proposed architectures for the execution of
functional languages. IEEE Transactions on Computers, 33(12):1050-
1071, December 1984.

[VHD87] Standard VHDL Language Reference Manual, #1076 1987. $40, IEEE
Service Centre, B1331, Piscataway NJ, 08855. Ph. 201-981-1391. IEEE
Standard Sales: Ph. 800-678-IEEE.

[Wad71] C. P. Wadsworth. Semantics and Pragmatics of the Lambda-calculus.
PhD thesis, Oxford University, 1971.

[WF89] S. C. Wray and J. Fairbairn. Non-strict languages - programming and
implementation. Computer Journal, 32(2):142-151, February 1989.

[WSC89] Ronald Waxman, Larry Saunders, and Harold Carter. VHDL links de-
sign, test, and maintenance. IEEE Spectrum, 26(5):40-44, May 1989.

Appendix A

Simulation Tool: TIMSIM

When I began investigating TIM, I realised that the designs I derived for comparison

would have to be simulated extensively, to evaluate each for efficiency and the utility

of the individual changes incorporated in previous designs. Simulation data would

provide a direct feedback on the development of the architecture, and the intent

was that the gradual specification of each of the sub-components would make it a

"simulation-driven" design process. Simulation has been called upon to perform

data-gathering throughout the different phases of my thesis research. In this section

I describe the general nature of the simulation tasks involved in TIM, and how these

defined the desired capabilities of the simulator and its final implementation form. I

continue with an outline of the structure of the simulator package and its important

components. I conclude with a simple example simulation, and some suggestions for

improvements to the package.

A.1 Application to the TIM

The first phase of my thesis research is the evaluation of numerous optimisations

to the abstract machine, both my own and those proposed in the literature. The

majority of these can be characterised as modifying the capabilities of instructions,

or adding a new tack to handle objects previously stored elsewhere. To evaluate

one optimisation over another, or provide "before-and-after" information needs only

a high-level architectural simulation. Here, almost all detail of implementation is ab-

stracted away, in the interests of speed and simplicity. The type Of data collected is

coarse: examples are memory and stack consumption rates, raw numbers of function

calls, profiles of instruction execution, and total use of instruction cycles. The essen-

122

APPENDIX A. SIMULATION TOOL: TIMSIM 123

tial task is one of deciding whether the optimisation makes the machine quicker or

not, and the nature of the primary mechanism behind any improvement in efficiency.

Lastly, the estimated cost of implementation is factored into any judgement on the

usefulness of the optimisation. In some cases, there may be ambiguous results or

several subtle mechanisms cooperating behind a demonstrated improvement. Here,

the instrumentation is extended and/or the design model detail is expanded, perhaps

in several ways, to better discriminate the effects of the optimisation on the machine.

The second phase of my research is built on the abstract machine definition that

has been derived, a collection of optimisations providing a more or less viable TIM.

This "settled" machine definition is ready to be made concrete as a paper hardware

design. Here I am concerned with design details of the CPU control section struc-

ture, microcode engine, memory structure and interface, and even such things as

the firmware-defined structure of objects and heap frames. Each piece of hardware

must be tested for efficiency, demonstrated correct as a realisation of the abstract

design, and qualified as to how well it fits with its companions. I expand the existing

simulations to encompass this detail by partitioning the design into its major hard-

ware blocks and signal paths, and an iterative process is used to find a "best-fit"

hardware design for the abstract definition. Not only are options in design evalu-

ated against each other, but an implicit second evaluation of the abstract definition

and its component optimisations occurs. I may find that portions of the abstract

specification are not, amenable to hardware implementation, or that optimisations

which "look good on the blackboard" are not so beneficial once subjected to the test

of practicality. There is an important design feedback from implementation to the

abstract definition.

In essence, the simulator is used only for modeling designs at three of the sev-

eral traditional simulation "levels" of hardware: the Architectural, Instruction, and

Register-Transfer levels (there are also Logic, Switch, and Device or Analogue lev-

els). The variety of data I collect is used primarily to derive qualitative aspects of

the design, where pattern is more important than precision. At the higher levels of

abstraction, information on simple quantities such as instruction frequency or mem-

ory access localities tells me before I start where the most effort on instruction design

APPENDIX A. SIMULATION TOOL: TIMSIM 124

should be spent, and how the memory hierarchy might best be laid out. At lower

abstraction, more refined measurement is used to pick out performance bottlenecks

or "hot spots" in the overall design, using information such as percentage utilisation

of busses, hardware contention, and so forth.

One of the simplifying assumptions I make is that precision in time modeling is

of secondary importance, and that quantities such as propagation delay, setup and

hold times, and drive capabilities can be ignored. This is reasonable in view of the

type of information I am interested in, and also that the goal is to make a paper

design from an abstract one. It would be pointless to model technology-dependent

quantities or electrical properties, without being at the layout stage armed with

a target technology and fabrication process. Thus to concentrate on measures of

throughput and utilisation, it is useful and valid to 1) model communications paths

as having no delay, and 2) uso a time resolution that is no finer than a major or

minor machine cycle.

A.2 TIMSIM Package Characteristics

Once the tasks of the simulator were defined, I went on to devise some of the general

capabilities I wanted to include. The majority of simulations would differ from each

other only in a few small details of design or instrumentation. This high degree

of design locality implied that one of the primary capabilities should be very quick

incremental modifications between simulation runs. The portions of a simulation, in

order of most frequently modified, are:

1. instrumentation; tracing and data collection, and the TIM programs being

executed.

2. machine design; the major blocks of hardware, main communications paths

and control lines, and their interconnections.

3. basic building blocks; definitions of the logic blocks used above, including ALU,

registers, memories, latches, control store, etc.

APPENDIX A. SIMULATION TOOL: TIMSIM 125

4. basic support package; all of the entities on which logic and communications

models are built.

The structure of the simulation package reflects the ordering of these domains (see

Section A.3.6).

At the outset, I was not sure how complex the simulations or how elaborate the

data collection would be, and so I wanted to ensure that TIMSIM was both extensible

and maintainable. As my ideas of what was wanted grew with experience, this would

ease the necessary changes to the package. To this end the simulator was written in a

very general form, with many hooks for extra packages, procedures, logic classes and

so forth. Further, package debugging hooks (using the Trace Facility, Section A.3.5),

were left in place during development, to aid maintenance and upgrades, and detect

errors in package use.

A more complicated aspect of the rapid prototyping goal was the inclusion of

automatic design debugging. Again, implemented through the Trace Facility, this

capability exists primarily in the modeling of communications links, and is by no

means complete or even comprehensive. The motivation was to discourage simple

design errors, such as a mismatch between bus and logic port widths, or bus con-

tention during simultaneous writes from logic blocks. TIMSIM was endowed with a

few key checks to catch a majority of the simple microcode or connection errors that

are easily made.

An essential capability of TIMSIM was to focus attention only on details of in-

terest. This was justified by concerns for faster model development, and secondarily

more efficient simulations. Models and instrumentation are emplaced only for por-

tions of the machine design under study; the remainder is abstracted away and its

function emulated using more efficient means. Simulations may thus span several

regions of interest concurrently, perhaps at different simulation levels (or "resolu-

tions"). As an illustration, consider a comparison of two designs based on their

efficiency during a context change. For the particular enabling native instructions,

it would be useful to trace that portion of the program at the instruction level, while

observing the behaviour of the microcode engine at the register transfer level, and

cllecting data to summarise memory access patterns at the architectural level. All

APPENDIX A. SIMULATION TOOL: TIMSIM 126

other detail-of the ALU, busses, control section and so forth can be abstracted away

into amorphous logic-blocks that use Simula [Poo87] to emulate external functional

behaviour. Models can be extended both to encompass more detail, and to examine

detail at finer resolutions, in a recursive fashion. This process can be extended as

far as necessary, fracturing logic blocks and communications links into more and

more modeling primitives, until each register and wire is simulated independently, if

desired.

A.3 Structure of TIMSIM

At this point I knew enough to select a simulator package. I had knowledge of various

public-domain tools, dealing in functional-, register- and transistor-level simulation.

Several commercial tools were also available, such as "ISP" from Endot Inc. (now

DATA I/O) based on ISPS [Bar81a, Bar82], but these are quite expensive (ie. a

commercial license for ISP' was $US5O K in mid-1988). I had difficulty finding infor-

mation on the university-developed tools, and commercial tools were prohibitively

costly. VHDL [VHD87, WSC89, Arm89, Coe89] was as yet unavailable. In addition,

it seemed I did not need many of the advanced capabilities of this software, only the

upper part of any mixed-mode facilities provided, and would be satisfied with a fairly

efficient and extensible workbench. For both these reasons and academic enthusiasm

(the opportunity to learn something about logic simulations and how they are put

together) I decided to write my own simulator package. The decision was influenced

by the fact that our site already had a simulation development package, and local

expertise in its use.

The TIMSIM package was built using the tools in the Discrete Event-based Mod-

eling on Simula package (DEMOS) [Bir79]. DEMOS is itself based on Simula, and

augments the simulation primitives there by providing more convenient processes,

synchronisation and data collection facilities, in a fashion analogous to the improve-

ment of LATEX upon 'IK [Lam86, Knu86].

In its simpler use, the programmer develops a simulation model of the real world,

and breaks this into "active" and "inactive" agents that become known as entities

APPENDIX A. SIMULATION TOOL: TIMSIM 127

and resources. Entities become scheduled coroutines which perform actions, while

resources are their consumables. A number of intercommunication, synchronisation

and scheduling schemes are provided for controlling both. Entities may queue for

resources or the attention of each other, and follow a number of different proto-

cols, variants of either entity-resource synchronisations or entity-entity cooperations.

Using the object-oriented philosophy, it is relatively easy to build on the DEMOS

package in any way or to any complexity necessary, simply by defining additional

classes of simulation entities on top of existing ones.

The hardware model I devised for my simulator is a simple one. There are

similarities to a VLSI simulation model described in [Che84]; to be fair, that previous

work is highly sophisticated and far better developed in comparison. I began with

the idea that synchronous circuits can be broken into blocks of logic which do all

the "work", connected together by communications paths (from busses to single

control lines) which only transport data. The consumable resources are generic

signals transmitted on the busses and manipulated within logic blocks, forming the

medium of exchange for data.

Within an arbitrary synchronous system, each logic block will follow the same

basic pattern: sample the input ports, spend some finite time working, and assert

new signals on the output ports. Clock "ticks' control these actions, and logic

blocks as discrete simulation entities are scheduled to execute on clock tick events.

Communications paths accept signal assertions from writers, order them by time

and signal type, check for conflicts, and return the appropriate signal for each strobe

performed by a reader. Logic blocks are thus primary entities, and communications

paths are slaved to their requests.

A.3.1 Resource: Num

One of the most important simulation resources is Num, since it is used everywhere

to represent machine values. They have several characteristics:

• used to hold the values of signals during transmission amongst logic blocks.

APPENDIX A. SIMULATION TOOL: TIMSIM 128

• provides the simulation entity underneath any type of storage cell within a

logic block or elsewhere.

• implements any arithmetic or logical operation desired within a logic block

under simulation, or for direct modeling.

• contains its own conversion routines for I/O with control files and tracing.

• can represent any arbitrary magnitude of binary value (1-64 bits)

• model valid binary values, as well as undefined and high-impedance (for bus

models) conditions.

Not only are they versatile, but a lot of effort went into making them efficient. Each

N urn contains three separate internal representations of its value, using whichever as

needed. To implement logical binary operations such as shifting or a bitwise XOR,

a binary format is used. For faster arithmetic operations, a standard integer format

is used (when possible). For I/O and tracing functions, there is a text format. A

Num will use whichever is needed under the circumstances, and keep track of which

formats are currently valid using "dirty bits". The text format in particular can use

any of bases 2, 8, 10, or 16, for either displaying information, or accepting data from

external sources.

Integer

Binary

Text

Type

Class Num

Figure A.1: class Num

APPENDIX A. SIMULATION TOOL: TIMSIM 129

class Num(size):
N urn .write(int)
Nurn.SlGsetZ
Nurn.SlGsetX
N urn . cp(othern urn)
Nurn.equal(othernum)
Num .SlGis*

Nurn .SIG*v

Nurn.size
Nurn.int
Nurn.txt

flu m n ewcp(srcn urn)
notbin(srcnurn)
incbin(N,C)
negbin(N)

object class, functions
load Num with an integer value
load Num as high-impedance
load Num as undefined
copy some other Num value
compare values
predicates; is number valid (V),
high-Z (Z) or undefined (X)?
predicates; which of integer, boolean
and text internal formats is valid?
binary representation size
integer representation
text representation

library support functions
func, create new copy of srcnum
binary not
binary increment with carry
2's complement negation

Table A.1: class Num interface

A.3.2 Resource: Signal

A signal is the basic unit of communication for buses and wires modeled with class

Cornlink. It contains a Num to hold an asserted signal or group of signals, as well

as information about which logic block asserted the signal, and at what simulation

time. Local routines provide access to this information while protecting it from

modification. A signal is modeled within DEMOS as a linked list element, so it may

be queued and sorted with its neighbours within a ComLink.

class Signal(author, authorlD,
signal, timestamp):

Signal.who:
Signal.whosn:
Signal.what:
Signal.whn:

object class, functions
textname of author of this signal
ID of author
value of the signal (Num)
time of signal assertion

Table A.2: class Signal interface

APPENDIX A. SIMULATION TOOL: TIMSIM 130

Author

AuthoriD Num

TimeStamp

Class Signal

Figure A.2: class Signal

A.3.3 Entity: ComLink

A ComLink (communications link) models an abstracted signal path used to transmit

binary values of any arbitrary width amongst logic blocks. There is no restriction

on the number of logic blocks connected to a Comlink, and each connection "port"

may be transparently used for input, output, or bidirectional transmission.

The task of the Corn Link is threefold: 1) accept asserted signals from writers, 2)

return appropriate signals to readers which "strobe" the communications path, 3)

time-order and resolve the asserted signals to supply strobes and traciiig information.

Here it is obvious why a Signal (and component Num) may be a real asserted value

(Nurn = V), a notification of de-assertion (Num = Z), or a undefined value (Num =

X) to signify an undefined state in a logic block. Thus we can detect when a bus

is undriven and ready to accept an asserted signal (or to flag an erroneous strobe),

flag a contention due to two or more conflicting assertions, and be able to propagate

undefined conditions to other parts of the circuit (useful for detecting more transient

varietieg of design errors). Table A.3 shows the varieties of signals pairs which may

occur, and how they are resolved to decide on real bus contents at the simulation

time of a logic block strobe. Note the combinations that result in contention, and

that actually all but two pairs result in a "bad strobe".

There are two simple interface procedures for ComLink, predictably named read

and write. Both deal only in simple values (Num) and identifying information, hiding

APPENDIX A. SIMULATION TOOL: TIMSIM 131

On Bus Asserted Strobe
X
x
X

X
z
V

X
x
X

Contention!

Contention!
z
Z
z

x
Z
V

x
Z
V

Bad strobe

V
"V
V

X
Z
V

X
V
X

Contention!

Contention!

Legend
X = Undefined signal
Z = Hi-Impedance
V = Binary value: [0 11]*

Table A.3: Signal Resolution Rules

most details of transmission from logic blocks.

class ComLink:
Corn Lin k.write(args):
Corn Link.read:

object class, functions
author (authorlD) asserts a Nurn value.
strobe the contents of the bus

Table A.4: class ComLink interface

Each ComLink maintains two separate queueing systems, a two-stage signal queue,

and a queue for strobe requests. The first signal queue SigQ immediately accepts

asserted signals and holds them for later processing when the ComLink is scheduled.

The second signal queue MemQ contains the results of signal resolution performed

on SigQ. Once older signals are discarded, newer ones are sorted in by time and

type, and error checked. The result is a local memory for the ComLink, holding

the communications history located immediately around the current simulation time

(CTS).

The strobe queue holds logic blocks which have requested to read the ComLink.

This queue is a DEMOS construct that provides entity-entity cooperation, through

two function calls q.coopt and q.wait. Normally, this provides a pairwise synchro-

nisation between entities which are waiting and those which wish to cooperate. In

my use, only the single ComLink entity itself cooperates, and it does so in a busy

loop. Logic blocks, through a call to ComLink.read, indicate they are waiting for

service. When the ComLink becomes the current "active" process, it services each

waiting logic block with the resolved signal for the CTS, and re-schedules them with

APPENDIX A. SIMULATION TOOL: TIMSIM 132

ComLink.Read
- (<Logic>)

Request

ComLink.Write(<Num>) Assert

Name

ID

H

Class ComLink

StrobeQ... j

<Log

SigQ...

ç(Resolution)

MemQ.
old <Signals>

/dev/null

Strobe Time

---p-
Strobe

Ic> <Num>

Reschedule I Result

Figure A.3: class Corn Link

no delay (at the CTS). In effect, a reader observes a strobe to occur in zero time.

Signal resolution is used to provide an accurate result for the latest signal strobe.

To be accurate, all signal assertions up to and including those occurring at the

simulation time of this strobe must be "in hand". This is guaranteed by the following

conditions:

1. signal assertions occur without a context change, and are time-stamped to the

CTS.

2. every inactive ComUnk (those without waiting requests) stays outside the main

scheduling queue.

3. when a ComLink obtains a read request it is scheduled at the CTS, but behind•

any other entities scheduled for the CTS (FIFO queue). ie. any entity who

APPENDIX A. SIMULATION TOOL: TIMSIM 133

might-still write a signal at this time will do so prior to any Com Link becoming

active.

4. an active ComLink services all waiting logic blocks before cooperating again.

5. after service, logic blocks are re-scheduled for the CTS. With multiple scheduled

ComLinks, these will normally become active prior to the re-scheduled blocks,

which potentially write more signals. I use a simple trick to once again force

each ComLink behind the logic blocks scheduled for the CTS.

With the safety measures above, and "instantaneous" service, arbitrarily many con-

current signal strobes and signal assertions may be accurately processed. Thus, logic

with multiple ports can be represented as a single block, with read/write delays

modeled individually or collectively, according to choice.

A.3.4 Entity: Logic

This class is the generic logic block. Initially featureless, the user adds internal Sim-

ula code and DEMOS directives to implement the functional behaviour of a register,

ALU, or whatnot. To reflect reality, logic blocks may be connected to arbitrar-

ily many communications paths (input, output, and bidirectional) or clock signals.

Similar to other simulation languages, clocks and signal paths are represented as

arguments to the new class. In the "outside" world, unused ports are simply left

dis-connected using null; internally, required ports are checked before use.

As to modeling time within the logic block between two actions, a logic block

calls the DEMOS hold() function to reschedule itself at the time that the next action

should begin. This method is used to implement both the behaviour triggered by

clock signals and that represented by internal propagation delays. Thus the core of

a logic block looks very much as in Figure A.4.

Currently, the basic logic block is very simple, existing mostly to keep hardware

modules under the same roof in the simulation; there are only two interface routines.

Strb_time is for use by a Corn Link to ensure that a read request from this logic block

had indeed been serviced in zero simulation time. Strobe is used by a servicing

ComLink to return the result of a read operation. Check-overdrive determines if a

APPENDIX A. SIMULATION TOOL: TIMSIM 134

logic class dtype(init,warmstart,clock,D,Q,QN);

ref (Nurn) mit ; ref(rdist) warmstart, clock; ref(comlink) D,Q,qN;
begin

ref (Nuin) state;

state := mit;
hold(warmstart . sample);

loop:

edge-time := time;

vporttime : time;

D.read;

state := vport;

hold(T_sub_P. sample);

q.write(title,id,state);

QN.write(title,id,state.negate);

check_overdrive(clock. sample,O.0);

hold(clock.sample);

repeat;

end-class-dtype;

!** initialise the logic;

!** top of cycle;

!** read input port;

propagation delay before outputs

assert on output ports;

asserted;

!** used up more time than given?;

!** schedule at the next clock event;

Figure A.4: Sample Logic block

clock signal is overdriving the logic; prior to rescheduling, it compares elapsed time

since the last clock event with the tentative time for the next one, to ensure that the

"next" event wouldn't already have occurred.

class Logic:
Logic.st rob e(signal):
Logic.strb_time:
Logic. check_overd rive:

object class, functions
return signal strobe.
return signal strobe time
verify clock consistency

Table A.5: class Logic interface

Internally, the normal name and serial number are maintained. Edge-time is

used to store the simulation time at "top-f-cyc1e" for calculation of elapsed time by

check-overdrive. Vport and vport_time represent a "virtual" port, used as interface to

comlinks we are reading by routines strobe and strb_time.

APPENDIX A. SIMULATION TOOL: TIMSIM 135

Name

ID

Edge-Time

Wort

Wort-Time

Class Logic

Figure A.5: class Logic

A.3.5 Trace Facility

This is a special class that provides a generic trace facility. Each is a boolean flag

that holds a title, ID, and type information, and can be enabled and disabled as

needed. There is also a count of times the flag has been "successfully" used, useful

for threshold checks and the like.

Name

ID

Type

Count

Class TFlag

Figure A.6: class TFlag

These are used in conjunction with tracing routines that accept a condition and

a text string as parameters. Thus, if the flag is enabled, then the condition is

tested, and if true, the text message is dumped to a listing. For easy parsing of

simulation results, each such message is prefixed by the flag name, ID, and type, and

the simulation time.

Each trace flag also has a virtual routine, executed on a "successful" flag; this

can be defined to implement a special reporting function or perform some other task.

Also, virtual routines and sub-classes can be made to behave differently based on

the flag type. The types of trace flags and their intended meanings are as follows:

APPENDIX A. SIMULATION TOOL: TIMSIM 136

class T Fla g(Title,ID,type,initial):
TFlag.eria bled
TFlag.enable/disa ble
TFlag.TF(condition,string)
TFlag.TFE(condition ,string)
TFlag.extra

object class, functions
is flag up?
obvious
test flag and condition, report string
as above, return condition result
the virtual procedure hook

Table A.6: class TFlag

Type Meaning
F
E
W
I
T
D

UI.-4

Fatal error, usually TIMSIM package bugs
Normal error causing immediate exit
Warning
Informational message (ie. not serious)
Development trace
Debugging trace flag, not normally enabled.
User-defined

Table A.7: Varieties of Trace Flags

A.3.6 User Interface

The simulator itself is laid out into several libraries of code. At the bottom is

the DEMOS/Simula foundation for timsim, on which several varieties of support

routines and classes are built, including the general purpose math class Num. In

tfsim, the instrumentation tools that augment DEMOS data collection routines are

defined. The core of the simulator exists liTI rtlsim, where Logic, ComLink and other

hardware primitives are defined. The two libraries timcell and timsim repreent all of

the simulation-specific information, which may expand into several libraries. Timcell

initially holds only a few common circuit fragments, which are later augmented by

user-defined registers, memories, ALU's, etc.. Timsim contains the actual design and

instrumentation for a particular simulation.

The task of the user is fairly simple. First, the varieties of logic blocks that will

be used are designed, and specified in the file timcell.sim (or as many files at this

level as desired). Once the machine design has been parsed into the interesting bits,

each is declared as a pre-defined comlink or logic block in the file timsim.sim, and

any desired system clocks or trace routines are specified at this time. The actual

APPENDIX A. SIMULATION TOOL: TIMSIM 137

timsim -
timcell
rtlsim
tfsim
stdsim
numconv
flu mtype
std math
stdio
DEMOS
Simula

• configuration
component designs
Signal, Comlink, and Logic architecture modeling primitives
the trace facility
I/O and support functions
internal conversions, I/O for Num type
definition and math operations for, 3-part Num type
support functions
support functions

Table A.8: TIMSIM library package hierarchy

design and interconnections are specified when each declaration is instantiated, as

the signal paths and clocks are all passed as parameters to the appropriate logic

blocks. The last phase involves setting all of the Trace Facility switches to observe

what is wanted, and specifying where to find the contents for any internal ROM (ie.

microcode) or RAM blocks (ic. a (TIM) machine-language program to execute).

Appendix B

Simulation Environment

In this appendix I give a brief description of the TIM workbench environment, de-

scribing the tools, utilities, sources, test programs and their interdependencies. The

following are the major elements:

Simulator The TIMSIM simulation support package.

Assembler The PONASM assembler, accepting TIM code from Ponder environ-

ment.

Standard Libraries The standard library of TIM code functions, implementing

the ground type operations.

Instruction Set Definition This definition of opcodes, fields and object code tem-

plates.

Microcode Definition The microcode definitions of ground type instructions.

Pre-assembler Performs pre-assembly editing of TIM code for compatibility.

TIM Code The TIM macrocode source programs.

Utilities 'Smaller utilities that perform a variety of useful functions.

The flow of information between these elements is shown in Figure B.l, for a

sample program testprog. Solid lines represent the production and consumption

of source, listing and object files. Dashed lines . represent transfers that have not

as yet been automated and require editing of SIMULA code. The boxes are the

executables in the environment, while the bubbles represent the definition files and

standard library sources.

138

APPENDIX B. SIMULATION ENVIRONMENT 139

PonderI

- - I

testprog

IPREASMft

testprog.tiin

testprog. obj testprog.lst

prepinst 4

oo

I Version Stamping I

- -I Compatibility Edits
Code Vectors)

I

stdlib0.9.tim*)

std.libl.0,tim I
stci1.th1.1.tIm)

Standard Ubraries

t3.nst— set
nst set v].. 0

vl.1
 /

Instruction Set
Definition

testprog. run

,0

I stdlib0.9.uc

I
—I stdlibl.i..uc
 I
Microcode Definition

Figure B.1: Overview of Environment

Simulator This simulator is called TIMSIM, and is used to execute TIM binaries

produced by the assembler ponasm. The simulator internals are kept synchronised

with those of the assembler through use of the information held in the instruction set

and microcode definitions (see below). The instruction set definitions are encoded

in t±msimdef . sim, while the microcode resides in timcell . sim. The simulator is

almost fully compatible with the TIM source code produced by the Ponder envi-

ronment. The support package for hardware simulations has been described in Ap-

pendix A. It should be restated that the top 2-3 files of the package are specialised to

APPENDIX B. SIMULATION ENVIRONMENT 140

implement the TIM architecture. TIMSIM is currently at version 2.0, and consists

of the files below which comprise approximately 2900 lines of SIMULA code.

timsim.sim

timell.sim

timsimdef.sim

rtlsim.sim

tfsim.sim

stdsim.sim

numconv.sim

numtype.sim

stdmath.sim

stdio.sim

TIM simulation top level, configuration file.

TIM-specific hardware modules, firmware internals.

TIM-specific firmware and hardware logical structures.

register transfer level simulator support package.

simulation tracing facilities.

generic simulation support (user interface).

improved variable radix number interface.

improved variable radix number structure.

simulator math function support.

general I/O routines.

Assembler The assembler is called PONASM, and is a two-pass binary assembler

which translates TIM macro code into an "object" consisting of binary opcodes,

addresses and data. Although meant to take Ponder TIM code as input, the assem-

bler is usable for any* handwritten program.- To this end the assembler includes full

debugging support, a user interface, list-generation with assembled code appearing

beside source macrocode, and a symbol table output. The instruction set definition

which specifies opcodes and masks resides in pondef . sim, and is formatted for in-

clusion by the utility tt prepinst (see Utilities below). The binaries are produced as

ascii-readable octal numbers, prefixed with object size and entry point address. In

future, the object file will be made to hold the symbol table, enabling TIMSIM to

produce a much more readable execution trace. PONASM is currently at version

3.0, and consists of the files below, comprising approximately 2500 lines of SIMULA

code.

APPENDIX B. SIMULATION ENVIRONMENT 141

ponasm.sim

ponparse.sim

poncode.sim

ponscan.sim

pondef.sim

symtab.sim

stdasm.sim

numconv.sim

numtype.sim

stdmath.sim

stdio.sim

Ponder TIM code Machine Assembler toplevel.

token parser.

machine code generation routines.

lexical scanner.

definitions for TIM machine, and assembler internals.

generic assembler support for symbol tables.

generic assembler support, user interface.

variable radix number interface.

variable radix number structure.

math functions to supplement SIMULA.

general interface.

Standard Libraries The standard libraries contain TIM code functions imple-

menting the ground type operations of the TIM architecture. Each of the functions

is a TIM code "wrapper" implementing the argument evaluation and other opera-

tions necessary for the machine instructions to function correctly. The utility preasm

(see below) is used to splice the standard library currently in use into the TIM code

program. At assembly time ponasm will link the functions with their respective calls

in the TIM code program. Some operations have several code variants, depending

on the manner in which the machine instruction is defined to operate. The alter-

native function definitions have been included and documented, but are currently

commented out. There are three versions of the standard libraries, the most current

being stdlibl . 1 . tim, which contains 134 functions, and 6onsists of 670 lines of TIM

macrocode.

Microcode Definition The microcode definitions encode the operations for all

TIM ground type machine instructions, in the form of register transfer language

(RTL). These instructions are used only by functions in the standard libraries, and

there is a high degree of interdependency between the function definitions in the

standard library and the function of the corresponding machine instructions. Al-

though not used directly to configure the simulator, these definitions are used to

code the simulator internals, and are maintained as a master list of operations to

APPENDIX B. SIMULATION ENVIRONMENT 142

be matched-against their uses in the standard libraries. Eventually, an RTL parser

could be used to load and interpret the microcode directly. There are three versions

of the microcode definitions, that currently in use being stdlibl . 1 . uc. This file

comprises 254 lines of microcode transfer statements, defining the microcode rou-

tines for 35 ground type and built-in machine instructions (arithmetic, logical, list,

pair, input/output and specials).

Pre-assembler The utility preasm is used to prepare TIM source code from the

Ponder environment for use in the TIMSIM environment. This includes (i) a stan-

dard library be spliced into the source code, (ii) any necessary vectors of PUSH A RG

and ENTER ARG instructions are added to the source, and (iii) that obsolete or

Ponder-specific forms of the TIM instructions are edited out. preasm also ensures

that the source is marked with information specifying the origin of the source pro-

gram, the standard library included, and the version of preasm performing the editing

tasks.

This is necessary to keep track of the several versions of executables, TIM sources,

standard libraries and instruction set definitions which are available. To maintain

compatibility amongst all elements, a method of version tracking was implemented

that labels all files with their origins. The TIM code programs, instruction set

definition and standard libraries all contain version information identifying their

creation date, pathname and in some instances last modified date. Each executable

(not just preasm) recognises, maintains and passes on this information so that the

exact content of any test program is known at run time. This information is held at

the beginning of each file in strings prefixed with the key "IDStamp". For example,

the object-code output of the assembler for the test program fibonacci . tim appears

in Figure B.2, as the first few lines of the file fibonacci . obj. This specifies version,

date, and pathname information for the original Ponder source, the run of the pre-

assembler, the standard library used, the resultant TIM source fibonacci. sim, and

the PONASM assembly.

TIM Code The amount of compiler effort expended to produce TIM macrocode

sources from a higher-level functional language is large. The compiler must incorpo-

APPENDIX B. SIMULATION ENVIRONMENT 143

!IDStamp /home/v].si/hermann/vaxponder/Tim/±ibonacci (Oct 4 12:54, Aug 21 1989)

!IDStamp preasm vi.1 (Dec 1 21:51)

IDStamp /tmp_mnt/fsg/fsg.usera/vlsi/hermamiiShop/run/Trials/fibonacci . tim(91 . \
12.01:21:51:36)

!IDStamp std].ibl. 1.tim (vi. 1:91.11.30)

!IDStamp PONASM v3.i (MJH 91.10.16) 1991-12-01 21:51:51

003341

000000

100 000

040 003

004 002706

005 002542

040 003

Figure B,: Version control information

rate a functional language intermediate code (FLIC), a A-lifting algorithm to produce

supercombinators, sharing analysis, strictness analysis, and a TIM macrocode gen-

erator. It was decided early on that the design of a compiler to provide TIM code

would be beyond the scope of the thesis. To this end, the PONDER environment

of Fairbairn and Wray [Fai86] was used to provide TIM macrocode. This package

compiles the "Ponder" functional language into TIM code in a four stage process. An

additional reason to use this source code was that in addition to providing sharing-

and strictness-analysed code, the use of the same compiler output would improve

the usefulness of any TIM performance comparisons, by placing the Ponder TIM

implementation and mine on an even source code "footing".

Due to system doffikare upgrades, the local Ponder installation soon broke, pre-

venting any new Ponder programmes from being compiled and tested. The list of

available test programs is 78 long, of which nearly one quarter are too large to be

practicall,r useful for testing. A small selection of hand-written programs was also

created for testing and debugging purposes, but these lack any practical application

in performance testing. The Ponder-derived sources can be hand-patched to change

the original program arguments and internal function arguments. This would al-

low testing of the same program with a range of arguments, but the hand-patching

APPENDIX B. SIMULATION ENVIRONMENT 144

process is difficult and tedious.

.The entire list forms the large test suite, used for static code analysis, and sta-

tistical study on program size and instruction arguments.

Utilities One utility that has been mentioned is prep inst, used to prepare instruc-

tion set definitions for inclusion in the assembler. In addition, there are a number of

useful utilities which automate the pre-assembly and assembly process, ensure that

versions of code, libraries and executables do not clash, and so forth.

Summary If the reader is interested in obtaining the TIMSIM environment, the

author can be contacted at the address below, or through internet e-mail addressed

to hermannccpsc . ucalgary . . ca.

Mike Hermann

c/o Computer Science Department

University of Calgary

Calgary, Alberta,

Canada T2N 1N4

Phone: (403) 220 7691

FAX: (403) 284 4707

The software requires Lund Software Standard Simula (revision 4.10 or greater) or

its equivalent, and currently operates under SunOS UNIX (release 4.1.1), on Sun 3

and SPARC architectures. The DEMOS (Discrete Event MOdelling under Simula)

package source (written in Simula) is also required, and can be obtained from Dr.

Graham Birtwistle (grahamccpsc . ucalgary . ca) at the address ibove.

