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Abstract 

Functional languages have enjoyed increasing popularity over the last few years, due 

to their advantages from the viewpoint of user, verifier, and implementer. There 

has likewise been an increase in the demand for special purpose architectures to 

efficiently execute them. 

The abstract functional architecture TIM (Three Instruction Machine) is a devel-

opmental culmination in both sides of the dichotomy formed by notational represen-

tation for functional languages and procedural evaluation for functional architecture. 

TIM was proposed by Jon Fairbairn and Stuart Wray at Cambridge University, and 

is a compact and efficient frame-based graph reduction processor which executes 

SuperCombinators. 

This thesis is an attempt to give TIM a concrete architectural form, with partic-

ular emphasis on the general 'design issues and methods of attack to be addressed in 

designing a functional architecture for practical application. Improvements in speed, 

efficiency, and implementability of the abstract machine are made, via changes to 

the organisation of memory, the structure of physical objects, and the contents of 

the instruction set. 

Finally, I make some arguments as to the accessibility of the architecture, its 

merits as a research tool and a representative of a new sub-class of functional ma-

chine. 
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Chapter 1 

Introduction 

In this chapter I introduce functional programming languages, outlining the main 

advantages and drawbacks these have over other programming language styles. From 

this I explain the need for machines specialised to execute functional languages, and 

describe the salient features of such functional architectures. The focus of this thesis 

is the Three Instruction Machine (TIM), of which I give a brief overview, and state 

the goals of my thesis work on TIM. I conclude with a list of the contributions of 

this work, and an outline of the thesis text. 

1.1 Functional Languages 

Functional programming. languages derive their name from the basic operation in-

trinsic to their structure, that of applying a function to a single argument to produce 

a result: 

fa = r 

(r may itself be another function). Functional programs consist entirely of such 

function definitions, which execute exclusively through the application of one to 

another. 

The fundamental difference between functional languages and their ancestors in 

computer science arises from their mathematical nature: they contain no variables. 

While imperative languages such as Pascal and C use variables to maintain state 

through assignment, applicative languages maintain state only as local arguments 

to the currently executing function. Furthermore, the content of this state remains 

invariant, and is valid, only during the lifetime of the function call. 

A more subtle distinction of functional languages is their strong basis in the 

1 



CHAPTER 1. INTRODUCTION 2 

mathematical theory of computation. As opposed to the post facto derived math-

ematical basis of imperative languages, applicative languages have evolved from an 

abstract notation or semantics called A-calculus. This has bestowed them with some 

surprising and very beneficial characteristics: 

Convenience The applicative programming environment is very simple to use. The 

absence of variables removes the effort normally required to define the type and 

scoping of storage. Functions are "first-class" entities, which may be treated 

as arguments, produced as results, and applied to other functions. This is a 

powerful tool that makes programming more intuitive, and makes programs 

more succinct and expressive. Conventional programming structures such as 

lists and abstract data types still exist. The result is a class of languages 

with clearer semantics, fewer details to look at, more compact and expressive 

operations, and shorter development times. 

Typing and polymorphism These form a hierarchy of compile-time techniques 

that provide an additional convenience feature to the programmer. Type refers 

to the class of information represented, ranging from base types (ie. integer) 

to conglomerate types specifying functions or abstract data structures. The 

techniques range from simple type checking based on user-specified type infor-

mation, to type inference in which the compiler automatically resolves all type 

information itself. Polymorphic types incorporate "wild cards" which match 

other types, allowing the re-use of single function definitions on multiple types. 

By rigorously enforcing rules of function application and usage, the compiler 

quickly flags "type clash" errors, while simultaneously guaranteeing that no 

(often costly) run-time type errors can occur. 

Nondeterminism and optimised execution This encompasses a number of ar-

eas such as lazy evaluation, strictness, and sharing analysis. "Laziness" or non-

determinism allows computations to be postponed until absolutely necessary, 

preventing unnecessary work and providing bonuses such as infinite structures 

and partial evaluations. To avoid redundant work, each computation result 
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may be shared amongst all references to that work. Strictness analysis deter-

mines which work must be done, so that the extra overhead of laziness and 

sharing can be avoided where unnecessary, and work may be more optimally 

scheduled. 

Correctness Software verification is assuming growing importance, but faces dif-

ficult complexity problems. Imperative languages suffer from "side-effects" 

(unforeseen state changes amongst sections of code) and semantic weaknesses 

that complicate program proofs. In contrast, the lack of variables and applica-

tive semantics of functional languages make them attractive to the verification 

community. 

Simple parallelism The underlying )-calculus notation provides some character-

istics, illustrated by the lack of "side-effects", which allow for arbitrary exe-

cution mechanisms (including n-ary parallelism), and arbitrary partitioning of 

any functional program. This makes functional languages very attractive for 

multi-processing environments. 

Functional languages have left their infancy as a de facto standard set of features and 

capabilities have emerged. Languages such as Miranda [Tur85], Hope [BMS8O] and 

SML [HMM86, Har86] are far better than their predecessors. Functional languages 

are still not as competitive as they could be with their imperative counterparts, partly 

from a lack of exposure in the user community. Improvements in the clarity and 

versatility of semantic structures, provision of larger standard function libraries, and 

educating users on-the functional programming style will encourage expanded use of 

functional languages. However, the largest problem is that of providing comparable 

compiler efficiency and execution performance. 

The advantages lof functional languages don't come for free. On a first approxi-

mation, the use of local state, and the applicative style itself make functional pro-

gramming more expensive in terms of memory usage and the degree of "copying" 

(of local state) that is required. In the search for performance, software has tradi-

tionally migrated to hardware; with the settling of functional languages, and their 
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unique execution requirements, the design of special-purpose functional architectures 

is a logical undertaking. 

1.2 Functional Architectures 

The major business of any architecture is the movement and storage of data. Hard-

ware is simply a crystallisation of algorithm, and a physical machine must reflect 

the execution behaviour and storage use patterns of the source language which it 

evaluates. The patterning of physical structure after logical structure is thus central 

to the success of any architecture. 

Backus [Bac78] makes this observation with regard to "conventional" architec-

ture, grouping Von Neumann and Harvard style machines together as variants on 

the familiar Central Processing Unit (CPU)-.Bus—Memory theme. On this alone the 

argument would fail, as this structure is common to nearly all computer architec-

tures. However, Backus continues by arguing that the imperative programming style 

on which these machines is based is deeply ingrained in their design. The seman-

tics of imperative programming naturally engender the use of such simple things as 

single-word wide instruction streams, user-accessible general purpose registers, and 

so forth. Further, this natural reflection of structure forever colours the character 

and capabilities of these architectures towards the service of the imperative style. 

It follows that functional languages should have their own native style of archi-

tecture, which would execute them with greater utility. In many cases, a target 

non-native architecture can provide unnecessary obstacles to the efficient execution 

of a functional language. These obstacles frequently manifest themselves in instruc-

tions that require specialised sequences of non-native operations or unique logical 

structures; a good illustration is tag manipulation. Thus even a simple implemen-

tation of a functional architecture will be better than a non-native machine, if the 

basic needs of functional languages are being served, and the transistor budget is 

not being wasted on unnecessary functions. 

What are these basic needs? The logical characteristics of functional languages 

indicate the physical form that a generic native functional architecture should take. 
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There are a number of observations from which the general nature of a functional 

architecture is derived: 

Applicative style The functional style encourages short-bodied and short-lived 

functions. The resulting sustained high rate of function calls predicts a need 

for rapid context changes, with attendant copying operations and movement 

of logical entities. This predicates large amounts of storage with fast access 

times, and extensive CPU support for executing function calls. 

Allocatable store The transient nature of most storage usage, and the additional 

storage requirements for laziness and sharing, means there must be at least one 

(and perhaps several) groups of allocatable logical storage elements. There will 

certainly be firmware/hardware support for allocation and garbage collection, 

including special control and storage use information. In some instances, the 

use of multiple physical memories may be beneficial. 

Simple instruction sets Due to the proximity of functional languages to their 

common ancestor A-calculus there is a small "semantic gap" [Mye78] between 

language and machine. Programs typically compile into a handful of basic 

operations, where the operations themselves usually require only a 0- or 1-

operand specification (typically a constant or a reference to memory). Thus, 

the instruction set of the CPU will be small and limited in scope, there will be 

no user-reachable general purpose registers, and inost details of the CPU will 

be hidden from the user. 

Complex internal structure In contrast with the last point, while instruction 

decoding may be simplified, the instructions themselves often represent highly 

complex operations. When using techniques such as lazy evaluation and shar-

ing, many internal tests and the movement and manipulation of much informa-

tion is necessary, especially for those instructions controlling context changes. 

Such instructions will naturally require many clock cycles, the use of internal 

book-keeping registers, and a correspondingly more complex control unit. 
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Limited locality In comparison to their imperative cousins, we can expect ap-

plicative languages to exhibit much different memory reference patterns. Spa-

tial and temporal locality will be affected by the rapid function calls, arguing 

against the utility of hardware accelerators (such as caching) as they are com-

monly used in conventional architecture. Improving memory performance will 

present new challenges to the hardware designer. 

Hooks for parallelism With the isolation of functions from each other, parallel 

execution is made more tenable by the lack of code interdependence. While the 

scheduling of instructions on a fine-grained multiple execution unit processor 

would still retain about the same difficulty, breaking the program into function-

sized chunks or larger for scheduling on a coarse-grained multiprocessor is much 

easier. 

To summarise, the semantics of functional languages places special emphasis 

on the quantity and structure of storage, the uses to which it is put, and the 

efficient movement of data within and between the CPU and memory. Judging 

by the large numbers of abstract functional architectures that have been designed 

[Hen8O, CGMN8O, Tur84, Car84, Joh87, CCM87, Tra85], these lessons have not been 

lost on the functional programming community. A few of these abstract machines 

have also been built [Sto85, Sch86, Ram86, GWB89]. 

A full blown implementation of a functional architecture would be able to make 

use of the same performance enhancements that have been used in other architec-

tures for years. A speed-optimised machine design would use microcoding for the 

complex instructions and subsidiary concurrent operations, pipelining to accelerate 

the data and control paths, virtual memory and hardware allocation/collection of 

memory for the more storage-consumptive execution, control unit redundancies to 

hold multiple contexts and enable faster function calls and returns, and instruction 

and data memory caching. However, while these are all valuable tools to use, the 

critical effort comes in designing the machine concept properly for the functional 

programming paradigm. 
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1.3 The Three Instruction Machine 

The Three Instruction Machine (TIM) was proposed by Jon Fairbairn (Cambridge 

University) and Stuart Wray (Olivetti, UK). TIM is an abstract functional machine 

tailored to execute a specialised form of X-calculus called Combinatory Logic (specif-

ically SuperCombinators, see Chapter 2). TIM uses graph reduction as an evaluation 

mechanism, a technique in which a program is distributed in a logical tree struc-

ture, and execution proceeds through a "pruning" process that gradually evaluates 

portions of the program and replaces them with their results. This is a common 

mechanism amongst functional architectures, but TIM is distinctive in both the way 

that it represents programs as graphs, and the method it uses to evaluate them. 

The major drawbacks with previous graph reduction schemes are the amount of 

time spent traversing the tree structure, and the amount of memory consumed in its 

representation. TIM uses an innovative approach to abstract most of the program 

code from the graph, leaving essentially only the call-structure of the program. This 

greatly abbreviates the tree structure. In addition, TIM. supports nondeterministic 

evaluation and sharing, addressing the unique control problems of each within the 

new graph reduction scheme. 

The three TIM instructions are called PUSH, ENTER, and TAKE. These roughly 

represent the three stages in a function call: 

1. PUSH some number of arguments to the function into temporary storage. 

2. ENTER (call) the function, the code portion of the new context. 

3. TAKE the supplied function arguments, as the environment portion of the 

context. 

So for the generic functional program, the instructions operate as in Figure 1.1. 

There are also a host of built-in ALU operations. 

The abstract machine is outwardly simple, but it holds a few surprises for the 

unwary. "Three Instruction Machine" is a somewhat deceptive title, as there are ac-

tually a few variants or "flavours" of both PUSH and ENTER, which specify the type 

of logical entity being referenced (Ic. a constant, a combinator "function" reference, 
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fa == r 

PUSH a 
ENTER I 
TAKE 1 

(return) r 

Figure 1.1: The simplest TIM program 

or a proper argument). Since TIM implements sharing, there are supplementary 

arguments to each instruction that provide control information, and specify which 

computations are shared. 

The basic instructions have very different complexity; while some instructions 

are very simple and execute in one or two machine cycles, others are very complex 

and can take tens of cycles. Thus some instructions are natural bottlenecks, and 

will draw heavily on hardware resources to prevent detrimental effects to machine 

performance. 

However, the basic abstract machine is reasonably straightforward. The most 

complex problems arise from implementing the many architectural optimisations 

that are discussed in Chapters 4 and 5. TIM holds a number of challenges for the 

designer charged with implementing the abstract definition as a practical working 

architecture. 

1.4 Contributions of the thesis 

The goals of this thesis are: 

1. to evaluate potential improvements to the abstract architectural definition of 

TIM, and 

2. provide a concrete design for selected best optimisations. 

The central contributions of the thesis are: 

1. evaluation of a number of optimisations to TIM proposed in the literature, and 

where applicable, comparison of reported results to replicate or refute. 
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2. evaluation of a number of optimisations proposed by the author. 

3. specification of some improvements to the abstract TIM design. 

4. design of the instruction format, logical objects and a partitioned memory 

system to support the storage and high throughput needs of the TIM processor. 

5. development of a DEMOS-based [Bir79] logic simulation package, with perfor-

mance measurement instrumentation and design debugging support. 

1.5 Structure of this thesis 

Chapter 2 is an introduction to functional languages, their theoretical character-

istics, and some practical examples of their use. I quickly examine the un-

derlying notation of )-calculus, touching on the work of Church and Rosser, 

the specialisation of )-calculus to combinators, and place special emphasis on 

SuperCombinators, the source notation of TIM. A brief discussion of "lazy" 

evaluation of expressions, sharing analysis and strictness analysis is included. 

Chapter 3 outlines the abstract TIM machine as proposed by the original develop-

ers. I initially describe two notable functional architectures which have been 

built, which represent opposite ends of the spectrum of functional architec-

tures, and illustrate two important components in the TIM architecture. I 

explain the philosophy of the TIM machine, describe the structures and ba-

sic instruction set, additional instructions for ground types, and those used to 

implement lazy evaluation. 

Chapter 4 begins with a brief overview of the set of possible optimisations, fol-

lowed by the design issues in TIM, goals I have specified for the design and a 

design philosophy developed to attain them. The bulk of this chapter discusses 

structural optimisations surrounding the TAKE instruction, covering aspects of 

context changes, creation and maintenance of sharing information, and the up-

dating of shared results. Approximately one half of this material is new and 

original work, in the form of extension and analysis. 
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Chapter 5 focuses on lower-level optimisations, and implementation of the TIM 

machine including the instruction set and use of storage. I propose a new 

model of the frame heap and a new instruction, used to speed context changes 

and the use of shared evaluations in TIM. Approximately 90% of this material 

is new and original. 

Chapter 6 summarises the contributions of this thesis, outlines some possible future 

work, and gives some final comments. 



Chapter 2 

Functional Programming 

Functional programming has developed in the areas of software notations, evaluation 

strategies, and hardware structures, with growth in one area encouraging growth in 

the others. This is no accident; in functional programming the notation encodes its 

own evaluation algorithms, and hardware is simply a hardwired form of algorithm. 

Thus functional language and special architectural support are intimately related. 

In the past, mainly notations and methods of evaluation were explored, and the 

interest in hardware was limited to the pervasive abstract machine. Now that some 

stable notations and evaluation strategies have settled out of the previous work, real 

hardware is being more aggressively explored for the next efficiency gains. 

The purpose of this chapter is to illustrate key concepts of functional languages, 

by examining the notational genealogy of the Three Instruction Machine. This will 

supply the background information necessary for the reader to understand the first 

two of the three facets of TIM: notation (supercombinators), methods (lazy evalua-

tion, sharing) and structure (stack-based graph reduction), preparatory to concen-

trating on the third in Chapter 3.1. 

I will outline the development of notations up to supercombinators, illustrating 

the gradual improvements in efficiency and discussing some of the tools used to 

achieve these gains. A great deal of work has gone into understanding functional 

languages, how best to apply them to problems, creating type inference mechanisms, 

and so forth. Much of this work has been aided by the fact that all functional 

languages have a common mathematical basis, from which each may gain the same 

power, and be amenable to the same analysis techniques. This basis is the A-calculus, 

and it is the intrinsic properties of A-calculi that are in large part responsible for the 

success of functional programming languages. 

11 



CHAPTER 2. FUNCTIONAL PROGRAMMING 12 

The knowledgeable reader may safely skip this chapter. Those who wish to know 

more are referred to [11ug89], which outlines the arguments for functional program-

ming, and [Kle81], which gives an historical account of its development. [Bar81b] is 

a comprehensive introduction to the A-calculus, and [CF58, CHS72] are the standard 

references for combinatory logic. [HS86] treats theoretical aspects of the above, while 

[Pau87] and [Sto77] focus on program verification and typing of functional languages, 

respectively. [Gor88] is a teaching text for semantic analysis which covers A-calculus, 

combinatory logic and supercombinators. [BW88], and more so [Pey87] and [FH88] 

are comprehensive, broad overviews of functional programming, including notations, 

evaluation strategies and architectures. 

2.1 The Lambda-calculus 

Functional programming got its start from a simple notation called the Lambda 

Calculus or A-calculus. The A-calculus is a formal abstraction originated by Church 

[Chu41] to provide a theoretical basis for mathematics, a task for which it proved 

inadequate [Ros84]. It lay dormant for many years, before computer scientists found 

that it was useful for reasoning about computation and the semantics of algorithms. 

A-calculus could be used to separate program syntax (how an algorithm is written) 

from program semantics (how the algorithm operates, and what it does), isolating 

the meaningful from the extraneous. 

An early exploration by Landin used the A-calculus to provide an operational 

semantics for ALGOL6O [Lan65a, Lan65b}, with which ALGOL6O programs could 

be understood and verified correct through "abstract evaluation". This developed 

from previous work where Landin introduced the use of A-calculus as a semantic 

analysis notation, and created an abstract machine called the SECD which could 

execute the new notation directly [Lan64]. The notion of a language which held 

both a "program" and the method of its execution implicit in the program definition 

was to become central to the field of functional programming, and A-calculus was to 

become the common denominator in much of the research to follow. 
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2.1.1 The Pure A-calculus 

The "pure" A-calculus has only three constructs, as they appear in Figure 2.1. These 

are argument names (any tag symbol V introduced in an abstract function), func-

tion applications (read as function E1 applied to argument E2, where E is any 

A-expression), and abstract function definitions, in which V is the tag name for zero 

or more occurrences of an argument in the function body E. These three semantic 

structures are the simplest expression of the essentials of functional computation, 

and form the common denominator for all functional languages. 

I (E1E2) 
AVE 

(argument name) 
(function-argument application) 
(abstract function) 

Figure 2.1: Pure A-calculus BNF 

To evaluate an A-calculus expression, it is converted to another semantically 

equivalent form; the "conversion" rules (see Figure 2.2) governing A-calculus are 

likewise few and simple. The first and third, a-conversion and a-conversion, are 

used to rename a argument, and to add or delete arguments as needed, respectively. 

The most important rule is /3-conversion, which applies functions to arguments. The 

notation "E1 [E2/x]" is short for "the expression E1 with argument expression E2 

substituted for all free occurrences of x". In other words, reading from left to right 

this retrieves the outside argument E2, "binds" it to the internal argument name x, 

and replaces free occurrences of the symbol x within E1 by the expression E2. 

Ax.E Ay.E[y/x] (renaming) 
where x is not free in E) 

(Ax.E1)E2 44 Ei[E2/x] (function application) 

Ax.Ex E (argument abstraction 
where x is not free in E) 

Figure 2.2: A-calculus conversions 
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The execution of A-calculus programs is called "reduction", and uses the left-to-

right forms of fl-conversion and 77-conversion with the normal or-conversion. Exe-

cution proceeds as a search for reducible expressions, or "redexes", which are then 

rewritten using the rules. As an example, consider a simple predicate: 

Operation 
if false then A else B 

' (Atxy.txy) false A B 

(false AB) 
= (Axy.y) A B 

(Ay.y)B 

=4B 

Comment 

(if = Aixy.txy) 

(3 fl-reductions) 
(false = Axy.y) 

(fl-reduction) 

(fl-reduction) 

Figure 2.3: A-calculus if-then-else 

The process of "reduction" implies that the size of the expression is reduced, 

but this is not always the case. Program execution is complete when we run out of 

redexes or further applications of the rules to existing redexes no longer change the 

expression; this is known as "normal form". 

Despite its simplicity, every computable function can be expressed in A-calculus 

("Church's Thesis", [Chu36]). That is, it possesses the same power as any other 

programming language in use. As with "if-then-else", integers, lists, pairs, datatype 

constructs and others can all be expressed in terms of the A-calculus, albeit ineffi-

ciently. 

2.1.2 Practical Aspects 

In practice, a fourth construct (Figure 2.4) is added to the pure A-calculus. Constants 

are used for ground types and their atomic operations, such as the natural numbers 

and the operations +, —, x, /. 
Implementing recursion in the A-calculus is a sticky problem. Unlike higher-level 

languages, A-calculus is nameless apart from the tags used for arguments. A recursive 

'Pure A-calculus is restricted to an inefficient unary integer representation; this is a common 
practical optimisation. 
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E  

IC (constant) 

Figure 2.4: Impure A-calculus partial BNF 

function refers to itself, and so cannot be directly expressed in the )-calculus. We 

must use a "trick" to provide recursion, by converting recursive functions into a; non-

self-referential form, in which the function obtains its own definition as an argument. 

This argument is then used for the "recursive" function call. As an example, consider 

a recursive multiply function (Figure 2.5a): 

mpy =A p q . if (p = 0) then 0 else (q + (mpy ( p - i) q)) 
let M=Afp q. if (p = 0) then 0e1se (q + (f (p -1) q)) (a-conversion) 
then mpy = M mpy (by definition) 
and mpy =Y M (using a fixed-point function) 

Figure 2.5a: Developing a non-recursive definition 

To provide the copies of the function definition as needed, we use the artifice 

of a "fixed-point operator". Denoted "Y", each time this operator is applied to an 

argument, it returns a copy of the argument as well as the original application. Thus 

the initial application pair remains unchanged: 

24.  

The (Yf) pair is a fixed-point of M, and is in effect a catalyst for the recursive 

computation, moderating it but remaining unchanged. To see how a recursive func-

tion is translated, we start with the definition of a recursive function called mpy 

(Figure 2.5a). First 18-conversion is used to abstract away the function name, and 

replace it with an argument; the external parameter "mpy" represents the mpy func-

tion definition needed for a recursive call to succeed. The last step is to discard 

the function name, and add the Y operator to implicitly replace it with the mpy 

definition. Simplified, the process is as in Figure 2.5b. 

Under execution, the fixed-point pair (YM) is applied to the regular function 

arguments, and immediately rewrites itself as the function M applied to the fixed-
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mpy = mpy-body mpy-body = A m n. if... mpy 

4'M mpy M = A f . mpy-body [f/ mpy ] 
=YM 
= M (Y M) proof: invoke Y 
= M mpy proof: mpy = Y M 

Figure 2.5b: Fixed-point equivalence 

point pair and the other arguments. Execution continues with the body of M. See 

Figure 2.5c. 

mpy 3 2 
Y M 3 2 
M ( V M) 3 2 (invoke Y) 
[Afpq. if(p=O) then O 

else ( q+ (f(p -1) q))J (V M) 32 
if ( = 3 0) then 0 else ( 2 + ((V M) (3 - 1) 2)) (apply arguments) 
2 + (( V M) 2 2) (resolve predicate) 
2 + ( M ( Y M) 2 2) (invoke V) 
2+([Afpq. if ... f(p-1)q](VM)22) (the full definition) 

2+ (2+ (2 + (( V M) 02))) 
6 

Figure 2.5c: Evaluation under Y fixed-point operator 

Mutually recursive functions are handled by encapsulating the definitions as a 

single argument, to be extracted for function calls as needed. 

One A-expression definition' for V is (Ah.(Ax.h(xx))(Ax.h(xx))) and others have 

been suggested by [CF58, C11S72, Bar81b]. [Hud89] states that fixed-point operators 

are inadequate for typed A-calculi and non-standard evaluation mechanisms, and 

suggests other methods of implementing recursion. 

2.1.3 Theoretical Implications 

The mathematical basis of A-calculus is responsible for many of the assets of func-

tional languages, mainly through the ease of developing and extending formalisms. 

The greatest asset of the A-calculus is derived from a set of basic results called the 

2from [Pey87], pg. 26 



CHAPTER 2. FUNCTIONAL PROGRAMMING 17 

"Church—Rosser" properties [CR36]3, which address the evaluation of A-expressions 

and their convertibility one to another: 

Theorem 1 (Church-Rosser) Given two A-expressions X and Y, if X ., 1', 

then there exists a A-expression Z such that X Z and Y Z. 

Corollary 1 (Church-Rosser) No expression can be converted to two distinct nor-

mal forms. 

Theorem 2 (Church-Rosser) If A red B, and B is in normal form, then there 

exists a normal order reduction from A to B. 

Theorem 1 states that any two interconvertible ("." denotes any a-, /3- or 

it-conversions) expressions will have a common result expression through reduction 

("" using /3,i-reduction). More generally, a single expression may be evaluated 

in many different ways, but all the interim results are interconvertible, and so will 

(eventually) reduce down to a single result. An inductive argument on theorem 1 

states this clearly in corollary 1, where normal form means "fully evaluated". 

Theorem 2, or the "Normalisation Theorem", states if an expression can be re-

duced down to its normal form, then there is a well-defined method of reduction that 

always attains the normal form. Normal-order reduction always applies /3-reduction 

to the leftmost-outermost redex first, until no more such redexes exist. 

Taken together, these three statements provide two guarantees: 

1. evaluate the redexes of an expression in any order. If the evaluation produces 

a result (doesn't loop infinitely), the result is correct. 

2. if you evaluate a (terminating) expression in normal order, you will terminate 

with a result, and that result will be correct. 

The same holds for any operations we split in pieces and do in parallel (the most 

obvious place being amongst arguments at a function application). 

The practical upshot of the Church-Rosser theorems as they apply to A-calculus, 

and by extension to all functional programming languages, is that the evaluation 

3more accessible proofs are available in [CF58, HLS72, HS86] 
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mechanism we use is immaterial to our results. We can break a program up in any 

way we want, execute the pieces in any order, and if we get a result, it is guaranteed 

to be correct. 

In other words, functional programs can be broken up and mapped onto a parallel 

processor in any arbitrary manner, so we can attain the benefits of concurrent eval-

uation without the typical costs of partitioning and communication. The A-calculus 

asset of cheap parallelism is precisely what motivates much of the continued interest 

in functional programming. 

2.1.4 Strengths and Limitations 

There are a few practical problems involved when considering the A-calculus as 

a notation that would be executed in a real or abstract machine. The size of 

A-calculus programs, increases compared to that of the original source program. Even 

when ground types and associated operations are included, the nameless nature of 

A-calculus requires that function bodies be replicated wherever they are called. Even 

so, A-calculus code expansion is not that much worse, symbol for symbol, than with 

imperative-style machine code on Von Neumann machines. 

A-calculus programs consist of many very small-bodied functions, and this trans-

lates to an abundance of function calls, all of which are 'short. Aside from ground 

type operations, evaluating A-calculus programs consists almost entirely of function 

calls. Qualitatively, this means that most effort is spent rearranging complex expres-

sions simply to filter arguments "down" to where they are needed. In addition, the 

use of fixed-points for recursion is expensive, as each recursive call requires that the 

function be copied in its entirety. 

The largest cost' is the use of /3-reduction to evaluate each function call, as it 

is inherently expensive. Substituting arguments requires a time-consuming search 

for variable names throughout the body of the A-expression, which can be several 

thousand symbols at the start of a program. /3-reduction is also susceptible to 

the "name-capture" problem [Pey87], which arises when one or more symbols in 

a substituted expression become erroneously bound to remaining parameters. As 

illustrated on the left in Figure 2.6 below. 
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With capture 
(Ax.(Ay. + x y)) zi 3 

. y.+yy) 3 

+33 

== 6 

X 

X 

Without capture 
(Ax.(Ay. + x y)) y 3 V1 

(.Ax.(Aw. + x w)) w 3 v' 

(Aw.+w)3 V/ 

:4 +y 3 v/ 

Figure 2.6: Name-Capture 

The argument y is substituted for the locally free argument name x in the first 

/3-reduction and has become bound to the local parameter y. It should remain a 

"free variable" at this level (although it may be bound by a surrounding expression). 

To prevent this name clash, cr-conversion is used to rename y prior to substitution, 

as shown on the right in Figure 2.6. Thus, /3-reduction is made more expensive by 

having to detect name clashes and apply cr-conversion as needed. Performing this 

task over an entire program is very expensive in time and memory usage. 

Of course, many of these problems may be reduced by an intelligent implemen-

tation of the evaluation methods. A machine architecture proposed by DeBruijn 

[DeB72] uses annotated variable names and an environment-lookup method to track 

the positions of argument symbols in the body of an expression, to avoid searching 

and quickly detect name clashes. Aiello and Prini [AP81] maintained expensive run-

time variable scoping lists for each expression, and extensively applied ce-conversion 

to avoid name-capture. Both of these machines resorted to reincarnating information 

that the A-calculus had originally abstracted out, and using more intelligent eval-

uation mechanisms than simple term-rewriting. However, the real problem is with 

the notation; the use of /3-reduction, and the raw numbers of function calls must be 

avoided. 

While the A-calculus is not a very good implementation language, it is a good 

notation for representing and reasoning about programs. For this reason, many func-

tional programming implementations currently rely on A-calculus as an intermediate 

functional language (IFL). Higher-level functional languages are translated down to 

A-calculus, where type inference and similar tasks are performed, and from there 
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translated to a specific implementation language for evaluation. In the rest of this 

chapter, we look at some more suitable implementation languages. 

2.2 Combinatory Logic 

Combinatory Logic (CL) predates the A-calculus in the search for an abstract theory 

of mathematics, and was developed independently by Schonfinkel and Curry [Cur29, 

Sch24, Ros84]. Summarily discarded, CL lay dormant for many years until Petznick 

EPet701 revived it by suggesting it as the basis for a computing engine. The modern 

use of combinators in computer science stems mostly from Turner [Tur79a, Tur79b] 

who expanded upon the original set of combinators and developed an abstract graph-

reduction machine to execute them. 

The Combinatory Logic notation contains only constants, combinator names and 

application (Figure 2.7). 

E ::= C (constant, combinator name) 
I (E1E2) (application) 

Figure 2.7: Combinatory Logic BNF 

The definition of a combinator is a A-expression which contains no occurrences 

of a free variable. For example, "A1,.yx" would not be a combinator since x oc-

curs free in the abstraction, and makes the expression prone to name-capture. Each 

combinatory logic program is formed of combinators represented only by name, the 

actual A-expression definitions being "hidden" from the user. In this sense, combina-

tory logic is variable-free A-calculus, where combinators are fixed reduction formulae, 

used in combination to implement larger, more complex A-expressions. Only a finite 

set of these combinators are used for any given application, so that each may be 

hard-wired into the evaluation mechanism. This and the lack of free variables means 

that the expense of fl-reduction and substitution is avoided, making CL a potentially 

attractive replacement for A-calculus. 

The basic set of combinators are called S, K and I (Figure 2.8). These encode the 
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Sfgx = fx(gx) (distribute and apply) 
Kxy = x (elimination) 
Ix = x (identity) 

S Af.gs.fx(gx) 
K Axy.x 
I Ax.x 

Figure 2.8: Basic Combinators and A-calculus equivalents 

simple operations necessary to manipulate symbols in the manner of computation, 

and are sufficient to represent any computable function. Actually, I is a convenience, 

and only S, K are necessary [Sch24, Cur29], as demonstrated: 

/ SKKx Kx(Kx) x = Ix '. SKK=I 

Lacking substitution, combinators must control the movement of arguments di-

rectly. The equivalent of a A-expression in CL is a string of combinator applications, 

Aaia2... .body =(...((CiC2)C3) ... C) 

which on execution will incrementally accept, copy and rearrange arguments. 

For example, when evaluating an application PJ1E2 in environment o, both E1 

and E2 must be evaluated in o before application: 

Ea = (E1E2)o (E1o)(E2o) 

Once an application E = (E1E2) has been stripped of all argument names, it 

must be reconstructed to "automagically" restore arguments to their correct places. 

This is the task of the S combinator: 

SEo = SE1E2o (Eiu)(E2o) 

lithe argument a does not appear in the sub-expression (trivially, when the expres-

sion is a simple constant), K is used to eliminate the argument(s): 

KEcT=KCcT=C 

Lastly, I is used where the argument is passed on unchanged. 
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The procedure for translating A-calculus to combinatory logic is known as bracket 

abstraction. The abstraction rules for the simple SKI logic (from [Gor88}) are shown 

in Figure 2.9. Rules 1-3 parse the A-expression "(•••)", deleting A-abstractions and 

identifying variables "(x)" to be removed. Rules 4-7 parse the expression a second 

time to convert appearances of the variables to combinators which will restore the 

appearances on execution. The notation "(x) E" denotes the abstraction of a variable 

name "x" from expression "E". 

1) (x)=x 
2) (E1E2) = (E1)(E2) 
3) (Ax.E) = (cc) (E) 

4) (x)x=I 
5) (cc)y=Ky 
6) (x)M=KM 
7) (cc) (El E2)= S((x) E1.) ((x) E2) 

atomic 
parse the parts of the application seperately 
parse the A-abstraction 

cc matches itself 
cc is not found here 
M is a combinator 
abstract the application 

Figure 2.9: SKI A-abstraction rules 

Thus, A-abstraction converts an interpreted A-expression, into a string of CL rules 

that explicitly manipulate parameters. Applied to a A-program, the entire expres-

sion will eventually become "flattened", consisting of one long string of combinators 

which expects to receive all the top-level program inputs in the same order as previ-

ously. Figure 2.10 illustrates the abstraction process and resulting code for a simple 

example. 

(Afa.faa) = (f) (Aa.faa) 
= (f) (a) (faa) 

(f) (S((Kf)I)I) 
S(S(KS)(S(S(KK)I)KI))KI 

Figure 2.10: Example of SKI abstraction 
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2.2.1 Strengths and Limitations 

The major advantage of Combinatory Logic is that it dispenses with variables in 

order to avoid both /3-reduction and substitution, the most expensive components of 

A-calculus evaluation. Complex A-expressions can now be represented using a small 

fixed set of simple reduction rules. The rules can thus be "hard-wired" into the 

evaluation algorithm, whether this is in an abstract machine, or as microcode in a 

real architecture. 

Unfortunately, the basic SKI combinator set is too fine-grained. The restricted 

capability of these simple operators means much execution time is spent simply re--

arranging expressions to slowly filter arguments "down" to where they are needed. 

Also, there are high associated memory costs (see Section 3.1.2), and the same over-

head as A-calculus for the basic evaluation mechanism and implementing fixed-point 

recursion. 

It is possible to do better by modifying the set of combinators, and using the new 

combinators to optimise inefficiencies in the abstraction process. Many such alterna-

tive logics have been proposed [Abd74, Abd76, Tur79a, Tur79b, Ken82]. However, 

while it is tempting to design new combinators for every special case that arises, the 

usefulness of each is difficult to predict, and each addition complicates the already 

costly translation algorithm; Joy [Joy84] has shown that optimising combinator code 

is NP-complete, and that in any case, fixed-set combinatory logics have unpromising 

size complexities (see Table 2.1, where n is the A-expression size, and m is the num-

ber of variables being abstracted). These limitations have led to the development of 

combinators tailored to the program code, or supercombinators (see Section 2.4). 

worst case O(n3m) (unadorned SKI logic) 
typical case E)(nm2) (Turner[Tur79a] logic) 
best case O(n log m) (theoretical best achievable) 

Table 2.1: Size Complexity of Combinatory Logic 
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2.3 Lazy . Evaluation, Sharing, Strictness Analysis 

Lazy Evaluation (or laziness), sharing and strictness analysis are a collection of 

concepts intrinsic to the convenience and efficiency of functional programming. I 

have neglected these thus far, but they are necessary to understanding the material 

that follows. 

2.3.1 Lazy Evaluation and Sharing 

In conventional programming languages, arguments t' a function can be evaluated 

either before application of the function (call-by-value) or after (call-by-name). Each 

method can suffer from inefficiency, call-by-value when an argument is evaluated and 

subsequently left unused, and call-by-name when each use of the argument requires 

a re-evaluation. 

Lazy evaluation does exactly what its name suggests, postponing the evaluation 

of a named argument until its value is required. Furthermore, once an argument is 

evaluated, the result is retained for future use, which is known as sharing. Typically, 

laziness/sharing is implemented by representing argument bindings with a pointer 

to the argument, rather than the argument itself. Figure 2.11 shows this pictorially. 

(x.\y. IFx>OTHEN (* xx) ELSE(+xy)) (fib 4) (fib a) 

..IF( > O)ThENr ) ELSE (+ )  (fib 8)l 

,(fib 4)I 

..IF( 0) THEN ELSE (+ I) J(fib 8)I 

'ifi 
_CJ i  
-25 

(fib 8) 

I rn 

Figure 2.11: Example of Lazy Evaluation 

This "call-by-need" method avoids needless work both for unused arguments (as 

with y) and redoing work for multiple occurrences of an argument (as with the three 

uses of x). There are degrees to the laziness concept: ie. full laziness is an important 

goal of functional language implementations. Full laziness avoids the construction of 
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multiple instances of the same expression. As an example, consider the expression 

below: 

(\y.x. + (*2y)x)E 

(\x. + (*2E)x) 

This is a partial application, so named because only one argument is supplied. The 

result is the function that adds *2E to x, where laziness will postpone the evaluation 

of E. If this partial application is shared amongst two or more contexts that will 

supply the x argument, the first to execute will trigger E's evaluation, but each 

would be forced to evaluate the local subexpression *2E. Full laziness will avoid this 

needleth work, by constructing only one instance of the subexpression and treating 

it lazily. 

The overhead of implementing laziness and sharing is non-trivial. There are the 

costs of suspending and "storing" argument evaluations, passing pointers, and up-

dating arguments with results. Distinguishing between an unevaluated and evaluated 

argument requires some variety of book-keeping, which becomes more complicated 

when (as seen above) the argument is not a simple expression but a partial applica-

tion. Similarly, sharing of expressions adds to the complexity. The needless use of 

sharing (and laziness) for expressions or arguments which are only used once can be 

avoided by tabulating the dependencies of expressions on its neighbours. Unshared 

code can then be moved into the body of the expression that requires it. An analo-

gous, but much more general technique is used to restrict the application of laziness 

and sharing, and is described in the next section. 

Section 3.1 will discuss some of the methods for implementing laziness and shar-

ing. 

2.3.2 Strictness Analysis 

The cost of laziness is enough that when it can be avoided, it is worthwhile. Expres-

sions sometimes require an argument to produce a result, and it is cheaper to eagerly 

evaluate the argument, while maintaining sharing. Such expressions can be detected 

using a body of theory called strictness analysis. Informally, 
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A function f is strict in an argument x if and only if 

the value of x is necessary to produce the value of f. 

For example, operations such as integer addition are always strict in all of their 

arguments (ie.. "Ax.Ay. + xy") since a result for each is needed for an expression 

result. The expression "Axns. if x then n else s" is strict only in x, so nothing is 

gained by lazy evaluation of x. Strictness analysis is an interpretive technique that 

predicts only argument evaluations which are mandatory, so that these arguments 

may be automatically executed as soon as is practical. 

2.4 Supercombinators4 

Supercombinators were introduced by Hughes [Hug84] when he combined a new tech-

nique called lambda-lifting (A-lifting) with full laziness to produce custom combin-

ators. The motivation is prohibit free variables so as to allow simultaneous substi-

tutions, while avoiding the limitations of small combinators. Rather than mimic a 

A-calculus expression with a composition of fixed-set combinators, the A-calculus is 

reorganised so each abstraction has the characteristics of combinators, and trans-

lated directly. These supercombinators have more variables and larger bodies, so 

that more substitutions can be done simultaneously. 

Supercombinators form a proper subset of the infinite set of all possible combin-

ators, and have the same semantics (see Figure 2.7). The definition (Figure 2.12) of 

a supercombinator differs slightly from that for combinators, to specify in rule (2) 

that the entire A-calculus program contain no free variables. 

For example, the A-calculus expression Afa.faa is already a supercombinator, 

which can be translated directly and named "R". 

Afa.faa -* Rfa = faa 

Conversely, Ay.Ax. + x(*yy) has y as a free variable of the inner abstraction, which 

must be bound to make it a supercombinator. 

4This section draws from the structure and examples of Chapter 13 in [Pey87]. 
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A supercombinator S is an expression of the form 

S = Ax1.Az2. • 

where E is not a A-calculus abstraction, and 

1. S contains no free variables. 

2. Any lambda abstraction in E is a supercombinator. 

3. n > 0, ic. S can be a simple constant. 

Figure 2.12: Supercombinator definition 

Lambda lifting is the translation process that converts ).-calculus to supercom-

binators. It binds all free variables in an expression, in effect "lifting" them to the 

same level as the other variables in the abstraction. By applying i7-conversion to 

create a new y abstraction, the free variable is removed from the expression (where 
AL 

denotes the .\-lifting translation): 

Ay.Ax. ± x(*yy) AL  )ty.yx. + x(*yy)), 

The translation continues as follows: 

Ryx = +x(*yy) 

Ay = Ry 

Ryx = +x(*yy) 

Ty = Ry 

Main = T 

(Ay.(Ayz. + x(*yy))y) 

(Ay.Ry) 

Which can be simplified by noticing that Ty = Ry implies that I = R, and so we 

can remove T to have Main = R. 

In practice, we would also like to maintain full laziness, which means that com-

mon subexpressions must be sharable. We can have full laziness and better super-

combinators besides by noticing that not just variables but sub-expressions can be 

"free", usually the portions of the X-expression immediately surrounding free vari-

ables. These can likewise be lifted out, just as with variables. In the case of fully lazy 

lambda-lifting, we are only concerned with maximal free expressions (MFE's), which 

are the largest free subexpressions that can be identified. The expressions below all 
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have their MFE's underlined: 

(Ay.Ax. + x(*y y)) (Ay.Ax.+(*y y)x) 

(Ax.(Ax.x)x) (Ax.Ay. + y(*(*xx)3)) 

MFE's are precisely the common subexpressions that can be shared between one 

or more evaluations. Lifting the MFE of the last example, the result is: 

Rwx = +xw 

Ay = R(*yy) 

Rwx = 

Ty = R(*yy) 

MainT 

(Ay.(.\w. + w)(*yy)) 

The decision as to which variables or MFE's are lifted first can greatly affect both 

the size and numbers of translated supercombinators. To decide lifting order, lexical 

level numbers (LLN) are assigned to each unit of the A-expression, as follows: 

1. the level number of constants and the "empty" A-abstraction are 0. 

2. the LLN of a variable is the LLN of the A-abstraction that binds it. 

3. the LLN of a A-abstraction is 1 more than the number of textually-enclosing 

A-abstractions. 

This concept is intrinsic to the A-lifting procedure working effectively. In the 

example of Figure 2.13, BODYXYZ = +(*yx)(+z(*yy)) (note that y is free). The 

LLN's of the variables and subexpressions appear respectively above and below the 

A-expression: 
0 1 2 0 0 

Ax.Az.  

1 2 

2 

The idea behind ordering parameters is that we wish to make MFE's and the 

resulting supercombinators both larger and fewer. For A-lifting, ordering parame-

ters according to increasing lexical level numbers means abstracting the "most free" 

variables first. Since freer variables have more flexibility for later A-lifting, they are 
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Ax..\z.BODY,, LLN(y) = 0, LLN(z) = 1, LLN(z) = 2 

Rxyz = BODYVYZ 

Rxyz = BODYayz 
Tyx = Rxy 
Ty 

Incorrect A-lifting order  

Az.BODY (\xyz.BODY)xy 
but LLN(z) > LLN(y)! 

AL 
.Az.Rxy ( ix.Rxy)y 

2 definitions 

Ryxz = BODY 
\x.Ryx 

Ryxz = BODY 
Tyx = Ryz 
Ty 

Correct A-lifting order 

z.BODY 
v'LLN(z) < LLN(y) 

\a,.Ryx 4 (Ayz.Ryz)y 

Ryxz = BODY, since Tyx = Ryz I- T = R 
Ry 1 definition 

Figure 2.13: Effect of parameter ordering on produced supercombinators 

the natural choice for lifting first to get them "out of the way" so we can concentrate 

on the more constrained variables which remain. These less free variables are those 

bound at "inner" levels, and can be thought of as having "fewer degrees of freedom" 

for manipulation. These will be lifted later, and appear later in the list of supercom-

binator parameters. Informally, A-lifting follows the natural flow of arguments and 

function calls in the source A-calculus, resulting in fewer and more efficacious super-

combinators. Figure 2.13 shows two possible ways to lift the example expression, 

where the second makes use of LLN's to reduce the number of supercombinators 

produced. 

2.4.1 Strengths and Limitations 

Importantly, the use of recursion with supercombinators is now very much simpler, 

since supercombinators are themselves named, and may reference each other directly. 

There are a few variants of the translation process that produce slightly different 
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code, but with self-referential supercombinators, there is no need to resort to crude 

artifices such as fixed-point operators. 

Lambda-lifting and the use of MFE's conspire to compact the supercombinator 

code we produce while maintaining full laziness. The rearranged applications are 

more economical in the movement of parameters and the flow of work. Redexes thus 

incorporate more work, and are less frequently reduced, improving both the time 

and space costs of execution. The translated code contains more redexes than the 

)¼-calculus source, but far fewer than that when using straight combinatory logic. Joy 

[Joy84] has shown that when allowed an "infinite" set of combinators, the number 

of combinators definitions introduced is 0(m), where m is the number of variables 

being lifted. This compares favourably with the typical size complexity of 0(m 2) for 

fixed-set logics. 

In some cases, )s-liftingin order to retain full laziness is counter-productive. This 

can result in larger supercombinator redexes which can slow execution and/or exces-

sive numbers of supercombinators being produced (the latter being the combinatory 

logic problem we originally wished to avoid). It is sometimes cheaper to allow some 

extra work by not A-lifting fragments of shared code when nothing is gained. De-

pendency and strictness analysis are also used to restraiii laziness, and there are 

a number of smaller special-case refinements to the translation process. The fea-

tures which moderate laziness are expensive and place more work on the compiler, 

in addition to the tasks of type inference, pattern matching, etc.. Supercombina-

tor translation can produce multiple solutions, with a lot of latitude in efficiency 

from one translation to another; I suspect that deriving an optimal supercombina-

tor translation is NP-complete (judging from the similar result for fixed-set logics 

derived in [Joy84]). 

Laziness, the overhead of sharing, and strictness-derived eager evaluations man-

ifest themselves as annotations to supercombinators, to properly direct their eval-

uation at run-time. The many "special cases" that can arise at runtime imply a 

more complex architecture, with more scratchpad registers, machine instructions, 

microcode, and .memory structures to implement the required techniques. 

More importantly, the underlying architecture will have to be changed. Whereas 
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a small set of combinators could be "hard-wired" as machine microcode, supercom-

binator programs are all large, unique collections of redexes with varying size and 

complexity. The execution architecture must be able to store and interpret the su-

percombinators themselves in some way. A few general approaches are: 

• by expressing the supercombinators as microstore control words, and designing 

the machine to have a loadable control store which is rewritten for each new 

program (imprudent). 

• by expressing them as individual graphs whose operations are implicit in their 

structure (inefficient). 

• by expressing them in terms of some developed machine language which are 

instructions to control the CPU and storage of the machine. 

These topics are discussed in greater detail in the next chapter. 

2.5 Functional Language Summary 

Backus [Bac78] distinguishes between A-calculus-based and higher-level or pure func-

tional languages, and asserts that the semantic advantages of A-calculus can be ob-

tained without expressing programs at any time in the A-calculus. While pure func-

tional languages may be ultimately superior, they are outside the scope of this thesis. 

However, as notations go A-calculus is certainly the most elegant in its simplicity, 

and combinatory logic is conceptually fascinating for its behaviour. Supercombina-

tors have elements of both, but are chiefly a practical compromise. A-calculus has 

been used as an intermediate functional language (IFL) with success for over 20 

years [Lan64, Mos75, Pau87, Pey87], a task into which it has today settled. The 

advantage of an IFL is the common bridge it forms between pure functional lan-

guages and A-calculus-based notations, and the work that has been done on these 

notations. Thus, all functional languages benefit from the set of software, hardware, 

analysis techniques and optimisations that have been developed for A-calculus-based 

notations. 
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We have examined the notations of A-calculus, combinatory logic and supercom-

binators, and shown their development to have been motivated by a search for more 

compact and efficient evaluation behaviours. The move from A-calculus to com-

binators reduced the cost of function calls by substituting simple application for 

/9-reduction, at the expense of greatly increased numbers of applications. The move 

to supercombinators reduced the sheer numbers of function calls, still the most ex-

pensive component of the functional language equation, it being the cusp around 

which most work is done, in a compiler or a machine program. The next chapter dis-

cusses the development of hardware and evaluation mechanisms to provide efficient 

implementations of supercombinators, and describes the Three Instruction Machine 

as one culmination of these efforts. 



Chapter 3 

The Three Instruction Machine 

Over the last decade, functional programming has become an established field, with 

standardised languages such as SML, Miranda, HOPE and recently Haskell. As with 

previous paradigm developments in computer science, there is an impetus for func-

tional language operations and constructs to migrate into hardware. Motivated by a 

need for greater efficiency and higher execution speeds, a number of special purpose 

functional architectures have been designed. In their turn, these have become active 

research instruments that encourage new designs, and the development of better and 

more capable functional languages. In this chapter, I describe the abstract Three 

Instruction Machine, one of the latest developments in the functional architecture 

field. 

3.1 Functional Architecture 

To properly explaiii how TIM works, I must illustrate a few key concepts, namely 

term rewriting, closures and 'environments, stack-based evaluation, graph reduction 

and finally the "frame-based" evaluation of TIM. To simplify this task, I give an 

overview of two representative architectures from the literature, the SECD machine 

and the Combinator Machine. This will contrast the environment and stack-based 

architecture of the SECD, with the graph reduction architecture of the Combinator 

Machine, and pre-instruct the reader on the underlying concepts of TIM, which 

draws on elements of both. 

The underlying concept of all functional language evaluation is term rewriting, 

the process by which an expression in whatever form is recognised to match some 

equivalent (and hopefully "simpler") form. The expression is rewritten to the new 

33 
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form, and rewriting continues until no more "simpler" form exists. The concept that 

all functional language expressions and their simpler or "reduced" forms are equiv-

alent is implicit to functional programming. Evaluation methods, whether utilising 

environments, graph reduction or whatever, are simply ways to implement this un-

derlying term rewriting. The common requirements of all of these methods are: to 

represent the expression so it may be manipulated; delay the substitution of argu-

ments and easily bind them when needed; and to control and remember the order of 

expression evaluation. 

3.1.1 Environments and the SECD Machine 

Originally introduced by Landin [Lan64], the stack-based SECD machine was one of 

the first attempts at a functional architecture. I consider here the version proposed 

by Henderson [Hen8O], whose instruction set is tailored to execute a limited dialect 

of LISP called LispKit [HJJ83a]. 

The source language has a static scoping and contains no global definitions or 

variables, with definitions supplied prior to use in an enclosing LET (or recursive 

LETREC) block. With variables and definitions, the machine maintains an environ-

ment to facilitate substitutions. Definitions of variables are stored in the environ-

ment, and variables become run-time references to the current environment, whose 

run-time structure is controlled explicitly by the compiled instructions. The SECD 

instructions and machine code programs closely match that of the source code; this 

small semantic gap means that abstract interpretation of the source and actual ex-

ecution appear nearly identical. The machine has integer and list operations, and 

instructions for function entry/exit and support for recursion. 

SECD is an acronym from the designations of the four principal registers in the 

architecture (Figure 3.1). Every structure in the machine is formed of dyadic objects 

in lists, after the s-expressions of LISP. The environment E maintains a nested set 

of contexts for each function called, which are formed of the argument lists for each 

function. E is a list of lists (Figure 3.2), indexed by a pair of numbers "(m.n)" 

denoting the n ' member of the m"-deep, context (the 01h context is the argument 

list for the current context). 
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Stack S: holds intermediate results when evaluating expressions, argument lists and 
closures prior to a function call, and function return results. 

Environment E: stores the context for the current expression. All definitions in 
the function are bound to some location in the environment. 

Control C: holds the current SECD machine code expression to be evaluated, 
stored as a list. C is a pointer into the code list, and acts like a program 
counter. 

Dump D: used to store the contents of the other registers on context changes, 
pending their return. 

Figure 3.1: SECD registers 

) 
(2.0) (2.1) (2.2) 
(1.0) (1.1) (1.2) 

E -+ ( (0.0) (0.1) (0.2) 

Figure 3.2: The SECD environment 

The Henderson SECD machine contains 21 instructions, fifteen di these being 

basic integer and list operations, predicates and a branching "decision" function. All 

work is in reverse polish form on the contents of the stack, and assumes the previous 

preparation of necessary arguments. Three variants of the LD (load) instruction are 

used to place objects on the stack. These may be constants ( LDC), bindings for 

variables from the environment ( LD), or function closures (LDF). A closure is simply 

the combination of function body (code) and an environment to supply any pending 

bindings in the body. 

The most interesting instructions are the 5 concerned with function calls. A 

function call, or application, requires that the function arguments and a closure be 

placed on the stack S. The arguments are supplied as a list constructed (including 

any necessary eager evaluations) prior to the call. For non-recursive functions, the 

L D F (load function) instruction then places on the stack the function body (following 

it in the code stream C), and a reference to the current environment E. These three, 

elements are all that is needed to execute the function. The call proceeds with the 

AP (apply) instruction, which will execute a context change by saving the current 

contents of S, E, and C onto the dump D, and distributing the arguments and closure 
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into the state registers. The function body resides in C, the environment resides in 

E and the argument list is added as the first (ot) level of the new environment. 

On completion, a single result will remain on the stack and the last instruction in 

the code stream will be RTN (return), which will reinstate the last saved context 

in D, with the resulton top of the old stack contents. Thus the SECD is much 

like the familiar Von Neumann machine, with the exceptions that all structures 

are held as s-expressions, function code is "carried around" with each function call 

site, and environments are passed through pointers, in total. Figure 3.3a describes 

the function call instructions as state-transitions in the SECD, and Figure 3.3b an 

example of a non-recursive function call. 

S 

((fun-env) args.$) 
(res) 

e 
e 

e' 

(LDF fun).c d - (fun.e).s 
AP.c d -+ nil 

RTN.c (sec).d - (res.$) 

e 
(args.env) 
e 

C 

fun 
C 

d 
(sec). d 

d 
s e DUM.c d - a (nil.e) c d 

((fun.(nil.e)) args.$) (nil.e) RAP.c d - nil (args.env) fun (sec). d 

Figure 3.3a: Function call instructions in SECD 

S 

p 

FUN ENV 

11 12 

Function Body 

a! a2 

11 '3 

j:2P.c JJ: d 

T T 
nil a! 

11 

a2 

12 

e 

Figure 3.3b: Function preparation and application in SECD 

When only enclosing definitions and the argument bindings of elder functions 

are required, the current environment E is sufficient for the function closure. To 

properly execute a recursive function, it must have access to its own definition. The 

SECD constructs a circular list in the environment prior to the function call to make 
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it self-referential, using the DU M (dummy) and RAP (recursive apply). instructions. 

First, D U M is used to push a dummy environment on the stack, an object containing 

nil. The recursive function definition(s) are placed on the stack with LDF, as if they 

were an argument list, but each closure references the (dummy. E) environment rather 

than just E. A "priming" function is then pushed, and RAP is executed. RAP be-

haves precisely as AP does, with the exception that instead of pushing a new object 

on the environment to hold the code body "arguments", it rewrites the top object 

(the dummy) with these. In other words, DUM pre-allocates the new environment 

for the coming function call, but leaves it empty. All subsequent preparations for 

the function use the dummy environment. RAP completes the process by unpacking 

the arguments and priming closure, places the arguments on top of the closure en-

vironment to form the new environment, and overwrites the dummy physical object 

with this new environment. This completes the circular structure, as each member 

of the new environment references the top of the new environment (see Figure 3.4). 

The priming function we now execute will simply load (one of) the newly recursive 

definitions onto the stack for the coming real application and exit. Execution then 

continues with gathering of arguments for the recursive function and execution of a 

regular AP, and the RAP is never executed more than once for each set of recursive 

functions. 

The SECD is somewhat like a high-level language (HLL) machine, in that there 

is very little difference between its instructions and those of the source language. 

This is more a function of being based on a purely functional language rather than 

being .X-calculus-based. However, the language is very simple, limiting the usefulness 

of SECD as a general-purpose architecture. 

SECD uses an environment to implement variables and bindings, and thus avoid 

the expense of substitution in 3-reduction. In addition, SECD dispenses with cum-

bersome fix-point operators for implementing recursion, by directly creating self-

referential environments. The fact that machine code is interpreted, rather than 

the structure of the execution expression (as with .\-calculus evaluation) makes the 

SECD more efficient in machine cycles and memory consumption. 

One major drawback is the use of s-expressions for all storage. There is no 
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a few new instructions to provide function "wrappers" that delay and then force 

their execution [Hen8O]. Control of suspensions, updating and providing fully lazy 

evaluation complicate the implementation further. 

The notion of the SECD is a good one, but it was meant as an abstract research 

vehicle, and not a real architecture, a fact reflected in the limited language and 

impractical design philosophy. The SECD has been built on a full-custom monolithic 

IC [HBGS89, SBGH89]. Related machines are the Categorical Abstract Machine 

(CAM) [CCM87] and the Functional Abstract Machine (FAM) [Car83, Car84]. 

34.2 Graph reduction and the Combinator Machine 

A conceptually simple way to achieve laziness and sharing is to use graph reduction a 

an evaluation scheme. First suggested by Wadsworth [Wad7l](ch. 4), this method 

distributes the entire code expression into a tree of allocatable nodes, with each 

node being either a branch, or a terminal holding one or more code symbols. In 

practice, the expression will be "curried" as follows, Fxyz = (((F2)y)z) to make the 

context of each node into an explicit application of a "function" to an "argument". 

Figure 3.5 shows an example expression and corresponding graph. Graph reduction 

proceeds with a (usually) depth-first preorder search of the graph for the leftmost-

bottommost reducible expression. The path of the search (or parse of the expression) 

at any time forms the "spine" of the graph, and is retained so that the arguments 

of the redex are accessible, and our path through the graph may be retraced. The 

redex itself is defined by the terminal symbol ("head") of the search; this will match 

one of a set of rewrite rules encoded in the machine. Each will require a certain 

number of arguments, which immediately precede the head in the graph, and may 

be accessed from' the spine. The redex is then the subgraph which holds the head 

and the arguments it requires to be reduced. When recognised, the redex is rewritten 

according to the rule, and reflected in the graph by overwriting the root node of the 

redex with the reduced graph. Figure 3.6 shows the example graph (a) with spine, 

and its reduction (b). 

Sharing of expressions is done simply by passing a reference to the subgraph in 

question, and updating happens automatically when the subgraph is reduced and 
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R x y (K w z) 
= ( (R x) y) ((K w) z) 

Rabc = ab(ac), Kab = a] 

Figure 3.5: The Graph Representation 

the root of the redex overwritten. Since only a pointer, to the cell is shared, only 

a single execution will be performed. Furthermore, the graph does not differentiate 

between expressions and results, relying on the redex search to detect reducible 

expressions. Laziness is thus implicit in graph reduction, with the evaluation of 

expressions automatically postponed, right up until the first redex which shares it 

requires the result to be reduced. No extra annotations to control the suspension and 

continuation of evaluations are necessary, and the graph thus implements laziness 

and sharing in a nearly transparent way. Figure 3.7 shows the reduction of a shared 

expression in the example. 

(a) (b) 

Figure 3.6: Graph Reduction 

As an example of a graph-reduction architecture, I consider the machine of Turner 
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Figure 3.7: Graph Reduction with Sharing 

[Tur79a, Tur79b, Tur84], which he suggested while repopularising the use of combi-

natory logic. This Combinator Machine uses a fixed set of combinators as rewrite 

rules based on the basic set of SKI (see Section 2.2) to reduce combinatory logic 

programs. The architecture itself is very simple, consisting of only: 

• a large allocatable store with garbage collection, 

• a stack to hold the "spine" of the evaluation, 

• a set of rewrite rules, microcoded as "instructions". 

Nearly all the complexity of the machine is in the microcoded combinators, 

which consist only of microoperations that manipulate the spine, examine the graph 

through the spine, allocate new nodes, and rewrite the contents of existing nodes. 

Depending on the combinator, several memory cycles are necessary to search back 

through the spine for the arguments, retrieve the references desired, allocate any new 

nodes, and overwrite the root of the redex. 

The combinator machine implementation of graph reduction has a few inadequa-

cies. First, only a finite library of combinators can be held in microcode at any time, 

and their complexity is limited, thus restricting the capability to use more or larger 

combinators. To implement recursion, the combinator machine uses a fixed-point 

operator such as Y (see Section 2.1.2) to construct a circular self-referential graph. 
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A subtle problem arises here when it is realised that reduction is inherently "destruc-

tive" to the combinator program. The recursive function must not be overwritten 

if it is to be used more than once, and the simplest (and most expensive) solution 

is to force Y to copy its function for successive calls. For each node in the recursive 

definition, this incurs an extra traversal, allocation and garbage collection, and since 

most programs are contained entirely within recursive definitions, this results in an 

immediate doubling of execution cost [Her87]. 

Maintaining a stack to hold the graph spine consumes significant memory band-

width, considering bow quickly the stack contents change at the site of reductions. 

Fortunately, the stack can be easily avoided by using a technique known as pointer 

reversal [Sch86], in which the nodes of the graph hold the spine temporarily by 

referencing the last node visisted. 

The major drawbacks are not the responsibility of the combinator machine, but 

due to graph reduction, and combinatory logic itself. While graph reduction is very 

versatile, and allows any variety of expression to be executed with automatic full 

support for lazy evaluation and sharing, the cost is high. Allowing any node to be 

shared, suspended and updated is unnecessary and very expensive. When applied 

to fine-grained combinatory logic, graph reduction spends most of its time simply 

reorganising the graph rather than doing "useful" work, and most of this effort is 

expended on supporting laziness that won't be needed. 

A number of combinator machines based on graph reduction have been designed 

and built. The earliest was the Cambridge SKI Machine (SKIM) [Sto83, Sto85, 

CGMN8O], built from discrete components. More recently Ramsdell at MITRE 

Corp. fabricated the CURRY Chip [Ram86J, a full-custom monolithic device. The 

NORMA machine [Sch86] includes many of the graph reduction optimisations men-

tioned, including a cache memory for the spine. 

3.1.3 Summary 

The SECD machine represents everything as s-expressions, and consumes similar 

resources compared to the combinator machine using graph reduction. The basic 

SECD does not have laziness, sharing, or simple structure, so in other words, it pays 
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all of the costs of graph reduction without enjoying any of its benefits. 

On the other hand, the graph reduction that forms the core of the Combinator 

Machine is elegant, but an overkill. Not all expressions (or portions thereof) need be 

shared, updated with results, or lazily evaluated. Since these are all expensive tasks 

to perform and regulate, it makes more sense to recognise those expressions that will 

possibly be shared, and only spend the resources on these. While Henderson's SECD 

has no support for laziness, the combinator machine has too much. 

3.2 Three Instruction Machine 

The Three Instruction Machine (henceforth TIM) is a functional architecture de-

signed to execute supercombinators. It was initially presented as an abstract ma-

chine by Jon Fairbairn (Cambridge University) and Stuart Wray (Olivetti Research 

UK) {FW87]. TIM uses a unique application of graph reduction technique to per-

form normal-order fully lazy expression evaluation. The machine supports eager 

evaluation where it is expedient, and minimizes the overhead of passing unevaluated 

expressions with its simple, elegant design. 

The TIM machine contains elements of both graph reduction such as in the 

combinator machine, and stack-based environment machines such as the SECD. Its 

nearest competitor is the G-Machine, which may loosely be described as an SECD 

machine with support for updating. Rather than being a hybrid of SECD and 

combinator machines, TIM is more of a graph reduction architecture which utilises 

environments. 

The remainder of this chapter will discuss the abstract machine as proposed, 

describing the reasoning that goes into TIM's unique design, the three core instruc-

tions and their variants, the translation mechanism from supercombinators to TIM 

machine instructions, and the additional instructions to implement ground types, 

lazy evaluation and sharing. 
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3.2.1 The Three Instruction Rationale 

The priority goals in the design of the TIM abstract machine were to achieve graph 

reduction without the graph, and make reduction as efficient as possible. To this 

end supercombinatory logic (SCL) was employed as code. 

There are two expensive inter-related tasks that we will want to avoid if we are 

to make graph reduction more efficient: 

1. Copying graph expressions for execution, to protect the original expression. 

2. Constructing graphs on each reduction only to have them discarded or imme-

diately parsed and rewritten. 

The point behind using a graph is reduction, which happens when we overwrite 

the root node of a graph expression with its result (thus yielding the familiar ad-

vantages of sharing, etc.). Thus, if we can dispense with the graph nodes that will 

never be rewritten, we can save the costs of allocation, collection, and traversal of 

the expression which they form. TIM greatly reduces the costs of graph construction 

and reduction by avoiding them. Instead, only function closures are held in environ-

ments rather than embedded in a graph. As with graph nodes, environment entries 

are updatable. 

Supercombinators require only a local environment, with arguments and pointers 

to access other environments (through continuations) passed around as arguments. 

The operations implicit in the structure of supercombinators can be performed with 

only a few machine instructions, replacing complicated supercombinator rewrite rules 

with individually simple operations that perform the same task. Thus the expense of 

constructing and interpreting graphs holding mostly code is removed by abstracting 

the code out of the graph. 

The designers of TIM built the machine around two central concepts. The first 

is that everything in the machine be built around a single logical structure that 

would be used to represent everything. This is a closure object, comprising a pair of 

references, one to a code expression and one to an environment for the expression. 

Ultimately, objects will be a pair of words holding two pointers to storage in a real 



CHAPTER 3. THE THREE INSTRUCTION MACHINE 45 

machine; Second, that 'the instructions of the machine focus on function application, 

the nexus around which most work is done in functional programs. 

The placement of the instructions breaks this work up into three distinct phases: 

PUSH prepare arguments on the stack 

ENTER enter the new context 

TAKE retrieve arguments 

The three instructions (really instruction types, as there are many "flavours" 

of each) are used to construct combinator contexts as needed, and execute them. 

As we shall see below, the use of a machine macrocode to moderate the graph 

reduction process, rather than the raw combinators, yields some particularly effective 

optimisations towards a more efficient implementation of sharing. 

Since any node may be the root of a combinator evaluation, it is usually impossible 

to determine a priori if an arbitrary node will not be overwritten (and is thus a 

.candidate for possible optimisations). However, some progress can be made. Certain 

nodes will hold evaluated expressions or constants, and will not need updating, so 

we should try to dispense with these. Similarly, many graph reductions are very 

simple rearrangements of arguments; for instance, each simple combinator represents 

a needless cost in graph construction and especially traversal, when one considers 

that we just had each of these arguments "in our hands" (on the graph reduction 

spine) a moment ago. Taking this one step further, in lazy graph reduction arguments 

are passed as pointers to graph expressions, which are evaluated or discarded as the 

applied combinator dictates. If possible, we would like to entirely avoid constructing 

the argument graphs until they are needed. 

The only place we need to overwrite a node, is precisely where the result of the 

expression is shared amongst other expressions. The central idea is this: if we can 

detect sharing ahead of time, we should (ideally) be able to allocate, reduce and 

update only these shared nodes. Each such individual will "hold" its expression 

(in some as yet undefined non-graphical way) and be overwritten after evaluation 

with a result sub-expression or constant. Of course, an expression graph contains 

more than just nodes holding subexpressions, it also controls the computation. Once 
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these interconnecting graph links are abstracted away, we will need some method of 

maintaining these prior associations. 

An SCL program contains an arbitrarily large number of unique, arbitrarily com-

plicated supercombinators. Furthermore, these combinators are distinguished from 

their simpler counterparts by having names by which they may reference themselves 

and their brethren. The standard local context formed by combinator parameters is 

now augmented by a single, large global context of all the supercombinators. Where 

combinators may only rearrange or replicate their own arguments, a SC definition 

may introduce new symbols in their definitions as well. In effect, supercombinators 

are very much like functions, and this observation has great bearing on design of the 

TIM. 

3.2.2 Architectural blocks 

Code memory 

Existing graph reduction machines rely on microcode to implement a small fixed 

library of simple combinators, and the control algorithm. This both creates and 

is controlled by the graph it traverses when it recognises and initiates reductions, 

rewrites nodes with results, and continues to search for other reductions. Given 

the complexity of a supercombinator program, and the fact that most of the graph 

structure is now gone, microcode seems inadequate to the task of implementing TIM. 

Using graph expressions to interpret and reduce other graphs is impractical, so we 

are left with the need for some variety of "macrocode" to describe how to rewrite 

each graph. This instruction set will stand between the supercombinator source code 

and the TIM microcode. 

Figure 3.8 shows the old and new situations, where u*T denotes the transfor-

mation between schemes. Supercombinators are compiled into this TIM code, to 

become graph-evaluation formulae. These are stored as sequential vectors in a linear 

program code memory or CMEM (not in an allocatable store as s-expressions), 

indexed by a program counter or 1t1. 
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Figure 3.8: Argument graphs built with code sequences 

Frame Heap 

These frames hold objects, and are referred to by objects. Objects code frame 

can be updated with new code and frame for any shared code which has been eval-

uated. 

The Frame Heap provides part of what we need to remove argument graphs, but 

we must still address keeping track of arguments and the rest of the computation. 

Consider a generic recursive combinator such as the following: 

REC a = (TEST a)(TERM a)(REC a) 

which takes a single argument a, and uses a boolean expression (TEST a) to select 

between either a terminal expression (TERM a) or another recursion (REC a). Fig-

ure 3.9 contains a single iteration of this function as a standard graph reduction, 

where the rectangles represent nodes, and the triangles abbreviated sub-expression 

graphs. 

Aside from the multiple allocations and traversals, the essential work of the reduc-

tion can be seen with the three node rewrites that occur (marked "0" in Figure 3.9). 

Returning to the notion of supercombinator as function, we can think of these as 

context change boundaries in the function call history. In this example, we execute a 

bit from REC, make a call to the function TEST with argument a, which constructs 

a context for itself (we assume) and a while later returns to the original context with 
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Figure 3.9: Standard graph reduction 

the result F (false). Here, the return result uses (TERM a) and (REC a) as arguments, 

and selects the latter fragment as the one to obtain control of the processor. 

Recalling the description of graph reduction (Section 3.1.2), a spine is used to 

keep track of the computation by stacking visited nodes. The spine consists of 

two conceptual pieces: the local graph, and all the rest. Most of the time we are 

concerned with the former, where the currently executing combinator is held, along 

with pointers to its arguments and the expression root (rewriting) node. This "local" 

part of the graph/spine forms our context, while the remainder holds our execution 

tree, and tells us where to work next when the current sub-expression is evaluated. 

During execution, we need some place to hold at least the local context, without 

the benefit of a graph. This is necessary for two reasons, first that we must be able 

to perform our "node" updates somewhere, and second that supercombinator appli-

cations are no longer "indivisible". That is, contexts must be maintained between 

excursions to other contexts, whilst evaluating sub-expressions passed as arguments. 

In orthodox architectures, function arguments are held in an "activation record". 

Now that we are employing the concept of combinator-as-function, this is a reason-

able idea to use in the TIM. On initiation, each supercombinator will require some 

number of arguments n; once these are located (see below), the TIM permanently 

stores these arguments (in order) in an activation record called a frame. The graph 
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structure is now converted to look something like that which appears in Figure 3.10, 

where each frame represents a combinator application that has been (at least par-

tially) evaluated. The dashed boundaries denote closures, with code pointers and 

frames combined. 

Figure 3.10: Context frames are graph node conglomerates 

The Three • Instruction Machine contains a large physical memory, called the 

frame heap or HMEM, in which to store all of the frames for all of the active 

contexts in a program execution. The memory is a garbage-collected store from 

which variable size context frames are allocated. The frame associated with the 

currently executed context is always referenced by the machine register Current 

Frame or CF. The combination of a supercombinator code address, and a frame 

holding its' arguments, is known as an object, and is sufficient to completely describe 

a machine context. Thus the machine register pair  PC ICF1  tells us everything 
we need to know. The new arrangement appears in Figure 3.11. 

It is important to mention that all arguments to a combinator will themselves be 

combinators, continuations of combinators, or constants and that each will'have its 

own set of arguments. With reference to Figure 3.11, SC, is a "new" combinator, 

and so has no arguments associated with it as yet. On the other hand, SC.,and 

are partial evaluations of combinators which have already been started and so 

own some arguments. Should SC evaluate an argument, the code at that re-entry 

point will "continue" execution in the argument context, providing the needed result. 
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Figure 3.11: The frame scheme 

Thus objects holding code and frame references are the units of communication in 

the TIM, for every argument, every frame inhabitant, and the current context. 

System stack 

Having abstracted the code away from the graph, and dispensed with those portions 

that hold arguments and represent the local context, we now turn to dealing with 

the spine. The spine of the graph (and the stack normally used to hold it) performs 

the important task of he the calling tree, so that execution can continue 

in the correct context after an argument evaluation. Further, without the use of 

microcoded operations, we cannot call a supercombinator in a single machine clock 

cycle. Its arbitrary arrangement of arguments must be compiled together one cycle 

at a time, which requires some sort of a temporary staging area. 

So while it would be nice to delete the spine, the TIM maintains a vestige in 

a system stack. This stack deals exclusively with objects (as before), is held in 

a linear memory called SMEM, and its top is referenced by the machine register 

(see Figure 4.1). Aside from temporary storage for combinator arguments 

(the only remnant of the local-context portion of the spine), the stack is also used 

for ALU operations, to hold return results of evaluations, and continuations. These 

last are placed on the stack prior to a combinator call or argument evaluation by the 

ARGP 
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parent context, as a "return address" for the child context when it completes with 

a result. A continuation is accessed either explicitly as an argument subsequently 

entered, or by virtue of running out of code in the PC, and retrieving the first 

available continuation on the stack. 

3.2.3 The Basic Instruction Set 

The three instructions of the TIM architecture each have several options, used to 

specify the instruction argument source, and any optional behaviours. In the follow-

ing descriptions, instructions make make reference to the following logical entities: 

"COMB," used to designate a combinator code sequence. These are always "new" 

combinators, having no arguments and thus no context other than the usual 

initial flat-domain of combinator definitions. Instructions will always use a 

CMEM pointer to the beginning of the supercombinator, and the implicitly 

used frame is always null or 0. 

an argument of the currently executing combinator. Instructions with this 

designator find their referents in the current frame RF]. 

"LABEL," a continuation of the current combinator. Combined with the current 

frame, labels form re-entry points used by a child context as one of its argu-

ments (lazy argument passing) or a return address. 

"CONST," a machine constant, used to represent ground types such as integer, 

boolean, lists, etc. (see Section 3.2.5). 

Here, I describe the machine instiuctions using the notation of [FW87], with the 

exception of objects. This is a semantic description of the instructions as machine 

state transitions. Examples will revert to a concrete representation using machine 

registers and pictorial descriptions. The machine state appears as a four-tuple: 

{ Program Code, Current Frame, Stack, Frame Heap} 

with code and stack shown as a list "[ ... ; ...; ...]", object internals as 

frames as a1,a2, ... ,a 

cz f and 

", where the abbreviations C, A, and F are used for code, 
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argument stack and frame heap. Following the path of a function application, the 

first task is to provide arguments to the combinator via the stack. 

The PUSH instruction is used to place arguments on the system stack, drawing 

from several sources. The arguments can be continuations, code labels, combinator 

references, or passed arguments (from the frame of another context further up the 

call tree). 

PUSH ARG n Place the nth object of the current frame on the stack. In other words, 

one of the current arguments is pushed on the stack. 

{[PUSH ARG i; C], f, A, F [f : ... ,a,... {C,f,[a;A],F} 

PUSH COMB c Push a combinator closure, codeptr 0 , where codeptr is the 

address of the code for combinator "c", and 0 is the empty environment ( ie. 

"c" will retrieve its own arguments to form an environment). 

{[PUSH COMB l;C],f,A,F} => {C', f, c  ;A] , F} 

PUSH LABEL 1 Push a continuation of codeptr CF (the current execution con-

text), where codeptr is the address of label '1" in the current combinator. 

{[PUSH LABEL l;C],f,A,F} {C,f, 1 f A] , F} 

The ENTER instruction is responsible for executing a context change, where the 

context may be either a new combinator, a suspension of a shared argument, or a 

continuation in a calling parent context. Whichever of these the context is, it is 

represented as a code+frame object, retrieved from one of two places, and becomes 

the new PC and  ith 

fr 

CF 

 [f : 

ENTER ARG i Enter the argument object in the current ame. 

f[ENTER ARG i; C], f, A, F Cj Ii 

ENTER COMB c Enter the combinator "c" ( 
address, and the environment is empty. 

] I . 
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The TAKE instruction fulfills the second half of the context change when neces-

sary. For a fresh call to a combinator, the environment is initially empty. TAKE will 

pop the desired number of arguments from the stack, allocate a new frame of that 

size, place the arguments into the frame, and force P1 to reference the new frame. 

{[TAKE n;C],fo,[ai,..., an, A],F} =. {C,f1,A,F' [fi a1,... , a j} 
These six basic forms of the three instructions form the normal order evaluation 

mechanism for TIM. Figure 3.12 demonstrates the execution of the Turner combina-

tor expression SKKx, where the TIM code for S and K appears in Figure 3.13. On 

the left are the two registers defining machine state, the program counter and current 

frame. The argument stack appears on the right, as well as new frames allocated 

from the frame heap. The evaluation proceeds as "SKKx = Kx(Kx) * z". 

S 

S+1 f 

5+2 f 

S+3 f 
K 

K+1f 

Ca, Ix 

ARGP 

K K C,: Ix 
0 

Si f 0 

C,: Ix Si Ii 
C,: fa, Si fi 

0 

0 

0 

0 

HMEM 

0 

f: 

f: 

K K C,: fa, 

C,: Si fi 

Figure 3.12: An example using Turner Combinators 

3.2.4 TIM code compilation 

The translation mechanism to convert from supercombinator source code to the TIM 

instruction code is quite straightforward, at least for the basic instruction set. For 

example, the TIM code representations for the two familiar combinators S and K 

appear in Figure 3.13. 

The denotational semantics of the translation appear in Table 3.1, adapted from 

[FW87]; sharing and strictness analysis add significant complexity and have been 

neglected. The source code is a set of supercombinator definitions, of the form 
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Kxy = x K: TAKE 2 
ENTER ARG 1 

take two arguments 
execute second 
take three arguments 
a continuation for (yz) 
push z 
apply x to [z;Si;A] 
push z 
apply y to [z;A] 

Sxyz = xz(yz) 

S: TAKE 3 
PUSH LABEL Si 
PUSH ARG 3 
ENTER ARG 1 

Si: PUSH ARG 3 
ENTER ARG 2 

Figure 3.13: Supercombinator and TIM code 

= exprj" followed by the main expression of the program. Each supercombinator 

is shown as a A-abstraction to represent the argument list. G parses the definitions, 

C generates code for each supercombinator, P generates PUSH instructions, and E 

the ENTER instructions. 

G[c1 = expri; next]c = 

G[expr]o 

CEAai . . . a.exprJc7 
Ceie2Io 
C[atomIo 

P[ajlo 
P[cJo 
P[kJo 
P[exprJ7 

E[cJo 

G[next](cr[expr1/C]) 
C [expr10 

= [TAKE n; C[esprjci] 
= [PIe2Jo; C[eiJo1 
= EatomJo 

[PUSH ARG i] 
[PUSH COMB (C[c(c)]c)] 
[PUSH CONST (k)] 
[PUSH LABEL (C[ezpr]c)] 

. [ENTER ARG i] 
[ENTER COMB (C[o(c)1o)] 

Table 3.1: Translation semantics for TIM code 

As example of the compilation output appears in Figure 3.14. The function 

from n, which produces an infinite list of numbers "n : n + 1 : n + 2 : ..", is 
compiled first to a supercombinator and thence to TIM machine instructions. Note 

that we assume a "standard library" of supercombinator support functions has been 

defined and compiled for the use of programs. These are integer, boolean, list and 

I/O operations that are provided beforehand (see Section 3.2.5). 
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from n = n : from (n + 1) original source code 
from n = (cons n (from (+ n 1))) supercombinator code 

TIM machine code 
( cons  

FROM: TAKE 1 
PUSH LABEL FROM1 
PUSH ARG 1 
ENTER COMB CONS 

( 
FROM1: 

from (+ nl) ) ) 
PUSH COMB FROM 

PUSH ARG 1 
PUSH CONST I 
ENTER COMB + 

Figure 3.14: Example TIM code translation 

3.2.5 Ground Types and Operations 

Of course, TIM must include ground types such as integers, booleans and lists to be 

useful. The original designers chose to maintain consistency with the object concept 

in the representation of ground types. Machine constants take the form of objects, 

with the constant held in the frame reference half of the pair. The constant object 

is distinguished from regular closures by the contents of the code reference, a special 

instruction called SELF:  SELF k  . The larger purpose of the SELF instruction 

is to make a constant appear to have the same operational behaviour as a regular 

closure. When TIM attempts to evaluate a constant, it must recognise it and swap 

to an alternate context. Constants can be directly enterea as passed arguments, or 

arrived at after a string of strict operations. In either case, the current evaluation is 

complete, and it is time to return to the previous context; this will have been saved 

as a continuation on the stack, immediately preceding the entrance to this context. 

Thus when executed, SELF has the sole task of swapping itself with the first object 

it finds on the stack. The two instructions dealing with ground types are: 

PUSH COMB k is used to push a constant onto the stack, as a SELF object. 

{[PUSH CONST k;C],f,A,F}=. {C' f) L  SELF k 

SELF construct a SELF object with the contents of the LE1 as precision, swap with 
the first object on the stack, and enter the stack object. 

{SELF, k, cx fx ,A} 7F} {cx,fx, SELF k ,A] , F} 
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ALU instructions 

Some of the basic operations from the TIM machine can be executed almost directly 

in hardware. These ALU instructions are the strict operators from the source lan-

guage (those that require both their arguments to produce an answer), and consist 

of the familiar mathematical, list manipulation, and boolean operations we expect in 

any functional language. The operation P is used to define a pair, the left and right 

members of which are accessed with the L and R operators, respectively. Mathemat-

ical and boolean operations (like comparison) can be built in, along with branching 

operations for the selector IF, and so on. The operators included in the original 

abstract TIM are shown in Table 3.2. It should be noted that the various operand 

types (integer, character, list cell, pair) are recognised only at the source level, type 

inference and checking at compile-time obviate run-time machine type mechanisms 

and checking. 

+ - x % integer 
= 34 ≥> boolean (int) 

P L R pairs 
opt-in opt-out 10 

&& II <<>>'•- logical 
<≤ = / ≥> boolean (char) 
hd tl null lists 

get-file append-to-file make-file delete-file file handling 

Table 3.2: TIM built-in operators  

Although the strict machine operations are built into the architecture, just like 

any other function they require a supercombinator "wrapper" to evaluate the argu-

ments. Each argument is processed and placed on the stack in turn, before invoking 

an ALU operation to produce a result (that for "+" is denoted "#+", for example). 

A stencil for an n-argument strict operation appears in Figure 3.15. 

3.2.6 Implementing Laziness 

TIM already provides call-by-name evaluation, by using suspensions to postpone the 

evaluation of arguments and alternate sections of supercombinators. These suspen-

sions can be passed freely wherever they are needed to share expressions. All that 

2Extracted from the Ponder system of Fairbairn and Wray [FW86] 
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op: TAKE n 

PUSH LABEL op 
ENTER ARG 1 

0p1: PUSH LABEL op2 
ENTER ARG 2 

PUSH LABEL op, 
ENTER ARG n 

op: #aluop 

Frame the context 

Process argument 1 

Process argument 2 

Process argument a 

execute ALU operation 

Figure 3.15: Ground Type Operator Code 

remains is to store the value of shared expressions so that they are evaluated but a 

single time. There are three modifications to the instruction set of TIM necessary 

to implement laziness, to ENTER, TAKE and PUSH. 

Recall from Section 2.4 that only arguments are ever shared in a fully lazy set 

of supercombinators, since any expression which may be shared is )%-lifted to a new 

combinator definition. The result of a shared argument will always be either a 

constant (the trivial case) or a partial application. This can be visualised in the 

examples below, using the S supercombinator as context where its third argument 

is shared. In each case the third argument T will be eventually reduced to a new 

form 1'. The first example produces a constant, while the second results as a partial 

application (the supercombinator T' which "adds 6 to its argument"). 

SCCT = (+23) 3 SçCT' = 5  

SCCTx = (+(*23)x) 3 SCC,T'x = (+6x)  

To ensure that updating is performed properly, a shared expression must be 

distinguished from regular expressions, the expression result must be recognised when 

it is available, and the original location of the expression overwritten with this result. 

Since a shared expression is always retrieved from an argument slot in some frame, 

the result should be written over that same frame slot. The particular frame and 

argument to update is known at the time that the argument is pushed onto the 

stack. In TIM this update information is held in a mark, shown as 
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which is placed onto the stack immediately before a shared evaluation begins. The 

supercombinator compiler determines which arguments are potentially shared (using 

a "when in doubt" method). A modification to the ENTER instruction enables it to 

place marks: 

f[ENTER ARG i; C] , f, A, F [f: ...' ci Ii ,... 11 =•- fci,fi, [  f z 

Of course, the entry occurs in a child closure passed the shared expression as an 

argument, and the update information is no longer available to the child context. 

TIM must link the entry to the argument push, and a modification to the PUSH 

instruction provides the update location. Instead of pushing the literal argument, 

an indirection containing the appropriate ENTER instruction is pushed: 

{[PUSH ARG i;C],f,A,F}p {C, fl ENTER ARG i I ,A] , F} 

This insures a mark referencing the original frame slot is pushed onto the stack 

at evaluation time. In Figure 3.16, if the combinatbr c requires 3 arguments, we have 

a shared partial application, in this case retrieved from the mt argument of frame 

1. On execution, c will attempt to consume extra arguments, and be prevented by 
doing so when its TAKE instruction encounters the mark. 

IPCI 1E] [ARGP  

C A Cl fi C2 f2 f M 13 

Figure 3.16: Update marker in the stack 

The shared application is saved in a form that can be reconstructed on demand. 

This suspension has two elements: i) a special update frame allocated to hold the 

arguments until needed, and ii) a code sequence "created" to restore the arguments 

from the update frame to the stack, and enter the combinator. For the available 

arguments i less than requested, a modified TAKE instruction now provides TIM 

with sharing: 
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{[TA KEn;C],f,[ai,...,a,   f mA] , I   
JP, f,, A, F [j: ..., P f fy: ai,..., ail } 

where P=[PUSH ARG i; ... ;PUSH ARG 1; TAKE n; C] 

It should be noted that a suspension is the same as a continuation, except for its 

originating at runtime as a shared evaluation. After TAKE has saved the application, 

the current context will be the first to access the suspension. First, the arguments 

of the update frame will be restored to the stack in original order. TAKE will again 

attempt to get the full ri arguments (and may discover another mark) and execu-

tion will continue into the body of the supercombinator with the next instruction C. 

Any other closure passed (an indirection to) this argument will now enter the sus-

pension, and reconstruct the partial application for itself, specialising it to whichever 

arguments it chooses to place on the stack. 

One of the immediately suggested optimisations in the original TIM machine is 

to maintain both lazy and eager versions of the instructions, so that the expense 

of lazy evaluation can be avoided where possible. In the full instruction set that 

appears in Table 3.3, the eager or unshared versions are denoted "UNS'. 

3.2.7 Summary 

On first examination, the TIM architecture compares favourably with both SECD 

and Combinator Machines. TIM does significantly more than the SECD with far 

fewer instructions, due mostly to the universal use of objects. The abstract machine 

applies the salient features of graph reduction while avoiding the needless expense of 

the naïve global approach in the combinator machine. Recursion is simplified by the 

use of supercombinators which have names, thereby avoiding fixed-point operators. 

In fact, much of the work of implementing full laziness has already been done for 

TIM by using supercombinators as source code. 

However, the TIM instructions encode quite complex operations (notably TAKE), 

despite their conceptual simplicity. The instruction modifications for sharing appear 

to require self-modifying code, and objects which contain both references and packed 
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{[PUSH ARG UNS i;C],f,A,F[f: 

{[PUSH ARG i;C],f,A,F} = {c,i, 

{[PUSH COMB l;C],f,A,F} {C, f, 

{[PUSH LABEL I;C],f,A,F} =.{c,i, 

{[PUSH CONST k;C],f,A,F} {c,i, 

{SELF, k,  c7, f  , A] , F} . {CXI A7 

f[ENTERARGUNSi;c]fA,F[f:fci , ] I #- Jcj, fi, A, F} 

{ [ENTER ARG i; C1 , 1, A, F If Ci j  , ..J} f Cil ii, I  
{[ENTER COMB c;C],f,A,F} 

{[TA KEn;C],fo,[a1,...,a A], F} 

{ [TAKE n; C], f, [a,, ..., a, f m  A] F [1: 

fP, f,, A, F If 

,a,... } = {C,f,[a;A],F} 

,A] , F} ENTER ARG i f 

C 

1 I 

A] , F} 

A],F} 

,A] F} 

,A] , F} 

SELF k 

SELF, k 

I 2 

{c, 0, A, F} 

= {c, fl, A,F [Ii: 

I 

,A] , F} 

..., P 
fy fy 

11 

where P = [PUSH ARG i; ... ;PUSH ARG 1; TAKE n; C] 

11 

Table 3.3: TIM instruction set 

instructions, a situation we would like to avoid. The three disparate storage spaces 

are necessary to the function of TIM, but present a wide latitude for efficient im-

plementation options. Developing approaches to designing these will be the focus of 

the following chapters. 

Argo [Arg88] has suggested many notational and hardware optimisations for TIM, 

a number of which will be addressed below. Chin [JGCH89, C3H89] has developed 

an abstract machine which is a hybrid of logic programming and functional archi-

tectures. This machine allows logic clauses and functions to be interchanged freely, 

and performs both resolution techniques and TIM-style expression evaluation. 

The interested reader is referred to the following for further study of functional 

architecture, and machines related to TIM. The Johnsson G-Machine [.Joh84, Joh87, 

Kie85] is a predecessor of the TIM machine, which I characterize as an environment-
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based SECD machine with support for graph reduction (whereas TIM is designed 

to do graph reduction with environment support). The G-machine has spurred a 

number of refinements, such as the spineless G-Machine [BPR88, Pey88], and the u-

G-machine [AJ89, Aug88, Bur88], a shared memory multiprocessor. An architecture 

currently under development is the GRIP machine [PCSH87], a shared memory par-

allel graph reducer. George [Geo89] suggests an abstract machine for multiprocessor 

graph reduction, derived from the G-Machine and focusing on parallel evaluation of 

strict arguments. An early survey paper not limited to functional architectures is 

[Veg84]. 



Chapter 4 

Structural Optimisations 

In this and the succeeding chapter, I discuss a number of optimisations to the TIM 

architecture, some of which are novel and some of which have already appeared in 

the literature, mainly in the work of Fairbairn and Wray [FW87, WF89] and Argo 

[Arg89]. 

I begin with a brief overview of the set of proposed optimisations, pointing out 

that set which is within the scope of this work. I then outline some of the architectural 

design issues in TIM, propose a set of objectives that define an efficient and practical 

hardware implementation, and present a more appropriate design philosophy directed 

towards achieving this goal. 

The remainder of Chapter 4 is concerned roughly with structural issues surround-

ing the context change, specifically those operations performed during or near the 

TAKE instruction, including the creation of sharing information and updating of 

results. Approximately half of this material is new and original work. 

Chapter 5 will be concerned with issues much closer to the practical implemen-

tation details of TIM. An assortment of optimisations concerned peripherally with 

TAKE and deferred from Chapter 4, and a host of small practical optimisations rang-

ing over marking, result updating, and the SELF instruction are covered. A novel 

design for the TIM frame is developed, along with an instruction format, main mem-

ory hierarchy, and control unit with microcode. The majority of this material is 

original work. 

Most of those proposals that have been put forward are directed at the abstract 

TIM. In contrast, I analyse each optimisation from an architectural design perspec-

tive. 

62 
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4.1 Optimisations to TIM 

For historical interests, the predecessor to TIM is the PONDER machine documented 

in [Fai86]. In the initial TIM paper [FW87], a number of suggestions for future im-

provements to the abstract machine were outlined. For the most part these were 

immediately obvious simple changes that were not pursued in any detail. In sub-

sequent work, more complex improvements have been presented, and some of the 

initial work developed further. However, nearly all the work aimed at the abstract 

TIM neglects practical issues. Elegant improvements to the abstract design may well 

result in inelegant hardware design, and incur practical design problems. Further-

more, previous work has used a "shotgun" approach for TIM improvements; I try to 

unify the chosen diverse optimisations into a single underlying design philosophy. 

The original TIM paper of Fairbairn and Wray [FW87] suggested a handful of 

optimisations for dealing with marks, update frames, and regular frames. Some good 

tricks to use in a hardware implementation are also mentioned. Most of these small 

changes are covered and credited below. A more detailed and readable description of 

the TIM machine, its links to lazy evaluation, and details of implementation appears 

in [WF89]. The ideas already presented for marks and update frames are extended, 

and the paper introduces the use of a stack for marks, a method of deferring mark 

operations to cut down on marking and the expense of handling them, and a way 

to use a single frame for all updatees recognised on a TAKE. These are all treated 

herein. 

Both of the above papers also discuss the benefits of sharing and strictness analy-

sis, which deal with the most efficient application of the normal order or lazy versions 

of the instructions. If an expression is not shared, normal order instructions are used 

to PUSH and ENTER it. For those evaluations which do not need to be updated, 

the code may be reorganised to place the task in question at the end of a list of 

internally strict operations. Sharing and strictness analysis restrict the costs of shar-

ing to where it is necessary, and limit the memory and bandwidth consumption of 

frames, marks, and updates. These are software techniques which fall mainly within 

the domain of the compiler writer. While I avoid the techniques behind the prudent 
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use of the instruction set, the examination of alternative versions of the instructions 

or details of implementation are within the scope of the thesis. 

Argo [Arg89] provides the most thorough treatment of the TIM architecture to 

date, and includes experimental results lacking in [FW87J and [WF89}. Argo covers 

most of the optimisations suggested previously, focusing on optimisations to the 

instruction set. The first half of the paper concentrates on reducing memory activity 

in TIM in both the heap and stack, with treatments of partial applications and "fully 

applied" combinators. The second half presents a redesign of TIM that involved a 

different implementation of sharing, new markers and a method to place frames on 

the stack. The changes used to produce the "G-TIM" machine rely on analysis 

techniques that are likewise outside the scope of this thesis. 

Each of the optimisations from the literature which I address, and those that I 

suggest, is presented using the following format: 

Rationale a brief introduction of the problem, a rationale for the optimisation, and 

the explanation of its operation, 

Implementation suggested modifications to the optimisation and implementation 

options, ending with a critique suggesting the best approach(es), and covering 

any possible significant effects on other parts of TIM and other optimisations, 

Results the analysis and tesiing strategy (where necessary), and the results sug-

gested by the experiments. 

The symbols ED and e are sometimes used to represent the pros and cons, respectively, 
of a particular approach. 

Each result is presented as an estimation of the efficacy of the optimisation. For 

the original ideas, I compare the new approach to any competitors in the literature, 

or provide a prediction on measurable improvement. Optimisations suggested in the 

literature are first subjected to a practical design process, considering all possible 

implementation options including original ones,, and then a judgement on the imple-

mentation is made through simulation or analysis. In some cases, literature results 

are contradicted or weakened enough to be rejected outright, and I suggest an al-

ternative optimisation; however, many of these can be accommodated with slight 
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modifications to allow acceptable implementation. This is especially true of those 

which are mutually derived and have appeared in the literature since the inception 

of this work, for which I have a different view of the appropriate hardware methods 

to be applied. 

4.2 Design Philosophy 

Throughout this work, I have tried to maintain a design philosophy for the TIM, 

in order that the changes proposed and subsequently judged for effectiveness could 

be fitted into a cohesive whole. There is thus a bias in the design towards those 

optimisations that are useful and can be easily integrated together. Thus, defining 

the design philosophy under which these determinations were to be made was key. 

This presents a problem, since we can not easily draw on existing work to de-

velop this philosophy. A quick survey of where we stand with the TIM machine 

would place us somewhere above the Reduced Instruction Set Computer (RISC) 

paradigm in complexity, but below the Complex Instruction Set Computer (CISC) 

definition. TIM does not reside in the continuum of systems conveniently described 

by the RISC and CISC extremum, since it contains elements foreign to both. Thus, 

the majority of Von Neumann-grounded knowledge on how to build a machine is not 

directly applicable. Within functional architectures, the nearest relation to TIM is 

the G-Machine [Joh84} (see Section 3.2.7). This older architecture implements lazy 

evaluation and sharing under graph reduction, while attempting to treat the inher-

ent inefficiency problems of the graph. Unfortunately, the great failing of the various 

incarnations of the G-Machine is that each has a large number of instructions and 

contains many special-case optimisations. In comparison to TIM, the G-Machine 

presents a highly contrived "retrofitted" appearance, making the machine overly 

complicated and prone to suffer from the weight of its own instruction set and com-

piler requirements. To summarise, not only is the nearest competitor to TIM not 

very useful for developing a design model, there is very little concrete design work 

extant for functional architectures at all. Thus, I had to return to first principles to 

provide a well-integrated design philosophy for TIM. 
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Design Objectives The central goal, as with any architecture, is to achieve a 

good balance of three qualities: it should be small, efficient and "clean". The size of 

the architecture is important since the implementation will likely be limited by time 

and cost. Unnecessary design complexity should be avoided, to make the hardware 

amenable to verification, and reasonably easy to layout and simulate. The architec-

ture will eventually be implemented as a single monolithic device, where a simpler, 

smaller design will translate to a more modest transistor budget, and directly af-

fect the number of man-hours necessary to build the chip, and meet the predicted 

performance goals. 

Thus, the "keep it simple" principle as used here means that more promising, 

more easily prototyped optimisations should be tried first over the more complex 

and risky variety. This will translate to more effectively pursued design and imple-

mentation. In addition, standardised design using implicitly conservative estimates 

on the quality of the eventual fabrication technology and of peripheral system hard-

ware. It should be possible to use average "off-the-shelf" memory chips, interface 

components, and support hardware. The performance of TIM should not depend 

on having the fastest or densest fabrication technology, or the best memories or 

intelligent controllers. 

The proposed changes and optimisations to TIM should contribute to the over-

all throughput of the architecture. This translates to higher MIPS1 ratings, lower 

memory consumption, less garbage collection and so forth. Few functional archi-

tectures are competitive with commercially available Von Neumann machines, and 

even fewer have published MIPS ratings (an admittedly Von Neumann concept of 

questionable use with functional architectures). Absolute quantitative measurements 

are not practical without a candidate fabrication technology and at least a tentative 

system design, so optimisations are weighed on their ability to compete with each 

other, in the three qualities mentioned above. I use these objectives to define a good 

working design for TIM within the confines of an M.Sc. thesis, while the eventual 

implementation and comparison with conventional technologies is left to future work. 

As for keeping expense and implementation difficulty low, the set of potential 

'Millions of Instructions Per Second 
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improvements has been ordered according to the same criteria. For example, "paper 

changes" that modify the behaviour of the abstract machine come before the design of 

complex hardware solutions. Namely, reducing the number of update frames created 

by TAKE ("Conglomerate Frames") is cheaper and easier than designing a heap cache 

and boosting memory bandwidth. 

The last quality, that of being "clean", cannot be specified precisely. Hardware 

designers have named this concept variously as "style", "elegance", "orthogonality", 

and a host of other descriptives. Esentially, it boils down to how well the architecture 

holds together, while minimizing waste of hardware resources, and smoothing the flow 

of instructions and data amongst resources. A continual emphasis on homogeneity 

throughout the design process, for the instruction set, control unit, datapath, buses 

and registers, can help them all work well together. The absence of loose-ends and 

special cases means the absence of "irritants" around which performance hits and 

bottlenecks may form, since the use of hardware in the time domain is more balanced. 

Design Issues in TIM There are a number of implementation problems posed 

by TIM, but the two major ones are: 

1. the wide disparity in task responsibilities amongst instructions, and 

2. the very heavy memory cycle demands of each instruction. 

The first problem is best characterized by comparing the TAKE instruction with 

for example PUSH CONST. TAKE will need tens and sometimes hundreds of micro-

operations as opposed to the three or four required by to push a constant onto the 

stack. Instructions exhibit widely disparate execution times, types of logical tasks, 

and hardware and memory usage patterns. This is the case not only for these two 

extremes, but between different flavours of the same instruction, and for different 

execution contexts (marks and updates make TAKE widely variant). If the goal is to 

provide high throughput and the best use of the available hardware resources, how 

does a hardware designer balance the needs of these two unorthogonal instructions? 

The majority of the remaining material in this chapter is concerned with optimising 

the tasks TAKE performs, in order to provide a good basis for a fast implementation. 
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The second problem is the overriding concern with all design decisions in the TIM 

architecture. In all phases of execution, TIM is memory intensive (see Figure 4.1). 

Each operation accesses two or more logical memory partitions at least once, and 

in the case of all partitions but CMEM each access is four bytes wide. All of the 

optimisations discussed in both Chapter 4 and Chapter 5 are involved in some ca-

pacity with reducing the number of memory accesses, or improving on the speed or 

usefulness of each access. 

Operation CMEM 
R 

HMEM 
R W 

SMEM 
R W 

MMEM 
R W 

PUSH ARG UNS 1 1 1 
PUSH ARG 1 1 
PUSH LABEL 1 1 
PUSH COMB 3 1 
PUSH CONST 3 1 
SELF 1 1 1 
ENTER ARG UNS 1 1 
ENTER ARG 1 1 
ENTER COMB 3 
TAKE (no marks) 1 a n 
TAKE (marks) 1 n+m a In 
RESTORE 1 r+1 r 

Table 4.1: Breakdown of Memory Accesses by Operation2 

Philosophy of TIM Despite its being called a functional architecture, TIM is 

built out of the same hardware as any other computer, and must be treated as such. 

All design methods employed and most of the optimisations discussed herein have 

been used before,. but applied to conventional Von Neumann machines. While the 

techniques are not new, they have been selected carefully to be appropriate to the 

structure of TIM. 

Process and Tools At the initial stage, the process of choosing and exploring op-

timisations was a subjective one. Those optimisations which looked "good", on their 

own and especially in concert, were chosen for examination. All optimisations are 

'This table mentions a new instruction "RESTORE" (see Section 5.1.2) and assumes the machine 
instruction format described in Section 5.4. 
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judged mainly from paper analysis, and argument of the pros and cons of each, con-

cerning aspects of the implementation, effects on other optimisations and portions of 

the design, and so forth. This summary of trade-offs usually yielded a clear conclu-

sion as to the efficacy of the proposed improvement. In cases where the conclusion 

was unclear, simulation of the architecture was used. Rather than do the thousands 

of simulations for a statistically solid conclusion, I sought to get an indication which 

side of the scale the optimisation in question falls on. Thus, the subjective analysis 

of the modification combined with some supporting tests, would yield the conclusion 

that the modification is promising, and worth further examination. 

To facilitate simulations, I have designed and implemented a register-level hard-

ware simulation tool called TIMSIM, based on the object-oriented language SIM-

ULA and the DEMOS simulation package. TIMSIM is described in some detail in 

Appendix A, while Appendix B describes the TIM simulation environment and in-

cludes a sample simulation run. The results derived from simulation came in two 

basic varieties: qualitative and quantitative. Qualitative results about the basic 

behaviour of TIM are useful to substantiate the arguments for or against an optimi-

sation or aspects of the implementation. These results would be dynamic instruction 

execution frequencies, memory consumption, and the like for a set of representative 

test programs. For instance, if there is a very effective but expensive modification 

to an instruction such as PUSH COMB, and this instruction has a low execution 

frequency, the result argues against the global usefulness of the optimisation. 

Quantitative tests are used to test whether the optimisation, when fully imple-

mented, provides better performance or not. These use. the three stage process of 

hypothesis, experiment design, and interpretation of results. In these tests the spe-

cific change is modeled for comparison against its competitors or the unoptimised 

version. The comparison will always test the rationale of the optimisation, usually 

a potential improvement to memory consumption or reduced memory activity, and 

often a generic increased execution speed. Optimisations sometimes have palpable 

effects on the performance of other optimisations, and where these relations are 

not easily characterized on paper, simulation will sometimes give an indication of 

whether or not optimisations work well together. In some cases, there is quite a 
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Figure 4.1: Basic Logical Memory Structure of TIM 

bit of "blurring" between optimisations. These relations are treated as they arise, 

inevitably leading to some apparent redundancy between sections. 

Throughout this and the next chapter, I have assumed that the logical memory 

partitions CMEM, HMEM, SMEM and MMEM have been assigned storage in a single 

physical memory as pictured in Figure 4.1. Each object is 32 bits wide, split into 

two 16 bit pointers to CMEM and HMEM. The code memory CMEM is 8 bits wide 

and contains 2" .(64K) addresses, while the frame heap HMEM is 32 bits wide and 

holds 216 objects. The argument stack SMEM and mark stack MMEM are also both 

32 bits wide, and their extent depends on the run-time placement of the stack bases. 
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Sec Contents Source Comments 
4.3 An Alternative TAKE 

Stack Cache 
ALLOC with status flag 

[FW87] 
(pg.41) 
[Arg89] 
(pg.106) 
Author alternative solution 
Author alternative 

implementation 
4.4 A Stack for Marks [FW87] 

[WF89] 

(pg. 148) 
[Arg89] 
(pg.105) 

Author 

concept introduced 
concept of limit registers 

concept mentioned 

analysis and design 
4.5 Context Changes 

and Closures 
various 

46 Conglomerate 
Frames 

[FW87], 
[WF89] 

multiple suspensions 
held in one frame 

Author Analysis, design, results 
4.7 Conglom. Frames and 

Tandem Mark Stack 
Author Analysis, design, results 

Table 4.2: Overview of Material 

These object and memory widths were selected arbitrarily as the minimum needed 

for a practical implementation of TIM, and are easily expanded. 

The contents of the remainder of this chapter and their attributions are sum-

marised in Table 4.2. 

4.3 An Alternative TAKE 

Rationale This optimisation deals with "fully applied combinators", those which 

have all of their arguments pushed onto the stack, and are immediately applied. As 

defined in the literature [WF89, Arg89], the rationale is to avoid the use of the stack 

by pushing arguments directly into a pre-allocated frame. This is an excellent idea 

for avoiding the use of the stack for constructing argument lists and reducing the 

bandwidth demands on storage. 

I can see a possible further justification in support of this optimisation, relating 
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to the implementation of the Y operator in [FW87]. The first instruction is "TAKE 

1 and extend it to two", which could be easily accomplished with a pre-allocated 

frame that can be filled in later. This avoids creating two new special flavours for 

the TAKE. Conversely, a largish microcode sequence for Y may be a faster and more 

compact solution, but is perhaps unjustified as Y is executed only once per function, 

and forms part of a one-time startup cost. In any event, the point is moot since it is 

not necessary to use Y at all in the TIM machine, as all the supercombinators have 

names, and the storage of interim results is automatic with the call to TAKE in each 

function head. 

Implementation The proposed optimisation breaks the normal TAKE instruction 

into two pieces: 

TAKE n = 

ALLOC n 
take 1 

*n 
take 1 
PTAKE 

Figure 4.2: The reimplementation of TAKE 

where the first instruction allocates a frame of size n, the last ("Preallocated TAKE") 

replaces the normal TAKE at the function .head and simply causes CF to point to the 

new frame, and each singleton take represents one of the PUSH operations that would 

normally place its argument on the stack. This is in fact a new instruction (shown 

as HEAP PUSH in [Arg89], and PUSH ARG n INTOFRAME within the PONDER 

machine of [Fai86]). The compiler writer must recognise where fully applied combin-

ators occur to substitute the ALLOC and PUSH instructions, and supply an alternate 

entry point to the function that invokes PTAKE to simply assume the preconstructed 

frame.3 

Results In essence, as implemented in the literature this optimisation requires 

three new instructions be added to the repertoire, and compiler effort to utilise 

3[Arg89] overlooks the necessity of placing the PTAKE in the function body. 
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them. The result is a lessening of stack usage. [Arg89] states that the result is 

an approximate 50% saving in stack memory activity for fully applied combinators, 

but no results on execution speed or the effect on code memory were available. For 

those situations where the compiler applies the optimisation, using the instruction 

format of Section 5.4, Table 4.3 shows the instruction and memory cycles consumed. 

The notations "Xr" and "Xw" will be used frequently throughout this thesis. They 

represent memory read and memory write cycles respectively, where "X" may be any 

of C (code or CMEM), H (heap or HMEM), or S (stack or SMEM). 

original Cr Hr Hw Sr Sw candidate Cr Hr 11w Sr Sw 

PUSH ARG a 21001 

PUSH ARGa1 2 1 0 0 1 
ENTER COMB I 3 0 0 0 0 

f:TAKEn 1 0 n n 0 

n + 2 insts 2n+4 n n n n 

ALLOCn 1 0 0 0 0 
HEAP PUSH a1 2 1 1 0 0 

HEAP PUSH a 2 1 1 0 0 
ENTER COMB I 3 0 0 0 0 

f:PTAKE 1 .0 0 0 0 

n + 3 insts 2n+5 n n 0 0 

Table 4.3: New TAKE and ALLOC costs 

To judge the efficacy of this optimisation we need to determine the typical value 

of n, the frame size for fully applied combinators. Although time did not permit a 

determination of the frequency of fully applied frames in representative programs, 

some information can be gathered from just static analysis. Static analysis yields the 

result that the average frame size is 2 (size = 1.86, o• = 1.98). For n = 2, this implies 

that on average four stack operations (2 read, 2 write) are saved in TAKE, while one 

more instruction cycle (including a CMEM access) are spent. Thus for most function 

closures, with no information about what proportion are fully applied, the added cost 

of three new instructions, and an extra entry point on each function in question, is 

not a profitable tradeoff compared with the number of PUSH instruction cycles saved. 

Note that we must have either a fourth new instruction to avoid clashing of entry 

points, or the inelegant fix of having PTAKE jump over whatever instruction follows. 

The question which has been asked is "Does adding these new instructions help?", 

whereas the question should be "What is the best way to cut down memory activity 
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preceding and during the operation of taking function arguments?" This task may be 

better much better served by a more utilitarian approach, that of using an internal 

stack cache to buffer arguments on-chip temporarily (see Section 6.2); this avoids 

new instructions completely, and serves all applications of the PUSH instruction. In 

any case, the optimisation as it stands above can be fax better implemented using 

the following scheme, which uses a single new instruction and incurs less control unit 

complexity. ALLOC behaves as before, allocating a frame of appropriate size on the 

heap, and sets an internal status flag "HEAPDIRECT". While HEAPDIRECT is set, 

all PUSH instructions redirect their referents to the new heap frame, and the first 

call to TAKE will simply swap CF pointers and reset the flag. This is more efficient, 

easier to implement, and more transparent to the user. 

4.4 A Stack for Marks 

Rationale This idea has been suggested in the initial TIM paper [FW87], and each 

paper on TIM thereafter [WF89, Arg89]. To indicate that the result of a computation 

is shared amongst multiple contexts, a mark is inserted in the stack. The shared 

result will be a partial combinator application, and the mark delineates the partial 

application from regular stack parameters. On the first attempt to specialise the 

remaining parameters, the TAKE instruction of this combinator will detect the mark, 

and perform an update. Updating is performed as an interrupt process, creating a 

suspension frame which holds the stack arguments above the mark, and updating 

with the closure of this suspension and the current code. After completion of the 

interrupt, the current context resumes execution. 

The following problems arise with processing of marks: 

1. potential bandwidth saturation on the system stack and heap (CMEM and 

H M EM respectively), 

2. quick checks for marks are impossible since they are mixed with arguments, 

3. creating suspension frames quickly and efficiently is difficult when the TAKE 

must be interrupted. 
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These problems occur during the time-critical context change. We wish to accelerate 

the processing of marks, and achieve some measure of load-balancing to relax the 

demands placed on ArgP, CMEM and H M EM. 

Implementation A proposed partial solution is to place marks in a separate stack 

of their own. This list of HMEM addresses (frame pointer ± offset) would be com-

bined with CMEM addresses that indicate mark placement amongst the arguments. 

The first choice for mark stack storage is in CMEM, at the end of the program code 

and growing upwards towards the system stack. CM EM would be addressed with two 

additional CPU registers MarkP and MarkBase, to hold the top and base of the mark 

stack. Possibly, the first mark(s) would be cached in the CPU, to save a CMEM read 

cycle or two, depending on the average number of marks that a TAKE must process. 

If this is unity, then caching only the first mark, or perhaps only the placement 

address is sufficient to give a speedup in most cases. 

a, 

42 

mark f,# n' 

ab 

mark r'+ n" 
a4 

Old Stack 

  ArgP 

f,,# n" 

f,+ n' 

a 

a, 

MarkP 

86 

a4 

With Mark Stack 

ArgP 

Figure 4.3: Mark Storage Methods 

The utility of this optimisation depends on exactly how the suspension creations 

are micro. In any case, we will need to have a clear copy of the stack arguments from 

which to build suspensions and the TAKE frame; either we build the TAKE frame 
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first, and construct suspensions from it as needed, or start building the TAKE frame 

and on encountering a mark make it a suspension frame, copying from this to restart 

the TAKE frame. The latter uses less overhead to keep track of things. However, 

both of these will use a lot of H M EM bandwidth for all the heap—heap copying. In the 

interests of load balancing, we would like to keep our clean copy of the arguments 

in CMEM, for copying to HMEM. This will be most helpful if HMEM and CMEM 

are physically separate memories (optimisation 6.2), but it is still useful in making 

the best use of the internal hardware (ArgP, MarkP, MAR, MDR) and simplifying 

microcode. Referring to Figure 4.3, keeping our clean copy in the old version of the 

stack is costly, as we have to keep reading over old marks. Trying to squeeze marks 

out of the arguments as we update them, or relocating the clean copy somewhere 

other than the heap (such as a CPU stack cache) would seem to be self-defeating 

in view of the average frame size and occurrence of marks. In the new version with 

a mark stack, repeated stack—heap copying seems obviously the way to go, starting 

with the smallest suspensions and working towards the complete TAKE frame. 

There are the following advantages and disadvantages to this approach: 

ED a tag bit is avoided. Mixed marks and arguments would have to be distin-

guished from each other. This saves address space available with each pointer, 

extra hardware, and micro to check the tags. 

during TAKE, presense of marks in the local stack can be checked immediately, 

via a simple address comparison. 

a simpler update algorithm, less organisation needed to keep things straight. 

ED concurrent access of stacks and heap memory with dual physical memories. 

Otherwise, address generation can at least proceed concurrently. 

e the cost of additional CPU registers MarkP and MarkBase, the logic for address 
comparison, and microcode. Possibly also registers to keep the first mark 

MarkTarget, or at least its stack referent MarkLimit local to the CPU. 

E) although the discussion suggests an update algorithm that will roughly balance 
the use of HMEM and CMEM, not much bandwidth is actually saved. We 
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look to the use of conglomerate frames and accelerated TAKE instructions 

(optimisations 4.5, 4.6) to eliminate redundant use of HMEM. See Table 4.5 

for a summary of the heap and stack memory cycles used when the mark stack 

optimisation is interrelated with use of conglomerate frames. 

Results A number of simple experiments and data collection tasks are needed to 

determine the utility of this optimisation, and quantify its effect on performance: 

1. Quantify with respect to average latency of the TAKE instruction across test 

suite. 

2. Examine variants of update algorithm to find which best uses memory band-

width. 

3. Measurements to be made with and without the use of conglomerate frames 

(optimisation 4.6). 

4. As to the caching of marks, find standard deviation for number of marks within 

individual TAKE instructions, and as a function of the argument to TAKE. 

5. Also find the average separation of marks on the stack for each TAKE, and the 

ratio of TAKE instructions with marks to those without. 

Cache size should be optimal for the average number of marks we can expect; cache 

cost will be optimal if we have prevalently singleton marks, and we can get away 

with storing only the current MarkLimit. 

45 Context Changes and Closures 

Rationale The TAKE optimisation reflects a misconception about what makes 

TIM a good architecture. TIM uses a processing model based on universal objects, 

and the unrecognised trade-off cost is a loss of processor homogeneity and greatly 

increased complexity in the instructions, arising from the problems of trying to fit 

everything into the object model. The solution to this problem is not to break 

instructions (and their component tasks) up into smaller units, but rather to simplify 
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and reduce the number of tasks being performed, or in lieu of this, to reallocate tasks 

to machine instructions in a different way. 

The vast majority of the work in TIM is performed immediately before, during 

and after function application, particularly in the TAKE instruction. In this section 

I will cover a number of ways to streamline the execution of the TAKE instruction. 

Of course, the greatest cost of any memory operation is a memory access, whose 

latency stalls the processor. The task then is to reduce latency, or reduce memory 

accesses. In relation to the TAKE instruction, the first can be accomplished with 

parallel memory accesses or memory buffering. The application of these well-known 

and established techniques to TIM is covered below in Section 6.2 and Section 6.2. 

In this section I cover a couple of small tricks applied to the TAKE instruction. 

Although small, these optimisations are of a more practical and promising variety 

than that of Section 4.3, and provide a suitable introduction to the next section. 

Implementation - common updates Two or more marks on the same stack 

address can be updated with the same f c  This is since they 

reference the same frame and will wish to recover the same number of objects. 

Implementation - initial TAKE (Due to [WF89]) Whereas with normal sus-

pensions a sequence of push instructions (or micro transfers) is used to copy the 

suspension on top of the specialising arguments already in the stack, this is not 

necessary with the initial TAKE context. Regardless of the suspensions needed in 

the current TAKE, we can immediately pull all the arguments required (shared or 

otherwise) into the new frame. Marks are processed essentially independently, and 

the current context will be entered directly, using this frame, once the work is done. 

Results For "initial TAKE", there is a minimal implementation cost involving 

changes to the microcode only. We save all the cycles needed to push the suspension 

contents back onto the stack, and re-execute the now unmarked TAKE. The first 

optimisation is even easier to implement in the microcode. In both cases, the op-

timisations are simple and effective, requiring only changes to the microcode. This 

is the key to their success: rather than change what the instruction is doing, the 
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optimisatioiis change how they are doing it. 

4.6 Conglomerate Frames 

Rationale (Due to [FW87], [WF89](pg. 149)) Multiple marks in succession can 

be treated optimally by creating a single update frame, and sharing this amongst 

all. 

Implementation The previous optimisation which updated two or more redun-

dant marks with the same suspension frame is the "base case" of this (less intuitive) 

optimisation. Instead of creating a new suspension frame for each marked stack loca-

tion, we use a single suspension frame for all of them. In fact, we use the same frame 

as the current context. No confusion will arise, since marked arguments which have 

been updated will share successively larger slices of the same suspension frame, but 

cannot side-effect each other. Each updatee will only "copy out" (optimisation 5.1.2) 

as many objects from the suspension frame as each needs, on top of the specialising 

arguments already in the stack, and immediately TAKE the lot. 

The following summarise the utility of this optimisation: 

Heap usage is greatly reduced, and these H M EM access cycles are removed at 

the time-critical context change. Garbage collection is likewise more infrequent. 

Cost to implement the optimisation is essentially nil, requiring only changes to 

the microcode. A summary of the heap bandwidth savings appears below. 

E) Conglomerate frames are at odds with another optimisation designed to save 
cycles at suspension restart (optimisation 5.1.2). Here, microcode uses the 

frame size held in the frame control word(FCW) to quickly reload the suspension 

(either to stack or new frame), avoiding the execution of a vector of push 

instructions. Obviously, this will not work unchanged when different sized 

suspensions coexist in the same frame. 
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Results The expected savings for an individual TAKE instruction are as follows; 

given the following definitions, 

n number of objects in subsequent TAKE 

mi number of marks at the i1h object 

sgn'(x) = 1 if x > 0,0 otherwise (inverse signum) 

the cost of creating a suspension for each set of shared stack elements, measured as 

object write cycles to the heap, is: 

((i+1).sgn_1(mi)+mi) + n+1 

i=1 

The sum is what each new suspension (i objects plus a frame status word) costs to 

build, including the update writes. The second term is the cost of the frame which 

we TAKE. Using the conglomerate frames gives us a cost of 

i=1 

cycles. In the worst case (every argument to the TAKE is marked), and factoring out 

the identical costs of redundant marks, we have: 

original optimized 

(1(i+1).sgn1(m)+m)+n+1 

(E1(i+1)1+1)+n+1 
(1i)+2n+n+1 

0(n 2) . 

(Eim)+n+ 1 

i1)+n+ 1 
2n+1 

2n+1 

0(n) 

Table 4.4: Worst-case heap consumption with/out conglomerate suspensions 

Of course, we also save many read cycles of the heap and/or stack to copy from one 

suspension to another. 

4.7 Conglomerate Frames and Tandem Mark Stack 

Rationale The obvious usefulness of the two optimisations of a mark stack and 

conglomerate frames should complement each other, and provide increased efficiency. 
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Implementation The update mechanism is related to the method by which we 

store and manipulate marks. Table 4.5 summarises the memory cycle costs in CM EM 

and HMEM, for both read (R) and write (W) cycles. The two general update mech-

anisms "Heap-Heap" and "Stack-Heap" are those described along with the Mark 

Stack optimisation (Section 4.4), when using conglomerate frames there is only one 

ordering for performing updates. Note that the symbol rn (as before) refers to a 

mark, which is the same size as an object (16 bits f + n, 16 bits CMEM address for 

stack limit). Thus marks, update targets, and regular arguments each take identical 

work for read or write cycles. 

Update Mechanism Original Rank 

Heap —+ Heap W 

R 

[Ei(2i" + 1) . s9n'(mj) + m] + (n + i)b 
(L1m1)+n 

4th 

Stack —+ Heap W 

R 

[EL1(i + 1) sgn 1(mj) + m} + (n + .1)c 
E1 (E1 m5 + i sgn'(m1)) 

5th 

Conglomerate Frames W 

R 
(Et l m) + n + 1 
E?-im+n 
Using Mark Stack 

Heap —+ Heap W 

R 

[E1(2i + 1) . 8gn 1(mj) + m] + (n + 1) 
( im j)+n_1d 

3rd 

Stack — Heap W 

R 

[E(i + 1) . 8gn 1(mj) + m] + (n + 1) 
i . sgn_l(m )e + m1 

2nd 

Conglomerate Frames W 

R 
rn + 11+ 1 

L1m+n 
1 

6R/W cycles 
bSum of the stack-heap W cycles 
'The TAKE 
dTop mark is cached 

'Reads for susp. frames 
1MarkStack reads 

Table 4.5: Memory Usage for Conglomerate Frames and Mark Stack 

Results The conclusion from Table 4.4 seems to be that the presence of a Mark 

Stack is immaterial to the usefulness of conglomerate frames. Note the ranking 

for each update mechanism, which I have derived mainly from the cost equations 
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but which include subjective judgement as to the efficiency and elegance of the 

mechanisms. 

To verify the conclusions of this analysis, there is a complex experiment to per-

form. In addition, a useful exercise in safety would be functional simulation over the 

test suite, to verify that conglomerate suspensions do not side-effect each other, es-

pecially during garbage collection and further updating through child contexts. The 

real execution speed up can be measured in terms of the simple dynamic execution 

profile of our test suite, with which the cost equations can be scaled. This will not 

change the conclusion, only the strength of it. 

4.8 Summary 

In this chapter I have applied standard, well-understood and accepted arguments to 

a new architecture, to judge the relative usefulness of optimisations to TIM during 

the TAKE region of the instruction life-cycle. Building from optimisations suggested 

in the literature, I have provided either an alternative implementation (s) to each 

optimisation or an entirely new approach to accomplish the same task. I have also 

developed an implementation of two major optimisations, conglomerate frames and 

a mark stack, and analysed the behaviour of the two individually and together. I 

have provided a deeper analysis of optimisations than hitherto done by others, and 

over half of the material presented is new and original, in the form of additions, 

refinements and alternate approaches. 

In all cases, my conclusions have been argued based on observation and subjective 

analysis. Most obervation has taken the form of static program analysis, supported 

by some simulation to provide dynamic results. Since simulations are time-consuming 

both to design and run, it was not possible to fully cover all aspects of dynamic 

program behaviour. To provide statistically significant results requires huge numbers 

of simulations, both of my version of TIM and versions from the literature. Instead, I 

have settled for an indication that my arguments are correct, using a small assortment 

of typical programs. The results given here denote where future, more thorough work 

should be done. 
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If I were- to select the "best buys" of these optimisations, I would avoid those 

optimisations such as splitting TAKE into multiple instructions, and concentrate 

my efforts on the underlying work. In almost all cases, this is the high bandwidth 

consumption. Rather than moving memory accesses around, it is better to reduce the 

numbers or shorten the extent of memory accesses. To this end, the most promising 

optimisation is the use of conglomerate frames, and simple optimisations to the 

algorithm of the TAKE instruction. The use of a mark stack is useful, but loses its 

cost vs. benefit tradeoff when implemented beside conglomerate frames. 



Chapter 5 

Secondary Optimisations 

In this chapter, I discuss aspects of TIM at the machine-instruction and register-

transfer levels. Roughly half of the material below takes the form of optimisations, 

differing from those in Chapter 4 only in their being further removed from the high-

level TAKE instruction and context changes. Although these optimisations relate 

to high-level instructions, they cover low-level hardware representations of objects 

and implementation methods that in some instances require small changes at the 

instruction-level. The remainder of the material covers the implementation of TIM, 

including design of the instruction set format, structure and use of heap frames, and 

the treatment of some difficult uses of objects in the original version of TIM. 

As in the previous chapter, optimisations are presented in the form of a ratio-

nale, implementation and results. In some instances, I have built on simpler 

optimisations previously suggested in the literature. Table 5.1 below summarises the 

chapter material, the majority (approximately 90%) of which is new. Of particular 

interest is the new heap frame model I have developed, and a new TIM instruction 

called RESTORE which I have designed. All of the elaborations on optimisations, new 

optimisations, design arguments and design specifications presented in this chapter 

are original work. 

5.1 Frame Design 

A good hardware implementation of frames is key to providing good performance in 

the TIM machine. In some situations, a relatively small change in the hard-ware at the 

register-level enables improvements to the way instruction-level tasks are performed. 

These methods are not always obvious from the instruction level of the machine, and 

84 



CHAPTER 5. SECONDARY OPTIMISATIONS 85 

Sec -Contents Source Comments 
5.1 

5.1.1 
5.1.2 

Frame Design Hardware support for frame 
heap and suspensions 

Frame Control Word Author Store control/status info 
Self-Contained 
Closure Frames 
Suspension object stored 
in frame 
Combinator address 
stored in frame 
Frame status bit, new 
RESTORE instruction 

[WF89] 

(pg.149) 

Single generic code vector 
used to restart suspensions 

Author Quicker restart 

Author Dispense with code vector 

5.2 Marks and Updating 
"Degenerate" marks 

Author Improved mark handling 
[WF89] Handle marks on stack top 

RESTORE method Author Fix flaw in [WF89] 
5.3 

5.3.1 

5.3.2 

Objects and Direct 
Instructions 

Handling of special-
purpose objects 

ENTER ARG 
Tagging methods 

Author Direct mark placement 
Author Options and evaluation 

SELF Author Deleting all usage 
5.4 Instruction Format 

Design 
Relative Addressing 
Formats and Opcodes 

Author Constraints and treatment 

Author Applied to PUSH LABEL 
Author Instruction formats, opcodes, 

addressing modes 

Table 5.1: Overview of Material 

are most useful when they can be accomplished with changes only to the microcode 

and structures hidden from the user with no modifications to the instruction set 

necessary. 

5.1.1 The Frame Control Word 

Rationale The normal notion of a frame (Figure 5.la) suffers from practical lim-

itations. For instance, without some notion of the frame size, a garbage collection 

mechanism would not be able to properly deallocate the variable-size frames stored 

in the heap. This and other information pertaining to the low-level characteristics 

of the frame are useful to retain. 
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Implementation Each frame should then have an extra object-sized word associ-

ated with it to store such information as the frame size, and other status, control and 

garbage collection information which is outlined in following sections. This frame 

control word (FCW) will be the first object in the frame (Figure 5.lb). 

Figure 6.1a: Instruction-level frame structure 

H L 

.f'ani.e 

FCW 

C f 

C f 

C f 

framef 

•....•...•:•: framek 

HMEM 

31 . 16 

G - 
1514 1312 87 0 

FCW 

Figure 5.lb: Frame with FCW 

Although an in-depth treatment of garbage collection is beyond the scope of this 

thesis, it is useful to mention the minimum that is required in the TIM machine by 

way of garbage collection bits. Fairbairn and Wray [FW87] mandate a bit pattern 

be stored beside 'each label (or rather entry point) in a TIM program, to specify 
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which arguments of the current frame are used by each code fragment. Besides the 

GC mark bit (G) for the frame, a mark-collect scheme using these patterns would 

require a bit vector to specify which arguments of the frame are bereft of references, 

and which are active, for the collection phase. The FCW is the ideal place to store 

such a vector. 

Results The cost of this optimisation is fairly high, considering that each frame 

holds an extra object and frames are typically small. However, the FCW is not 

accessed as frequently as are the other words of the frame, being used only for 

garbage collection and during other relatively infrequent operations. Furthermore, 

the storage costs of the FCW can be reasonably amortised over the benefits of the 

optimisation in the next section. 

5.1 • 2 Self-Contained Closure Frames 

Rationale When restarting suspensions, TIM relies on a sequence of PUSH ARG 

instructions prefixing the combinator entry, to restore the suspension frame contents 

to the stack on top of the arguments specialising the shared partial application. The 

use of a code vector for performing this task is particularly inefficient for several 

reasons: 

1. the code vectors themselves consume memory space. 

2. the PUSH AR, sequence must be executed for each re-awakened suspension. 

3. the microcode for TAKE which processes marks must be able to generate CM EM 

addresses into the vector of PUSH instructions. 

The literature has suggested two simple optimisations in this area, which I outline 

below. I modify the second literature optimisation to be more efficient, and then do 

away with PUSH ARG vectors altogether. This improved approach is made possible 

by the use of a FCW. 

Implementation (1) The first problem is the expense of storing "restart vectors" 

in CMEM. Fairbairn and Wray [FW87, WF89] have suggested initially that rather 
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than have a-vector of PUSH ARG instructions for each number of shared arguments 

for each combinator, TIM use instead a single vector of instructions for each com-

binator. For some combinator "C", the suspension and vector "F" are "created" by 

the TAKE instruction (Table 5.2). 

I[TA K E n; c] , f.,, [a, , ... 7ail f M A] 7F[f: 

IP, fv, A, F If : P fy ) ... )fy: all ... aill 

where P = [PUSH ARG i; ... ;PUSH ARG 1; TAKE n;c] 

...,am,... I I 

Table 5.2: The Standard TAKE Instruction 

The symbol P will then be a reference into this vector, starting at the appropriate 

PUSH ARG instruction depending on the number of shared arguments. The vector 

takes the form of that in Figure 5.2a. For a combinator which takes n arguments, 

the maximum number of shared arguments requiring a suspension frame is n - 1. 

The vector is shovn here as it would appear in CM EM starting at address F, where 

(C)H and (C)L indicate the high and low portions, respectively, of the address of 

the symbol C in CMEM. The vector consumes (P+1 - Po + 1 = n + 2) locations in 

CM EM. The microcode for TAKE generates the correct pointer P into the vector for 

installation in the updated object. 

Wray [WF89] then suggests that a single vector can be used for all combinators. If 

each suspension stores as it's first argument the entry point of the shared combinator, 

the code vector in Figure 5.2b can be used to restart all suspensions. Here,M is the 

maximum frame size over all combinators in the code image, the first argument holds 

the combinator address, and the maximum number of shared arguments is M - 1. 

The literature then reduces storage use to a single vector of PUSH ARG instructions 

consuming PM-1 - P0 + 1 = M locations, and simplifies the microcode significantly 

by limiting address generation to a single well defined area of the program memory. 

However, we can do better. For instance, a more elegant implementation is to 

call the entry point argument 0, and avoid the recompilation effort to slide all the 

arguments down one slot in the frame, using an ENTER ARG 0 to recover the context 
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P0 
.P1 

Pn-2 
P.-1 
Pn 

Pn+1 

PUSH ARG n-1 
PUSH ARG m-2 

PUSH ARG 1 
ENTER COMB 
(C)H 

(C)L 

= 

P0 
P1 

PUSH ARG M 
PUSH ARG M - 1 

PUSH ARG 2 
ENTER ARG 1 

CMEM 

CMEM 

(a): Old method (b): Generic method 

Figure 5.2: Suspension restart vectors 

after restoring shared arguments to the stack. This misses the point, however, since 

the largest cost is not CMEM consumption, but the dynamic costs of executing these 

instructions at run-time. 

Implementation (2, 3) The second and third problems are addressed by making 

further use of the frame control word. Previous approaches have not recognised that 

the frame pointer in the entry-point object is ignored, since the first task of the 

reawakened combinator is a TAKE. If only the code pointer is significant, and we 

have unused bits in our FCW, we store the entry point there. My reimplementation 

of the optimisation places the code pointer "9" in the upper half of the frame control 

word (only) for suspension frames, and adds a status bit called "S" which when set. 

indicates that the frame is a suspension (Figure 5.3). 

I G 

31 16 15 1413 12 87 

Figure 5.3: FCW for self-contained frames 

10 

This self-contained closure means we no longer need use a sequence of PUSH ARG 

instructions to put the suspension arguments on the stack. Upon executing an 

updated slot, the status bit S in the frame the object references is checked to see if 

the frame holds a suspension. The number of arguments in the frame, the arguments 
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themselves, and the entry point of the suspended combinator are all available in the 

frame. A microcode subroutine can be called as an interrupt process, when the S 

flag is set. 

This approach is very good, because we dispense completely with storing and 

executing the PUSH ARG code vector each time a suspension is restarted. Microcode 

generates the appropriate heap and stack addresses, and issues the memory cycle 

requests. Less important, but still more efficient and elegant, is that microcode is 

spared generating any CM EM instruction addresses whatsoever. 

One problem remains, that of handling conglomerate frames. TIM must still be 

able to restart arbitrary portions of the suspension, ranging from no arguments up 

to the full suspension, without the use of the code vector to push the correct number 

of arguments to recreate the partial application. Notice that thus far, the contents 

of the code pointer in the updated object have been left unspecified, and we are not 

subject to any limitations in defining them to solve this problem. For s the size of 

the conglomerate suspension frame (number of arguments), and r the size of some 

suspension to be restarted (0 ≤ r < s), there are a few possibilities for specifying r 

at runtime. 

Place r in code pointer and rely on the suspension flag bit in the frame to 

initiate the restart. This is a poor solution, since it is a completely new use of the 

code pointer in objects, and would contort the decision process of the microcode. 

Any object being entered would have to have it's frame fetched first, so as to check 

the S bit is clear, before using the code pointer to fetch an instruction from CM EM 

(or after fetching it but before executing it). 

Use a TAKE r instruction referenced by the code pointer. The TAKE would be 

modified to recognise when CF points to a suspension frame and modify its behaviour. 

Rather than retrieve arguments from the stack, it would get them from the current 

frame, and jump to the code pointer I in the FCW with the new (partially filled) frame. 

This would be good, in that it avoids use of the stack (see below) for restarting 

suspensions. However, this is yet another task for TAKE to perform. The TAKE 

instruction (TAKE n) at the top of the restarted combinator must not take it's 
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arguments as normally, but recognise that it has been passed a partially-filled frame 

and take only the balance of the arguments needed (n - r). Using TAKE is a difficult 

and inelegant approach. 

Create a new instruction for initiating suspension restarts, called RESTORE, 

which is used only by updated arguments pointing to conglomerate suspensions. For 

a restoration of r arguments from a conglomerate suspension frame f*, the RESTORE 

and modified TAKE instructions appear in Figure 5.3. Here, the notation label 

denotes a conglomerate frame holding the CM EM address corresponding to the entry 

point label. 

{[RESTORE r], f*, A, F [f* : 

I[TAKE n; co] ,f, [a, , ... *ail I M 
RESTORE i,f,A,F 

where c —+ [TAKE n; Co] 

1} for r ≤ 8 

,A] F[f: 

f: 

Jy 

...,am,... I} for O<i<n 

]} RESTORE i 
Ji' 

Table 5.3: New RESTORE and TAKE instructions 

Results The new instruction and frame structure, combined with the use of a 

frame control word streamline the restarting of suspensions. The capability of using 

a single suspension frame to represent multiple shared partial applications of the 

same combinator has been maintained, with the cost of a single instruction added to 

the instruction set. RESTORE simplifies the semantics of the TIM machine, while 

maintaining their original intent. The instruction itself is simple to implement in 

microcode, and has the same "boxed" format as other instructions (and is subject 

to the same optimisations, see Section 5.3). 

There is room for further refinement of this optimisation, which minimizes the use 

of the stack given an appropriate memory structure (HMEM and CMEM physically 
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independent-, see Section 6.2). Identical in intent to the treatment of "fully applied 

combinators" in [FW87] and [Arg89] , this improvement requires that the FCW also 

hold the size n of the combinator frame. When executing RESTORE r, the microcode 

will directly allocate a new frame of size n, transfer r arguments from the suspension 

frame into it, and complete the frame with n - r arguments from the stack. The 

entry point held in the FCW is made to point to the instruction following the TAKE 

ii since it's job has been done. 

5.2 Marks and Updating 

Rationale The most critical cost-time locale in TIM is the context change - 

nearly all of the real work that goes on in the machine happens here. Inspection of 

static code indicates context changes occur roughly every 3-4 native machine instruc-

tions, with most of these being inexpensive continuations. The remainder involve 

TAKE, the more expensive and complicated variety. Apart from allocating a frame 

to hold the environment, marks for shared contexts must be updated, suspension 

frames created, garbage collection invoked, etc. The control unit and all logical par-

titions of memory are intensively used. The literature has suggested a number of 

inter-related optimisations of the mark updating process to save H M EM space and 

reduce memory bandwidth consumption during this crucial time. This section iden-

tifies them, and evaluates their use in the proposed implementation of TIM, with 

particular emphasis on relationship to frame design. 

There are a handful of tricks to improve the processing of marks, creation of 

suspension frames and the updating of share sites. This reduces to enforcing single 

sharing overheads for multiple recipients: we wish to stage only one marking task, 

rather than one for each recipient of the shared result. There are several ways to 

accomplish this: 

1. through static analysis, encoding only the first evaluation with a PUSH ARG n 

instruction, leaving the rest as PUSH ARG UNS [FW87, WF89]. 

2. 1 suggest ENTER SHARED ARG check if the argument has been evaluated to 
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a machine value (SELF k). In this case the mark placement is aborted (and 

indeed the entry, see Section 5.3.2). 

3. checking for marks on the top of the stack when changing contexts [FW87, 

WF89]. I call these "degenerate" marks, as they are updated with the new 

context itself prior to the context change. 

4. A subset of this is when a SELF is being executed with a. degenerate mark. I 

assume machine value object is written both to the stack and the mark referent 

prior to swapping contexts with any continuation on the stack. 

All but (3) are unaffected by the design changes I have made, and the methods by 

which I have implemented other optimisations. The treatment of degenerate marks 

is flawed in the original application to TIM, but can be implemented with my new 

design for frames. 

Implementation (3) "Degenerate" marks are those which require updating while 

they reference the first element on the stack. These occur in two special cases, both 

of which are handled the same way. Since no new suspension is required, the target 

of the update is overwritten directly with the code pointer and frame addres of the 

current context 

The simpler instance when the shared evaluation in question results in a single 

combinator C which is not a partial apjlication. Since there are no shared arguments 

above the mark, it would be pointless to create a suspension frame. The microcode 

for TAKE can easily test for a mark on top of the stack, and update the mark target 

with the current context. In this case, that will be the combinator address (which 

PC CF 

location contains the current TAKE instruction) and the null frame (ie. C 0 ). 
The more complex instance occurs when we have recreated a suspension, only 

for TAKE to discover that there were no arguments above the mark. The suspension 

required by this mark is exactly what we began executing, and so when this situa-

tion is detected, the update target can be overwritten with the context defining the 

suspension. One obvious way this situation can arise is when the updated argument 

is reentered in the same context or some subsequent context to which it is param-
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eter; a second shared ENTER ARG instruction places a mark before rebuilding the 

suspension. [WF89] talks of placing a test for marks at the top of the stack, before 

the regular suspension code, as in Figure 5.4. 

<test for marks and update if necessary > 
PUSH ARG i 
PUSH ARG i — i 

PUSH ARG 1 
ENTER COMB C 

Figure 5.4: Proposed test for degenerate marks 

Results One problem with the solution as stated is that the exact form of the test 

for marks is not specified. If this is a new instruction, then each combinator would 

need a restart vector for each number of arguments, starting with the test. If it is 

some task installed in the microcode for the ENTER ARG instruction, then how do 

we detect that we are about to enter a suspension, and must test for marks at the 

top of the stack? 

Happily, we have already dispensed with the PUSH ARG vector (see Section 5.1.2), 

allowing a workable 'implementation of a previously untenable optimisation. For 

TAKE, a simple test in the microcode is all that is required, as before. For suspen-

sion restarts, the old TIM was constrained to use such sequences of instructions to 

resume suspensions. However, with the new RESTORE instruction of Section 5.1.2, 

a simple microsubroutine addition to the microcode is all that is required, providing 

a simple and elegant implementation. 

It is good that the cost of this implementation is low, as it may be that [WF89] 

overestimates the possibilities for this situation (ie. suspensions encounter degen-

erate marks only via their own ENTER). If this is the case, then a much better 

solution is to modify the microcode for the ENTER SHARED ARG instruction to test 
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for suspensions and abort mark placement when they are discovered. 

5.3 Objects and Direct Instructions 

In this section I address those instructions which appear to be created at run-time, 

and appear to be stored within objects. These are  ENTER ARG f  (the lazy 

version) and  SELF k  1, produced by the TIM instructions in Table 5.4. 

{[PUSH ARG i;C],f,A,F} = {C, f, 

{[PUSH CONST k;C],f,A,F} {c,f, 

ENTER ARG i I 

SELF k ,A] , F} 

,A] , F} 

Table 5.4: Sources of "Direct" Instructions 

In previous implementations [FW86, FW87, WF89] these were assumed to be 

regular code memoEy addresses to instructions in the program image. I argue that 

these would be better left as boxed or packed instructions simply because of the 

frequency with which they are executed, and outline the best of several optional 

methods of implementation. 

5.3.1 Reimplementing ENTER ARG instructions 

When using PUSH to pass a shared context argument to another context, it is not the 

actual context argument that is pushed, but an object with an indirect reference to 

it. This indirection takes the form of an ENTER SHARED ARG instruction combined 

with the same frame specification. When this special object is later entered in 

some other context, the ENTER instruction inside will push a mark to indicate the 

argument is shared, and then enter the argument as usual. The indirection to a 

shared ENTER is necessary so that both the argument and its original location are 

available at the time the mark must be laid on the stack. 

In previous implementations, the deferred ENTER instruction is stored in CMEM 

and the object references this instruction with the appropriate address. The compiler 

'and possibly RESTORE n (see Section 5.1.2), although its inclusion is not necessary to this 
discussion. 
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generates all possible applications of deferred ENTER instructions, and places them 

in a reserved portion of the program object code image, against their potential use 

at run-time. There are a few problems with this implementation of the marking 

scheme: 

• The microcode of the PUSH instruction must calculate the address of the cor-

rect deferred ENTER at runtime, 

• Without a loadable microstore, all programs must have a certain portion of 

CME M  reserved for these instructions, imposing maximum limits on arguments 

and frame sizes, 

• The full instruction cycle used and the CM EM storage used to store these 

instructions is wasteful, especially considering that every shared argument must 

use a deferred entry. 

Implementation There are two ways we can go to address these problems, (i) we 

can try and adapt the hardware design to make the current method of marking more 

efficient, and (ii) we can rethink the implementation of marking. 

To make marking more efficient (i), the immediate approach to dealing with 

the indirect instruction is for microcode to accommodate a hashing algorithm that 

converts a PUS H. A RG n instruction and the size of the referenced frame into a C ME M 

address. Depending on the program, less than 1K of memory in TIM is reserved 

for the ENTER instructions, and thus a particular argument n in a frame of m 

objects would be firm-wired to a particular memory location. The microcode to 

calculate the appropriate address would not be excessively complex, especially if the 

ENTER SHARED ARG instruction fits in a single byte (see Section 5.4), implying a 

1-1 mapping of instructions to addresses. The lowest bytes in code memory could 

be filled with the ENTER instructions, and the address is directly calculated from 

the argument n and inserted into the pushed object. 

However, if we are to rethink the marking scheme (ii), the goal is to avoid the 

instruction cycle while limiting added complexity. There are two approaches to 

consider: 
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boxed we retain the use of the ENTER instruction, but as a boxed instruction within 

the object, or 

"shared" tag we dispense with the indirection, pushing the original argument on 

the stack, and use some sort of signal to indicate that a mark should be de-

posited on the stack when we next encounter this object. 

The shared tag option as stated is invalid, since it does not contain the argument 

location information needed to construct a mark. Any method that includes this 

information is functionally equivalent to the boxed instruction option, and may as 

well make use of the self-same instruction and its microcode. In any event, the shared 

tag method would require a respectable amount of recompilation effort that is not 

justifiable within the scope of this thesis, and changes to the original TIM laziness 

instructions that are regressive. 

Settling on the boxed instruction option, it is obvious that a tag is required here 

as well, to distinguish the direct type of object from the normal code-pointer variety. 

Upon execution, the boxed option skips the CM EM instruction fetch, and decodes 

the contents of the code-pointer portion of the object directly, containing an ENTER, 

SELF or other instruction. The signal is given through the use of a tag bit within 

the object. 

Potential tagging methods in TIM A system designer can consider a tag bit 

as one more bit that we could be using for addressing. Whether we add tags to the 

existing storage width, or we allocate them from within the existing word width, 

each additional tag has to be stored and represents a halving of the useful address 

space. For the sake of argument, I assume we allocate a bit "D" from the existing 

object format. Tag bit set indicates the code pointer portion of the object should be 

sent directly to the instruction register (I R) for decoding. 

On the other hand, we can use a range of addresses in the code pointer (ie. OxFFFX 

= OxFFFO-*OxFFFF) to denote a direct instruction. The instruction fetch register 

(IFR) would perform a test for addresses in this range, and abort the instruction 

fetch when a match occurs. The problem here is that we need at least 8 bits for the 

instruction in question (ENTER SHARED ARG). The number of direct instructions 
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(with arguments) we need consumes bits in the pointer in competition with the 

memory address consumption. For example, allocating the CM EM addresses in the 

range OxFFEO4-+OxFFFF will double the potential instruction codes to 32, and consume 

an additional 16 addresses of storage. Explicitly mapping a subset of the CM EM 

addresses to our small selection of special instructions is inefficient and expensive to 

test at run-time. Reallocating any portion of the 16 bit pointer for identifying bits 

indicates three possible approaches, none usable: 

• the ID is a vector index meaning we have to go out to memory anyway for the 

instruction, 

• the ID is a code for the instruction, meaning we must execute some form of 

costly hashing algorithm on it to yield the desired instruction, or 

• the ID is an 8-bit instruction itself, which means that the instruction format 

and opcodes must use the same bit patterns as the addresses for the reserved 

region of memory. This wastes memory, and contorts the instruction format. 

Returning to the use of tag bits, there are a few options for placing the tag, 

depending on the design of objects and memory. If the logical memory CM EM 

shares a physical memory with one or more logical memory partitions, then part of 

every code address is ignored. For instance, if we assume the physical memory is 

split between code in the lower half, and stack/heap in the upper half, then only code 

addresses in the range Ox0000+4Ox7FFF are, valid. Thus, the most significant bit of 

the code pointer in every object can be used as a tag with impunity (Figure 5.5a), 

which when set indicates the object is a direct instruction. The other way we can go 

is to use a bit from the frame address. The most obvious place is the least significant 

bit of the frame pointer. Considering that all heap frames are at least two objects 

in length (a FCW and one argument), using the lsb of frame addresses as a tag 

bit implies that all frames must begin on an even address boundary. Figure 5.5b 

illustrates the scheme. The disadvantage here is that the heap may suffer from 

significant external fragmentation if the majority of frames are of odd length. 
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(a): 
31 30 

D caddr faddr 

(b): 
31 

16 15 0 

caddr faddr D 
16 15 

Figure 5.5: Options for tag bit placement 

10 

Results It is not clear whether the effort to eliminate extra instruction cycles 

for ENTER ARG is worth the benefit, when using tag bits. Performing a direct 

decode of the instruction address pointer as an interrupt process based on the pointer 

contents is a poor competitor, since it is inelegant and will cost almost as much as it 

saves. More importantly, it will not mesh well with the approach taken for the SELF 

instruction in the next section. 

5.3.2 Eliminating the SELF Instruction 

Rationale In TIM, the instruction SELF is used to represent and manipulate ma-

chine values, and its implementation is intended to maintain consistency with the 

universal object philosophy. There are a number of improvements to the way TIM 

handles SELF, which all involve avoiding having SELF appear in the instruction reg-

ister by interpreting SELF not as an instruction but some variety of object marker. 

These optimisations indicate a need for a better representation of machine values 

in TIM since they all attempt to "design around" the current implementation. The 

central issue is to provide a consistent, efficient way to distinguish constants from 

regular objects. TIM will still hold values within objects, but a SELF instruction is 

not strictly necessary. 

Implementation Machine values are encountered in only three ways: (i) as found 

on the stack as an argument to a machine operation, (ii) at the end of a machine 

operation, where it is necessary to change contexts to a closure on the stack, or (iii) 

as a frame argument which is entered. In each case, there is no need to explicitly 

execute a SELF, only to recognise the object as a machine value and perform the 

appropriate action. 
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One way to avoid executing SELF is to use strictness analysis. Normally, machine 

operations have supercombinator wrappers that ENTER each argument in insure the 

operation is applied to reduced machine values. [FW87] and [WF89] have stated that 

while strictness analysis generally applied does not yield significant improvements, 

the benefits are there for expressions over machine values that have been found to be 

strict. For these, only the arguments to the strict expression are entered and placed 

on the stack. More conventional code consisting of straight machine operators sans 

wrappers operates exclusively on the contents of the stack until the strict expression 

is reduced. This is a good optimisation, but is a compiler technology outside the 

scope of this work; I am concerned with those cases where we are not sure if the 

argument has been evaluated or not. 

For (ii) above, the situation is very simple. All ground type operations currently 

evaluate their arguments, and place the result Ic in the PC and CF as 

Afterwards, the SELF performs the a context change by swapping itself with (hope-

fully) the continuation on top of the stack. The optimisation is then to have all 

ground type operations perform the context swap themselves directly. The machine 

operation does a microcode jump to the segment for SELF, which is modified to 

locate the constant in the accumulator or alu, and to construct the SELF machine 

value object. Note that this scheme works whether the machine operations are being 

used strictly or not. 

For (i) and (iii) above, the situation is the same, since machine operations enter 

their arguments just as any other combinator. The approach we should use is to have 

the microcode for ENTER check the argument it references after the fetch, to see if 

it is a machine value. If so, the context change is aborted and the object stored in a 

temporary register. Normally, the SELF would be decoded after the context change, 

and cause a swap of contexts with the top of the stack: 

SELF Ic 

{ SELF, k, Ca, iv ,A],F} SELF k ,A] , F} 

The interrupt process would perform the same task, placing the top element of 
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the stack into the PC and CF, and overwriting it with the contents of the temporary 

register. In other words, ENTER ARG jumps to the microcode for SELF when it 

detects a machine value, again slightly modified as mentioned above. 

Thus, the SELF formalism is retained only as an object label. The only problem 

remaining is how to "mark" an object as one holding a machine value. We can not 

use the best placement of the tag bit in Section 5.3.1, since this consumes a bit 

of the frame pointer, used here as precision for the value. So, we must resort to 

some manipulation of the CM EM code address. In the unadorned TIM, a convenient 

location for the SELF instruction would be CMEM[0x0000] = SELF, and all machine 

value objects would point to the first byte location in CMEM. To avoid the fetch, 

we can test for the address equal to Ox0000, indicating the object holds a machine 

value, and should be treated as shown above. It is very easy to do a "test for 

zero" in hardware very quickly, in parallel with the instruction fetch stage. This 

interpretation of the object format appears in Figure 5.6a. 

(a): 

(b): 

caddr = 0x0000 k 
31 16 15 

Address Exception 

a 

OxCO opcode k 
31 2423 I 1615 0 

OxO0 SELF 

Address Exception with Boxed Opcode 

Figure 5.6: Forms of the machine value object (SELF) 

For consistency, a possible additional change is to allocate the 8-bit opcode 0x0O 

to the SELF instruction; this leaves the microcode open to use the code pointer as an 

address, an identifier for machine values, or the actual instruction to beexecuted. 

Results Using the scheme above, all interactions with machine values avoid not 

only an instruction cycle, but the decode of the "boxed" instruction as well. 
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* 

* 

* 

PUSH ARG 

PUSH ARG UNS 

ENTER ARC 

ENTER ARG UNS 

TAKE 

RESTORE 

PUSH COMB 

ENTER COMB 

PUSH LABEL 

PUSH CONST 

SELF 

<machine op 

TRAP 

HALT 

arg 

arg 

arg 

arg 

arg 

arg 

* new instructions 

cmem addr 

cmem addr 

cmem addr 

Ic 

Standard 
Instruction 
Set 

&&, II, <<, >>, —, 
<, , =, 4f ≥, >, 

P, L R, HID, TL, NULL 
opt_in, opt_out 

Ground Type 
Operators 

number 

Specials 

'I, 

Figure 5.7: The TIM instructions 

5.4 Instruction Format Design 

This section will discuss the decisions I have made to minimize the size of the physical 

instructions in TIM, and optimise the mapping of instructions to opcodes. The over-

riding goal is to use as little CM EM space as possible to represent each instruction, 

while meetingthe requirements of the machine as laid out by the optimisations. The 

original concept of TIM implies an instruction roughly the size of an object, with 

byte- or word-sized arguments. The logical appearance of the TIM instruction set is 

as in Figure 5.7. 
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The two-initial constraints I have imposed is that the instruction opcode should 

fit in one byte, and that arguments should be placed within the byte if at all possible. 

This is not unreasonable, as there are only 37 instructions to be represented, and 

only a handful require a full-word argument. The following observations drove the 

design of the instruction formats: 

• full words (16 bits) are required for combinator addresses and constants, as 

this is half-object size we are using. 

• all of the argument/frame handling instructions should have the same format 

(PUSH ARG, ENTER ARG, TAKE and RESTORE). 

• argument numbers for frame handling instructions do not need 16 or even 8 

bits of storage. Static analysis of program code from the PONDER [Fai86] 

environment demonstrated that the maximum frame size ever used contained 

24 arguments, and the average size was only 2. This indicates a very liberal 

number of arguments can be represented using 11092241 = 5 bits. 

• it would be advantageous if the opcodes can be assigned so that 5 bit arguments 

are reserved for these instructions within the 1 byte opcode. 

• although PUSH LABEL appears to need a 16 bit full-word combinator address, 

the labels referenced in these instructions are spatially local to the instruction 

address ( PC) and always at a higher address. A single byte would yield a 

PC-relative offset of 256 forward CM EM addresses, which is sufficient for all 

programs observed. A 5-bit offset stored within the instruction byte would give 

32 forward CMEM references, which may be sufficient. 

The complete list of instructions and opcodes appears below in Figure 5.8. 

Following the same philosophy as that for Huffman coding, the design of the 

instruction set format should be tailored around the most frequently used instruc-

tions. In this way, the representation of instructions is allowed to emphasise those 

instructions which require advantages in shorter formats, reduced decode times, and 

simpler execution. I thus concentrated on the PUSH ARG, ENTER ARG, TAKE and 
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1 X  n  nn n 
7 6 54 

00 
01 
10 
11 

0 

01 X n  nn n 
7 54 

0 
1 

0 

001 
7 54 0 

000 001 ox 
7 

ENTER ARG n 
ENTER ARG, UNSHARED n 
PUSH ARG n 
PUSH ARG, UNSHARED n 

TAKE n 
RESTORE n 

PUSH LABEL I 

CADDRH CADDRL 
54 21 0 7 07 

0 ENTER COMB c 
1 PUSH COMB c 

000 001 lx 
7 

0 

DATAH DATA L 
54 21 0 7 07 

0 PUSH CONST k 
1 (unused) 

000 000 x  
7 54 21 0 

0 0 SELF 
0 1 HALT 

0001 XXXX 

00001 XXX 
7 6 S 4 3 2 

0 

TRAP 
NOP 

Argument-Indexed  

EADDR = CF + n + 1 
1 <= n <= 32 

Frame Control  

EARG=n 
1 <= n <= 32 

PC-Relative  

EADDR .= (PC) + I + 1 
(PC)+2 <= EADDR(I) 

<= (PC)+34 

Absolute Address 

EADDR = ((PC) + 1 (PC) + 2) 

Data Immediate  

EADDR = ((PC) + 1, (PC) + 2) 

Control 

Arithmetic/Logical  

(see Figure 5.9) 

Figure 5.8: Main TIM instruction formats and opcodes 
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RESTORE instructions. Each of these can fit its argument specification within 5 

bits, and together (with shared and unshared versions) there are 6 instructions. I 

separated the PUSH and ENTER argument instructions from the frame handling in-

structions. The first use the equivalent of register-indexed addressing mode, which I 

call ARGUMENT INDEXED. The second uses the argument as a frame size speci-

fication, which I class as FRAME CONTROL. 

In the PUSH LABEL 1 instruction, the label is encoded as a 5 bit offset in an 

instruction classed PC-RELATIVE. Note that at run-time following the decode, the 

PC holds the CMEM address pointing after the instruction (PC + 1. Furthermore, 

since labels never reference the instruction immediately following the PUSH LABEL, 

and all labels are forward references, we can get one extra address of offset. Thus the 

labels which are encoded fall into the range ( PC) + 2 ≤ 1 ≤ (PC) + 34. At run-time, 

the address which is pushed is thus ( PC) + offset + 1. 

0001 0 xxx 
7 4 3 2 0 

0001 1 xxx 
7 

0 0 0 #+ (add) 

0 0 1 #- Oul) b) 
0 1 0 #  
0 1 1 #1 (div) 
1 0 0 #% (rem) 

1 0 1 #<< •asr• 1 asi1 0 #>>  
1 1 1 #- (not) 

00001 0 X  
7 3 2 1 0 

4 3 2 0 

ALU Operations  

0 0 0 #&& (and) 
0 0 1 #11 (or) 
0 1 0 #< (It) 
0 1 1 #<= (leq) 
1 0 0 #= (eq) 
1 0 1 #1= (neq) 
1 1 0 #>= (geq) 
1 1 1 #3. (gt) 

00001 1 X  
7 

0 0 #P (pair) 
0 1 #L (left) 
1 0 #R (right) 
1 1 #opt_in (i/o read) 

Function Support  

321 0 

O 0 #HD (list car) 
0 1 #TL (list cdr) 
1 0 #NIL (list pred) 
1 1 #opt_out (i/o write) 

(#<op> is the assembler mnemonic for ground type instructions) 

Figure 5.9: TIM ALU instruction opcodes 

For the ENTER COMB and PUSH COMB instructions, a full word follows the 
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instruction containing the absolute CM EM address of the combinator. The ABSO-

LUTE ADDRESS made instructions fetch the address and change contexts immedi-

ately. 

The PUSH CONSI k instruction is called DATA IMMEDIATE, and behaves sim-

ilarly to ABSOLUTE ADDRESS, fetching the full-word operand following the in-

struction. 

The CONTROL instructions are SELF, HALT, TRAP and NOP, and consume a 

single byte, having no operands. 

The ALUinstructions consume the remaining 24 available opcodes, and are listed 

in Figure 5.9. 

5.5 Summary 

In this chapter I hire suggested a number of optimisations to the instruction and 

register level of the TIM machine. I have created a new model for heap frames that 

allows a shared partial combinator application, or suspension, to be stored so that 

it can be restarted much more easily and quickly than in previous implementations. 

I have also introduced a new instruction called RESTORE to facilitate this optimisa-

tion, while maintaining the semantics and flavour of TIM. I have covered a number 

of small optimisations to the placement and processing of marks, to ensure these 

are still possible with the different designs specified in Chapter 4 and Chapter 5, 

and have found that in one instance ("degenerate" marks) the RESTORE instruction 

simplifies the optimisation. I have suggested a range of approaches to removing or 

reducing the effect of "direct" instructions, using tags or other markers to make the 

operations needed implicit to the object, and found it is not worth the effort, except 

with the SELF instruction. Finally, I have analysed the needs of the architecture 

for a physical instruction set and developed a set of compact instruction formats. 

A PC-relative mode for TIM combinator labels was introduced, and the opcodes 

allocated to the main, ALU, and special instructions of TIM were summarised. 



Chapter 6 

Summary and Conclusions 

6.1 Contributions of the Thesis 

In this thesis, I have provided some new approaches to the TIM implementation 

problem, and extended some of the existing work. The improvements and optimisa-

tions have covered a range of areas in the TIM architecture. Chapter 4 dealt with 

those improvements closely related to the construction and storage of heap frames, 

while the lower-level firmware, hardware and microcode optimisations were confined 

to Chapter 5. Chapter 5 also oulines a new heap frame model I have devised to 

simplify the usage of shared results, and a new TIM instruction called RESTORE to 

be used with the frame model. To test the optimisations and designs presented, an 

instrumented hardware simulation package called TIMSIM was developed at an early 

stage of the research (Appendices A, B). 

Following the introduction, the next chapter (Chapter 2) provided an in-depth 

introduction to functional languages and architectures. The discussion of functional 

programming notations leading to SuperCombinators was to give the reader a clear 

understanding of the environment upon which TIM operates. Particular emphasis 

was placed on those elements of the functional architectures which are common with 

the Three Instruction Machine, presented in order to give the reader a notion of the 

"evolutionary path" in functional programming that has led to TIM. 

A significant portion of the text was dedicated to a thorough description of the 

TIM abstract definition (Chapter 3), with emphasis on relating the TIM instructions 

and structures back to their higher-level functional language counterparts. In this. 

way, the reader was to be given an intuitive understanding of the TIM abstract 

architecture, and the usefulness of the TIM approach. 

107 
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The core of the thesis began with a discussion of the design philosophy I have 

applied to the TIM architecture, emphasising the importance of task optimisation 

and treatment of memory bandwidth demands. Chapter 4 was dedicated to ana-

lyzing three major and two minor optimisations to the context change and update 

mechanisms in TIM. Operating upon the major firmware structures of TIM, these 

optimisations have been suggested in the literature. My contribution has been exten-

sion of the previous work to specify a practical design, and analysis of the usefulness 

of the optimisations. I determined that efforts to break the TAKE instruction (Sec-

tion 4.3) up are useful, but not as rewarding as simple changes to the way that TAKE 

operates (Section 4.5). An implementation of a stack for update marks was proposed, 

and analysis of its costs and savings (Section 4.4) performed. The use of a single 

frame conglomerate of shared combinator suspensions was discussed, and found to 

be a useful and essentially costless optimisation to the TIM machine. Lastly, I anal-

ysed the effects of implementing the two most promising optimisations in tandem, 

and determined that the effort is not warranted, as the presense of a mark stack is 

immaterial to the usefulness of conglomerate frames. 

In Chapter 5, I concentrated on a number of original optimisations to the TIM 

abstract design, and specified design information for a number of areas of TIM. I 

have specified a new model for frames that includes status and control information 

(Section 5.1.1). The use of the new self-contained frame model facilitates 'a new 

optimisation to restarting shared combinator suspensions, which allows such sus-

pensions to avoid over half of the previous memory accesses (Section 5.1.2). I have 

defined a new machine instruction called RESTORE to implement the new restart 

procedure, which is simple and easy to add to the TIM assembly code and to ma-

chine microcode. I verified that the new frame design and restart mechanism works 

with certain useful optimisations to mark creation and mark updating from the lit-

erature (Section 5.2). Certain usages of TIM instructions are inefficient and make 

inelegant use of microcode and TIM objects; I analyse several ways of reimplement-

ing the ENTER ARG instruction as used in marking operations (Section 5.3.1), and 

the SELF instruction used to represent machine values and initiate context changes 

(Section 5.3.2). Finally, I present the design for a compact and efficient instruction 



CHAPTER 6. SUMMARY AND CONCLUSIONS 109 

format, including a new relative addressing mode, and several special instructions 

(Section 5.4). 

6.2 Future Work 

There are a large number of potential paths for further research on the TIM architec-

ture. This thesis has suggested some "good bets" for optimisations and implementa-

tion details. A direct continuation of my thesis work would be to greatly extend and 

refine the simulations of TIM to gather statistically significant evidence to support 

or refute my conclusions with greater certainty. This would be followed by a first 

draft design of a VLSI chip and subsequent fabrication, so as to construct a real 

Three Instruction Machine system. The eventual goal is to benchmark TIM against 

other real functional architectures, providing empirical evidence of the merits and 

shortfalls of TIM. 

Alternatively, the scope of this exploration could be widened to include memory 

design, advanced implementation techniques, and so forth. I have done some initial 

exploration in these areas, which is outlined below: 

Storage Design The demands on storage in TIM mandate high memory speed 

and bus bandwidth, to achieve respectable performance. TAKE in particular makes 

intensive use of both stack and heap, but all operations involve accesses to two or 

more logical memory partitions. 

[FW87, WF89] suggest splitting the heap from the stack, motivated by the sug-

gestion of direct memory transfers during the TAKE operation. There are a number 

of additional reasons to assign separate physical memories to the logical memory 

partitions that I have used. The fact that heap storage is an allocatable heap, while 

all other memories are simple storage, means support for garbage collection is wasted 

the partitions reside in common storage. If interleaving and caching are applied to 

TIM, each partition may require different cache line widths and bandwidth. The 

initial implementation assumes that all logical partitions exist in one physical mem-

ory, as in Figure 4.1. The next option is to isolate the heap HMEM partition from 

others, and the most promising (and expensive) arrangement is to assign 'a separate 
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physical partition for code, heap, and stacks. 

Interrupt Processing Because TIM will operate in the real world, it must be able 

to deal with real-time events and exceptions. Against this potentiality I have done 

the initial work to develop an interrupt-processing mechanism. This would be used 

for input/output operations (through the opt-in and opt-out supercombinators used 

in code from the PONDER environment [Fai86]), control unit exceptions, direct 

memoryc-+memory transfers as described in this section, and any other interface 

applications. The typical implementation would have traps hardwired to a jump 

vector loaded with trap handler entry points. 

Advanced Implementation Techniques Hardware accelerators and bandwidth-

enhancing memory design techniques can be applied to TIM as well as any other 

architecture, with the observation that the common understanding of bottlenecks 

will likely not apply. All of the following techniques will require deeper modeling 

of TIM to obtain information to tailor the application of these techniques to TIM. 

The required information at a minimum includes extensive measurements of the 

spatial and temporal locality of each type of memory reference, knowledge of the 

size and lifetime of supercombinator and suspension contexts, and a number of other 

dynamic execution parameters. The techniques I suggest are listed starting with the 

least complex and most promising. 

Instruction Prefetch With a bus 4 times the width of the basic instruction unit, 

it would make sense to fetch all 4 consecutive bytes of memory and hold them 

within the CPU, to speed instruction fetches. To simplify the microcode control 

of the fetching, the buffer could be made 8 bytes long (or twice the bus width), 

with valid program code being read through each half alternately. 

Frame Buffer Frame heap memory write accesses exhibit a higher degree of spatial 

and temporal locality than heap reads, due to TAKE and suspension frame 

creations. Subsequent read accesses (excluding suspension restarts) are more 

spread out. This observation leads to the potentially useful addition of a frame 

buffer, not to be confused with a frame cache, but which is an interim approach. 
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Two benefits are derived: (i) frame creations occur in the frame buffer first, 

and the actual heap write cycles can be spread out over subsequent instructions 

which do not make use of the heap, (ii) reads of the current context arguments 

do not have to go to heap memory, useful when one considers that arguments 

are accessed immediately after creating a new current frame. A change to 

a new context would flush any remaining portion of the frame buffer as an 

interrupt process. 

Stack Buffer As with the last modification, this reduces bandwidth consumption 

by retaining some number of the top elements of the stack in the CPU. This 

requires heavy simulation to determine the appropriate size of the buffer and 

quantify it's benefits, and some complexity is involved in optimistically fetching 

into and writing out the buffer when it is necessary. This modification would be 

of benefit to most machine instructions, and certainly to speeding up argument 

list stacking and subsequent TAKE's. A stack buffer would form an interim 

approach prior to using smart memory controllers and direct memory- memory 

transfers as suggested in [FW87]. 

Frame Heap Cache Analogous to multiple register sets in RISC [Pat85, Tab87] 

technology, the frame buffer modification is extended to a full caching scheme, 

so that contexts may be retained for reading and writing within the CPU. I 

suspect that 4-8 cache slots would be mandated by simulations, but that the 

benefits derived would not be much gre.ter than with a simpler 1-2 slot frame 

buffer, as above. 

In addition memory interleaving would make more bandwidth available by speed-

ing up all of the high-spatial locality operations, particularly when used in conjunc-

tion with the buffering schemes suggested above. 

6.3 Final Comments 

I have proposed a design for TIM encompassing the essential elements of a practical 

implementation. The design techniques and hardware tools that I have applied to 
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TIM are well known and understood, derived from the vast body of knowledge aris-

ing from the study and practice of conventional computer architecture. TIM must 

compete not only with other functional machines, but also with the established con-

ventional technologies (as do functional languages). It may be that abstract func-

tional machines are ultimately best implemented by programming their operations 

into conventional high speed microprocessors, to make use of the knowledge and 

economy of scale advantages in an established industry. 

For the present time, TIM is a promising architecture for the efficient execution 

of functional languages. This practical design combined with realistic performance 

goals should provide..a simple and fast implementation of TIM, when fabricated as 

a concrete machine in VLSI silicon. 
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Appendix A 

Simulation Tool: TIMSIM 

When I began investigating TIM, I realised that the designs I derived for comparison 

would have to be simulated extensively, to evaluate each for efficiency and the utility 

of the individual changes incorporated in previous designs. Simulation data would 

provide a direct feedback on the development of the architecture, and the intent 

was that the gradual specification of each of the sub-components would make it a 

"simulation-driven" design process. Simulation has been called upon to perform 

data-gathering throughout the different phases of my thesis research. In this section 

I describe the general nature of the simulation tasks involved in TIM, and how these 

defined the desired capabilities of the simulator and its final implementation form. I 

continue with an outline of the structure of the simulator package and its important 

components. I conclude with a simple example simulation, and some suggestions for 

improvements to the package. 

A.1 Application to the TIM 

The first phase of my thesis research is the evaluation of numerous optimisations 

to the abstract machine, both my own and those proposed in the literature. The 

majority of these can be characterised as modifying the capabilities of instructions, 

or adding a new tack to handle objects previously stored elsewhere. To evaluate 

one optimisation over another, or provide "before-and-after" information needs only 

a high-level architectural simulation. Here, almost all detail of implementation is ab-

stracted away, in the interests of speed and simplicity. The type Of data collected is 

coarse: examples are memory and stack consumption rates, raw numbers of function 

calls, profiles of instruction execution, and total use of instruction cycles. The essen-
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tial task is one of deciding whether the optimisation makes the machine quicker or 

not, and the nature of the primary mechanism behind any improvement in efficiency. 

Lastly, the estimated cost of implementation is factored into any judgement on the 

usefulness of the optimisation. In some cases, there may be ambiguous results or 

several subtle mechanisms cooperating behind a demonstrated improvement. Here, 

the instrumentation is extended and/or the design model detail is expanded, perhaps 

in several ways, to better discriminate the effects of the optimisation on the machine. 

The second phase of my research is built on the abstract machine definition that 

has been derived, a collection of optimisations providing a more or less viable TIM. 

This "settled" machine definition is ready to be made concrete as a paper hardware 

design. Here I am concerned with design details of the CPU control section struc-

ture, microcode engine, memory structure and interface, and even such things as 

the firmware-defined structure of objects and heap frames. Each piece of hardware 

must be tested for efficiency, demonstrated correct as a realisation of the abstract 

design, and qualified as to how well it fits with its companions. I expand the existing 

simulations to encompass this detail by partitioning the design into its major hard-

ware blocks and signal paths, and an iterative process is used to find a "best-fit" 

hardware design for the abstract definition. Not only are options in design evalu-

ated against each other, but an implicit second evaluation of the abstract definition 

and its component optimisations occurs. I may find that portions of the abstract 

specification are not, amenable to hardware implementation, or that optimisations 

which "look good on the blackboard" are not so beneficial once subjected to the test 

of practicality. There is an important design feedback from implementation to the 

abstract definition. 

In essence, the simulator is used only for modeling designs at three of the sev-

eral traditional simulation "levels" of hardware: the Architectural, Instruction, and 

Register-Transfer levels (there are also Logic, Switch, and Device or Analogue lev-

els). The variety of data I collect is used primarily to derive qualitative aspects of 

the design, where pattern is more important than precision. At the higher levels of 

abstraction, information on simple quantities such as instruction frequency or mem-

ory access localities tells me before I start where the most effort on instruction design 
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should be spent, and how the memory hierarchy might best be laid out. At lower 

abstraction, more refined measurement is used to pick out performance bottlenecks 

or "hot spots" in the overall design, using information such as percentage utilisation 

of busses, hardware contention, and so forth. 

One of the simplifying assumptions I make is that precision in time modeling is 

of secondary importance, and that quantities such as propagation delay, setup and 

hold times, and drive capabilities can be ignored. This is reasonable in view of the 

type of information I am interested in, and also that the goal is to make a paper 

design from an abstract one. It would be pointless to model technology-dependent 

quantities or electrical properties, without being at the layout stage armed with 

a target technology and fabrication process. Thus to concentrate on measures of 

throughput and utilisation, it is useful and valid to 1) model communications paths 

as having no delay, and 2) uso a time resolution that is no finer than a major or 

minor machine cycle. 

A.2 TIMSIM Package Characteristics 

Once the tasks of the simulator were defined, I went on to devise some of the general 

capabilities I wanted to include. The majority of simulations would differ from each 

other only in a few small details of design or instrumentation. This high degree 

of design locality implied that one of the primary capabilities should be very quick 

incremental modifications between simulation runs. The portions of a simulation, in 

order of most frequently modified, are: 

1. instrumentation; tracing and data collection, and the TIM programs being 

executed. 

2. machine design; the major blocks of hardware, main communications paths 

and control lines, and their interconnections. 

3. basic building blocks; definitions of the logic blocks used above, including ALU, 

registers, memories, latches, control store, etc. 
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4. basic support package; all of the entities on which logic and communications 

models are built. 

The structure of the simulation package reflects the ordering of these domains (see 

Section A.3.6). 

At the outset, I was not sure how complex the simulations or how elaborate the 

data collection would be, and so I wanted to ensure that TIMSIM was both extensible 

and maintainable. As my ideas of what was wanted grew with experience, this would 

ease the necessary changes to the package. To this end the simulator was written in a 

very general form, with many hooks for extra packages, procedures, logic classes and 

so forth. Further, package debugging hooks (using the Trace Facility, Section A.3.5), 

were left in place during development, to aid maintenance and upgrades, and detect 

errors in package use. 

A more complicated aspect of the rapid prototyping goal was the inclusion of 

automatic design debugging. Again, implemented through the Trace Facility, this 

capability exists primarily in the modeling of communications links, and is by no 

means complete or even comprehensive. The motivation was to discourage simple 

design errors, such as a mismatch between bus and logic port widths, or bus con-

tention during simultaneous writes from logic blocks. TIMSIM was endowed with a 

few key checks to catch a majority of the simple microcode or connection errors that 

are easily made. 

An essential capability of TIMSIM was to focus attention only on details of in-

terest. This was justified by concerns for faster model development, and secondarily 

more efficient simulations. Models and instrumentation are emplaced only for por-

tions of the machine design under study; the remainder is abstracted away and its 

function emulated using more efficient means. Simulations may thus span several 

regions of interest concurrently, perhaps at different simulation levels (or "resolu-

tions"). As an illustration, consider a comparison of two designs based on their 

efficiency during a context change. For the particular enabling native instructions, 

it would be useful to trace that portion of the program at the instruction level, while 

observing the behaviour of the microcode engine at the register transfer level, and 

cllecting data to summarise memory access patterns at the architectural level. All 
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other detail-of the ALU, busses, control section and so forth can be abstracted away 

into amorphous logic-blocks that use Simula [Poo87] to emulate external functional 

behaviour. Models can be extended both to encompass more detail, and to examine 

detail at finer resolutions, in a recursive fashion. This process can be extended as 

far as necessary, fracturing logic blocks and communications links into more and 

more modeling primitives, until each register and wire is simulated independently, if 

desired. 

A.3 Structure of TIMSIM 

At this point I knew enough to select a simulator package. I had knowledge of various 

public-domain tools, dealing in functional-, register- and transistor-level simulation. 

Several commercial tools were also available, such as "ISP" from Endot Inc. (now 

DATA I/O) based on ISPS [Bar81a, Bar82], but these are quite expensive (ie. a 

commercial license for ISP' was $US5O K in mid-1988). I had difficulty finding infor-

mation on the university-developed tools, and commercial tools were prohibitively 

costly. VHDL [VHD87, WSC89, Arm89, Coe89] was as yet unavailable. In addition, 

it seemed I did not need many of the advanced capabilities of this software, only the 

upper part of any mixed-mode facilities provided, and would be satisfied with a fairly 

efficient and extensible workbench. For both these reasons and academic enthusiasm 

(the opportunity to learn something about logic simulations and how they are put 

together) I decided to write my own simulator package. The decision was influenced 

by the fact that our site already had a simulation development package, and local 

expertise in its use. 

The TIMSIM package was built using the tools in the Discrete Event-based Mod-

eling on Simula package (DEMOS) [Bir79]. DEMOS is itself based on Simula, and 

augments the simulation primitives there by providing more convenient processes, 

synchronisation and data collection facilities, in a fashion analogous to the improve-

ment of LATEX upon 'IK [Lam86, Knu86]. 

In its simpler use, the programmer develops a simulation model of the real world, 

and breaks this into "active" and "inactive" agents that become known as entities 
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and resources. Entities become scheduled coroutines which perform actions, while 

resources are their consumables. A number of intercommunication, synchronisation 

and scheduling schemes are provided for controlling both. Entities may queue for 

resources or the attention of each other, and follow a number of different proto-

cols, variants of either entity-resource synchronisations or entity-entity cooperations. 

Using the object-oriented philosophy, it is relatively easy to build on the DEMOS 

package in any way or to any complexity necessary, simply by defining additional 

classes of simulation entities on top of existing ones. 

The hardware model I devised for my simulator is a simple one. There are 

similarities to a VLSI simulation model described in [Che84]; to be fair, that previous 

work is highly sophisticated and far better developed in comparison. I began with 

the idea that synchronous circuits can be broken into blocks of logic which do all 

the "work", connected together by communications paths (from busses to single 

control lines) which only transport data. The consumable resources are generic 

signals transmitted on the busses and manipulated within logic blocks, forming the 

medium of exchange for data. 

Within an arbitrary synchronous system, each logic block will follow the same 

basic pattern: sample the input ports, spend some finite time working, and assert 

new signals on the output ports. Clock "ticks' control these actions, and logic 

blocks as discrete simulation entities are scheduled to execute on clock tick events. 

Communications paths accept signal assertions from writers, order them by time 

and signal type, check for conflicts, and return the appropriate signal for each strobe 

performed by a reader. Logic blocks are thus primary entities, and communications 

paths are slaved to their requests. 

A.3.1 Resource: Num 

One of the most important simulation resources is Num, since it is used everywhere 

to represent machine values. They have several characteristics: 

• used to hold the values of signals during transmission amongst logic blocks. 
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• provides the simulation entity underneath any type of storage cell within a 

logic block or elsewhere. 

• implements any arithmetic or logical operation desired within a logic block 

under simulation, or for direct modeling. 

• contains its own conversion routines for I/O with control files and tracing. 

• can represent any arbitrary magnitude of binary value (1-64 bits) 

• model valid binary values, as well as undefined and high-impedance (for bus 

models) conditions. 

Not only are they versatile, but a lot of effort went into making them efficient. Each 

N urn contains three separate internal representations of its value, using whichever as 

needed. To implement logical binary operations such as shifting or a bitwise XOR, 

a binary format is used. For faster arithmetic operations, a standard integer format 

is used (when possible). For I/O and tracing functions, there is a text format. A 

Num will use whichever is needed under the circumstances, and keep track of which 

formats are currently valid using "dirty bits". The text format in particular can use 

any of bases 2, 8, 10, or 16, for either displaying information, or accepting data from 

external sources. 

Integer 

Binary 

Text 

Type 

Class Num 

Figure A.1: class Num 
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class Num(size): 
N urn .write(int) 
Nurn.SlGsetZ 
Nurn.SlGsetX 
N urn . cp(othern urn) 
Nurn.equal(othernum) 
Num .SlGis* 

Nurn .SIG*v 

Nurn.size 
Nurn.int 
Nurn.txt 

flu m n ewcp(srcn urn) 
notbin(srcnurn) 
incbin(N,C) 
negbin(N) 

object class, functions  
load Num with an integer value 
load Num as high-impedance 
load Num as undefined 
copy some other Num value 
compare values 
predicates; is number valid (V), 
high-Z (Z) or undefined (X)? 
predicates; which of integer, boolean 
and text internal formats is valid? 
binary representation size 
integer representation 
text representation 

library support functions  
func, create new copy of srcnum 
binary not 
binary increment with carry 
2's complement negation 

Table A.1: class Num interface 

A.3.2 Resource: Signal 

A signal is the basic unit of communication for buses and wires modeled with class 

Cornlink. It contains a Num to hold an asserted signal or group of signals, as well 

as information about which logic block asserted the signal, and at what simulation 

time. Local routines provide access to this information while protecting it from 

modification. A signal is modeled within DEMOS as a linked list element, so it may 

be queued and sorted with its neighbours within a ComLink. 

class Signal(author, authorlD, 
signal, timestamp): 

Signal.who: 
Signal.whosn: 
Signal.what: 
Signal.whn: 

object class, functions  
textname of author of this signal 
ID of author 
value of the signal (Num) 
time of signal assertion 

Table A.2: class Signal interface 



APPENDIX A. SIMULATION TOOL: TIMSIM 130 

Author 

AuthoriD Num 

TimeStamp 

Class Signal 

Figure A.2: class Signal 

A.3.3 Entity: ComLink 

A ComLink (communications link) models an abstracted signal path used to transmit 

binary values of any arbitrary width amongst logic blocks. There is no restriction 

on the number of logic blocks connected to a Comlink, and each connection "port" 

may be transparently used for input, output, or bidirectional transmission. 

The task of the Corn Link is threefold: 1) accept asserted signals from writers, 2) 

return appropriate signals to readers which "strobe" the communications path, 3) 

time-order and resolve the asserted signals to supply strobes and traciiig information. 

Here it is obvious why a Signal (and component Num) may be a real asserted value 

(Nurn = V), a notification of de-assertion (Num = Z), or a undefined value (Num = 

X) to signify an undefined state in a logic block. Thus we can detect when a bus 

is undriven and ready to accept an asserted signal (or to flag an erroneous strobe), 

flag a contention due to two or more conflicting assertions, and be able to propagate 

undefined conditions to other parts of the circuit (useful for detecting more transient 

varietieg of design errors). Table A.3 shows the varieties of signals pairs which may 

occur, and how they are resolved to decide on real bus contents at the simulation 

time of a logic block strobe. Note the combinations that result in contention, and 

that actually all but two pairs result in a "bad strobe". 

There are two simple interface procedures for ComLink, predictably named read 

and write. Both deal only in simple values (Num) and identifying information, hiding 
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On Bus Asserted Strobe 
X 
x 
X 

X 
z 
V 

X 
x 
X 

Contention! 

Contention! 
z 
Z 
z 

x 
Z 
V 

x 
Z 
V 

Bad strobe 

V 
"V 
V 

X 
Z 
V 

X 
V 
X 

Contention! 

Contention! 

Legend 
X = Undefined signal 
Z = Hi-Impedance 
V = Binary value: [0 11]* 

Table A.3: Signal Resolution Rules 

most details of transmission from logic blocks. 

class ComLink: 
Corn Lin k.write(args): 
Corn Link.read: 

object class, functions  
author (authorlD) asserts a Nurn value. 
strobe the contents of the bus 

Table A.4: class ComLink interface 

Each ComLink maintains two separate queueing systems, a two-stage signal queue, 

and a queue for strobe requests. The first signal queue SigQ immediately accepts 

asserted signals and holds them for later processing when the ComLink is scheduled. 

The second signal queue MemQ contains the results of signal resolution performed 

on SigQ. Once older signals are discarded, newer ones are sorted in by time and 

type, and error checked. The result is a local memory for the ComLink, holding 

the communications history located immediately around the current simulation time 

(CTS). 

The strobe queue holds logic blocks which have requested to read the ComLink. 

This queue is a DEMOS construct that provides entity-entity cooperation, through 

two function calls q.coopt and q.wait. Normally, this provides a pairwise synchro-

nisation between entities which are waiting and those which wish to cooperate. In 

my use, only the single ComLink entity itself cooperates, and it does so in a busy 

loop. Logic blocks, through a call to ComLink.read, indicate they are waiting for 

service. When the ComLink becomes the current "active" process, it services each 

waiting logic block with the resolved signal for the CTS, and re-schedules them with 
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ComLink.Read 
- (<Logic>) 

Request 

ComLink.Write(<Num>) Assert 

Name 

ID 

H 

Class ComLink 

StrobeQ... j 

<Log 

SigQ... 

ç(Resolution) 

MemQ. 
old <Signals> 

/dev/null 

Strobe Time 

---p-
Strobe 

Ic> <Num> 

Reschedule I Result 

Figure A.3: class Corn Link 

no delay (at the CTS). In effect, a reader observes a strobe to occur in zero time. 

Signal resolution is used to provide an accurate result for the latest signal strobe. 

To be accurate, all signal assertions up to and including those occurring at the 

simulation time of this strobe must be "in hand". This is guaranteed by the following 

conditions: 

1. signal assertions occur without a context change, and are time-stamped to the 

CTS. 

2. every inactive ComUnk (those without waiting requests) stays outside the main 

scheduling queue. 

3. when a ComLink obtains a read request it is scheduled at the CTS, but behind• 

any other entities scheduled for the CTS (FIFO queue). ie. any entity who 
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might-still write a signal at this time will do so prior to any Com Link becoming 

active. 

4. an active ComLink services all waiting logic blocks before cooperating again. 

5. after service, logic blocks are re-scheduled for the CTS. With multiple scheduled 

ComLinks, these will normally become active prior to the re-scheduled blocks, 

which potentially write more signals. I use a simple trick to once again force 

each ComLink behind the logic blocks scheduled for the CTS. 

With the safety measures above, and "instantaneous" service, arbitrarily many con-

current signal strobes and signal assertions may be accurately processed. Thus, logic 

with multiple ports can be represented as a single block, with read/write delays 

modeled individually or collectively, according to choice. 

A.3.4 Entity: Logic 

This class is the generic logic block. Initially featureless, the user adds internal Sim-

ula code and DEMOS directives to implement the functional behaviour of a register, 

ALU, or whatnot. To reflect reality, logic blocks may be connected to arbitrar-

ily many communications paths (input, output, and bidirectional) or clock signals. 

Similar to other simulation languages, clocks and signal paths are represented as 

arguments to the new class. In the "outside" world, unused ports are simply left 

dis-connected using null; internally, required ports are checked before use. 

As to modeling time within the logic block between two actions, a logic block 

calls the DEMOS hold() function to reschedule itself at the time that the next action 

should begin. This method is used to implement both the behaviour triggered by 

clock signals and that represented by internal propagation delays. Thus the core of 

a logic block looks very much as in Figure A.4. 

Currently, the basic logic block is very simple, existing mostly to keep hardware 

modules under the same roof in the simulation; there are only two interface routines. 

Strb_time is for use by a Corn Link to ensure that a read request from this logic block 

had indeed been serviced in zero simulation time. Strobe is used by a servicing 

ComLink to return the result of a read operation. Check-overdrive determines if a 
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logic class dtype(init,warmstart,clock,D,Q,QN); 

ref (Nurn) mit ; ref(rdist) warmstart, clock; ref(comlink) D,Q,qN; 
begin 

ref (Nuin) state; 

state := mit; 
hold(warmstart . sample); 

loop: 

edge-time := time; 

vporttime : time; 

D.read; 

state := vport; 

hold(T_sub_P. sample); 

q.write(title,id,state); 

QN.write(title,id,state.negate); 

check_overdrive(clock. sample,O.0); 

hold(clock.sample); 

repeat; 

end-class-dtype; 

!** initialise the logic; 

!** top of cycle; 

!** read input port; 

propagation delay before outputs 

assert on output ports; 

asserted; 

!** used up more time than given?; 

!** schedule at the next clock event; 

Figure A.4: Sample Logic block 

clock signal is overdriving the logic; prior to rescheduling, it compares elapsed time 

since the last clock event with the tentative time for the next one, to ensure that the 

"next" event wouldn't already have occurred. 

class Logic: 
Logic.st rob e(signal): 
Logic.strb_time: 
Logic. check_overd rive: 

object class, functions  
return signal strobe. 
return signal strobe time 
verify clock consistency 

Table A.5: class Logic interface 

Internally, the normal name and serial number are maintained. Edge-time is 

used to store the simulation time at "top-f-cyc1e" for calculation of elapsed time by 

check-overdrive. Vport and vport_time represent a "virtual" port, used as interface to 

comlinks we are reading by routines strobe and strb_time. 



APPENDIX A. SIMULATION TOOL: TIMSIM 135 

Name 

ID 

Edge-Time 

Wort 

Wort-Time 

Class Logic 

Figure A.5: class Logic 

A.3.5 Trace Facility 

This is a special class that provides a generic trace facility. Each is a boolean flag 

that holds a title, ID, and type information, and can be enabled and disabled as 

needed. There is also a count of times the flag has been "successfully" used, useful 

for threshold checks and the like. 

Name 

ID 

Type 

Count 

Class TFlag 

Figure A.6: class TFlag 

These are used in conjunction with tracing routines that accept a condition and 

a text string as parameters. Thus, if the flag is enabled, then the condition is 

tested, and if true, the text message is dumped to a listing. For easy parsing of 

simulation results, each such message is prefixed by the flag name, ID, and type, and 

the simulation time. 

Each trace flag also has a virtual routine, executed on a "successful" flag; this 

can be defined to implement a special reporting function or perform some other task. 

Also, virtual routines and sub-classes can be made to behave differently based on 

the flag type. The types of trace flags and their intended meanings are as follows: 
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class T Fla g(Title,ID,type,initial): 
TFlag.eria bled 
TFlag.enable/disa ble 
TFlag.TF(condition,string) 
TFlag.TFE(condition ,string) 
TFlag.extra 

object class, functions  
is flag up? 
obvious 
test flag and condition, report string 
as above, return condition result 
the virtual procedure hook 

Table A.6: class TFlag 

Type Meaning 
F 
E 
W 
I 
T 
D 

UI.-4 

Fatal error, usually TIMSIM package bugs 
Normal error causing immediate exit 
Warning 
Informational message (ie. not serious) 
Development trace 
Debugging trace flag, not normally enabled. 
User-defined 

Table A.7: Varieties of Trace Flags 

A.3.6 User Interface 

The simulator itself is laid out into several libraries of code. At the bottom is 

the DEMOS/Simula foundation for timsim, on which several varieties of support 

routines and classes are built, including the general purpose math class Num. In 

tfsim, the instrumentation tools that augment DEMOS data collection routines are 

defined. The core of the simulator exists liTI rtlsim, where Logic, ComLink and other 

hardware primitives are defined. The two libraries timcell and timsim repreent all of 

the simulation-specific information, which may expand into several libraries. Timcell 

initially holds only a few common circuit fragments, which are later augmented by 

user-defined registers, memories, ALU's, etc.. Timsim contains the actual design and 

instrumentation for a particular simulation. 

The task of the user is fairly simple. First, the varieties of logic blocks that will 

be used are designed, and specified in the file timcell.sim (or as many files at this 

level as desired). Once the machine design has been parsed into the interesting bits, 

each is declared as a pre-defined comlink or logic block in the file timsim.sim, and 

any desired system clocks or trace routines are specified at this time. The actual 
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timsim - 
timcell 
rtlsim 
tfsim 
stdsim 
numconv 
flu mtype 
std math 
stdio 
DEMOS 
Simula 

• configuration 
component designs 
Signal, Comlink, and Logic architecture modeling primitives 
the trace facility 
I/O and support functions 
internal conversions, I/O for Num type 
definition and math operations for, 3-part Num type 
support functions 
support functions 

Table A.8: TIMSIM library package hierarchy 

design and interconnections are specified when each declaration is instantiated, as 

the signal paths and clocks are all passed as parameters to the appropriate logic 

blocks. The last phase involves setting all of the Trace Facility switches to observe 

what is wanted, and specifying where to find the contents for any internal ROM (ie. 

microcode) or RAM blocks (ic. a (TIM) machine-language program to execute). 



Appendix B 

Simulation Environment 

In this appendix I give a brief description of the TIM workbench environment, de-

scribing the tools, utilities, sources, test programs and their interdependencies. The 

following are the major elements: 

Simulator The TIMSIM simulation support package. 

Assembler The PONASM assembler, accepting TIM code from Ponder environ-

ment. 

Standard Libraries The standard library of TIM code functions, implementing 

the ground type operations. 

Instruction Set Definition This definition of opcodes, fields and object code tem-

plates. 

Microcode Definition The microcode definitions of ground type instructions. 

Pre-assembler Performs pre-assembly editing of TIM code for compatibility. 

TIM Code The TIM macrocode source programs. 

Utilities 'Smaller utilities that perform a variety of useful functions. 

The flow of information between these elements is shown in Figure B.l, for a 

sample program testprog. Solid lines represent the production and consumption 

of source, listing and object files. Dashed lines . represent transfers that have not 

as yet been automated and require editing of SIMULA code. The boxes are the 

executables in the environment, while the bubbles represent the definition files and 

standard library sources. 

138 
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PonderI 

- - I 

testprog 

IPREASMft   

testprog.tiin 

testprog. obj testprog.lst 

prepinst 4  

oo 

I Version Stamping I 

- -I Compatibility Edits 
Code Vectors  ) 

I 

stdlib0.9.tim*) 

std.libl.0,tim I 
stci1.th1.1.tIm) 

Standard Ubraries 

t3.nst— set 
nst set v].. 0 

vl.1 
 / 

Instruction Set 
Definition 

testprog. run 

,0 

I stdlib0.9.uc 

I 
—I stdlibl.i..uc 
 I 
Microcode Definition 

Figure B.1: Overview of Environment 

Simulator This simulator is called TIMSIM, and is used to execute TIM binaries 

produced by the assembler ponasm. The simulator internals are kept synchronised 

with those of the assembler through use of the information held in the instruction set 

and microcode definitions (see below). The instruction set definitions are encoded 

in t±msimdef . sim, while the microcode resides in timcell . sim. The simulator is 

almost fully compatible with the TIM source code produced by the Ponder envi-

ronment. The support package for hardware simulations has been described in Ap-

pendix A. It should be restated that the top 2-3 files of the package are specialised to 
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implement the TIM architecture. TIMSIM is currently at version 2.0, and consists 

of the files below which comprise approximately 2900 lines of SIMULA code. 

timsim.sim 

timell.sim 

timsimdef.sim 

rtlsim.sim 

tfsim.sim 

stdsim.sim 

numconv.sim 

numtype.sim 

stdmath.sim 

stdio.sim 

TIM simulation top level, configuration file. 

TIM-specific hardware modules, firmware internals. 

TIM-specific firmware and hardware logical structures. 

register transfer level simulator support package. 

simulation tracing facilities. 

generic simulation support (user interface). 

improved variable radix number interface. 

improved variable radix number structure. 

simulator math function support. 

general I/O routines. 

Assembler The assembler is called PONASM, and is a two-pass binary assembler 

which translates TIM macro code into an "object" consisting of binary opcodes, 

addresses and data. Although meant to take Ponder TIM code as input, the assem-

bler is usable for any* handwritten program.- To this end the assembler includes full 

debugging support, a user interface, list-generation with assembled code appearing 

beside source macrocode, and a symbol table output. The instruction set definition 

which specifies opcodes and masks resides in pondef . sim, and is formatted for in-

clusion by the utility tt prepinst (see Utilities below). The binaries are produced as 

ascii-readable octal numbers, prefixed with object size and entry point address. In 

future, the object file will be made to hold the symbol table, enabling TIMSIM to 

produce a much more readable execution trace. PONASM is currently at version 

3.0, and consists of the files below, comprising approximately 2500 lines of SIMULA 

code. 
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ponasm.sim 

ponparse.sim 

poncode.sim 

ponscan.sim 

pondef.sim 

symtab.sim 

stdasm.sim 

numconv.sim 

numtype.sim 

stdmath.sim 

stdio.sim 

Ponder TIM code Machine Assembler toplevel. 

token parser. 

machine code generation routines. 

lexical scanner. 

definitions for TIM machine, and assembler internals. 

generic assembler support for symbol tables. 

generic assembler support, user interface. 

variable radix number interface. 

variable radix number structure. 

math functions to supplement SIMULA. 

general interface. 

Standard Libraries The standard libraries contain TIM code functions imple-

menting the ground type operations of the TIM architecture. Each of the functions 

is a TIM code "wrapper" implementing the argument evaluation and other opera-

tions necessary for the machine instructions to function correctly. The utility preasm 

(see below) is used to splice the standard library currently in use into the TIM code 

program. At assembly time ponasm will link the functions with their respective calls 

in the TIM code program. Some operations have several code variants, depending 

on the manner in which the machine instruction is defined to operate. The alter-

native function definitions have been included and documented, but are currently 

commented out. There are three versions of the standard libraries, the most current 

being stdlibl . 1 . tim, which contains 134 functions, and 6onsists of 670 lines of TIM 

macrocode. 

Microcode Definition The microcode definitions encode the operations for all 

TIM ground type machine instructions, in the form of register transfer language 

(RTL). These instructions are used only by functions in the standard libraries, and 

there is a high degree of interdependency between the function definitions in the 

standard library and the function of the corresponding machine instructions. Al-

though not used directly to configure the simulator, these definitions are used to 

code the simulator internals, and are maintained as a master list of operations to 
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be matched-against their uses in the standard libraries. Eventually, an RTL parser 

could be used to load and interpret the microcode directly. There are three versions 

of the microcode definitions, that currently in use being stdlibl . 1 . uc. This file 

comprises 254 lines of microcode transfer statements, defining the microcode rou-

tines for 35 ground type and built-in machine instructions (arithmetic, logical, list, 

pair, input/output and specials). 

Pre-assembler The utility preasm is used to prepare TIM source code from the 

Ponder environment for use in the TIMSIM environment. This includes (i) a stan-

dard library be spliced into the source code, (ii) any necessary vectors of PUSH A RG 

and ENTER ARG instructions are added to the source, and (iii) that obsolete or 

Ponder-specific forms of the TIM instructions are edited out. preasm also ensures 

that the source is marked with information specifying the origin of the source pro-

gram, the standard library included, and the version of preasm performing the editing 

tasks. 

This is necessary to keep track of the several versions of executables, TIM sources, 

standard libraries and instruction set definitions which are available. To maintain 

compatibility amongst all elements, a method of version tracking was implemented 

that labels all files with their origins. The TIM code programs, instruction set 

definition and standard libraries all contain version information identifying their 

creation date, pathname and in some instances last modified date. Each executable 

(not just preasm) recognises, maintains and passes on this information so that the 

exact content of any test program is known at run time. This information is held at 

the beginning of each file in strings prefixed with the key "IDStamp". For example, 

the object-code output of the assembler for the test program fibonacci . tim appears 

in Figure B.2, as the first few lines of the file fibonacci . obj. This specifies version, 

date, and pathname information for the original Ponder source, the run of the pre-

assembler, the standard library used, the resultant TIM source fibonacci. sim, and 

the PONASM assembly. 

TIM Code The amount of compiler effort expended to produce TIM macrocode 

sources from a higher-level functional language is large. The compiler must incorpo-
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!IDStamp /home/v].si/hermann/vaxponder/Tim/±ibonacci (Oct 4 12:54, Aug 21 1989) 

!IDStamp preasm vi.1 (Dec 1 21:51) 

IDStamp /tmp_mnt/fsg/fsg.usera/vlsi/hermamiiShop/run/Trials/fibonacci . tim(91 . \ 
12.01:21:51:36) 

!IDStamp std].ibl. 1.tim (vi. 1:91.11.30) 

!IDStamp PONASM v3.i (MJH 91.10.16) 1991-12-01 21:51:51 

003341 

000000 

100 000 

040 003 

004 002706 

005 002542 

040 003 

Figure B,: Version control information 

rate a functional language intermediate code (FLIC), a A-lifting algorithm to produce 

supercombinators, sharing analysis, strictness analysis, and a TIM macrocode gen-

erator. It was decided early on that the design of a compiler to provide TIM code 

would be beyond the scope of the thesis. To this end, the PONDER environment 

of Fairbairn and Wray [Fai86] was used to provide TIM macrocode. This package 

compiles the "Ponder" functional language into TIM code in a four stage process. An 

additional reason to use this source code was that in addition to providing sharing-

and strictness-analysed code, the use of the same compiler output would improve 

the usefulness of any TIM performance comparisons, by placing the Ponder TIM 

implementation and mine on an even source code "footing". 

Due to system doffikare upgrades, the local Ponder installation soon broke, pre-

venting any new Ponder programmes from being compiled and tested. The list of 

available test programs is 78 long, of which nearly one quarter are too large to be 

practicall,r useful for testing. A small selection of hand-written programs was also 

created for testing and debugging purposes, but these lack any practical application 

in performance testing. The Ponder-derived sources can be hand-patched to change 

the original program arguments and internal function arguments. This would al-

low testing of the same program with a range of arguments, but the hand-patching 
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process is difficult and tedious. 

.The entire list forms the large test suite, used for static code analysis, and sta-

tistical study on program size and instruction arguments. 

Utilities One utility that has been mentioned is prep inst, used to prepare instruc-

tion set definitions for inclusion in the assembler. In addition, there are a number of 

useful utilities which automate the pre-assembly and assembly process, ensure that 

versions of code, libraries and executables do not clash, and so forth. 

Summary If the reader is interested in obtaining the TIMSIM environment, the 

author can be contacted at the address below, or through internet e-mail addressed 

to hermannccpsc . ucalgary . . ca. 

Mike Hermann 

c/o Computer Science Department 

University of Calgary 

Calgary, Alberta, 

Canada T2N 1N4 

Phone: (403) 220 7691 

FAX: (403) 284 4707 

The software requires Lund Software Standard Simula (revision 4.10 or greater) or 

its equivalent, and currently operates under SunOS UNIX (release 4.1.1), on Sun 3 

and SPARC architectures. The DEMOS (Discrete Event MOdelling under Simula) 

package source (written in Simula) is also required, and can be obtained from Dr. 

Graham Birtwistle (grahamccpsc . ucalgary . ca) at the address ibove. 


