Controlled Blending of Procedural Implicit Surfaces

Zoran Kacié-Alesié
Brian Wyvill

Department of Computer Science
The University of Calgary
Calgary, Alberta, Canada T2N 1N4

Abstract

Implicit surfaces are becoming increasingly popular
for modeling geometric objects. Procedurally de-
fined implicit surfaces, in particular surfaces built
around skeletons, provide an intuitive representation
for many natural objects, and objects commonly used
in geometric modeling. This paper presents a number
of techniques that provide good control over the shape
of the implicit surface and the way different surfaces
blend together. Some extensions to these techniques
provide a simple and convenient representation for
“soft” surfaces of revolution, randomly deformed sur-
faces, and other inleresting shapes that would other-
wise be difficult to model.

Introduction

Parametric curves and surfaces have traditionally
been favorite modeling primitives in computer aided
geometric design and graphics. A rich literature ex-
ists on techniques for free-form modeling with these
primitives. In recent years, however, implicit surfaces
have become increasingly important. The major ad-
vantage of implicit surfaces that makes them very at-
tractive for modeling and animation is the blending
property. Separate implicit surfaces, unlike paramet-
ric surfaces, can blend together smoothly and form
very complex, non-intersecting shapes. Implicit sur-
faces also conveniently define volumes. It is easy to
determine whether a point is above, below, or on the
surface, simply by evaluating the implicit function at
the given point. Computing the surface normal is also
an easier task than it is for parametric surfaces. How-
ever, interactive modeling techniques available in the
past did not provide sufficient control of the shape of
implicit surfaces.

In this paper we present some new techniques for
providing the user with control over the way in which
procedural implicit surfaces blend together. A num-

ber of new blending functions that can be customized
interactively to the need of the user is introduced.
In general, the shape of an implicit surface is not
very intuitive from its implicit formulation. Com-
puter graphics techniques provide a very useful aid
to the visualization of implicit surfaces. However, the
effects of changing coefficients in the implicit formu-
lation of the surface are also not intuitive, and the
results are usually unpredictable and very difficult to
control. The control flexibility necessary for a de-
sign environment is, thus, hardly achievable by direct
manipulation of the coefficient in the implicit formu-
lation of the surface. The goal of our research is to
develop a modeling technique which will enable us to
find an implicit representation of an arbitrary shape.

Skeletal Implicit Surfaces

Implicit surfaces can be built around skeletons
[BW90]. In general, any three dimensional object can
be a part of the skeleton, as long as it is possible to
determine the distance from a given point in space to
the skeleton. Skeletons are useful for several reasons:

o skeletons provide intuitive representation for
many natural objects,

o skeletons themselves are simple and easy to ma-
nipulate and display,

e complex shapes can be modeled with few ele-
ments.

In this paper we limit our discussion to skeletons
that consist of elements such as points, lines, poly-
gons, circles, spline curves and spline patches. Each
skeletal element is surrounded with an imaginary
force field F(r), with the intensity of the field be-
ing the highest at the skeleton, and decreasing with
distance r from the skeleton. The function F(r) that
relates the field value (intensity) to distance from the
skeleton has an impact on the shape of the surface,

Page 1

and more importantly, determines how separate sur-
faces blend together. For that reason we call such
functions blending functions.

The surface is defined by the set of points in space
for which the intensity of the field has some chosen
constant value (thus the name iso-surface). We call
this value a contour value. The surface so defined
is an offset surface of the skeleton. Fields from the
individual elements of the skeleton add together (or
subtract, in the case of negative force fields), what in
turn has the blending effect on the surfaces defined
by separate elements of the skeleton:

Ftotal(P) = Z C,’F,’(T'i),
1=1

Ty = f,(P) = diSt(P) Qi))
where

Fiotat(P) = the intensity of the field at the
point P,

¢; = a scalar value (scale factor) that rep-
resents the field magnitude due to the
ith skeleton (it can be negative),

F; = the blending function for the ith skele-
ton ,

r; = distance from the point P to the skele-
ton 1,

P(zp,yp,zp) = point in R3 at which the
field function is evaluated,

Q(zq,yq,2¢) = point in R3 - the nearest
point on the skeleton i to the point P.

The evaluation of the field function, thus, has two
steps. The first step involves finding the nearest point
on the skeleton to the given query point, and calcu-
lating the distance between them. This procedure
depends on the geometry of the skeleton, and can
be very simple (trivial in the case of a point skele-
ton), or quite complex in the case of spline curves
and patches, when an iterative or numerical method
has to be used. The second step involves evaluation
of the blending function.

The shape of a skeletally defined implicit surface is
determined by:

o the geometry of the skeleton,

¢ a blending function to weight the contribution of
individual skeletal elements,

¢ modifications to the blending function that re-
sult from geometry, orientation, size, or other
properties of the skeleton,

o random deformations produced by perturbation
of the blending function with some three dimen-
sional noise function.

The surface is controlled by applying local or global
transformations, such as scaling, translation, and ro-
tation, to the elements of the skeleton, and by chang-
ing the blending functions.

Many skeletally defined surfaces can be expressed
analytically, but in order to keep the representation
intuitive and simple these implicit functions are usu-
ally treated as procedural, i.e. defined by proce-
dures that return a scalar field value for any point in
3-D space. Procedural implicit functions can be used
to model surfaces for which analytical representation
is difficult or impossible to formulate [BW90].

Blending Functions

In general, any function can be used for blending.
Blinn used superimposed exponential density dis-
tribution functions to model atoms and molecules
[Bli82). A variation of the above surfaces, called soft
objects, uses a blending function which is a cubic poly-
nomial [WMW86b, BW90]. Soft object have been
successfully used for modeling of objects and figures
commonly found in nature, and for animation of ob-
Jjects that change shape in time [WMW86a]. Blend-
ing surfaces based on low degree polynomial functions
[MS85] and super-elliptic blends [RO87] are used in
solid modeling.

From this earlier work and our own experience
there are several important properties of blending
functions:

o each implicit function should have a limited ra-
dius of influence R, ¢.e. the value of the blending
function should be zero beyond some distance.
This enables considerable computational savings
because implicit functions of distant skeletons
need not be evaluated.

¢ blending functions have a maximum at the skele-
ton (zero distance), and they drop smoothly and
monotonously to zero at the radius of influence.
Without loss of generality, we assume that the
maximum value is 1.0, and that the contour value
is 0.5.

o the first, and if possible second derivative of the
blending function should be continuous, and they
should vanish at zero and at the radius of in-
fluence. This will ensure that surfaces blend
smoothly and that there are no sharp disconti-
nuities in the curvature of the blended surface.

Page 92

Figure 1: A “hard” blending function

All the blending functions presented in this paper
have at least first two derivatives continuous in the in-
terval [0, R]. This fact alone, unfortunately, does not
guarantee that the blended surface will be smooth.
In this paper the blended surface is defined as order
k continuous if the first k derivatives of the blending
function are continuous in the interval [0, R], and
they vanish at the end points:

d d)
WF(O) =0, -d—ﬁF(R) =0,i=0,...,k

This definition is not necessarily equivalent to that
in [War89).

The shape of the blending function affects the
“amount of blending.” Blending functions that drop
to zero shortly after they fall bellow the contour value
will result in very little blending (figure 1). On the
other hand, functions that drop slowly to zero will re-
sult in “soft” blending (figure 2). Too much blending
is often undesirable. For example, when modeling a
human body it is not desirable that the arms blend
with the body anywhere but at the shoulders. As
a result of using soft blending functions the blended
surface is bulgy (figure 3). “Hard” blending functions
can reduce the bulge (figure 4).

Low degree polynomial functions are most com-
monly used for blending [WMW86b, BW90]. The
lowest degree polynomial that satisfies the first order
continuity requirements is a cubic:

rd r2 r
Fcub(r) = aﬁ- -+ bﬁg -+ C—R' + d
where

r = distance from the skeleton

R = radius of influence.

A cubic in r? (figure 5) is more commonly used

[WMW86b, BWI0]:

T
0 R/2 R
T

Figure 2: A “soft” blending function

Figure 3: A soft blend of cylinders using the blending
function from figure 2. Note the bulge around the
intersection.

Figure 4: A hard blend of cylinders using the blending
function from figure 1. The bulge is gone.

Pase 3

F(r) 0+
\

Figure 5: Cubic blending function and it’s deriva-
tives. (F' = 0.54E, p" = 0.24F

T

. rt 2
FcubZ(r) = aﬁ + bﬁ + Cﬁ +d
Since the first derivative
chub?(r) rd 3 r
4 = 661}—25 + 4b—R§ + QC—RTz

is zero at r = 0 regardless of the choice of coeffi-
cients, additional constraint can be put on the curve
Feupo(r). In [WMW86b] an additional point on the
curve is specified such that Feyp2(0.5) = 0.5. This
results in a curve very similar to the ordinary cubic
in r (figure 5). Some sort of control over the shape
of the blending function can be achieved by moving
this point. However, since the curve is heavily con-
strained at the end points, very undesirable minima
and maxima with large values occur in the interval
[0, R], if the point is moved considerably in any direc-
tion. Very little variation from the shape in figure 5
is achievable this way.

The blending function can be defined as an inter-
polating curve through a number of control points.
Any numerical analysis book readily offers a number
of interpolating schemes. Cubic spline interpolation
is probably the most popular interpolating scheme,
and it produces excellent results for a limited range of
curves in our example. However, interpolating curves
do not posses the convex hull property, and since they
are constrained to pass through all the control points,
and in our case to have zero derivatives at the end
points, problems similar to those experienced with
cubic curves soon arise.

Nonparametric curves in Bernstein-Bézier form
[Far88] do not, in general, pass through the control
points (except the end points), have a convex hull
property and thus provide a very good solution to
our problem:

F(r)=_b;B}(r/R)

i=0

where

B}(r/R) = (’]’)(r/R)f(l_r/R)n—j’

b; € [0,1] = the ordinate of j-th control
point (a scalar value).

The k-th derivative (k < n) is also a nonparametric
curve in Bernstein-Bézier form:

n—k
PO = o " o 3 A B H /)
j=0

Alb] = bj+1 - bJ,
AFb; = AkF=1p;) — AF-1p;

= é (y) (=1)Fibyy ;.

The n + 1 control points (jR/n,b;);7 =0,...,n are
equally spaced, with increasing abscissae, along the r
axis in the interval [0, R]. The curve is thus guaran-
teed to be a functional curve. Setting bo,...,br = 1,
and b, _g,...,b, = 0 results in the first k derivatives
being equal to zero at the end points (r=0, and r=R).
For k = 1 at least 4 control points are necessary to
assure that the first derivative will vanish at the end
points, and the resulting curve is a cubic. For k =
2 we need at least 6 control points to have both first
and second derivative vanish at the end points, at the
cost of having to evaluate a degree five polynomial
(figure 6). Our examples (figures 7, 8, 9) show that a
blended surface produced by a second order continu-
ous blending function appears considerably smoother
than the surface produced by a blending function
which only has first order continuity. The difference
is particularly noticeable on surfaces polygonized at
a low level of subdivision (i.e. when fewer polygons
are used to approximate the surface).

One additional property of blending functions is of-
ten required. If the point with the contour value on
the graph of the blending function is moved in the
r direction, the size of the objects defined by indi-
vidual skeletons is changed. It is often undesirable
that the choice of the blending function should affect
the size or shape of a single object. It should only
affect the blending of two or more separate objects.
Without loss of generality we will additionally con-
strain our blending functions, so that every function

Page 4

F(r)

Figure 6: Degree five Bernstein-Bézier blending func-
tion, it’s control points and derivatives. (F/ =
054 " = 0.15‘3:75‘) Note that both derivatives
have zero values at the end points.

Figure 8: A blend of two cylinders using a first order
continuous Bernstein-Bézier blending function with
four control points.

Figure 7: A blend of two cylinders using an order zero
continuous Bernstein-Bézier blending function with
four control points.

Figure 9: A blend of two cylinders using a second
order continuous Bernstein-Bézier blending function
with six control points (figure 6).

Pase 5

has the contour value exactly at one half the radius
of influence

F(R/2) = contour value = 0.5.

In the case of a single skeleton any blending func-
tion should produce the same surface, which is an
offset by R/2 from the skeleton. As a result of this
additional requirement most of the blending functions
will be symmetrical in respect to the point (R/2, 0.5).

The control of the blending is achieved by changing
the slope of the function at R/2, while maintaining
the constraints at the end points, smoothness, and
monotony of the function. While all the blending
functions described so far can easily be constrained
to pass through the point (R/2, 0.5), it is is difficult
or impossible to considerably change the slope of the
function at that point. A cubic function is completely
defined by the end point constraints, and provides
no additional flexibility. Higher order polynomials
are difficult to control. Piecewise cubic interpolating
splines, although not a bad choice, are not particu-
larly suited for shape design. They suffer from the
lack of the convex hull property, sometimes are diffi-
cult to control, and require many control points to get
steep blending functions. Nonparametric Bézier func-
tions have the convex hull property, and are an excel-
lent choice for very smooth blending functions. How-
ever, the fact that the function does not pass through
the control points, and that the control points are
equidistant in the r direction, makes it very difficult
to design steep functions with any reasonable number
of control points.

A very good solution for steep blending functions is
based on the arctangent function (figures 1 and 10):

F’”a“(r) =0.5- ’}r-arctan(cl(r/R . 02))

where

¢y = a number that controls the steepness
of the function (10 — 1000). The slope
of the function at the point of inflec-
tion (which also has the contour value)
is —¢y /7. The function will approxi-
mate the step function as the value of
¢1 Increases;

c2 = value of r/R for which Fyi4n has the
contour value (0.5).

This function is used to produce the blended sur-
face in figure 4 (¢; = 100). The function does not
pass through points (0,1) and (R, 0), and it’s deriva-
tives do not vanish at the end points. However, the
discrepancies are small (figure 10), and may safely be

0.4 R R/2 0.6 R

Figure 10: Arctangent blending function and it’s

derivatives. (c; = 100, F’ = 0.034E, F” = 0.044°E)

ignored for steep functions. For not so steep functions
(c1 < 50) the following modification will assure that
Fatanl,o(o) = 1, and Fatanl,O(R) =0:

FatanO(r) = Fatan(r) - Fatan(R))
Fatanl,o(r) = Fatano(r)/Fatan0(0)~

All the functions described so far in this paper are
explicit, i.e. they are expressed in terms of r. It is
well known that parametric curves are much better
suited for shape design. We have found low degree
parametric curves useful for design of our blending
functions:

F= .fl(t)1
r= fg(t),t cR.

For any given r it is necessary to solve fs for t, in or-
der to calculate F. For quadratic and cubic paramet-
ric spline curves, a closed form solution exists. Care
has to be taken to assure that the spline curve defined
by the control points indeed is a functional curve, i.e.
there must not be points with vertical slope or with
multiple values of F for a given r. If that is provided,
a single real solution to f; exists for any given r. The
method is prone to floating point imprecisions when
coefficients, particularly the coeflicient with the high-
est power of t, become very small. That is usually the
case when the control points are almost collinear, or
when they are equally spaced along the r axis. Spe-
cial care has to be taken to detect such situations.
Figure 11 shows the useful range of a single segment
cubic Bézier spline. The Cardano’s formula used to
solve the cubic equation in t, is numerically stable in
that range. The soft blending function in figurell also
produces the blended surface in figure 3. The hard
blending function produces a blended surface that is
slightly softer than the surface in figure 4.

Pase 6

F(r) 0.51

T T
0 R/2 R
r

Figure 11: Single segment cubic Bézier blending func-
tions (parametric). The four control points are (0, 1),
(¢, 1), (R-c, 0), (1, 0), 1/3 < ¢ < 1. The soft curve is
identical to the cubic curve Feyy.

More segments of a piecewise quadratic or cubic
spline curve can be used if additional flexibility is
desired, at an increased cost of computation.

Selective Blending

As previously mentioned, surface blending is not al-
ways a desirable effect. There are two practical so-
lutions to this problem. One is to group skeletons
of objects which should not blend together [Bei90].
The group is then treated as a single skeleton, and
the distance to the skeleton is the minimum distance
to any of the elements of the group. Another solu-
tion is to use different blending functions for different
skeletons. In the human body example, the body and
arms would be associated with a very “hard” blend-
ing functions, while the shoulders would have a “soft”
blending function.

Interactive Control of Blending Func-
tions

An additional benefit of using spline curves (both
nonparametric and parametric) is the ability to inter-
actively design blending functions, simply by moving
the control points. Similarly, the shape of the arctan-
gent function is affected by interactively changing the
value of ¢;. A lot of information about the blending
function is hidden in the shape of it’s derivatives. We
have found it very valuable for interactive design of
blending function to display the first two derivatives
together with the function itself.

Depending on the blending function used, the poly-
gonization of a simple surface, such as that defined
by two intersecting cylinders or by two spheres, is a
relatively fast process. The effects of changing the
blending function can thus be visualized sufficiently

quickly for interactive design, although we cannot do
this in real time with our current implementation.

Surface Normals

The gradient of the implicit function is the surface
normal at a given point on the implicit surface. Pro-
cedural implicit surfaces may not have an analyti-
cal representation, or it may be very difficult to ob-
tain, so the gradient must be approximated by eval-
uating the implicit function at three nearby points
[BW90]. However, the following observation shows
that for skeletally defined surfaces this is not neces-
sary. For a single object, the surface is an offset in the
direction perpendicular to the skeleton. The vector
from the nearest point on the skeleton to the point
on the surface is, thus, in the direction of the sur-
face normal. Since the nearest point on the skeleton
must be computed anyway in order to find the dis-
tance to the skeleton, the surface normals come for
free. For a point in space that is affected by more
then one skeleton, the surface normal is computed
as a weighted average of the normals due to individ-
ual skeletons. The contribution of each skeleton to
the surface normal is the same as the contribution
to the total field, and is given by the blending func-
tion. This method also avoids numerical difficulties
that very steep blending functions may pose to the
gradient approximation technique. However, modifi-
cations to the blending function described in the next
section, may limit, or at least complicate the use of
this method.

Modifications to Blending Func-
tions

Blending functions need not be defined in terms of
distance only. Other parameters based on geometry
and orientation of the skeleton can be used to modify
the shape of the surface:

o position of the nearest point on the skeleton.

e orientation of the skeleton in space. Additional
parameter (or parameters) need be specified for
the reference orientation.

o size (deformation) of the skeleton. This is useful
in animation when skeletons change size, either
by being stretched or squashed, in order to sim-
ulate the preservation of volume. Stretched sur-
faces would, thus, appear thinner, and squashed
surfaces would be thicker.

Page 7

Vref

Q)

t=1

Figure 12: Parameters that can be used to modify
the blending function of a line skeleton (« = a).

Skeletons that have natural parametrization, such
as lines, spline curves and patches, are particularly
suited. Functions of the parameter(s) of the nearest
point on the skeleton can be used to modify the field
function.

Surfaces of Revolution and Generalized
Cylinders

The offset surface of a line is a cylinder. The thick-
ness of the cylinder is determined by the radius of
influence R, and the blending function. If the radius
of influence R is not treated as a constant, but rather
as a function of the parameter of the nearest point on
the line,

R= fl(tP)’
F= fg(r, R)

the result is a cylinder of varying thickness, which is
actually a surface of revolution of the curve f; around
the line.

If a cylinder is intersected with a plane perpendic-
ular to the axis, the cross section is a circle. Noncir-
cular cross sections can be achieved by applying yet
another modification to the blending function. If an
additional reference vector that is perpendicular to
the line is defined, the thickness of the cylinder can
be varied with a function of the angle o between the
reference vector V¢ and the vector from the nearest
point on the line to the point on the surface (fig-
ure 12):

R = fi(tp) - fa(a),
F= fz(r, R)

Twisted surfaces may be modeled by rotating the
reference vector along the line.

Figure 13: Parameters that can be used to modify the
blending function of a circle or torus (a = a, 8 = b).

Similar modifications also apply to general cylin-
ders - offset surfaces of spline curves. However, the
consistency of the reference vector along the spline is
more difficult to maintain, as described in [Blo90].

Disc and Torus

A disc is an offset surface of a planar circular disc,
and a torus is an offset of the circular line (figure 13)
The skeleton is defined by a point C (the center of
the circle), a normal to the plane of the circle, and
a radius. The radius can be given by the reference
vector V;.y, which is perpendicular to the circle nor-
mal. The only difference between a disc and a torus
is in the way the nearest point on the skeleton (Qq4
and @ respectively) is calculated. The additional
parameters that can be used to modify the blending
function are:

. angle_a between the reference vector V.., and
the C'Q vector,

o distance between points C and Qg4 (disc only),

o angle B between the circle normal N and the @, P
vector (torus only).

The blending function is then

Random Deformations

Blending functions can be perturbed by solid noise
functions, such as those described in [Per85, Pea85,
Lew89]:

F = fi(rp) - (1 +cn - Noise(P)).

Noise() is a scalar function that returns a value in
the range [-1, 1] for a point in 3D space. The value

Page R

Figure 14: Bumpy Donut. The bumps are built into
the surface by incorporating the solid noise function
into the blending function.

of the noise function is computed by smooth inter-
polation between the pseudorandom values assigned
to the points on a 3D integer lattice [Per85]. Any
blending function described in this paper can be used
for such an interpolation. In order to assure that the
gradient of the noise function is continuous, at least
a cubic interpolation function should be used. The
amplitude of the deformation thus produced is con-
trolled by ¢y, and the frequency by the size of the
integer lattice. Multiple noise functions with differ-
ent amplitudes and frequencies may be applied on
the same surface. The result of applying such a noise
function is equivalent to that produced by having a
point skeleton with a random maximum intensity and
a radius of influence equal to the size of the grid, at
every point on the integer lattice.

Applications to Animation

Skeletally defined implicit surfaces have been used
successfully in computer animation [WMW86a).
They are particularly suitable for animating objects
that change shape as they move. In this earlier work
models change their shape by altering the relative po-
sitions of skeletons. This shape change can be driven
from a key frame approach [Wyv88], where parame-
ters govern the kinematic relationship between skele-
tal elements, or using dynamic simulation [TPF89].
In this latter work a liquid like appearance was ob-
tained using blended spherical particles.

One of the advantages of using spline curves to pro-
vide our blending functions is that the positions of the

Figure 15: Cocktail 4 la Doughnut de Bump. The cup
is a surface of revolution (cylinder) controlled by a
sine function of the parameter. The interior is taken
out by a smaller negative cylinder. The base is an
offset of a circle (disc) controlled by a cosine function
of the angle o and by a linear function of the distance
from the center. The straw is a straight line cylinder.
The cup and the straw use a very hard arctangent
(c1 = 100) blending function, while the base and the
donut use a soft cubic function.

Figure 16: Bumpy Donut Trophy

Page 9

Smoothness Computa-
Blending function Control (order of tional Best used for
continuity) Efficiency
cubic polynomial in 72 poor good (0-1) excellent | constant soft blending
interpolating cubic spline || poor (constrained) good (0-1) good general unconstrained
good (unconstrained) functions
nonparametric B-B curve || good excellent (any) poor smooth blending
arctangent good good (0-2 approx.) | very good | hard blending
parametric spline very good good (0-1) poor wide range of blending

Table 1: Comparison of different blending functions.

control points can be changed over time to alter the
blending from say soft to hard. Figure 11 shows suit-
able extremes that can be used for such an animation.
The shape change may be used where a soft looking
object e.g. a cloud, undergoes metamorphosis into a
hard object such as the cup shown in figure 15.

The shape of the surfaces of revolution is controlled
by a function of the parameter of the nearest point
on the axis of rotation. Functions of other parame-
ters can be used to modify the blending. These func-
tions can also be changed over time by altering the
positions of the control points. This leads to a very
smooth alteration of shape with time and some excit-
ing possibilities for unusual metamorphic operations
for computer animation. (E.g. it would be relatively
simple to change a glass into a bottle.)

Results

Of the various blending functions with which we have
experimented there are certain advantages and disad-
vantages to each. These are summarized in table 1. A
more detailed analysis of the computational efficiency
of using one function over another is currently being
carried out.

Conclusion

In this paper we have presented a number of tech-
niques that provide good control over the shape of
an implicitly defined surface. Various blending func-
tions have been investigated and the results discussed.
Other tools, such as the use of surfaces of revolution
and noise functions, have been shown along with ex-
amples of a variety of blended shapes that can be
easily produced. One of features of our approach
is that all the tools work systematically so that the
blending functions can be applied to any of the skele-
ton shape functions and any of the different shapes

can be blended together to form complex shapes that
would extremely difficult or tedious to make with
other modeling techniques.

Acknowledgements

We would like to thank all those that have partici-
pated in the Graphicsland project at the University
of Calgary, particularly Carol Wang, Mike Hermann,
Geoff Wyvill (University of Otago) and Jules Bloo-
menthal (Xerox PARC). This work is partially sup-
ported by the Natural Sciences and Engineering Re-
search Council of Canada.

References

Thaddeus Beier. Practical uses for im-
plicit surfaces in animation. In SIG-
GRAPH ’90 Course Notes 23, Modeling
and Animating with Implicit Surfaces,
August 1990.

[Bei90]

[Bli82] J. F. Blinn. A generalization of algebraic
surface drawing. ACM Transactions on
Graphics, 1(1):235-256, July 1982.

[Blo8s] J. Bloomenthal. Polygonization of im-
plicit surfaces. Computer Aided Geo-
metric Design, 5(4):341-355, November

1988.

[Blo90] J. Bloomenthal. Calculation of reference
frames along a space curve. In A. S.
Glassner, editor, Grephics Gems, pages

567-571. Academic Press, 1990.

[BW90] J. Bloomenthal and B. Wyvill. In-
teractive techniques for implicit model-
ing. Computer Graphics, 24(2):109-116,

March 1990.

Page 10

[Far88]

[Lew89)

[MS85]

[Pea85]

[Per85]

[RO8T]

[TPF89]

[War89]

[WMWS86a]

[WMW86b)

[Wyv8s]

Gerald Farin. Curves and Surfaces
for Computer Aided Geometric Design.
Academic Press, 1988.

J. P. Lewis. Algorithms for solid noise
synthesis. Computer Graphics SIG-
GRAPH ’89, 23(3):263-270, July 1989.

A. E. Midlleditch and K. H. Sears. Blend
surfaces for set theoretic volume model-
ing systems. Computer Graphics SIG-
GRAPH ’85, 19(3):161-170, July 1985.

D. R. Peachey. Solid texturing of com-
plex surfaces. Computer Graphics SIG-
GRAPH ’85, 19(3):279~286, July 1985.

K. Perlin. An image synthesizer.
Computer Graphics SIGGRAPH ’85,
19(3):287-296, July 1985.

A. P. Rockwood and J. C. Owen. Blend-
ing surfaces in solid modeling. In G. E.
Farin, editor, Geometric Modeling: Al-

gorithms and New Trends, pages 367-
383. SIAM, 1987.

Demetri Terzopoulos, John Platt, and
Kurt Fleischer. Heating and melting de-
formable models (from goop to glop).
Proc. Graphics Interface 1989, pages
219-226, 1989.

Joe Warren. Blending algebraic sur-
faces. ACM Transactions on Graphics,
8(4):263-278, October 1989.

B. Wyvill, C. McPheeters,
and G. Wyvill. Animating soft objects.
Visual Computer, 2(4):235-242, August
1986.

G. Wyvill, C. McPheeters,
and B. Wyvill. Data structure for soft
objects. Visual Computer, 2(4):227-234,
August 1986.

Brian Wyvill. The Great Train Rubbery.
SIGGRAPH 88 Electronic Theatre and
Video Review, Issue 26, 1988.

Page 11

