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ABSTRACT 

For a Hamiltonian H of classical type, 

H(x,y) ½1y12+ W(x) 
we consider the problem of existence for a periodic solution of 

the associated second order Hamiltonian equations 

= -DW(x) 

of specified energy h. The variational technique we use to obtain 

the existence of such an orbit involves minimizing the energy in-

tegral of the Jacobi metric relative to the class of arcs joining 

points on the boundary of the Hill's region N, 

N = {xl W(x) h} 

Under assumptions on H 1 (h) differing from those recently put for-

ward in the literature, we obtain the existence of a brake orbit 

solution within N, that is, an orbit oscillating between two sep-

erated points on the boundary of N but otherwise lying in the in-

terior of N. 

Due to the degenerate nature of the integrand the classical 

theory of the second variation is not immediately applicable. We 

extend this theory to cover the case at hand, and show that the 

second order critical point theory for brake orbits within N is 

at one with the classical second order theory for closed geodesics 

on a Riemannian manifold. 

We generalize a theorem of Ambrose to obtain an index theory 

for brake orbits within N, and apply this to the study of brake 

orbits of minimal Jacobi arclength. We show that barring a deg-

enerate parabolic case such orbits are hyperbolic, that is, all 

of their Lyapounov multipliers are off the unit ciràle. This 

confirms a conjecture of G.D. Birkhoff on hyperbolicity of per-

iodic solutions of the second order Hamiltonian equations with. 

more than two degrees of freedom. 
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INTRODUCTION 

The purpose of this introduction is to provide background mater-

ial for, and a summary of, results included in this thesis. 

During the past decade there has been a surge of interest in the 

global problem of determining periodic solutions of Hamilton's equations 

d.th. dy. 
i aH 

-- ayi-- (x,y), --= ---- (x,y), for i = 
1- 

on a given energy surface .ç. 12?. Indeed there are many results 

obtained recently for this problem, under various topological and geo-

metric restrictions placed on see for example [R2], [R3 ], [BR], 

[C], [CF], [GZ] and [w]. These authors are concerned solely with the 

existence of periodic orbits, and use one form or another of varia-

tional analysis to obtain the periodic orbits As critical points of 

appropriate functionals, in the tradition of G.D. Birkhoff [B], and 

H. Seifert [S]. 

On the other hand, researchers in dynamical systems are inter-

ested in the existence of hyperbolic periodic orbits (i.e. closed 

orbits whose Lyapounov multipliers are off the unit circle) in Ham-

iltonian systems. as a tool in understanding hyperbolic structures on 

more complicated invariant sets (see for example [Mos]). In this 

regard, there exist many classical mechanical systems of two degrees 

of freedom 

(1) = -DW(x), x E 

where DW(x) denote the gradient of the potential function W at x, 

which exhibit some form of global hyperbolic behavior on specific 
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energy surfaces (see [CPR] for a survey of some of these examples). 

For several such systems, methods have been developed which demonstrate 

the existence of hyperbolic periodic orbits on a prescribed energy sur-

face H 1 (h) (see [CPR2], [RPC]). However these methods seem to be 

mostly limited by the necessity of detailed knowledge of the Hamiltonian 

vector field on H-1 M. 

In this thesis we adapt a variational approach, due mainly to 

Birkhoff [B], and Seifert [S], to obtain an existence theorem for hyper-

bolic periodic orbits on a prescribed energy surface of arbitrary 

dimension. We will confine our attention to the classical Hamiltonian 

(2) H(x,y) = •_IyI 2 + W(x), 

and the associated second order Hamiltonian equations 

(3) = -DW(x), x E 

In such a setting, and for prescribed energy h, the manifold N 

with boundary 

N = {x E 11,m W(x) 

plays an important role, and indeed under the hypothesis (loosely 

stated) that aN is disconnected and nonempty, while N itself is con-

nected but possibly not compact, we assert the existence of a hyper-

bolic periodic solution of (3) (barring a degenerate parabolic case) 

which joins separated points on aN but otherwise runs through the 

interior of N (such a solution if referred to by Weinstein [W] as a 

brake orbit); see Theorem 1.1, and Theorem 3.27. 

In some sense, our result is foreshadowed by a result of 

Birkhoff [B], which states that in two degrees of freedom, closed 
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orbits of (3) which arise as the minimum of the Jacobi arclength 

functional (see (1.10)) are hyperbolic, again barring the degenerate 

case of Lyapounov multipliers ±1. Birkhoff also conjectured that his 

result was true in dimensions higher than 2 (([3] p. 130), however he 

considered only those periodic solutions of (3) which did not inter-

sect aN where the Jacobi metric becomes degenerate. Our result con-

firms Birkhoff's conjecture for brake orbits of minimum type. 

When considering the orbital stability of a periodib orbit 

arising as a critical point for a specific functional, one is led 

naturally to study the second order neighbourhood of the critical 

point in question. For example, the linearized equations of (3) 

along a periodic orbit ir(t) are 

(4) = --D2W(n(t)) 

where D2W(x) is the Hessian matrix of the function W. It is readily 

verified that (4) is also the Jacobi differential equation associated 

with the functional 

The fruitful interplay between these two ideas has been developed for 

closed geodesics on Riemannian manifolds (see [K]), and for periodic 

orbits arising from variational principles associated with convex 

Hamiltonians (see [E]). In this thesis we adopt the same approach, 

and develop a Morse index theory for arbitrary brake orbits of (3) 

whether or not these orbits originate in a variational principle. 

In Chapter 1, we begin with a brief survey of results for the 
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existence of periodic orbits of prescribed energy obtained by other 

authors using variational methods. We then formulate a variational 

principle of minimum type, using the functional 

J(c) = j J 2(h-W(c)) Ic' I2ds, 
0 

whose admissable curves c(s) must satisfy 

W(c) h, and c(0),c(l) E N. 

These constraints on the admissable curves prevent the application of 

standard existence results from the calculus of variations. This pro-

blem is surmounted by considering a sequence of variational subproblems, 

governed by the restriction 

W(c) h-o as 5 + 0. 

With this additional constraint, standard arguments are used to obtain 

a solution of the subproblem. Once the translation between extremal 

curves for T(c) and the solutions of (3) has been specified, the 

solutions of the variational subproblems are shown to converge to a 

brake orbit solution of (3). This gives us the main result of Chapter 1 

(Theorem 1.1). 

In the second chapter, we begin by presenting the theory of the 

second variation on critical arcs c of the functional T. Although 

our final theorem (Theorem 3.27) on the existence of hyperbolic per-

iodic orbits is proven using the results of the second chapter, it 

does not require the full power of the methods developed. Perhaps 

the larger contribution will be the discovery of the fact that brake 

orbits within potential wells may be analyzed Morse theoretically in 
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a fashion similar to that of closed geodesics on a Riemannian mani-

fold. 

From an arbitrary brake orbit solution of (3), by reparameter-

izing according to the formula provided in Chapter 1, we obtain a 

critical point of the functional J relative to the class of arcs C, 

C: [0,1] - N, joining separated points on aN. The second variation 

J** of J along c is shown to be a quadratic forxiron an appropriate 

Hilbert space of vector fields along c, and the index of this 

quadratic form is shown to be finite. The difficulty to overcome 

here, and the difference between the classical theorems for the 

theory of the second variation and our results, is the fact that the 

strong Legendre condition does not hold along the entire length of 

the critical arc. Once this difficulty has been surmounted, the 

theorem relating the index of J** to focal points of the endpoint 

submanifolds follows in broad outline the same result in the 

classical case (see Ambrose [A]). 

One significant point upon which our treatment of the second 

variation differs from the usual treatment, is that we use a Hamilton-

ian rather than Lagrangian format. This pays off in several ways. 

Firstly, due to the failure of the strong Legendre condition at s=0,l, 

of the critical arc c, the derivatives of the variation vector fields 
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P(s), in general, do not satisfy 

PI(s) E L2 [Ol] 

which normally is a requisite condition for an index theory. However 

by using the linearization of the Legendre transforni,L*(c,c'), it. may 

be shown (Lemma 2.9) that if 

(P"?) (s) = L(c,c')(P,P')(s), 

then R(s) E 12[o,11. Consequently, we may develop an index theory for 

J** defined on the fields (P,R)(s) belonging to an appropriate Hubert 

space. This leads to an analysis of the linearized Hamiltonian equa-

tions, which we dub the co-Jacobi equations, rather than the usual 

Jacobi equations. 

Secondly, we obtain an explicit relation (Theorem 2.39) between 

the solutions of the linearized equations (4) along tr(t), which deter-

mine the linearized Poincar mapping, and the solutions of the co-Jacobi 

equations. This becomes useful when we study the connection between the 

elgenvalues of J**, in terms of Jacobi fields, and the stability proper-

ties of ir(t), in terms of the linearized Poincar6 mapping. Thirdly, we 

may make explicit use of the symplectic structure inherited from the 

Hamiltonian system (XH,w), where 

in 
w= Z dy.Ad.X .7-.. 

It turns out that this structure enables us to give a rather nice treat-

ment of the structure of Jacobi fields. 

As a result of the failure of the strong Legendre condition, the 

co-Jacobi equations are singular at the endpoints. To overcome this it 

is necessary that we restrict ourselves to variation vector fields 
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(Definition 2.4) F(s) so that, if 

(P,R)(s) = L*(c,c')(P,P')(s), 

then (P,R) (s) lies in the tangent space of the energy surface H (h). 

This restriction however is natural with regard to the study of nega-

tive eigenvalues of the form eT** (see Proposition 2.14). The Jacobi 

fields F(s) are then reparameterized, using the time variable t bor-

rowed from the brake orbit 11(t), and the new fields U(t) are shown to 

be C2 on the entire real line (Proposition 2.41). The energy constraint 

imposed on Jacobi fields forces them to remain orthogonal to the tangent 

direction along the brake orbit 11(t), and thus we are led to study the 

properties of the reparameterized orthogonal Jacobi fields U(t) 

(Definition 2.33). 

Having restricted ourselves to orthogonal Jacobi fields, we find 

that many of the classical constructions for Jacobi fields along closed 

geodesics have an immediate counterpart for reparameterized Jacobi 

fields along a brake orbit 11(t). For example, orthogonal wave front 

sets of trajectories nearby V(t) may be analyzed using orthogonal 

Jacobi fields. Moreover, Fermi coordinates (see Remark 2.42) along 11(t) 

are developed. When the co-Jacobi equations are expressed in these 

coordinates, we obtain an m-1 dimensional system of second order equa-

tions which contain all the geometric information relevant to the 

study of stability properties of 11(t). This reduction of dimension may 

be of prime importance. For example, if 11(t) is a minimum distance 

line associated with a solution of the variational problem posed in 

Chapter 1, then the reduced co-Jacobi equations are shown to be discon-
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jugate on (_oo,00) (Lemma 3.22). This is in contrast to them dimen-

sional system of second order variational equations along n(t) 

(4) , which always have an oscillatory solution, IT(t). The vector 

.1. 
space JTr  of reparameterized orthogonal Jacobi fields is a symplectic 

space (Proposition 2.47), and we conclude Chapter 2 with a look at the 

Lagrangian subspaces of J which are closely associated with the moving 

wavefront sets of nearby trajectories to ir(t). 

In Chapter 3, we continue to examine the geometric structures 

associated with Lagrangian subspaces of of particular importance to 
Tr 

the index theorem are the Lagrangian subspaces associated with the 

wavefront sets originating on the boundary of N, near the endpoints 

ii(0), ii(T). The properties of the second fundamental form at ii(t), of 

the moving wavefront sets, and specifically the notion of relative con-

vexity between two such wavefronts, are developed early in the chapter. 

We present several results (Propositions 3.9, 3.12, 3.13) relating the 

relative convexity of two wavefront sets and the evolution of focal 

points of these wavefront sets. Although we use these results in the 

main argument, they are given also with an eye to further applications. 

An extension of Ambrose's index theorem [A], for an arbitrary 

brake orbit n(t), follows as a corollary of Ambrose's result once a 

decomposition lemma for J* (Lemma 3.17) is proven. This theorem 

(Theorem 3.16) gives the index of n(t) in terms of focal points along 

ir(t) between rr(0) and ii(T), and the relative convexity of the wavefront 

sets associated with aN. 

The application of the index theorem to minimum distance lines 
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leads to the result that the reduced co-Jacobi equations along 1T(t) 

are disconjugate on (_oo,00) (Lemma 3.22). There is a large amount of 

literature on linear Hamiltonian systems which are disconjugate on an 

interval I, see for example [Co], [Ha] (p.384), and [Ha2]. In parti-

cular, in [IIa2], Hartman shows that in the case of second order equa-

tions arising as the Jacobi differential equations of the geodesic flow 

on a compact manifold with negative sectional curvature, disconjugacy 

on (_oo,00) implies the existence of a certain instability, namely that 

* 
the geodesic flow is hyperbolic on TIM. This 

generally, a similar type of instability must 

periodic orbit when 

are disconjugate on 

Floquet multipliers 

suggests that, more 

hold for an arbitrary 

the linearized equations along the periodic orbit 

(_co,co). We are able to show that a pair of 

on the unit circle, under the presence of disconju-

gate co-Jacobi equations, implies a certain restriction on the eigen-

vectors associated with such multipliers (Proposition 3.25). 

Under the assumption of non-degeneracy, no zero eigenvalues of 

we obtain a general form for the monodromy matrix S of the reduced 

co-Jacobi equations along an arbitrary brake orbit ir(t). It is the 

particular form of 5, deriving from the fact that S is a symplectic 

matrix, which allows the application of Proposition 3.25 to verify 

Birkhoff's conjecture for brake orbits v(t) of minimum type (Theorem 

3.27). This representation of the monodromy matrix appears to be new. 
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CHAPTER 1 

A VARIATIONAL PRINCIPLE FOR PERIODIC ORBITS 

The purpose of this chapter is to demonstrate the existence, 

under certain assumptions to be detailed later, of free oscillations 

in Hamiltonian systems. Hamilton's equations are 

d. dy. 
(1.1) dt 1- = H (x,y), --- --- (x,y), for - = l,...,m,71 

and the question of the existence of periodic solutions to such a 

system has received renewed interest in the past decade due in part 

to the rapid progress of several authors on two closely related 

problems. These two problems are respectively, finding a periodic 

solution (r(t),y(t)) of (1.1) of specified period T, and finding a 

periodic orbit of specified energy h. The latter problem relies on 

the fact that for an autonomous Hamiltonian system, the energy H is 

an integral of the motion, and therefore every nonempty energy sur-

face H 1 (h) is invariant under the flow of (1.1). Both of the pro-

blems mentioned above are global in nature and are not, for example, 

confined to the study of small oscillations around an equilibrium 

solution. By way of an introduction to the problem considered in 

this chapter, we will survey selected results obtained by different 

authors (see also the survey of Rabinowitz [Rh] for a more complete 

bibliography). 

An early global result by Seifert [5] shows the existence of 



a periodic orbit on a prescribed energy surface H 1 (h) in case 

(1.2) H(x,y) =Z . a(x)YY + WW, 
= 1 

where a.. and W are C2 functions on 11n , the symmetric matrix 

[a(x)] is positive definite, and the manifold N with boundary, 

N = {x I W(x) h} 

is diffeomorphic to the closed unit ball in 

Seifert's result is geometric in nature. He used the Jacobi 

metric (see 1.10) and adapted the Birkhoff curve shortening process 

(see [B]) in this metric so as to apply to curves which run between 

boundary points of N, but which otherwise lie in the interior. In-

yoking Birkhoff's minimax argument he produced a geodesic chord 

(in the Jacobi metric) which joins distinct points of the boundary 

8N. After a suitable reparameterization, this curve (t) together 

with 

y  = [a ij (x(t))]'(t) 

forms a solution of (1.1) for the Hamiltonian (1.2), and this sol-

ution has rest points at the boundary 

y(0) = y(T) = 0, where x(0),x(T) E 3N. 

By conservation of energy, x(t) may be 

continued as an even function around 

t = 0,1', and y(t) may be continued as 

an odd function around t = 0,1' to obtain 

a periodic solution of (1.1) on H 1 (h) 

(see Fig. 1). Such a to and fro X(T) 
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motion within the potential well N is referred to as a brake orbit 

by Weinstein [WI who generalized the theorem of Seifert in the fol-

lowing way. Weinstein showed that Seifert's construction still holds 

if instead of (1.2) we assume that H is a C2 function on which 

is even and strictly convex in y. 

As an application of his result, Weinstein proved in [W] that 

if H C C (JR ,JR), and H (h) bounds a compact convex,region in 

then (1.1) admits a periodic orbit on H 1 (h). 

P. Rabinowitz [R2], [R3] using the calculus of variations and 

approximation techniques, and later Benci and Rabinowitz [BR] using 

direct variational methods, also obtained results on both the pre-

scribed energy and the prescribed period problems. In particular 

Rabinowitz proved [R2] that if H 6 C1(JR,JR), and H1 (h) is a 

manifold which bounds a compact star shaped region in then 

(1.1) admits a periodic solution on H-1 (h). 

F. Clarke [C] gave a much simpler proof of Weinstein's result 

when H-1 (h) bounds a convex compact region, using techniques from 

convex analysis and the calculus of variations. Clarke and Ekélund 

[CE] also proved the existence of a periodic solution of (1.1) 

having prescribed minimal period, when H is convex with a global 

minimum at the origin of JR2m, and H satisfies certain subquadratic 

growth restrictions at 0 and . As a corollary they obtain a pre-

scribed energy result under the same assumptions on H. The approach 

taken by these latter authors uses a dual action principle intro-

duced by F. Clarke, and is restricted to Hamiltonians which are 
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convex in both arguments. However they are able to remove all 

smoothness assumptions on H, and consider Hamiltonian inclusions 

rather than (1.1). 

Finally, Gluck and Ziller [GZ] have extended the approach of 

Seifert-Weinstein in the following result. Let M be a smooth mani-

fold and H:T M 1/? a smooth function on the cotangent bundle of M. 

If H is convex and even on each fibre (?M) q and H 1 (h) is compact, 

nonempty and regular, then there is a periodic orbit of Hamilton's 

equations on H 1 (h). Moreover, if H is of the form (1.2), and the 

energy h is chosen so that aN 0, then the periodic orbit arises 

from a brake orbit within N. 

All of the results discussed so far have dealt exclusively 

with the existence problem. Only very recently has an attempt been 

made to furnish information on the second order neighbourhood of 

the periodic orbits arising as critical points of the various 

functionals. I. Ekelund [E] has produced a Morse theory for per-

iodic orbits in convex Hamiltonian systems, and has used his 

results to obtain information on the orbital stability of those 

periodic orbits corresponding to critical points of the functional 

associated with Clarke's dual action principle. We will return to 

this point in the second chapter. 

In this thesis, we will assume throughout that the Hamilton-

ian is of classical type 
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(1.3) 
H = kinetic energy + potential energy 

1  =IyI 2 +W(x) 

where 1.1 denotes the standard Euclidean norm on JRm, and W(x) is 

a C3 function on aRm ; however our results carry over easily to the 

case where H is of the form (1.2). In case (1.3) obtains, the 

Hamiltonian equations (1.1) reduce to the familiar equations from 

classical mechanics of motion within a conservative force field 

(1.4) x = -DW(x), where X = d2 —x.(t), and 
dt2 

DPI(x) denotes the gradient of w at x. 

This chapter is concerned with an existence theorem for per-

iodic orbits of (1.4) in the case of prescribed energy. The approach 

and indeed the conclusions of our result most closely resemble that 

of Seifert ts, but are based on a variational rather than geometric 

point of view. The manifold N with boundary 

(1.5) N = {x E aRm I W  h} 

plays an important role, and indeed under the assumption (loosely 

stated) that aN is disconnected and 

nonempty while N itself is connected 

but possibly not compact (see Fig. 2), 

we assert (Theorem 1.1) the existence 

of a periodic orbit of (1.4) on H 1 (h) 

arising from a brake orbit within N. 

Notice that this assumption on aN 
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prevents the application of Seifert's result, and the potential 

W(x) may fail to be convex so that the results of [CE] do not apply. 

All of the results surveyed above depend upon H 1 (h) being compact, 

and are not applicable when N is not compact. 

The geometric assumptions which we place on H 1 (h) will now 

t 2m 
be stated. Let denote the flow in 11? of the Hamiltonian vec-

tor field X associated with (1.4), 

(1.6) XH(x,y) = (y,-DW(.x)), 

and let denote the projection of into position or x-space. 

Let Br denote the open ball in R with radius r > 0, centered at 

the origin, and let BC denote the set theoretic complement of a 

subset B C 

(Wi) The manifold N with boundary 

N = I W() s h} 

is connected and has nonempty interior N0. 

(W2) There exists 6* > 0 with the following properties: 

(a) for 0 5 6 5 6, the equipotential surface 

Who = Ix I  W(x) = h-o} 

is the union of two connected 

components (see Fig. 3) 

W =W0 UW1 
h-o h-6 h-oS - 

(b) for 0 5 6 5 6, if X E W 6, 

E W 6, and either (or both) 
n 

Ix0 J -4- +oo, or Ix' I - +00, then 
n n 
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Ix 0 1 I - x -)--+-,  as n -• o. This condition holds vacuously 
n n 

if W  is compact. 

(W3) Let R6 = {x h-6 5 W(x) 5 h} for 6 > 0, and let Ar = B for 

r > 0. If either W or W is not compact, there is a number 

q > 0 such that; if r0 > q then we can find r1 r0, and 

a-

0<6<6 such that 

E A r1 fl R , and (x,y) E H 1( h) imply that 

t(xy) E A r0 for all t where defined (see Fig. 4). 

(W4) U = inf IDW(x) I > 0 
x E Wh 

Theorem 1.1. On any energy surface 

H 1(h) such that conditions (wl) -(w4) 

hold, the second order Hcvniltonian 

equations (1.4) admit a periodic 

solution. Moreover, this periodic 

solution arises from a brake orbit within N. 

11 

Fi3 4 

IC 

Remark 1.2. The assumption (143) holds, for example, if there is an 

r > 0 with, <-DW(x),x> > 0 for x E B fl N. The verification of this 

is carried out in the examples below. The condition (W4) guarantees 

that W is a regular hypersurface in JRm. 

The brake orbit whose existence is asserted in Theorem 1.1 

will correspond in a way to be made precise below, with a solution 

of the following variational problem. Consider an arc c, 
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c:[0,1] - IV, 

(1.7) c is absolutely continuous on [0,1], and 

c' (s) = c(s) E L2 [0,1]. 
ds 

Denote the set of such arcs by H1, 

(1.8) H1 = {arcs c which satisfy (l.7)}, 

and consider the functional J with domain H1 

.10 
(1.9) J(c) = I 2 Jo [2(h-Woc)]Ic'I2 ds. 

lie consider the variational problem 

(J) min J(c) c E H1, c(0) E W, and c(l) E W. 

We pause before proving that (J) has a solution under the restric-

tions (W1)-(W4), to indicate the genesis of the functional J. 

On the manifold N we introduce the Jacobi metric (cIT) 2 in 

terms of the Euclidean metric (dp) 2 

(1.10) (d'r) 2 = 2(h-W(x))(dp) 2. 

The Jacobi arclength of an absolutely continuous curve 

c:[0,l] -N 

is, E(c) = ji /2(h-Woc) I 'I ds. 

0 
Our functional J(c) is the "energy integral" (see [Mil P. 70) 

associated with the Jacobi metric. The Jacobi metric was intro-

duced by Jacobi (naturally) and has been used as a geometrical tool 

in the analysis of classical mechanical systems by Birkhoff [B], 

Seifert [S], Weinstein [W], Gluck and Ziller [GZ] to name a few. 

Thus our functional J is not new however the manner in which it is 

used, especially with regards the second variation in the second 
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chapter and the applications of the second variation in the third 

chapter, do appear to be new. The main drawback to the use of the 

Jacobi metric is that it is singular on Ib7; thus Birkhoff [B] was 

led to consider only those periodic solutions of (1.4) which did 

not intersect DN. Similarly, Seifert [S] introduced the methodology 

used in this chapter (see the sequence of subproblems (J) below) to 

produce a solution of (J). 

The following examples illustrate the verification of hypo-

theses (Wl)-(W4). 

Example 1: The potential function on p2' x = (x1,x2) 

2n 2n 
2 — with n1 

satisfies the above hypotheses when h > 0. 

Indeed take 6* = 4 . Then 

2n-1 2n-1 
DW(x) = 2n '2 ) 

the only critical point of W is 

x = (0,0) and IDW(x)I -+ +° as 

jxj -+ +-, implying (W4) is satisfied. 

To verify (W3), consider the following 

Ar 

inequality valid for (x1 ,c2) E A fl N with r 0 > 0, 

2n 
oj> = 2n • fx 1 > 

IxI I 

Let r > r0 be determined as in the diagram: 

where e>0and 

W(r0,x2) = h 

x 
A 2' 
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We will find 6 > 0 so that x = (XI 5X2) E R6 fl Ar and (x,y) € H 1(h) 

imply that Ix Ct) I > r0 thereby showing that pt(x,y) E Ar for all t 

where defined. Assuming that, sgn(x 1(t)) is constant on (0,t), 

I'! (t)y 1 (t) =sgn(x1)y1 + <w( ix (x(t '))5 'I (tt),0}>dt' 

and provided that (x,y) E H 1 (h), x € A ri fl 

1 t 
i (t)y (t)-/'+ < DW 

i  , (T •x -,I F I >dt 

Let 0 < to = inf{tilne required for (pt(y) to reach {I.I = r0} 

for (x,y) E 11 1 (h) and x E A 
1 

and 

ro} 
0<0 = inf{ <_Dw(,);(I uI,o}> for x =(x1x2) E A 

Then i (t 0)y 1 (t 0)-+ t0c from (1.11). Choose 6>0 

so that (x,y) E H (h), x E A fl R 6 imply that 

Since 

i: i o yi to and 

d 
 1 (t)y1(t) 

dt •• 1 
"0 x 

interval [t0,t0+:); ,11(t)y 1(t) 0 and Ix1(t)I > ro 

nd Ix1(t)I r0 on [t0t0+a1} 

Then if a0 is finite, 

o< d 
dt t0+a0 

defined or a0 = +co. Therefore (W3) holds for any q > 0. 

c > 0 it follows that on some nonempty 

dt t + 
1   t I (t)y 1(t) c > 0 and 
1 

t0+a0 
= x1(t0)y 1(t0) so either (,y)) is not 
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Example 2: We refer the reader to [CPR] (p.119) for a survey of results 

on the following potential: let x = (x 1,x2) 

W(x) = (x12 2 +x2) - x1s2 2 

Then W(x) satisfies hypotheses (Wl)-(W4) 

for h>. Let 6*4th_] 

E 2, and 

the only critical points of W occur at W O 

(0,0) , P± 

and IDW()I + -f° as jxj so (WA) is satisfied. 

To verify (W3) we need only modify the argument given 

in Example 1. Indeed, it is possible to choose r > 0 

so that E A r0 fl N implies that 

- + 2x X2 - 

-   

x 

= 2[x x2 - 

]½ 

2[4 c1x - h] 
>   >0. 

- 

Let 0 < t0 = inf{time required for t(,y) to reach A ro 

for (x,y) E F['(h), x (A 2r01 ,  and 
0 = inf{<—DW(x), T x7  >: x (A ro }. 

Then given (x,y) E H 1 (h), x E A 2 fl R, we have 

fo to y(t') 2  (t'),y(t')>2 

= % +  x(t') Ix(t')I + 

6 



will be omitted. 

Example 3: For x EJR2, the potential 

W(x) = (x+x) - xx 

has been studied in [CPR] (see P. 120). 

W satisfies all hypotheses except W2(a) 

with DW(x) = 1 x1x2, 2 x2r1) 

— 21 — 

to 
+ <-DW, 
fo TXT 

t o 
' > t Tf ')>dt v' + C 

fo to 

Therefore we can find 6 > 0 so that (c,y) I 11 1 (h), x I A fl R 
2r0 6 

implies that 

X (t 1r o) ,y(t 0)> > 0 and lx(t1)I 

The remainder of the verification is analogous to Example 1 and 

A / 
- 

and the only critical points of W are (0,0) and p = (±1',±l) 

for i = 1,...,4. (W4) is thereby satisfied since IDW(x)l -++ as 

lxl -* +oo. (W3) holds due to the inequality 

X 
Ix -'----> = 

= 

2(+ xx22 —W(,)] 

fx+x ½ 

>0 

> 

— 

2[-! xx-h] 

provided that r0 is sufficiently large and (x1, 2) K A  fl N. The 



- 22 - 

verification is identical to that of Example 2. 

This example has some interesting features. In spite of the 

fact (W2(a)) does not hold for this potential, the existence of a 

smooth minimum distance line joining adjacent branches of 

h > ., W and in Fig. 8 for example, may be demonstrated by mod-

ifying the results in this chapter. On the other hand, it follows 

from results in Chapter 3 that, if we take opposite pairs of branches, 

and W for example, the corresponding variational problem (J) will 

in general, have a non-smooth solution. In fact it is possible to 

show, using results obtained in [CPSR], for 

< h < h1, h1 1.15 

(3) has no smooth minimum distance line. 

In the remainder of this chapter, we will demonstrate the 

existence of a solution to (3), and show how such a solution cor-

responds to a brake orbit within N to obtain Theorem 1.1. 

For elements c E H' (see (1.8)) we will at various times use 

the norms, JJcJJ 1, 1c112, jlclj, IICIPH 1, where 11- 11 11 11- 112' IN IL, are the 

L'[Ol] L2[O,l], L{O,l3 norms respectively, and 

IICIIH1 = Ic(0) I + IIC'IJ2, C ' d = C. ds 

Lemma 1.3. Let 0 :Sso < s 5 1, and g(s) = s0 + If 

c E H1, then 2i = cog: [0,11 -+ N 

J(S) 5 (s 1-50)J(c). 

also belongs to H1, and 
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Proof. ; = f (h-Woa) 15, 12  ds 
= (h-Woc(g)) IC, (g)I 2 g' 2 ds 

S (h-Woc) IC, 2 g'I ds (by change of variables) 

so 

5 (s 1-s 0)J(c). 
0 

The idea mentioned above of producing a solution of (J) as 

the limiting solution of a subproblem will now be developed. For 

4' 0, and 0 <n (see (W2)), we consider the following family 

of variational subproblems 

mm J(c) : c E H1, c(0) E W 6 , c(l) E 

and W(c(s)) S h-6. 

We will denote by Fn the subset of H1 whose elements c satisfy the 

above restrictions. 

Proposition 1.4. The variational problem (J) has a smooth solution 

JZ• Furthermore there is a positive constant E so that 
n 

n? r=  E, [DW(ct(0))I c(l) -  E  DW(c(l))  

V tDW(c Z(0))I 

Before proving Proposition 1.4 we will need the following lemma. 

Lemma 1.5. Let {ck}kl be a sequence of elements of H1 which belong 

to the subset F and such that eT(Ck) is uniformly bounded in k. Then 

is uniformly bounded in k. 
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Proof. From the Cauchy-Schwartz inequality, for c E H1 

IIc'I' 1 < Ic'I1 

Furthermore 

(1.12) c(s) I IC(0) I + IIc'l! 1 S c(0) J + IIc'II2 = IICUH1 < 

Assume that Jc7< II 00 - + 00 as 7< . We will show that in this case 

IcII2 , +00 and that this yields a contradiction. Indeed, from 

(1.12), if c<(0)I is bounded and llck !J -++00 then 

the other hand if lck(0)I is unbounded, since 

1c7< (l)-c 7< (0)1 5 IIclI IICf<J 

IiI II c7< 11 2 00 

h ''C 'II -++Q° 

k2 

condition W2(b) guarantees that 

The following inequality holds since C7< E F implies that 

0 < 26 n S 2(h_Wock): 

(1.13) 6 11C 'k112 = f, k o.IcI2ds J (h-Woc7<)IcI 2ds = J(c7< ). 

However we have assumed that J(ck) is uniformly bounded in 7<; 

therefore llcJJ 2 must be uniformly bounded in 7< which in turn 

implies that is uniformly bounded in k. 

Proof of Proposition 2.4. 

On 

We will give a direct proof from the calculus of variations. 

1. Since J(c) 0, it follows that 

(1.14) 
1 2 
— E = inf J(c) 0. 
2n cEF 

n 
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Furthermore 1 2 - E < 00 let x (s) be 
2n n 

0 

the Euclidean minimum distance 

segment joining W to 

(see Fig. 8) 

X () = 0 + s(x'-x°) 
n n n  

0 

WS 

The fact that W(x(s)) 5 

for s E [0,1], follows since x is a Euclidean minimum distance line. 

Then S J(x) = fi (h-Wox(s))• lx-xI2ds < , since W is 

CO bounded on compact sets. Let {ck}l be a minimizing sequence, i.e. 

k-->-

We may assume that {J(ck)} is uniformly bounded in k. We must 

show that there exists C E F so that Ck - P in some topology and 

* 1 2 
that J(c ) = --E. 

urn J(ck) = - E 2 n 

2. From eq. (1.13) we know that IIcII2 is uniformly bounded in k 

since J(Ck) is uniformly bounded. However, since the unit ball in 

L2[Ol] is weakly sequentially compact and ICk(0)I is bounded 

(Lemma 1.5) we may assume that 

wkly 2 
f EL [0,1] 

and 

S 

Define the arc c*(s) = C + J f, then ck(s) C*(S) 

0 

Therefore C E F. Furthermore we may show that 

C  C uniformly. 

pointwise. 
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To see this we notice that 
S2 

ICk(52)_Ck(S1)I J (cjds [hi 3  
from the Cauchy-Schwartz inequality; therefore 

Ck(82)_Ck(S 1) l II 

[: 
"C"12 

00 
so that the family {ck}l is equicontinuous and uniformly bounded 

from Lemma 1.5. By the Arzela-Ascoli theorem this same family is 

sequentially compact in the topology of uniform convergence. Since 

ck(s) + c (s)  pointwise, this convergence is uniform. 

3. We have shown that c  unif - c * on [0,1], and that c * E F . We 
n 

recall that a smooth convex function C satisfies 

G(Y1) - G(Y2) <G(r1),Y1_Y2>. 

Set G(Y) = I.Y 12 then 
2 I 

1 1 
j(*)j() = Jj2(h-Woc*)1-jc Ij2ds  - I [2(h.-Wo Jo Ck )]JCkdS 

1 

J10 
[2(h_Woc*)_2(h_Wock)]+Ic*J2ds + r[2(hWOCk)]. [11C*712 112 k 712 ]d 

fo 

1 1 
*7 *, I [2(h_Woc*)_2(h_Woek)} Ic ds 1 L *7C2 + fo [2(h_Wock)] <C ,c .-ck>ds 

Jo  

The first integral vanishes in the limit by uniform convergence, the 

second by weak convergence. Therefore 

Therefore 

J(c*) - E2 which implies that 

J(c*) = 4 E2 since E F. 

solves the variational problem (J). 
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* 
4. We must show that the solution c satisfies the Euler-Lagrange 

equations for the Lagrangian f 

(1.15) f(x,v) = (h-W(x))1v12, 

and the first order transversality conditions at the endpoints 

* * 
c (0), c (1). This will follow from the observation that the mini-

mizing curve c intersects Who only at the points c * (0) , c* (l), 

and hence the restriction 

W(c*) h - 

does not bear upon the first order necessary conditions. 

To see that the curve s—+(s,c (s)) E .72? xlRm intersects 

X W7 only at (0,c *(0)), (1,c (1)), assume for the moment that 

(so,c*(so)) E X Who , with 0 < so < 1. For the sake of argument, 

* n 
suppose that c E W 5 . Let 

n 
(e) = c'og(s), g(s) 8ç + s(18o), for s E 

Then H1, W((s)) h-5,, and (0) E W 5 , (1) E W' 5.' so that 

E F. Invoking Lemma 1.3, we may conclude that 

J(c) < J(c * ) 

which contradicts the fact that c * affords a global minimum for J with 

respect to c E F 
n 

Hence the usual first order necessary conditions (see [He]p. 88) 

* * 3 
are in force for c . In particular C is a C [0,1] solution without 

corners of the Euler-Lagrange equations (see [He]p.60), and the first 

order transversality conditions hold: 

* 0 
C '(0) is orthogonal to Who , and 

* 1 
C '(1) is orthogonal to Who 
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The sign ± on DW comes from the fact that at s = 0, d - Woc * (s) < 0, 
ds 

  while at s = 1, - Woc * (s) > 0. We observe that (peed in Jacobi 
ds 

metric) /2(h_Woc*(s)) 1c''(s)I = constant (see [Mi]pp. 55 ,72), and 

* 
J(c 1 2 ) = --E which accounts for Ic '(s)I at s = 0,1. For each n, we 

have constructed a smooth arc c as asserted in the statement of the 

Proposition. 
0 

Before invoking for c the necessary conditions of the calculus 

of variations as the next step in the analysis of the variational 

problem (.1), it is necessary that we first discuss the translation 

between solutions of (1.4) of energy h, and solutions of the Euler-

Lagrange equations for the Lagrangian f (see (1.15)). Rather than 

the Euler-Lagrange equations, we prefer to use instead the equivalent 

Hamiltonian equations associated with (1.15) via the Legendre trans-

form (see [A & M]p.218) 

(x,y) = L(c,v) = (r,f) = (x,2(h-W())v), 

and the Hamiltonian F(r,y) 

(1.17) F(x,y) - 2(h-W(x)) 

The Hamiltonian equations for F (see (1.1)) are 

y(s)  ,,SI - -I() I DW(c(s))  
(1.18 ) c s) - 2(h-Woc(s)) ,  [2(h_Woc(s ))]Z 

and the solutions within N° (see (Wi)) of the Euler-Lagrange equations 

for (1.15) are in one to one correspondence via (1.16) with solutions 

of (1.18). For an alternate version of this next lemma, see [A & M], 

(p.228). 



- 29 - 

Lemma 1.6. An arbitrary non-trivial solution c(s) through s = 0 of 

the Euler-Lagrange equations for f (2.15) corresponds to a unique 

solution x(t) of energy h of (1. 4), through the relation 

(1.19) c(s(t)) = x(t), with 

(1.20) s(t) = E fo 2(h-Wox(t'))dt', 

where E is a non zero positive constant determined by 

(1.21) E = i/2(h-Woc(s)) Ic'(s)I, independent of s. 

Proof. An arbitrary non trivial solution c(s) through s = 0 of the 

Euler-Lagrange equations for f is a geodesic (in the Jacobi metric) 

parameterized proportional to (Jacobi) arclength (see [Mi] pp.69-72). 

Since c(s) has constant speed E > 0 (in the Jacobi metric), then 

E= /2f(c,c') = i/2(h-W(c)) Ic'I, 

independent of s. Let xO = c(0), y0 = E 1 [2(h-W(x 0))]c'(0), and 

notice that, H(x 0 ,y 0) = h (see (1.3)). Let x(t) be the unique 

solution of (1.4) of energy h with initial conditions 

X(0) = x0, x(0) = y0. 

rt 
Let s(t) = E1 j 2(h-Wocc(t'))dt, and set 

0 

(t) = c(s(t)). Then 

X(0) = r(0) = y0, and by virtue of (1.18) and the fact that 

Iy(s) 12 
= E2, 

[2(h-W(c(s))) 

(t) = -DW(x(t)). 



- 30 - 

Since x(t) is a solution of (1.4) with the same initial conditions 

as x(t), x(t) = x(t), and (1.19) follows. 
0 

The following three lemmas are in preparation for the result that 

converges in an appropriate topology to a solution of the 

variational problem (J). 

co Lemma 1.7. The sequence {E} 1 (see equation 1.14) is monotonicaily 

increasing and bounded above: 0 < 

Proof. The fact that {E} is an 

increasing sequence is intuitively 

obvious from the accompanying 

diagram (Fig. 9). To make this 

argument precise, we can find 

numbers so, s so that: 

055o<si 51 and 

,. n+1 
W¼c (a)) 5 h-8. for a E[s o's ill 

and 

F9 cj 

n+l 
C , for i = 0, 1. 

n 
". n+l 

Therefore, if c = c og, g(s) = s + s(s 1-s 0) for S E [0,1], then 

5 E F (see for notation). Moreover by virtue of Lemma 1.3, 

and the fact that c solves (J), 

> (s- J(c ) ? J(c) ? J(c) = = J(c' 1) 1s0) n+1 
n 
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To show that {E} is bounded from above, let x0 E W0, PE 

satisfy = mm Ix'-x°I 
x0EW ,x1EWj 

Let i(s) = XO + 8(x1-x0) for s E [0,1] , and 

= (s) E , i = O,1 

Then if x (s) O + (1_O) ,for s E [0,1] 
n n fin 

eT (X n 
r1 

= jo (h-Wok ) 0 
I'- °I2ds n  

= . J0, (h-Tiox n )ds 

• max (h-wo(s)) 
[0,1] 

we have 

Therefore, = J( 2 ) is bounded above. n n 

Wi 
h 

Recall that 1pt(x,y) denotes the solution of (1.4) with initial 

conditions (x,y) at t = 0. 

Lemma 1.8. 11c'II, is uniformly bounded in n. 

Proof. Let (pt(xy) = c(s(t)) (see Proposition 1.4, and (1.19)) 

with x E W° , (X 'Y E 11 1 (h), and (see (1.20)) 

(1.22) s (t) = - J 2(h_Wopt(x,y))dt 
fi 

The existence of numbers 0 < s < s1' < 1 with the following 

properties follows from the continuity of c (see Fig. 10): 

c'(s) is the last point of intersection of the image of 

with (see 142 for 5 ); 
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is the first point of intersection 

after c n (s, fl ) of the intersection 

of the image of a n with 

" * (see Fig. 10). 2 
-8 C's) 

Since c'ks) has constant (Jacobi) speed E (1.21), 

/2(h-W(c(s))) Ic(s)1 = 
we may conclude that Fig 10 

E E 
s1 nl ?2 fn s  ds   f 

dss is 0 Ic Ids= 
SO  (h-Wocfl) 7Z 

Invoking condition W2(b) we deduce that 1c(s')1 and Ic'(s')I are 

uniformly bounded in n Choose r0 > q (see W3) so that 

nfl (B for all . c'(a) and a r0 

From (W3) we obtain r1 r0, 6 5 8* so that 

x (A fl R 8 and (x,y) E E(1 (h) 

implies that 

(pt(xy) E A  for all t where defined. 
0 

This has an immediate consequence: for 6, < 6 

(1.23) if (pt(xy) E R8 then t(xy) E B 

otherwise pt(, ,y ) E A for all time, contradicting c(s) E B 
nn r0 r0 

Let D = {s ( [0,1] 10 fl (8) E A }. Then a E D implies that cu (s) ,E' R 
n r1 n 5 

from (1.23) and 

E 
=  E I. ' 5--. (1.24) I Ic Ids n ds  

fD• /2(h-Woc)  n 
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Let C D, with Ic'2(s0)I = r1 

(see Fig. 11). Then from (1.24) and 

Lemma 1.7 

'S 

(1.25) Ic'2(s)ir1+j ic'2 Jds 

S o 

r +---<a'. 
V2-5 

Hence ic'2(s)i is uniformly bounded 

from (1.23) and (1.25). Fig If. 

Remark 1.9. From (1.19), (1.20) we may deduce the existence of 

such that 

2' 
c n (s(T)) = cp (Xn  W 5 , with 

s(T) = 1 (see (1.22)). 

Notice that by (1.21), the Jacobi arclength:of a n , satisfies 

L(c'2) = (Lemma 1.7). Since 

Jlc'2Ii < a < (Lemma 1.8) we may apply the following result from 

[W] (p.516). 

/ 

Lemma 1.10. There exist constants 0 < to < ? such that 

2' ? for all n (see Remark 1.9 for 

The fact that llc'211c,o < a for all n means that we need only consider a 

compact subset B of s-space containing the base integral curves 

pt(y) for 0 5 t 5 T and compact subsets of the branches 

W_5 , W, W 8 , w) for all n: Weinstein's, result applies in this 

context. 

0 
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We will now show that the trajectories pt (xfl yn) (see Remark 1.9) 

converge to a brake orbit of energy h of (1.4). Recall that, for 

z E F 2m is the orbit in phase space corresponding to the sol-

ution of (1.4). 

Proposition 1.11. Let z(t) = Cl) t(Xy) as in Remark 1.9. There 

is a C2 mapping 

z(t) = (ii(t),X(t)) on [O,T*] 

so that a subsequence of {}, also denoted by {z}, has the 

following properties: Z - z uniformly on [O,T*] 

wiformly on [0 ,T*]. 

z(•) is an integral curve of X  (see (1.6))on H 1(h) and there exists 

0 < T = lim T  < (see Remark 1.9)., so that 

Ti (0) E WO and TI (T) E 

Proof. Since (pt(y) and thereby 2(h_Wo(pt(x,y)) 
are 

uniformly bounded on [0,T * ],it  follows that there is a compact 

convex set B so that 

Z (t) E B 

and therefore Zn (t) = XH (zfl (t)) (1.6) are uniformly bounded in n 

on [0,T*]. We will show that z(t) is an equicontinuous family of 

mappings. Indeed let 

XH(z)I XO for z E B , and 

let K1 be a uniform Lipschitz constant for X in the compact convex 

set B; zi,Z, E B implies that 
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(1.26) IXH (Z2) - XH (Z l)I X1 1z2-z11 

The existence of K1 follows from Theorem 9.19 of Rudin [R] since 

is C1 on B. Given 0 < c < 

J n (t+c) - n (t) I 5 Kilz n (t+c) - from (1.26) 

5 K1.K0.c from the mean value theorem. 

Therefore {z} is an equi-Lipschitzian family and thereby equi-

continuous. From the ArzeTh-Ascoli theorems we may select a 

subsequence of also denoted by z}, so that 

is uniformly convergent on [O,T*], and z(0) converges. 

The conditions of Theorem 7.17 Rudin ER] are met and we may deduce 

the existence of a C1 mapping z so that 

unfml on 

and 

• unfmly 
Zn - Z on EO,T*], 

z() is an integral curve of XE since 

L (t) = lim (t) = urn XH (z(t)) = XH(Z(t)) 
fl4CO n_oo 

and z(t) E I[ 1 (h) since z(t) E f1 (h) for all n. Finally we may 

select a subsequence of see Remark 1.9, also denoted by T, 

which converges T 5 T* ; then if z = (TT,X) 

T 
W(rr (T)) = 1 i W(cp (x ,y)) = urn (h-8) = 

and 
= urn W(,) = urn (h-5) = h . o 

n-*co n-3 
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Proof of Theorem 1.2. Under the conditions of Theorem 1.1, we con-

n 1 t 
structed the sequence c E H , and the associated sequence p (x,y) 

(see the proof of Lemma 1.8). The conclusions of Theorem 1.1 now 

follow immediately from the existence, asserted in Proposition 1.11, 

of the brake orbit 11(t). 

Actually, we may deduce more about the brake orbit n(t). It 

provides us with a solution of the variational problem (J). 

Theorem 1.12. Under the conditions of Theorem 2.2, there exists a 

solution a of the variational probln (3). Moreover, for 

çt 

(1.27) s  = E1 J 2(h-Won(t'))dt', 
0 

with H = urn H (Lemma 1.7), and 11(t) as in Proposition 2.21, 

a(s(t)) = 11(t). 

We may assume that H = 1. 

Proof. Let H = lirn H, and define 
n.+oo 

(1.28) (s(-b)) = Ti(t), see (1.27). 

For 2' as in Proposition 1.11, it follows by uniform convergence of 

t(xy ) 

E1 J T 2(h-Wo11(t'))dt lim  f T n 2(h_Wot(xnyn))dt7 

that 

= 1 (see Remark 1.9). 

Therefore c:[O,l] - +N, and from (1.28) we may deduce that the (Jacobi) 

speed of c(s) is constant on (0,1), 

(1.29) /2(h-Wo&(s)) Ie'( ) = F. 
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Therefore, 

1 1 1 

fc' 2 ds = f 2(h-Woa) ds = Hf ds = 

0 0 0 

ET < 00 , 

so that 3 E L2 [O,l], and consequently E H1. Moreover 

3(0) = 1T(0) E Wh, and 6(1) = rr(T) E Wh. 

Since 3 is an admissible arc, we need only show that it is optimal. 

For an arbitrary admissable arc C E H1, we can determine 

o s < s 5 1, so that 

fl . . 0 
c(s 0) is the last intersection with Who , and 

n i n fl 
c(s 1) is the first i ntersect i on after c(s 0) with Who 

Let gfl() = s + s(s-c), s E [0,1], and = cog. Then C E F. 

and invoking Lemma 1.3, we deduce that 

J(c) (s 1n -s 0fl)J(c) J(i) J(c') = •E2 
n 

where c fl is the solution of the variational problem (J). Therefore, 

j(C) urn ;2-E = E2. However, by virtue of (1.29) 
fl-3-00 

J(a) = E2, 

and 3 thereby solves the variational problem (J). We may assume that 

H = 1 in (1.27), by reparameterizing 6 so that 6(s/E) = VW-

13 

Remark 1.13. We may assume that H = 1 (Lemma 1.6) by reparameterizing 

c,ds'/ds=E, Then the Hamiltonian vector field X (see (1.18)) is 

(  y  -DW(a.,)  t Xp(x ,y) 
(1.30) X(x,y) = 2(h-w()) ' 2(h-W(x)) J 2(h-W())  

If e is the flow of XF, and the flow of X  (1.6), then 

(1.31) Hl(h) = F 1( j) U {(,0) E U}, and 

(1.32) = 45 z, z E F 1(-), where 

s(t) is specified in (1.20) with H = 1. 
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CHAPTER 2 

THE SECOND VARIATION AND ORTHOGONAL JACOBI FIELDS 

Introduction. 

In this chapter and the next we wish to develop the results 

concerning the index and nullity for critical extremals CA of the 

variational problem (J) considered in the last chapter. 

Recall that our solution arc a of the variational problem (J) 

joined two points on the boundary aN of IV = {x I W(x) h} 

(see (1.5) for notation) where the Jacobi metric is degenerate, 

see (1.10). However, in order to use the index theorem of 

Ambrose A] as stated, the Jacobi metric must be a bona fide metric 

in a neighbourhood of the image of C. In order to relax this 

restriction on 6, we will develop a theory of the second variation 

of J, for critical arcs joining separated points on W. 

We introduce Jacobi fields along such extremals and by 

reparametrizing these fields, we will show how the index theorem of 

Ambrose may be extended to cover the situation where a geodesic 

chord joins separated points c0, e1 on alt' and neighbourhoods 

K, £ within aiv of c0, c1 respectively replace the endpoint submani-

folds in Ambrose's theorem. 

Since we are ultimately interested in determining the stability 

of the associated periodic orbit (t) = (n(t),X(t)) (see Proposition 

1.11) of the Hamiltonian vector field X  (see (1.6)), we will develop 
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a Hamiltonian rather than the usual Lagrangian formulation of the 

index theory. This will facilitate the comparison of the index 

of cras a periodic orbit with the index of as a critical extre-

mal of the functional J. 

Let M0,M1 be codimension 1 hypersurf aces in iin lying within 

01 
Wh,Wh respectively (see (w2)), and 

(2.1) H1 I = {c E H'Ic(0) E M0, c(l) E M1} (see (1.8)) 
MOXM 

As in the previous chapter we will denote the derivative of an 

element a in H1 by C' C. Consider the functional J defined 

on 

rl 
J(c) = J (h-Woc) Ic' 1 2 de 

0 

Remark 2.1. Let N be the manifold with boundary specified in 

(1.5). If c: [0,1] -+ N and TN -+ N is the tangent bundle of 

N then we denote the vector bundle over [0,1] induced by TN by c*cN 

cTN. c(TN) -- [0,1], see Klingenberg [1] p.27, 

for the case where N is a manifold without boundary. 

Remark 2.2. By a piecewise C3 arc C of the manifold N with boundary 

conditions M0XM1 we mean a continuous map C: [0,11 -- N such that 

(a) there exists a subdivision 

0 = < Sl ... < sn+l = 1 

of [0,1] such that 
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(a) ci (O,s 1]' ci 

(b) c(0) E M0 and c(l) E M 

Ci [sl) are C3 i = 

Remark 2.3. Intuitively, H.o xM1 can be interpreted as a smooth 

infinite dimensional manifold, see Klingenberg [K] p.158, where he 

gives details showing how this can be made precise if N is a manifold 

without boundary. Carrying this analogy further, for an element 

C E H 1 0 1 , the tangent space to H 1 0 at c may be identified with 
MXM MxM 

the space of absolutely continuous vector fields P(s) along c(s) 

such that 

P(0) E T M0 and P(l) E T M1 
C(0)  

the tangent spaces of M and M at c(0), c(l) respectively. 

We will present the main results concerning the first and 

second variations of J relative to the boundary conditions M0xM1, 

giving references for details not provided. 

Let c E Ho M 1 (see (2.1)) be a piecewise C3 arc. 

Definition 2.4. Let C E H 1 0 1 (see (2.1)) be a piecewise C3 arc. 

A piecewise C3 variation through C is a continuous mapping 

Q:(-0,0) X (-,i) x [0,1] -- N so that 

Q(0,0,$) = c(s) for S E [0,1], 

Q(c0 ,c 1,O) E M for (c0,61) E x 

Q(E0 ,c 1,1) E M1 for (.e,c 1) E X ( ],c 1) 

for which there is a subdivision 0 = s <8 '< . . . <S = 1 0 1 n+1 
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of [0,1] such that Ql (o,o) X (i,i) X (0,i] 

—oo) x x [s1,s] and QI (—o,o) x X [s,l) 

are C3 for i = 2 . For fixed (c 0,E 1), let c (s) = 

2 2 cOd 

Q(c0,c 1,$) and let   c00 (s) Jc,=c=O Q(c0,c,$). 

We will assume that all first and second partial derivatives of 

C (s) with respect to (c,c) are continuous on (0,1) and converge 
o 1 

uniformly in (c,c) on compact neighbourhoods of (co,E]) = (0,0), 

as S + 0 or S + 1. 

Finally, we will assume that 

(2.2) 2(h-Woc (s))  .c,ci,$) is piecewise continuous on Soe l vSuC1. 

[0,1], for i = 0,1. 

The variation vector fields P0,P1 of Q are 

Q(c 0 ,c 1,$) for i = 0,1, and 

lim P'.(s) - lim .P'.(s) for j = 0,1 and i = 1,... ,n. 
S+S. J 

1 

0 

Remark 2.5. One parameter variations Q may be obtained by setting 

0 in Definition 2.4. 

We give here a few remarks on the motivation for Definition 2.4. 

The differentiability properties of Q listed in Definition 2.4 were 

suggested by examining one parameter families of broken extremals, 

i.e. one parameter families of broken base integral curves of 
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(see (1.30)), joining M0 and M1. That such families do in fact 

have these differentiability properties may be deduced from 

Proposition 2.36 and (2.38). 

The variation vector fields P(s) are continuous sections of 

c * T N with boundary conditions (Tc(o)M°) x (T (1)M') which are 

piecewise C2 on (0,1). However, as we shall see, P'(s) L2 [0,l] 

in general. We have added condition (2.2) in order to obtain a 

workable index theory. Condition (2.2) is also met by one parameter 

families of broken extremals joining M0 and M1. 

0 

Definition 2.6. A piecewise C3 arc c is a critical arc of the 

functional J with the boundary conditions M0XM1 if c E H 1 0 
MXM 

and for every piecewise C3 variation Q through C, 

= J(c) = 0 

Recall the Legendre transform L, see (1.16), for the Lagrangian 

f(x,v) = (h-W())IvJ 2 

L(x,v) = (cc,2(h-W(x))v) = (x,y) 

Proposition 2.7. Let c be a critical arc of the functional J sub-

ject to the boundary conditions M0xi1f1 (see Definition 2.6). 

(c(s),y(s)) L(c(s),c'(s)) is continuous on [0,1] 

and a2 on (0,1). L(c(s) ,c' (s)) is an integral curve of X, on 

F-1 (1/2) (see (1.4)) and 

y(0) = 0 , y(l) = 0. 

Then 
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Furthermore, urn y (s) I Iy (s) I = -DW(c(0) ) I DW(c(0)) I' 
s4'O 

urn y(s)/Iy(s) I = DW(c(l))/IDW(c(l)) I. 
sf1 

Proof: The usual first order conditions on a minimizing arc 

(see Hestenes [He] pp.58-60) require only that the arc be a critical 

arc. Therefore these conditions apply to the critical arc c. In 

particular c(s) is a C2 solution of the Euler-Lagrange equations on 

(0,1), since det(f(c(6),c'(s)))> 0 for s E (0,1). Using the 

equivalence of the Euler vector field and the Hamiltonian vector 

field we conclude that L(c(s),c'(s)) is an integral 

-1 2 
curve of X on P (E / 2) for some constant E. We may assume with-

out loss of generality that E = 1 (see Remark 1.13). 

Let (c(s),y(s)) = for some 0 < < 1, where ! is the 

flow of see (1.30) and S = (p(s 0),y(s 0)) E I[1(h). Let to > 0 

satisfy 
0 

so = J 2(h_Woptz)dt 
—to 

and let a= CCto s, where denotes the flow of X (1.6). By 

virtue of (1.32), we may conclude that 

y5-so z = 

t-t 
s_so = J ° 2(h_wotz)dt, 

0 

However, t-t z =t (x(t),X(t)) and 

with 

S = 0 + J 2(h_Wotz)dt = f t-to 2(h_Wot)dt, 
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rt 
= j 2(h-Wop tA o)dt' 

0 

Therefore 

(2.3) (c(s),y(s)) = ((t),X(t)) with 

f t 2(h_Wopt (Y) dt , a= (x,X)(0) 

Since C' E L2[01] and Ic'I = [2(h-W)] 1 = 

T < 00, T = f' 0 
ds 
cit 

-1 

ds - f ' 0 Ic' I 2 ds, 

ds 
cit 

such that 

T 
1 = 1 2(h_Wo pt)dt7. 

JO 

-1 
there exists 

It follows from (2.3) that (c(s),y(s)) is continuous on [0,1], 

since ((t),X(t)) is continuous on [0,T]. Furthermore, 

C(0) E aN , x(T) = c(l) E aN, which implies that y(0) = X(0) 

= 0 and y(l) = X(T) = 0. These endpoint conditions on y(s) are 

referred to as first order transversaliliy conditions on C (see 

Hestenes [He] p.88). Since the orbit (x,X)(t) of XH has energy h, 

x(t) approaches aN orthogonally, that is 

limy(s)/Iy(s)I = urn X(t)/IX(t)I = -DW(x(0))/IDW(r(0))I. o 
s+0 t+0 

Remark 2.8. If 6 E H1 minimizes J relative to C E H10 1' 
M0x11 M xM 

then a is a critical arc. 

The Legendre transform L(r,v) (see (1.2)) and its linear-

ization L*(x,v) will be used to describe the main results concerning 

the second variation of the functional J. 
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Given two vectors in JRin, a = (ai,...,a) and b = (b 1,... 

we will denote their matrix tensor product by 

a®b* [ab] EL(JRm,JRm). 

Lemma 2.9. The Jacobian matrix L*(x,v) of the Legendre transform 

L(x,v) = (x,2(h-W(x)) v) = (x,y) 

is given by 

L*(x,v) = 

I 
in 

0 

-2v®DW(x) 2(h-W(x)) 'ra 

If F(s), 8 E [0,1], is the variation vector field along a critical 

arc c(s) (see Definition 2.6) of a piecewise C3 variation Q (see 

Definition 2.4) such that (2.2) holds, then 

(P;R)(s) = Ls(c,c') (P,P')(s) 

is piecewise continuous on [0,1], and piecewise C1 on (0,1). 

Proof. The formula for L*(x,v) follows upon differentiating L(x,v) 

with respect to (x,v). 

Now suppose that F(s) is the variation vector field of Q 

along c(s) and that (2.2) holds. From Definition 2.4 we may 

deduce that F(s) is continuous on [0,1] and piecewise twice con-

tinuously differentiable on (0,1). We need only show that R(s) 

is piecewise continuous on [0,1] and piecewise C1 on (0,1), where 

(24) R(s) = -2<P(s),DW(c(s))>.c'(s) + 2(h-Woc(s)).P'(s). 
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Notice that <P(0),DW(c(0))> = 0 and <P(l),DW(c(l))> = 0 since 

Q(c,0) E MO and Q(&,1) E M1 for c E 

Let = y(s)lly(s)l for 0 < s < 1. Since 

Ic'(s)I = [2(h-Woc(s))] , see Proposition 2.7, we may use 

L'Hospita]'sr311e to evaluate the ollQwin; 

urn <P(s),DW(c(s))>c'(s) = urn   
s4'O s+0 

urn <PDWoc>(s) + KP,(D2W)c'>(s)  

s+0 -[2(h-Woe(s))F½<DWoc,c'>(s) 

= i<2(h-Woc).P',DWoc>(a) y(s) + lim 
s+0 <DWoc,y*>(s) 

[2(h-Woc) ]<P ,D2 W.y'5 (8) .y*() 
-<DWoc,y>(s) 

.LJ111 
2(h-Woc) •P' ,DW((0))>(DW)((0)) 

-IDW((0))I 
(see (2.2) and 

Proposition 2.7). 

By a similar computation at s 1, R(s) - 2(h-Woc(s)) PI(s) and 

hence R(S) is piecewise continuous on [0,1], see (2.2) and (2.4). 

Now R'(s) exists and is continuous at s whenever .P'(s), Ptt(s) 

exist and are continuous at S. Therefore R(s) is piecewise 

on (0,1) as claimed. 

Note that, by the computation above, and the fact that 

2(h-WoC(S))P'(S) = 2<DWOc,P>(s) y(s) + R(s) 
2(h-W°c(s)) 

(2.5) [ <P,oc>(s) y*() <R,DWoc>(s) *() 

Cl 

[2(h-Woc)] - 3<DWoc,y*>(s) i + 0 as s+0 or s+l 

0 
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Definition 2.10. Given a piecewise C3 two parameter variation 

Q through a critical arc c of the functional J, with the boundary 

conditions M0xM1; the second variation of J through Q is 

2 

J** (PO ,P 1) a T(c ) 
ac 1ac 0 - -  - 0 

Proposition 2.11. Let Pt (s) (i = 0,1) denote the respective 

variation vector fields of a piecewise C3 variation Q through the 

critical arc c. Let 

(c(s),y(s)) = L(c(s),c'(s)) 

and 

(P(s),R(s)) = 

The second variation of J through Q is finite and depends only on 

the variation vector fields P, not on the underlying variation Q. 

Furthermore, 

J**(P0,P 1) = f I 0 
<R1,R0> (5) 

2(h-Woc) - 

4 
<P1,DW(c)><F0 ,DW(c)> (s) 

[2(h-Woc) ]2  

<D2W(c) P0 ,P1> (s) 1 
2 (h-Woc) I 

Proof. We will use the notational convention that 

a2 .  a2  
a&1a60 c00(s) a618&0 I 60 = 6 1 =0 

Q(60,6 1,$) 

1 

-- eT(c ) = fo -<IW(c ,   c >(s). 
860  6061 860 606 1 

ds 

+ fl 2(h-Woc (s)) <c' $I—p--- c'>(s) ds. 
O coci 606 1 860 606 1 

ds 
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Now 
as I 

Therefore 

Flo =6 1 = 0 {2(h-Woc 6 06 1 6061 (s)) -c' (s)} = R1(s). 

a2  
a6 1a6 0 

- Ic 12<D2W.P1,Po>}ds 

1 

J(c ) = {-2<c',PI ><DW,Po > fo 60 61 = 0 60 61 

1 

+ —Ic'I<DW,  a 
fo a6 0 86 1 

coo (s)> ds 

+ {<R 1,P > ± <y,   c' 00 (s)>} ds. 
fo, a6 0 a6 1 

Notice from (2.4) that 

and 

<C',Pj> - 

2<P 1,DW> + <R1,y> 

[2(h-W) ] 

2<P,DW> <y,R 1> + <R1,R0> We deduce that 
= [2(h-W)]2 [2(h-W] 

-4KF 1,DW> <P,DW> +  <Ri,Rü>  
-2<C',PI> <DW,P0> + <R1,P> - [2(hW)] [2(h-W)] 

Furthermore, <y(s), ae:e0 COO(S)> is continuous on [0,1 ], 

piecewise C1 on (0,1) and vanishes as does y(s) at s = 0,1, by 

the assumptions in Def. 2.4. Therefore, 

1 1 2 
E) fo  <_IdhI 2 0c, a&aeo3oo (8)> ds 

0 = j g a< acoo(s)>ds =  

1 

+ fo <y(s) a  'ac1ac0 c' 00 (s)> ds. Therefore 

2 (c 
1 <R 1,R0> <DW,P0> <DW,P 1> 

a  
a61a6 160=61=00  6O fo{  2(hW) [2(hW)] 2 

J )= 

<D2W•P 1 ,Po> I  
[2(h—w)]  ds, 

to show finiteness of J, , notice that [2(h-Woc)] -1 E L1[0,1]: from (2.3); 
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1 1 

I [2(h-Woc)] 1 I dt Jo ds= J - ds = 

Furthermore, see (2.5), 

<DW.,P0>(s) •<DWP 1>(s) <R0,DW><R 1,DW> 

2(h-Woc(s)) • 9 IDWI2 as s1-0 or s+l. 

Since (P,R)(s) is piecewise continuous on [0,1], J**(P0 ,P 1) <. 

0 

Remark 2.12. Later in Chapter 3, we will need a more general 

formula for the second variation. This formula is derived from 

variations identical to those specified in Definition 2.4 except 

that the endpoints of a oc1 (s) at s = 0,1, belong to hypersurfaces 

K and L of m fl No (see (Wi)). 

The critical arc c() would then satisfy 

a(0) E K, c(l) ( L , and 

y(0) i Tc(0) K y(.l) j. Tc(l) 

In this case y(0) and y(l) do not vanish. We find that 

is the sum of an expression like the integral expression given in 

Proposition 2.11 and the boundary terms 

(2.6) <(8), a soaei : coo (s)> S=O = _IY(3)I<3(Pi(8)) 'PO (8)> 
s1 

s=0 

where EO is the Weingarten mapping of K at c(0) relative to the 

unit normal of K compatible with y(0)/Iy(0)I, and 9 is the 

Weingarten mapping of I. at c(l) relative to y(1)/y(1), see 

Hicks [Hi] p. 21. 

To verify (2.6), we let D denote the standard connection in 
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M (see Hicks [Iii], P. 18, where he uses D for the standard 

connection). Then ----co €1 (s) is a vector field along the curve 
as 0 

61 -+ Q(0,c 1,$), and as,-c00(s) = .P 1(s). Therefore 86 c00 (s) 

= D 1(s) \P0 (see Hicks [Hi], p. 19). The formula (2.6) now follows-

after an application of the Gauss equation (see Hicks [Hi], p.26). 

0 

Definition 2.13. Let V denote the vector space of fields F(s) 

along C(S) such that 

(1) F(s) is continuous on [0 ,l],.with 

(2) (P,R)(s) = L*(c,c').(P,P')(s) piecewise continuous on 

[0,1] and piecewise C1 on (0,1), and 

(3) P(0) E Tc(o) M0, P(i) E T0(1) M1 

eT** (P0,P1) as given in Proposition 2.11 is a symmetric 

bilinear form on V. Our attention will now shift to the asso-

ciated quadratic form Tc*(P) J**(P,P) on V. We will not pause 

to ask whether every P E V can be realized as a variation vector 

field of some variation Q, but will intuitively consider elements 

P E V as having been so derived. 

We remark here that, by virtue of (2.4), (2.5) holds for all 

P E V. This fact may-be used, along the lines of Proposition 2.11, 

to show that J**(P0,P1) < for every P0 ,P 1 E V. 

Notice that (2) above implies that P is piecewise C2 on 

(0,1), again by virtue of (2.4). 
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Proposition 2.14. 

(a) Let c(s) be a critical arc of J subject to the boundary 

conditions M0xM1. Then J*(P0,P 1) = 

- f
1 D2W•P1 4<P1,DW> •+ 2<y,R1> 

o <R + [2(h-Wfl + f [2(h-W)] 2 

+ Z <sRi,P(s)> + 
s=1 
S=O 

} DW,P> ds 

(b) Recall the Hamiltonian H(,y) in (1.3), H(x,y) = 

IyI2 + W(x). Let 1-f be the vector space of fields P(s)E V such 

that (P,R)(s) E T(c,y)(S)H'(h) for every s E [0,1]. Let E be 

the subspace of V containing fields P(s) such that 

P(s) = g(s)(sc'(s)) 

where (1.)g is continuous on [0,1], (2.) piecewise C2 on (0,1), 

(3.) s•[2(h-Woc(s))] g'(s) is piecewise continuous on [0,1], 

and (4.) g(1) = 0 (see the connen.ts following Definition 2.13) 

Then V = H E3 E , and J** is positive definite on E. 

(c) Index J** = Index 'H' see Definition 2.25. 

Proof. (a) From (2.4), we may deduce that 

<DW,P><y,R1> 
2(h-Woc) = -- <R1,P0> - 2   ' > [2(h_WOc)]2 <0 

where the derivatives are interpreted as right and left derivatives 

when s = s i = 0,...,n+1. The formula for J** now follows from 

Proposition 2.11. 
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(b) Let F(s) = g(s).(s.c'(s)) - 2(hWoc)(s) where g has the 

four restrictions noted above. Notice that our conditions on 

g'(l) and g(l) together with L'Hospital's rule guarantee that 

F(0) = 0 = P(l). Now 

F' = g'(sc') + g(sc')' , and from (2.4), 

R(s) = g(s) [y(s) + 8 2(h-W) +g'(s) sy(s). 

Conditions (1) through (4) on g guarantee that R(s) is piecewise 

continuous on [0,1]. Therefore 

< y,DW> + glyl 2 +   + s g'• 2 
dli(P,R)(s) = g 2(h-W) y 

= 

It is now easy to see that H fl E = {0}: indeed the only continuous 

solution of g + sg' = 0 such that g(l) = 0 is g 0. 

Since H 1 (h) has codimension one, V = H + E. Indeed, if 

P E V, set q(s) = dH(P,R)(s) = <DWoc,P>(s) + <R,y>(s). Then q(s) 

satisfies the following three conditions: (a) q(0) = q(1) = 0 

(Definition 2.13 (3)), (b) q(s).[2(h-Woc(s))] 2 is piecewise con-

tinuous on [0,1] (see (2.5)), and (,c) q(s) is piecewise C1 on (0,1). 

For such a q(s), there is a unique solution of 

g(s) + sg'() = q(s) [2(7s-Woc(s)] 1 

on [0,1], which satisfies the conditions (1) through (4) listed in 

the description of E. For this g(s), let p(s) = g(s).(sc'(s)). 

Then dl?(P,R)(s) - dZ(P,R)(s) 0 on [0,1] and therefore 

E T )H (h) on [0,1], which implies that P E T7+ H 

as claimed. 
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To show that J** is positive definite on E we consider P E E, 

P(s) = g(S)PO(s), where P0(s) = sc'(s). If R(s) and R0(s) are deter-

mined by (2.4) from P(s), P0(s) respectively, then using the fact that 

c"(s) -  -DWoc  2<DWoc,c'>  
- [2(h-Woc)]- + [2(hwOC)]z(S)Y(S) we obtain 

B(s) = g(s)R0(s) + g'(s)sy(s), R0(s) = y(s) + s(-DW(c(s))) , and 
2(h-Woc(s)) 

D2WP0 4<P0,DW> +2<y,R0> 

R + 2(h-Woc) + } DW(c) = 0. Moreover 

<R,P>J' 
0 

= 0, since B is piecewise continuous, and P(0) = P(l) = 0. A 

straightforward computation using these facts and the formula from 

part (a) yields 

1 

= - J {< (g'sy),P> + g <y + sDW 2(h-W)'' } ds 

71 
+ z ( g')<sy,P>(s.). 

i=l 8i •1. 

The integral part of this expression is reduced, after an integration 

by parts on the first term, to fo 
- <g'sy,P> - s 2 g? 2 

Therefore, J** (P,P) = f s2g12 ds > 0, if P 0. 
0 

(c) To show that Index J** = Index J** , it suffices to show that if 

p: V-+tt is the projection associated with the splitting V = HE, then 

for P E V, J** (pP,pP) 5 J* (P,P), with equality only if P E K (see 

Ambrose [A], p.64). By virtue of part (b), this will follow if we 
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can show that for P0 E H, Pi E E 

J** (P1,P0) = 0. 

To this end, let P0 E H, then we deduce that 

0 = dEl (P0 ,R0) = <P0 ,DW> + <R0 ,y>, and 

<R0,DW> 
0 = <P,DW> +  2(h-Woc) + <R0 ,y> - 2(h-Woc) , 

except at s = Si5 i = 0,... ,n+l. This latter expression reduces, upon 

using (2.4) and the fact that 0 = dH (P0 ,R0), to 

0 = < { R DWP0 14<P0,DW> + 2<R0 '  j Y>'1 
+ 2(h-Woc) + [2(h-Woc)] DW I , > 

This implies, since P1(8) = g(s)sy(s), that 

J = il <8R0,sgy> + 

All of these terms vanish since for any s E [0,1], 

= -<DWoc(s),P0(s)> , and 

P1(0) = P1(l) = 0. 

Therefore Index J** = Index J** 
0 

Definition 2.15. The index of J** is defined to be the dimension of 

the maximal subspace of V such that J** restricted to this subspace is 

negative definite. The nullity of J** is the difference of the dimen-

sion of the maximal subspace upon which J** is negative semidefinite 

and the index of J*. 
0 

Given a Lagrangian f(a,v) such that f(r(s),x'(s)) > 0 as 
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a quadratic form for all S E [0,1], it is shown in classical 

variational analysis how this implies that the quadratic form 

associated with the second variation has finite index (see 

Duistermaat [D]). For our functional J, 

f(x,v) = (h-W(x)) M2 

and fVV = 0 at the endpoints of the critical arc C(S). Neverthe-

less we may still prove Theorem 2.16 below. 

For P E V, (P,R)(s) = L*(c,c')(P,P')(S), let 

1 I  ds p1 2  
I(P IP) = fo [2(h-Woc)] 

and 

II + RI 2  M(P IP) = 1 fo [2(h-Woc)] ds 

The above integrals are convergent since 

1 
I   Jo ".2 (12-Woc) ds 

1 dt fods = T < °°, see the discussion following (2.3). Let s(t) 
ds 

be specified as in (2.3), and 

(U,V)(t) = (P,R)(s(t)). 

The norm associated with I(P,P) induces the topology on V of 

E2 [0,T] convergence of U(t); M(P,P) induces the H1 topology of 

E2 [0,T] convergence of the fields U(t) and their derivatives 

U(t) on [0,T]. 

A field P E H together with E .21? is an eigenpair for J* 

relative to I if 

- p,I(',P) = 0 

for every P E H. 
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It is not difficult to see that (see Hestenes [He], p.111, for 

the statement and proof in "Lagrangiant" format) (p,P) is an eigen-

pair for J** relative to I if and only if the following conditions 

hold (see Prop. 2.14(a)): 

(2.7)(a) fi' 

l 
(P,R)(s) is '-I on (0,1), and 

2 
+ pp  + DWP  + 2 {2_<P,DW> 

[2(h-W)] [2(h-W)} [2(h-W)J2 DW + 

<, y>  
[2(h-W) ]2 DW } = 0 on (0,1) 

(2.7)(b) .I?(s) J. T K8 for s = 0,1. c(s) 

For = 0, (2.7)(a) together with (2.4) are just the linearized 

Hamiltonian equations (see (2.12)) for XF (see (1.30)) along 

(c(s) ,y(s)): 

(2.8)(a) Pr <DW,P> R  
= 2 [2(h- ) [2(h-W)] 

(2.8)(b) - -  D2WP - 2 {2KPDw> + Kl?,7J> } DW 
- [2(h-W)] [2(h-W)]2 

The equations (2.8) are equivalent, via the linearized Legendre 

transform L*(c(s),c'(s)) (Lemma 2.9), to the linearized Euler 

equations about (c(s),c'(s)), also known as the Jacobi differen-

tial equations (see Hestenes [He], pp. 122,123). We will refer to 

(2.8) as the ?tco_Jacobit! equations. 

Theorem 2.16. The index of J** is equal to the number of negative 

eigenvalues of J** relative to I,, counted with their algbraic 

multiplicity., and this number is finite. The nullity of eT* is 

also finite. 
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Proof. By virtue of the fact that 3 a > 0 with 

M(P) a(IIPJ + jJRJI) (11112 denotes the usual £2 norm) 

we may follow the argument given in Duistermaat [D], pp. 176-177, 

provided that we can find t* 0 and m > 0 so that, for every 

P E H, 

J**(P) - *.I(p) MM(P) 

The proof of this inequality uses a standard argument (see Hestenes 

[He], p.110) which we will repeat here. 

Let (see formula for J** in Proposition 2.11) { IRI - <P,DW>2 
IRI [2(h-W)] 

2 - 4ZDW>2 - <D2W.P,P> 
9 DW 2 

(2.9) j(s,P,R) = 

if s E (0,1) 

if 8= 0,1 

Then j(s,P,R) is a quadratic form in (P,R) continuous on [0,1], 

(P DW>2 <R DW> 2 
since [2(hw)] as s+0 or s+1, see (2.5). 

To show that J**(P) - .i*I(P) m1('), it suffices to ShQW that 

for all (s,P,R) E [0,1] >< >< 

j(s,P,R) - *IPI2 >m.[IPI2 + RI2] 

To prove the existence of 0 and m > 0 which satisfy the above 

inequality, we will argue by contradiction. 

Assume that for every integer n > 0 we can find 

E [0,1] x F M X 

so that the inequality above is not satisfied with 

= n, m = 1/n and (s,P,R) = (sPR) 

Since the expressions on both sides of the inequality are quadratic 



- 58 - 

in (P,R), we may assume that 

lPI2 + R n 12 = 1. 

Therefore, by compactness, we may choose a subsequence n k with 

(s,P,R)-- (s 0,P0,R0) with I012 + IR0I2 = 1. 

Therefore j(s 0 ,P0,R0) + Urn sup n1P01250. Since I01 2 0, 

P = 0. It follows that IR0l2 = 1, and j(s 0,0,R0) 5 0. However 

if S0 E (0,1) , j(s 0 ,0,R0) = IRO 12 = 1 while if so = 0,1 then 

<Ro DW> 2 
_4  '  >5/ 

I DW I - 

j(s0)0,R0) = IR0I2 IRO 12 = 5/ 9. 

In both cases we obtain a contradiction. The result now follows 

along the lines given in Duistermaat [D], pp. 176-177. 

0 

The index theorem that we wish to use relates the index of 

J** to certain geometrical quantities which we now describe. 

Recall that To denotes the co-geodesic flow of the Hamiltonian 

vector field X (see (1.30)). Let 'r:T*N -•-N be the canonical 

projection. 

Definition 2.17. Let M denote a submanifold of N with MilaN = 0, 

(see (Wi) for notation). Define, the rn-dimensional submanifold of 

T * N N x 

'(M) = {(x,y) Ix EM, <y,P> = 0 for every P ET MI. 

For a relatively compact open set B of .L(M) and an appropriate 

interval 'B containing s0, define the mapping 

X:BXIB _)T*N by X(z,$) z (x,y) EB and s EIB. 
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Denote the projection co(z,$) by ji88 Oz. Let p = *s l-8 0zo, then 

(p,s1) is a focal point of z0 = (xy) E ±(M) if T ZO '4t91 80 is 

singular. as a map from T .LM) to T N. The order of the focal point 

at (p,s 1) is equal to the number d1(Kernel(Tz 8130 )). We will 

also refer to s, as being a focal point of x E M if zo and p are 

clear from the context. o 

Notice that we have also denoted the projection of Yoz for z E T*N 

into x-space by 'I1 z. However, this will cause no confusion since 

in the context of focal points of a submanifold M the restriction 

of YO to .L(M) will always be implicit. 

Remark 2.18. Geometrically a focal point in x-space is the limiting 

point of intersection with 4t880 of a one parameter family of 

trajectories *8-80Z through *8-80z where z E .L(M) and zo = z (see 

Figure 13). Analytically we 

look at vector field solutions 

(P(s),R(s)) of the linearized 

S—Se 
equations of about ! , 

z E M), which satisfy the 

boundary condition 

(2.10) (P(s 0),R(s 0)) E T Z .L(M). 

It turns out that this boundary condition determines an rn-dimensional 

subspace of solutions J M of the 2m-dimensional vector space of 

solutions of the co-Jacobi equations (2.8) about (c(s),y(s)) = YO-30z 

(see Proposition 2.20). If {i()'•••'m()} represents a basis of 
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-s si o solutions for cM then ('I' z,s 1) is a focal point of z E L(M) 

provided that 

det[P1,...,P 1(81) = 0 (see Morse [Mo], p. 125). 

To complete our preliminary discussion of focal points we include 

the following standard result. The proof is an adaption of that 

found in Morse [Mo], p. 125 and refers to an arbitrary Hamiltonian 

on T*N 2 TN . We recall the standard 

symplectic form co = Z dAdyi on T*N NXJR m , 

(2.11) c((P,R),(U,V)) = <P,V> - 

Proposition 2.19. Let M be a submanifold of N such that MflaN = 0 

Let z = (xy) E .L(M) (see Definition 2.17). Then the focal points 

of z along c(s) z are isolated provided that F YY (! 8 '' z) is definite 

(either positive or negative) along !z. 

Proof. The variational equations of 4 = (F_ F) along ?z are 

P, (s) = P YX (!8z).P(s) + F YY (YL8z).R(s) 

R'(s) = -F (!8z)P(s) - F XY (Jf8z)R(s). 

(2.12) 

Since j.(jj) is a Lagrangian submanifold of T*N (see Proposition 2.20 

below for a proof when M is a hypersurface) if 

is a basis of T j(M) 

then = 0 for i,j = 1,...,rn. Let (P(s)R(s)) 

be the solution of (2.12) with initial conditions 

(P(s 0),R.(s )) = (P. R.) 
11 1- 0 

i =1, ... ,m. 
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Suppose that det[P 1,... vanishes on a set of points s. 

accumulating at Then by continuity det[P 1,. •Pm ](s *) = 0 

d 
and since s 8* 

8=8 
* det[P1,. P](s) = 0. We may assume 

without loss of generality that 1(*) = 0. Therefore, 

0 = - det[Pl,...,Pm ](S*) = det[P,P2,... }(5 * Since 

F YY ('Y) 0 0 by assumption, if P'(*) = 0 then R1(s*) = 0 and 

consequently 0, see (2.12). Since P1(s 0) 0 0 by construc-

tion, there exists numbers •• ,C not all zero such that 

(2.13) p{(*) c2P2(s*) + ... + cP(s* 

Let P(s) = c2P2 (s) + ... + eP(s), R(s) = c2R2 (s) + ... + CO (s). 

Then (P(s),R(s)) is a solution of (2.12) and (F(s0) ,R(s 0)) ET  j(M). 

Therefore 0 = (R 1  

hand side of this equation in a using (2.12)' and the fact that 

(simply differentiate the right 

((p ll  (0) Po))) 0) 0). However 

= F. .F (s*) + F .R (*) F R (*) since P (s) = 0. 
1 yx 1 yy 1 yyl 1 

(( (s (p(* = _<P(s*),R1(s *)> (from (2.11)) Therefore 0 = )11R(s*)J 
_<p(S*),Fl.pr(s*)> (F 0) 

yy 1 yy 

= _<P(s*) F_l .P1(8 * )> . 

yy 1 

Since F 1 is also definite, this contradicts our previous observa-
yy 

tion that f(*) 0. 

Let K,L be hypersurfaces of .ZRm fl NO (see (Wl)). The 

index theorem of Ambrose [A] applies to a critical arc c of the 

functional eT with boundary conditions KxE. We are interested in 

extending the index theorem so that it applies to our boundary 
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conditions M0 X M1. To carry out this extension, and in order to 

generalize the notions of focal point and convexity (see Ambrose 

[A]), we must study the co-Jacobi equations (2.8) along a critical 

arc c. We will find that solutions of the co-Jacobi equations may 

be continued to the boundaries and indeed beyond in a C1 way (see 

Proposition 2.41). The key to this result lies in the connection 

between solutions of the co-Jacobi equations along c(s) and solutions 

of the linearized Hamiltonian equations of X  (see (1.6)) along the 

corresponding periodic orbit o(t) = (n(t),X(t)) of X on H 1 (h) 

(see Lemma 1.6 and Remark 1.13). 

To begin our study of the co-Jacobi equations and in light of 

the discussion in Remark 2.18 (see (2.10)) we present the following 

result which in part characterizes the tangent space of .L(M) at 

z = (x,y) E .L(M). In the following results we will identify 

(a,y) E T*N with (r,y) E TN as usual on 2m If M is an oriented 

hypersurf ace in N0 we denote the Weingarten map of M at (c,y) E .L(M) 

by 2: TM T  C T1 (see Hicks [Hi], p. 21, and also Remark 2.12 

for notation concerning the standard connection D). 

Proposition 2.20. Let M be an oriented hypersurface in N°. Recall 

that F(,y) = IyI 2.[2(h_w(x))]_l. Let z = (x,y) E (M), y 0, 

and denote the Weingarten map of M at (c,y) by E. Then M) is a 

Lagrangian submanifold of T*N, and 

(2.14) (P,R) ET5 L(M) PETf, and R-Iyj.2(P) .LTM (compare (2.7)b). 

Moreover, we may choose a basis of T5J..M), so that 

71 71 i=ldF(PR) = 0,,i = 1,...,m-1 and dF(PmRm) 0. 
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Proof. Let z . = (c,y6) be a curve in .L(M) through z = z0 with 

- z6 = (P,R). Let be a basis of tangent vectors for 
6=0 

T M. Then 
x 
C 

(2.15) = 0,-i- = 1'... 'M-l ' 

and we may assume that y 0 for & sufficiently small since y 0 

by assumption. Let {e} - be vetor fields on a neighbourhood 

within N0 of x E N0, compatible with 1=1 that is e'(r) = e. 

Let n(q) denote the unit normal at q EM compatible with y/fyl, 

that is n(r) = y/iyi. 

Te 

Then (see Remark 2.12 for notation) 

n(x) = Dn = (P) (see Hicks [Hi], pp. 19, 21). Further-S=O 

more, eo = D 1,= l,...,m-l. By the Gauss equation, 

see Hicks [Hi], p. 26, <y,D e'> = —iyi <E(P),4>,i = 1,...,m-1. 

Therefore, from (2.15) 

0 = =o <ye> <R,e> + 

= <R,> - fyf <E(P),> 

= <1? - JyJ 2(P),e>,i = l,...,m-1, 

 fs., R - fyf EP) j T,!. Moreover, P E TdY since x E M and 

as c=0 c 

If (P1,R1), (P2 ,R2) E T -L(M), by virtue of (2.14), it follows 

that 

CO( (P1 ,R1), (P2 ,R2)) = Q'1,R> - 2 ,R1> (see (2.11)) 

(2.16) = fyi <P1,(P2)> - fyf <F2,2(P1)> 

= 0 (since E is symmetric, see 
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Hicks [Hi], p. 23). 

We will now show dim T I(M) m and conclude that dim(T .L(M)) =m 

since (2.16) shows that co lT5 i(M) = 0, see [A & N], p. 404. 

Let x be curves in M through r which satisfy 

a 
&=0 & = e0,  

Choose y so that (x,y) E .L(M), y = y and 

F(,y i -21Y ) = i1 2 12(h-W(xi = F(x,y), i = 1'... ,M-l. 

a  Let (P ,R ) ) E T .i. (M); then dF(P ,R) = 0 and 
11 = =o 5 

(P,R),i = 1,...,m-1 are linearly independent since the P are. 

Let mRm) = (O,y) = =o (l+) ') E T J.(M). 

Then, dF(Pr,jR ) = <.aF  (x,y)> I12  m y 2(h-w()) 0 and (P ,R ) is mm 

linearly independent of (P,R),i11 

Corollary 2.21. Let h be a regular value of the lkvniltonian 

H(x,y) IyI2 + W(a) that is dii 0 on H 1(h). Let M be a 

hypersurface as specified in Proposition 2.20. Then 

.Lh(M) = 1(M) fl H 1(h) is a submanifold of TN with dimension m-l. 

For z E J(M), the vectors {(P..,R.)} 11 as constructed in 

Proposition 2.20 form a basis for 

Proof. lh(M) = T i (h) where 'ii = HII(M). Therefore 1h (M) is a 

submanifold of T*N provided we can show that h is a regular value 

of . However if (x,y) E 1 1(h) then y 0 0 since 

- and dY(X.y)(OY) = lyI2 0 0. The dimension of 

is m-1 since the codimension of 1(h) in ±(M) is 1. To verify the 

last statement concerning the vectors (P.,R) E T 1(M), i = 
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we need only verify that (P,R) E T5 Ji(M), but this follows since 

0 = dF(P,R) = 2(h-W(x)Y 1 •dH(P.,R.). o71 

Recall that the base integral curves c(s) of X. (see (1.30)) 

through z E T*N will also be denoted by 

(2.17) c(s) = 4r s-s '-'z , where (c(s 0),y(s 0)) = Z. 

Let N be a hypersurface in m fl We will now begin to collect 

some results concerning the 'twavefront set of Mtt, 

(2.18) 

and the related notion of orthogonal Jacobi fields (see Definition 

2.28). 

Lemma 2.22. Let N be a hypersurface as in Proposition 2.20 and 

let s = (xy) E .L7 (M) (see Corollary 2.21). If ( 8180z3s1) is 

not a focal point of x E N then there is a neighbourhood B C 

of z E jh(M) such that 

81 8O(B) is 

Proof. If T z *81-801 T 

a hypersurface in m fl No. 

h 
j. (N) is nonsingular (see Definition 2.17) 

then there is a neighbourhood B of z in .Lh(M) such that 5150 IB 

is locally a diffeomorphism onto its image 5150(B). The result 

follows. 0 

Notice that the tangent space of fr510 1h(M) at 5150z is 

spanned by 

(2.19) P(s1) = T5 5150(P.,R.),j = 

where (P,R) are a basis of T5 .Lh (M) as specified in Corollary 2.21. 
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It is convenient at this time to amplify the observation (2.19) 

and introduce Jacobi fields along the base integral curve c(s) of 

X  on F 1(). We recall that H 1 (h) = F 1 (i) U {(x,0) Ix E aN} 

(see Remark 1.13). 

Definition 2.23. Let (r,y) = z be a curve through z0 in 

x6 f aN with 

(2.20) (P,R) = F'=0 z6 z  E T H 1(h). 

For (P,R) as in (2.20) we define the Jacobi field P(s) along 

C(S) = 4!88 0z 0 by (see (2.19)) 

(2.21) P(p) = T (P,R) 
zo 

a s-s 4 oz ae 6=0 0 

Proposition 2.24. Let P(s) be a Jacobi field along c(s) = 4,8-s 0z 0. 

Let (c,y)(s) = L(c,c')(s), and 

(P,R)(s) = L*(c,c') (P,P')(s) 

Then (P,R) (s) is a solution of the co-Jacobi equations (2.8) along 

(c,y) (s) and P E H (see Proposition 2.14 (b)). Moreover, 

(2.22) <DWoc,P>(s) + <y,R>(s) 0 

Proof. Let c6 (s) = be the base integral curve (see (2.17)) 

of the orbit !OZ of X (see (1.30)) through 

ze E F1() C H 1 (h). Let 

Then 

P(s) = T zo . (P,R)(s 0) (see (2.21)). 

(C& / 'I - 8S c6 ,y6)s) - - Lc6 ,c6js) - ! 0z6 
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and 

(2.23) (P,R)(s) = L*(c,c')•(P,P')(s) = 

0 

The linear mapping T 20 20 T T*N T(T*N) is a fundamental 

(matrix) solution of the co-Jacobi equations (2.8) (see also (2.12)), 

see Hartman [Ha], pp. 95, 252. In particular, (P,R)(s) is a solution 

of the co-Jacobi equations along (c(s),y(s)) (see (2.23)). 

Now T ZO leaves T(H 1 (h)) invariant. Indeed 

TZ YL 0 F (zo) = XF (!S_5020) and 

( -3 O)* = CO 

(that is is a symplectic transformation, see (2.11) and 

[A & N], p. 188). Therefore (see [A & N], p. 187), 

'(c,y)(s) (P,R)(s) = w6 80 )' (P,R)(s)) 

= (!SS0 )cc(XF (zO),: (P,R)(s 0)) 

dF 20 (P,R)(s 0) = 0 (see (2.20)). 

Consequently, (P,R) (s) E T (c,y) (s) H 1 (h) and P E H. Furthermore, 

0 = dl? (c,y) (s) (P,R)(s) = <DWoc,P>(s) - <y,R>(s). D 

Remark 2.25. The usual definition for Jacobi fields is that F(s) is 

a Jacobi field along c(s) if P(s) satisfies the Jacobi differential 

equations along c(s) (equivalent to the co-Jacobi equations via 

L*(c,c')), see Hestenes [He], p. 123. However in light of Proposi-

tion 2.14, we are mainly concerned with those Jacobi fields P E H, 

hence our Definition 2.23. 

Note that (2.22) allows us to simplify equation (2.8)(b): for 

a Jacobi field P along c(s), 
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(a) P'(s) 2<DWoc,?> (s)  
[2(h-Woc(s))] 2 y(s) + R(s)  2(h-Woc(s)) 

(2.24) 

(D2Woc) .P(s) 
(b) R'(s) =   

2(h-Woc(s)) 

2<DWoc ,P> (s) 

[2(h-Woc(s)) :12 DWoc(s). 

Lemma 2.26. (Gauss) Let F(s) be a Jacobi field (see Definition 

2.23) along c(s) such that <P(s0),y(s 0)> =0 where 

(c,y)(s) = L(c,c')(s) 

Then 

0 

for all s where XF(cy)(s) is defined (see (1.30)). 

Proof. <P(s),y(s)> = <P',y>(s) <P,DWoc>(s) (see  
ds 2(h-Woc(s)) 

- 2<P,DWoc>(s) + <R,y>(s)  <P,DWoc>(e)  
- 2(h-Woc(s)) 2(h-Woc(s)) 2(h-Woc(s)) 

= 0 (see (2.24) and (2.22)). o 

Remark 2.27. Let \V8_80(J.h(M)) be the wavefront set of MCJJI0, and 

let 

z = (X, Y) E Lh(M). 

Let (c,y)(s) = Ys-80z and assume that ('4' z,$) is not a focal 

point of z E .Lh(M) (see Definition 2.17). Select a relatively 

compact neighbourhood B z of z in .Lh(M) satisfying the conclusions 

of Lemma 2.22. It follows from (.2.18) and Lemma 2.26 that 

(2.25) (c,y)(s) E Ih(s_so(B)) 

Indeed, c(s) E jh(M) and y(s) iT c(s) Y" (M), since 
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(2.14) and Lemma 2.26 imply that 

= 0 for i = 1,... ,m-1, 

where P(s) and P(s 0) are given by (2.19). 
?1 11 

We will refer to (2.25) with the expression "the wavefront set 

of M remains orthogonal to the trajectory a(s)". The focal points 

of z E I(M) along C(s) correspond to points (c(s),$) where a singu-

larity develops in the wavefront set (see Figure 14). 

Definition 2.28. An orthogonal Jacobi 

field P(s) along c(s) (see (2.17)) is 

a Jacobi field (see Definition 2.23) 

such that 

<F(s 0) ,y(5 0)> = 0 

for some 

Definition 2.29. Let M be a hypersurf ace 

of E m fl No as specified in Proposition 

2.20. Let (c(s),y(s)) = with z E i h(M) AnM-orthogonal 

Jacobi field F(s) along c(s) is a Jacobi field with initial conditions 

(P,R) E T 

14 

(see (2.20) and (2.21)). Note that by virtue of (2.14), the conclu-

sion of Lemma 2.26 is in force, and F(s) is an orthogonal Jacobi field. o 

Remark 2.30. By virtue of Proposition 2.24, the space of Jacobi 

fields F(s) along c(s) is isomorphic to the vector space of initial 

conditions (P,R)(s 0). This latter space has dimension (2,n-l) (see 

(2.20)). 
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The space of orthogonal Jacobi fields P(s) along c(s) is 2m-2 

dimensional since 

{(P,R)(s0) I <P,y>(s) = 0} fl T(cy)(so)H'(h) 

is a 2m-2 dimensional vector space. Moreover, the space of M-ortho-

gonal Jacobi fields (see Definition 2.29) is rn-i dimensional by 

virtue of Corollary 2.21. 

As we shall see shortly, the space of orthogonal Jacobi fields 

along c(s) is a symplectic space. The space of M-orthogonal Jacobi 

fields along c(s) is a Lagrangian subspace of the space of ortho-

gonal Jacobi fields along c(s). 

Remark 2.31. (a) Up until now we have considered Jacobi fields 

along a base integral curve c(s) of J5 (see (2.17)) on f1() for 

some parameter interval A containing s, such that 

{c(s) I s EA} fl aN= 0 

We will now want to consider the special case where c(s) is a 

critical arc of the functional J with boundary conditions M0 xM1 

(see Definition 2.6). In particular 

c(i) E C aN, for i = 0,1 

In this case, for 0 < S < 1 and A = (0,1) our previous results in 

this chapter hold. We would like to extend these results to include 

A = [0,1]. It turns out that the orthogonal Jacobi fields along c(s) 

(see Definition 2.28) have a C1 extension to the entire real line 

(-,°°). (see Proposition 2.41). However, the linear vector field 

(2.2:4) blows up at the boundary where W(x) = h. We must therefore 
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reparameterize the Jacobi fields in order to remove these singular-

ities. The original time parameter t (see (2.3) and the discussion 

following this equation) will be used to reparameterize th moving 

wavefront sets fl (B) (see Lemma 2.22) and the orthogonal Jacobi 

fields P(s) along c(s) which span the tangent space of 45 (B) at c(s) 

(see (2.19)). This will allow us to consider the wavefront sets 

associated with (subsets with compact closure of) the boundary 

branches (i = 0,1). 

(b) Let c(s) be a critical arc of the functional J subject to the 

boundary conditions M0 XM1 (see Definition 2.6). By our results in 

Proposition 2.7 and especially the discussion following (2.3), we 

make the following observations. Let 

(c,y)(s) = L(c,c')(s), for S E [0,1], and 

let o(t) = (ii,X)(t) be the associated integral curve of X 
H 

on H 1(h) (see (2.3)): 

(c,y)(s(t)) = (ir,X)(t) with 

t 

(2.26) s  J 2(hWo(t'))dt' 
Then there is a smallest T > 0 such that 

TT (0) E M0 and 11(T) E M1 

and we may assume that 1 = J 2(h-Wolr(t'))dt' (see Remark 1.13). If 

0 
(P(s),R(s)) is the solution of (2.24) (a) and (b) associated with an 

orthogonal Jacobi field P(s) with initial conditions (P,R), i.e. 

(P(s0),R(s 0)) = (P,R) for some 0 < so < 1 (see (2.20)), we consider 
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the reparameterized vector fields along v(t) 

(2.27) (u(t),v(t)) = (P(s(t)),R(s(t))) (0 < t < 2') 

where s(t) is given in (2.26). o 

Lemma 2.32. Given (U,V)(t) as specified in (2.27), for t E (0,2') 

(t) = U(t) - 2<DW(n(t)),U(t)> X(t) + V(t) 
dt 2(h-W(Tr(t))) 

(2.28) 

(t) = V(t) = -D2W(Tr(t)) U(t) 2<DW(IT(t)),U(t)> DW(ir(t)) 
dt 2(h-W(n(t)))  

Proof. Immediate from (2.27), (2.26) and (2.24). o 

Definition 2.33. Let P(s) be an orthogonal Jacobi field along c(s) 

and let U(t) = P(s(t)), s(t) as specified in (2.26). We will refer 

to such a vector field U(t) along ir(t) as a (reparameterized) ortho-

gonal Jacobi field along u(t) and denote the (2n-2)-dimensional vector 

space of such fields by J (see Remark 2.30). 
IT 

Our immediate task is to show that (reparameterized) orthogonal 

Jacobi fields are not restricted to the interval (0,2') (see (2.27)) 

but in fact have well defined extensions to the entire real line. To 

carry out this extension, we must introduce the linearized equations 

of XH along (rr,X)(t). 

Remark 2.34. We recall some basic facts. Let z = (,y) E H 1 (h) 

and X11 (x,y) = (y,-DW(x)). 

are 

The linearized equations of X about 

(2.29) (t) = fl(t), (t) = _D2W(ptz)(t). 
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The solutions of (2.29) are defined on (_ c0 , 00) provided that t  is 

(see Hartman [Ha], p. 45). The linearized flow mapping T is a 

fundamental (matrix) solution of (2.29) (Hartman [Ha], pp. 95, 252). 

Furthermore, T245 leaves T(H 1(h)) invariant (see Proposition 2.24, 

in particular the proof that P € H if P is a Jacobi field). o 

Remark 2.35. At a point z = (x,O) E H 1(h), X E aN, the co-geodesic 

flow Y is not properly defined since X(z) is not defined (see (1.30)). 

Nevertheless we have been able to make sense of the expression 

ys(t)(XO) t(0) 

(see (2.3) where Lemma 1.6 was adapted to cover this case). 

In order to give an extension of U E YL to (-°',°°), we will introTT 

duce a "time function" g (see (2.31) below) which will, among other 

things, allow us to properly use the express.ion!8z, 

z=(x,0)EIf 1(h),EaN. 

For Proposition 2.36 we will temporarily relax our convention of 

associating s: = 0 along a critical arc c(s) with a boundary point 

X E N. 

By Remark 1.13 and (2.3) (see above), the flowt 

(of X H ) and the co-geodesic flow Yz (see (1.5)) are related by 

= where 

rt 
(2.30) s(t,z) = J 2(h-Wop ti z)dtt 

0 

(recall that cpz denotes the base integral curve for tz). Our 

next result establishes the existence and smoothness properties of 
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the inverse function g(s,z), 

g 
(2.31) S = I (s,z) 2(h_Woptz)dt 

Proposition 2.36. Let z = (x,y) E IT 1(h). The function 

g(s,z) : xH 1(h) -+ in (2.31) is well defined and continuous in 

(s, z). Furthermore, g is C3 in a neighbourhood of (s., z) provided 

that 2(h-Wo) 0. If 2(h_Wocp0'0)z0) = 0 for some s and 

z0 = (x0 ,y 0 ), then the following limits of directional derivatives 

of g in z exist and have the stated value. Let 

to = -g(s0,z 0), (x(t),X(t)) = and 

(2.32) ()(t) = T 
z0 

for = (o,ro) E T z0 11 1(h) (see (2.29)). 

Then provided that <o,yo> = 0, 

urn <ag  (s,z0),> =   

JDW(x(0)) 2 

( <,•> will also denote the inner product in JR2m). 

Proof. To show the existence of g(s,z) satisfying (2.31), we 

observe that for fixed z E H 1(h), t -+ s(t,z) (see (2.30)) is 

one to one. Indeed, if 2(h_WQ(ptz) 0, then - (t,$) > 0; while 
at 

a3s a2 
If 2(h_Woptz) = 0, then (t,z) > 0 and - 7.7 (t, Z) = (t,z) =0. 

Therefore for each z E H 1(h), an inverse g(s,z) of s(t,z) exists. 

Continuity in (s,z) now follows from properties of s(t,z). Indeed, 

s(g(s,z),z) = s, 

s(,) is continuous in (t,z) and s(,z) is one to one. Consequently 
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g(s,z) is continuous. 

Consider the C3 function 

r(t,s,z) = s - f t 
0 

2(h_Woptz) dt'. 

Then r(g(s,z),s,z) = 0. By the implicit function theorem g is 

is (s,z) provided that 0 - (g(s,z),s,z) = 2(h-Wo'z). Now 

let 2(h_Wop' 00)z0) = 0, then 2(h-Wo(0)) = 0 (see (2.32)). 

Since - 2(1't-WOx(t)) > 0, there is a neighbourhood G of 0 so 

that t E G\{0} implies that 2(h-Wox(t)) > 0. Therefore, for 

t E G\{0}, t-t0 = g(s(t-t0 ,z 0),z 0) and 

o = 
as 

Since aa 
as 

(s 
as 

(S (t-to 

(8(t-t 0 ,Z) 

(t-t0,z 0) ,z 

)')' (t-t0,z 0) +-ag  (s(t-t0,z 0),z 0). az 

= [2(h-Wox(t))]T1, for E T zo 11(h) 

-1 as 
= -[2(h-Wox(t))] .<.... ..... (tt0z0)> 

By virtue of the fact that 

<.!. (t-t0,z 0),> = - 

as 

where  so i; '-t (p o. 

(2.33) az 

It-to tr tr. 
2<DW((p zo),T2 (P > 

Jo 

f 
t  2<VW((p ° zo) T ZO (p O•> dt' ,  

= (t') (see (2.32)), it follows that 

ft 
2 it <DWox,>(t') dt' 

(s(t-t0,z0),z0),> - 

2(h-Wor(t)) 

The following lemma will be proven at the conclusion of 

Proposition 2.36. 
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-1 . 

Lemma 2.37. Let (30,20) E .11? x H (h) be as speci fied in Proposi-

tion 2. 36. Then using the notation of (2.32), and assuming that 

<o,yo> = 0 , we have 

I<DW(s(t')),(t')>dt' = 0. 0 

to 

To conclude our proof of Proposition 2.36, notice that 

(2.34) X(0) = 0 (see (2.32)) 

Since (,)(0) E T(x)(0) H-1 (h) (see Remark 2.34), from (2.34) 

we have 

(2.35) 0 = d1(x)(o).0)) = 

Therefore, from (2.33) and Lemma 2.37, by applying L'Hospital's rule 

(twice) we obtain 

liin < ag (3(tt0,s0),Z 0),> urn <DWox,>(t) (see (2.35)) 
t_+O 3z t-o <DWor,A>(t) 

= urn <(D2Wo),>(t) + <DWox,T)>(t)  

t-o <(D2Wox)X,X>(t) + IDW(x(t))I2 

<DW(X(0)),1(0)> .IDW((0)) I 2 (see (.2.34)). 

The conclusion of Proposition 2.36 now follows since 

s(-t0 ,z 0) = and 

t -- s(t-t0 ,z 0) is one to one. o 

Proof of Lemma 2.37. Using our notation in (2.32), 

{<-DW(x(t')),(t')>+<X(t'),(t')>}dt' 
to 

However, (.(t),(t)) E T(xx)(t) H-1 (h) so that 
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0 = dFI((t),r(t)) = <DW(x(t)),(t)> + <X(t),(t)> 

Therefore, since <yo,O> = 0 by hypothesis, 

It 
(2.36) <X(t),(t)> = -2 j <DW(x(t')),(t')>dt' 

to 

In particular 2 J DWox,>dt' = 0 (see (2.34)). 
to 

Corollary 2.38. Let c(s) be a critical arc of the functional J 

subject to the boundary conditions M0 XM1. Let 

Zo = L(c,c')(s0) for some 0 < so < 1. 

Then for s E (— 

(2.37) 

co, oo) 

!660zo = ,(s_s o,zo) 

provides a continuous extension of (C3 )(8) = L(cc')(s) to (_co,00). 

For zo = (x,y), = (ono) E T5 11 1(h), the directional derivative 

of (2.37) 

2 
zo 

is defined and continuous for s E (- 00,00) provided that 

< 0,y> = 0 

Proof. The conclusions all follow from Proposition 2.36 once we 

verify that for 0 < s < 1, 

(c,y)(s) = 

However, as we have seen in (2.3), 

(c,y)(s(t)) = (ii,X)(t) = 
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where 0 < to < T satisfies so = s(t0) (see (2.26)). Now (see (2.30)), 

t-t0 = g(s(t-t0,z 0),z 0) = g(s(t)-s(t0),z 0) = g(s(t)-s0,z 0), since 

s(t-t0,z0) = s(t) - s(t0). Therefore, for 0 < t < 

(c,y)(s(t)) = 

This is exactly what we wanted to show since 0 < s(t) < 1 for 

0 < t < T. 0 

Theorem 2.39. Let c(s) be a critical arc of the functional J sub-

ject to the boundary conditions M0 XP/11. Let 

(cy)(s) = L(c,c')(s) and 

(cy)(s(.t)) = (rrX)(t) (see 2.26)) 

with rr(0), rr(T) E aN as in (2.3) (see also Remark 2.31 (b)). For 

0 < to < T let z (1T,X)(t0) and let = E T5 R-1 (h) 

with < 0,X(t0)> = 0. Let P(s). 0 < s < 1 ., be the Jacobi field 

along c(s) so that 

P(s) = T 
zo 

(see (2.21)). 

Let (U,V)(t) = (P,R)(s(t)) (see (2.27))., and 

()(t) = T zo (see (2.29)). 

Then (U IT) (t) has a continuous extension to ., I 
'- °° , °° ' and "  

<X>(t)  
(2.38) (ZJ,V)(t) = (,rj)(t) 2(h-Worr(t)) X11(ii,X)(t). 

Proof. For 0 < t < T, we have by virtue of (2.27), 

(2.39) (.u,v)(t) = T !s(t)s(to). 
zo 

Since <0,X(t0)> = 0 by assumption, it follows from Corollary 2.38 

(see (2.23)). 
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that (U,V)(t) has a continuous extension to (oo,00). Moreover, 

(2.39) together with (2.37) implies that 

(U,V)(t) 

and the right hand side of this may be extended continuously to 

(co,00) (see Proposition 2.36). 

Now s(t)-s(t0) = s(t-t0 ,z 0) (see (2.30)) so that 

g(s(t) - s(t0),z 0) = t-t0 

Moreover, by (2.33) we have 

2 ft <DWo,>(t')dt' 
(U,V)(t) =T 

2(7z-Worr(t)) 

The conclusion of our theorem now follows. Indeed, 

T = (,)(t) and by virtue of (2.36), 

ft 

zo 

2 o,>(t')dt' 

  XH(1T,X)(t) =   XH( 1•f,X)(t). 
2 (h-Won' (t)) 2 (h-Won' (t)) 

0 

Preparatory to showing that (2.38) gives us in fact a C1 

extension of (U,V)(t) to (_oo,co), we need the following result. 

Lemma 2.40. Let U E J1 (see Definition 2.33)., where n'(kT) E N, 
Tf 

k E ZZ. For (U,T7)(t) as in (2.38), 7et 

- <U,DWon'>(t)  
X(t) + V(t). (2.40) Z(t) 2(h-Wori(t)) 

The following four limits, as t - kT, exist and have the stated 

values 
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(a) <>• - X lwI 2 • -<DW,(D2W)DW>•DW + IDWI2(D2W)DW (rr(kT)) 
2(h-W) -3IDWI ' 

(b) [2(h-W)]DW- <X,DW>X 0 

[2(7z-W) 3/2 

(c) <U,DW>[2(h-W)] 1   (kr) 
3IDW() ,2 

(d) <Z, -X>(t) 0, and <Z,DW>[2(h-W)] 4  - 0. 

Proof. (a) Let 

(2.41) X(t) = 

X(t)/IX(t) if t T- Z3. 

lira (V) iftkT,kE. 

t' +kT 

Applying L'Hospital's rule to the expression on the left in part (a) 

above, we may deduce that it has the same limit, as t + kT, as does 

the expression, 

{<X,D2W.X>DW(ii) + <X,DW(ii')>D2W.X - 2<D2W.X,DW (Tr )>X}(t) 

- 2(h-WoTT),IDW(fl)I2(t) 

which in turn, since IX(t)I = (2(h-Woi(t))] and X*(kT) - 1 
±DW(ii(kT))  

IDW(TT(kT))I 

tends to the right hand side of (a) above. 

, 

(b) Applying L'Hospital's rule to the expression on the left in 

part (b) above, we find that it has the same limit as does the 

expression, 

<X,DW(TT)>DW(IT) - DW(ii)I 2 X(t) + <x*,D2 *>t) - D2WX(t)  

3[2(h-Worr)}<DW(n),A>(t) 3<DW(1r ),X*>(t) 

The first term in the expression above vanishes by virtue of part 
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(a), the second term vanishes since X(7<T) = 0. 

(c) For (,r))(t) as specified in Proposition 2.39, since 

(,)(t) E 

(2.42) 0 = dY(llx)(t)(n)(t) = <DW(rr),>(t) + <X,>(t). 

We apply L'Hospital's rule to the expression (see (2.38)), 

<U,DW> - -<,X><X,DW> +  [2(h-W)]<,DW>  

2(h-W) [2(h-W)J2 [2(h-W) 2 

and we find that it has the same limit as does the sum of the 

following four expressions (see (2.29)): 

- <q,X><X,DW>+ <,DW><X,DW> <,X><X,D2WX>  

-4[2(h-W) ] <?.,DW> I -4(2(h-W) ] <X,DW> 

+ [2(h-W)]<r),DW> + <,X>IDWI2 +   

-4[2(h-W) ] <X,DW> -4<Tk,DW> 

The first term in the above expression vanishes identically by 

virtue of (2.42). The second term vanishes since 

= [2(h— Woi1)] 2 and 

<,DW(ir)>(t) -+0 as t --kT (see (2.35)). 

The remaining two terms we will rewrite as 

(2.43) 
[2(h-W)]<fl,DW> + <X,DW><,DW>  

-4[2(h-W) ] <X,DW> 

+   

+ 
<, <X,DW>DW-IDWl 2X>  

4 [2 (h-W) 10,, DW> 

-4<X,DW> 

The second term in (.2.43), by virtue of (a) above and the fact 

that <,DW(ii)> -9- 0 (see (2.35)), tends to 
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<,D2WDW(ii)> (kT) 

-121DW(Tr) 12 

The first term in (2.43) vanishes in the limit as t ->- kT. Indeed 

2(h-W)<',DW> + <X,DW><,DW> - <X,DW><'rj,X> + <X,DW><,DW>  

-4 [2 (h-W) I <X,DW> -4 [2 (h-W) I <X,DW> 

+ 2(h-W)<fl,DW> -  

-4[2(h-W) ] <X,DW> 

The first term vanishes identically (see (2.42)) and the second 

term vanishes by virtue of (b) above. Collecting the nonzero terms 

from (2.43), we have, 

<U,DW> [2(h-W) i_i 

since (kT) = U(kT) ( 

<U,D2WDW(rr) >(kT) + 

-121DW(TT(kT)) I 2 

see (2.38) and (,2.35)), 

<U,D2WDW(ir) >(kT)  

-4IDW((kT)) 12 

(d) From (2.40) we find that (see (2.22) and (2.27)) 

<Z,AXt) = <U,DW(ic)'>(,t) + <v,?)(t) = 0. 

Moreover, from (2.40) and (2.38), 

<Z,DW>  -  <q,DW>  + <,>IDWI2  +  <,DW><X,DW> <,X><X,DW>2 

[2(h-W) [2(h-W) [2(h-W) 3/2 [2(h-W) 3/2 [2(h-W) ]5/2 

= [2(h-W)] ,DW>+ <,DW><X,DW> + I  [2(h-W)] IDWI2 - <X,DW>2 <,X>  

[2(h-W)]312 [2(hW) 13/2 [2(h-W)] 

The first term in the above expression is the same as the first term 

in (2.43), which was shown to vanish in the limit t - 7<2'. The 

second term vanishes in the limit by virtue of (b) above and the 

fact that, by (2.36) and (2.33), 

  (t) = - (SW -  

2(h-W) 

Therefore, by Proposition 2.36, <,X>.[2(h-W)} 1 is bounded in 

limit, since U E J implies that < 0,X(.t0)> = 0. 0 
Tf 

the 
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In Lemma 2.32, we showed that (U,V)(t) was a solution of (2.28) 

for 0 < t < T. However, by virtue of Lemma 2.40 (c), the right 

hand side of (2.28) is continuous on (_oo,00). We are thereby led to 

ask whether (U,V)(t) as given in (2.38) is in fact a C 1 solution of 

(2.28) for t E (_oo,00). 

Proposition 2.41. For U E J (see Definition 2.33), the extension 
IT 

of (U,V)(t) to (—°°,°°) given by (2.38) is C1, and (U,V)(t) satisfies 

(2.28) for t E  

Proof. If t f T • , then by (2.38), (U,V)(t) is C1 at t, and it 

is easily checked that (U,V)(t) satisfies (2.28) at t (see (2.39) 

and (2.8)). Therefore, to verify the statement of the proposition, 

we need only check that (U,V) (t) is C1 at t = kT, k E 2Z . 

Notice that for (,)(t) as specified in Theorem 2.39, 

(2.44) urn   - 
t->kT 2(h-Woir(t)) 

-<DW(n),r'>(kT)  

JDW(i(kT)) 12 

Indeed (see (2.36)), X,>[2(h-W)]1 has the same limit as 

-2<DW(ir) ,>(t)  
-2<X,DW(rr) >(t) which tends in the limit (see (2.35)), to the 

right hand side of (2.44). We may deduce from (2.38), (2.44) that, 

- <DW(n), T)> DW( n) I (kT). 
(2.45) (U,V)(kT) = I1W()l 2 J 

Consider the quotient (see (2.38)), 

{U(t) — (kT) — (t -kT) V(kT) } -5 V(7<T) 
t-kT 2 (lZ—Wofl (t)) b-/<T t-1(L' 

+ <X,>(t) 0(t-kT)  
.DW( 11 (t)) +fl(kT) - MT) + t-kT -+0, as t-7<T, see 2 (h-Woir (t)) 
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(2.38). Therefore from (2.28) and Lemma 2.40 (c),U is C' on (_c,O3). 

Now consider the expression (see (2.38), (2.45)), 

(t-kT)-' {V(t) - V(kT)} 

  {(t) — (kT)} +  •2 (t'WoTr(t)) <(t) DW((t)t-kT t-kT  

+ <1(),>('<T) DW (TT (kT))} 

IDW (Ti (kT)) 12 

Applying L'Hospital's rule to the second term on the right in (2.46), 

we find it has the same limit as 

<fl,'> + <,DW> — 2 <,DW> DW(11(t)) + <,X>(t)  D2WX(t) 

2 (h-Woir (t)) 2 (h-Woir (t)) 

+ 2<,X><X,DW> DW(ir(t)) 

[2(h-Woii(t)) ]2 

By virtue of (2.42) and (2.44), we need only.consider the following 

expression: 

-2[2(h-Woti(t))] ,DW(rT) (t) + 2<X,DW(ii)><,X>(t) DW(ii(t)) 

[2(h-Woii (t) 2 

Applying L'Hospital's rule to this expression, we find the coeffi-

cient multiplying DW(n(t)) has the same limit aP. the following sum: 

2,<X,DW)X — 2(h-W)DW> + 2G,<X,DW>DW — 1DW1 2X>  
-4[2(h--W)] <X,DW> -4[2(h-W)] <X, DPI > 

+ 2,X>Q,D2W•X> + 2,D2W•).> 
-4[2(h-W)]k,DW> 4<X,DW> 

The first term in this last expression vanishes in the limit (see 

Lemma 2.40 (b)), as does the third term (see (2.44)). The second 

term is the same (except for constants) as the second 
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term in (2.43), and therefore tends to <,D2W(><T) , while 

6IDW (Tr (7<T)) 12 
<9 DW DW(11)>fkT'1 

the last term tends to 11  Collecting these 

2 1DW(rr(kT)) 2 

latter two terms with the nonzero term from the first expression 

on the right hand side of (2.46) (see (2.29)), we find that the 

derivative of V(t) at t = kT is 

2<,D2WDW(rr) >(kT)  
DW(n(kT)) - 

DW(iT  12 
D2W(kT) 

which is exactly the expression lim V(t), obtained from (2.28) and 
t-4<T 

Lemma 2.40 (c). Therefore (U,V)(t) is C' for all t and satisfies 

(2.28) on (_oo,00). 0 

Remark 2.42. We will now motivate our introduction of the vector 

field Z(t) along v(t) (see (2.40)). Let c(s) be a critical arc of 

the functional J subject to boundary conditions M° xM1, with (see 

Remark 2.31 (b)) 

(c,y)(s) = L(c,c')(s) E Ii 1 (h) for S E [0,1]. 

Let F(s) be an orthogonal Jacobi field along c(s) and U(t) the 

associated reparametrized orthogonal Jacobi field along V(t) (see 

(2.27)). On the tangent bundle TN  of N0 denote the Levi-Civita 

connection of the Jacobi metric (dT) 2 (see discussion after Remark 

1.1 and Remark 1.2) along c(s) by V, (see Klingenberg [K] p. 74). 

It is not difficult to see that (see Lemma 2.43 below), 

2'(s) ,DW(c(s))> 
V ,P = 2(h-Woc(s)) CI(s) 

Since y(s) = 2(h-Woc(s)) c'(s), for 0 < t < 
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V P = 2(h-Woc(s)) P'(s) <P(s),DW(c(s))>  
Y 2(h-Woc(s)) y(s) 

-  U(t) (t) - <U(t),DW(r (t))> X(t) = Z - 2(h-Won(t)) 

see (2.24),(2.28) and (2.40). Now the restriction 0 < t < T may 

be considered to reflect the fact that the above construction makes 

sense only on TN0. However, by virtue of Proposition 2.41 and 

(2.40), Z(t) is C' on (_0o,0o). Indeed, it is easily verified from 

(2.40) and (2.28), that for U E J, (U,Z)(t) is a C1 solution of 
TT 

the following differential equation on  

(2.47) 

U(t) - 

<U,DW(ii)>  X(t) + Z(t) 
2(h-WoTT (t)) 

Z(t) =-D2W"U(t) 3<U,DW(rr)>(t) [2(h-Worr) DW(rr)-<X,DW(rr)>•X](t)  
2(h-Worr (t)) 2(h-Woir (t)) 

<U,D2W•X>(t) X(t) + <Z,DW(ir)>(t) X(t). 
+ 2(h-Woir(t)) 2(h-Woir(t)) 

Alternatively, by restricting the initial conditions (U,Z)(t0) so that 

(2.48) <U,X>(t 0) = <Z,X>(t0) = 0 (see Lemma 2.40 (d)), 

we may consider (2.47) as a 2m-2 dimensional system of equations. 

This is formally carried out by introducing "Fermi coordinates" along 

w(t) (see Klingenberg [K], pp. 110, 111), see Lemma 2.43 below. 

Let 

(2.49) zt = E TTI (t)N 1 <K,X*(t)> = 0} (see (2.41)). 

Let be an orthonormal basis for Z., to T 

the initial value problem, for i = 1,...,m-1, 

Consider 
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<E ,DW(n) >(t) 
11 

(2.50) •Ft Ell (t) = 2(h-WoTT(t)) X(t),E(to) = E. 

Lemma 2.43. Let E(t) (i = l... ,m-l) be the solution on the 

maximal interval of existence I of (2.50). Then I  

moreover the following is true. 

(a) The differential equation in (2.50) is the equation of parallel 

translation along Ti(t), that is (see Remark 2.42), 

Vt) = dj <•,DW(Tr)>(t)  
2(h-Woii(t)) 

<E,D)>(t) [2(h-Wo(t))] 0 as t kT, k E . 

(c) The vector fields E(t) are 2T-periodic. 

Proof. The fact that I = (_oo,00) will follow from (b) below. To 

prove (a), we notice that, for i,j = 

—— <E,X>(t) = <E',DW(ir)>(t) + <E.,-DW(ir)>(t) = 0, and dt 7  .z.. 

— <Ei,Dw()>(t) <XE>(t) + <i,DW()>(t).<xE>(t) =0. 
2(h-Worr(t)) 2(h-Woir(t)) 11 

It follows that (2.50) determines parallel translation along rr(t). 

<E,DW(rr)>(t) <E. (2(h-Won)DW(ir) - <X,DW(rr)>X)>(t) 
3/2 

[2(h-Won(t) ] 2 t2(h-Won'(t)] 

<E. X> <X,DW(rr)>(t) 
11 

(b) 

[2(h-Woi(t)) ]3/2 

The first term on the right vanishes in the limit (use the Cauchy-

Schwartz inequality, part (a) above and Lemma (2.40)(b). The second 

term vanishes identically by part (a). 

(c) The periodicity of E(t) follows since integration of (2.50) on 

the interval [0,2T] amounts to parallel translation up to time T, and 

then back along the same path ii(t). 
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The fact that I = (- oo,00) now follows since the vector field 

in (2.50) is continuous on (_oo,o). 0 

The moving frame {E(t)}1 allows us to simplify the linear 

differential equations for (U,Z)(t) (see (2.47)). 

Proposition 2.44. Let U E .JTr  and Z(t) be given by (2.40) on (—a° ,°° ). 

Then (UZ)(t) E Z X z an (_oo,00) (see (2.49)). Let 

U(t) = a(t) E. (t) Z(t) = b(t) E(t) (repeated indices indicates 

sunvnation) where E.(t),i = l,...,m-1 are the vector field solutions 
11 

of (2.50) on (—°°,°°). Then 

(2.51) 

a.(t) = and 

bW = _a(t)<D2W.E,Ej>(t) 

i I,- 3a.(t) <DW,E .>(t) <DW,E.>(t) [2(h-Won(t)] j 71  

Proof. By virtue of the Gauss Lemma (Lemma 2.26) and Lemma 2.40 

(d), (U,Z)(t) E Z X Zt. From (2.47) we have, 

+ a.E. = a (t).i ,DW()>(t) + b.(t).E.(t). 
1- •1 ' 1 2(h-Woir(t)) •1- 

Therefore (a_b)E il (t) = 0 from (2.50). Since E(t) are linearly11 

independent for all t, = b,i = 1,... ,m-l. Similarly (see 

(2.47)), 

,DW>(t) X(t) = -a D2WE (t) + 
= + b 2(1j-Woi(t)) i i  

a ,D2 WE >(t) .X*(t) 

+ b• 

+ 3ai 'Ei ,DW>(t)  
-Woir(t)) 

Ej, DW>(t) 
2(h-Wo1T(t))  

.X*(t)DW(n (t))] 
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Therefore, taking the dot product of this last expression with E.(t), 
11 

L. (t) =-a.(t).<D2W.EE>(t) - 3a.(t).<DWE>(t)<DWE>(t) [2(h-Woii(t))} 1 

for i =  
0 

Proposition 2.44 will be used in Chapter 3 to prove that minimum dis-

tance lines correspond to hyperbolic periodic orbits on H 1(h). 

Definition 2.45. Let M be a hypersurface in IL70(see Remark 1.1) with 

(ir,X)(t 0) E .Lh(M) for some to. A (reparameterized) M-orthogonal 

Jacobi field U is an element of J (see Definition 2.33) such that 
TT 

for (U,V)(t) as specified in (2.38), 

(U,V) (t 0) E T 
(i'r,X)(t0) 

The (m-l)-dimensional subspace of such vector fields U(t) along n(t) 

will be denoted by YL (see Remark 2.30). 

Lemma 2.46. Let zo = (Tr,?,) (t0) E H 1(h). The linear mapping 

A(t0): 1' F[1(h) - T I[ '(h) 
zo so 

defined by (compare with (2.38) and (2.44)) 

I <,X(to)>  
(i) 2(h-Wo(t0)) XH(zo) 

'TI1() +   

IDW (Tr (kT))1 2 

has the following properties 

(a) ker A _<XH (z o)>, (b) A2 = A , (c) E(t0) A(t0).(TH 1(h)) 

(2.52) A(t0).(,Y'j) = 

is a symplectic subspace with symplectic form coE = co 

(2.11)). (d) For 1'2 ker A, 

= 

if to 

if to = 7<2', 7< E 

E(t0) 
(see 
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Proof. We will prove (a) - (d) assuming that to f T, the veri-

fication for to = kT being analagous. We recall that 

XH(so) = (X,-DW(ir))(t0) 

2 
(a) A(XH) = (X,-DW(ii))(t0) lX(t0)  = 0. 

Moreover, A(,Y)) 0 if (,Y)) is not linearly dependent on XH(zo). 

(b) For E T zo H 1 (h) (see (2.52)), 

A2 (,11) = A(,fl) - 2(h-Woii(t0)) A(XH) = A(,) (see part (a)). 

Therefore A is a projection mapping. Let E(t0) * A(T 
zo 

(c) We will denote the co-orthogonal complement of a subspace G of 

by 

= { E 2m co(,q) = 0 Vq E G} 

We recall that, 

(2.53) dim G + d1in G = 2m (see [A&M], p. 403). 

Let WE E(t0) (see (2.11)). Then co is an antisymmetnic bi-

linear form on E(t0). We need only show that Co is non degenerate. 

To this end, let E E(t0), coE(,) = 0 on E(t0). Then = 0. In-

deed, since 0 = d1() = co(XH,) (see [A&M], p.187) and 

(2.54) T2 H(h) = E(t0) ® 

it follows that so E [T H 1(h)] '. Now [T zo H 1(h)] is one dimen-

sional (see (2.53)) and XH E [T  Therefore, is linearly 

dependent on X,, which means that = 0 (see (2.54)). 

(d) This follows from the definitions of E(t0) and 
0 
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Proposition 2.47. There is a natural syniplectic structure on 
Tr 

(see Definition 2.33). For U1,U2 E J, (UV)(t) (i = 1,2) as 

specified by (2.38), 

(2.55) o(U1,U2) <U1,V2>(t) - <U2,V1>(t), for arbitrary t. 

In particular, the right hand side of (2.55) is independent of t. 

Given to and the projection A(t0) (see (2.52)), J is symplecto-
Tf 

morphic to E(t0) (see Lemma 2.46 (c)). For any hypersurface M in 

N0 (see Remark 1.1) with (rr,X)(t0) E .L1 (M), the subspace (see 

Definition 2.45) is a Lagrangian subspace of J'11  

Proof. The fact that the right hand side of (2.55) is independent 

of t follows directly from (2.28), therefore co TI is well defined on 

J. Consider the isomorphism Q: YL -- E(to) , U -+ (U,V)(t0) E E(t0) 
Tr TT 

(see (2.38) and (2.52)). Then (see Lemma 2.46 (c) and (2.11)), 

(2.56) 

.L 
and TI is thereby symplectomorphic to E(t0). 

Suppose that (ii,X)(t0) E J!(M) (see Corollary 2.21). Notice 

that T(,x)(t0) 1h 04) (see Definition 2.45). The final 

11 IMconclusion of the Proposition will follow from (2.56), once we esta-

blish that 2(n(t) lh(M) is a Lagrangian subspace of E(t0) 

Let (i) E T(x)(t) Ih(M). Then 

= (,T)) E E(to) , 

since <,X(t0)> = 0 (see (2.14), (2.52)). 

IT(Yr ,x) (to ) h(f) = 0 

Moreover, 

(see (2.16)), and 
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dim T (Tr x)(t) J.h(M) = rn-i (see Corollary 2.21). 

Therefore T \T1, 'v \ I Ii (M) is indeed a Lagrangian subspace of 

i and j 1. 11'14 s thereby (from (2.56)) a Lagrangian subspace of .1.IT 

0 

Remark 2.48. Let 3 be a Lagrangian subspace of J. We will refer 

to 3 as a Lagrange family. If U E 3, then for (U,V)(t) as speci-

fied in (2.38), 

(2.57) (U,V)(t) E T (Tr x)(t)H1(h) V t E  

Therefore we may unambiguously refer to the subspace of 

(2.58) 3(t) = {U(t) J U E 3}. 

Notice that dim 3(t) < rn-i, by virtue of the Gauss Lemma 2.26. We 

will refer to (n'(t),t) or just simply t as a focal point of 3 if 

dim 3(t) < rn-i. 

In this case, 

(2.59) order of the focal point at t = (rn-i) - dim 3(t). 
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CHAPTER 3 

THE INDEX OF J**(M° xM1) AND MINIMUM DISTANCE LINES 

Introduction. 

In the last chapter we saw how it was possible to continuously 

extend the co-geodesic flow ! along orbits c(t) of X on H 1 (h). 

In fact this flow has continuous directional derivatives 

T(t) ? , for s E (- oo,00), whenever = ( ,r), 

a(to) = (ii(t0),X(t0)), and 

(3.1) = 0 (see Corollary 2.38). 

By abuse of notation, we will use the tangent functorT Z Y8, keeping 

in mind we only operate on those such that (3.1) is satisfied. 

In particular, if z = (x,O) E H-1 (h), with x E N, then by T Z ? . 

we will always mean 

<-p- g(s,z)2> 
az 

where is the flow of X on M 2m (see Proposition 2.36). 

In this chapter we will first consider the wavefront sets 

associated with relatively open subsets of (i = 0,1, see 

(1.8)). The focal points of these wavefront sets correspond to 

parameter values t so that a nonzero subspace of reparameterized 

ii-orthogonal Jacobi fields vanishes at V(t) (see Remark 2.18 and 

(2.27)). Secondly we generalize the notion of convexity, as pre-

sented in Ambrose [A], for these wavefront sets. This allows us 

to generalize the index theorem of Ambrose [A], so as to apply to 

the variational problem (J) considered in Chapter 1. 

Finally we turn to the study of the stability properties of 
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minimum distance lines. 

Let s(t) be given by (2.26). Recall that s(t) = s(t,a(0)) 

(see (2.30)), therefore s(t)-s(T) = s(t-T, c(T)). Notice also 

that, for submanifolds M of JRm lying within aN 

(3.2) 1h (11) = {(x,0) E 2m x E M} 

Definition 3.1. Let a(t) = (ii,X)(t) be the orbit of X corres-

ponding to a critical arc c (see Definition 2.6). Let 

M CW (i = 0,1) be an open neighbourhood of 11(t 0 ) (t0 = 0,T) 

within Wh ('z- = 0,1) respectively. Define the wavefront sets 

140 (t) = s(t)h 110 = { g(s(t),z) 

and 

z E j h(Mo)} 

M1(t) = I z E±(M)}. 

0 

Notice that we have adjusted the "start time" t = 0 so that it 

corresponds for M0 (t) and 111(t) to 11 (0). 

In Proposition 2.20, we investigated the boundary conditions 

1. 
(see (2.14)) satisfied by U E . (see Definition 2.45) for hyper-

surfaces M within No. We will now consider the case where 

m fl 8N 0. 

Recall that the reversing symmetry 

(3.3) 
2m 2m 

R:JR --2R R(x,y) = 

in conjunction with the Hamiltonian H(x,y) •1y12 + W(x), and the 
flow of the Hamiltonian vector field XH, has the following 
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properties 

(a) 

(3.4) (b) 

(c) 

HoR = H, 

Ro t = _toR , and 

R*co = —co (see (2.11)). 

We let Fix R denote the fixed point set of R. 

Proposition 3.2. The (reparameterized) orthogonal Jacobi fields 

U E YL o (see Definition 2.45) are characterized by 

(U,V)(0) E Fix R fl Ta(0) H 1 (h); those belonging to 

(U,V)(T) E Fix  fl T i[1 (h). In particular YL 4i are Eagrangian 

subspaces of .7 for i = 0,1. 
IT 

Proof. By virtue of (3.2) we may deduce that 

Fix  fl H-1 (h) =  {(x,0)j x E aN} D L h(M) (i = 0,1), and 

T a(0) a(0) h(Mo) = {(P,0 )I P E T (0)M°} = Fix  fl T H 1 (h). 

Indeed, the tangent spaces coincide since M is a relatively open 

subset of W containing 'rr(0). Similarly we find 

T ±h(M1) = {(P,0)IP E Tn(T)M'} = Fix R fl Ta(T) H1(h). 

To conclude that are Lagrange spaces of J, which has dimen-
IT Tr 

sion 2m-2, we need only observe that (3.4) (c) together with 

R*c01,Fix R = co  implies that co = Fix R 0. 
0 

The following result gives a geometrical picture tying these 

ideas together. 
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Proposition 3.3. If (rr(t),t) with t T 2Z , is not a focal point 

of a(0) E J! (M0), and (ii(t),t-T) is not a focal point of 

o(T) E J.i(M1), then the wavefront sets M0 (t), M1(t) are local 

hypersurfaces tangent to each other at Ti(t). Their common tangent 

space at v(t) is 

J0(t) = 31(t) =t (see (2.49)), where 

(3.5) J0 (t) = {U(t)IU E J 5o}, J1 t) = {U(t)IU E 

(see (2.58)). 

Proof. Notice that ii (t) E m0(t) fl M1(t). Indeed, 

,s(t)0.(0) g(s(t),o(0))4.(Q) (p tcr  =ii(t), and 

(t )-s (T) (T) = ,s (t-T (7 (T) ) (T) = t-T0. (T) = IT (t). 

Since ir (t) is not a focal point of either o(0) or °(T), arguing 

along the lines of Lemma 2.22, there are neighbourhoods 

o(0) E h(Mo) o(T) E •jh(M1) respectively, so that 

(t) (B) and (t) -S (T) (B1) 

are hypersurfaces in No. 

B0 ,B1 of 

Now T(t) M(t) is spanned by (see (2.19)) 

{T (o) f5(tl E T (0) i(M° )} = J(t) (see (Z.21) and the intro-

duction for remarks concerning T (0) ?). and T (t)M' (t) is spanned by 

Finally, J0(t), J1(t) C 

E T(T) h(141} = 31(t). 

Z (Lemma 2.26), and by virtue of the 

assumption that {t} is not a focal point 9f either JM0 or YL 11 
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J0 (t) = J1(t) =t (see (2.59)). 

0 

Lemma 3.4. If U E J, and U(t) = U(t + 2kT), k E , then U E 3. 
71 

In particular, if (U,V)(t) is given by (2.38), then (U,P)(t) = 

(U,V)(t + 2kT) is a solution of (2.28) on (oo,00). 

Proof. Given U E and (U,V) (t) as in (2.38), 
IT 

(Uj)(t) = (U,V)(t+2kT) = (,ii)(t+2kT) <X,>(t+2kT)  
2 (h-Won (t+2kT)) XH(cr(t+2kT)). 

By periodicity of a(t), (U,V)(t) has a representation as in (2.38) 

and U thereby belongs to J. IT The final statement now follows from 

Proposition 2.41. 
0 

Remark 3.5. We have seen that the Hamiltonian flow is time re-

versible (see (3.4)(b) with respect to the symmetry 1? (see (3.3)). 

It may be shown directly from (2.31), (3.4)(b) that 

(3.6) -g(s,z) = g(-s,Rz), (s,z) E xl[ 1 (h). 

By virtue of (2.37) and (3.6), the co-geodesic flow ! s-s0 is also 

time reversible with respect to R, 

(3.7) ROr93 0Z = 150 3oRz, (s,z) E 

Moreover, the linearized flow T5!350 along a critical arc c(s) is 

time reversible. If 

(3.8) 

then 

(3.9) 

= 0, = () E T 
(c,y) 

RoT (c,y)(s 0) s-s 0. = 
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(see Corollary 2.38). In particular, (3.8) and (3.9) hold for 

any orthogonal Jacobi field F(s) along c(s) (see Definition 2.28). 

Proposition 3.6. An orthogonal Jacobi field U E JMO is (2T)-peri-

odic if and only if U € YL o fl 

Proof. (a) Suppose that U E YL fl Then by Proposition 3.2 11 , 

(U,V)(0) = R(U,Y)(0) 

= (U,V)(T) 

= TR(T)?R (U,V)(T) 

(see (2.39) with t = T, z = 

= T a(T) ys (T)(U,V)(T)(since R(T(T),R•(U,V)(T) = (U,V)(T)) 

= (U,V)(2T). 

The conclusion now follows from Lemma 3.4 and uniqueness of the 

initial value problem for equations (.2.28). 

(b) Suppose that U E JMO is (2T)-periodic. Then (U,V)(0) = 

TYR•(UV)(T) as in (a) above. On the other hand, 

(u,v)(0) = (U,v)(2T) = T (T)!5(T (U,V)(T). Therefore 

R(U,V)(T) = (U,v)(T) since T o(T) S (er) ! is one to one as a map 

T o(T) -- H 1 (h) T a(0) H 1 (h) (keeping in mind the restriction (3.1) 

imposed on T a(T) 5T) )• The conclusion now follows from Proposi-

tion 3.2 which implies that U E J 1. rr,M 
0 

We refer the reader for notation to the preamble to Propo-

sition 2.20. In the absence of focal points of M0 and M1, the 

hypersurfaces M0 (t) and M1(t) have associated Weingarten mappings 

r0 E 1, at (TT ,X)(t) € ±h(M1(t)) for i = 0,1 (see (2.3), (2.25)). 
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These mappings characterize the orthogonal Jacobi fields 

U E (i = 0,1), see Proposition 2.20. 
TT Pdi 

Following Ambrose [A] (p. 53), we will define operators F(t) 

(i = 0,1) on T(t)M1'(t) (i = 0,1) which are essentially the Weingar-

ten mappings discussed above. The mappings r (t) will allow us to 

generalize the convexity term used in Ambrose's index theorem. 

Let Z be specified as in (2.49), and J,J be Lagrange families 

(see Remark 2.48) of J. 

Notice that, for any Lagrange family 3 of J (see (2.58)) 
Tr 

(3.10) 3(t) = Z. provided (n(t),t) is not a focal point of 3, 

(see for example Proposition 3.3 where this is shown for 30(t), 

If 3(t) = {U(t)IU E J}, 3* (t) = {U*(t)IU* E J*}, then 

Z -'- 3(t), : Z -+ J* (t) denotes the orthogonal 
(3.11) t t 

projections of Z onto 3(t), .:r (t) respectively. 

Definition 3.7. For Lagrange families 3,3* of 3, U E 3 and UEJ, 

let Z(t), Z (t) be given as in (2.40). Then 

r(t): 3(t) 3(t) and r(t): J*(t) 3(t) 

are defined as follows: 

r(t) • U(t) = • Z(t) and r* (t) . U* (t) = * • Z* (t) (see (3.11)) 

where U(t) E 3(t), U*(t) E J*() 0 

The mappings r(t), r*(t) are well defined: indeed if U1,U2 EJ 

with U1(t) = U2 (t), that is (ir(t),t) is a focal point for 3 (see 

(2.59)), then for any U E 3, since 3 is a Lagrange family, 
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0 = c'  Tr (U 1 -U2 ,U) = <U1 -U2 ,V>(t) - <U,V1 -V2>(t) (see (2.55)) 

= - <U,V1 -V2>(t) = - <U,Z 1 -Z2>(t) (see (2.40)). 

Therefore, Z1(t) - Z2(t) i 3(t), so that Z1(t) = • Z2 (t). 

The following four Propositions outline the important proper-

ties of the mappings r(t), r(t). 

Proposition 3.8. Let 3 be a Lagrange fcvn-zly of J• F(t) is a 
Tr 

linear, symmetric operator on 3(t) (see Definition 3.7). This 

operator is continuous in t on any interval (a,b) not containing 

any focal points of J. That is, if (a,b) contains no focal point 

of 3 then r(t) U(t) is a continuous vector field along u(t) when-

ever U(t) EJ(t) is a continuous vector field along ii(t), t E (a,b). 

Proof. We have seen that Z(t) E Z on (_oo,00) (see Proposition 

2.44). Since Z is linear with respect to U E 3 (see (2.40)), it 

follows from Definition 3.7 that r(t) is a linear mapping with 

domain and range as indicated. Since 3 is a Lagrange family, 

E 3 implies that 

0 = COTr (U1,U2) = <U1,V2> - 

Therefore (see (2.40)), 

<r(t) . U1,U2> = <V1,U2> = <U1,V2> = <U1,r(t) ' U2>' 

It remains only to show that (t) U(t) is continuous on (a,b) 

when U(t) is continuous on (a,b), U(t) E 3(t) and (a,b) contains no 

focal points of J. In this case, 3(t) = Z andt =identity on 

(see (3.10)). Let U E 3, and Z(t) be specified as in (2.40). Then 

(t) - U(t) = Z(t) is C1 on (a,b) (see Remark 2.42). An arbitrary 
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continuous field U(t) E Z, along IT may be represented by, 

U(t) = Z c.(t)U.(t) where c. E C0(a,b) and U. E J. The final con-
3 3 3 

clusion now follows by linearity of r(t). o 

Proposition 3.9. Let J,J" be Lagrange families of .J, and suppose 
TT 

that {t0} is not a focal point of either 3 or f. Let, 

U E 3 and U E J*. 

Then 

U(t0) = U*(to) and F(t0) • U(t0) = r*(to) U(t0) 

if and only if U U and consequently U E 3 fl f. 
Proof. If {t0} is not a focal point of either 3 or 3 then 

3(t0) = J*(to) = Z to and therefore r(t0) U(t0) = Z(t0) and 

r*(to) (t(t) = Z(t0). However, U(t0) = U*(to) and Z(t0) = Z*(to) 

if and only if U a U (uniqueness of the initial value problem for 

equations (2.47)). 0 

Remark 3.10. In an interval (a,b) not containing focal points of 

. . 

either 1. or .JIT M1. the operators ri 'z- (t), = 0,1, coincide with 

TT'Mthe Weingarten mappings E of the wavefront sets M'(t) at 

a(t) EL(M(t)) (i = 0,1): indeed for any U E Z, U EJIT Mi, 

(3.12) <(t) .U(t),U> = <V(t),U> = IX(t)I.< .U(t),U> 

.i 
(see Proposition 2.20 with Mi (t) replacing M and (Ui ,V ) (t) 

replacing (P,R) in (2.14)). The operators r1"(t) thereby character-

ize the local relative convexity of Mo(t), M1(t). In this sense, 

.1. 1 
Proposition 3.9 characterizes the space J TT ' MO n j. , M I as the set of 
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independent directions in the common tangent space of M°(t),M 1(t) 

at v(t) such that M0 (t) matches M1(t) to second order along these 

directions (see also Ambrose [A], p.54). o 

The following result is useful in determining the relative 

convexity of the wavefront sets M0(t), M'(t) in terms of the families 

J 1 Tf PM I IT ,M 

Lemma 3.11. Let 3,3 be Lagrange families of J, and suppose that 
TT 

{t0} is not a focal point of either 3 or 3. Let (I E 3, U E J*. 

Then 

(3.13) 3(t0) fl J*(t) = and 

(3.14) o(U*,U) = <u*(tO ),(r(to) - r*(to)) U(t0)>. 

In particular, for the Lagrange families 3TI MO and 3IT,M-' if 

U EJIT' M and U0(t0) = a U1(t0) with a > 0, then the sign of 

CO 1T (U1 ,U0) determines the relative convexity of M0 (t0) and MI (to) 

in the common direction of U°(t0). 

Proof. From (3.10) we may deduce that 3(t0) fl 3*(to) = Z. The 

following computation yields (3.14): 

* * CO IT (u ,u) = <U V> (t o ) - <u,v* >(t 0 ) 

= <.0 * ,r.u>(t0) - <u,r * . ii* >(t0) (since {t0} is not a focal point of 

* 
3,3) 

* * * * 
= <U ,r.u>(t0) - <r .u,u >(t0) (since r,r are symmetric) 

* * 
= <U ,(r—r ).u>(t0). 

Now suppose that U E and u° (t0) = aU 1(t0) (a > 0). 
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Then by virtue of (3.14), the sign of c%(U',U°) is the same as 

Now <U0,(1 0 -F1) • U0>(t0) is the sign of <U°,(F° -F1) • 

positive (negative) if and only if the normal curvature of M0 (t0) 

at IT(t 0) in the direction of U0 (t0) (the normal curvature of M0 (t0) 

in the direction of U0 (t 0) is 

see Hicks [Hi], p. 52, where we have 

chosen the sign of curvature so that the standard sphere with out-

ward pointing normal has positive curvature) is greater (less) than 

that of M1(t0) at v(to) in the same direction (see (3.12) and 

Figures 15 and 16). 

().rr ('1°) > a 

FIS i 

M1c) 

F 

13 

WIT (UU) (0 

U. t0u() 
(  

Proposition 3.12. Let J,J be Lagrange families of J Tr . Suppose 

that (a,b) contains no focal points of either J or J. Then for 

t E (a,b) 

(a) Nullity (F - r*)(t) = dim (3 fl 3*) 

(b) index (F - r*)(t) = constant throughout (a,b). 

Proof. (a) Since 3(t) fl J*(t) = (see (3.12)), this is an 

immediate corollary of Proposition 3.9. 
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(b) Suppose that for some a < to < t1 < b, 7< = Index(r-r )(t0), 

0 5 7< 5 rn-i and Index(r - r )(tj)  7<. Since (F - r*)(t) has con-

tinuous eigenvaiues throughout (a,b) (see Proposition 3.8) there 

is some point to < t < t1 so that 

* * 
Nullity(F - F )(t) Nullity(r - F )(t), 

which contradicts part (a). 

-'- 
Proposition 3.13. Let 3,3 be Lagrange famili.es of J. Suppose 

that to is not a focal point of 3 or f and let 

and {U*}rn_l 
ii=1 

be bases of 3,J respectively , such that 

* 
U(to) = U(to) for v =1, ... ,rn-1. 
21 

If there is an (rn-i) x (rn-i) positive semi-definite diagonal matrix 

y = [y..] such that 

(3.15) c%(U.,tJ.) = for i,j  

then 1 cannot have a focal point before 3. That is if J* does not 

have a focal point in [t0,t1]., then 3 does not either. 

Proof. Let contain no focal points of J and suppose that 

to < t' S t1 and ir(t') is the first focal point for 3 in [t0,t 1]. 

We shall derive a contradiction from this assumption. We may assume 

without loss of generality that 

(3.16) U1(t') = 0. 

Since {U(t)}1 spans Z for t E [to,ti], it follows that there are 

C1 functions a..(t) for j = 1,... ,rn-1, so that 
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rn-i * 

(3.17) U1(t) = ≥ ct.(t) U.(t) for t E [t0,t1]. 
j-1 a a 

Notice that, by (3.16) and (3.17), for i = 1'... 'M-l ' 

(3.18) = 0. 

From (3.17) it follows that, {&.(t)TJ(t) + 
a a a a a 

By virtue of (3.16), V1(t') = U1(t') (see (2.28)), and (3.18) 

allows us to conclude that 

(3.19) V1(t') = Z a.(t')U(t') 
a a a 

From this we may deduce that c1(t') > 0. Indeed, from (3.16), 

if j = 1 

(3.20) 
* * 

= o(UUi) = 

11 0 otherwise. 

* * * 

Notice that Y>0. Otherwise, c%.(U 1,U ) 0 VU EJ (see (3.15)), 

and therefore U1 E.t which thereby has a foc1 point at t' (see 

(3.16)). However this contradicts our assumption regarding the 

interval [t0,t1]. Upon taking the inner product of (3.19) with 

and using (3.20), we find 

= 1(t') •Yii 

and hence a1(t') > 0 since U1 0 by assumption. 

Since a1(t0) = 1, a1(t') = 0 and 1(t') > 0, it follows that 

there is some to < t" < t' t1 with c1(t") = 0. Let 

U:() c2 (t")tJ(t) ± • rn_1 (ttt rn*_l tt * 

Then U E J since U E 3 for 1- = 2,...,rn-1, and U 0 since 

(3.21) U*(ttt) = U1(t") 0 (t' is the first focal point of 

in [t0,t1]). 
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Now, (1' - r*)(to) (see Definition 3.7) is positive semi-

definite. This follows since by assumption U(t0) = U(to) and 

0 y.. = CO (U' ,U.) = <U,(F - r*)u>(tO) (see (3.15)). By virtue 

of the fact that t' is the first focal point of J in [t0,t 1], from 

Proposition 3.12 (b) we may conclude that 

(I' - r*)(t,,) ? 0. 

* 
Now co Tr (U.,U 1) = 0 for j = 2,... ,m-1, therefore 

m-1 
0 = Z c(t")c%(U.U1) = co (U ,U1) = <U ,(r - P 

j=2 a Tr 

Since (P - r*)(t,t) is positive semi-definite, we may conclude from 

(3.2.1), 

U*(tht) = U1(t") and r U(t") = P . U(t"). 

* 
By virtue of Proposition 3.9, U U1 E 3 fl 3'. From (3.16) we may 

thereby deduce that f has a focal point at t' E [t0,t1]. This is 

the desired contradiction. o 

Having obtained these preliminary results on Lagrange families 

and their associated mappings P. we will digress temporarily to give 

an extension of Ambrose's index theorem (Ambrose [A]), promised from 

Chapter 2. Preparatory to stating the generalization of Ambrose's 

index theorem, we prove the following two results. 

Lemma 3.14. There exists t > 0 so that (0,t*) contains no focal 

points of J,MO or 3,M1 
11 

Proof. This is an immediate consequence of the fact that focal 

points of any Lagrange family are isolated (see Proposition 2.19). 

0 
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Remark 3.15. From Lemma 3.14, it follows that we may choose 

* 
0 < t < 1 so that: 

(0,t * ) does not contain any focal points of .J o or ii,M Jn,M1 

(3.22) 

(Tt*,T) does not contain any focal points of 
TT 14 

For to E (0,t'), we may assume that, by suitably restricting 

M0 (t0) fl aN = 0 and M1(T-t0) fl aN = 0. 

Recall that the Weingarten mappings 2o of M0 (t0), M1(T-t0) at 

U(to) E .L(M0 (t0)), o(T-t0) E M'(T-t0)) respectively, are essentially 

the same as r°(t0) and r'(T—t0) (see (3.12)); 

(3.23) 
r°(to) = X(t) I • So 

= X(T-t0)I 

If 8o = s(t0), s = s(T-t0) (see (2.26)), let 

HI ={I :PEH}, 
fso,sil te0,s1] 

the vector space of fields P E H restricted to 

Let (c,y)(s(t)) = (1r,?.)(t). As we noted in Remark 2.12, the 

second variation of the functional T subject to the boundary condi-

tions 

(3.24) KXE = M0 (t0) XM'(T_t0) 

evaluated at the critical arc c(P)I [3031] subject to the same 

boundary conditions (replace M0 XM' by KXL and [0,1] by [s 0 ,s 1] in 

Definition 2.6), leads to the index form (see (2.6)), 

J**(KxL).(P,P) = Iy(so)I<2oP,P>(so) - Iy(si)I<iP,P>(si) 

j(s,P,R) ds 
2 (h-Woc) 
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where j(s,P,R) is given in (2.9). According to (3.23) this is the 

same as 

(3.25) J**(KxL).(P,P) = <r°•P,P>(s0) - <T 1•P,P>(s 1) 

fs1j(s,r,)+  2(1'z-Woc) ds 
so  

where r° (s 0) r0 (t0) and r' (s 1) r' (T-t0). 

Since the Jacobi metric (see (1.10)) is a bona fide metric 

in a neighbourhood of the geodesic segment Cl [SO,S1J Ambrose's index 

theorem (see Ambrose [A] and Appendix A) for separated endpoint hyper-

surfaces applies: 

Index T** (K xL) = z (focal points of J1 at t') 
t0<t'<T-t0 11,14 

+ Index(r° - r')(t0) 

Nullity J**(KxL) = dim(JMO fl Ji) = Nullity(r° - Fl) (to). 

0 

* 
Theorem 3.16. Let t' be specified as in (3.22) and choose 0<t0 <t 

Let J** be the index form on the vector space H (see Proposition 2.14) 

defined as the second variation of the functional J subject to the 

boundary conditions M0 XM1 (see Proposition 2.11). Then 

Index J** =Indecc(r°-r') (t0) + Z (focal points of YL mi at t) 
0<t'<T 

Nullity J** = dim(JMo nJ) = Nullity (r°-r')(t 0). 
IT 

Preparatory to the proof of this result we need the following Lemma. 

If SO = s(t0) and 31 = s(T-t0), let H' C H be the subspace 

(3.26) H' = IPEH:3 U EJMi (i=0,l) so that for P(s(t))=tfr(t)(i=0,l) 
TT 

Pl[0 3] = and P 1[0,s 0j 1[si, 1] 
= ph 
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Lemma 3. 17. If J** (KxL) (see (3.24)) is defined as in (3.25) 

then there is a positive semide finite quadratic form A defined on 

i-I such that for P E H 

J**(P,P) = J** (KxL).(P,P) + A(P,P). 

Moreover A vanishes when restricted to H' (see (3.26)). 

Proof. Let P E H, (P,R)(s) = L*(c,c')•(P,P')(s), s E [0,1]. We 

recall that (see (2.8)(a), (1.18)) 

<P,y>(s) - <DW(c),P>(s) + <y,R>(s) E L[ 0 ,l], and 
ds 2(h-Woc(s)) 

by virtue of (2.22), <P,y>(s) = 0 for s E (0,1). Since 

<P,y>(0) = 0, 

(3.27) <P,y>(s) a 0 on [0,1]. 

Let be a basis for JlT,MZ (i = 0,1), and 

P(s(t))  1,... ,m-1, i = 0,1. Then according to (.3.22) 

and (3.10), {U(t)}M and {ZJ(t)}7' span on [0,t0] and [T-t0 ,T] 

J 7=1respectively. By virtue of (3.27), P(s(t)) E Z for t E [0,T]. 

Therefore, there are continuous functions a(s) on [0,so] such that 
11 

2(h-Woc(s))•a(s) is piecewise differentiable on [0,s] (see 

Definition 2.13), and using our summation convention 

(3.28) P(s) = c(s)P(s) for s E [0,so]. 

Similarly, there are I3(s) on [s,l] so that 

F(s) = P(s)F(s) for s E [si, 1]. 

Notice that, from (2.4) and (3.28), for 5 E [0 so] 

(3.29) R(s) = c.(s)R?(s) + 
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with an analogous expression in P for s E [Si,l]. Now 

fo S0 i(s,P,R)dS +  Si i(s,P,R)dS + '.' i(s,P,R)a5 
J**(P,P) =  2(h-Woc) fso 2(h-Woc) J 2(h-Woc) 

S i 

We will analyse the first term in this expression, the last being 

similar. From (3.29), it follows that, for S E (0,so] 

+ ct(s)R9(s) +  

After integrating by 

ling that (P,R)(s) 

fo 2 (h-Woc) 
5p) ds  = <R,P> 

parts (as in Proposition 2.14 (a)), and recal-

satisfy the co-Jacobi equations (2.8), we find 

S0 k so 
+ 2 A a. <P0..P> - fo s a-

o i=1 1-  

'S o 

- <aR 'F> ds. 1.. 1 

Another integration by parts yields, 

- f 80 <(* P0) = _<&.Po ,P> 
So k 

- Z A a. <F 
0 i=1 Si 

0 
+ f <&.P,P'> ds. 

Using this and (3.29), we compute 

o i(s,P,R)ds = <a + P0 P>I 5 - <O > 

fo, 
2(h-Woc) i 11 i i' Jo a i' 

+ P.+ a.P'>dS - (0 <a'R0,P>ds 
- oa - -1- J Jo 0 

<(P) r,p>dS 

0 IS I•S 

= <a.R.,p>I + J 2(_To )dS + 1-1-
0 0 

= <r° . P,P>(s 0) + 
rSo  1&.P 12 

J 2(h-w) 
0 

'S o 

0 

S o 

0 

{-aa .<R ,P> + aa .<P9 ,R>}ds 
2-a a a 2. 



0 J. 
The last equality follows since, U. E J 0 for i = 

2- rr,M 

implies that 

= Ra°V>(s) - <RPa°>(s) E 0, and 

R0.(0) = 0. i = 1,... ,m-1 (see Proposition 3.2). 

We obtain obtain an analegous expression for 

p1 I2 I ,P,R)ds  <F1 •P,P>(s) + aa ds. 2(h W) fj 2(h-W) 
1 S1 

• 0 2 1 

0 I I ds + a a ds. 
set A(P,P) = j 2(h-Woc) j8 2(h-Woc) Now 

It follows that A(P,P) = 0 when P E H', since in that case, 

c1 0 = for j = l,...,m-1 (see (3.28)). o 

Proof of Theorem 3.16. 

First, we observe that by virtue of (3.22), given P E H there is 

a unique U2- E lTM (i = 0,1) such that 

P(s(t0))= U0 (t0) and P(s(T-t0)) = U1 (T-to). 

Let = and 

p H -# H' be the linear operator defined by 

P°(s) S E [0,so] 

PP(s) = P (8) , s E 

P1(s) , s E [si, 1] 

From Lemma 3.17, we may deduce that 

= j** (KxL)(pp,PP) 

= J** (KxL)(P,P) (since P agrees with P on [s 0,s 1}) 

J** (p, P) (.since A ?. 0). 
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Moreover, J** (I3P,13P) = J* (P,P) if and only if P E H'. Notice 

that H = H' ET {P -  PP  P E H}, and therefore, a result of Ambrose 

(see Ambrose [A], p.64) applies and we may conclude that the index 

and nullity of J* are the same as the index and nullity of T* 

restricted to However, for P E (see Lemma 3.17) 

A(P,P) = 0, and therefore 

J** (P, P) = J** (KxL)(P,P). 

Hence, from the discussion following (3.25), 

Index J** = Index of J** (KXL) on H' 

= Z (focal points of J1 1 at t') 
to<t'<T—to ii ,M 

+ Index (t0 —r')(t0), and 

Nullity eT* = Nullity of J . (K X L) on K' 

= dim (J.L mo  fl Mi) 
IT, 

Since to was chosen arbitrarily from (O,t * ), let to + 0 to obtain 

the statement of the theorem (see Proposition 3.12 (.b)). 0 

Our main theorem in this chapter concerns the stability type of 

minimum distance lines whose existence under general assumptions on 

see (Wl) through (W4), was studied in Chapter 1. The charac-

terizing features of minimum distance lines are given in the following 

result. 

Corollary 3.18. Let a(3) for s E [0,1] be a minimum distance lines 
and rr(t) for t E (_ oo , 00) the associated brake orbit (see Theorem 1.12). 

Then .JM1 has no focal points in (O,T] and (F° —r')(t) is positive 

semidefinite in (O,t*) where t is specified in (3.22). 
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Proof. s(s), s E [0,1], is a critical arc, see Remark 2.8, and 

J* (P,P) 0 for every variation vector field P(s). o 

Lemma 3.19. If (r° -r')(t) is positive semidefinite in some interval 

(0,t) not containing focal points of either YL o or J1 1j, then 

[0,t*) does not contain any focal points of either J1 o or YL 

In particulars if U1 E YL 1., and U1(0) = 0 then U1 0. 

Proof. Let U1 E satisfy U1(0) = 0. We will assume that U1 0, 

so that 

(3.30) 1' (0) = Z1(0) 0. 

Notice that (3.30) together with U1(0) = 0 imply that 

(3.31) urn U1 t  (t) - Z1(0). 

t+0 

We also observe that, 

(3.32) urn r0u'(t) = 0. 
t+0 

Indeed, by virtue of Proposition 3.2, 

(3.33) r°(o) = 0, and 

r°(t) is continuous at t = 0 by Proposition 3.8. By virtue of 

Lemma 3.14 and Definition 3.7, there is a 5 > 0 so that, 

r'u'(t) = Z'(t), for t E (0,8), 

and therefore from (3.31), (3.22) and (3.30), 

lim <U(t),(ro_r1)u1(t)> = -IZ'(0)I2 < 0. 
t40 

This gives us the desired contradiction since by assumption, 
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(r0—F1)(t) 0, for t E (0,t ), and 

<U'(t) ,(ro_rl)ul(t)> 0. 
t 

0 

The following result significantly strengthens Corollary 3.18. 

Proposition 3.20. Let a(s)., s E [0,1]., be a minimum distance line., 

and ir(t)., t E (_co,00), the associated brake orbit of XH (see (2.1)). 

Then has no focal points in (-

Proof. By virtue 

and (3.9) (set 

(U1,V1)(T-t) = 

of (2.39) (set to = T, zo = o(T), = (u',v')(T)) 

so = s(T) = 1), for U1 E 

T a(T) ?  a(T) 
(Tt) - s(T) = T _s (t) 

= RTRUM .R = R.T (T) (see (3.3), 

(3.9) and Proposition 3.2). Since this last expression is equal to 

R(U1,V1)(T+t) (see (2.39)), 

(3.34) (U1,V1)(T-t) = R(U',V')(T+t) for t E  

A similar computation for U° E J,MO yields 
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(3.35) (U°,V°)(-t) = R(U0,V0)(t) for t E (....00,00). 

As a consequence of (3.34), we observe that 

(3.36) JM1 has no focal points in [0,2T]. 

Indeed, from Corollary 3.18 and Lemma 3.19, it follows that JTT M1 

has no focal points in [0,T], and according to (3.34) (see (3.2)) 

(3.37) U1(T-t) = fort E (--,co), U1 E 

In particular (3.36) follows upon taking t E [0,T] in (3.37). 

Next we observe that J J. MO has no focal points before 

To see this, we notice that since t = 0 is not a focal point of either 

J,MO or JM1, there is a > 0 such that (see Corollary 3.18 and 

Proposition 3.12) 

1 

(3.38) (Tv -r')(t) ? 0 for * t E [0,t ). 

Recalling that for any Jacobi field U° E J1 'M0 , 
II 

(3.39) 0 = V° (0) = Z° (0) (see (2.40), and Proposition 3.2), 

we may conclude from Definition 3.7 that r°(o) = 0, and 

5 0 (see (3.38)). 

Choose the unique U E J J. M 1 for i 1,... ,m-1 whose initial values 

are equal to some set of orthonormal eigenvectors corresponding to the 

(rn-l) nonpositive eigenvalues of r'(o), 

(3.40) r' • U! (0) = pU.(o),.s0, U! (0) 1, for i = 1,... ,m-l. 
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Let Yij = 
0 

if i = j 

otherwise, and 

choose the unique (see (3.39)) U E J 110 , such that, 

(3.41) U(0) = tJ(0) for i = 1'... 'M-l. 

By virtue of (3.40), we find that 

WIT TJ (,U) = <U,V>(0) - &,V!>(0) (see (2.55)) 

= - <U,V>0) (see (3.39)) 

ub(0) = - <U'. 
a 'ZI a 

1-a 

,r' U,>(0) (see (3.41)) 

Thus, the condition (3.15) is met for j' = JM 1, J = and 

to = T. Hence, we may conclude from Proposition 3.13 that YL 

TI 
(3.42) .i M O does not have a focal point in [o,c) before 

M1 

Let U-(t) -U(t-2T) for j 1,...,m-1, and denote by .7 the Lagrange 

family of J spanned by  Y. 

(see Lemma 3.4), then 
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Our conclusion may now be verified by showing that JM1 has 

no focal points in [O,2kT] for k E and invoking (3.37). We 

will use induction on k to show this, the case k = 1 being covered 

by (3.36). If has no focal points in [O,2kT], then nM° has 

no focal points in [O,2kT] (see (3.42)), and J thereby has no focal 

points in [2T,2kT + 2T]. We may conclude, by invoking (3.43), that 

has no focal points in [O,2(k+1)T]. 

Therefore JM1 has no focal points in [O,°°), and as a conse-

quence of (3.37), no focal points in (-°°,°'). o 

In order to determine the location in the complex plane of the 

characteristic multipliers of the periodic orbit a= (ir,X)(t), we 

will now turn to the linear system of equations along a which were 

derived in Proposition 2.44. Recall that this derivation was 

executed by means of the following representation: 

if U E J, then 
TT 

(3.44) 
in-1 

U(t) = Z a.(t) E.(t), 
1-

where {E(t)} are the parallel translates of an orthonormal frame 

field {E}1 for T (0) M0. In all that follows we will take the 

basis equal to the m-1 mutually orthogonal eigen directions 

of the symmetric operator 

'(0) :T M1 (0) +T IT (0) M1(0) (see (3.40)). 

We will write the linear system of differential equations (2.51) in 

the form 
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(3.45) ü = Q(t)u, Q(t + 2T) = 

where u(t) = [a 1(t),... ,arni(t)]" E JR m_l and * denotes matrix or 

vector transposition, and Q(t) is the (rn-i) square symmetric matrix 

(see (2.51)) determined by 

(3.46) Q. .(t) = -<D2W(TT)•E.,E.>(t) 
i a 

- 3<DW(1T)E>(t) .<DW(IT)E>(t)[ 2 (h-Wo1T(t)11 j )] 1 

for -L,j = 1,... ,rn-l. 

We recall some basic facts concerning the system (3.45), and 

refer the reader to [Hal] (pp. 117 - 136) for proofs. We will have 

need to consider an associated system 

(3.47) 2 = Q(t)A, 

where A(t) is an (rn-i) square matrix whose columns are solution 

vectors of (3.45). For such a matrix A(t), we let 

B(t) = 

then any two solutions A1(t), A2 (t) of (3.47) must satisfy 

-t 

A1(t)B2 (t) - B(t)A2 (t) = K 

where K is aconstant (rn-i) square matrix. A solution A(t) of 

(3.47) such that 

* 
A B - B A = 0, 

will be called a Lagrange solution. Such a solution is associated 

through (3.44) with a unique Lagrange family J (see Remark 2.48). 

Let 1(t) be a fundamental matrix solution of (3.45): 1(t) is 

a 2(rn-l) square matrix whose determinant never vanishes, and whose 

columns (a 1,... ,arn brnl)(t) * satisfy the vector differential 
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equation (2.51). There is a unique fundamental matrix solution 1(t) 

such that 

1(0) = 12(m-l) * 

For this solution, S = Y(2T) is called the monodromy or resolvant 

matrix of the system (3.45). The monodromy matrix S is symplectic, 

ro 
m-1 

or cT-unitary, where J =  

Lm_l 

(3.48) 
* 
S JS=cT. 

If S is symplectic, then 5' and S 1 are also symplectic, and the 

eigenvalues of S come in quadruples {v,V,v1,V _1}• 

The system (3.45) is said to be disconjugate on (-°° , 00) if every 

non-trivial solution u(t) has at most one zero in (- 00,00 ) 

Definition 3.21. A critical point c of the functional J is non-

degenerate L•f Nullity cT** = 0 (see Definition 2.15). 

Lemma 3.22. Let a = (rr,X)(t), t E (_00,00) be the periodic orbit of 

associated with a minimum distance line s(s)., s E [0,1]. The 

differential equations (3.45)., where Q(t) is specified in (3.4e), are 

disconjugate on (-.°°,°°). Let 

(3.49) y = 

be the matrix of -r'(o) with respect to the basis f3 = {Ei}Tj of 

orthonormal eigenvectors. If the critical point & of J is nondegen-

erate, then y> 0 as a quadratic form, and the solution A0(t) of (3.47) 

associated with the Lagrange family J Mo A0(o) = 'm.l may be 
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used to construct the monodromy matrix S of (3.45), 

(3.50) S = 
A (A-I)y 1 

y(I+A) A * 
with yA = A*y, and A = AO (2T). 

Proof. To prove that the equations (3.45) are disconjugate on (_oo,co), 

we observe that the solution A1(t) of (3.47) associated with the 

Lagrange family ,M1 such that A1(0) = 'rn-i satisfies 

detA 1(t) 0 on (_oo,øo), by virtue of Proposition 3.20. The result 

now follows since the existence of a Lagrange solution with this 

property is equivalent to disconjugacy on (—°',°°) (see [Ha] p.388). 

Now assume that & is nondegenerate, then as a consequence of Corollary 

3.18, Lemma 3.19, and Proposition 3.12 (b) and (3.33), 

= ((T0 — r') (o)] >0 

Let A0 (t) be the Lagrange solution of (3.47), associated with the 

Lagrange family JuO such that A0(0) = Then consider the 

fundamental matrix solution 

rA0 
1(t) = I 

LPo 

(A 0-A 1)Y 1 

($0-B1)Y1 
(t) 

It follows from (3.49), that B1(0) = -1. This fact together with, 

B0 (0) = 0, and A0 (0) = A1(0) = 'rn-i' implies that 1(0) = '2m-2 

Moreover, as a result of (3.34), A1(2T) = 'm -l' and B1(2T) = Y. 

Therefore 

A0 (40-I)1 1 

S = (BO-Y)y 1 

The relation (3.48) implies that 

(2T). 
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* * 
(3.51) uloBo - B0A0 = 0 , and 

A(B 0-y)y 1(2T) - B(A 0-I)y 1 (2T) = I. 

This latter expression reduces upon using (3.51) and  =y, to 

B0(2T) = Y(I-FA0(2T)). 

The fact that 1A0(2T) is a symmetric matrix now follows from a 

further application 

S = 
A0 

1(1-i-A 0) 

of (3.51) Finally 

(A0_I)1_hl r A0 (A0_I)1_hl 
(2T), 

YAQf1 J (2T) = [11+A0 A j 
since 1A 0(2T) = A(2T)1. 

0 

Lemma 3.23. Suppose that the minimum distance line a is a nonde-

generate critical point. Then the monothomy matrix S (see (3.50)) 

has no eigenvalues equal to ±1. Let 

* 
= (,i) E m-2 11 

then (v,) is an eigenpair for S if and only if 

(3.52) A = (v+v 1) , and = ((v+l)/(v-1))y. 

Proof. If (,v) is an elgenpair for 5, by virtue of (3.50), then the 

following pair of equations must hold, and conversely: 

(3.53) (:i) A + (A-I)y 1 = 

(ii) y(I+A) + A* =  

Using the fact that yA is symmetric, (3.53) reduces to 

(3.54) (l+v)y + (l-v)r) = 0 

Suppose that v = +1. Then according to (3.54), = 0, and 

* 
A = 
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Let u(t) denote the solution of (3.45) such that 

U(0) = = 0 , z(0) = 

Then since S≥ = , u(2T) = 0, (2T) = i. However, this contradicts 

the conclusion of Lemma 3.22 which states that (3.45) is disconju-

gate on (-

Next, assume that v = -1. Then by (3.54), 

TI = 0 , A = - 

We will obtain a contradiction by showing that yA 1 is a symmetric 

positive definite matrix. The symmetry of Ay- l(A* -IT), and 

-1 * 
hence yA follows from the fact that S is symplectic. 

We will compute [r°(2T)] where 3 = {E1} is the same 

basis as in Lemma 3.22. We draw the reader's attention to the fact 

that E(2T) = E(0) = E. (see Lemma 2.43 (c)), and therefore (see 

(3.44)), for E JI 0, (using our summation convention) with 

U(2T) = a..(2T)E 

it follows that, for 

[a. .(2T)] = AO (2T) =  A. 

-1 
[o .] =A 

= r0(2T)akiu(2T) = ckP°(2T)U(2T). 

Recall that (see Proposition 2.44), 

r°(2T)u(2T) = Z(2T) = bjk(2T)Ej, where 

[blk(2T)] = B0(2T) = "(I + A) (see (3.50)). 

Therefore, 

r°(2T)E = 1'lk ki E1, and 

[r°(2T)] = B0(2T)•A 1 = y(A 1 + I). 
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Finally to show that IA 1 is a positive definite symmetric matrix, 

we observe that 

0 < [(r°_r')(2T)I = Y(A 1 + I) - I = 

since -Z(0) = Z(2T) (see (3.34) and (2.40)), and hence 
71 S 

-r'(o) = r'(2T). 

If S has an eigenvalue v = -1, then A = -, and since y > 0 

(Lemma 3.22) this would contradict the fact that IA 1 is 

positive. 

Finally, (3.54) and (3.53)(i) imply that 

A + (A-I) = 

and consequently that, 

{A - ( 2+l) = 0 , 
2' 

Ti = (J I 

0 

The following result, of a more general nature, explores the 

relationship between disconjugacy of the differential equation (3.45), 

and the position in the complex plane of the characteristic multipliers 

of this system. First we recall an alternate characterization of 

disconj ugacy. 

Let C[0,a] denote the linear space of mappings 
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C[O,a] = {u:[O,a] u is absolutely continuous on [O,ct], 

E L2 [O,a], and u(0) = 0 = 

and let I(u;O,a) denote the quadratic form on C[O,cx] 
a 

I(u;O,a) = J {II + u*Q(t)u}dt, 

0 

where Q(t) is the m-1 square symmetric matrix of (3.46). 

Lemma 3.24. The differential equation (3.45) is disconjugate on 

if and only if, for every compact interval 

[0,a} C [0,°°), 

I(u;O,a) is positive definite on C[O,a]; in particular, 

I(u;O,a) = 0 u = 0. 

We refer the reader to [Ha] (p.390) for a proof of this result. 

Proposition 3.25. Let (v,) be an eigenpair for the monodromy 

matrix S of the equations (3.45). Suppose that (3.45) is disconiu-

gate on [0,°°). If v E unit circle, v ±1, and = (,q) E 

then JR". That is, must have a nonzero complex component. 

Proof. Suppose that v is an eigenvalue for the monodromy matrix S 

which lies on the unit circle, v ±1. Since S is real, we can 

without loss of generality assume that 

ia2T 
v=e , with 0<a2T<iT. 

We will assume that the eigenvector of S corresponding to V. 

satisfies E lRml, and obtain a contradiction. 

Let the monodromy matrix S satisfy 
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S = Y(2T), where 1(0) = '2m-2' 

.17(t) = 

U0 U1 

zo zi 
(t), and U0 ,U1 are Lagrange solutions of (3.47) 

such that (see (3.48)), 

* * 
(3.55) (i) U•Z• - Z.U. = 0 (i = 0, 1) 

'2-1-

* * 
(ii) ZJ0Z1 - Z0U1 = I 

rn-i 

The theorem of Floquet (see [1-Ia] p.60) implies that, for n E Zt 

U0 (2nT) + U1(2nT)r) = ic2nT 9. 

If we assume that 9 E .7Rml, T) = T] 1 + jr)2 E d 1n . , then rewriting our 

last equation in real and imaginary terms, we find 

(3.56) (i) U(2nT) + U1(2nT) 1 = cosc2nT 

(ii) U1(2nT)r)2 = sinc2nT • 

We observe that, if o2T/ic is rational, then either 

UM = U0 (t) + U1(t)11 1, or ü(t) = U1(t) 2, will have infinitely 

many zeroes on [0,°o), thereby contradicting our assumption of discon-

jugacy in the system (3.45). We may therefore assume that a2T/ii is 

irrational. In this case, neither cosc2nT nor sinc2nT vanish for any 

integer n. For a temporarily unspecified positive integer 

the solution of (3.45), 

U0 (t) U1(t) 
UM =   

cosc2lT + 

U, (t) 

cosc2lT 111 - sinct2lT 112 

Then, for any integer 7<, 0 < 7< < 1, by 

Z(2lT) = 0, Z(27<2') = cosct2l<T cosc2lT 

Denote the expression in the braces by 

virtue of (3.56) 

s inc27<T  
sinc2lT 

5 = 8(7<). Then, 

1, consider 
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S -  sinc2T(l-k)  
cosa2lT sinc2lT 0, since c2T/ii is irrational. 

Let U1 (t)  
sinc2kT 112 t E [0,2kT] 

U0 (t) U1 (t) U1(t)  
5 cosc2lT + S cosc2lT1 - S sina2lT2' t E (2kT,21T] 

then the properties of u(t) are summarized in Figure 17. 

In particular, u E C[O,21T], and u(t) is piecewise C 2 on [0,21T] 

Therefore, after an integration by parts, we find 

21T * 

I(u;O,21T) = +u (2kT)2kTu - f u (i-Qu)dt, 
O 

where 2kTU = (jr) (2kT) - (L-) (2kT). Since u(t) is a broken solution 

of (3.45), and u(2kT) = 

* 
I(u;0,21T) -(u)*(2kT) + '(u )(2kT). 

Since u is a broken continuous arc at 2kT we may evaluate u(2kT) = 

in two ways. Denoting U0 (2kT) by U0 etc., we find 

* z  ( U0  
I(u;O,21T) 12 sinc27<T S cosa2lT 

* 
+ Ti2 s1nct27<T IS 

U  
+ 
S cosc2lT 1 

U1  
S sina2j12 

z0 
+  Z 1 Tiu z1  

cosa2lT 5 cos 2lT 5 sina2lTTi2 3 
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..T) (ZU0 - UZ 0) T) (ZU1 - UZi) 'n +112  (ZUi UZl) -02 

6sinc2kT cosc2lT öcosa2lT sinc2kT ösina2kT sina2lT 

_Y) 

- 6 sinct2kT cosct2lT 
by virtue of (3.55) (1), (ii). 

We will now show that it is possible to choose k,l, 0 < k < 1, such 

that I(u;O,21T) 0. Indeed, by assumption a2T/rr is irrational, and 

Jacobi's theorem tells us that 

n =e In 
io2nT E 

is dense on the unit circle. There are three possible situations, 

which we summarize below: 

(a) rj < 0, choose P7< ,P1 in the 

configuration of Figure 18; 

(b) = 0 I(u;O,21T) = 0; 

(c) > 0, choose P k P in the 

configuration of Figure 19. 

F 

In all three cases, I(u;0,21T) 0, and u 0. Therefore, invoking 

Lemma 3.24, we may conclude that (3.45) is not disconjugate on [O,°°). 

This is the desired contradiction, and completes the proof. 
0 
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Preparatory to the main result of Chapter 3, we recall our 

previous notation and some standard terminology. 

We have used the notation for the flow of the Hamiltonian 

vector field 

XH(x,y) = (y,-DW()). 

Let a = (ui,X)(t) be a periodic orbit of XH, and consider the linearized 

Poincare mapping at a point z0 = 

P T 2T:JR2mlR2m. 
to o 

We recall that Pto is a symplectic mapping, and observe that T ZO H1(h) 

is invariant under P4. . Denote the restriction by P4. 
to 

P =P IT H— M. to to zo 

The characteristic multipliers of a are the 27fl-2 eigenvalues of Pt 
0 

other than the eigenvalue +1 corresponding to the eigenvector XH(zo), 

and these multipliers are independent of our choice of t0. The orbit 

a is said to be a hyperbolic periodic orbit if all of its characteristic 

multipliers are off the unit circle. 

The following result is used to show that the multipliers of a(t) 

are the same as the characteristic multipliers of the differential equation 

(3.45) with Q(t) specified in (3.46). We recall our notation from 

Lemma 2.46. The symplectic subspace E(t0) of T ZO H 1 (h), and the 

symplectic form co are defined respectively as 

E(t0) = A(t0) . (T Zo Ff1 (h)) (see (2.52) for A(t0)), 

= 1=1 i- °E = 'E(t0Y 
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Lemma 3.26. Let z0 = (ii,X)(t 0), and P :T H 1(h) --T Ii 1(h) be to zo zo 

the mapping 

<,X>  (toi2T)XH(zo), if to T.7Z 
- 2(h_WOTI) 

+ <r],DW(rr)> (to+2T)XH (z o), if to = kT, k E • 

to IDW(TI)I 2 

where (,T)(t) is the solution of the linearized Hamiltonian equations, 

= Y), 1) = -D2W(ir), 

with = (,)(t0). Let A(t0), E(t0) respectively denote the projec-

tion operator, and the synrplectic subspace of T ZO H 1(h) specified in 

Lemma 2.46. Then, 

(a) to A(t) = A(t0) 

(b) E(t0) is invariant under P to 

(c) Pto is synrplectic with respect to the form co 

Proof. The proof of this result will be for the case to f T7Z , the 

other case being analogous. 

(a) Recall that (see Remark 2.34), 

= (,r)(t0+2T), and in particular 

Pt0XH(zo) = X11(z0). 

Therefore, using the expression for A(t0) from (2.52), 

<,X>(t0)  
P •A(t0) = - 2(h-WoTT) xH(zo)} to 

< 
- 2(h-WoTr)(tD)' X>(t0+2T) 

2(h-WoTT) 

= Pt 2(h_Wo)(tjH0 ) + 2(h-Woii)(t 

XH (zo) 

<,X>(t0+2T) 
11 2(h:wo):(tO+2T)XFIo) 
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= A(to)Pt to 

(b) This follows directly from the projection properties of 

and part (a). 

(c) For E E(t 0), c 

°Et0 't 0 2 

= 2(h—Woii) 

= ü(Pt1+a 1XH ,P 2+c.2XH) 

= 

= since P is symplectic. 
0 0 

Theorem 3.27. If the minimum distance line a(s)_, s E [0,1], is a 

non-degenerate critical point of the functional J, then the associated 

periodic orbit of XH a(t) = (ii,X)(t), t E (_oo,00), is a hyperbolic 

periodic orbit. 

Proof. By virtue of Lemma 3.26(c), there is a polynomial Q(X) such 

that det(X - P ) = to (X-1)Q(X), and det(X - to ) = )Q(X). Therefore 

the characteristic multipliers of a are the same as the eigenvalues 

of Ptçj restricted to E(t 0). Now by virtue of (2.38 ), P 0 is the 

2T-period mapping of the reparameterized co-Jacobi equations (see 

(2.28)): if U E J, then (U,V)(t0) E E(t0) (see (2.52)), and 
Tr 

to (U,V)(t) = (U,V)(t 0+2T) E E(t0). 

On the other hand, the relationship between the vector field 

(U,V) (t), and the vector field (u,Z) (t) is provided by the linear 

mapping (t0): 

S(t0) = 

I 
m 

2(h-Woii) (t0) 

0 

I 
m 

if to 
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O 
m if to = kT, k E ; 
0 I 

M 

I(t 0) = (t 0) (to) (see (2.40)). 

Since (t 0) is a nonsingular transformation, P to is conjugate to the 

2T-period mapping of the vector fields (U,Z). This latter mapping, 

when expressed in appropriate coordinates, is the monodromy matrix S 

(see (3.50)) of the differential equation (3.45) with Q(t) specified 

in (3.46). Therefore, to show that Cris hyperbolic we need only show 

that S has no eigenvalues on the unit circle. 

To this end, let (v,) be an eigenpair for S, where 

= E 02rn-2 

V 0 ±1, and if 

By invoking Lemma 3.23, we may conclude that 

v = e2T, then A = coso2T (see (3.52)). 

In this case, we may choose E JRm_l , 0. However, this contra-

dicts the conclusion of Proposition 3.25 which is in force since (3.45) 

is disconjugate on (_c0,00) by virtue of Lemma 3.22. Therefore, we may 

conclude that Jv 1 for any characteristic multiplier v, and this 

completes the proof. 
a 

This last result, answers in the affirmative a conjecture of 

Birkhoff [B] (p. 130) which states that in dimensions higher than 

m = 2, periodic orbits of minimum type are of unstable (hyperbolic) 

type. 
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Appendix A: Ambrose's Index Theorem 

In this appendix only, we will use the notation of Ambrose [A]. 

We first recall this notation and the principal ideas. The Riemannian 

manifold M of dimension d is given, and we consider C, a fixed (para-

meterized) geodesic of unit speed joining orthogonally the endpoint 

submanifolds of M: K at c(s 0), and L at c(s 1), s < s. The boundary 

condition S at c(S O) is defined as 

S = 

a pair of linear transformations of the subspace 

M3 = {X E Tc(s )M I X j. c(s0)} 

into itself, such that 

= orthogonal projection of into 

( SZ on  K 
2 c(s 0) 

I. Id on [Tc(s)K]', 
5 1s2 = S2s1, 

where E is the second fundamental form of the submanifold K at c(s 0) 

relative to z = c(s 0), and [TC(SO) K1 is the orthogonal complement of 

T C( SO ) \M c relative to the inner product on T ,.SO1 \M induced by the Rie-

mannian metric. The same definition holds for the boundary condition 

T at c(s 1) with c(s 1) replacing c(s0). 

We will prove that Ambrose's index theorem [A] (p. 86) simplifies 

in case the boundary condition T at c(s 1) arises from an hypersurface 

L of 14. In this case, 
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(1) = id on M5 . 

Ambrose uses the notation 3 to denote the 2(d-l)-dimensional 

space of Jacobi fields X along C, orthogonal to c(s) V s, and 11 

X = V X denotes the covariant derivative of X in the direction of 
c (s) 

c*(s) 

To an arbitrary boundary condition S = (1,2) at S = 5', we have 

the associated subspaces of 3: 

= {x E 3 x(s') ES 1, (s') - 52X(s') S}; 

= {x E 3 X(s') ES1, 5C(s') = 52X(s')}. 

We make one observation concerning the subspaces J,3: if (1) holds, 

E T1, T2X(s 1) E T1, and therefore 

(2) JT = 3T 

From a given boundary condition T at 8 = 6', Ambrose introduces 

two boundary conditions T*(s), T(s) at each S. We repeat his defini-

tion of ?(s) because we wish to relate this to our operator 

(see Definition 3.7). 

T1(s) = projection of M onto {1(s) Y E 3} 

(T 1(s)Y(s) if y = Y(s), Y E J*; 
T2 (s)y = * 

I y if y±T1(s) 

T1(s) = projection of M onto {.Y(s) I I E 

1T1(s)T,(s)T,(s) 

T2 (s) = id - on T1(s). 

Lemma Al. If (1) holds, T(s) = T(s), and 3T = 

r, (S) 



- 134 - 

* 
Proof. From (2) we may deduce that T1(s) = T1(s), and consequently 

1T(s)T(s) on T1(s) 
T2(s) = I 

id on T1(s) 

* * * 
since T1(s), T2 (s) commute and T1(s) is idempotent. Our first con-

clusion now follows since Ti(s) = id on T1(s). To establish the 

second conclusion, we will invoke Lemma 1.4 of Ambrose [A] which states 

that 

* * 
.7 = .7 * 
T T (s) 

Now 3 = * .1* * = .7 therefore the lemma is proved. T from (2), and T (s) T(s)' 

0 

Ambrose defines three types of conjugate points for the pair S,T: 

strong focal points, where 

dim {X(s) I X E 3T < d-1; 

pure conjugate points, where 

* 
dim (.7 * fl .7* "3 > 0; 

S T (3) s  

and conjugate points of mixed type where both conditions above are met. 

Lemma A2. If (1) holds., there are no pure conjugate points or conjugate 

points of mixed type. 

Proof. This follows immediately from Lemma Al, since 

(7; fl 3T(S) = (J fl 
0 

The integer valued function n(s) is defined by Ambrose to be the 

order of the conjugate points s, and according to (1.1) of [A], and 

Lemma A2, 
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(3) n(s) = dim {x E JT X(s) = o}. 

Now we turn our attention to the convexity term C introduced 
ST 

by Ambrose. He defines this as 

(4) CST = index (S(s) - (T(t)(s))) 

where the time values s,t are specified in his Definition on p. 85. 

Lemma A3. If (1) ho1ds, then T(t) * (s) = T* (s) V s,t. 

* * * 
Proof. First we will show that T (t) (s) = T (s). To this end we 

observe that 

1* 7 * .. 

= 

Indeed, 3T = JT* (t) (from (2), and Lemma Al), and 

(Lemma 1.4 [A]). We may conclude that 

* * * 
T (t) (s) = T1(s) Vs,t. 

= 

Moreover, by using this equality in the definition of ?(t)(s), we 

find 

T* (t)(s)y = 
T(s).i'(s) if y = Y(s),Y E J/c (5) 

( y if y 1. T (t) (s) 

As we have seen, J = .JT* (t), and :heref ore 

T (t) 2(s) T2 (s) Vs,t. 

This proves that T'(t)'(s) = T (s) Vs,t. Finally, we invoke Lemma Al, 

* .,. * 
and conclude that, T (t) (s) = T(t) (s). This completes the proof of 

the Lemma. 
0 

We may now restate the index theorem of Ambrose for the index 

form I, in case (1) holds (see (2.1) [A] for I,, and Theorem 5, p. 86) : 
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(5) Index 'ST = Z n(s) + 
30<8<81 

= Z (focal points with multiplicity of J at s) 

8 0< 3 < 5 1 * 

+ index (S2 (s) - T2 (s)). 

(6) Nullity 'ST = dim (J fl 

where > s is chosen sufficiently close to s so that there are no 

focal points of S or T in (s 0 ,3], no conjugate points of c(s 0) in 

and no conjugate points of c() in 

The proof of this statement is immediate from (3), (4) and 

Lemma A3. 

* * 
To relate the second fundamental forms 52 (s), T2 (s) to the oper-

ators r°(t), r1(t) (see Definition 3.7) we let V denote the Levi-

Civita connection of the Jacobi metric (dT) 2. In Remark 2.42, we 

introduced the vector field Z(s) for an arbitrary Jacobi field X(s) 

along C(S), 

Z(s) = V (5) X. 

where y(s) = 2(h-Woc(s)) c*(s). Therefore 

= 2(h-Woc(s)) k(s). 

We make the observation that 

(7) r0 (t) = 2(72-Woc(s(t))) S(s(t)), 

r'(t) = 2(h-Woc(s(t))) 

with s(t) specified in (2.26), and boundary conditions KXL (see 3.24)). 

Indeed, for X E is 

F° (t)X(s(t)) = S(s(t))Z(s(t)) = 2 (h-Woc(s(t)) )5(s(t) )k(s(t)) 

= 2(h-Woc(s(t)))52 (s(t))X(5(t)), 

and similarly for F1(t). 
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From (7) we may infer that J is isomorphic, via a reparameteri-

zation of the fields, to and similarly for and Indeed, T1 , K1 

if SO = s(to), 

- S2X(s 0) L S1 Z(s 0) - T0(t0)X(s 0) ± S1 

(multiply both sides by 2(h-Woc(s 0))). 

The second relation is easily seen to hold 

(8) U E with (1(t) = X(s(t)). 

Moreover, by virtue of (7), if so = s(t0) 

* * 0 1 
(9) index (S2 (s 0) - T2 (s 0)) = index (F (t 0) - r (t 0)). 

The index theorem may be restated, with the help of (8), (9), 

Index I (focal points of with multiplici-
ST t0 <t 7<27-t0 0 

ties at t') + index (1' (t0) - 

Nullity I ST = dim Tr 1K fl i TT IL 

To complete our restatement of ambrose's index theorem in the Hamilton-

ian format needed in Chapter 3, we need only verify that 

(10) Index eT** (XXL) = Index 1ST 

Nullity J** (XXE) = Nullity 'ST 

However these statements are a consequence of Theorem 2.16, and the 

representation of eigenvalues given in (2.7). First we replace (2.7)(b) 

with the boundary relations 

(11) R(s0) - F°P(s 0) L Tc(B)K, and (s) - r'(s 1) i 

to account for the nonzero boundary terms in T** (KxL) (see (3.25)). 

Next, it is well known that (see Hestenes [He] p.111), Index 'ST is 

equal to the number of negative eigenvalues of I,, this value being 
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the number of linearly independent solutions of (2.7)(a) subject to 

the boundary conditions (11) (use the linearized Legendre transform, 

Lemma 2.9, to obtain solutions of (2.7)(a) from the usual Jacobi 

equations). The same principle holds for zero eigenvalues, and the 

relations (10) are established. This completes the restatement of 

ambrose's index theorem. 
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