1 Introduction

Given a network of processors with distinct identifiers, the maximum finding problem is to find
that processor with the maximum identifier. We present a new, efficient, and simple deterministic
algorithm for the maximum finding problem on asynchronous unidirectional rings. Our algorithm
sends fewer messages than all previously published algorithms for this model while its description
and analysis are substantially simpler than that required of the most efficient previously published

solution.

Maximum finding on asynchronous rings has been very well studied. The first deterministic
algorithm for rings with distinct identifiers was presented in 1977 by LeLann [25]. It used O(n?)
messages even on average for a unidirectional ring. In 1979, Chang and Roberts [14] improved the
average case to O(nlogn) messages but the worst case remained O(n?). Hirschberg and Sinclair
(21], in 1980, solved the problem in O(nlogn) messages for bidirectional rings and conjectured
that this was not possible in the unidirectional case. In 1982, Peterson {28] and Dolev et al.[15]
independently disproved this conjecture by finding a solution for the unidirectional version of the
problem that used at most 2nlogn + n messages. A series of improvements followed. Dolev et
al. brought the constant factor down to 1.5 with a combination of two techniques that required
an extensive and complicated analysis. Then Peterson decreased it to less than 1.441, in a simple
algorithm with an elegant analysis. Finally Dolev et al. applied their techniques to Peterson’s

algorithm to achieve a maximum finding algorithm with message complexity 1.356n logn.

Probabilistic solutions for asynchronous unidirectional and bidirectional rings with and without
identifiers have also been proposed [22, 1, 20]. Lower bounds and impossibility results have been
explored in a variety of papers [7, 13, 27, 16, 10, 2, 3, 12, 11]. These show the message complexity
to be Q(nlogn) for rings of size n on increasingly more powerful models and for increasingly more
constrained versions of the problem. Taken together, the lower bound results imply that even in the
average case, with or without identifiers and with or without randomization, maximum finding on a

unidirectional or bidirectional ring is Q(nlogn) even if the ring size, n, is known by the algorithm.

Several closely related problems also imply results for asynchronous maximum finding on rings

[9, 26] or extend results to other networks (19, 6, 4, 5, 8, 17, 18, 23, 24].

Because of asynchrony, timing information cannot be exploited to advantage and hence all the

algorithms for maximum finding on this model are message-driven. It is assumed only that all

messages are eventually delivered and, for each link, the order of delivery matches the order of
transmission. It is often helpful to view a distributed algorithm by focusing on the messages as
they travel around the network rather than on the processors as they send and receive messages.
We adopt this perspective in this paper, so our descriptions of algorithms have the following general
form. Initially each processor creates a (message) envelope and forwards it to its neighbour. When
an envelope arrives at a processor, information from the envelope may be used to update processor
information, and then either the contents of the envelope are updated, and it is forwarded, or the

envelope is destroyed.

Section 2 develops our new algorithm from this perspective, and provides the analysis. We
identify three ideas that, when appropriately combined, suffice for our algorithm. Two of these
ideas are inspired by techniques used in previous algorithms for maximum finding. In Section 3,
the “envelope perspective” is used to reinterpret these existing algorithms. This helps to illuminate
the similarities and differences between them and our new algorithm. Some related ongoing research

and open problems are mentioned in Section 4.

2 The new maximum finding algorithm

In this section we apply three observations to develop an efficient and simple deterministic maximum
finding algorithm for asynchronous unidirectional rings. We begin with a basic algorithm and then

consider two enhancements.

2.1 Leader election

Although the essential equivalence of leader election and maximum finding is folklore, the rela-
tionship has not been exploited for deterministic maximum finding on asynchronous unidirectional
rings. Once elected, a leader can initiate one message envelope that travels the ring and keeps
track of the maximum identifier. A second envelope announces the result. Thus, maximum finding

reduces to leader election with at most 2n additional messages.

The advantage of electing a leader rather than finding the maximum directly arises because,
for leader election, it suffices to isolate any one identifier. Preserving local maxima (as in previous

algorithms) can be replaced by any process that eliminates identifiers while ensuring that not all

are eliminated. We start with a basic algor

conversion to maximum finding to the read

Initially each processor creates an enve

round set to 1, and forwards the envelope

unchanged as long as the envelope survive
the algorithm.) Throughout the algorith

last envelope it sent. When an envelope

ithm for leader election called LE.BASIC, and leave the

€T.

lope containing a label set to its own identifier, and a
to its neighbour. (The label of an envelope remains
. The round will be incremented during the course of
, each processor stores the label and the round of the

ith an odd (respectively, even) round number arrives

at a processor, it is destroyed only if it hag the same round number as the processor and a larger
(respectively, smaller) label. If the round numbers and the labels both match, then the algorithm
terminates and the receiving processor is the leader. If the round numbers match and the envelope

is not destroyed, then its round number is incremented and the updated envelope is forwarded.

Finally, if the round numbers do not match then the envelope is forwarded unchanged.

Figure 1 specifies LE.BASIC from the processors’ perspective. The pseudo code assumes the
following two tests that are employed when|an envelope containing label id, and round rnd reaches
a processor that has recorded a label fwdllabel and a round number fwd.round. The functions

odd(-) and even(-) return the obvious Boolean values.

Leader-test: id = fwd_label and rnd = fi

Casualty-test:
(fwd_round = rnd and odd(rnd) and

(fwd_round = rnd and even(rnd) and

The protocol for each processor is paramete
nates when one processor passes the Leader

as previously described.

We note in passing that only the parity
a processor with round number : always re
single bit in each message could replace th
entirely eliminated from messages by havi
follow this observation further since round

improved algorithm, and because we wish ¢

d_round

id > fwd_label) or
id < fwd_label).

erized by its identifier (proc-id). Envelope traffic termi-

test. This leader should then initiate maximum-finding

7 of the round number was actually used; in LE.BASIC,
ceives an envelope with round number 7 or i + 1. So a
e round number. In fact, round information could be
ng processors keep track of them instead. We do not
numbers (not just their parity) will be required in the

o keep the role of the processors simple.

Processor(proc-id):
id «—proc-id ; rnd +—1 ; fwd_label +— —o0 ; fwd_round «— -1 ;

repeat
if not Casualty-test then
if fwd_round = rnd then
rnd +—rnd+1 ;
fwd_round +—rnd ;
fwd_label +—id ;
send(id, rnd) ;
receive(id, rnd) ;
until Leader-test .

Figure 1: Algorithm LE.BASIC
Correctness of LE.BASIC follows immediately after establishing:

safety: the algorithm never deletes all message envelopes,
progress: eventually only one envelope remains, and

correct termination: the algorithm elects a leader exactly when one envelope remains.

Because the ring is unidirectional and messages are processed in first-in-first-out order, the
scheduler is powerless to influence the outcome of the computation. We are free, therefore, to
adopt any convenient scheduler to establish correctness. We choose a scheduler that processes

envelopes in such a way that all undestroyed envelopes have the same round number.

Safety and progress are consequences of the following property of LE.BASIC. In odd numbered
rounds, the envelopes that are eliminated are exactly those envelopes except the first in any maximal
chain of successive envelopes with descending labels; in even numbered rounds, the envelopes that
are eliminated are exactly those envelopes except the first in any maximal chain of successive
envelopes with ascending labels. Correct termination holds because, in order to terminate, some

processor must receive the envelope it last sent.

Let ¢ denote the golden ratio %@ It can be shown that this algorithm requires at most
nlogyn < 1.441nlogn messages. The analysis mimics that of Peterson’s algorithm [28] and is

omitted here since we will shortly analyse an improved algorithm.

Notice that an envelope can only be eliminated by a processor if the round number of the

envelope and the round number of the last envelope sent by the processor agree. As well, for
algorithm LE.BASIC, a processor in round 7 always receives an envelope in round number ¢ or ¢ + 1.
As a consequence, there is no danger of eliminating all envelopes, even if processors are permitted
to arbitrarily promote an envelope to its next round. Our improvement to LE.BASIC employs two
restricted applications of this notion of early promotion that turn out to help keep the message

complexity low.

2.2 Early promotion by witness

The first technique is used to promote an envelope when it can be verified that the envelope would
be promoted by LE.BASIC anyway. Denote an envelope with label a and round ¢ by < a,7 >.
Suppose an envelope < b,¢ >, where ¢ is even, encounters a processor, z, that last sent an envelope
< a,t—1 > where a < b. We claim that the first processor with round number ¢, say w, that
< b, > next encounters necessarily will have a label no bigger than a. As a consequence, < b,7 >
would be promoted to < b,i+ 1 > at w, so instead it receives early promotion by witness at z, and

z is a witness for round 1.

To see the claim, consider the fate of the last envelope, < a,i — 1 >, forwarded by z. When
< a,t — 1 > arrives at a processor z with round number i — 1, either it is promoted to round i
because a is less than the label of z, or it is destroyed because @ is greater than the label of 2. In
the first case, z will have recorded a as its last label and ¢ as its round, so z is the claimed processor
w. In the second case, some chain of envelopes with decreasing labels is destroyed and the last in
the chain is promoted to round 7. The processor that promoted that last envelope is the claimed

w and necessarily has recorded a label even smaller than a.

A symmetric argument can be made for an envelope with an odd round number ¢ that encounters

a processor with a round number 7 — 1 and a larger label.

Suppose in algorithm LE.BASIC, an envelope is promoted from round ¢ to round ¢ + 1 by a
processor y with label a and round ¢. Then, if early promotion by witness is incorporated into
round ¢, there will be a witness for round 7 that promotes the envelope before it reaches y. In
particular, the processor that promoted a to round i — 1 is a witness for round ¢ that the envelope

meets before y.

That early promotion by witness actually achieves real message savings rather than just pre-

maturely changing round numbers is easily seen by tracing a few rounds of the communication

incurred by LE.BASIC with and without eariy promotion by witness. This will shortly be confirmed

in the analysis of our final algorithm.

2.3 Early promotion by distance

Let F, denote the t** Fibonacci number deﬁned by Fy,=0,F,=1,and fort > 2, F;,, = F,_; + F..

It can be shown that, for algorithm LE.BA#IC, an envelope in round ¢ must travel a distance of at

least F;y, before it is promoted to round i + 1. If the distance travelled is substantially longer than

this, then the savings due to early promotign by witness can be jeopardized by being confined to a

small portion of the ring.

On the other hand, if a long gap exits, the algorithm has succeeded in eliminating more

envelopes by the end of the it" round than jrwould have been eliminated by the end of the i** round

from an initial configuration that is designdjd to keep envelopes alive for as long as possible. So the

algorithm is ahead of this worst case scend}rio and can afford to promote some round ¢ envelopes

without confirming that the test for survival is passed. The technique of early promotion by distance

promotes an envelope in round ¢ if it has

travelled a distance of F;,, without encountering any

processor with a matching round number. To implement this technique a counter is added to each

envelope. When an envelope is promoted

to round i, its counter is set to Fi,,. The counter is

decremented each time the envelope is forwarded without promotion, and if the counter reaches

zero, then the envelope is promoted, before

2.4 The algorithm

Our final leader election algorithm, called
motion by distance in odd numbered roun

rounds.

Figure 2 specifies ELECT from the proc

consisting of a label, a round number, and

in addition to those used by LE.BASIC.

being forwarded.

ELECT, consists of LE.BASIC augmented with early pro-

ds, and early promotion by witness in even numbered

essors’ perspective. Envelopes now contain three fields

a counter. The pseudo code assumes the following test

T
I

Processor(proc-id):

td «—proc-id ; rnd «—0 ; cnt +—0;
fwd_label +— —o0 ; fwd.round +— —1;

repeat
if not Casualty-test then
if Promotion-test then
rnd +—rnd+1 ;
ent «—Frpgi9;
fwd_round +—rnd ;
fwd_label «—id ;
send(id, rnd, cnt-1) ;
receive(id, rnd, cnt) ;
until Leader-test .

Figure 2: Algorithm ELECT

Promotion-test:
(even(rnd) and fwd_round = rnd—1 and id > fwd_label) or
(odd(rnd) and cnt=0) or
(odd(rnd) and fwd_round = rnd and id < fwd_label).

2.5 Correctness of the algorithm

We establish safety, progress, and correct termination for algorithm ELECT. Again assume that the

scheduler processes envelopes so that all undestroyed envelopes have the same round number.

Suppose, contrary to safety, that some run of ELECT removes all envelopes. Then there is a
maximum round number p achieved by any envelope. Let S be the set of identifiers in envelopes
that achieve round p. Then if p is odd (respectively, even) the envelope containing the minimum
(respectively, maximum) element of S cannot be deleted and will be promoted to the next round

or a leader will be declared.

Suppose, contrary to progress, that after some point, k¥ > 2 envelopes continue to circulate
around the ring. Then eventually all envelopes will receive a count at least as large as the ring.
At this point each envelope has a large enough count to allow it to travel to the processor that
forwarded the successor envelope. So if the round number is odd (respectively, even) the envelope

with maximum label (respectively, minimum label) must be destroyed.

The algorithm cannot prematurely elect a leader or fail to elect a leader because a processor
will receive an envelope with id equal to its fwd_label if and only if there are no other envelopes,

thus confirming correct termination.

2.6 Analysis of the algorithm

For an envelope with label ¢ and round number ¢, let host;(a) denote the processor that promoted
the envelope from round ¢ — 1 to round i. For an envelope with label @ that is eliminated in round ¢,
let destroyer;(a) denote the processor that eliminated this envelope. Let &(z, y) denote the distance
from processor = to processor y. Since algorithm ELECT never changes the label of an envelope for
the duration of its existence, we use envelope a as an abbreviation for the envelope with label a,
and we say than an envelope is in round ¢ if its round number is ¢. Envelope b is the immediate
successor in round i of envelope a if the first round 7 envelope encountered after envelope b in round

i, travelling in the direction of the ring, is envelope a.

Our analysis is a consequence of the following lemma.

Lemma 2.1 If envelope a reaches round i + 1, and i is odd, then §(host;(a), host;y1(a)) > Fiy; if

envelope a is destroyed in round i, and i is odd, then §(host;(a), destroyer;(a)) > F;.

Before proving the lemma, we examine its consequences. For any round ¢ of algorithm LE.BASIC,
all envelopes in round ¢ travel a total of n links because each envelope travels from its host in round
1, to the host of its immediate successor in round ¢. Algorithm ELECT uses fewer total messages
because an envelope does not always travel all the way to the next host before being promoted.
We now bound the savings due to early promotion. Let @ and b be the labels of two envelopes in
round ¢ where envelope b is the immediate successor in round 7 of envelope a. We say that envelope

a saves k links in round i if, in round ¢, the distance envelope a travels is 6(host;(a), host;(b))—k.

Corollary 2.2 Every envelope that reaches round i + 1 where i is even saves at least F; links in

round 1.

Proof: Let a be the label of an envelope that remains alive after an even round ¢, and let b be the
label of the envelope in round ¢ that is the immediate successor in round 7 of envelope a. Then a > b

because @ survives an even round. According to algorithm ELECT, if envelope @ has not already

been promoted to round i+ 1 before reachi‘ g host;_,(b), it will achieve early promotion by witness
), host;(b}). But, by Lemma 2.1, §(host;_;(b), host;(b))
> F. }]

at host;_;(b) thus saving at least é(host;_ 1(

Theorem 2.3 Algorithm ELECT sends fewkr than 1.271nlogn+ O(n) messages on rings of size n.

Proof: To bound the number of 'messageﬂ, we bound (1) the total number of rounds, and (2) the
number of messages in any block of two con‘secutive rounds consisting of an even round followed by

an odd round.

By Lemma 2.1, if round number ¢ is O(id, then the distance between any two hosts in round ¢
is at least F;. Thus, in round 7, where 7 ié odd, there can be at most n/F; remaining envelopes.
Denote by F~(z) the least integer j such|that F; > . It follows that algorithm ELECT uses at

most F~1(n) + O(1) rounds for rings of size n.

To estimate the number of messages send in a block, consider even round : followed by an odd
round ¢ + 1. Assume that there are z envelopes in round ¢ + 1. Then, by Corollary 2.2, the total
number of links travelled by envelopes in round 7 is at most n — zF;. Clearly, the total number of

links travelled by envelopes in round ¢ + 1|is at most n. Since, in odd round i + 1, each envelope

travels at most F;,4 before promotion, thﬁs number is also at most F;;3. Thus the total number
of messages in round 7 is at most min(zFL+3,n) and the total number of messages in the block
is bounded above by min((n + 2(Fi4s — ‘~)),2n — zF;). Since n 4 z(Fi43 — F;) = 2n — 2F; for

z = n/Fiys, this bound is at most 2n — nz =

Recall that ¢ denotes %@, and let ¢ d‘enotes -1—32@ Observe that for even i:

PR Gt N it B Ut 0 it i)
Fis | B —gn) | g+ g0R) (g4 4 G (g — g)
¢2£+3_¢3_¢—3 ‘
> W——_— i
> ¢ —¢7*

Therefore, the number of messages in a bl%ck starting with even round i is at most:

2n—n

i+3

<n(2—¢'3+¢‘2‘)=n<2 (1+\/_) +¢'2')—n4 V54 67%)

10

Hence there are at most

4-5

> n(4 -5+ W") +0(n)

even(i) and 2<i<F~1(n)

nlog, n + O(n)
1.764
2
< 1.27Inlogn + O(n)

(1.441)nlogn + O(n)

messages sent by any computation of ELECT on a ring of size n. u

It remains to prove Lemma 2.1.

Proof: (of Lemma 2.1) The proof is by iﬁlduction on the odd round numbers. The basis, round
1, holds trivialy because each envelope tr}wels 1 = F, = F, link. So suppose that the lemma
holds for round k where k > 1 and k is odd. Let a and b be labels of two envelopes in round
k + 2 where envelope b is the immediate successor in round k + 2 of envelope a. According to the
algorithm, envelope a travels Fy 4 links in I:fOllIld k42 unless it reaches host;2(b) before travelling

this distance. Therefore, we need to estimdjrte 8(hostyy2(a), hosty4(b)).

First observe two facts:

Fact 2.4 A witness for round k + 1 that promotes an envelope to round k + 2 was a host for round

k.

Proof: An envelope with label ¢ and rounﬂ k+1is promoted to round k + 2 at its first encounter
with a processor that has round number & ahd label, say d, less than c. The processor that promoted
envelope d to round k, host;(d), has label diand round number & and all other processors with label
d and round number k£ must follow hostk(d);} Envelope ¢ could not have reached host(d) in round k&
since otherwise it would have been destroydd by host,(d), so it encounters host;(d) in round & + 1.

Fact 2.5 §(hosti(b), host42(b)) > Fysa.

|
Proof: Consider b’s travel in odd round k. If b was promoted to round k + 1 after travelling

Fi 4o links then the observation is immedi#te. Otherwise, b was promoted by some processor, say
host,(c) and b < ¢, and, by the induction hypothesis, §(host,(b), hosti(c)) > Fi41. Since b reaches

round k + 2, in round & + 1, b travels fromh host,,;(b) (= hosti(c)) to some witness w for round

11

k + 1 with label d < b that promotes b to round k + 2. By the inequalities, ¢ # d, and hence w
must be some processor not in the interval [hosti(c), hostyy1(c)). Hence &(hostyy(b), hostey2(D))
> §(hostg(c), hosty4i(€)) > Fy by the induction hypothesis. The combined distance is therefore at
least Fiyy + Fy = Fyqs.]

Suppose a is eliminated in round &+ 2. Since k+2is odd, @ > b. Since ¢ reached round £+ 2, a
must have been promoted by a witness for round k+1. By Fact 2.4, the witness for round k+1 that
could promote @ and most closely precedes hosty2(b) is hosti(b). Thus, §(hostiya(a), hostyy2(d))
> 8(hosty(b), hostiy2(d)) > Fiy2 by Fact 2.5. Therefore, the lemma holds for round & + 2 in this

case.

Suppose a survives round k + 2. If a survives because it travels a distance of Fj,4 without
encountering a processor with round number & + 2 then the lemma holds trivially for round & + 2.
Otherwise, a travels to host,,(b) and is promoted because ¢ < b. Now, a was promoted from
round k£ + 1 to round k + 2 by some witness for round k + 1 that had label smaller than a. Since
b > a, that witness cannot be host,(b). By Fact 2.4, the witness for round & + 1 that promotes
a must be host,(g) for some envelope with label g that is between envelope a and envelope b in

round k£ + 1. By the induction hypothesis, é(hosts(g), hostyy1(g)) > Fiy1. Then,

d(hostg4a(a), hostyy2(h)) = &(hosti(g), hosty,2(b))
8(hosti(g), hostiy1(g)) + 8(hosty1(g), hostr2(b))
8(hosti(g), hostg41(g)) + 8(hosty(b), hostx,o(b))

Il

v

> Fop 4 Fiyo = Feys

So the lemma holds for round & + 2 in this case as well. []

3 Comparison to previous algorithms

Two previous papers established algorithms for maximum finding that used O(nlogn) messages.
In this section we compare the ideas and techniques used in these papers to the ones used for
algorithm ELECT. Although the the original descriptions assumed the processor perspective, we

adopt the envelope viewpoint when this interpretation simplifies the description.

12

3.1 Basic algorithm

There in an obvious algorithm for maximum finding on a bidirectional ring derived from the per-
spective of processors sending and receiving messages in phases. Initially each processor is active.
In each phase, each active processor sends its identifier to each of its active neighbours and receives
the identifier of each of its two active neighbours. An active processor stays active for the next
phase only if its identifier is larger than that of both of its active neighbours. Otherwise, an active
processor either receives at least one identifier larger than its own and becomes passive for the re-
mainder of the algorithm, or it receives its own identifier which necessarily is the maximum. Passive
processors simply act as relays. Since, in each phase, only the processors with locally maximum
identifiers survive, and each phase requires 2n messages, this basic algorithm sends at most 2nlogn

messages on rings of size n.

Both Peterson [28] and Dolev et al. [15] saw how to simulate this algorithm on a unidirectional
ring, where processors are constrained to send to the right and receive from the left. In phase
1, each processor is a host and its current-id is its identifier. In phase 7, each host obtains the
current-ids of the two hosts that immediately precede it. (This happens in two separate rounds.
First, each host sends its current-id and receives its predecessors current-id. Second, each host
forwards its predecessor’s current-id and receives its predecessor’s predecessor’s current-id.) Let u,
v, and w be three hosts with u immediately to the left of v and v immediately to the left of w. Let
cid;(z) denote the current-id of processor z in phase 7. Processor w is a host in phase i1 and sets
its value of cid;4,(w) to cid;(v) if and only if cid;(v) > cid;(u) and cid;(v) > cid;(w). Otherwise,
w is passive for the remainder of the algorithm. If a host receives its own current-id, then it is
necessarily the maximum identifier and the algorithm terminates after one more phase to announce

the result. We call this algorithm MAX.BASIC.

An identifier is alive in phase ¢ if it is the current-id of a host in phase 7. Notice that for any
initial cyclic arrangement of distinct identifiers, the cyclic sequence of alive identifiers in phase ¢ is
the same for the bidirectional algorithm and the undirectional simulation. On the unidirectional
ring, the alive identifiers are just cyclically “shifted” from their corresponding position on the
bidirectional ring. Thus algorithm MAX.BASIC uses at most 2nlogn + O(n) messages on a ring of

size n.

From the processor’s perspective, identifiers are being shifted around the ring in every second

13

1. This technique, which we call early stopping by witness, is comparable to early promotion by
witness. Both techniques are possible only because of shifting. That is, the saving can be realized
because if a current-id, d, survives phase ¢, then host;,,(d) is the host in phase ¢ of the successor of
d. Furthermore, early stopping by witness can be achieved only because the comparisons made in
successive rounds are of the same type (maximum identifiers survive); whereas early promotion by
witness can be achieve only because the comparisons made in successive rounds alternate between

types (minimums survive in odd numbered rounds; maximums in even numbered rounds).

One algorithm due to Dolev et al. incorporates early stopping by witness and early promotion
by distance (where the distance chosen is 2*) to the second round of each phase of MAX.BAsIC. The
resulting algorithm uses at most 1.5nlogn + O(n) messages. Finally, they added the same two
improvements (with the distance bound adjusted to a Fibonacci number) to Peterson’s improved

algorithm, to achieve a message complexity of 1.356nlogn + O(n).

It is instructive to enquire why the final algorithm of Dolev et al. is more expensive in terms
of messages than algorithm ELECT and why its description and especially its analysis are so com-
plicated. First, if the viewpoint is changed to that of envelope traffic, the description is simplified.
In particular, the various states of processors are unnecessary. Processors need only record the last
message sent. However, the algorithm would still be significantly more complicated than ELECT
because it needs to keep the maximum identifier alive. This in turn means that shifting (which is
the natural scenario from the envelope perspective) is only possible in even numbered rounds. In
odd numbered rounds, processors have to change the labels in envelopes. Because early stopping
by witness requires shifting, it must be added to even numbered rounds. But early promotion by
distance also occurs only in even numbered rounds. This not only decreases the saving but com-
plicates the analysis because every second round sends n messages and all the savings are achieved

in the alternate rounds.

4 Future Research

In spite of the large amount of existing research on distributed maximum finding, our understand-
ing of even the simplest and most studied case — that of unidirectional rings with unit weight links
and distinct identifiers — is incomplete. The exact message complexity of this problem is unknown.

We speculate that a further improvement by a constant factor may be possible. Algorithm ELECT

15

[7] D. Angluin. Local and global properties in networks of processors. In Proceedings of the
Twelfth Annual ACM Symposium on Theory of Computing, pages 82-93, 1980.

[8] H. Attiya, N. Santoro, and S. Zaks. From rings to complete graphs — f(nlogn) to 6(n)
distributed leader election. Technical Report SCS-TR-109, Carleton University, 1987.

[9] H. Attiya and M. Snir. Better computing on the anonymous ring. J. Algorithms, 12(2):204-238,
1991.

[10] H. Attiya, M. Snir, and M. Warmuth. Computing on an anonymous ring. J. Assoc. Comput.
Mach., 35(4):845-875, 1988.

[11] H. L. Bodlaender. A better lower bound for distributed leader finding in bidirectional asyn-

chronous rings of processors. Information Processing Letters, 27:287-290, 1988.

[12] H. L. Bodlaender. New lower bound techniques for distributed leader finding and other prob-
lems on rings of processors. Technical Report RUU-CS-88-18, Rijksuniversiteit Utrecht, 1988.

[13] J. Burns. A formal model for message passing systems. Technical Report TR-91, Indiana
University, 1980.

[14] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-finding in circular
configurations of processes. Communications of the ACM, 22(5):281-283, 1979.

[15] D. Dolev, M. Klawe, and M. Rodeh. An O(nlogn) unidirectional distributed algorithm for
extrema finding in a circle. J. Algorithms, 3(3):245-260, 1982.

[16] P. Duris and Z. Galil. Two lower bounds in asynchronous distributed computation. Journal

of Computer and System Sciences, 42:254-266, 1991.

[17] E. Gafni. Improvements in the time complexity of two message-optimal election algorthms. In

Proc. 4th Annual ACM Symp. on Principles of Distributed Computing, pages 175-184, 1985.

[18] E. Gafni and Y. Afek. Election and traversal in unidirectional networks. In Proc. 8rd Annual
ACM Symp. on Principles of Distributed Computing, pages 190-198, 1984.

[19] R. Gallager, P. Humblet, and P. Spira. A distributed algorithm for minimum weight spanning
trees. ACM Trans. on Prog. Lang. and Systems, 5(1):66-77, 1983.

17

[20] L. Higham. Randomized Distributed Computing on Rings. PhD thesis, University of British

Columbia, Vancouver, Canada, 1988.

[21] D. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in circular configurations of

processes. Communications of the ACM, 23(11):627-628, 1980.

[22] A. Itai and M. Rodeh. Symmetry breaking in distributed networks. In Proc. 22nd Annual

Symp. on Foundations of Comput. Sci., pages 150-158, 1981.

[23] E. Korach, S. Kutten, and S. Moran. A modular technique for the design of efficient distributed
leader finding algorithms. In Proc. {th Annual ACM Symp. on Principles of Distributed Com-
puting, pages 163-174, 1985.

[24] E. Korach, S. Moran, and S. Zaks. Tight lower and upper bounds for some distributed algo-
rithms for a complete network of procesors. In Proc. 8rd Annual ACM Symp. on Principles of

Distributed Computing, pages 199-207, 1984.

[25] G. LeLann. Distributed systems — towards a formal approach. In Information Processing 77,

pages 155-160, New York, 1977. Elsevier Science.

[26] S. Moran and M. Warmuth. Gap theorems for distributed computation. In Proc. 5th Annual
ACM Symp. on Principles of Distributed Computing, pages 131-140, 1986.

[27] J. Pachl, E. Korach, and D. Rotem. Lower bounds for distributed maximum finding. J. Assoc.
Comput. Mach., 31(4):905-918, 1984.

(28] G. Peterson. An O(nlogn) algorithm for the circular extrema problem. ACM Trans. on Prog.
Lang. and Systems, 4(4):758-752, 1982.

18

