Q(loglog(1/¢)) LOWER BOUND FOR APPROXIMATING
THE SQUARE ROOT

Nader H. Bshouty

Department of Computer Science, Technion-1.I.T, Haifa, Israel
Department of Computer Science, University of Calgary
2500 University Drive N.W.

Calgary, Alberta, Canada T2N 1N4

e-mail: bshouty@cpsc.ucalgary.ca

ABSTRACT:

In [FOCS 89], Mansour-Schieber-Tiwari proved that any computation tree with the operations
{+,—=,%,/,| |, <} and constants {0, 1} that computes \/z to accuracy ¢, for all z € [1,2], must
have depth Q(/loglog(1/e)).

In this paper we prove that any computation tree with operations {+,—,x,/,| [,<,
NOT, AND, OR, XOR}, indirect addressing, unlimited power of answering YES/NO questions and
constants {0,1} that computes 1/Z to accuracy € for all z € [1,2) must have depth Q(loglog(1/e)).

By Newton iteration our bound is tight.

1. THE MODEL

Let Q and Z be the rational field and the integer ring, respectively. A random access machine RAM
has an unbounded number of registers {M[i]}icz, each of which can store an element in the rational
field Q. The register M[0] is called the accumulator A. The computation is directed by a finite pro-
gram that consists of instructions of the following type: direct and indirect storage accesses, conditional
branching (IF-THEN-ELSE), arithmetic operations {4, —, x, /}, integer floor {| |}, integer boolean opera-
tions {NOT,AND,OR, XOR}. To formalize this we define the following: A program is a finite sequence
P=(1:1),---,(¢g: 1) of instructions from the following set:(e € Z, di,d> €{1,---,¢})

1) A—1, A— Mle], A — M[M]e]].

2) Mle] — A, M[Mle]] — A.

3) A— Ao Mle] where o € {+,—,%,/,AND,OR,XOR}.
4) A —oA where o€ {| |,NOT}.

5) IF <any condition> THEN GOTO d; ELSE GOTO ds.

Here | |# = |z] is the greatest integer that is not greater than z, M[Mle]] is M[|M[e]|], NOT(z) is
(2Uo82 121142 _ 1) — | ||| where |z is the absolute value of z and z AND y, z OR y and = XOR y are bitwise
AND, OR and XOR, respectively, of the binary representations of ||z]] and [|y|].

(
(
(
(

In the program P the first instruction I; is the input step of z € Q, which is stored in 4. The content
of the accumulator A after the execution of the program is the output.

We say that the program P computes \/z with error ¢ if the execution of the program for the inputs
z € [1,2] stops with A = y, where |y — \/z| < €. The complezity Comp(P) of the program P is the maximal
number of steps of the forms (3) and (4) over all the possible inputs z € [1,2] needed to execute the program.
The complexity Comp(y/z,¢€) is the minimum of Comp(P) over all programs P that computes 1/z with

€I'Tor €.

2. OLD AND NEW RESULTS

In [FOCS89] Mansour-Shieber-Tiwari proved the following
Theorem 1. Any computation tree with operations {+,—, x,/,| |,<} and constants {0,1} that com-

putes \/x 1o accuracy ¢, for all z € [1,2], must have depth Q(+/loglog(1/¢)).

In this paper we prove the following stronger result
Theorem 2. Any program with direct and indirect addressing, unlimited power of answering YES/NO
questions (also questions that use any constant as €), arithmetic operations {+,—,x,/,| |} and integer

bitwise boolean operations {NOT,AND,OR,XOR} that computes \/z to accuracy ¢, for all z € [1,2] must

have depth
Q (loglog (l)) .
€

2

It is also well known that by Newton iteration we have
Theorem 3. There exist a computation tree with operations {+,—, x,/,>} and constants {0,1} that

computes \/z to accuracy e with depth O(loglog(1/¢)).

3. PRELIMINARY RESULTS

In this section we give the lemma needed for the proof of ours result. We shall present the proof of W.
Eberly because it is shorter than our

Lemma 1. Any straight line algorithm with the operations {+,—,x,/, NOT, AND, OR, XOR} and
constants {0,1} that computes a constant N must have depth Q(loglog(N)).

Proof . Since the algorithm begins with constants 0,1 all the constants in the algorithm are rational

numbers. Let z; = s,z;
i,

be the constant that is computed in step i, where s; = sign(z;) and z;, z; 7 are
positive integers, ged(zi 1, i 2) = 1. Let T; = max;<; max{z;1,z;2}, then Ty <1 and obviously, T; < 2T7.

Tl HN s computed at depth ¢ then N = z; < T; < 92" "~

This implies that T < 22
result. (O

! which implies the

4. PROOF OF THEOREM 2

Let T be a program with depth t that computes an e-approximation of z € [1,2]. We look at the path
that computes /2. This path is a straight line algorithm I;,---, I that computes a number /2 + § in

[VZ — €,4/2 + €] with the constants {0, 1,2}. Since this straight line algorithm is a path in the tree we have

v<t, fl<e

1)

Since we begin with rational numbers, the constant /2 + § is rational and therefore

5§40)

Now we add to Iy, - -, Iy the following steps:

I_q: Compute 1+1=2

Iy : Compute 2+ 2 =

Ty Compute (\/_—}-\)_ = 2+2\/_6+ §2.
Ligo: Compute (2 + 2v/26 + 62) — 2 = 21/26 + 62.
Toys: Compute (2\/—6 +6)/4= lé—:é + 362,

If the constant in Iy 3 is positive then we add
Itl+4 .
Otherwise we add

_ 1
Compute N_(TSGR

Liga: Compute 0 — (£6 + 62) —25_ 1g2
Lyys Compute N = = 2/2)5 O

In both cases (for sufficiently small €) we compute a constant

N2>

L

By lemma 1 we have ¢/ + 7 > Q(loglog(1/¢)) and by (1) the result follows. (O

Acknowlegement. I would like to thank Wayne Eberly and Lisa Higham for a number of helpful

comments.

REFERENCES

[FOCS89] Y. Mansour, B. Schieber, P. Tiwari, The complexity of approximating the square root. Proc. 30th IEEE
Symp. on Foundations of Computer Science, 1989.

[Renegar] J. Renegar, On the worst-case arithmetic complexity of approximating the square root, J. of Complezity,

3, (1987), 90-113.

