
THE UNIVERSITY OF CALGARY

AMULET1: Specification and Verification in CCS

by

Ying Liu

A DISSERTATION

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

SEPTEMBER, 1995

© Ying Liu 1995

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies for acceptance, a dissertation entitled, "AMULET1: Specification and Verification

in CCS" submitted by Ying Liu in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

Date /9Y

J. Kendll Supervisor & Chairman

Department of Computer Science

Dr. G. Birtwistle, Co-supervisor

Department of Computer Science

Haslett

Dept. of Electrical & Computer Engineering

e-•
Dr. L. E. Turner

Dept. of Electrical & Computer Engineering

Dr. D. Edwards, External Examiner

Manchester University

U

Abstract

There has been a dramatic resurgence of asynchronous hardware designs in recent years.

Since state spaces multiply, asynchronous systems can be extremely state rich and it is

correspondingly difficult to reason about their characteristic properties with the traditional

techniques of simulation. The alternative, adopted here, is to use formal techniques of

specification and property checking to reason about asynchronous designs and to test them

thoroughly for desired behaviours.

This dissertation explores the feasibility of applying the CCS process algebra and its

supporting tool, the Edinburgh Concurrency Workbench (CWB), to the formal specification

and verification of a specific asynchronous microprocessor (AMULET1) developed by the

AMULET group at Manchester University. AMULET 1 is modeled at both the system level

and the floor plan level. The system level model shows how each instruction class flows

through the major components of the processor, and can be used outwards in modeling.

embedded applications and inwards to document the roles of the floor plan elements. The

subsystem level modeling presents register transfer level detail of the floor plan elements

and serves as an implementation guide to designers.

This is the first attempt to apply formal techniques to a full scale, practical, industrial-

strength asynchronous design. CCS is demonstrated to be an appropriate and efficient nota-

tion for modeling such complex designs. In the maim, property checking on the CWB proved

to be a reliable and robust way of detecting and repairing specification flaws. Although this

work is post facto, it suggests that the systematic incorporation of formal specification and

verification techniques into the design cycle could shorten the overall design window and

help reduce fabrication iterations.

in

Acknowledgments

This dissertation research was carried out in conjunction with Dr. Birtwistle as supervisor,

and with the full cooperation of the Manchester AMULET team. Dr. Birtwistle not only

initiated and supervised the dissertation work, but also actively participated throughout

the specification iterations. It has been a great opportunity for me to learn from him and a

great pleasure to work with him. Without his encouragement and support, this dissertation

would not have been possible.

The Manchester AMULET team were extremely generous in explaining the architecture,

reading, criticizing, and pointing out flaws as the various levels of abstraction were inves-

tigated and the specifications took shape. Dr. Jim Garside and Dr. Nigel Paver require

particular thanks for their ever-generous help with an overall understanding of the entire

architecture, as well as intuition and detail at every level.

Many thanks to my graduate committee, Dr. John Kendall, Dr. Jim llaslett, Dr. Lau-

rence Turner, and Dr. Douglas Edwards, for their contributions and time.

Thanks also to John Aldwinckle, Bruce MacDonald, Steve Franks, Faron Moller, Carmen

Rata, Camille Sinanan, Chris Tolts, Charles Tuckey, Dave Spooner, Ken Stevens, and Barry

Yee, who were wonderfully supportive friends and colleagues.

This research could not have been completed without financial support from the Alberta

Microelectronics Centre, the Killam Scholarship Committee, and the University of Calgary.

I am grateful to my parents and my brother for their long lasting support.

Finally, special thanks to Bo, for his thoughtfulness and patience with me all the time.

iv

Dedication

To My Mom & Dad

V

Contents

Approval Sheet ii

Abstract iii

Acknowledgments iv

Dedication

Contents vi

List of Tables ix

List of Figures X

Chapter 1. Introduction 1
1.1. Asynchronous Circuit Design 2
1.2. Formal Techniques for Asynchronous Circuit Design 3

1.2.1. CSP Approach 4
1.2.2. CCS Approach 5

1.3. Contributions of the Dissertation 6
1.4. Structure of the Dissertation 7

Chapter 2. CCS and Process Logics 9
2.1. CCS 10

2.1.1. Notation 10
2.1.2. Example 11

2.2. Process Logics 15
2.2.1. Hennessy-Milner Logic 15
2.2.2. Modal -calculus 18
2.2.3. Property Testing in Modal 21

2.3. The Edinburgh Concurrency Workbench 22
2.4. Constraining Intermediate States 22
2.5. Summary 24

Chapter 3. AMULET1 Overview 26
3.1. The ARM Processor 27
3.2. AMULET1: An Asynchronous ARM 27

3.2.1. AMTJLET1 Interface 28

Vi

3.2.2. AMULET1 Organization 28
3.2.3. AMULET1 Abstraction 32
3.2.4. Instruction Classification 33

3.3. Summary 35

Chapter 4. Register Bank 37
4.1. Register Bank Operation 38

4.1.1. Operating Environment 38
4.1.2. Potential Hazards 39

4.2. Top Level Specification 40
4.2.1. Register Read 40
4.2.2. Register Write 40
4.2.3. The Register Bank 41

4.3. Register Transfer Level Specification 42
4.3.1. Specification I: Register Bank with Locking Detection 42
4.3.2. Specification II: Register Bank with Dual Lock FIFO 50

4.4. Implementation Level Specification 59
4.4.1. Read Protocol 61
4.4.2. Write Protocol 62
4.4.3. The Register Bank 64
4.4.4. Specification and Testing 64

4.5. Summary 70

Chapter 5. Top Level Modeling of AMULET1 72
5.1. Top Level Abstraction 73
5.2. Instruction and Hardware Interplay 74

5.2.1. Notation 74
5.2.2. Instruction Fetch 75
5.2.3. Individual Instruction Classes 75

5.3. Hardware Sharing 87
5.4. Floor Plan Modules 88

5.4.1. Buses 88
5.4.2. Address Interface and PC Pipe 88
5.4.3. Memory Interface 91
5.4.4. Data Interface and Instruction Pipe 93
5.4.5. Decode Unit 96
5.4.6. Execution Unit and the W Bus 97

5.5. Testing the Specification 99
5.5.1. Individual Instruction Classes 100
5.5.2. Complete Instruction Set 106

5.6. Summary 110

Chapter 6. Address Interface 113
6.1. Internal Organization 114
6.2. Data Flow of Accesses to the Address Interface 115

6.2.1. PC Incrementing Loop 115
6.2.2. Single Address Transfer 117

Vii

6.2.3. Multiple Address Transfer 118
6.2.4. Summary of Accesses 120

6.3. Control Flow of Accesses to the Address Interface 121
6.3.1. Intuitive Overview 121
6.3.2. Register Transfer Level Detail 123

6.4. Specification and Testing 128
6.4.1. Operating Environment 128
6.4.2. First Round Testing 128
6.4.3. Resolution of the Deadlock 131
6.4.4. Second Round Testing 132

6.5. Summary 134

Chapter 7. Data Interface 135
7.1. Data Input 136
7.2. Data Output 138
7.3. Summary 138

Chapter 8. Execution Pipeline 139
8.1. Internal Organization 140

8.1.1. Pipeline Stages 141
8.1.2. Additional Pipeline Registers 142

8.2. Access Needs and Corresponding Notation 143
8.2.1. Accessing Pipeline Stages 143
8.2.2. Accessing Local Data Processing Hardware 144
8.2.3. Accessing Pipeline Registers 144
8.2.4. Accessing External Floor Plan Modules 145
8.2.5. Summary of Notation 145

8.3. Evaluation of Execution Details 146
8.4. Specification and Testing 157
8.5. Summary 164

Chapter 9. Summary 165
9.1. History 165

9.1.1. First Round Modeling 166
9.1.2. Second Round Modeling 167
9.1.3. Third Round Modeling 168

9.2. Contributions 168
9.3. Future Work 170

9.3.1. Applications 170
9.3.2. Notation Formalization 171
9.3.3. CCS Based Silicon Compilation 171

Bibliography 173

viii

List of Tables

2.1 State space of the RGD arbiter 15

3.1 AMULET1 instruction classification 36

5.1 The sharing of the address interface by instruction classes 89
5.2 The sharing of the memory interface by instruction classes 92
5.3 The sharing of the data interface by instruction classes 94
5.4 Complexity measure for top level load operation (new) 103
5.5 Complexity measure for top level load operation (old) 104

8.1 Notation for access needs in execution unit 145
8.2 Multiply operation on execution 147
8.3 Add operation on execution 148
8.4 Branch operation on execution 149
8.5 Branch and link operation on execution 149
8.6 Load operation on execution 150
8.7 Store operation on execution 152
8.8 Load/store multiple operation on execution 154
8.9 Swap operation on execution 156
8.10 Software interrupt operation on execution 156
8.11 Number of minimized states for each instruction class 163

ix

List of Figures

2.1 Asynchronous design library module: Toggle 12
2.2 Asynchronous design library module: C-element 12
2.3 Asynchronous design library module: RGD arbiter 13
2.4 A two-user RGD arbiter evolves from state to state 14

3.1 AMULET! interface 28
3.2 AMULET1 internal organization 29
3.3 Address interface 30
3.4 Register bank 30
3.5 Execution unit 31
3.6 Abstraction of execution unit and register bank 31
3.7 Data interface 32
3.8 Decode unit 32
3.9 AMULET! abstraction 33

4.1 Operating environment of register bank 38
4.2 Register bank organization with locking detection 43
4.3 Locking detection for lock FIFO with depth of two 46
4.4 Locking detection for lock FIFO with depth of N 48
4.5 Register bank organization with dual lock FIFO 51
4.6 Locking detection for dual Lock FIFO both with depth of two 53
4.7 Register bank organization at the implementation level 59

4.8 The overall organization of the abstracted register bank implementation 60
4.9 Control sequences for a register read operation 61
4.10 Control sequences for a register write operation 63

.5.1 Floor plan modules for AMT.JLET1 73
5.2 Instruction fetch and decode 75
5.3 Multiply operation 76
5.4 Data (add) operation 77
5.5 Branch operation & branch and link operation 78
5.6 Load operation 80
5.7 Store operation 82

X

5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

Load/store multiple operation
Swap operation
Software interrupt operation
AMULET1 top level abstraction
Top level abstraction of AMULET1
Top level abstraction of AMULET1
Top level abstraction of AMULET1
Top level abstraction of AMULET1
Top level abstraction of AMULET1 execution unit (with W bus)

84
85
86
87

address interface 90
memory interface 93
data interface 95
decode unit 96

97

6.1 Internal organization of the address interface 114
6.2 Data flow of PC incrementing loop 116
6.3 Data flow of single address transfer 117
6.4 Data flow of multiple address transfer 118
6.5 Intuitive overview: control flow of accesses to the address interface 121
6.6 Control flow of accesses to the address interface: decision unit 123
6.7 Control flow of accesses to the address interface: arithmetic unit 125
6.8 Control flow of accesses to the address interface: memory access unit 126
6.9 Complete control flow of accesses to the address interface 127

7.1 Internal organization of data input phase in the data interface 136
7.2 Abstraction of data input phase in the data interface 137

8.1 Internal organization of execution pipeline 140

9.1 Silicon compilation based upon CCS 172

Xi

CHAPTER 1

Introduction

There are two major circuit design styles, namely synchronous and asynchronous. Most of

today's digital systems adopt the synchronous approach in which the correct operation of a

system is governed by a global clock signal. However with the rapid advancement of VLSI

technology, synchronous designers are finding it increasingly difficult to distribute clock

signals and maintain functionality as more circuitry is packed onto a chip. The clocking

system of the DEC Alpha chip [Dea92b] demonstrates the point that synchronous design

might be beginning to approach its limits.

With potential advantages in distributed synchronization, composability and power con-

sumption, the asynchronous circuit design style is attracting renewed interest after being

neglected for over two decades. The resurgence of the asynchronous approach has produced

several successful designs including asynchronous controllers [DCS93, MCS94, NDDH92],

asynchronous datapaths [WH91, Gar93], and asynchronous processors [MBL+89, Dea92a,

Pav94, Fur95]. Accordingly, the analysis and verification of asynchronous ciruits is becom-

ing more and more important as designers seek ways to shorten the overall design interval

and reduce the probability of fabrication iterations.

It is very difficult to use the traditional technique of simulation to cope with the verifi-

cation of asynchronous systems. In particular, locating deadlocks (to which asynchronous

systems are prone) is extremely difficult since simulations are non-exhaustive. Further, it

is almost unheard of to use simulation for checking other important properties associated

with asynchronous designs such as freedom from livelock, safety and liveness. However, as-

sociated with compact but efficient and expressive hardware description languages, formal

techniques open the way to reason about asynchronous designs and test them thoroughly

1

1. INTRODUCTION 2

for their characteristic properties. Importantly, the verification results hold over all possible

input sequences and for all possible timing variations.

This dissertation is concerned with the formal specification and verification in CCS of

the AMULET1 asynchronous microprocessor, and shows that the techniques advocated can

cope with an industrial strength microprocessor.

1.1. Asynchronous Circuit Design

The asynchronous circuit design style has a number of potential advantages over its syn-

chronous counterpart especially in terms of local synchronization, composability, and power

consumption.

• Local Synchronization

For large modern synchronous circuit designs, clock distribution and clock skew

are becoming increasingly costly and difficult to handle. The DEC Alpha CPU

devoted 30% of its total area to clocking circuitry. Since asynchronous circuits do

not feature a global clock and are designed as separate subsystems with standard

communications amongst them, the problems associated with clock distribution and

clock skew do not arise.

• Composability

Asynchronous systems have simple and standard interfaces. This composability of

asynchronous design not only provides a simple way of building larger structures

hierarchically, but also makes it easy for system upgrading when improved circuitry

becomes available. Large asynchronous systems can be composed of subsystems

operating at widely different speeds. Each of these subsystems can be optimized

according to its own needs, and how often it is used.

• Power Consumption

All parts of synchronous systems dissipate power whether they are in operation or

not since transitions of the clock are distributed across the entire chip on every clock

cycle, while asynchronous systems only draw power when they are doing actual

work. Although asynchronous systems often require more signal transitions in a

1. INTRODUCTION 3

given transaction, these transitions usually occur only in areas actively involved in

the current computation.

The above advantages have been evaluated in detail by Gopalakrishnan and Akella [GA92],

Hauck [Hau95], and Davis and Nowick [DN95].

Although possessing some attractive advantages, asynchronous systems have disadvan-

tages in consuming more Iarea and lacking the supporting CAD tools that are widely avail-

able for synchronous designs. The design of asynchronous systems is usually considered to

be very difficult due to the problems associated with producing hazard free circuits [TJng69]

which are deadlock free, and most circuit designers have shied away from it. Thus the

synchronous approach has held sway for over thirty years.

But regardless of how successful synchronous systems are, there will always be a need

for asynchronous interfaces. As a simple example, it is natural for the interface between a

synchronous system and its operating environment to be asynchronous. Thus, despite its

difficulties, asynchronous design has never been dropped entirely and many efforts have been

made towards producing hazard-free circuits [Ung69, Bre75, Kun92, ND92, LD94, Ste94]

(a topic not covered in this dissertation). In the past few years,. mathematical techniques

have being developed and applied with increasing success to address the difficult topic of

characterizing the properties of asynchronous designs. This dissertation is a first attempt

to use these techniques for a large practical design.

1.2. Formal Techniques for Asynchronous Circuit Design

Formal techniques for asynchronous circuit design are concerned with the specification and

verification of asynchronous circuits. A specification states what should happen. By using

some formal reasoning framework, the verification investigates whether a specification pos-

sesses desired behaviours including freedom from deadlock, freedom from livelock, safety,

and liveness, as well as whether an implementation conforms to its corresponding specifica-

tion. Informally

• deadlock means that a system may evolve into a state from which no further action

is possible.

1. INTRODUCTION 4

• livelock means that a system may get into an internal loop and make no further

progress in terms of visible inputs and outputs.

• a safety property means that nothing bad will happen when a system operates, e.g.

at any time, there may not be more than one user on a shared bus.

• aliveness property means that something good will eventually happen when a system

operates, e.g. each instruction class of a processor can be executed next, and none

of them loops forever.

If a specification doesn't have these desired properties, it is pointless to implement it. Mod-

ifications should be made to the specification until satisfactory results have been achieved

before embarking on implementations. At the moment, there are two formal approaches,

based upon Iloare's CSP [Hoa78] and Miler's CCS [Mil89] respectively.

1.2.1. CSP Approach

CSP (Communicating Sequential Processes) is a programming notation for describing con-

current systems developed by Hoare [Hoa78]. In CSP, a concurrent system is described as a

collection of processes running concurrently. The communication primitive used in CSP is

a synchronizing model where the sending process is suspended from further execution until

the receiving process is able to receive the information being sent so that the two processes

synchronize and the communication takes place as a single atomic action.

Several programming languages based upon CSP have been developed to support the

design of asynchronous systems. Amongst these are OCCAM used by Brunvand [BS89],

Tangram used van Berkel [vb93], and CliP used by Martin [Mar90].

Trace theory was first proposed by bare [Hoa81] for specification and formal Verifica-

tion, and later dveloped by Rem, Snepscheut and Udding [RdSTJ83] to reason about the

correctness of circuits. In trace theory, the behaviour of concurrent system is described by

the set of possible traces (sequences of events) that can be observed. Each trace represents

one possible interleaved behaviour of the system. The observable behaviour of the system

is defined by the individual traces combined into a set. Based upon trace theory, Ebergen

developed formal models that can be used to describe individual modules, and combine

these modules into larger systems [Ebe87, Ebe91, Ebe93].

t. INTRODUCTION 5

Dill's verifier [Dil89, DNS92], also based upon trace theory, effectively checks for the safety

properties of a concurrent system [DNS92]. However, the liveness properties that are equally

important to concurrent systems can not be checked by this verifier although a theory of

complete trace structures introduced in [Dil89] can model general liveness properties. With

this verifier, Dill has successfully uncovered flaws in published circuits.

1.2.2. CCS Approach

CCS (Calculus of Communicating Systems) is a process algebra for describing and reasoning

about concurrent systems developed by Milner [Mil89]. In CCS, a concurrent system is

described as a collection of interacting processes which sometimes proceed independently

and sometimes need to synchronize with others before they can carry on. CCS provides

well-defined syntax and semantics for specifying processes, together with a set of laws for

reasoning about these processes and how they communicate with each other.

Compared to CSP, CCS is a coarser language whose descriptions generate fewer states.

For modeling asynchronous hardware that can easily enter an enormous number of states,

CCS is perhaps more appropriate. In addition, CCS comes together with a mechanized

support tool namely the Edinburgh Concurrency Workbench (CWB) [Mol91] which provides

a model checker to verify whether a system behaves as expected. Thus, once a concurrent

system is specified in CCS, it becomes possible to reason about its processes and verify the

correctness of the system.

The key advantage of CCS/CWB is that we can investigate the consequences of a design

specification before embarking upon an implementation. Provided with suitable proposi-

tions, the CWB model checker can be used to check the important characteristics of a

concurrent system, such as freedom from deadlock, freedom from livelock, safety and live-

ness. Compared with the normal practice of circuit simulation, verification results proved

by the CCS/CWB hold over all input sequences, while circuit simulation results are only

valid for limited testing sequences.

Specification and verification techniques for asynchronous circuit designs based upon CCS

have been proposed and developed at the University of Calgary [Liu92, SABL93, LABS93,

Ste94]. CCS has been successfully used in specifying and testing a wide spectrum of small or

1. INTRODUCTION 6

moderately sized asynchronous designs [Liu92, BLS94a, BLS+94b] including flow-through

architectures such as Sutherland's micropipeline [5ut89] and Ebergen's stack [EG91], token

ring architectures such as Martin's distributed arbiter [Mar85], datapath modules such as

Brunvand's carry completion adder [Bru9l], and prototype microprocessors such as the

MOVE Machine [RKDV92].

This dissertation focuses on the application of CCS to the formal specification and ver-

ification of the AMULET! chip [FDG+93, Pav94, FDG94, Fur95] which is a practical

asynchronous microprocessor developed by the AMULET group at- Manchester University,

England.

1.3. Contributions of the Dissertation

This dissertation explores the feasibility of applying the CCS process algebra to AMULET!

at two different levels of abstraction: the top level and the subsystem level.

The main contribution of this dissertation is a systematic way of modeling asynchronous

microprocessors. The specifications presented are by far the most ambitious specifications of

asynchronous hardware yet attempted. At the top level, we successfully modeled AMULET1

in terms of how each instruction class flows through the processor, where the processor is

abstracted into several major floor plan modules. At the subsystem level, we successfully

modeled each of those major floor plan modules in register transfer level detail. The top level

specification provides not only a useful guide to system designers when using AMULET-1 in

an embedded system, but also insights to how the major floor plan modules function. The

register transfer level specification provides a useful guide to circuit implementors of the

major functional units of AMULET!. The specifications achieved are succinct and efficient,

but accurately capture the functionality details at each level of abstraction and avoid the

potential intermediate state explosions that could easily happen.

Although the specifications presented are targeted for a particular asynchronous mi-

croprocessor with limited instruction classes, they can be easily expanded should more

functionality be added to the processor. Further, the methodology presented is equally

applicable to the modeling of other asynchronous designs.

1. INTRODUCTION 7

This dissertation also property checks AMULET1 at both levels of specifications. With

the Edinburgh Concurrency Workbench, we use a macro-based testing style to check the

specifications thoroughly for desired characteristic properties including freedom of deadlock,

freedom of livelock, and desired safety and liveness properties. Property checking proves to

be a fast and efficient way in detecting specification flaws. The validation of testing results

over all possible input sequences and for all possible timing variations can not be achieved

through traditional simulation techniques.

Throughout this specification and property checking work, CCS was demonstrated to be

an appropriate and efficient tool for modeling complex practical asynchronous designs.

1.4. Structure of the Dissertation

This dissertation is structured as follows:

Chapter 2 describes the CCS notation, and the Hennessy-Milner Logic and modal 4t

calculus associated with it. The notation and the associated process logics are explained

with small asynchronous design examples. We show that the parallel CCS specification

style matches well with the structure of asynchronous systems, and present useful macros

for property testing such as freedom from deadlock, freedom from livelock, safety, and

liveness.

Chapter 3 gives an overview of the AMULET1 chip. We start with a brief summary of

the ARM processor which is a synchronous counterpart of AMULET1. It is followed by

AUMLET l's external interface and typical working environment, internal organization and

major functional units, and the instruction set and instruction classification.

Chapter 4 examines the specification of practical asynchronous designs at various levels

of abstraction. It presents specifications of the register bank at the top level, the register

transfer level, and the implementation level. The purpose is to explore both the value

of modeling and the appropriateness of the CCS process algebra as a notation at each of

these specification levels. The conclusions drawn from this chapter are used as a guide for

modeling AMULET1 in the sequel.

Chapter 5 is the top level specification of AMULET1. It models how the processor

interacts with its off-chip memory and how the major functional units of the processor

1. INTRODUCTION 8

interact with each other. We show how each instruction class (as classified in chapter 3) flows

through the processor, clarify the role of each functional unit (floor plan module), present

the abstract specifications of these modules, and finally give the top level specification of

AMULET!. The specifications are tested for freedom from deadlock, freedom from livelock,

and desired safety and liveness properties.

Chapter 6 is the register transfer level specification of the address interface which is one

of the major floor plan modules. It models how instruction addresses and data addresses

are produced and transferred to the off-chip memory via the address interface. We show

the three distinct purposes of the address interface, and how they interact with each other.

Chapter 7 is the register transfer level specification of the data interface which is the

simplest floor plan module in AMULET!. It models how data flows between the processor

and its off-chip memory. We show how data loaded from the memory is dispatched to the

processor either as a new instruction or as regular data during the data input phase, and

how data generated by the processor is dispatched to the, memory during the data output

phase.

Chapter 8 is the register transfer level specification of the execution unit which is another

major floor plan module in AMULET!. It models how each instruction class (as classified

in chapter 3) flows through the pipelined execution unit. We tabulate the access needs

of each instruction class from the data processing hardware associated with the pipeline

stages, and to the floor plan modules external to the execution unit.

Finally, Chapter 9 summarizes the dissertation work and presents suggestions for future

research.

CHAPTER 2

CCS and Process Logics

CCS (The Calculus of Communicating Systems) [Mil89] is a process algebra developed by

Milner over the last 20 years for describing and reasoning about concurrent systems. It

provides well-defined syntax and semantics for specifying processes, together with a set of

laws for reasoning about these processes and how they communicate with each other. Once

a concurrent system is specified in CCS, we can reason its correctness using the Edinburgh

Concurrency Workbench [Mol91, CPB9O] which provides a very powerful property checker

in Hennessy-Milner Logic [HM8O, 11M851 and its extension, the modal /.I- calculus [Koz83].

CCS is used in the rest of the dissertation for the specification and property checking of an

asynchronous microprocessor (the Manchester AMULET1 chip [FDG93]) at various levels

of abstraction. My MSc thesis [Liu92] contained an extensive account of how to specify and

property check asynchronous hardware in which CCS was demonstrated to be appropriate

at various key levels of hardware description: the architectural level, the register transfer

level, and the gate level. In this chapter, we content ourselves with describing just the

notation and the associated process logics with some small examples.

9

2. CCS AND PROCESS LOGICS 10

2.1. CCS

CCS facilitates object oriented descriptions in which a concurrent system is specified as

a collection of interacting agents (processes, or hardware blocks) each of whose behavior

consists of interleaved, discrete actions.

2.1.1. Notation

The syntax of CCS follows:

E ::= Nil

A constant

prefix

I E1 + E2 + ... +.En summation

I El I E2 1 ... I E, composition

I E \ L restriction

I E [f] relabeling

where

A E Const, some fixed infinite set of agent constants,

a E Act, the set of actions,

L is a subset of Names, and

f is a relabeling function.

The simplest agent in CCS is 0,, the agent that can perform no actions. Complex agents

are built from smaller agents using the following CCS operators:

• Prefix If a is an action and E an agent then a.E is an agent which is capable of

performing action a and then behaving as the agent E, i.e.,

ifE= a.E'then E4 E'

Prefixing is used to order sequences of actions.. The process a.b.P must first carry

out action a and then will carry out action b "some arbitrary time later". Note that

delay insensitive designs maps naturally into this semantics.

2. CCS AND PROCESS LOGICS 11

• Summation If E1 and E2 are agents, then E1 + E2 is an agent which behaves non-

deterministically like E1 or E2, i.e.,

if E1 = a.E1 'and E2 = b.E2 'then E1 + E2 4 P21' or P21 + E2 - P22'

Summation is used to model choice.

• Composition If P21 and E2 are agents, then P21 I E2 is an agent whose behaviour is

such that either of P21 and E2 may act independently of the other, i.e.,

if E1 = a.P21 ' and E2 b.P22 ' then P21 I E2 4 P21' E2 or E1 E2 4 P21 I P22'

or together they may engage in a communication (whenever they are able to perform

complementary output and input actions), i.e.,

if P21 = a.E1 'and E2 = 'a.E2 'then P21 I E2 4 E 'j P22 '(a is normally restricted)

Composition enables us to define a hardware system as "the sum of its parts".

• Restriction If P2 is an agent and L is a set of labels, then E \ L is an agent which

behaves like P2 except that it cannot perform any of the actions (as well as the

corresponding complementary actions) lying in L externally, although each pair of

these complementary actions can be performed for communication internally.

Restriction is used. to specify internal (hidden) wires.

• Relabeling If E is an agent and f is a relabeling function, then E[f] is an agent which

behaves like P2 except that the labels are relabeled as specified by the function f.

Relabeling is used to derive instantiations (which will have different names on con-

nections) from a single template.

The above CCS operators have decreasing binding power in the following order:

Restriction and Relabeling > Prefix > Composition > Summation

so that a.Ei[x/a],II E2 + E3 should be interpreted as: ((a. (Ei[x/a])) H E2) + E3

2.1.2. Example

A CCS process may evolve in three ways: sequentially via the prefix operator (.), non-

deterministically via the summation operator (+), and in parallel via the composition

operator (I). These are now illustrated by some basic library modules for asynchronous

design.

2. CCS AND PROCESS LOGICS 12

Sequential operation

A Toggle routes an input transition (a) to its two outputs ('zo, 'zi) alternately, as illustrated
in Figure 2.1.

'zO

Toggle
 'zi

FIGURE 2.1. Asynchronous design library module: Toggle

After initialization, the first input transition is routed to 'zO and the subsequent input

transition is routed to 'zi. This behaviour cycle then repeats. In CCS we have

Toggle del= a. , zO.a. , zl,Toggle

By convention, output names will be quoted, e.g. W.

Non-deterministic choice

A C-element as illustrated in Figure 2.2 serves as the "AND" function for transition signals.

C

FIGURE 2.2. Asynchronous design library module: C-element

It accepts inputs on a and b in any order and then outputs a transition on 'z. In CCS we

have

C ((a.b+ b.a).'z.0

If the C-element receives a transition on a, it evolves into the agent b. 'z. C. If the C-element

receives a transition on b, it evolves into the agent a. 'z. C. If the C-element receives a

transition on a and on b, it evolves into one of the above two agents non-deterministically.

2. CCS AND PROCESS LOGICS 13

Parallel operation

A two-way transition RGD arbiter as illustrated in Figure 2.3 guarantees the mutually

exclusive access to a single resource contended for by two independent users.

ri

dl

r2

d2

RGD Arbiter
'gi

'g2

FIGURE 2.3. Asynchronous design library module: RGD arbiter

The two users are required to obey the RGD protocol:

Uid::/

U2I

ri. 'gi. di. Ui

r. 'g2. d2. U2

Where 'gi.di and 'g2. d2 must be mutually exclusive. The necessary constraints are enforced

by a semaphore agent.

L"

def
Sern =

U2
dcl

ri. 4. 'gi.dl. 4. Ui

r2. 'g2.d2.

Scm

The specification of an arbiter module is a typical parallel specification. It is achieved by

composing the two users together with the semaphore agent in parallel. Formally in CCS

we have

. Ui

U2

Scm

dci

dc l.

def

ri. 'g. 'gi.di. 'p. Ui

r2. 'g. 'g.dP 'p. U2

g.p.Sem

Arbiter ' (Ui I U2 I Scm) \ { g, p }

2. CCS AND PROCESS LOGICS 14

Notice that even if access is already granted to one user, the arbiter will still be able to

accept a fresh request from the other user, i.e., requests are neither held up nor forgotten.

The above specification can also be spelled out in steps using the prefix operator. and the

summation operator + as illustrated in Figure 2.4. States shown with bold circles are states

in which the arbiter is free. SOO, SOJ, and 510 are duplicated to avoid drawing wrap-around

lines.

Arbiter in Use
(by either Ui or U2)

FIGURE 2.4. A two-user RGD arbiter evolves from state to state

The lattice is straightforward but is already long and tedious even for the case of the two-

user arbiter. Note that the specifications developed in terms of the parallel operator I are

linear in the number of interactions and are textually much shorter. Table 2.1 displays the

specifications of arbiters with up to five users. The corresponding number of states increases

exponentially.

2. CCS AND PROCESS LOGICS 15

System Definition Number of States (minimized)

n=1 n=2 n=3. n=4 n=5 n=k(Jc>1)

(ll, Ui I Sem) \ { g, p } 3 12 32 80 192 (n + 1) x 2

TABLE 2.1. State space of the RGD arbiter

In addition to its compactness, the parallel specification style is also easier to understand

because it presents the structure of the individual communications. [Liu92] and [SABL93]

explain the art of specification in CCS with many examples.

2.2. Process Logics

We can never know whether a specification is correct, but we can gain confidence in its

appropriateness if its consequences continue to fulfill our expectations when the specifica-

tion is subjected to tests. Associated with CCS are two process logics: Hennessy-Milner

Logic [HM8O, 11M85] and its extension the modal u-calculus [Koz83]. They may be used

to examine specifications for their consequences such as deadlock, livelock, safety and live-

ness. [ANB91] gives introduction to both Hennessy-Milner Logic and it- calculus, and their

applications on the Concurrency Workbench. See also [Sti91b, MP92] for more details in

wider contexts.

2.2.1. Hennessy-Milner Logic

Hennessy-Milner Logic (HML) is a special type of modal logic that uses labeled transition

systems as a model. Labeled transition systems have the form:

(P,A,{YIci'EA})
where

P is a non-empty set of agents,

A is an action set,

Y is the set of transition relations, 4 C P X P for each a E A.

2. CCS AND PROCESS LOGICS 16

For example, given the specification that describes the behaviour of a regular FIFO with

depth of two:

then we have,

2

A

7-

del

del

del

FF0

FF1

FF2

del

del

dcl

incF.FF1

incF.FF2 + decF.FFO

decF. FF1

{ FF0, FF1, FF2 }

{ incF, decF }
{ FF0 iF FF1, FF1 iF FF2, FF1 d! !F. FF0, FF2 d4F FF1 }

Syntax of HML

Let K range over subsets of an action set A. The syntax of HML is defined,

A::=TI-'AIAABI[K]A

where

A is a formulae of HML,

T is the constant true, the only predefined atomic formula in HML,

- 1 is the negation of a formula,

A is the conjunction of two formulae,

K] A means: A holds after every action in K.

Other common operators can be derived, for example:

F

A v B

dcl

dcl

def

-iT F is the constant formula false

-i(--A A -'B) V is the disjunction of two formulae
-
i[K] -iA . <K)is the dual of[K]

2. CCS AND PROCESS LOGICS 17

Satisfaction of HML

For every formula A of HML, we interpret E J= A as meaning "process E E P satisfies
the property A", and E A as meaning "E fails to have the property A". The satisfaction

relation J= is defined inductively over the structure of HML formulae (5, 6 and 7 are included
for ease of reference, they could be inferred):

(1)E= T V

(2) E J= —IA iffEA

(3) E = A A B iffEl=AAEI=B

(4) E j= [K] A if V E' El', V a E K. if E-* E' then E' = A

(5) E J= F ifET

(6) E = A V B iffEl=AVEI=B

(7)E<K>Aiff2E'EP,3aEK.E4E' and E'A

Their interpretations are:

(1) Every process in P has property T.

(2) A process has property -iA when it fails to have property A.

(3) A process has property.A A B when it has both properties A and B.

(4) A process satisfies [K] A if after every performance of any action in
K, all the resulting processes have property A

(5) No process has propertyF.

(6) A process has property A V B when it has either property A or property

B.

(7) A process satisfies < K> A if it is possible to perform an action in K

such that the resulting process has property A.

Expressing properties in HML

Using the satisfaction relation, we can show whether an agent can carry out a certain trace

one move at a time. This is realized by expressing agent properties at a certain state in HML

and checking for correctness using HML satisfaction. Several useful formulae for expressing

agent properties are listed below, together with their interpretations.

2. CCS AND PROCESS LOGICS 18

E = [a] F

E < a > T

E [-]F

E= <-> T

E j= <-> TA[-a]F

E = < - a > < b > T

E = [a]T

E [a]T

E < a>F

E cannot do an a action

it is possible for E to do an a action

E cannot do any action (it is deadlocked)

E can do some action (it is live)

E can do an a action and nothing else

E can do a non-a action then a b action

after all a actions from E, one can do a b action

always true, even if E cannot make an a move

always false

For the regular FIFO with depth of two, properties we can test using HML include:

• FF0 = < incF> T A -(< decF> T)

• FF1 = < decF > T A < incF> T

• FF2 = < decF > TA -'(< incF> T)

FF0 can accept, but not remove an item

FF1 can both remove and accept an item

FF2 can remove, but not accept an item

The distinct states FF0, FF1, and FF2 are characterized by modal formulae that hold

in that state but in no other states. This is true in general (the. Modal Characterization

Theorem, [Mil89, section .10.5]).

2.2.2. Modalit-calculus

HML is good for asking questions a few moves ahead, but cannot cope with recursive defi-

nitions. Unfortunately, all hardware agents are recursive and most interesting propositions

associated with recursive agents are themselves recursive. For example, the FIFO with

depth of two at state FF1 has the property that all we can do is either an incF followed by

a decF, or a decF followed by an incF and back to state FF1 again. This infinite behaviour

can be expressed by the following fix point equation:

FF1 ef (< incF> < decF> V < decF> < incF>)FF1

Fix points

In general, fix point equations may have no solutions (X = -iX) or several solutions. There

is a simple syntactic check for the existence of at least one solution:

2. CCS AND PROCESS LOGICS 19

There will always be at least one solution provided that each fix point variable

is within the scope of an even number of negations.

From now on, we assume all our modal formulae pass this simple syntactic

check. There are no shortcuts for finding all the solutions to a fix point equation. One has

to try all possibilities systematically: the empty set, the sets of singletons, two states at a

time, ..., all the way up to P. However, it turns out that fix point solutions form a lattice

and that the least and largest of the solutions are not only unique, but also have interesting

physical interpretations and fast direct algorithms.

• The minimum (least) fixpoint includes only that which is necessarily true. It can

be found by iteration starting from the empty set of states. The minimum fixpoint

expresses liveness.

• The maximum (largest) fixpoint includes everything except that which is necessarily

false. It can be found by iteration starting from all possible states and paring away

those found wanting. The maximum fixpoint expresses safety.

See [ANB91, Liu92] for a full tutorial account.

Raw modal /2

Modal /1 extends HML with fix points. Assuming X is a fix point variable, we have:

A ::= HML I min(X,A) I max(X.A)

N.B., min and max are duals, so strictly, only one is required.

As an example, the deadlock free property of a system in raw modal it is:

max(X. <—> TA[—]X)

This expresses the set of states X which can themselves make a move (< - > T) and from

which all moves ([-]) take us to members of the set of states X which can ... Thus, if every
member of this set of states is capable of making a move, the system is free from deadlock.

It can be seen that properties written in raw modal it are rather hard to read. It will be

more difficult if we need to describe "properties within properties" which require nested fix

point equations. But the modal it-calculus is a very expressive logic and it has been shown

that all the time honoured classical temporal logic operators can be expressed within it

2. CCS AND PROCESS LOGICS 20

[D am9O]. These operators make modal formulae considerably more intuitively understand-

able than their raw modal it equivalents. Amongst the basic operators are':

BOX

PATH P

POSS P

EVENT P

with interpretations

del

def

del

def

max (Z. PA [—]Z)

max (Z. P A < - > Z)
min (Z.PV<—>Z)

min Z. PV[—]Z)

BOX needs all states on all paths as witnesses

PATH needs all states on a single path to be witnesses

POSS needs only a single state on a single path as a witness

EVENT needs a single witness on all paths

Thus, the deadlock free property can be expressed as:

BOX <—> T

Other useful operators include:

• ONLYaI(<a>TA[—a]F)

This tests to see if it is possible to do an a action but no other actions.

• ONLY-THENa P'l (ONLY aA [a] P)

This tests to see if the only possible move is to perform an a, and we move to a

state satisfying P after a is performed.

• MUST-DOaI EVENT (ONLY a)

This tests to see if we will eventually reach a state where a is the only possible move.

• NEC-FOR a z Lf max(X.[z]F A [—a]X)

This tests to see if it is impossible to perform a z without an a. But it does not

guarantee that after an a is performed, we will definitely have a z move. This macro

can be further extended to: •

NEC-FOR'Kz I max(X.[z]FA[—K]X)

'PATH and EVENT are presented in slightly simplified form here. Usually EVENT has an extra term

forbidding deadlock and PATH, being its dual, permits deadlock.

2. CCS AND PROCESS LOGICS 21

where K is an action list which may consist of any number of actions. It states that

at least one of the actions in the action list K is necessary for producing a z.

2.2.3. Property Testing in Modal i

This section summaries the most useful macros for testing system properties such as freedom

from deadlock, freedom from livelock, safety, and liveness.

• deadlock means that a system may reach a state at which it cannot make any

move. For any system SYS, absence of deadlock may be expressed as:

SYS = BOX<—>. T

or by its dual:

SYS = —'(POSS[—]F)

• livelock means that a system can "spin" forever on internal moves (r actions in

CCS) without ever doing an input or an output action. For any system SYS, this

may be expressed as:

SYS = POSS(PATH<T>T)

safety properties state that something bad never happens, this is, the system never

enters an unacceptable state (such as deadlock). Different systems will have different

classes of safety properties tailored to them. For the FIFO with depth of two, we

may want to check that it is never possible to output three times without doing an

input.

FF0 = BOX [incF] [incF] (NEC-FOR decF incF)

It expresses that in every state (BOX) it is not possible to perform three consecutive

incF actions from FF0.

• liveness properties state that something good eventually happen, this i, it is always

possible fór the system to enter a desirable state. For any system SYS, and a

particular action a, liveness of action a may be expressed as:

SYS = BOX(POSS<a>T)

this is read as always possible to move to a state where a action can be carried out.

2. CCS AND PROCESS LOGICS 22

Many other interesting applications can be found in [MP92]. For practical testing examples

on asynchronous hardware, see [Liu92, LABS93].

2.3. The Edinburgh Concurrency Workbench

The Edinburgh Concurrency Workbench (CWB) [Mol91, CPB9O] is an automated tool for

analyzing concurrent systems expressed in CCS. With CCS, concurrent systems can be

specified as a hierarchy of subsystems composed of objects or agents. After the CCS speci-

fications are submitted, the CWB can be used to check the specifications for well formedness

via sort, sequence and states, as well as for more sophisticated properties including free-

dom from deadlock, freedom from livelock, safety and liveness expressed in modal 14 macros.

Compared with the normal practice of circuit simulation, verification results proved by the

CWB hold over all input sequences, while circuit simulation results are only valid for limited

testing sequences.

All the specifications presented in this thesis have been tested on the CWB and this thesis

work would not have been possible without it. These are some of the most complicated

specifications experimented with and tested on the CWB.

2.4. Constraining Intermediate States

Controlling the state space is a major problem when modeling concurrent systems. Al-

though describing hardware systems as compositions of objects makes for clear and suc-

cinct specifications, it is standard practice to apply the CWB minimization algorithm and

expand a specification into its equivalent (unique) minimal state machine prior to testing.

for most properties (all except livelock). Informally, the algorithm works by first assuming

that composed processes run free and then using hidden line information to constrain on

handshakes. Nearly all of our specifications are so large that trying to minimize the whole

composition in one step is not feasible. Minimizing parallel specifications, such as

(O1IO2L..IO)\{ Ili l2,....,lk}

has to be carried out piecemeal, first minimizing 012 = (01 I 02) \ {pi, ..., p}, where
{p, ..., p} are those internal lines joining 01 to 02, and then 012 with 03 etc. Even this

strategy may fail if the stepwise compositions are carried out according to some hierarchical

2. CCS AND PROCESS LOGICS 23

strategy (which is probably the natural way to start). Instead, it is best to carry out the

compositions following the flow of data and, wherever possible, to start with a natural

bottleneck (e.g. an arbiter) which will cause states hanging off its outputs to sum rather than

multiply. Early experiments with the MOVE machine [BLS94b] reduced minimization

times from 4 days to 4 hours following this rule of thumb.

A second major improvement comes from noticing that the semantics of CCS are rather

more general than those of actual hardware. As a simple example, consider a wire that

forks to both P and Q. When a signal travels down the wire P and Q are initiated, but in

either order. Informally, this could be expressed in CCS by

FORK = a.('sP.'sQ + `sQ.'sP).FORK

P = sP. body-of-P. 'dP.P

Q = sQ. bodyofQ. 'dQ.Q

PQ = (FORK IPIQ)\{ sP, sQ}

The key observation here is that CCS permits all possible interleavings, so that even if the

handshake on sP occurs first, Q may complete before the very first action of body_of_P even

commences. For certain "well structured" designs (reference below), forks may be redefined

by FFORK = a.'sP.'SQ.FFORK without loss of variety. This simple observation has

a dramatic impact on minimization time. For each fork in a composition, it effectively

halves the number of intermediate states produced on the CWB, but minimizes to exactly

the same finite state machine as would be found using the usual definition of a fork with

choice. Besides simplifying splitters (such as forks), we may also simplify the corresponding

collectors (such as C-elements) with the same effect.

This work is the subject of an ongoing collaboration with Birtwistle and Tofts (see work-

ing paper State space reduction for asynchronous micropipelines, Tofts, Liu, Birtwistle, June

1 1995) and is not further described in this dissertation. Several common asynchronous de-

sign structures (serial, parallel, choice, looping) have been formalized, analyzed and shown

to obey this intermediate state reduction property. In practice, the MOVE and AMULET1

designers unwittingly followed these design rules, and we have used this Reduction The-

orem to good advantage many times. It further reduces the minimization time of the

2. CCS AND PROCESS LOGICS 24

MOVE machine down to 30 minutes. Comparable figures are not available for AM[JLET1

which is so much more complex, that nothing of any consequence minimizes unless both

the strategies outlined in this section are adopted.

2.5. Summary

In this chapter we have 'briefly summarized the CCS notation, the Hennessy-Milner Logic

and modal a-calculus associated with it, and hinted at how they are used on the CWB.

CCS/CWB supports hierarchical system specification at various levels of abstraction, and

the parallel specification style matches well with the compositional structure of asyn-

chronous systems. Using CCS/CWB, the consequences of the specification of a design

can be tested thoroughly before embarking upon an implementation, and the characteristic

properties proved by CCS/CWB hold over all posible timing variations, both external and

internal. Full accounts on these topics can be found in [Mil89, MP92, Sti91a, Sti91b, Sti92].

Although the CCS process algebra can be used to specify the structure of concurrent

systems accurately and succinctly, it is not entirely satisfactory for several reasons:

• Functionality is omitted - full value passing is not allowed in the CWB so that the

behavioural aspects of a design have to be abstracted away. However, this turned

out to be a bonus since the CCS descriptions of AMULET1 are already so large that

we doubt whether a more powerful calculus could, at the time of writing, mechanize

our models.

• No broadcasting - except for the complementary handshake actions, individual ac-

tions are not allowed to happen simultaneously. This makes it impossible to model

isochronous forks or the innards of low level cells in CCS since they rely on locally

non-delay-insensitive behaviour [BE9O].

• No explicit timings - all actions that can fire will fire in due course, but we do not

know how long this may take. Thus, as observed above, a CCS specification permits

more variety than specific hardware would.

However, within these limitations, CCS is an appropriate specification language because of

its generality, readability, compactness, and the mechanized support tool associated with

it. The value passing CCS described in Milner's book [Mil89] is supported by the CWB but

2. CCS AND PROCESS LOGICS 25

is too state rich to be used as the specification language for asynchronous hardware. SCCS

(Synchronous Calculus of Communicating Systems) [Mi183] and TCCS (Temporal Calculus

of Communicating Systems) [MT89] support broadcasting and hard timings respectively,

but again are too state rich to be used for this work.

CHAPTER 3

AMULET 1 Overview

Chapter 3 gives an overview of the AMULET1 chip [FDG93, Pav94, FDG94, Fur95]

developed by the AMULET group at Manchester University, England. AMULET]. is the

asynchronous version of the well-known ARM processor [Fur89J - the biggest selling RISC

processor in the 1980s, and now a leading macrocell for low power applications. This

overview includes a top-level view of AMULET1's typical working environment, the ma-

jor functional units of its internal organization, and a classification and tabulation of its

instruction set.

26

3. AMULET1 OVERVIEW 27

3.1. The ARM Processor

The Advanced RISC Machine (ARM) is a 32-bit general purpose reduced instruction set

microprocessor. It was the world's first commercial development of the pioneering RISC

architecture [Rad83, P581, HJBG81]. The original design was developed at Acorn Com-

puters, Cambridge, England in 1983. In 1992, the development of ARM6 for the Apple

Newton PDA product marked the 130 MIPS per watt ARM processor as a world standard

for a range of low-cost and low-power applications.

The ARM instruction set is based upon a load/store architecture and features 16 visible

registers each of thirty-two bits. In common with other RISC processors, the instructions

that perform data processing functions are separated from those that move data between

the memory and the registers. Amongst the more unusual features of the ARM instruction

set are: conditional execution of all instructions, pre— and post— indexing of load and

store operations, general use of program counter (PC), and multiple register load/store

operations. In practice, conditional execution reduces the number of branch operations

from about 1 in 5 to about 1 in 7, pre— and post— indexing speed up array access and

renders their coding easier, PC can be assigned to in both load and data operations, and

load/store multiple improves the programming efficiency of procedure entry and exit. More

details of the ARM processor are given in [Fur89, vSA94].

3.2. AMULET1: An Asynchronous ARM

AMULET1 is a re-implementation of the ARM6 microprocessor using a fully two-phase'

asynchronous design style based upon Sutherland's micropipelines [Sut89]. It preserves

all the functionality of the ARM6 macrocell, except for the MLA (MuLtiply Accumulate)

instruction which was too troublesome to implement and certain instructions which have

been maintained merely for backwards compatibility with previous ARM chips.

3. AMULET1 OVERVIEW 28

3.2.1. AMULET1 Interface

When communicating with the environment, AMULET1 employs an asynchronous mi-

cropipelined interface. As illustrated in Figure 3.1 (following page 66 of [Pav94]), the

asynchronous processor has three groups of signals including an output bundle, an input

bundle, and controls for initialization, interrupts and aborts.

initialise

I
interrupts

II
read data

abort

AMULET!
control

address

write data

/1

N

4
I

 >

)
 N
 /

MMU

 >
 N
 V
 N

FIGURE 3.1. AMULET1 interface

M
E
M
0
R
Y

• The output bundle contains the memory address, the write data, and the control

bits from the processor to the Memory Management Unit (MMU).

• The input bundle contains the read data from the memory to the processor.

• The external control includes the processor initialization, interrupt requests, and

memory abort response from the MMU.

3.2.2. AMULET1 Organization

The internal organization of AMULET1 is shown in Figure 3.2 (following. page 69 of

[Pav94]). It consists of five major functional units: the address interface, the register bank,

the execution unit, the data interface, and the decode unit. The major bus interconnections

between these units are also shown.

3. AMTJLET1 OVERVIEW 29

Address Interface

to Memory Interface

Address Out

7

PC Pipe

Register Bank

Execution
Unit

Registers

-1

D

P
e

Data
Interface

Multiplier

'7

Shifter /.

j7

A

N

A

e

'7

ALU

Data Out Data In ippe

D
E
C
0
D
E
R

to Memory Interface I from Memory In1erface I

FIGURE 3.2. AMULET1 internal organization

• Address interface

As abstracted in Figure 3.3, the address interface presents all requests to the memory

interface (except the right hand sides of store operations which are presented by the

data interface), and the PC value to execution unit. Inputs to the address interface

are supplied either by the execution unit (via the W bus or the APIPE) or by the

data interface (via the W bus).

3. AMULET1 OVERVIEW 30

Ml Al I—.1 PCpipe

EXEC DI

PC

RB

I 'rAPPe

EXEC

FIGURE 3.3. Address interface

The address interface autonomously generates sequential instruction addresses and

forwards them to the memory interface. In addition, it also transfers addresses

of load operations (right hand sides) and store operations (left hand sides), and

generates the addresses for load/store multiple operations. On initialization, the

address interface presents zero as the first value to the memory interface.

• Register bank

The register bank contains all the visible registers except PC which is maintained in

the PCpipe associated with the address interface. It has two read ports for operand

access (A and B buses), a single write port (W bus) for modifying its contents, and

an input port supplying the PC value. The PC value can appear on either the A bus

or the B bus. For post-index operations, the value on the A bus is also dispatched

to the address interface via the APIPE bus. For store operations, the value on the

B bus is dispatched to the data interface via the DPIPE bus. RB is illustrated in

Figure 3.4.

EXEC/DI PCpzpe

DI EXEC EXEC Al

DEC

FIGURE 3.4. Register bank

3. AMULET1 OVERVIEW 31

• Execution unit

The execution unit has a pipelined structure for execution efficiency. It accepts

operands from the register bank, evaluate the decoded expression, and writes the

execution result back either to the register bank or to the address interface via the

W bus (which is shared with the data interface). If needed, an immediate value

k is supplied to the execution unit by the data interface. EXEC is illustrated in

Figure 3.5.

RB RB

RB/Al Dl

FIGURE 3.5. Execution unit

As showns in chapter 4, the register bank is merely a delay, never a source of

contention in AMULET1. Hence we can abstract it away and hide it inside the

execution unit. That being so, we combine Figure 3.4 and 3.5 together into the XC

unit as illustrated in Figure 3.6.

XC PCpipe

DI XC/Al Al Dl

(a, b, w)
DEC

FIGURE 3.6. Abstraction of execution unit and register bank

3. AMUIJET1 OVERVIEW 32

• Data interface

The data interface manages the data flow between the memory and the processor.

Incoming values can be either new instructions, or the results of load operations

from the memory, or the right hand side of store operations from the execution unit

(register bank) which outputs to the memory. Immediate value k is offered to the

XC unit via Ipipe. This is illustrated in Figure 3.7.

MI

MI

xc

Dpipe

'7

XC/AI XC

N

DI Ipipe DEC

FIGURE 3.7. Data interface

• Decode unit

The decode unit performs instruction decode on the instructions supplied by the

Ipipe associated with the data interface. It also provides control information to the

address interface, the register bank, and the execution unit. This is abstracted is

Figure 3.8.

DI

FIGURE 3.8. Decode unit

3.2.3. AMULET1 Abstraction

Combining the abstracted address interface, execution unit, and data interface, we present

the abstraction of AMULET1 in Figure 3.9.

3. AMULET1 OVERVIEW 33

MI

N

Al PCpipe

W

D

'

P
C

RB

XC

/

A

P
C

 N
 VI

DI

4

4

Ipipe

FIGURE 3.9. AMULET1 abstraction

 >

DEC

Compared to Figure 3.2, the main simplifications in Figure 3.9 lie in folding the register

bank into the execution unit, and abstracting away the multiplier, the shifter and the ALU

from the execution unit. These simplifications wre the key to reducing the size of the top

level model down to the (almost) tractable.

3.2.4. Instruction Classification

The instruction set of AMULET1 is a direct mapping of the ARM instruction set [Gin9l,

vSA94] onto the asynchronous organization of AMULET1. The instructions are grouped

into eight classes according to their datapath activities. The following summary of datap-

ath activity for each instruction class is based upon Figure 3.9.

'At this level of abstraction, the multiply operation could be subsumed as a data operation, and the

software interrupt operation as a branch operation. However they seem to be worth distinguishing at very

low levels of abstraction, and are left as separate categories here.

3. AMULET1 OVERVIEW 34

• Multiply operation (w := a * b)

The multiplier accepts two input operands from the register bank. The partial sum

and partial carry produced by the multiplier are added together in the ALU. The

final result is written back to the register bank via the W bus.

• Data operation (w := a op b)

A data operation takes two operands and performs one of the 16 arithmetic or logic

operations supported by the ALU. It differs from the multiply operation in that the

multiplier is not activated during it execution and the final result can be dispatched

either to the register bank or, in the case when w is R15, to the address interface.

• Branch operation (R15':= R15 + k {R14 := R15 + 4})

The simple branch operation is a PC relative jump. It adds the current PC value

and the offset together in the ALU and sends the result back to the address interface

as the new non-sequential instruction address.

Branch and link requires two phases. The first is the same as branch. In addition,

it saves the address of the next instruction in the register bank as the subroutine

return address.

• Load operation (w:= MEM[a + b])

A load operation is split into an address calculation phase and a data transfer phase

which follows the calculation phase immediately down the execution pipeline. The

first phase calculates the load data address in the execution unit, and then sends

it to the memory and, perhaps the iegister bank via the W bus and the address

interface. The second phase transfers the data read from the memory via the data

interface and the W bus either to the register bank or to the address interface.

The load operation may additionally allow the pre-indexing or post-indexing of a

register. The calculated address may be written back to the register bank in a pre-

indexing load operation, and will always be written back to the register bank in a

post-indexing load operation.

• Store operation (MEM[a + b] := Dpipe)

A store operation is split into an address calculation phase and a data dispatch

phase. The store data address is calculated in the execution unit and sent to the

3. AMULET1 OVERVIEW 35

memory via the W bus and the address interface. The store data is dispatched to the

memory via the Dpipe and the data interface. The address and the data rendezvous

at the memory to complete the store operation. The store operation also allows

pre-indexing or post-indexing of a register.

• Load/store multiple operation

The load/store multiple operation supports the load or store operation of any sub-

set of the 16 visible registers. It differs from individual load/store operations in

that, once the base address is calculated, the remaining addresses are produced au-

tonomously by the address interface. Since the registers are operated on from low

index to high index, if the PC (R15) is loaded or stored, it is always taken last.

The load/store multiple operation is by far the most complex instruction in ARM's

repertoire.

• Swap operation (w := MEM[b], MEM[b] := a)

The swap operation swaps the contents of a register and a memory location. It

carries out two memory accesses atomically without the possibility of being inter-

rupted.

• Software interrupt operation (R15' := k, R14 := R15 +4)

The software interrupt operation causes the processor to break off from the current

program by introducing an exception vector k to the memory via the execution unit,

the W bus and the address interface. The return address of the instruction after

the interruption happens is saved in the register bank. l)uring the operation, the

processor is switched to its supervisor mode. Thus, this operation is similar to the

branch and link operation described above, but with mode switching.

3.3. Summary

This chapter discussed the external interface, internal organization and instruction set of

AMUL.ET1, andclassified instructions into eight distinct categories. The instruction clas-

sification is summarized below in Table 3.1. We use this table to guide our descriptions of

the top level in chapter 5 and of the execution pipeline in chapter 8.

3. AMULET1 OVERVIEW 36

Instruction Class Example Instruction Operation

Multiply MPY Rd, Rn, Rm Rd := Rn x Rm

Data ADD Rd, Rn, Rm Rd := Rn + Rm

Branch B k R15' := R15 + k

BL k R15' R15 + k; R14 := R15 + 4

Load

LDR Rd, [Rn, Rm] Rd := MEM[Rn+Rm]

LDR Rd, [Rn, Rm]! Rd MEM[Rn+Rm]; Rn Rn + Rm

LDR Rd, [Rn], Rm Rd MEM[Rn]; Rn Rn + Rm

Store

STR Rd, [Rn, Rm] MEM[Rn+Rm] := Rd

STR Rd, [Rn, Rm]! MEM[Rn+Rm] Rd; Rn Rn + Rm

STR Rd, [Rn], Rm MEM[Rn] Rd; Rn Rn + Rm

Load/Store Multiple LDM Rn! {regs} load.{regs} from MEM[Rn];.update Rn

STM Rn! {regs} store {regs} in MEM[Rn]; update Rn

Swap SWP Rd, Rn, Rm Rd MEM[Rm], MEM[Rm] := Rn

Software Interrupt SWI k R15':= k, R14 := R15 + 4

TABLE 3.1. AMULET1 instruction classification

The modeling of AMULET1 starts in chapter 4 by presenting specifliations of the register

bank unit at three different levels, of abstraction: the top level, the register transfer level,

and the implementation level. A useful result is that the register bank is a source of delay

but not of conflict. Since delay is a natural part of the CCS semantics, AMULET1 is

modeled in chapter 5 at the top level in terms of its major floor plan modules with the

register bank being abstracted away. The chapters following model the major floor plan

modules (the address interface, the data interface, and the execution unit) at the register

transfer level, one by one.

CHAPTER 4

Register Bank

The purpose of this chapter is to exhibit how CCS can be used to model a practical asyn-

chronous system, and to investigate at which levels of abstraction it is appropriate and effi-

cient. The conclusions drawn from this chapter are used as a guide for modeling AMULET 1

in the sequel.

This chapter presents specifications of the register bank, one of AMTJLET1's major func-

tional units, at various levels of abstraction, namely the top level, the register tranfer

level, and the implementation level. The top level specification focuses on the behaviour of

asynchronous reads and writes to the register bank. The register transfer level specification

focuses on the mechanism of register locking detection, and the possible instruction overtak-

ing with the dual lock FIFO technique. The implementation level specification gives gate

level detail of how the control sequences of register read and register write are generated.

The major difficulty in specifying the register bank arises from its data-dependent oper-

ations. Unfortunately, accurate modeling of data information using CCS is impractical due

to the resulting state explosion. Accordingly, the specifications presented here emphasize

the register bank's operational behaviour rather than its data movement details.

37

4. REGISTER BANK 38

4.1. Register Bank Operation

The register bank in AMULET1 contains all the visible registers (except the PC) and

stores most of the processor's state. It supports concurrent read and write operations with

arbitrary timing dependencies between them, and is implemented with a novel arbiter-free

circuit with a locking mechanism that enables efficient read operations in the presence of

multiple pending writes [PDF92]. This section discusses the operating environment of the

register bank, as well as its potential operating hazards.

4.1.1. Operating Environment

The register bank consists of a number of registers with common read and write buses.

Figure 4.1 illustrates its operating environment:

PC value from PCpipe instruction from Ipipe

I , U

W

'7

Register Bank

< a

B A

7 \

EXEC

b

W

DEC

FIGURE 4.1. Operating environment of register bank

Inputs to the register bank include read and write addresses (a, b, w) from the decode unit,

current PC value from the PCpipe, and write back data from the execution unit. Outputs

from the register bank are operand A and operand B that correspond to read addresses a

4. REGISTER BANK 39

and b. For an individual operation, reading from and writing to the register bank operate

in the following sequence:

(1) The decode unit extracts read and write addresses (a, b, w) from the current in-

struction supplied by Ipipe.

(2) The corresponding operands A and B are read out from the register bank provided

neither a nor b is pending a write back operation (the read stalls if a write back is

pending). The write back register (w) is then locked and becomes unreadable.

(3) Operands A and B are passed to the execution unit and the instruction is executed

(the execution of each instruction class will be detailed in chapter 8).

(4) The execution result is written back to the register bank via the W bus. The written

register is then unlocked (if this is the only write pending for the given register).

4.1.2. Potential Hazards

Due to the asynchronous nature of register reads and register writes, interaction between

the operations could cause metastability problems. Further, because of the pipelined pro-

cessor structure, it is possible to have multiple outstanding write operations which need

to be correctly matched with the corresponding execution results. These potential hazards

associated with the asynchronous register bank are eliminated by special register locking

and read stalling techniques.

• Lock FIFO and register locking

A record of the destination register addresses is maintained in a FIFO allowing the

returning result to be paired with its corresponding address. This FIFO is called

a lock FIFO since it is equipped with a locking mechanism that stops reads being

carried out from a register with a write pending.

• Read stalling

An instruction may try to read a register whose contents are pending for a write.

Under this circumstance, the read has to be stalled until the corresponding write

has been completed, and the updated datum is available.

4. REGISTER BANK 40

4.2. Top Level Specification

The top level model focuses on the relation between register reads and register writes which

are autonomous and almost independent. Every read is evaluated as to whether it can

proceed or has to be stalled. A read proceeds directly when the operand registers are not

locked. A read has to be stalled when the operand registers are locked, and cannot proceed

until the registers have been unlocked by a write.

4.2.1. Register Read

Assume that the (a, b, w) triple is supplied to the register bank by the decode unit. The

behaviour of a read operation can be abstracted to:

BEGIN

request for read, but proceed only if a and b are not locked;

read a and b;

lock w (and forward a and b to the execution pipeline);

END

N.B., letting "read a and b" proceed before "lock w" ensures assignments such as w:= w-i-1

are possible. In CCS we have:

bi READ

rReq. (isLK. unlock. PROCEED + ntLK.PROCEED)

bi PROCEED

read. lockW. READ

4.2.2. Register Write

Given that the write back result has -been computed, the behaviour of a write operation

can be abstracted to:

BEGIN

wait until the execution result (a OP b) is available;

request for write;

write (w := result);

unlock w;

END

4. REGISTER BANK 41

In CCS we have:

bi WRITE

wReq.write. 'unlock.WRITE

4.2.3. The Register Bank

The high level specification of the register bank is achieved by composing register read and

write in parallel. However, the above specification of the register write implies an execution

pipeline with depth of one - the locked register (w) will be unlocked immediately after one

write back operations via ' unlock. It can be easily extended to an execution pipeline with

depth of N to reflect the actual implementation. The following is a top level specification

of the register bank with an execution pipeline with depth of two (trace value unLOCK is

added in deliberately for property testing).

bi READ

rReq. (isLK.uu].ock.wLOCK.PROCEED + ritLK.PROCEED)

bi PROCEED

read. lockW. READ

bi WRITE

wReq.write.('unlock.WRITE + WRITE1)

bi WRITE1

wReq.write. ' wilock.WRITE

bi RBANK

(READ I WRITE) \ { unlock }

sort RBANK

**{isLK , lockW , ntLK , rReq,read ,unLOCK , wReq, write}

mlxi RBANK

RBANK'

**RBANK' has 29 states.

4. REGISTER BANK 42

fd RBANK'

No such agents.

The critical property possessed by this specification is that at least one write back has to be

done to unlock the register (unLOCK) that is pending for a write (isLK) before the register

contents can be read out (read). This is verified on the CWB:

cp HANK

BOX ([isLK] (NEC-FOR unLOCK read))

**true

4.3. Register Transfer Level Specification

The top level specification described in the previous section focused on the behavioural

level for getting the action sequences correct. It answers questions such as "when can a

read proceed if the corresponding register is locked?" rather then "how to detect whether a

register is locked?". This section presents two register transfer level specifications of the

register bank. One focuses on the locking detection mechanism itself, the other focuses on

possible instruction overtaking in the AMULET1 implementation which actually Includes

two lock FIFOs.

4.3.1. Specification I: Register Bank with Locking Detection

The overall organization of this model consists of three major functional blocks as illustrated

in Figure 4.2.

• A locking detection unit that stalls a read if the related addresses are pending for

write back but proceeds directly when no related locking is detected.

• A lock FIFO that holds the outstanding write back addresses while instructions flow

through the execution pipeline.

• A regular FIFO that mimics the execution pipeline stages for the process. and storage

of the write back data.

4. REGISTER BANK 43

i4ck J I iReq

wReq

wAck

Locking Detection

Lock FIFO

R
B
A
N
K

dAck

V

dReq

Regular FIFO

E
X
E
C

FIGuRE 4.2. Register bank organization with locking detection

The register bank consists of three sets of external signals. These external signals coordinate

the relationship between asynchronous read and write operations.

• iReq/iAck pair is the read request from the instruction decode unit to the register

bank and the corresponding acknowledgement;

• dReq/dAck pair is the execution request from the register bank to the execution

pipeline and the corresponding acknowledgement;

• wReq/wAck pair is the write request from the execution pipeline to the register bank

and the corresponding acknowledgement.

Control flow

The control flow, which is not shown as an explicit block in Figure 4.2, provides the action

sequences that maintain the register bank's asynchronous read and write operations, and

coordinates the three major functional blocks displayed. It is generated based upon three

major action sequences operating in parallel with internal constraints:

CONTROL def READ I EXEC I WRITE) \ internal constraints

4. REGISTER BANK 44

(1) READ operation

A read request proceeds when no operands specified in the current instruction are

pending for a write back operation. During a read operation, the action sequence

is:

BEGIN

read operands;

store write back address in the lock FIFO;

acknowledge back;

END

In CCS we have:

READ ef read.'incL.IockW.'iAck.READ

(2) EXEC operation

An execution request is generated when both operands of the current instruction

have been read out successfully. During an execution operation, the action sequence

is:

BEGIN

generate a request for execution;

data entering the execution pipeline;

acknowledge back;

END

In CCS, we have:

EXEC I 'dReq.' incF.exec.dAck. EXEC

(3) WRITE operation

A write request is generated when both write back data and write back address are

available. During a write operation, the action sequence is:

BEGIN

generate a write request;

write back to the register bank;

unlock the corresponding register;

acknowledge back;

END

In CCS, we have:

WRITE
del

wReq.write.'decF. 'decL. 'wAck.WRITE

4. REGISTER BANK 45

(4) Internal Constraints

Each of the above individual action sequences could operate in parallel with the

following internal constraints:

• As soon as the operands are read out from register bank (read), the saving of

write back address in lock FIFO (' incL) and the initiating of execution ('dReq)

can proceed simultaneously. The specification is thus modified as:

READ 'I read. ready. 'incL.IockW.'iAck.READ

EXEC ! ready. 'dReq.'incF.exec.dAck. EXEC

where the action ready provides the synchronization to fire up EXEC.

• A write operation can only proceed when both write back data and write

back address are available. This is expressed as neither the lock FIFO nor the

regular FIFO is empty. The specification is thus modified as:

WRITE t 'neL.'neF.wReq.write.'decF.'decL.'wAck.WRITE

Locking detection

The locking detection unit is used to check the lock FIFO and stall the current instruction if

its operands refer to registers with pending writes. Assume the lack FIFO has the capacity

of holding N write back addresses, and isK stands for K addresses currently in it. The

following algorithm abstracts the locking detection mechanism.

BEGIN

read request;

Check: CASE number of items in lock FIFO OF

"isO'' : do read

"isK'' : if not-locked

then do read;

else wait for a write, back;

goto Check;

Read: read out operands and acknowledge back;

END

4. REGISTER BANK 46

As an example, we give the CCS specification of the locking detection mechanism assuming

that the lock FIFO has a maximum capacity of two write back addresses.

bi IREQ

iReq.(' isO.READ

+ 'isl.(READ+ ' isO.READ)

+ '1s2. (READ + 'isl.(READ + 'isO.READ)))

bi READ

 'iAck.IREQ

The above specification can also be written as:

IREQ = iReq. (LOCKO + LOCK1 + LOCK2)

LOCKO = 'isO.READ

LOCK1 = 'isl.(READ + LOCKO)

LOCK2 = 'is2. (READ + LOCK1)

READ = 'iAck.IREq

Figure 4.3 illustrates the transition graph of performing the locking detection mechanism

on a lock FIFO with depth of two.

FIGURE 4.3. Locking detection for lock FIFO with depth of two

4. REGISTER BANK 47

The interpretation follows:

(1) Case "isO"

Lock FIFO is empty hence there are no pending writes. A register read can always

proceed.

(2) Case "is 1"

Lock FIFO holds one write back address which may or may not block the current

read request. If a register read does not depend on the pending write, it may

proceed directly. Otherwise, a register read will be blocked until the corresponding

write back has been completed. This is indicated by no items in the lock FIFO (isO).

(3) Case "is2"

Lock FIFO is full and holds two write back addresses which may or may not block

the current read request. If register read does not depend on the pending writes, it

can proceed directly. Otherwise, register read will be stalled until one write back

has been completed and then step 2 is repeated for further checking.

The above specification is mechanically easy to expand to lock FIFO with depth of N, and

the expansion is linear in N.

IREq ifteq. (LOCKO + LOCK1 + ... + LOCKn)

LOCKO = 'isO.READ

LOCKk = ' isl.(READ+ LOCK(K-1))

LOCKn = 'isM. (READ + LOCK(N-1))

READ = 'iAck.IREQ

Figure 4.4 illustrates the transition graph of performing lock detection on a lock FIFO with

depth of N.

4. REGISTER BANK 48

FIGURE 4.4. Locking detection for lock FIFO with depth of N

Lock FIFO

The lock FIFO in register bank is used to hold all the outstanding write back addresses. It

is testable for the number of items currently in it (isK) as well as its non-emptiness (neL) at

each state. Every time a read is carried out, the corresponding write back address is locked

in the lock FIFO (incL). The address will be unlocked for access until the corresponding

write back has been' completed (decL). The isK flags are the complementary signals for

locking detection described above. As an example, the specification of a lock FIFO of depth

two is given:

bi LFO

incL.LF1 + isO.LFO

bi LF1

incL.LF2 + decL.LFO + neL.LF1 + isl.LF1

bi LF2

decL.LF1 + neL.LF2 + is2.LF2

4. REGISTER BANK 49

In each state, this specification allows movement to adjacent states or the nondestructive

testing of the current state. It is easy to extrapolate this specification to a lock FIFO of

depth N.

Regular FIFO

The functionality of the execution unit is to process the operands read from the register

bank, and generate the write back data. Since the focus here is the register bank rather

than the execution pipeline, the execution details are irrelevant. A regular FIFO which can

be incremented if it is not full and decremented if it is not empty is used to abstract away

the processing details but maintain the storage function of the execution unit.

The specification of the regular FIFO is traditional, and has been presented and tested

thoroughly in chapter 2. In order to test the FIFO's non-emptiness (neF), an extra item is

added in to each FIFO status. As an example, a regular FIFO of depth two is given:

bi FF0

incF.FFI

bi FF1

incF.FF2 + decF.FFO + neF.FF1

bi FF2

decF.FFI + neF.FF2

This template is used frequently in later chapters.

On the Workbench

After evaluating the individual functional blocks and the control flow that coordinates

them, the complete CCS specification for the register bank with locking detection can be

presented. The following specification assumes that both the lock FIFO and the execution

FIFO are of depth two.

bi IREQ

iReq.(' isO.READ

+ 'isl.(READ + 'isO.READ)

+ 'is2.(READ+ ' isl.(READ+ ' isO.READ)))

4. REGISTER BANK 50

bi READ

read.ready. ' incL.lockW. ' iAck.IREQ

bi EXEC

'ready. ' dReq. ' incF.exec.dAck.EXEC

bi WRITE

'neL. 'neF.wReq.write. ' decF. ' decL. ' wAck.WRITE

bi RBANK

(IREQ I EXEC I WRITE I LFO I FF0

\ { isO, isi, is2, ready, neF, neL, uncL, decL, incF, decF }

sort RBANK

**{dAck,exec,iReq,lockW,read,wReq,write, ' dReq, ' lAck, 'wAck}

min RBANK

RBANK,'

**RBANK' has 115 states.

£d RBANK'

**No such agents.

4.3.2. Specification II: Register Bank with Dual Lock FIFO

Based upon the, above specification, a more detailed specification of the register bank at

the register transfer level is presented. This specification features two lock FIFOs as imple-

mented in AMULET1, namely the ALT] lock FIFO and the memory lock FIFO. The dual

lock FIFO structure is the key to instruction overtaking in the AMULET1 implementation.

The overall organization of this model consists of four major functional blocks as illustrated

in Figure 4.5.

4. REGISTER BANK 51

iAck iReq

Locking Detection

MEM Lock FIFO

ALU Lock FIFO

R
B
A
N
K

sE decA

E
X
E
C

Stagel

4
stage2

4
stage3

decM

SF

Al DI

MI

FLOATERS

FIGURE 4.5. Register bank organization with dual lock FIFO

• A locking detection unit that stalls a read if the related addresses are pending for

write back at either the ALU lock FIFO or the memory lock FIFO, but proceeds

directly when no locking is detected.

• Dual lock FIFO: a memory lock FIFO that holds the outstanding write back ad-

dresses waiting for data resulting from accessing memory and an ALU lock FIFO

that holds the outstanding write back addresses waiting for data achieved from ALU

processing.

• A three-stage execution pipeline that represents the process and storage of write

back data in the execution unit.

• A FLOATERS unit including the address interface, the data interface, and the mem-

ory interface that will only be invoked by instructions related to memory access.

4. REGISTER BANK 52

iReq/iAck is the only pair of visible external signal remaining from the previous specification.

dReq/dAck and wReq/wAck are omitted in this organization since they are for the sole

purpose of modeling asynchronous reads in relatfon to asynchronous writes and this was

evaluated thoroughly in the previous specification. In this specification, more trace values

will be added in to display the possible instruction overtaking.

The three-stage execution pipeline and the floaters unit (includes address interface, data

interface, and memory interface) are included in this model as the register bank's operating

environment to show the possible instruction overtaking that allows the faster internal ALU

instructions to overtake the slower external memory access instructions.

Locking detection

In the dual lock FIFO structure, locking detection has to be performed on both FIFOs before

the operands can be read out from the register bank. The corresponding specification is

developed based upon that of the single lock FIFO. To make life easier, the detection is

performed sequentially (in either order) on the-two lock FIFOs. The following specification

assumes that the detection is performed on the memory lock FIFO first then the ALU lock

FIFO, and both FIFOs are of depth two.

bi IREQ_M

iReq. (' isOM.IREQ_A

+'isl_M.(IREQ_A + 'iso...M.IREQ_A)

+'1s2_M.(IREQ_A + •'isl_N.(IREQ_A + 'isO_M.IBEQ..A)))

bi IREQ_A

'isO_A.READ +

'isl_A. (READ + 'isO_A.READ) +

'is2_A. (READ + 'isl_A. (READ + 'isO_A.READ))

.bi READ

 'iAck.IREq

Figure 4.6 illustrates the transition graph of performing locking detection on the dual lock

FIFO both of depth two.

4. REGISTER BANK 53

FIGURE 4.6. Locking detection for dual Lock FIFO both with depth of two

Similarly, the above specification is mechanically easy to expand to a dual lock FIFO both

with depth of N, and the expansion is linear.

Dual Lock FIFO

The specification of the lock FIFO is explained in the previous section. For an ALU lock

FIFO and a memory lock FIFO both at depth of two, we have:

bi ALU_LF

LFO C incA/incL, decA/decL, neA/neL, isO_A/isO, isl_A/isl, 1s2_A/is2 3

bi MEM_LF

LFO C incM/incL, decM/decL, neN/neL, isO_N/isO, isl_N/isl, is2_M/is2 3

4. REGISTER BANK 54

Execution Pipeline

In the previous specification, a regular FIFO was used to simulate the storage function

of the execution unit. In order to demonstrate the possible instruction overtaking, more

details of the execution unit are needed so that the whereabouts of each instruction can be

traced. We now abstract the execution unit into three pipeline stages. The specification of

this three-stage execution pipeline follows:

bi EXEC

(S1_E I S2_E I S3_E

bi Si_E

gsiE.pslE.S1_E

bi S2_E

gs2E . ps2E. S2_E

bi S3_E

gs3E.ps3E.S3_E

The corresponding control sequences will be discussed later as part of the global control.

Floaters

The floaters include the address interface, the data interface, and the memory interface.

Accesses to them are required by some of the instruction classes for the purpose of loading

data back to the register bank from the memory which then unlocks the corresponding

register address stored in the memory lock FIFO. Although not all the three interfaces

have to be accessed during an instruction execution, they are represented as a three-stage

pipeline since at this level of specification we don't really need to know to which specific

interface the instruction needs access. The specification follows:

bi FLOATERS

Si_F I S2_F I S3_F

bi Si_F

gsiF.pslF.S1_F

4. REGISTER BANK 55

bi S2_F

gs2F . ps2F . S2_F

bi S3_F

gs3F.ps3F.S3_F

The corresponding control sequences will also be discussed later as part of the global control.

Global control

The global control for this level of register bank specification includes three parts. They are

instruction read, access to execution unit, and access to floaters. Additional trace values

added in to demonstrate instruction overtaking will be discussed together the corresponding

control sequence.

(1) Instruction read

When the locking no longer exists, an instruction read proceeds directly,, and the

write back address is saved in the lock FIFO. For an implementation wih dual lock

FIFO, we need to check which lock FIFO will be used to save the write back address:

(a) For instruction classes that collect write back data directly from the execu-

tion unit, the write back address is saved in the ALU lock FIFO only. The

beginning of the read is marked by .the trace value aluB.

(b) For instruction classes that collect write back data only from the memory, the

write back address is saved in ihe memory lock FIFO only. The beginning of

the read is marked by the trace value memB.

(c) For instruction classes that collect write back data from both the execution

unit and the memory, write back addresses are saved in both the ALU lock

FIFO and, the memory lock FIFO. The beginning of the read is marked by the

trace v,lue a_mB.

As soon as the instruction enters execution unit via 'gslE, the read request is ac-

knowledged via ' iAck. The execution continues via 'sALU, 'sMEM, 'sA_M respectively

and a new read operation starts from locking detection on the memory lock FIFO.

In CCS we have,

4. REGISTER BANK 56

bi READ

aluB. ' incA. ' gslE. ' jAck. ' sALU.IREQ_M

+ inemB. 'incM. ' galE. ' lAck. ' sMEM.IREQ_M

+ a_mB. ' incA. ' incM. ' galE. ' jAck. ' sA_M.IREq_M

(2) Access to execution unit

The control sequences for accessing the execution pipeline follow the same enter-

ing/releasing protocol discussed in chapter 7. When the write back address is locked

only in the ALU lock FIFO (aluB), the FIFO is unlocked ('decA) at the final stage

of execution pipeline. This marks the end of execution (aluE). When the write ba&

address is also locked in the memory lock FIFO (memB, a_mB), the floaters are

invoked ('gslF) at the final stage of execution. In CCS we have,

bi EXEC_CNTR

sALU. ' gs2E. ' palE. ' gs3E. ' ps2E. ' gW. ' decA. 'pW. 'ps3E.aluE.EXEC_CNTR

+ sMEM.'gs2E. 'pslE.'gs3E.'pa2E.'gW.'gslF.'cI1EM. ' pW. ' ps3E.EXEC...CNTR.

+ sA_M. ' gs2E. ' palE. ' gs3E. ' ps2E. ' gW. ' decA. ' gslF. ' cA_M. ' pW. 'ps3E.EXEC_CNTR

(3) Access to floaters

Access to floaters starts upon receiving cMEM and cA_M from the execution unit.

If the instruction does not need access to a certain interface, it will walk through

that stage without any new information being added in. When the corresponding

operation completes, write back data is dispatched to register bank via the W bus,

and the memory lock FIFO will then be unlocked ('decM). This marks the end of

executing the corresponding instruction (memE, a_mE). In CCS we have,

bi FLOATERS_CNTR

cMEM. ' gs2F. ' psiF. ' gs3F. 'ps2F. 'gW. 'decM. ' pW. 'ps3F.inemE.FLOATERS_CNTR

+ cA_M. ' gs2F. ' psiF. ' gs3F. ' ps2F. ' gW. ' decM. 'pW. 'ps3F.a_mE.FLOATERS_CNTR

4. REGISTER BANK 57

On the Workbench

Based upon the above explanation, this section puts everything together and presents a

register bank specification that models instruction overtaking. In order to run the CWB

efficiently, a reasonable partition divides the overall specification into three major parts.

bi PART1

(IREQ_M I ALU_LF I MEM_LF

\ { incA, incM, isO_A, isO_N, isl_A, isl_N, is2_A, is2_11, neA, neM }

sort PART1

**{a_mB,aluB,decA,decM,iReq,memB, ' gslE, ' jAck, ' sALU, ' sA_M, ' sMEM}

min PART1

PARTI'

**PART1' has 111 states.

bi PART2

(EXEC I EXEC_CNTR I EXEC_CNTR) \ {gs2E, gs3E, psiE, ps2E, ps3E }

sort PART2

**{aluE,gslE,sALU,sA_M,sMEM, ' cA_N, ' cMEN, ' decA, ' gW, ' gslF, 'pW}

min PART2

PART2'

**PART2' has 248 states.

bi PART3

C FLOATERS I FLOATERS_CNTR I FLOATERS_CNTR

\ { gs2F, gs3F, psiF, ps2F, ps3F }

sort PART3

**{a_mE,cA_M,cMEM,gslF,memE, ' decM, ' gW, 'pW}

min PART3

PART3'

**PART3' has 132 states.

4. REGISTER BANK 58

bi HANK

(PART1' I PART2' I PART3' I WBUS

\ { cA_N, cMEM, decA, decM, gW, gslE, gslF, pW, sALU, sA_M, sMEM }

sort HANK

**{a_mB,a_mE,aluB,aluE, iReq,memB,memE, ' iAck}

min RBANK

RBANK'

**RBANK' has 632 states.

The specification is tested to be deadlock free and livelock free:

Command: cp RBANK'

Proposition: BOX (Deadlock)

**true

Command: cp RUANK

Proposition: BOX (Live].ock)

**true

The following trace sequences show the possible instruction overtaking:

iReq memB ' iAck iReq aluB ' jAck aluE

iReq a_mB ' jAck iReq aluB ' lAck aluE

Although instructions that need memory accesses start first (memB/amB), the following

instruction with write back comes directly from ALU (aluB) could be completed (aluE)

before the memory related instructions (memE/a..mE).

4. REGISTER BANK 59

4.4. Implementation Level Specification

The implementation of the control sequences for the asynchronous read and write operations

to the register bank is illustrated by Paver in [Pav94, Figure 54]. It is replicated in Figure

4.7 to give an overview of the implementation level detail.

lAck

t

7 —T

Locking Completion

tan nn

WLatch
aout rout

XOR

A Decode Enable

/

Toggle,

 Locking

Locking Removal

B Decode

W Decode

Enable

\Enable

TI

Lock FIFO
aoul

agn

Ut

0

iReq

wReq

wAck

Toggle

Read Lock Gating

Write Enable

Registers

Write Complete

8Don

A Don

dAck

-≥
dReq

FIGURE 4.7. Register bank organization at the implementation level

This implementation employs a combination of two-phase and four-phase techniques. For

example, the two-phase bundled-data convention with transition signaling is used for ac-

cessing a FIFO, and the four-phase return-to-zero signaling is used for accessing the decode

4. REGISTER BANK 60

units and the registers (read and write). TOGGLE, one of the basic modules for asyn-

chronous circuit design, is the key element in realizing the conversion from one protocol to

another.

For simplicity, the following read protocol and write protocol at the implementation

level abstract away the details of the decode units for a, b and w addresses, and combines

operations on read addresses (a and b) together. Since the decode unit for w address in

Figure 4.7 is abstracted away, the XOR/TOGGLE pair associated with the w decode for

two-phase to four-phase conversion is also abstracted away. The Read Lock Gating unit is

modeled using a Locking Detection unit. Figure 4.8 illustrates the overall organization of

this abstracted implementation.

iAck iReq

4

V.—

ainWL rinWL

WLatch
aoWWL roulWL

Locking Completion

Locking Removal

XOR

Locking

anLF

aoutLF

Lock FIFO

rinLF

routLF

wReq

wAck

ldReq

Locking
Detection

IdAck

$
wENReg . rENReq

Registers

wENAck rENAck

0

dAck

-k

dReq

FIGURE 4.8. The overall organization of the abstracted register bank implementation

4. REGISTER BANK 61

4.4.1. Read Protocol

Register read starts upon receiving the read request (iReq) from the decode unit when

the (a, b, w) triple for the new instruction is available. Figure 4.9 highlights the control

sequences of a read operation.

R
E
G
I
S
T
E
R

R
E
A
D

iAck

t
c

iReq

DO

ainWL rinWL
WLatch

aoutWL routWL

Locking Completion

V

XOR

Locking

ainLF rinLF

Lock FIFO

aoulLF
Locking Removal

roulLF

wReq

wAck

1

V

ldReq

Locking
Detection

MAck

wENReg

Registers

wENAck

rENReq

rENAck

dAck

0• 5.

dReq

FIGURE 4.9. Control sequences for a register read operation

A read request iReq is stalled until the register bank is ready to start a new read opera-

tion: the w address of the previous instruction has been safely latched in the lock FIFO

(ainLF), the previous register read operation has been completed successfully and the reg-

isters involved are quiescent again. This is guaranteed by a three-way C-element. When

this C-element fires, it passes the read request to the locking detection unit (IdReq) through

an XOR gate (along with the read register addresses), meanwhile, sends the write register

4. REGISTER BANK 62

address to the WLatch (rinWL).

(1) Locking detection and register read

The read register addresses are subjected to locking detection before the read can

proceed. An unlocked operand proceeds immediately (rENReq), but a locked operand

is blocked until a write operation has cleared the lock FIFO. When the read is com-

pleted (rENAck), both operands are latched into the DLatch (rinDL) via a TOGGLE.

The operands are then passed to the execution unit by signaling on dReq whose cor-

responding acknowledgment dAck comes from the execution unit after the execution

is completed.

(2) Write register locking and read registers reset

As soon as the WLatch receives the register write address (rinWL), it acknowledges

(ainWL) the C-element which is responsible for generating the acknowledgement to

the read request (jAck). This is carried out concurrently with the first step described

above.

However, in order to ensure assignments such as w:= w+1 to be carried out correctly,

the write register address (w) has to be delayed from entering the lock FIFO while the

register read is in progress. Only when ainDL is received from the DLatch signaling

that the operands have been safely latched, can the write address be sent to the

lock FIFO (rinLF). After w is latched in the lock FIFO, the WLatch is acknowledged

(ainLF). Meanwhile, the three-way C-element is also acknowledged on one of its

inputs.

After ainDL is received, read register reset proceeds in parallel with write register

locking. Both of the four-phase locking detection unit and the read registers will

be reset to their initial states. The completion of this procedure is signaled by the

second output of the TOGGLE and collected by the three-way C-element.

4.4.2. Write Protocol

Register write starts upon receiving the write request wReq from the execution unit when

the execution result is available. Figure 4.10 highlights the control sequences of a write

operation.

4. REGISTER BANK 63

lAck

0

iReq

4

D

ainWL rinWL
WLatch

aouiWL rouIWL

Locking Completion

XOR

Locking

ainLF rinLF

Lock FIFO

aoutLF routLF
Locking Removal

wReq

wAck

ldReq

Locking
Detection

MAck

wENReq

Registers

wENAck

rENReq

rENAck

0

REGISTER WRITE

FIGuRE 4.10. Control sequences for a register write operation

A write request wReq has to be paired with the availability of a register write address

that is in the lock FIFO (routLF). This is guaranteed by a two-way C-element. When this

C-element fires, the write register is enabled.

(1) Register write

When both routLF and wReq have been received, the write enable (wENReq) is

passed by an XOR gate to the write register. A write is carried out, and completed

by signaling on wENAck.

(2) Write register reset

The wENAck signal generated from the above step is also the input to a TOGGLE.

The first TOGGLE output is routed to the write register again through the XOR

gate to reset the write register to its original status. The second TOGGLE output

triggered by the second wENAck is split into two copies: one acknowledges the

-

dAck

dReq

4. REGISTER BANK 64

lock FIFO on aoutLF, the other acknowledges the execution unit that the write is

completed on wAck.

4.4.3. The Register Bank

The complete register bank operation is implemented as the autonomous register read and

register write operating on their own, but communicate between each other through the

lock FIFO (routLF, aoutLF): a stalled register read operation cannot proceed until the

corresponding register write operation has been completed; a register write request has to

be paired with the availability of a register write address. This has been illustrated in

Figure 4.8.

4.4.4. Specification and Testing

This subsection presents CCS specifications for the implementation described above. The

specifications and testings for the basic library modules (XOR, C-element, TOGGLE, FIFO,

etc.) can be found in [Liu92].

Basic functional blocks

(1) WLatch and DLatch

The Wiatch and the DLatch are both regular micropipeline FIFO with depth of one.

bi FF0

incF.FF1

H FF1

decF.FFO + neF.FF1

bi FF_IN

rinFF. ' incF. ' ainFF.FF_IN

bi FF_OUT

'neF. ' routFF.aoutFF. ' decF.FF.OUT

bi FIFO1

(FF_IN I FF0 I FF...OUT) \ { incF, decF, neF }

4. REGISTER BANK 65

sort FIFO1

**{aoutFF,rinFF, ' ainFF, 'routFF}

min FIFO1

FIFO1'

**FIFO1' has 8 states.

bi WLatch

FIFO1' [rinWL/rinFF, ainWL/ainFF, routWL/routFF, aoutWL/aoutFF]

bi DLatch

FIFO1' C rixiDL/rinFF, ainDL/a±nFF, routDL/routFF, aoutDL/aoutFF 3

(2) Lock FIFO

At the implementation level, the lock FIFO operates in a two-phase transition sig-

naling environment. The specification is similar to the regular micropipeline FIFO

but with detecting of how many items currently are in it. The following is a lock

FIFO with depth of two.

bi LFO

incL.LFI + isO. LFO

bi LF1

incL.LF2 + decL.LFO + neL.LF1 + isl.LF1

bi LF2

decL.LF1 + neL.LF2 + 1s2.LF2

bi LF_IN

rinLF. ' incL. ' ainLF.LF_IN

bi LF_OUT

'meL. ' routLF.aoutLF. 'decL.LF_OUT

bi LFIFO

(LF_IN I LFO I LF_OUT) \ { incL, decL, meL }

4. REGISTER BANK 66

sort LFIFO

**{aoutLF,isO,isl, is2,runLF, ' aunLF, ' routLF}

min LFIFO

LFIFO'

**LFIFO' has 21 states.

(3) Locking detection mechanism

This has been discussed thoroughly at the register transfer level detail. Here we use

the same specification with one lock FIFO only. Operating in a four-phase signaling

environment, the locking detection unit has to be reset to its initial status after the

locking detection is completed.

bi LDU

ldReq.(' isO.PROCEED

+ 'isl.(PROCEED+ '±sO.PROCEED)

+ '1s2. (PROCEED + 'isi. (PROCEED + 'isO.PROCEED)))

bi PROCEED

'].dAck.ldReq. '].dAck.LDU

(4) Read and write protocol

This is used to abstract the four-phase read/write enable and disable procedure.

bi EN-RD

rENReq. ' rENAck.rENReq. 'rENAck.EN_RD

bi EN_WT

wENReq. ' wENAck . wENReq. ' wENAck . EN_WT

Register read

The modeling of the register read part is partitioned into, three parts for minimization effi-

ciency on the CWB. The overall specification is achieved by composing the minimized parts

together with constraints from the environment. The environment ensures that another

read request (reqIREQ) can not be produced until the previous one has been acknowledged

(ackIREQ).

4. REGISTER BANK 67

bi PART1

(C3' C iReq/a, t2c/b, ainLFb/c, zC3/z]

I FFORK C zC3/a, zC3b/b, rinWL/c]

I FFORK3 C ainDL/a, ainDLb/b, ainDLc/c, ainDLd/d]

I XOR2 C zC3b/a, ainDLb/b, ldReq/z]

) \ { zC3, zC3b, ainDLb }

sort PART1

**{ainDL,ainLFb,iReq,t2c, ' ainDLc, ' ainDLd, ' ldReq, ' rinWL}

min PART1

PART

**PART1' has 88 states.

bi PART2

(C2 C ainDLd/a, ainWL/b, iAck/z]

I WLatch

I C2 C ainDLc/a, routWL/b, rinLF/z J

I FFORK C ainLF/a, ainLFb/b, aoutWL/c]

I LFIFO'

) \ { ainLF, ainWL, aoutWL, rinLF, routWL }

sort PART2

**{ainDLc,ainDLd,aoutLF,isO,isl,1s2,r±nWL, ' ainLFb, ' jAck, ' routLF}

min PART2

PART2'

**PART2' has 350 states.

bi PART3

(LOU C rENReq/ldAck]

I EN-RD

I TOGGLE C rENAck/a, rinDL/b, t2c/c 3

I DLatch C dReq/routDL, dAck/aoutDL 3

) \ { rENAck, rENReq, rinDL }

4. REGISTER BANK 68

sort PART3

**{dAck,ldReq, ' ainDL, ' dReq, ' isO, ' isi, ' 1s2, ' t2c}

min PART3

PART3'

**PART3' has 118 states.

bi ENV-RD

reqIREQ. ' iReq. lAck. ' ackIACK .,ENV_RD

bi READ

(PART1' I PART2' I PART3' I ENV-RD)

\ { ainDL, ainDL.c, ainDL.d, ainLFb, lAck, iReq, IsO, Isi, 1s2,

ldReq, riaWL, t2c)-

sort READ

**{aoutLF,dAck , reqIREQ, ' ackIACK, 'dReq, ' routLF}

min READ

READ'

**READ' has 58 states.

fd READ'

**No such agents.

Register write

The register write is simple and needs no further partition. It also operates with constraints

from the environment. The environment ensures that another write request (reqWREQ) can

not be produced until the previous one has been acknowledged (ackWREQ).

bi PART

(C2 [wReq/a, routLF/b, wl/z J

I XOR2 E wi/a, w2/b, wENReq/z]

I EN-WT

I TOGGLE C wENAck/a, w2/b, tWc/c]

• I FFORK C tWc/a, aoutLF/b, wAck/c]

) \{ wi, w2, wENReq, wEMAck, tWc }

4. REGISTER BANK 69

sort PART

**{routLF,wReq, ' aoutLF, 'wAck}

min PART

PART'

**PART' has 44 states.

bi ENV-WT

reqWREQ. ' wReq. wAck. ' ackWACK. ENV_WT

bi WRITE

(PART' I ENV-WT) \ { wAck, wReq }

sort WRITE

**{reqWREQ , routLF, ' ackWACK, ' aoutLF}

min WRITE

WRITE'

**WRITE' has 4 states.

f WRITE'

**No such agents.

The register bank

The register bank is specified as register read and register write operating in parallel, where

a stalled read proceeds when the corresponding write has been completed.

bi RBANK

READ' I WRITE') \ { aoutLF, routLF }

sort RBANK

**{dAck,reqIREQ,reqWREQ, ' ackIACK, ' ackWACK, ' dReq}

min RBANK

RBANK'

**RBANK' has 74 states.

4. REGISTER BANK 70

fd RBANK'

**No such agents.

4.5. Summary

This chapter presents models of the register bank at three levels of abstraction: the top

level, the register transfer level, and the implementation level. Each model was described

in CCS and tested on the CWB.

• The top level model concentrates on how a register read is related to a register

write. The corresponding specification results in very few states when minimized

on the CWB, and a sufficient number of trace values can be added for a variety of

testing purposes. These trace values can be hidden away later when all the desired

properties of the system have been proved. The resulting specification can be used

as a "black box" component for building larger systems.

Although this level of specification gives no implementation detail, this simple model

provides system designers with a clear understanding of how the major parts of this

system communicate with each other (communication between register read and

register write) and insights into the functionality of its major functional units.

• The register transfer level model concentrates on the details of the major building

blocks in the register bank design: the locking detection mechanism, the lock FIFO,

and the control flow that coordinates these building blocks. The corresponding

specification results in a reasonable number of states even when suit.ble trace values

are added in.

Although this level of specification is distinctly higher than the implementation level,

the feeling it gives for the role and for the local environment of each component

makes it suitable to serve as a practical guide for circuit designers.

• The implementation level model gives gate level detail of how the control sequences

of register read and register write are generated. When fitted with suitable environ-

mental constraints and composed efficiently, the specification results in a reasonable

number of states when submitted to the CWB. However, since the implementation

4. REGISTER BANK 71

level specification is a direct composition of basic library modules, adding in trace

values is awkward, and leads to a state explosion.

This modeling of the register bank at three different levels of abstraction serves as a good

introductory guide on how practical asynchronous designs can be modeled in CCS, and

provides a stiff test for the appropriateness and efficiency of CCS when applied to real

hardware at various levels of abstraction As evaluated above, CCS is a suitable notation and

is equipped with a support tool (the CWB) sufficient for modeling asynchronous designs

at both the top level and at the register transfer level, but it is not powerful enough to

cope with full details at the implementation level due to the state explosion incurred by

adding traces. Without traces, all we can test are deadlock and livelock, properties that

are necessary but not sufficient.

In the light of our experience, AMULET 1 will be modeled at both the top level in its

entirety and at the register transfer level for its major functional blocks in the following

chapters. The register bank itself will be abstracted away since its thorough modeling in

this chapter has shown that it can be viewed simply as a delay.

CHAPTER 5

Top Level Modeling of AMULET1

This chapter is concerned with the top level specification of AMULET1. The purpose of this

model is to provide an abstraction of how the processor interacts with its off-chip memory

and how the major functional units of the processor interact with each other.

The model presented here is based upon previous work [BL95] which proved to be in-

tractable due to the explosive number of states generated by its model of the execution

pipeline. This new model abstracts away from the inner details of the major functional

units, clarifies their roles, and shows clearly how they are accessed by each instruction

class. The first step partitions AMULET1 into several floor plan modules. Next theac-

cesses to each of these modules are tabulated instruction by instruction. The specification

of each floor plan module is then pieced together and a complete top level specification

follows by composition.

72

5. TOP LEVEL MODELING OF AMULET1 73

5.1. Top Level Abstraction

The top level abstraction is based upon the model illustrated in Figure 3.9 in chapter 4.

Figure 5.1 shows the major floor plan modules of this abstraction.

MI

A! PCpipe

RB

XC ,

DI Ipipe

DEC

FIGURE 5.1. Floor plan modules for AMULET1

This abstraction expresses the internal structure of AMULET1 together with its external

interface as five major floor plan modules, namely the address interface (Al), the data

interface (Dl), the memory interface (Ml), the decode unit (DEC) and the execution unit

(XC). Associated with the address interface is the program counter pipeline (PCpipe) which

contains a set of PC values generated by the address interface itself. Associated with the

data interface is the instruction pipeline (Ipipe) which contains those instructions fetched

from memory but not yet decoded. The register bank (RB) is hidden away inside the

execution unit.

5. TOP LEVEL MODELING OF AMULET1 74

5.2. Instruction and Hardware Interplay

The classification of the instruction set was discussed in chapter 4. The instruction fetch

and decode cycles are identical for all the instruction classes. However, different instruction

classes have different access needs to the major functional units during the rest of their

execution cycles, and so the corresponding execution specifications vary from one instruction

class to another. This section evaluates these access needs instruction by instruction. More

can be found in [BL95] which is pitched at a lower level of abstraction and contains details

unnecessary for this chapter, but pertinent to chapter 8.

5.2.1. Notation

The signal notation adopted in the following description follows the convention:

content-sou rce..destination

where

content is one of a (address), d (data), i (instruction) or p (PC value);

source is one of Al, Dl, Ml, XC;

destination is also one of Al, Dl, Ml, XC.

e.g. p..Al_Ml is used to represent the movement of the PC from the Alto the MI.

In addition:

• The decoder presents two operand registers and one write back register to the XC

per instruction. We represent these by the triple (a, b, w).

• The PC value for the current instruction is available from PCpipe.

• Should the instruction contain a constant, it will in practice be forwarded from Ipipe.

This detail is not described in our model since it does not cause any contentions or

conflicts.

• Data forwarded from either the DI or the XC share the same bus (W bus). Since

accesses to it are not mutually exclusive, it is expressed as a semaphore agent:

WBUS dJ gW.pW.WBUS

Provided the obvious protocol is obeyed by each user, this guarantees that at most

one user can access the W bus at any time.

5. TOP LEVEL MODELING OF AMULET1 75

5.2.2. Instruction Fetch

For instruction fetch and decode, the Al sends the current PC value to the MI; the MI sends

the fetched instruction MEM[PC] to Ipipe via the DI; the instruction is then decoded and

presented for execution to the XC:

p_Al_MI —+ LMI_DI — 4 instruction —+ (a, b, w)

The DEC unit not only presents register addresses (a, b, w) to XC, but also evaluates the

instruction and extracts the constant value k from Ipipe (should it be needed). At this

stage, the current PC value is accessible to the XC via PCpipe.

p_Al_MI

MI

A! PCpipe

PC

RB

XC

(a, 1', w)

j_Mjfij DI Ipipe

FIGURE 5.2. Instruction fetch and decode

5.2.3. Individual Instruction Classes

DEC

instruction

The precise details of how instructions flow through inside the execution unit are hidden

away at this level of abstraction. Our focus is to show how each instruction class affects

the major functional units and uses the buses whilst being executed. The specifications for

5. TOP LEVEL MODELING OF AMULET1 76

each instruction class are described first one by one and then composed together. Since

each instruction is fetched in the same way, we start our specification for the execution unit

after it has received (a, b, w) from DEC (and k from Ipipe if need be). The matching PC

value of the current instruction is also supplied to the execution unit via PCpipe.

Multiply operation (MPY Rd, Rn, Rm)

The multiply operation sends the execution result back to the register bank via the W bus

as illustrated in Figure 5.3. It has no effect on any other functional units.

MI

Al PCpipe

rb' (Ri!)
RB

XC

W bus

DI Ipipe

FIGURE 5.3. Multiply operation

DEC

Arbitration between the EXEC and the DI is taken care of by the W bus. The CCS

specification is simply:•

EXEC_MPY = 'gW.rb'.'pW.EXEC

i.e. EXEC gains control of the W bus, updates RB, and then releases the W bus.

5. TOP LEVEL MODELING OF AMULET1 77

Data operation (e.g. ADD Rd, Rn, Rm)

Data operations differ from multiply operations in that a new PC value may be calculated,

so the execution result may be written back to either the register bank or to the address

interface.

ADD Rd, Rn, Rm == Rd via W bus

I p...XC..AJ via W bus

If the result is written back to the register bank, it is encoded in the same way as the

multiply operation. If the result is a new PC value, it is destined for the address interface,

from whence it is forwarded in the normal way (see previous description of instruction

fetch). The overall data flow is illustrated in Figure 5.4:

MI

In CCS we have

Al PCpipe

p..XC..AI
A

rb' (Rd)
RB

XC

W bus 1'

DI Ippe

FIGURE 5.4. Data (add) operation

EXEC—ADD = 'gW. (rb'. ' pW.EXEC + 'p_XC_AI. 'pW.EXEC)

DEC

5. TOP LEVEL MODELING OF AMULET1 78

Branch operation (B k & BL k)

The branch operation can be viewed as a special type of data operation whose execution

result always becomes a new PC value and will thus be destined for the address interface.

B k = pXC..AI via W bus

Branch and link needs two steps in the execution unit. The first step is exat1y the same as

for the simple branch operation, and the second step is a data operation whose execution

result is destined for R14 in the register bank.

BL k = p.XC..AI via W bus

R14 via W bus

The overall data flow is illustrated in Figure 5.5:

M

A! PCpipe

pXC4I
A.

rb' (R14)
0 RB

XC

W bus

DI Ipipe

DEC

FIGURE 5.5. Branch operation & branch and link operation

In CCS we have

EXEC_fi = 'gW.'p_XC_AI.'pW.EXEC

EXEC_BL_PHASE1 = 'gW. ' p_XC_AI. 'pW.EXEC_BL_PHASE2

EXEC_BL_PHASE2 = 'gW.rb'.'pW.EXEC

5. TOP LEVEL MODELING OF AMULET1 79

Load operation (LDR Rd, Rn, Rm)

There are three major varieties of load operations as summarized in Table 3.1 of chapter 4:

(1) pre-indexing without write back (LDR Rd, [Rn, Rm]);

(2) pre-indexing with write back (LDR Rd, [Rn, Rm]!);

(3) post-indexing (which always writes back) (LDR Rd, [Rn], Rm).

In pre-indexing, the base value read from the register bank is modified before being used as

the data load address. Thus the write back value (if there is a write back) is the same as

the load address. In post-indexing, the base value is used directly as the data load address.

Thus in this case, the write back value (write back always occurs) differs from the load

address.

All these varieties have two phases when being executed: an address calculation phase

and a data transfer phase. They differ from each other only in the address calculation

phase, i.e. their data transfer phases are identical.

• Address calculation phase

(1) For pre-indexing without write back, the address is calculated in the execution

unit and then dispatched to the address interface via W bus (a..XC..AI).

LDR Rd, [Rn, Rm] = a..XC..AI via W bus

(2) For pre-indexing with write back, the address is calculated in the execution

unit and then dispatched to both the address interface (a...XC..AI) and the

register bank (Rn) via Wbus.

LDR Rd, [Rn, Rm]! = a..XC...AI via W bus 11 Rn via W bus

(3) For post-indexing, the address is the base value read directly from the register

bank and is dispatched to the address interface via Apipe (a.Apipe.AI). The

write back result is calculated in the execution unit, and is dispatched to

register bank via W bus (Rn).

LDR Rd, [Rn], Rm ='. a..ApipeAI 11 Rn via W bus

In summary:

LDR 'gW. ' a...XC...AI. 'pW

+ 'gW. ('a.XC..AI II Rn). 'pW
+ 'a.ApipeAI 'gW.Rn.'pW

5. TOP LEVEL MODELING OF AMULET1 80

Formally in CCS, the parallel operations in the address calculation phase may be

simplified to sequential operations according to the Reduction Lemma:

EXEC_LDR = 'gW. ' a_XC_AI. 'pW.EXEC

+ 'gW.'a_XC_AI.rb'.'pW.EXEC

+ 'a_Apipe_AI. ' gW.rb'. 'pW.EXEC

• Data transfer phase

The calculated address sent to the Al is then dispatched to the MI for loading the

corresponding data. This data will be dispatched to either the register bank or the

Al (as a new PC value) via the DI and the W bus.

d...MI_DI —+ Rd via W bus

I p_DLAI via W bus

In CCS we have

DI = d_MI_DI.'gW.(rb'.'pW.DI + 'p_DI_AI.'pW.DI)

The dat'a flow activity for all these varieties of load operation is shown in Figure 5.6.

ajtIJ'fI

MI

4—

A! PCpipe

pJLAI a_XCAI a.Apip&XC
A

rb (Rn)

t

rb'(Rd)
RB

XC

W bus

dMLDI DI Ipipe

FIGURE 5.6. Load operation

DEC

5. TOP LEVEL MODELING OF AMULET1 81

Store operation (STR Rd, Rn, Rm)

The store operation also has three major varieties:

(1) pre-indexing without write back (STR Rd, [Rn, Rm]);

(2) pre-indexing with write back (STR Rd, [Rn, Rm]!);

(3) post-indexing which always writes back (STR Rd, [Rn], Rm).

As with the load operation, all these varieties have an address calculation phase and a data

dispatch phase, and differ only in their address calculation phases.

• Address calculation phase

(1) For pre-indexing without write back, the address is calculated in the execution

unit and then dispatched to the address interface via the W bus (a.XC...AI).

STR Rd, [Rn, Rm] = a...XC..AI via W bus

(2) For pre-indexing with write back, the address is calculated in the execution

unit and then dispatched to both the address interface (a..XC..AI) and to the

register bank (Rn) via the W bus.

STR Rd, [Rn, Rm]! = a..XC..At via W bus Rn via W bus

(3) For post-indexing, the address is the base value read directly from the register

bank and is dispatched to the address interface via the Apipe (ai\pipe..AI).

The write back result is calculated in the execution unit, and is dispatched to

the register bank via the W bus (Rn).

STR Rd, [Rn], Rm = a...Apipe...AI 11 Rn via W bus

• Data dispatch phase

During the data dispatch phase, data to be stored in the memory is dispatched to

the MI via the Dpipe and the DI:

d_DpipeJDl.

In practice, the address calculation phase and the data'transfer phase overlap:

STR 'd_Dpipe_DI jj 'gW.. ' aXC...AI. 'pW

+ 'd_Dpipe..DI 'gW. ('a.XC..AI II Rn) .'pW
+ 'd_Dpipe_DI 'aApipe..AI 11 'gW. Rn. 'pW.

5. TOP LEVEL MODELING OF AMULET1 82

Formally in CCS, the parallel operations can be simplified to sequential operations according

to the Reduction Lemma. In the specification below, data is dispatched to the MI first,

followed by three varieties of dispatching address to the memory interface.

EXEC_STR = 'd_Dpipe_MI. ('gW. ' a_XC_AI. 'pW.EXEC

+ 'gW.'a_XC_AI.rb'.'pW.EXEC

+ 'a_Apipe_AI. ' gW.rb'. 'pW.EXEC)

The calculated address sent to the Al is then dispatched to the MI as the address where

data will be stored (a..AI_MI). Data sent to the DI is then dispatched to the MI as the data

to be stored (d-DI-M[). a.A1_MI and d_DLMI rendezvous at the memory to complete the

store operation. The data flow activity for all these store operation varieties is shown in

Figure 5.7.

4-

4—

Al PCpipe

a_XCjtI a.Apipei(C

t

rb' (Rn)
p. RB

XC

W bus

dfipipejW

DI Ipipe

FIGURE 5.7. Store operation

DEC

5. TOP LEVEL MODELING OF AMULET1 83

Load/Store multiple operation (LSM Rn! {regs})

The load/store multiple operation has either three phases (store multiple) or four phases

(load multiple). The first two phases are common for both load multiple and store multiple.

The third and fourth phases vary according to the nature of the operation.

• Phase 1: start address calculation

The load/store multiple operatkn begins by calculating the start address of the

multiple transfer in the execution unit. Once the calculation is complete, the start

address is forwarded to the Al via the W bus. The rest of the addresses for the

multiple transfer are generated by the Al based upon this value.

LSM Rn! register list ai(C...AI via W bus

• Phase 2: final address calculation

The second phase of load/store multiple operation calculates the final address in the

execution unit. Once the calculation is complete, the final address is written back

to the register bank via W bus.

LSM Rn! register list =* rb' via W bus

• Phase 3: multiple transfers

The third phase of load/store multiple operation is the multiple data transfer section.

The number of cycles needed in this phase depends linearly upon by the number of

registers being transferred (one cycle for each register).

- If it is a load multiple operation-, this phase carries out the corresponding load

operation in a similar manner to the load operation described before. It then

signals the Alto prepare the next load address if it is not the end of the

transfer.

3(LDM)
LSM. Rn! register list = a...XC...Al

- If it is a store multiple operation, this phase carries out the corresponding

store operation in a similar manner to the store operation described before.

It then signals the Alto prepare the next store address if it is not the end of

the transfer.

3(STM)
LSM Rn! register list==> d_Dpipe_Dl -+ a.XC..Al

5. TOP LEVEL MODELING OF AMULET1 84

• Phase 4: mode switch or base recovery

For a store multiple operation, the execution is completed after the third phase.

For a load multiple operation, there is a fourth phase where either a mode switch

or a base recovery will be carried out. Mode switch is carried out by copying the

contents in SPSR to CPSIt via the W bus. Base recovery is carried out by writing

the base value (saved in ALU) back to the register bank via the W bus.

LSM Rn! register list mode switch or base recovery via W bus

The corresponding data flow activity is illustrated in Figure 5.8.

A t

4-1

4—

A! PCpipe

rb'*
RB

XC

W bus

V
dfipipe...DI

DI Ipipe

FIGURE 5.8. Load/store multiple operation

DEC

In CCS we have

EXEC_LSM_PHASE1 = 'gW. ' a_XC_AI. 'pW.EXEC_LSM_PHASE2

EXEC_LSM_PHASE2 = ' gW.rb'. ' pW. (isLDM.EXEC_LDMJ'HASE3 + isSTM.EXEC_STM..PHASE3)

EXEC_LDM_PHASE3 =].dr. (' a...XC_AI . EXEC_LDM.YHASE3 + EXEC_LDM_P}IASE4)

EXEC_STM_P}!ASE3 = str. 'd_XC_DI_MI. (' a_XC_AI . EXEC_STM...PHASE3 + EXEC_STM...PHASE3)

EXEC_STM_PHASE4 = 'gW.rb'. ' pW.EXEC

5. TOP LEVEL MODELING OF AMULET1 85

Swap operation (SWP Rd, Rn, Rm)

Swapping the contents of a register and a memory address is an atomic operation. It is a

load operation together with a store operation which share the same memory address. The

data loaded from the memory is destined for the register bank only.

SWP Rd, Rn, Rm a..ApipeAI 11 d_DpipeJDl

d..MLDI ---4 dDLXC via W bus

R15 is not allowed in any operand position in a swap operation. The data flow is shown in

Figure 5.9.

In CCS we have

H'
4—

Al PCpipe

&Apip&..AI

rb' (Rd)
 0. RB

XC

W bus

t
dfifripeDl

 dMLDI
DI Ipipe

FIGURE 5.9. Swap operation

EXEC..SWP = 'a_Apipe_AI. ' d_Dpipe..DI.EXEC

5. TOP LEVEL MODELING OF AMULET1 86

Software interrupt operation (SWI k)

The software interrupt operation has three phases. The first phase is comparable to the

first phase in the branch and link operation. The second is a write back from execution unit

to the register bank during which the processor is switched to its supervisor mode. The

third phase is identical to the second phase of branch and link.

SWI k p.XC.AI via W bus

= mode switch via W bus

z= R14 via W bus

The data flow activity of software interrupt operation is shown in Figure 5.10.

MI

Al PCpipe

p_XC..AI
A

rb' (SPSR)

rb' (R14)
RB

XC

Wbus

DI Ipipe

FIGURE 5.10. Software interrupt operation

In CCS we have

EXEC_SWI_PHASE1 = 'gW. ' p_XC_AI. 'pW.EXEC_SWI_PHASE2

EXEC_SWI_PHASE2 = 'gW.rb'. 'pW.EXEC_SWI_PHASE3

EXEC_SWI...PHASE3 = 'gW.rb'. 'pW.EXEC

DEC

5. TOP LEVEL MODELING OF AMULET1 87

5.3. Hardware Sharing

In section 5.2, we presented the flow of each instruction class through the major functional

units. We now combine the separate instruction flows and present the complete top level

abstraction of AMULET1 as illustrated in Figure 5.11.

p-41-MI .4

ajtl..M1 4—

MI

dfiLMI 4

Al PCpipe

p.DL4I p_XC..AI a_XC.At a_Apip&2C
A A A A

P

RB

XC

A
W bus

V

.4
(a, b, w)

LMLDJ

d..MLDI

dfipipe_DI

DI Ipipe

FIGURE 5.11. AMTJLET1 top level abstraction

 0.

DEC

instruction

5. TOP LEVEL MODELING OF AMULET1 88

5.4. Floor Plan Modules

This section presents formal CCS specification of all the floor plan modules compiled from

their individual descriptions given in the previous section of how each instruction class uses

the hardware.

5.4.1. Buses

As illustrated in Figure 5.11, the buses at the top level abstraction fall into three categories

according to the way they are accessed:

• single user access (e.g., Apipe, Dpipe);

• multi-user but naturally exclusive access (e.g., the bus between Al and MI shared

by PC values and memory addresses);

• multi-user arbitrary access (e.g. W bus).

Buses for single user access are coded in CCS directly, buses for multi users with guaranteed

exclusive access are expressed by "+" sign in CSS, and buses for multi users with arbitrary

access use semaphore agents to guarantee exclusive access.

5.4.2. Address Interface and PC Pipe

In chapter 4 we abstracted the address interface as:

MI

EXEC DI

Al 0 PCpipe

PC

RB

Apipe

EXEC

Since we cannot express value passing in CCS, we need to encode distinct accesses by distinct

signals. Table 5.1 lists all possible accesses to address interface through each instruction

class.

5. TOP LEVEL MODELING OF AMULET1 89

Instruction Class Input to Al Output from Al

Instruction Fetch next PC pALMI, pc

Multiply Operation

Data Operation p..XCAI pALMI

Branch Operation , p..XC.AI p..AL.MI

Load Operation

aXC..AI a.,ALMI

a..Apipe..AI a..ALMI

p..DI.AI p.ALMI

Store Operation a..XCAI a..AL.MI

a.Apipe..AI aAI..MI

Load/Store Multiple a..XC..AI a..ALMI

pDL.AI p..AL.MI

Swap Operation aApipe_AI a.-AI-MI

Software Interrupt p..XC.AI pALMI

TABLE 5.1. The sharing of the address interface by instruction classes

The distinct cases are:

Instruction Fetch

Address via W bus

Address via Apipe

PC from EXEC via W bus

PC from DI via W bus

next PC —+ p.ALMI, pc

ai(CJU —+ aALMI

aApipe.AI — a.,AI_MI

pXC.AI - pALMI

p..DLAI —p p..ALMI

5. TOP LEVEL MODELING OF AMULET1 90

as depicted in Figure 5.12:

p.,41_M!
.4

'4
a..ALMI

Al PCpipe

t
pfiljll p...XC.A1 a..XC..AI pc a..Apipe_XC

FIGURE 5.12. Top level abstraction of AMULET1 address interface

The address interface starts operation on being initialized. Its major function is to produce

sequential instruction addresses to the memory interface autonomously through one of its

sub-units All. In addition, it also transfers regular address supplied by the execution unit

(ai(CA1 or aApipe.Al) to the memory interface through sub-unit Al2, or new PC value

supplied by the execution unit (p.XC..Al) or the data interface (p-DI-Al) to the memory

interface through sub-unit A13. These three sub-units of the AT operate in paiallel: each

of them may accept new input while not in use, but whether or not the input value wins

entry to the memory interface is competitive (the memory can only accept one input from

the address interface at any time). In CCS we have

bi AI

init.(All I Al2 I A13)

bi All

'incPC. ' fetMEM. 'p_AI..MI.AIl

bi Al2

a..XC_AI. ' a_AIJII.Al2 + a_Apipe_AI. ' a_AI_MI.Al2

bi A13

p_XC_AI. 'newPC. 'fetMEM. 'p_AI_MI.A13 + p_DI_AI. 'newPC. ' fetMEM. 'p...AI...MI . A13

5. TOP LEVEL MODELING OF AMULET1 91

The PCpipe associated with the address interface is incremented upon receiving a sequential

PC value produced by the Al (incPC) or a new PC value dispatched via W bus (newPC

caused by p.XC..AI or p..DLAI), and decremented by the XC (decPC) when the PC value is

no longer needed. To prevent deadlock, a PCpipe of depth n should always have a spare

space saved for accepting a new PC value newPC, which leaves a maximum of n—i spaces for

the sequential PC value access incPC. The PCpipe should also be testable for its non-empty

status via nePC. The CCS specification for a PCpipe of depth 2 follows.

bi PCpipeO

incPC.PCpipel + newPC.PCpipel

bi PCpipel

newPC.PCpipe2 + decPC.PCpipeO + nePC.PCpipel

bi PCpipe2

decPC.PCpipel + nePC.PCpipe2

5.4.3. Memory Interface

The off-chip memory serves as both instruction memory and data memory. As instruction

memory, it supports instruction fetch. As data memory, it supports memory read and store.

Table 5.2 lists all possible accesses to memory interface through each instruction class.

5. TOP LEVEL MODELING OF AMULET1 92

Instruction Class Input to Ml Output from MI

Instruction Fetch p_ALMI i_MI_DI

Multiply Operation

Data Operation p_ALMI i_MI_DI

Branch Operation p_ALMI i_MLDI

Load Operation a_AIMI d_MLDI

pALMI i_MI_DI

Store Operation a_Al_MI

dDIMI

Load/Store Multiple

a_AI..MI dMIJDI

p_AT_MI i_MI_DI

a.-AI-MI

dDIMI

Swap Operation a_Al_MI d_MI_DI

dDLMI

Software Interrupt p_Al_MI i_MI_DI

TABLE 5.2. The sharing of the memory interface by instruction , classes

The distinct cases are:

Instruction fetch

Load

Store

Swap

as depicted in Figure 5.13:

pAIMI - LMLDI

aAIMI — dMtDI

aAIMI & dDIMI

aAIMI & dDIMI —+ dMIDI

5. TOP LEVEL MODELING OF AMULET1 93

pJif_M!

ajtl_MI

MI 4
d_Di_MI

iM1DJ

0.
d_MI_D1

FIGURE 5.13. Top level abstraction of AMULET1 memory interface

Instruction fetch (fetM EM) starts receiving the current PC value (pAI _M I), the correspond-

ing instruction is dispatched to DI. Data load (IdrMEM) starts upon receiving the load

address (a_Al_MI), the loaded data is also dispatched to DI. Data store strMEM) starts

upon receiving both the data to be stored and location to store (d-DI-Ml & a_Al_MI). Data

swap (swpMEM) performs both data load and data store whilst keeping the memory bus

locked until both the load and the store haye been completed, data read out from the MI

is dispatched to the W bus via DI. In CCS we have

bi MI

fetMEM.p_AI_MI. ' i_MI_DI . MI

+ 1drMEM.a_AI_MI. ' d_MI_DI.MI

+ strMEM. d_DI_MI. a_Al_MI. MI

+ swpMEM.a_AI_MI.d_DI_MI. ' d_MI_DI.MI

5.4.4. Data Interface and Instruction Pipe

In chapter 4 we abstracted the data interface as:

XC XC/AI XC

MI

MI

5. TOP LEVEL MODELING OF AMULET1 94

Table 5.3 lists all possible accesses to the data interface through each instruction class.

Instruction Class Input to DI Output from Dl

Instruction Fetch i_MLDI instruction

Multiply Operation

Data Operation i_MI..DI instruction

Branch Operation i_MI_DI instruction

Load Operation d_MI..DI Rd or p..DL.Al via W bus

i_MLDI instruction

Store Operation d_Dpipe_DI d_DLMI

Load/Store Multiple d_MI_DI Rd or p.DI_Al via W bus

i_MI_DI instruction

d_Dpipe_DI d_DIMI

Swap Operation d_MI_DI Rd via W bus

d_Dpipe_DI d_DI_MI

Software Interrupt i_MI_DI instruction

TABLE 5.3. The sharing of the data interface by instruction classes

The distinct cases are:

Instruction fetch

Load

Store

Swap

i_MI_DI —+ instruction

d_MLDI .- Rd or p_DLAI via W bus

d_Dpipe_DI —+ d_DI_MI

d_MI_DI —* Rd via W bus

5. TOP LEVEL MODELING OF AMULET1 95

as depicted in Figure 5.14:

dfiLM1

d_MIfii

d_DpipeJI rb'/pfil..,dI

It f
DI Ipipe

instruction

FIGURE 5.14. Top level abstraction of AMULET1 data interface

The data interface has a data input phase (DIJN) and a data output phase (DI-OUT)

operating in parallel. The data input phase (DUN) has two parts: DIJN1 accepts an

instruction and stores it in the Ipipe associated with DI; DI_IN2 accepts a datum loaded

from the memory and dispatches it to the register bank or to the address interface according

to its nature. These two parts of the data input phase also operate in parallel. The data

output phase dispatches the incoming data value from Dpipe to MI. In CCS we have

bi DI

(DI_INi I DI_IN2 I DI-OUT

bi DI_INi

1_MI_DI. ' inclP.DI_INl

bi DI_IN2

d_MI_DI. ' gW. (rb'. 'pW.DI_IN2 + 'p-DI-Al. 'pW.DI_IN2)

bi DI-OUT

d_Dpipe_DI. ' d_DI_MI . DI_OUT

The specification of Ipipe is similar to that of the PCpipe, except that all the increments

are caused by the same source - the incoming instruction (inclP). The Ipipe is also testable

for its non-empty status via neiP.

bi IpipeO

inclP. Ipipel

5. TOP LEVEL MODELING OF AMULET1 96

bi Ipipel

inclP.Ipipe2 + declP.IpipeO + nelP.Ipipe1

bi Ipipe2

declP.Ipipe1 + nelP.Ipipe2

5.4.5. Decode Unit

(a, b, w)

DEC

instruction
 00.

FIGURE 5.15. Top level abstraction of AMULET1 decode unit

The decode unit fetches instruction from Ipipe, provides register read and write back ad-

dresses (a, b, w) to the register bank, extracts the constant value k from Ipipe (not modeled

and hence not shown in Figure 5.15). It also prepares control information to the execution

unit (again, not shown in Figure 3.8) while instructions flow through the execution pipeline

stages. Since every instruction has to be paired with its corresponding PC value for execu-

tion, the decode unit will not start operating until a matching pair has entered the PCpip

and Ipipe respectively. In the specification, this is expressed as neither PCpipe nor Ipipe

being empty. The corresponding instruction is thrown away ('deciP) when the decode is

completed. In CCS we have

bi DEC

'nePC. ' nelP. 'declP.(isMPY. ' sMPY.DEC + isADD. ' sADD.DEC

+ isB. ' sB.DEC + isBL. ' sBL.DEC

+ isLDR. ' sLDR.DEC + isSTR. ' sSTR.DEC

+ isLSM. ' sLSM.DEC + isSWP. ' sSWP.DEC

+ isSWI. ' sSWI.DEC)

5. TOP LEVEL MODELING OF AMULET1

5.4.6. Execution Unit and the W Bus

In chapter 4 we abstracted the execution unit (with register bank) as:

XC PCpipe

DI XC/AI At DI

(a, b, w)

DEC

97

The execution unit starts operating upon receiving the decoded information including (a,

b, w) and k from DEC, and their matching PC value from PCpipe. The result produced

by the XC is destined either for the AT via the W bus or the Apipe, or for the DI via the

Dpipe. The execution results achieved through other floor plan modules (directly from the

DI) are transferred to either the register bank (RB) or the Al via the W bus. By encoding

the values as signals, we have,

pJJII,41

4
p..XC...AI a_XC.,41

ft Jr
C

RB

xc

a4pipe,4I

A

(a, b, w)

Wbus

V
dfippefiI
I t

FIGURE 5.16. Top level abstraction of AMULET1 execution unit (with W bus)

5. TOP LEVEL MODELING OF AMTJLET1 98

Since all the instruction classes in AMULET1 can be conditionally executed, the correspond-

ing CCS specification for the execution of each instruction class should all be modified by

adding in a mutually exclusive item that permits instructions to be skipped. By doing so,

we get the colour checking mechanism included for free - rejecting wrong colour instructions

is just a subcase of conditional execution.

We have now detailed how each instruction class individually accesses the floor plan

modules, and can present the modified CCS specification directly:

bi EXEC

sMPY.EXEC_MPY + SADD.EXEC_ADD + sB.EXEC_B

+ SBL.EXEC_BL + SLDR.EXEC_LDR + sSTR.EXEC_STR

+ sLSM.EXEC_LSM + SWP.EXEC_SWP + sSWI.EXEC_SWI

bi EXEQ.MPY

'decPC. (' gW.mpyRB. 'pW.EXEC + noXC.EXEC)

bi EXEC-ADD

'decPC.('gW.(addRfl. ' pW.EXEC + addAl. 'p_XC_AI. ' pW.EXEC) + noXC.EXEC)

bi EXEC_B

'decPC. (' gW.bAI. 'p_XC_AI. 'pW.EXEC + noXC.EXEC)

bi EXEC-BL

'decPC.('gW.blAI.'p_XC_AI.'pW. 'gW.blRB.'pW.EXEC + noXC.EXEC)

bi EXEC_LDR

'decPC. (' ldrMEM.ldrAl. ('gW. ' a_XC_AI. 'pW.EXEC

+ 'gW. ' a...XC_AI.ldrRB. 'pW.EXEC

+ 'a_Apipe_AI. ' gW.ldrRB. ' pW.EXEC

+ noXC.EXEC)

bi EXEC_STR

'decPC. (' strMEM.strDl.strAl. ' d_XC_DI. ('gW. ' a_XC...AI. ' pW.EXEC

+ 'gW. ' a_XC_AI.strRB. 'pW.EXEC

+ 'a_Apipe_AI. ' gW.strRB. 'pW.EXEC)

+ noXC.EXEC)

5. TOP LEVEL MODELING OF AMULET1 99

bi EXEC_LSM

ismAl. ' gW. ' a_XC_AI. ' pW. ' gW.lsinRB. 'pW.

(isLSM_LDR. EXEQ.LSM_LDR + isLSM_STR.EXEC_LSM_STR)

bi EXEC_LSM_LDR

noEND...LDR. '].drMEM. ' a_XC_AI . EXEC_LSM_LDR

+ isEND_LDR. ' ldrMEM. ' decPC. (1smCPSR.EXEC + 'gW.lsmRB. 'pW.EXEC)

+ noXC.EXEC

bi EXEC_LSM_STR

noEND_STR. ' strMEN. 'd_XC_DI. ' a_XC_AI . EXEC_LSM,..STR

+ isEND_STFt. ' strMEM. ' d_XC_DI. ' decPC.EXEC

+ noXC.EXEC

bi EXEC_SWP

'decPC. ('swpMEM.swpAl . swpDl. ' a_Apipe_AI. ' d_XC_DI.EXEC

+ noXC.EXEC)

bi EXEC_SWI

'decPC. (' gW.swiAl. ' p_XC_AI. ' pW. ' gW.swiRBl. ' pW. ' gW.swiRB2. ' pW.EXEC)

+ noXC.EXEC)

5.5. Testing the Specification

So far, we have presented formal CCS specifications for all the floor plan modules of

AMULET1 at system level, as well as how each instruction class is decoded and exe-

cuted. In this section, we test the specifications on the Concurrency Workbench using

the macro-based testing style proposed in [Liu92, LABS93]. The tests were carried out first

on individual instruction classes, and then on the complete instruction set.

5. TOP LEVEL MODELING OF AMULET1 100

5.5.1. Individual Instruction Classes

The testing on individual instruction classes assumes that the processor only executes one

class of instruction, i.e. once it is ready to accept another instruction, it will receive another

from the same instruction class. The testing was carried out using the following steps:

(1) Specifying the library elements including floor plan modules and buses (these ele-

ments are common and shared by all the instruction classes).

(2) Specifying the execuion flow of a specific instruction class.

(3) Specifying the processor in terms of one specific instruction class.

(4) Testing the specified processor for basic properties such as sort, size, traces and etc.

(5) Testing the specified processor for deadlock free, livelock free, and other desired

safety and liveness properties.

The importance of testing on individual instruction classes is to verify that each of these

instructions flow through the processor as desired. During the testing procedure, suitable

trace values were added in to help test specific safety and llveness properties. These trace

values could be deleted later on when correctness has been proved. As an example, we show

how the load instruction is tested on the CWB. Testing details for other instruction classes

are similar.

(1) Floor plan modules and buses with suitable trace values added in for testing:

bi Al

init.(All I Al2 I A13)

bi All

'incPC. ' fetMEM. 'p_Al_MI . AII

bi Al2

a_XC_AI. ' a_AI_MI.Al2 + a_Apipe_AI. ' a_AI_MI.Al2

bi A13

p_XC_AI. 'newPC. ' fetMEM. 'p_Al_MI . A13 + p_DI_AI. 'newPC. ' fetMEM. ' p_AI_MI.A13

bi PCpipeO

incPC.PCpipel + newPC.PCpipel

5. TOP LEVEL MODELING OF AMULET1 101

bi PCpipel

newPC.PCpipe2 + decPC.PCpipeO + nePC.PCpipel

bi PCpipe2

decPC.PCpipel + nePC.PCpipe2

bi MI

fetMEM.p_AI_MI.fetch. ' i_MI_DI . MI

+ 1drMEM.a_AI_MI.read. ' d_MI_DI.MI

+ strMEM.a..AIJII.d_DI_MI.store.MI

+ swpMEM.a_AI_MI.d_DI_MI . read. ' d_MI_DI . store.MI

bi DI

(DI..IN1 I DI_IN2 I DI-OUT)

bi DI_INi

i_MI_DI. ' inclP . DI_INi

bi DI_IN2

d_MI_DI. ' gW. (rb'. 'pW.DI_IN2 + 'p_DI_AI. 'pW.DI_IN2)

bi DI-OUT

d_Dpipe_DI. ' d_DI_MI . DI_OUT

bi IpipeO

inclP . Ipipel

bi Ipipel

inclP.Ipipe2 + declP.IpipeO + nelP.Ipipe1

bi Ipipe2

declP.Ipipe1 + nelP.Ipipe2

bi WBUS

gW.pW.WBUS

5. TOP LEVEL MODELING OF AMULET1 102

(2) Execution flow of the load instruction:

bi DEC

'nePC. ' nelP.sD. 'declP.isLDR. ' sLDR.DEC

bi EXEC

sLDR. EXEC_LDR

bi EXEC_LDR

'decPC. ('].drMEM.ldrAl. ('gW. ' ldr_a_XC_AI. 'pW.EXEC

+ 'gW. ' ldr_a_XC_AI.ldrRB. 'pW.EXEC

+ 'ldr_a_Apipe_AI. 'gW.ldrRB. 'pW.EXEC)

+ noXC.EXEC)

(3) AMULET1 in terms of the load operation only:

bi AMULET1_LDR

(Al I PCpipeO I MI I DI I IpipeO I wus I DEC I EXEC

\ { a_Al_MI, a_Apipe_AI, a_XC_AI, d_DI_MI, d_Dpipe_DI, d_MI_DI, declP,

decPC, fetMEM, gW, i_MI_DI, inclP, incPC, ldrMEM, nelP, nePC, newPC,

pW, p_Al_MI, p_DI_AI, p_XC_AI, sLDR, store, strMEM, swpMEM }

(4) Testing AMULET1_LDR for basic properties:'

sort AMULET1_LDR

**{fetch,jnjt,isLDR,ldrAl,ldrRB,noXC,rb' , read,sD}

min AMULET1_LDR

Save result in identifier: AMULET1_LDR'

**AMULET1_LDR' has 699 states.

(5) Testing the specified processor for desired safety and liveness properties (selected

examples):

(a) Deadlock free

cp AMULET1_LDR'

Proposition: BOX <>T

**true

'Nothing should be read into the size of the minimized AMULET1_LDR. It only reflects the number of

trace values we are interested in.

5. TOP LEVEL MODELING OF AMULET1 103

(b) Livelock free

cp AMULETLLDR

Proposition: - POSS BOX <t>T

**true

(c) The data read phase (read) in the load operation will always possible be per-

formed, but not always eventually be performed (discarded).

cp AMULET1_LDR'

Proposition: BOX (POSS <read>T)

**true

cp AMULET1_LDR'

Proposition: BOX (EVENT <read>T)

**false

(d) It is always possible for the instruction to be discarded (noXC).

Command: cp AMULETI_LDR'

Proposition: BOX (P055 <noXC>T)

The specification displayed here has the complexity measure tabulated in Table 5.4:

Component sizes Number of

states

Minimized

states AT MI DI DEC EXEC PCpipe Ipipe WBtJS

25 14 24 6 10 3 3 2 9,072,000 699

TABLE 5.4. Complexity measure for top level load operation (new)

where

Component sizes lists the number of states of each individual component;

Number of States is the number of unminimized states of AMULET1_LDR;

Minimized States shows the number of minimized states of AMULET1_LDR.

5. TOP LEVEL MODELING OF AMULET1 104

The corresponding specification for the load operation presented in [BL95] has the com-

plexity measure tabulated below in Table 5.5. But note that the latter failed to minimize.

Component sizes Number of

states

Minimized

states AT MI DI DEC EXEC EXECpipe WBTJS

110 5 37 3 262 16 2 440,112,200 still running!

TABLE 5.5. Complexity measure for top level load operation (old)

The specification presented here successfully models this instruction class previously found

intractable due to an explosive number of states mainly caused by the complexity of the

execution unit and the execution pipeline.

Although the above specifications may seem obvious, they took many iterations to

achieve. The following is one of our many attempts in modeling the load operation, which

was found to have potential deadlocks on the CWB. The difference in the following version

to the one presented above lies in who signals the memory interface to do a memory read.

In the above presented version, it is the execution unit that signals the memory interface

(IdrMEM) to wait for a load address so as to perform a memory read. In the following

specification, it is the address interface that signals the memory interface (IdrMEM) to per-

form a memory read upon receiving a load address. Hence the specifications for the address

interface and the execution unit are modified while the rest of the modules remain the same.

bi Al

init.(All I Al2 I A13

bi All

'incPC. ' fetMEM. 'p_AI_MI.AIl

bi Al2 .

ldr_a_Apipe_AI. ' ldrMEM. ' a...AI_MI.Al2 + ldr_a_XC_AI. ' ldrMEM. ' a_AI_MI.Al2

bi A13

p_XC_AI. ' newPC. 'fetMEM. 'p..AIJII.A13 + p_DI_AI. 'newPC. ' fetMEM. ' p_AI..MI . A13

5. TOP LEVEL MODELING OF AMULET1 105

bi EXEC_LDR

'decPC. (idrAl. ('gW. ' ldr_a_XC_AI. 'pW.EXEC

+ 'gW. ' ldr_a_XC.jtI.ldrRB. 'pW.EXEC

+ 'ldr_a..Apipe_AI. ' gW.ldrRB. 'pW.EXEC

+ noXC.EXEC

bi AMULET1_LDR

C Al I PCpipeO I MI I DI I IpipeO I WBUS I DEC I EXEC

\ { a_Al_MI, d_DI_MI, d_Dpipe_DI, d_MI_DI, declP, decPC, fetMEM, gW,

i_MI_DI, inclP, incPC, 1drMEM, ldr_a_Apipe_AI, ldr_a_XC_AI, nelP, nePC,

newPC, pW, p_Al_MI, p_DI_AI, p_XC_AI, sLDR, store, strMEM, swpMEM }

This specification is tested on the CWB and found to have potential deadlocks.

sort AMULET1_LDR

**{fetch,init, isLDR,ldrAl,1drRB,noXC,rb' , read,sD}

min AMULET1_LDR

AMULET1_LDR'

**AMULET1_LDR' has 1887 states.

fd AMULET1_LDR'

**--- mit fetch sD isLDR t<incPC> t<decPC> fetch idrAl t<ldr_a_Apipe_AI>

sD isLDR t<pW> t<].drMEM> 1drAI t<pW> fetch read sD isLDR t<pW>

t<d_MI_DI> idrAl t<gW> fetch read sD isLDR t<incPC> ldrAl t<gW>

--> AMULET1_LDR 'minState7158

The cause of the deadlock can be deduced from the trace of the deadlock information

provided by the CWB. The execution unit is free to accept another load address as soon as

the first address is dispatched to the address interface, hence the W bus is seized for this

purpose. However this new address cannot enter the address interface until the data loaded

from the memory has been accepted by the data interface, but the data interface cannot

accept the loaded data since it is waiting to use the W for dispatching the loaded data.

The real cause of deadlock is rooted in the fact that the W bus is shared by both the

execution unit and the data interface. If the data interface had its own bus for data

dispatching, this deadlock would vanish.

5. TOP LEVEL MODELING OF AMULET1 106

5.5.2. Complete Instruction Set

The testing of the complete instruction set is expected to reflect the fact that the proces-

sor must be prepared to execute any instruction in its repertoire as the next instruction.

However, due to the enormous number of reachable states when all the instruction classes

are put together, the minimization can not be carried out on the accessible hardware. The

following is the processor with its complete instruction set tested on the CWB part by part.

(1) In order to reduce the number of reachable states during the minimization procedure,

the DLOUT sub-unit in the DI is replaced with a single bus d.XC_DLMI from the

EXEC via the DI to the MI since it is always accessed by the same single user.

Further, the number of visible trace values in the floor plan modules and buses are

reduced to minimal.

bi Al

init.(All I Al2 I A13

bi All

'incPC. ' fetMEM. 'p_AI_MI.AIl

bi Al2

a_XC_AI. ' a_AI_MI.Al2 + a_Apipe_AI. a_AI_MI.Al2

bi A13

p_XC_AI. 'newPC. ' fetMEM. 'p_AI_MI.A13 + p_DI_AI. ' newPC..'fetMEM. ' p_AI_MI.A13

bi PCpipeO

incPC.PCpipel + newPC.PCpipel

bi PCpipel

newPC.PCpipe2 + decPC.PCpipeO + nePC.Pcpipel

bi PCpipe2

decPC.PCpipel + nePC.PCpipe2

5. TOP LEVEL MODELING OF AMULET1 107

bi MI

fetMEM.p_AI_MI. ' i_MI_DI.MI

+ 1drMEM.a_AI_MI. ' d_MI_DI.MI

+ strMEM. d_XC_DI_MI. a_Al_MI. MI

+ swpMEM.a_AI_MI.d_XC_DI_MI. 'd_MI_DI . MI

bi DI

(DI_INi I DI_IN2

bi DI_INi

i_MI_DI. ' inclP . DI_INi

bi DI_IN2

d_MI_DI. ' gW. ('pW.DI_IN2 + 'p_DI_AI. 'pW.DI_IN2)

bi IpipeO

inclP. Ipipel

bi. Ipipel

inclP.Ipipe2 + declP.IpipeO + nelP.Ipipe1

bi Ipipe2

declP.Ipipe1 + nelP.Ipipe2

bi WBUS

gW.pW.WBUS

(2) Since the multiply operation and branch operation can be viewed as a subset of

the data operation, only the data operation is included in the following testing

to reduce the number of reachable states. For the same purpose, the load/store

multiple operation is excluded in the following testing since it is covered by the load

operation combined with store operation. By doing so, the nine instruction classes

in AMULET 1 are reduced to six. These six instruction classes are tested in two

groups.

5. TOP LEVEL MODELING OF AMULET1 108

(a) Group I: ADD, BL and SWI

bi DEC

'nePC.'nelP.'declP.(isADD.'sADD.DEC + isBL. ' sBL.DEC + isSWI. ' sSWI.DEC)

bi EXEC

SADD.EXEC_ADD + sBL.EXEC_BL + sSWI.EXEC_SWI

bi EXEC-ADD

'decPC. ' gW.('pW.EXEC + 'p_XC_AI. ' pW.EXEC)

bi EXEC-BL

'decPC. ' SW. ' p_XC_AI. ' pW. ' gW. 'pW.EXEC

bi EXEC_SWI

'decPC. ' gW. ' p_XC_AI. ' pW. ' gW. 'pW. ' W. 'pW.EXEC

bi AMULET1_ADD_BL.SWI

(41 I PcpipeO I MI I DI I IpipeO I WBUS I DEC I EXEC

\ { a_Al_MI, a_Apipe_.AI, a_XC_AI, d_MI_DI, d_XC_DI_MI, declP, decPC,

fetMEM, gW, i_MI_DI, inclP, incPC, 1drMEM, nelP, nePC, newPC, pW,

p_Al_MI, p_DI_AI, p_XC_AI,sADD, sB, sBL, sLDR, sLSM, sMPY, sSTR,

sSWI, sSWP, strMEM, swpMEM }

sort AMULETI_ADD_BL_SWI

**{init , isADD,isBL, isSWI}

min AMULET1_ADD_BL_SWI

AMULETI_ADD_BL_SWI'

**AMULET1_ADD_BL_SWI' has 2 states.

vs 3 AMULET1_ADD_BL_SWI'

mit isADD isADD ===>

mit isADD isBL >

mit isADD isSWI >

mit isBL isADD >

mit isBL isBL >

5. TOP LEVEL MODELING OF AMULET1 109

mit isBL isSWI ===>

mit isSWI isADD >

mit isSWI isEL >

mit isSWI isSWI >

(b) Group II: LDR, STR and SWP

bi DEC

'nePC. ' neIl'. ' declP.(isLDR. ' sLDR.DEC + isSTR. ' sSTR.DEC + isSWP. ' sSWP.DEC)

bi EXEC

sLDR.EXEC_LDR + SSTR.EXEC_STR + sSWP.EXEC_SWP

bi EXEC_LDR

'decPC. ' ldrMEM. (' gW. ' a_XC_AI. ' pW.EXEC + 'a_Apipe_AI. ' gW. 'pW.EXEC)

bi EXEC_STR

'decPC. ' strMEM. 'd_XC_DI_MI.

('gW. ' a_XC_AI. ' pW.EXEC + 'a_Apipe_AI. ' gW. 'pW.EXEC).

bi EXEC_SWP

'decPC. ' swpMEM. ' a_Apipe_AI. ' d_XC_DI_MI . EXEC

bi AMULET1_LDR_STR_SWP

(Al I PCpipeO I MI I DI I IpipeO I WBUS I DEC I EXEC)

\ { a_Al_MI, a_Apipe_AI, a_XC_AI, d_MI_DI, d_XC_DI_MI, declP, decPC,

fetMEM, gW, i_MI_DI, mdl', incPC, 1drMEM, nelP, nePC, newPC, pW,

p_Al_MI, p_DI_AI, p_XC_AI,sADD, sB, sBL, sLDR, sLSM, sMPY, sSTR,.

sSWI, sSWP, strMEM, swpMEM }

sort AMULET1_LDR_STR_SWP

**{init , isADD,isBL,isSWI}

min AMULET1_LDR_STR_SWP

AMULET 1_LDR_STR_SWP'

**AMULET1_LDR_STR_SWP' has 2 states.

5. TOP LEVEL MODELING OF AMULET1 110

vs 3 AMULET1_LDR_STR_SWP'

mit isLDR isLDR

mit isLDR isSTR

mit isLDR isSWP

mit isSTR isLDR

mit isSTR isSTR

mit isSTR isSWP

mit isSWP isLDR

mit isSWP isSTR

mit isSWP isSWP

===>

===>

===>

===>

===>

===>

(3) Testing AMULET1 for safety and liveness: since the visible trace values have been

reduced to minimal, only freedom from deadlock and freedom from livelock are

tested.

(a) Deadlock free

cp AMULET1_ADD_BL_SWI'

Proposition: BOX <->T

**true

cp AMULETI_LDR_STR...SWP'

Proposition: BOX <->T

**true

(b) Livelock free

cp AMULET1_ADD_BL_SWI

Proposition: - POSS BOX <t>T

**true

cp AMULET1_LDR_STR_SWP

Proposition: - POSS BOX <t>T

**true

5.6. Summary

This chapter presents a top level specification of AMULET1 in terms of the processor's

major floor plan modules. The behaviour of the processor is precisely and efficiently modeled

5. TOP LEVEL MODELING OF AMULET1 111

in terms of how each instruction class flows through the processor. The processor is further

verified to be deadlock free and livelock free.

The main contribution of this chapter is finding the right level of abstraction which makes

it possible to model the behaviour of a realistic processor at the system level, particularly,

the abstraction of the decode unit and the execution unit. The decode unit was greatly

simplified from the implementation in which it has three pipelined stages associated with

the execution pipelines. The individual pipeline stages of the execution unit were also

abstracted away. These are the keys to reduce the number of states and make the top

level model tractable. Compared to the specifications presented in [BL95], the critical

improvements are:

• Suitable level of abstraction for execution unit

The execution unit specified in [BL95] models execution details on how instruction

class flows through the execution pipeline stages: how each pipeline stage is seized

and released. This level of detail made it intractable even for modeling the load

operation, never mind the complete instruction set. The model presented in this

chapter abstracted away all the details regarding how each pipeline stage is accessed,

but preserved all the access needs of each instruction class while flowing through

the execution unit.

• Encoding conditional execution

The specification presented here systematically models conditional execution which

was incomplete in [BL95]. With condition test, an operation can be cancelled even

after the datum has been dispatched to the corresponding buses (e.g., Apipe, Dpipe).

• Eliminating colour checking

Since all the instructions have to pass a conditional test before the execution results

become valid (e.g. write back to the register bank), colour checking is naturally

included in the conditional test. The explicit colour checking presented in [BL95]

was redundant. It was also one of the major causes of its state explosion.

This top level abstraction of AMULET1 not only gives a good intuition of how instructions

flow through the processor, but also provides a good understanding of the functionality of

each floor plan module. It is a useful guide to system designers when using AMULET1

5. TOP LEVEL MODELING OF AMULET1 112

in an embedded system and to the implementors of floor plan modules who now have not

only a good understanding of the role of each module but also complete tabulations of the

source of each input signal and the destination of each output signal.

Through specification and property testing, CCS successfully demonstrates itself to be

appropriate and efficiency in modeling a complex and practical asynchronous design at the

system level. In the following chapters, the major floor plan modules in AMTJLET1 will be

specified and tested in register transfer level detail.

CHAPTER 6

Address Interface

This and the next two chapters are concerned with modeling the major floor plan modules

in AMULET1 at the register transfer level. In these chapters, we reduce the complexity

in so far as we can by abstracting away the details of all regular and well understood

datapath modules (e.g. incrementer, ALTJ, and FIFOs), and by lifting out and collecting

irregular decision logics in one place. The models presented focus on the communication

and synchronization of netlists comprising these abstracted datapath modules and standard

library blocks.

The first effort at specifying AMULET1 was at this level of abstraction. After a few

iterations it became clear that a higher level of abstraction - the top level presented in

chapter 5 - was needed in order to understand the operating environment of each floor plan

module and how these modules interact with each other. However, the top level modeling

was made much easier by this ground work.

This chapter presents a model of the address interface at the register transfer level. The

address interface has three distinct purposes, namely producing sequential instruction ad-

dresses to the memory interface through an autonomous PC incrementing loop, transferring

a single address for instructions such as branch, load, etc., and generating and transferring

multiple addresses for load/store multiple operations.

The modeling of the address interface starts from understanding the data flow activities

for each individual access to the address interface. The control flow of these accesses to the

address interface is then developed, specified, and tested.

113

6. ADDRESS INTERFACE 114

6.1. Internal Organization

The internal organization of the address interface is shown in Figure 6.1. hiputs to the

address interface are regular addresses and PC values that come from either the W bus

or the Apipe. All these regular addresses and PC values are destined for the MI, but PC

values sent to the PC register are also dispatched to PCpipe associated with the address

interface (this is not included in the following description since the flow through the PCpipe

is straightforward).

INC

ajCC41 or
pJ(C41 or
p_DI..,41

A I.

a..Apipejll

LSM PC

 >
7 \7 to PCpipe

AND

\ MUX

MUX

MAR
initialization

a_Al_MI or p..AI_MI

FIGURE 6.1. Internal organization of the address interface

6. ADDRESS INTERFACE 115

The main data path modules inside the address interface include a PC register that stores

the current PC value for fetching the corresponding instruction from the memory, an LSM

register that stores the current address during a idad/store multiple operation, and a mem-

ory address register MAR that contains the next address to be dispatched to the memory.

The contents of the PC register and the LSM register are generated by incrementing the

current MAR contents through the incrementer, INC.

Mutually exclusive requests to the MAR are filtered by a regular multiplexor; competing

requests requiring access to the MAR are filtered by an arbitrating multiplexor. Exclusive

access to the MAR is thus guaranteed at any time.

6.2. Data Flow of Accesses to the Address Interface

The accesses to the address interface can be split.into three distinct cases according to how

they use the data path modules inside the address interface. They are:

• PC incrementing loop (PCL) for instruction fetch;

• Single address transfer (SAT) for transferring a regular address in LDR, STR, and

SWP operations, or a new PC value in ADD, B, BL, LDR, and SWI operations;

• Multiple address transfer (MAT) for transferring multiple 'address in LSM operation.

These cases are discussed below in separate subsections.

6.2.1. PC Incrementing Loop

The PC incrementing loop generates the next sequential PC value for instruction fetch

by circulating the contents of PC register around an incrementing loop. Each PC value

generated by the loop is also copied to the PCpipe associated with the address interface as

it is dispatched to the memory interface. Figure 6.2 illustrates the data flow.

6. ADDRESS INTERFACE 116

p..,41JfI

FIGURE 6.2. Data flow of PC incrementing loop

The PC incrementing loop has two phases: the initialization phase and the continuation

phase.

• The initialization phase begins with the MAR being reset to zero. This is the first

value to be dispatched to the MI. This first value is also simultaneously incremented

and saved in the PC register'.

• The continuation phase begins with.the contents in the PC register being sent to

the MAR via the arbitrating multiplexors. Once latched in the MAR, this PC

value is then dispatched to the MI via the MAR, and to the PC register after being

incremented (for the incrementing loop to continue on).

The behaviour of the PC-incrementing loop can be informally summarized as:

PCL MAR(0) —+ MI(mar) INC(mar).PC(inc)

MAR(pc) - MI(mar) NC(mar).PC(inc)

'This first PC value will not be placed in the PCpipe

6. ADDRESS INTERFACE 117

6.2.2. Single Address Transfer

Single address transfer interrupts the PC incrementing loop in order to transfer a regular

address or a new PC value to the MI. The regular address is generated by the load, store,

and swap operations. The new PC value is generated by add, branch, load, and software

interrupt operations that supply a new PC address for fetching the next instruction. Figure

6.3 illustrates the possible data flows.

aJ(Cj4I or
pJC_AI or
p_DI_Al

ajllJifI or pjtl..MI

FiGurtE 6.3. Data flow of single address transfer

The single address transfer begins with an address or a new PC value being supplied on

either the W bus or the APIPE. When it wins the arbitrating multiplexor, the PC incre-

menting loop is temporarily interrupted and the regular address or the new PC value enters

the MAR.

• If a regular address is to be transferred, it is dispatched to the MI only.

• If a new PC value is to be transferred, it is dispatched to the MI and also to the PC

register after being incremented.

6. ADDRESS INTERFACE 118

The behaviour of the single address transfer can be summarized as:

SAT MAR(w) -+ MI(mar) 11 INC(mar).PC(inc)

MAR(w,Apipe) -* MI(mar)

where

isPC represents a new PC value supplied by the W bus only;

ntPC represents a. regular address supplied by either the W bus or the Apipe.

6.2.3. Multiple Address Transfer

Multiple address transfer generates and transfers a set of sequential instruction addresses

based upon a base value supplied to the address interface while executing the load/store

multiple operation. Figure 6.4 illustrates the data flow.

a.J.IJifI or p_Al_MI

FIGURE 6.4. Data flow of multiple address transfer

6. ADDRESS INTERFACE 119

The multiple address transfer also has a initialization phase and a continuation phase.

• The initialization phase begins with the base address arriving on the W bus. When

it wins the arbitrating multiplexor, the PC incrementing loop is temporarily inter-

rupted and the base address enters the MAR. The address interface then uses the

information from the decode unit to detect whether this is the end of the transfer.

If this is the last address to be transferred, it is dispatched to the MI only and the

multiple address transfer completes. If not, it is dispatched to both the MI and to

the LSM register after being incremented. The multiple address transfer then enters

its continuation phase.

• The continuation phase of the multiple address transfer begins with the contents iii.

the LSM register being dispatched to the MAR directly without any contention from

other resources (the multiple address transfer is the sole user of the address interface

until the end of the transfer is detected and completed). The address interface again

uses the information from the decode unit to detect whether this is the end of the

transfer. If the end is detected, the address is dispatched to the MI only and the

multiple address transfer completes. If not, the address is dispatched to both the

MI and the LSM register after being incremented, and the multiple address transfer

continues.

The behaviour of the multiple address transfer can be summarized as:

MAT MAR(w) .4 MI(mar)
MI(mar) INC(mar).LSM(inc)

C MAR(Ism) MI(mar)

14 MI(mar) INC(mar).LSM(iric)

where

isE represents the end of a multiple address transfer being detected;

ntE represents the end of a multiple address transfer not yet detected.

6. ADDRESS INTERFACE

6.2.4. Summary of Accesses

In summary, the accesses to the address interface are

PCL MAR(0)

' MAR(pc)

SAT iC MAR(w)

MAR(w,Apipe)

MAT MAR(w)

C; MAR(Ism)

-+ MI(mar) INC(mar).PC(inc) ... 1

-+ MI(mar) INC(mar).PC(inc) ... 2

-* MI(mar) 11 INC(mar).PC(inc) ... 3

-+ MI(mar) ... 4

14 MI(mar)

24 MI(mar) INC(mar).LSM(inc)

MI(mar)

! MI(mar) INC(mar).LSM(inc)

...5(5a)

...5(5b)

...6(6a)

...6(6b)

120

The PCL, the SAT, and the MAT may require access to the address interface arbitrarily,

but only one of these accesses can be granted whenever there is a contention. General

operating sequences are

(1) The address interface is invoked by the initialization phase of the PCL during which

the MAR is reset to zero.

(2) Once the address interface is initialized, it enters the continuation phase of the PCL.

This is the main function of the address interface.

(3) However, after the initialization phase is completed, both the SAT and the MAT can

compete with the continuation phase of the PCL for accessing the address interface.

If the SAT or the MAT wins the access, the PCL will be temporarily interrupted.

6. ADDRESS INTERFACE 121

6.3. Control Flow of Accesses to the Address Interface

The six distinct accesses to the address interface evaluated in the previous section share

the common datapath modules in the address interface. The control flow of these accesses

has to reflect this common sharing. This section presents the control flow of accesses to the

address interface at the register transfer level.

6.3.1. Intuitive Overview

Figure 6.5 gives an intuitive presentation of the control flow of accesses to the address

interface.

Part 1: Decision Unit

PCL(nit) PCL(cont) SAT (isPC) SAT(nWC) MAT(inU) MAT(cont)

111 11.? 113 114 11-5 116
DU

L-

11213 5b16b 4/5a/6a

INC & Control

1/2/3

rougP rini'

2 PC
---- p. aou!P am?

5b/6b

rinL roulL

LSM
ainL aoutL

6

I-

XOR

1/2/3/4/516

aluM

MAR
aoulM

rinM

routM

C

Part 2: Arithmetic Uint
 J

reqMl

MI

ackMl

-,

Part 3: Memory Access Unit

FIGURE 6.5. Intuitive overview: control flow of accesses to the address interface

6. ADDRESS INTERFACE 122

In Figure 6.5, the address interface hardware is partitioned into three basic units, namely

the decision unit, the arithmetic unit, and the memory access unit.

• The decision unit guarantees that at any time, only one of the six distinct access

requests to the address interface can be granted. It also generates control signals

for accessing the arithmetic unit and the memory access unit:

- inputs of all the access requests, cases 1, 2, 3, .4, 5, 6, are dispatched to the

memory interface 2;

- inputs of cases 1, 2, 3 are dispatched to the MAR and then to the PC register;

- inputs of cases 5b, Cb are dispatched to the MAR and then to the LSM register;

- inputs of cases .4, 5a, Ca are dispatched to the memory interface only, they

have no access to the arithmetic unit.

• The arithmetic unit accepts access requests from the decision unit:

- inputs of cases .1, 2, 3 are incremented and then dispatched to the PC register;

- inputs of cases 5a, Ca are incremented and then dispatched to the LSM register;

- inputs of cases .4, Sb, Cb bypass the INC, the PC register, and the LSM register.

These access requests are routed through an XOR module after their corresponding

accesses have been carried out.

• The memory access unit accepts access requests from the decision unit: inputs of

cases 1, 2, 3, .4, 5, 6 are dispatched to the memory interface via the MAR.

Acknowledgements to the MAR are collected by a C-element after the corresponding access

needs have been carried out in both the arithmetic unit and the memory interface.

2except the old PC value residing in the PC register after a new PC value has been transferred.

6. ADDRESS INTERFACE 123

6.3.2. Register Transfer Level Detail

Based upon the intuitive overview, the basic units in Figure 6.5 are expanded to the register

transfer level detail respectively.

Part I: Decision Unit

The register transfer level implementation of the decision unit is illustrated in Figure 6.6.

PCL (mu) PCL (cont)

111 112
rio! r2 a2

CALL

SAT isPC,n1PC) MAT(nil) MAT(cont)

3,4 5

rio! r2 a2 r3 a3

ARB

gld! g2d2 j3d3

6

rial r2 a2 r3 a3 r4a4

DCALL

IcP WE nP j.cE alnM th,M

FIGURE 6.6. Control flow of accesses to the address interface: decision unit

Access requests to the address interface can be either mutually exclusive or arbitrary. The

decision unit uses call modules for mutually exclusive requests and arbiter modules for

arbitrary requests to guarantee the exclusive access to the address interface at any time.

• The initialization phase and the continuation phase of the PCL are mutually ex-

clusive accesses between each other (the processor starts operating with the initial-

ization phase, and moves on to the continuation phase). A two-way call module

(CALL) is used for this purpose.

• The SAT and the initialization phase of the MAT are mutually exclusive between

each other, but arbitrate with the PCL. A three-way arbiter (ARB) is used for this

6, ADDRESS INTERFACE 124

purpose. To make the presentation simpler, the ARB used here adopts the RGDA

protocol rather than the RGD protocol. In CCS we have

Ui

U2

U3

Sem

dcl

dcf

def

def

ARBI

ri. 'g. 'gi.di.'ai. 'p. Ui

r.. 'g. 'g2.0. W. p. U2

r3. 'g, 'g3.d3. 'aS. 'p. U3

g.p.Sem

,(U1 UP I U3Sem)\{g,p}

Once the access to the address interface is granted to the initialization phase of the

MAT, the ARB cannot be released until the continuation phase of the MAT has

been completed. Thus, there is no need for the continuation phase of the MAT to

compete for the address interface via the ARB.

• After the arbitration via the ARB, a decision call unit (DCALL) is used to accept

the mutually exclusive access requests from the PCL, the SAT, the initialization

phase, of the MAT, and the continuation phase of the MAT. The DCALL is a finite

state machine which generates control signals for accessing the arithmetic unit and

the memory address unit according to the corresponding access needs. Its operation

sequences in CCS are

DCALL

LOOP

DCALL'

LOOP'

dci

+

+

def

def

+

+

def

ri. 'rinM.ainM. 'isP. 'al.DCALL

r2. 'rinM.ainM.('isP. a2.D CALL' + 'ntP. 'a2.D CALL)

r3. 'rinM.aimM. ('isE. 'aS.D CALL + 'ntE.LOOP)

r4. 'rinM.ainM. ('isE. 'ad. 'aS.DCALL + 'ntE. 'a.LOOP)

ri. 'a.l.D CALL

r2. 'rinM.ainM. 'ntP. 'a2.DCALL'

r3. 'rinM.ainM. ('isE. 'a3.D CALL' + 'ntE.LOOP')

r4. 'rinM.ainM.('isE. 'ad. 'a3.D CALL' + 'ntE. 'a.LOOP')

The interpretations are:

- Access requests from the PCL (ri), the SAT (re), and the initialization phase

of the MAT (r3) are accepted by the DCALL; access request from the con-

tinuation phase of the MAT (r4) is accepted by the LOOP. If a PC value

6. ADDRESS INTERFACE 125

is transferred (isP) during the SAT, the DCALL unit enters a new state ex-

pressed by the DCALL' and the LOOP'.

- The DCALL' may accept access request from the PCL (vi), but will throw

away the PC value and return to the state expressed by the DCALL and the

LOOP. It may also transfer a regular address (ritP) during the SAT, but not

a PC value (isP). This new state has no effect on the MAT which is carried

out via r3 in DCALL' and r4 in LOOP'.

Part II: Arithmetic Unit

The register transfer level implementation of the arithmetic unit is illustrated in Figure 6.7.

IsP WE ntP isE

rinl 4
INC

aoull roufl

ri r2

CALL

al a2

V

-.

rout? rinP

PC
aoulP amP

rinL routL

LSM 16
alnL aoutLL

XOR

XOR

to memosy access unit

FIGURE 6.7. Control flow of accesses to the address interface: arithmetic unit

The arithmetic unit accepts mutually exclusive access requests from the decision unit. They

are: isP, ntP, isE and ntE.

9 if a PC value is transferred (isP), it is dispatched to the PC register after being

6. ADDRESS INTERFACE 126

incremented by the INC;

• if a regular address is transferred (ntP), it bypasses the INC and the PC register;

• if a LSM address (not the last one) is transferred (ntE), it is dispatched to the LSM

register after being incremented by the INC;

• if the last LSM address is transferred (ntE), it bypasses the INC and the LSM

register.

The mutually exclusive accesses to the INC from isP and ntE are guaranteed by a two-way

call module (CALL). The corresponding acknowledgments (amP, ainL) to the INC (aoutl)

are collected by an XOR module. These acknowledgments, together with ntP and isE, are

collected by a three-input XOR module for acknowledging the MAR in the memory access

unit.

Part III: Memory Access Unit

The register transfer level implementation of the memory access unit illustrated in Figure 6.8

remains the same as that illustrated in Figure 6.5.

alnM

MAR
aoutM

rinM

roniM

C

from arithmetic unit

reqMl

MI

ackMl

FIGURE 6.8. Control flow of accesses to the address interface: memory access unit

Input to the memory interface is first latched in the MAR upon receiving rinM from the

decision unit. It is then dispatched to the memory interface via routM. Acknowledgments

6. ADDRESS INTERFACE 127

to the MAR. (aoutM): ackMlfrom the memory interface and the output of the three-input

XOR module in the arithmetic unit, are collected by a C-element:

The complete picture

The register transfer level implementation of the complete control flow of accesses to the

address interface is illustrated in Figure 6.9.

Part 1: Decision Unit M OM') MOON)

11' 112
ml r2 a2

CALL

ma

SAT lsPC,nSPC) MAT(inil) MAT(cont)

3,4 5

mial ,2a2 r3a3

ARD
gidi r2d2 r3d3

rial r2a2 r3 a3 r4a4

DCALL

IsP rug nip trE ethrM ,InM

'in'
INC

aoutl rot$i

r r2

CALL

al r2

raulP r!nP

2 Pc
.__ aoulP amP

rinL mouth

LSM 6
runt . aoult

XOR

Part 2: Arithmetic Uint

XOR

alaM ibM

MAR
aoulM - moulM

C

Part 3: Memory Access Unit

FIGURE 6.9. Complete control flow of accesses to the address interface

6. ADDRESS INTERFACE 128

To access the address interface, the access requests for the initialization phase of the PCL,

the SAT, and the initialization phase of the MAT come from the environment; the access

requests for the continuation phase of the SAT and the continuation phase of the MAT come

from the PC register (routP, aoutP) and the LSM register (routL, aoutL) respectively.

6.4. Specification and Testing

6.4.1. Operating Environment

Although the PC incrementing loop, the single address transfer, and the multiple address

transfer may require accesses to the address interface arbitrarily, they have to obey the

following constraints from the operating environment:

(1) The first access request to the address interface has to be the initialization phase of

the PCL (reqENVPCL);

(2) Once the address interface has been initialized (ac1cENV_PCL), both the single ad-

dress transfer (reqENVSAT) and the multiple address transfer (reqEN V_MAT) may

arbitrate with the continuation phase of the PC incrementing loop. However, (re-

qENVSAT) and (reqENVSAT) are mutually exclusive. The winner has the sole

access to the address interface.

In CCS we have

bi INIT

reqENV_PCL. ' reqPCL. ackPCL. ' ackENV_PCL.ENV

bi ENV

reqENV_SAT. ' reqSAT.ackSAT. ' ackENV_SAT. ENV

+ reqENV_MAT. ' reqMAT. ackMAT. ' ackENV_MAT. ENV

6.4.2. First Round Testing

The specifications are developed by combining all the basic modules in the control flow

illustrated in Figure 6.9 directly, with the constraints from the operating environment.

They are then submitted to the CWB for testing.

6. ADDRESS INTERFACE 129

bi PART1

(CALL [reqPCL/rl, ackPCL/al, routP/r2, aoutP/a2, rl/r, al/a 3

I ARB' [reqSAT/r2, ackSAT/a2, reqMAT/r3, ackMAT/a3 3

I DCALL C gun, dual, g2/r2, d2/a2,

g3/r3, d3/a3, routL/r4, aoutL/a4 3

) \ { al, dl, d2, d3, gi, g2, g3, ri }

sort PART1

**{ainM,reqMAT,reqPCL,reqSAT,noutL,routP, ' ackMAT, ' ackPCL, ' ackSAT, ' aoutL,

'aoutP, ' isE, ' IsP, 'ntE, 'ntP, ' ninN}

min PART1

PART1'

**PART1' has 344 states.

bi PART2

C CALL C isP/ri, ninP/al, ntE/r2, rinL/a2, rinl/r, routl/a]

I INC

I PC

I LSM

I XOR C amP/a, ainL/b, ainPL/z 3

FFORK C ainPL/a, aoutl/b, ainPL'/c 3

I XOR3 C ainPL'/a, ntP/b, IsE/c, zXOR/z 3

) \ { ainL, amP, ainPL, ainPL', aoutl, rinl, rinL, naP, routl }

sort PART2

**{aoutL,aoutP,isE,isP,lsnz',ntE,ntP,pc',sinc', 'routL, ' routP,'zXOR}

aim PART2

PART2'

**PART2' has 378 states.

bi PART3

(MAR

I MI C routM/reqMl 3

I C C ackMl/b, zXOR/a, aoutM/z 3

\ { ackMl, aoutM, roütM }

6. ADDRESS INTERFACE 130

sort PART3

**{mar' ,mem' ,rinN,zXOR, ' ainM}

min PART3

PART3'

**PART3' has 15 states.

bi INIT

reqENV_PCL. ' reqPCL. ackPCL. ' ackENV_PCL.ENV

bi ENV

reqENV_SAT. ' reqSAT . ackSAT. ' ackENVSAT. ENV

+ reqENV_MAT. ' reqMAT.ackMAT. ' ackENV_MAT.ENV

bi Al

(PART1' I PART2' I PART3' I INIT

\ { ackNAT, ackPCL, ackSAT, ainM, aoutL, aoutP, isE, IsP, atE, •ntP,

reqMAT, reqPCL, reqSAT, rinM, routL, routP, zXOR }

sort Al

**{].sm' ,mar' ,mem' , pc' , reqENV_MAT,reqENV_PCL,reqENV_SAT,sixtc', ' ackENV_MAT,

'ackENV_PCL, ' ackENV_SAT}

min Al
Al'

**AI' has 90 states.

f Al'

reqENV_PCL mar' mem' sinc' PC' ' ackENV_PCL reqENV_SAT t<rl> mar' t<routP>

mem' sinc' ' ackENV_SAT reqENV_MAT t<routP> ---> AI'minState335

6. ADDRESS INTERFACE 131

6.4.3. Resolution of the Deadlock

The CWB testing shows that the control flow illustrated in Figure 6.9 has potential deadlock.

Following the trace sequences generated by the CWB, we came to know the reason that

causes the deadlock.

(1) After the continuation phase of a PCL is interrupted by a SAT during which a PC

value is transferred (isP), the old PC value generated by the PCL remains in the

PC register while the new PC transferred by the SAT enters the MAR.

(2) The new PC value in the PC register cannot circulate any further until the PC

register is free: the old PC value wins the ARB and is then discarded immediately.

(3) At this point, if another SAT wins the ARB instead of the old PC value in the PC

register, deadlock results:

• the address to be transferred by the SAT cannot enter the MAR because the

.new PC value is still occupying it and will not be free until the PC register is

empty;

• the PC register will not be free until the old PC value wins the ARB;

• the ARB will not be free until the address to be transferred enters the MAR.

A simple solution used in the AMULET1 implementation is to employ a PC register with

the depth of two (PC2).

bi PC2

C PC [routPl/routP, aoutPl/aoutP 3

I PC C routPl/rinP, aoutPl/ainP 3

) \ { routPl, aoutPl }

sort PC2

**{aoutP,pc' , rinP,, ' amP, ' routP}

min PC2

PC2'

**PC2' has 18 states.

6. ADDRESS INTERFACE 132

6.4.4. Second Round Testing

The control flow specifications with two PC registers are tested to be free from deadlock on

the CWB.

bi PART2

(CALL C isP/ri, rinP/al, ntE/r2, rinL/a2, rinl/r, routl/a]

I INC

I PC2'

I LSM

I XOR C amP/a, ainL/b, ainPL/z]

I FFORK C ainPL/a, aoutl/b, ainPl.'/c]

I X0R3 C airtPL'/a, ntP/b, isE/c, zXOR/z]

) \ { ainL, amP, ainPL, ainPL', aoutl, rinl, rinL, naP, routl }

sort PART2

**{aoutL,aoutP,isE,isP,lsm',ntE,ntP,pc',sinc', ' routL, ' routP,'zXOR}

min PART2

PART2'

**PART2' has 756 states.

sort Al

**{lsm' ,mar' , mem' , pc' , reqENV_MAT,reqENV_PCL,reqENV_SAT,sinc',

ackENV_MAT, ' ackENV_PCL, ' ackENV_SAT}

min AT

Al'

**AI' has 162 states.

fd Al'

**No such agents.

The control flow of the accesses to th'e address interface with two PC registers are also

tested for the following desired safety and liveness properties in addition to freedom from

deadlock.

6. ADDRESS INTERFACE 133

(1) Livelock free

Command: cp Al

Proposition: - POSS BOX <t>T

**true

(2) After the initialization phase of the PCL (ackENV_PCL), it is always possible for

the SAT (reqENVSAT) or the MAT (reqENVJvIAT) to interrupt the continuation

phase of the PCL.

Command: cp Al'

Proposition: EackENV_PCL] BOX (POSS <reqENV_SAT>T)

**true

Command: cp Al'

Proposition: [ackENV_PCL] BOX (POSS <reqENV_MAT>T)

**true

(3) The SAT (reqENVSAT) and the MAT (reqENVJvIAT) are mutually exclusive be-

tween each other.

Command: cp Al'

Proposition: (BOX ([reqENV_SAT] [reqENV_MAT]F)) & (BOX ({reqENV_MAT] [reqENV_SAT]F))

**true

(4) All the inputs to the PC register and the LSM register are incremented by the INC.

Command: cp Al'

Proposition: NEC-FOR sinc' PC'

**true

Command: cp Al'

Proposition: NEC-FOR sinc' ism'

**true

6. ADDRESS INTERFACE 134

6.5. Summary

This chapter presents a register transfer level specification of the address interface which is

one of the major floor plan modules of AMULET1 abstracted in chapter 5. The accesses to

the address interface are classified into three cases, namely the PC incrementing loop, the

single address transfer, and the multiple address transfer. The control flow of these accesses

to the address interface is then developed, specified, and tested.

The main contribution of this chapter is the right level of functional abstraction and the

suitable detail of circuitry. The control flows at the register transfer level comprise regular

structures (e.g. incrementers, FIFOs) whose implementation techniques are well known,

and of highly irregular structures (e.g. DCALL) whose implementations are efficiently

supported by Stevens' automatic tool [Ste94]. This level of specification not only provides

a good abstract view of how a floor-plan module can be implemented, but also serves as a

good design guide for lower level implementations.

In addition, the potential deadlock with one PC register that has been found out through

simulation by the AMULET1 group at Manchester university is successfully replicated on

the CWB. The resolution of deadlock with two PC registers is also proved to be feasible.

CHAPTER 7

Data Interface

The data interface in AMULET1 manages the data flow between the processor and the

memory. It comprises a data input phase and a data output phase. The data input phase

accepts a datum from the memory and transfers it to the processor. The data output phase

dispatches a datum generated by the processor to the memory. These two phases operate

in parallel without interference.

This chapter is concerned with the modeling of data interface at register transfer level.

Compared to the address interface discussed in the previous chapter, the specification of

the data interface, is trivial and straightforward. It is included for completeness.

135

7. DATA INTERFACE 136

7.1. Data Input

The internal organization of the data input phase is illustrated in Figure 7.1.

i_MI_DI or d..MI_DI

U
Memory Read Register

/

Ipipe

instruction
7

Extracting Logic

k

Processing Logic

rb'/p..PLAI

FIGURE 7.1. Internal organization of data input phase in the data interface

Inputs to the data interface can be either instructions or regular data both supplied by the

memory interface. The incoming instruction will be stored in the instruction pipe ([pipe)

which is connected to the decode unit. While being dispatched to the decode unit, the

instruction is also processed by the extracting logic unit in case an immediate value (k) is

needed. The incoming data will be processed by the processing logic unit (PLU) for byte

rotation, byte alteration, etc.

When specifying the data input phase, we model the processing logic unit as a regular

FIFO, and abstract the Memory Read Register away. The extracting logic unit for imme-

diate value extraction will be modeled in chapter 8 together with the execution pipeline

stages. This abstraction is illustrated in Figure 7.2.

7. DATA INTERFACE 137

FIGURE 7.2. Abstraction of data input phase in the data interface

In AMULET1, the processing logic unit has two stages, and the Ipipe has five stages'.

Here they are both modeled as regular FIFOs of depth two. In CCS we have

Ipipe = FIFO2 C inclP/incF, declP/decF, nelF/neF]

PLU = FIFO2 C incPLU/incF, decPLU/decF, nePLU/neF]

The specification of the data input phase (DIJN) is simply the parallel operation of the

instruction input (DI_INi) associated with the Ipipe, and the data input (DI_IN2) associated

with the PLU.

bi DI-IN

(DI_INi I DI_IN2

. DI_INi accepts the next instruction from the memory interface and increments Ipipe.

bi DI_INi

i_MI_DI_ ' inclP.DI_IN1

• DIJ N2 has two operations which can overlap. One receives data from the memory

interface and passes it to PLU. The other passes the data processed by the PLU to

either the register bank or the address interface via the W bus.

bi DI_IN2

(DI_IN2_1 I DI_IN2_2 I FLU) \ { incPLU, decPLU, nePLU }

'Due to the potential deadlock caused by instruction overflow, the Ipipe must be three stages longer than

the PCpipe [Pav94].

7. DATA INTERFACE 138

bi DI_IN2_1

d_MI...DI. ' incPLU.DI_IN2_1

bi DI_IN2...2

'nePLU. ' decPLU. ' gW. (rb'. ' pW.DI_IN2_2 + 'p_DI_AI. 'pW.DI_IN2_2)

7.2. Data Output

The data output phase simply accepts the input from the Dpipe bus associated with the

processor and dispatches it to the memory interface. It is implemented as a two stage FIFO

in AMTJLET1. Since the data output phase only has a single user, there is no contention

for access to it. In CCS we have

bi DI-OUT

(DI-OUT-1 I DI-OUT-2 I FIFO2) \ { incF, decF, neF }

bi DI-OUT-1

d_Dpipe_DI. ' incF.DI_OUT_l

bi DI-OUT-2

'neF. ' decF. ' d_DI_MI.DI_OUT_2

7.3. Summary

This short chapter explains the specification of the data interface at register transfer level

and is included for completeness. It contains no new techniques or new ideas. The property

checking tests are trivial and follow the style presented the rest of the dissertation.

CHAPTER 8

Execution Pipeline

This chapter is concerned with modeling the execution unit at the register transfer level.

The execution unit is the computational core of AMULET1. It has a pipelined structure.

The modeling of the execution pipeline is targeted at how each individual instruction

class flows through the pipeline in terms of how it seizes a pipeline stage and how it releases

the stage. Different instruction classes have different access needs from the data processing

hardware associated with the pipeline stages and to the floor plan modules external to the

execution unit.

Throughout the modeling of the execution pipeline, we assume that both operands for

an instruction have already been read out from the register bank. The register bank itself

has been modeled at various levels of abstraction in chapter 4.

139

8. EXECUTION PIPELINE 140

8.1. Internal Organization

The execution unit contains the major data processing hardware of AMULET1, including a

multiplier, a barrel shifter and an ALU. The internal organization of the execution pipeline

is shown in Figure 8.1.

from Register Rank to Register Rank from Ipipe and Decode Unit

stage 0

stage 1

stage 2

stage 3

stage 4

(Rm, Rn)

d_DpipeD1

(Rd) (immediate value, ehjft value)

IMMpIpe

SFTpipe

CPSR

from Dl

a_XC.AI or p_XC.,41 or p_DLAI

A

p

p
e

a.4pipe.AI

FIGURE 8.1. Internal organization of execution pipeline

8. EXECUTION PIPELINE 141

Inputs to the execution unit come from register bank, Ipipe (controlled by the decode

unit), and the data interface. Input from the Ipipe is decoded and stored in an immediate

value pipeline (IMMpipe) and a shift value pipeline (SFlpipe) associated with the execution

pipeline. Outputs from the execution unit can be written back to the register bank via the

W bus, dispatched to the address interface via either the W bus or the Apipe, or to the

data interface via the Dpipe. The shadowed boxes represent the latches between adjacent

pipeline stages.

8.1.1. Pipeline Stages

As illustrated in Figure 8.1, the execution unit contains five pipeline stages (stageO to

stage4) if the register bank stage (stageO) is taken into account. Major stages include the

multiply and shift stage, ALTJ processing stage, multiplexor selection stage, and the write

back stage. Four latches are used to separate the adjacent pipeline stages.

StageO

This stage performs instruction decode and operand read from register bank. It also extracts

information from Ipipe, and prepares the immediate value and shift value for execution at

stagel in case they are needed. Details of register bank read were discussed in chapter 4.

Stagel

This stage contains a multiplier and a shifter. The multiplier is only used by multiply

operations and is bypassed by the rest of the instruction classes. The shifter uses the value

supplied by SFTpipe to perform a shift of the operand on the B bus. The operand on the

A bus is dispatched to the address interface via Apipe in load operations, store operations,

and swap operations. The operand on the B bus is dispatched to the ALIT and the data

interface via Dpipe in store operations, swap operations, and load/store multiple operations.

Stage2

This stage generates execution results for all the instruction classes through the ALIJ.

The current status of the processor is saved in register CPSR. Condition test (whether an

instruction will be executed or discarded) is carried out during this stage.

8. EXECUTION PIPELINE 142

Stage3

This stage uses the multiplexor to select the normal execution result from ALU, or the

current processor status from CPSIt if an exception has occurred.

Stage4

This stage is not associated with any particular data processing hardware. It only uses the

W bus for dispatching execution results to the register bank or the address interface. Since

the data interface also uses the W bus for data dispatching, attention has to be paid to

arbitration for access to the W bus.

8.1.2. Additional Pipeline Registers

Additional pipeline registers associated with the execution unit include the immediate value

pipeline register IMMpipe, and the shift value pipeline register SFTpipe.

Immediate value pipeline register

Some of the operations use an immediate value k .as one of their operands. This immediate

value is extracted at the instruction decode stage, but will not be used until the correspond-

ing instruction has entered stagel. The storage of k thus requires a pipeline of depth 2.

The two spaces in IMMpipe store the immediate values for instructions that are currently

in stageO, and stagel respectively.

Shift value pipeline register

The operand on the B bus for some of the operations will be shifted for a certain amount

s during execution. This shift value is also extracted at the instruction decode stage, but

will not be used until the corresponding instruction has entered stagel. The storage of s

thus also requires a pipeline of depth 2. The two spaces in SFTpipe store the shift values

for instructions that are currently in stageO, and stagel respectively.

8. EXECUTION PIPELINE 143

8.2. Access Needs and Corresponding Notation

The access needs of an instruction while being executed generally fall into four categories.

8.2.1. Accessing Pipeline Stages

Whether or not an instruction class has needs to access the data processing hardware

associated with each pipeline stage, it has to flow through all the pipeline stages sequentially

while being executed. Each pipeline stage can be abstracted as a semaphore agent. For

stage I, we have:

STAGE-1 i gsl.psl.STAGEJ

The control sequence for executing an instruction at stage I is

'gsl -+ 'ps(i-l) -+ exec -'-4 'gs(I+l) -+ 'psi

and is generated through the following steps:

(1) Entering the current stage via 'gsl, all the information prepared for execution at

stagel from the previous stage has thus been latched.

(2) Releasing the previous stage via ' ps(i-l).

(3) Accessing the data processing hardware at the current stage as instructed. The exe-

cution (exec) includes accesses to pipeline registers, accesses to local data processing

hardware and accesses to floor plan modules external to the execution unit.

(4) Dispatching execution results from the current stage to the next stage via 'gs(I+l)

(first step in the next stage).

(5) Releasing the current stage via ' psi (second step in the next stage). Stagel is now

free for executing the next instruction upon request.

The five pipeline stages in the execution unit operate in parallel:

PIPE I(SOIS1IS2IS3IS4)

where

del
Sk = gsk.psk.Sk, (k = 0, 1, 2, 3, 4)

8. EXECUTION PIPELINE 144

8.2.2. Accessing Local Data Processing Hardware

Once an instruction class enters a pipeline stage, it will either be processed by the associated

data processing units or bypass them as instructed.

Since the instruction currently being executed at stagel is the sole user of the data

processing units resident in stagel and there is no contention from other users for accessing

them; it is redundant to model how these units are accessed in further detail. We simply

use iristri to represent the accesses as instructed, e.g., Idr2 represents a load operation being

executed in stage2 (the data processing unit available for accessing is ALU):

Since the accesses to W bus in stage4 can be either destined for register bank or for address

interface (when it is a PC value), we use instrRB or p..XC..AI as the notation respectively.

8.2.3. Accessing Pipeline Registers

Pipeline registers external to the execution unit include PCpipe and Ipipe, internal to

the execution unit include IMMpipe and SFTpipe. Accesses to them either increment or

decrement. Since Ipipe and PCpipe are incremented by floor plan modules external to

the execution unit, the execution unit is only responsible for the decrementing of them

(deciP and decPC). IMMpipe and SFTpipe are local pipeline registers associated with the

execution unit. The execution unit is responsible for both incrementing (incK and incS) and

decrementing (decK and decS) them. The specification of IMMpipe and SFTpipe follows:

IMMpipe 'I FF0 [incK/incF, decK/decF]

SFTpipe d=ef FF0 [incS/incF, decS/decF]

where FF0 is the initial state of a pipeline with depth of 2:

FF0 = incF.FF1

FF1 = incF.FF2 + decF.FFO

FF2 = decF.FF1

8. EXECUTION PIPELINE 145

8.2.4. Accessing External Floor Plan Modules

Accesses to and from floor plan modules external to the execution unit are mainly via the

W bus, but Apipe and Dpipe are also used. The notation used for this purpose follows

the content-sou rce..destination convention defined in chapter 5, e.g., a...XC..AI represents an

address produced by the execution unit being dispatched to the address interface.

8.2.5. Summary of Notation

Table 8.1 summarizes the notation for all the access needs described above:

Access Notation

Pipeline Stages Stage I: STAGEI = gsl.psl.STAGEI

Control: 'gsl.'ps(l-l).exec.'gs(I+l).'psl

Data Processing Hardware

stageO: instrO (register bank)

stagel: instri (multiplier and shifter)

stage2: 1nstr2 (ALU)

stage3: 1nstr3 (multiplexor)

stage4: instrRB or p_XC_AI via W bus

Pipeline Registers

-

PCpipe: 'decPC

Ipipe: 'deciP

IMMpipe: 'incK, 'deck

SFTpipe: 'incS, 'decS

External Floor Plan Modules content..source_destination

TABLE 8.1. Notation for access needs in execution unit

8. EXECUTION PIPELINE 146

8.3. Evaluation of Execution Details

This section evaluates and specifies the execution details of each instruction class at each

pipeline stage. Each individual instruction class flows through the pipeline stages in a

similar way. The control sequence of executing an individual instruction class (I NSTR)

is developed based upon the notation summarized in Table 8.1. When condition test is

included (in stage2), we have

CNTRJNSTR 'I isINSTR.

'gsO.execO. 'gsl. ' psO.execl. 'gs2.'psl.exec2.

(doXC.'gs3.'ps2.exec3.'gs4.'ps3.'gW.exec4.'pW.'ps4.CNTRJNSTR

+ noXC.'ps2.CNTRJNSTR)

where

execi can be any access needs to the local data processing hardware associated

with stagel, the four pipeline registers, and the floor plan modules external

to the execution unit.

doXC is a trace value which represents that the current instruction has passed

the condition test and will be carried out.

noXC is a trace value which represents that the current instruction is failed

by condition test and will be discarded.

Since the item expressing condition test (noXC.'ps2.CNTRJNSTR) is identical for all the

individual instructions, we ignore it in the following descriptions to keep the specifications

compact. For the execution of each individual instruction, the control sequence is thus

simplified to:

CNTRJNSTR def isINSTR.

'gsO.execO..'gsl.'psO.execl.'gs2.'psl.exec2.

'gs3.'ps2.exec3.'gs4.'ps3.'gW.exec4.'pW.'ps4.CNTRJ NSTR

Following this, we evaluate and specify the individual instruction classes: For every instruc-

tion class being executed, we first tabulate its access needs at each pipeline stage, and then

present the corresponding control sequences in CCS.

8. EXECUTION PIPELINE 147

Multiply operation (MPY)

The multiply operation takes two register operands. The execution completes in one ex-

ecution cycle (from stageO to stage4). Table 8.2 displays the action sequences of multiple

operation being executed through the pipeline stages.

MPY Operation StageO Stage! Stage2 Stage3 Stage4

MPY Rd, Rn, Rm 'declP 'decPC mpyRB

TABLE 8.2. Multiply operation on execution

The interpretation of Table 8.2 follows:

• stageO: decrementing Ipipe ('deciP) as soon as MPY enters stageO;

• stagel: decrementing PCpipe ('decPC) as soon as MPY enters stagel;

• stage2: no explicit accesses to external modules;

• stage3: no explicit accesses to external modules;

• stage4: write the multiplication result back to register bank (mpyRB) via W bus.

By adding in trace values mpyl (representing MP'(currently being executed in stage I), we

have the control sequences in CCS:

CNTR_MPY = isMPY. ' gsO.mpyO. ' declP. ' gsl. ' psO.mpyl. 'decPC. ' gs2. ' psl.inpy2.

'gs3. ' ps2.inpy3. ' gs4. ' ps3. ' gW.mpyflB. 'pW. ' p's4.CNTR_MPY

8. EXECUTION PIPELINE 148

Data operation (e.g. ADD)

The operands in data operations have more variety than those in multiply operations.

Typically, the two operands can be both register values, or one register value and one

immediate value (on the B bus). The operand on the B bus will be shifted if a shift value

is provided by SFTpipe. Table 8.3 displays the action sequences of typical add operations

being executed through the pipeline stages.

ADD Operation StageO Stagel Stage2 Stage3 Stage4

ADD Rd, Rn, Rm 'declP 'decPC addRB + 'pXC..AI

ADD Rd, Rn, k 'incK.'declP 'decPC 'decK addRB + 'p_XC_AI

ADD Rd, Rn, Rm<<s 'incS.'declP 'decPC 'decS addRB + 'p..XCAI

TABLE 8.3. Add operation on execution

The interpretation of Table 8.3 is similar to that of Table 8.2, except:

• when one of the operands is an immediate value (k), k is prepared and stored in

IMMpipe at stageO (' incK), and released at stage2 ('decK);

• when one of the operands needed to be shifted, the shift value s is prepared and

stored in SFTpipe at stageO ('incS), and released at stage2 ('decS);

• the result of addition can be written back to either the register bank (addRB) or the

address interface (' p..XC..AI) via the W bus.

In CCS we have the control sequences as:

CNTR_ADD = isADDi. ' gsO.addO. ' declP. ' gsi. ' psO.addl. 'decPC.

'gs2. ' psi.add2. ' gs3. ' ps2.add3.ADD_STAGE4

+ isADD2.'gsO.'incK.addO.'declP.'gsl.'psO.addl.'decPC.

'gs2. ' psi. ' decK.add2. ' gs3. 'ps2.add3.ADD_STAGE4

+ isADD3.'gsO.'incS.addO. ' declP.'gsi.'psO.adcli.'decPC.

'gs2. ' psi. ' decS.add2. ' gs3. 'ps2.add3.ADD_STAGE4

ADD_STAGE4 = ' gs4. ' ps3. ' gW. (addRB. 'pW. 'ps4.CNTR_ADD + 'p_XC_AI. ' pW. 'ps4.CNTR_ADD)

8. EXECUTION PIPELINE 149

Branch operation (B & BL)

The branch operation is a special type of data operation. One of its two operands is the

current PC value, the other is an immediate value supplied by IMMpipe. The addition

result of the two operands becomes the new PC value and is sent to the address interface.

Table 8.4 displays the action sequences.

B Operation StageO Stagel Stage2 Stage3 Stage4

B k 'incK.'declP 'decPC 'decK 'p...XC.AI

TABLE 8.4. Branch operation on execution

In CCS we have the control flow as:

CNTR_B = isB. ' gsO.'incK.bO.'declP. ' gsi. ' psO.bi. ' decPC.'gs2.'psl.'decK.b2.

'gs3. ' ps2.b3. ' gs4. ' ps3. ' gW. ' p_XC_AI. ' pW. 'ps4.CNTR_B

Branch and link operation requires an extra cycle in the execution unit to save the return

address in R14. Since the calculation of return address is based upon the current PC value,

this PC value ha to be maintained in the PCpipe until it has been latched in the first

stage of the second execution cycle. Table 8.5 displays the action sequences for these two

execution cycles.

BL Operation Stageo Stagel Stage2 Stage3 Stage4

BL k 'incK 'decK 'p..XC..AI

'declP 'decPC b1RB

TABLE 8.5. Branch and link operation on execution

In CCS we have,

CNTR_BL1 = isBL1. ' gsO. ' incK.bll_O. ' gsl. ' psO.b].i_i. ' gs2. ' psi. ' decK.bli_i.

'gs3. ' ps2.bli...3. ' gs4. ' ps3. ' gW. ' p_XC_AI. ' pW. ' ps4.CNTR_BL1

CNTR_RL2 = isBL2. 'gsO.b12_O. ' declP. ' gsl. 'psO.b12_i. ' decPC. ' gs2. ' psl.b12...2.

'gs3. ' ps2.b12_3. ' gs4. ' ps3. ' gW.blRB. ' pW. 'ps4.CNTR_BL2

8. EXECUTION PIPELINE 150

The execution of these two cycles can be overlapped because of the pipelined nature of the

execution unit. The second execution cycle starts as soon as the first cycle has finished its

execution in stageO.

Load operation (LDR)

The major varieties of load operation have been summarized in chapter 5 in terms of their

indexing styles and write back styles. Each of these varieties is now further classified

according the typical operands they take. Similar to the data operation, the two operands

can both be register values, or one register value and one immediate value (on B bus). The

operand on the B bus will be shifted by a specified amount if a shift value is provided

by SFTpipe. Table 8.6 displays the action sequences of the address calculation phase for

typical load operations. Executions of all these varieties complete in one execution cycle.

LDR Operation StageO Stagel Stage2 Stage3 Stage4

LDR Rd, [Rn, Rm] 'declP 'decPC 'a..XC.AI

LDR Rd, [Rn, k] 'incK.'declP 'decPC 'decK 'a.XCJtI

LDR Rd, [Rn, Rm<<s] 'incS.'declP 'decPC 'decS 'a.XC.AI

LDR Rd, [Rn, Rm]! 'declP 'decPC 'aXC.AI.IdrRB

LDR Rd, [Rn, k]! 'incK.'declP 'decPC 'decK 'aiCCAI.ldrRB

LDR Rd, [Rn, Rm<<s]! 'incS.'declP 'decPC 'decS 'a.XC..AI.ldrRB

LDR Rd, [Rn], Rm 'declP 'decPC.'aApipe_AI 1drRB

LDR Rd, [Rn], k 'incK.'declP 'decPC.'a.Apipe_AI 'decK 1drRB

LDR Rd, [Rn], Rm<<s 'incS.'declP 'decPC.'&.Apipe_AI 'decS 1drRB

TABLE 8.6. Load operation on execution

8. EXECUTION PIPELINE 151

The conclusions from Table 8.6 follows:

• All pre-indexing load operations dispatch the calculated addresses ('a-(C-AI) at their

final stage (stage4) via W bus. If there is a write back to the register bank (IdrRB),

it is also carried out in stage4 while the address is being dispatched.

• All post-indexing load operations dispatch the addresses read from register bank

('a...Apipe...AI) directly to address interface via Apipe at stagel. A write back to

register bank is always associated with the post-indexing load operation, and carried

out at stage4 via W bus.

The corresponding CCS specification is given by combining the pre-indexing load with and

without write back together:

CNTR_LDR = isLDR_PRE1. ' gsO.ldrO. 'declP. ' gsl. ' psO.ldrl. ' decPC.

'gs2. ' psi . ldr2. ' gs3. 'ps2.ldr3.LDR_PRE_STAGE4

+ isLDR_PRE2. ' gsO. ' incK.ldrO. ' declP. ' gsi. 'psO.ldri. 'decPC.

'gs2. ' psi. 'decK.ldr2. ' gs3. ' ps2.ldr3.LDR_PRE_STAGE4

+ isLDR..PRE3. ' gsO. ' incS.].drO. ' declP. ' gsl. 'psO.ldri. 'decPC.

'gs2. ' psi. ' decS.ldr2. ' gs3. 'ps2.ldr3.LDFt_PRE_STAGE4

+ isLDR_PST1. ' gsO.ldrO. ' declP. ' gsi. 'psO.ldri. 'decPC. ' a_Apipe_AI.

'gs2. ' psi. ldr2. ' gs3. 'ps2.ldr3.LDR...PST_STAGE4

+ isLDR_PST2. ' gsO. ' incK.ldrO. ' declP. ' gsl. 'psO.].drl. ' decPC. ' a_Apipe_AI.

'gs2. ' psi. 'decK.ldr2. ' gs3. ' ps2.ldr3.LDR_PST_STAGE4

+ isLDR_PST3. ' gsO. ' incS.ldrO. ' declP. ' gsl. ' psO.ldri. ' decPC. ' a..Apipe_AI.

'gs2. ' psi. 'decS.ldr2. ' gs3. ' ps2.ldr3. LDR_PST_STAGE4

LDR...PRE_STAGE4 = 'gs4. ' ps3. ' gW. ('a..XC_AI. 'pW. ' ps4.CNTR_LDR

+ 'a_XC_AI.ldrRB. ' pW. 'ps4.CNTR_LDR)

LDR_PST_STAGE4 = 'gs4. ' ps3. ' gW.ldrflB. ' pW. ' p54.CNTR_LDR

The data transfer phase of load operations is carried out by the data interface which arbi-

trates with the execution unit for accessing the W bus.

8. EXECUTION PIPELINE 152

Store operation (STR)

Similar to load operations, major varieties of store operations summarized in chapter 5 are

also further classified according to the types of operands they take. Table 8.7 displays the

action sequences of typical store operations.

STR Operation StageO Stagel Stage2 Stage3 Stage4

STR Rd, [Rn, Rm] 'aXCAI

'declP 'decPC.'d.Dpipe_DI

STR Rd, [Rn, k] 'incK.'declP 'decPC.'dJDpipe.DI 'decK 'a.XCAI

STR Rd, [Rn, Rm<<s] 'incS 'decS 'a.XCAI

'declP 'decPC.'d.Dpipe_DI

STR Rd, [Rn, Rm]! 'ai(C.AI.strRB

'declP 'decPC.'d..DpipeDI

STR Rd, [Rn, k! 'incK.'declP 'decPC.'d.Dpipe..DI 'decK 'a.XCJJ.strRB

STR Rd, [Rn, Rrn<<s]! 'incS 'decS 'aJCCAI.strRB

'declP 'decPC.'d..Dpipe_DI

STR Rd, [Rn], Rm 'aApipe..AI strRB

'declP 'decPC.'d..Dpipe_DI

STR Rd, [Rn], k 'incK.'declP 'decPC.'a.Apipe_AI.

'dJDpipe.DI

'decK strRB

STR Rd, [Rn], Rm<<s 'incS 'a.Apipe_AI 'decS strRB

'declP 'decPC.'d..Dpipe_DI

TABLE 8.7. Store operation on execution

Unlike load operations, a store operation takes two execution cycles when both operands

are read from the register bank. The second cycle is used to dispatch data to the data

8. EXECUTION PIPELINE 153

interface ('d_Dpipe_DI) at stagel. In CCS we have

CNTR_STR1 = isSTR_PRE1_i. 'gsO.strl_O. ' gsi. 'psO.strl_l.

'gs2. ' psl.strl_2. ' gs3. 'ps2.stri_3.STR_PRE_STAGE4

+ isSTR_PRE2. ' gaO. ' incK.strO. 'declP. ' gal. ' psO.strl. ' decPC. '&.Dpipe_DI.

'gs2. ' psi. ' decK.str2. ' gs3. 'ps2.str3.STR_PRE_STAGE4

+ isSTR_PRE3_l. ' gsO. ' incS.strl_O. ' gal. 'psO.strl_l.

'gs2. ' psi. ' decS.strl_2. ' gs3. ' ps2.strl_3.STR_PRE_STAGE4

+ isSTR_PST1_1. 'gsO.strl_O. ' gal. ' psO.strl_l. ' a_Apipe_AI.

'gs2. ' psl.strl_2. ' gs3. ' ps2.strL3.STR_PST_STAGE4

+ isSTR_PST2 ' gaO. ' incK. ' declP.strO.

'gal. ' psO.strl. ' decPC. ' a_Apipe_AI. 'd_Dpipe_DI.

'ga2. ' psi. ' decK.str2. ' gs3. 'ps2.str3.STR_PST_STAGE4

+ isSTR_PST3_i. 'gaO. 'incS.strl_O. ' gsl. ' psO.stri..i. ' a_Apipe_AI.

'gs2. ' psi. ' decS.str2. ' gs3. 'ps2.str3.STR_PST_STAGE4

STR_PRE_STAGE4 ' gs4. ' pa3. ' gW. ('a_XC_AI. ' pW. 'ps4.CNTR_STR1

+ 'a_XC_AI . strRl3. ' pW. ' ps4.CNTR_STR1)

STR_PST_STAGE4 ' gs4. ' pa3. ' gW.strftB. ' pW. 'ps4.CNTR_STR1

CNTR_STR2 'gsO.str2_O. ' declP.gsl. ' pa0. ' decPC. ' d_Dpipe_DI.str2_l.

'gs2. ' psl.str2_2. ' gs3. ' ps2.str2...3. ' gs4. 'ps3. 'ps4.CNTR_STR2

The second cycle may start as soon as the first cycle completes its access to stageO and

releases it.

8. EXECUTION PIPELINE 154

Load/store multiple operation (LSM)

Load/store multiple operation is the most complex instruction class. It needs four execution

cycles to complete a load multiple and three execution cycles to complete a store multiple.

The first two cycles in the execution pipeline are identical for both load multiple and store

multiple, but they differ in the third and fourth cycles. Table 8.8 displays the action

sequences of these cycles.

LSM Operation StageD Stagel Stage2 Stage3 Stage4

cycle 1 'a..XC.AI

cycle 2 lsmRB

cycle 3 (isLDM ..ntE)* 'a_XC_AI

isLDMJsE

(isSTM ..ntE)* 'd_Dpipe_DI 'a..XC..AI

isSTMJsE.'declP 'decPC.'dDpipe_DI

cycle 4 'declP 'decPC . lsmRB

TABLE 8.8. Load/store multiple operation on execution

The interpretation follows:

• The first cycle always calculates the base address and dispatches it to address inter-

face via W bus at stage4 (' a.XC...Al).

• The second cycle always calculates the final address and dispatches it to register

bank via W bus at stage4 (IsmRB).

• The third cycle is carried out according to whether the operation is a load multiple

(isLDM) or a store multiple (isSTM), and whether this is the end of the transfer

(isE/ntE).

- If a load multiple is being executed, the address is dispatched to the address

interface via the W bus at stage4. This cycle loops until the end of the transfer

8. EXECUTION PIPELINE 155

is detected (isLDMJsE). The execution then moves on to the fourth cycle where

the PC value is released.

- If a store multiple is being executed, the data is dispatched to the data interface

via the Dpipe at stagel, and address is dispatched to the address interface via

the W bus at stage4. This cycle loops until the end of the transfer is detected

(isSTMJsE). The execution completes after the last store is finished, and the

PC value is released during the last transfer.

Cycle 4 is only executed for load multiple operation. During this cycle, either a

switch of mode or base recovery is carried out internally. For the switch of mode, the

current processor status register CPSR is updated with the contents in the relevant

stored program status register (SPSR) which specifies the new mode. For the base

recovery, the base value is reloaded after a data abort happens. The updated CPSR

value or the recovered base value is dispatched to the register bank via the W bus

at stage4.

In CCS we have:

CNTR_LSM1 = IsLSM.

'gsO.lsml_O. ' gsl. ' psO.].sml_l. ' gs2. 'psl.lsml_2.

'gs3. ' ps2.lsml_3. ' gs4. ' ps3. ' gW. ' a_XC_AI. ' pW. ' ps4.CNTR_LSM1

CNTR_LSM2 = ' gsO.1sm2_O. 'gsl. ' pO.1sm2_1. ' gs2. ' psl.lsm2_2.

'gs3. ' ps2.lsm2_3. ' gs4. ' ps3. ' gW.lsmRB. ' p14. 'ps4.CNTR_LSM2

CNTR_LSM3 = isLSM.(ntE.'gsO.1m3_O. 'gsl. ' psO.lsin3_1. ' gs2. ' psldsm3..2.

'gs3. ' ps2.].sm3_3. ' gs4. 'ps3. ' gW. ' a_XC_AI. 'p14. ' ps4.CNTR_LSM3

+isE. ' gsO.lsm3_O. ' gsl. ' psO.lsm3_1. ' gs2. 'psl.lsm3_2.

'gs3. ' ps2.lsm3_3. ' gs4. 'ps3. 'ps4.CNTR_LSM3)

+ isSTM.(ntE. ' gso.lsm3...O. ' gsl. ' psO. ' d_Dpipe_DI.lsm3..1. ' gs2. ' psl.lsin3_2.

'gs3. ' ps2.lsm3_3. ' gs4. 'ps3. 'gW. 'a....XC.AI. ' p14. ' ps4.CNTR_LSM3

+isE. ' gsO.lsm3.0. ' gsl. ' psO.lsm3_1. ' decPC. ' gs2. ' psl.lsm3_2.

'gs3. ' ps2.lsm3_3. ' gs4. 'ps3. 'ps4.CNTR_LSM3)

CNTR_LSM4 = ' gsO.lsm4_O. ' declP. ' gsl. ' psO.lsm4_1. ' decPC. ' gs2. ' psl.1sm4...2.

'gs3. ' ps2.lsm4_3. ' gs4. ' ps3. ' gW.lsiuRB. ' pW. 'ps4.CNTR_LSM4

8. EXECUTION PIPELINE 156

Swap operation (SWP)

The swap operation completes both a load and a store within one execution cycle. After

the address and the data have been dispatched via the Apipe and the Dpipe respectively,

the next instruction can be started. Table 8.9 displays the simple action sequences.

SWP Operation StageO Stagel Stage2 Stage3 Stage4

SWP Rd, Rn, Rm 'declP 'decPC.'a.Apipe.AI.'d.Dpipe_DI

TABLE 8.9. Swap operation on execution

During the execution, the address and the store data rendezvous at the memory interface

first. A load operation is then carried out followed by a store operation. In CCS we have:

CNTR_SWP isSWP. ' gsO.swpO. ' declP.

'gsl. ' psO.swpl. ' decPC. '&.Apipe_AI. ' d_Dpipe_DI. ' psl.CNTR_SWP

The data transfer phase of the load operation is carried out by the data interface.

Software interrupt operation (SWI)

The software interrupt operation is similar to the branch and link operation, but it takes

three execution cycles to complete. Table 8.9 displays the action sequences.

SWI Operation Stageo Stagel Stage2 Stage3 Stage4

cycle 1

cycle 2

cycle 3

p.XC.A1

swiRB

'deciP 'decPC swiRB

TABLE 8.10. Software interrupt operation on execution

Cycle 1 calculates the new PC value and dispatches it to address interface via W bus; cycle 2

saves the old CPSR contents in the relevant stored program status register SPSR by writing

it back to SPSR via W bus; cycle 3 saves the return address in R14 via W bus before the

exception happens. In CCS we have:

8. EXECUTION PIPELINE 157

CNTR_SWI1 = isSWI.

'gsO.swii_O. ' gsl. ' psO.swil_l. ' gs2. 'psl.swil_2.

'gs3. ' ps2.swil_3. ' gs4. ' ps3. ' gW..'p_XC_AI. ' pW. 'ps4.CNTR_SWI1

CNTR_SWI2 = 'gsO.swi2_O. ' gsl. ' psO.swi2_1. 'gs2. 'psl.sw12_2.

'gs3. ' ps2.sw12_3. ' gs4. ' ps3. ' gW.swiflB. 'pW. 'ps4.CNTR_SWI2

CNTR_SWI3 = 'gsO.swi3_O. ' declP. ' gsl. 'psO.swi3_1. ' decPC. ' gs2. ' psl.sw13_2.

'gs3. ' ps2.sw13_3. ' gs4. ' ps3. ' gW.swiRB. ' pW. 'ps4.CNTR_SWI3

8.4. Specification and Testing

For every instruction being executed, it is the responsibility of the decode unit to decide

the nature of the instruction. The execution of each instruction class is thus specified

by composing the control sequence described above together with the pipeline stages, the

additional pipeline registers, and the correspondilig decode information.

Instruction decode

Instruction decode is carried out in stageO. Although most instruction classes only need

one execution cycle (from stageO to stage4) to complete the execution, some instruction

classes require more than one cycle in the execution unit to complete. When more than one

execution cycle is needed, the following cycle enters the pipeline as soon as its preceding

cycle has cleared stageO. Timings between these execution cycles are also coordinated by

the decode unit. This is again carried out at stageO. In CCS we have

bi DEC

sDEC. ' gsO. (isMPY.DEC_MPY + IZADD.DEC_ADD + isfl.DEC_B

+ isBL.DEC_BL + isLDR.DEC_LDR + isSTR.DEC_STR

+ isLSM.DEC_LSM + isSWP.DEC_SWP + isSWI.DEC_SWI

bi DEC_MPY

iupyO. ' declP. ' sMPY.DEC

bi DEC-ADD

isADD1.addO. ' declP. ' sADDl.DEC

+ isADD2.addO. ' incK. ' declP. ' sADD2.DEC

+ isADD3.addO. ' incS. ' declP. ' sADD3.DEC

8. EXECUTION PIPELINE 158

bi DEQ.B

'incK. ' bo. ' declP. ' sB.DEC

bi DEC-BL

'incK.bll_O. ' sBLl. ' gsO.b12_O. ' declP. ' sBL2.DEC

bi DEC_LDR

isLDR_PRE1. idrO. 'declP. ' sLDR_PREl . DEC

+ isLDR_PRE2. ' incK.ldrO. ' declP. ' sLDR_PRE2.DEC

+ jsLDR_PRE3. ' incS.ldrO. ' declP. ' sLDR_PRE3.DEC

+ isLDRj'STl.ldrO. ' declP. ' sLDR_PSTl.DEC

+ isLDR_PST2. ' iricK.ldrO. ' declP. ' sLDR_PST2.DEC

+ isLDR_PST3. ' incS.].drO. ' declP. ' sLDR_PST3.DEC

bi DEC_STB.

isSTR_PRE1_1.strl_O. ' sSTR_PREl_l. ' gsO.str2_O. ' declP. ' sSTR2.DEC

+ isSTR_PRE2. ' incK.strO. ' declP. ' sSTR_PRE2.DEC

+ isSTRJ'RE3_1. ' incS.strl_O. ' sSTRJRE3_1. 'gsO.str2...O. ' declP. ' sSTR2.DEC

+ isSTR_PST1_1.strl_O. ' sSTR_PSTl_l. ' gsO.str2_O. ' declP. ' sSTR2.DEC

+ isSTR_PST2. ' incK.strO. ' declP. ' sSTR..PST2.DEC

+ isSTRjST3_1. ' incS.strl..O. ' sSTR_PST3_1. ' gsO.str2_O. ' dec11'. ' sSTR2.DEC

bi DEC_LSM

lsml_O. ' sLSMl. ' gsO.lsm2_O. ' sLSM2. (isLDM.DEC...LDM + isSTM.DEC_STM)

bi DEC...LDM

isLDM..isE. 'gsO.lsm3_O. ' sLDM..isE.'gsO.].sm4_O. 'declP. ' sLDM4.DEC

+ isLDM_ntE. 'gsO.lsm3_O. ' sLDM_ntE.DEC_LDM

bi DEC_STM

isSTM_isE. 'gsO.lsm3_O. ' declP. ' sSTM_isE.DEC

+ isSTM...ntE. ' gsO.lsm&.O. ' sSTM_ntE.DEC_STM

bi DEQ.SWP

swpO. 'declP. ' sSWP.DEC

8. EXECUTION PIPELINE 159

bi DEC_SWI

swil_O. ' sSWIi. ' gsO.sw12_O. ' sSWI2. ' gsO.swi3_O. ' declP. ' sSWI3.DEC

Instruction execution

The actual execution starts from stagel in the execution pipeline. The control sequences of

each instruction class are summarized here.

bi EXEC_MPY

sMPY. ' gsi. ' psO.mpyi. ' decPC. ' gs2. ' psi.inpy2.

'gs3. ' ps2.mpy3. ' gs4. ' ps3. ' gW.mpyRB. ' pW. 'ps4.EXEC_MPY

bi EXEC-ADD

sADDi. ' gsi. ' psO.addl. ' decPC. ' gs2. 'psl.add2. ' gs3. 'ps2.add3.ADD_STAGE4

• sADD2. ' gsl. ' psO.addl. ' decPC. ' gs2. ' psi. ' decK.add2. ' gsS. 'ps2.add3.ADD_STAGE4

+ sADD3. ' gsi. ' psO.addl. ' decPC. ' gs2. 'psi. ' decS.add2. ' gs3. 'ps2.add3.ADD_STAGE4

H ADD_STAGE4

'p4. 'ps3. ' gW. (addRB. 'pW. 'ps4.EXEC_ADD + 'p_XC_AI. 'pW.'ps4.EXEC_ADD)

bi EXEC_B

sB. ' gsl. ' psO.bi. ' decPC. ' gs2. ' psi. 'decK.b2.

'gs3..'ps2.b3. ' gs4. ' ps3. ' gW. 'p_XC_AI. ' pW. 'ps4.EXEC_B

bi EXEC_BLI

sELl. ' gsl. ' psO.b].l_l. ' gs2. ' psi. ' decK.bli_i.

'gs3. ' ps2.bll_3. ' gs4. ' ps3. ' gW. ' p_XC..AI. ' pW. ' ps4.EXEC...BL1

lxi EXEC_BL2

sBL2. ' gsl. ' psO.b12..i. ' decPC. ' gs2. 'psl.b12_2.

'gs3. ' ps2.b12_3. ' gs4. ' ps3. ' gW.blRB. ' pW. ' ps4.EXEC_BL2

bi EXEC_LDR

sLDR_PREi. ' gsl. 'psO.ldrl. ' decPC. ' gs2. ' psl.ldr2.

gs3. ' ps2. ldr3 . LDR_PRE_STAGE4

+ sLDR_PRE2. ' gsl. 'psO.ldrl. 'decPC. ' gs2. ' psi. ' decK.ldr2.

'gs3. ' p52.1dr3. LDR_PRE_STAGE4

+ sLDR_PRE3. ' gsi. 'psO1dr1. ' decPC. ' gs2. ' psi. ' decS.ldr2.

8. EXECUTION PIPELINE 160

gs3. ' ps2.].dr3. LDR_PRE_STAGE4

+ sLDELPST1. ' gsl. ' psO.ldrl. ' decPC. ' a_Apipe_AI. ' gs2. 'psl.ldr2.

gs3. ' ps2. ldr3. LDR_PST_STAGE4

+ sLDR_PST2. ' gsl. 'psO.ldrl. ' decPC. '&.Apipe_AI. ' gs2. ' psi. ' decK.ldr2.

'gs3. 'ps2.ldr3 . LDR_PST_STAGE4

+ sLDR...PST3. ' gsl. 'psO.ldrl. ' decPC. ' a_Apipe_AI. ' gs2. 'psi. ' decS.ldr2.

gs3. ' ps2. ldr3 . LPR_PST_STAGE4

bi LDR_PRE_STAGE4

'gs4. ' ps3. ' gW. (' a_XC_AI. ' pW. 'ps4.EXEC_LDR + 'a_XC_AI.ldrRfl. ' pW. ' ps4.EX.EC_LDR)

bi LDR_PST_STAGE4

'gs4. ' ps3. 'gW.ldrRB. 'pW. ' ps4.EXEC_LDR

bi EXEC_STR1

sSTR_PRE1_1

+ sSTR_PRE2

+ sSTRjftE3_1

+ sSTR_PST1_1

+ sSTR_PST2

+ sSTR_PST3_1

• ' gsi. ' psO.stri_l. ' gs2. 'psi.strl_2.

'gs3. 'ps2. strl_3 . STR_PRE_STAGE4

• ' gsi. ' psO.strl. ' decPC.'d_Dpipe_DI. ' gs2. ' psi. ' decK.str2.

gs3. ' ps2. str3 . STR_PRE_STAGE4

• ' gsl. ' psO.strl_i. ' gs2. ' psi. 'decS.strl_2.

gs3. ' ps2 . strl_3 . STR_PRE...STAGE4

• ' gsl. ' psO.str..l. ' a_Apipe_AI. ' gs2. 'psi.stri_2.

'gs3. 'ps2. stri_3 . STR...PST_STAGE4

'gsi. ' psO.stri. ' decPC. ' a_Apipe_AI. '&Dpipe_DI.

'gs2. ' psi. ' decK.str2. ' gs3. 'ps2.str3. STR_PST_STAGE4

• ' gsl. ' psO.stri_i. ' a_Apipe_AI. ' gs2. ' psi. ' decS.str2.

'gs3. ' ps2. str3 . STR_PST_STAGE4

bi STR_PRE_STAGE4

'gs4. ' ps3. ' gW. (' a_XC_AI. ' pW. 'ps4.EXEC_STRi + 'a_XC_AI.strRB. ' pW. ' ps4.EXEC...STR1)

bi STR_PST_STAGE4

'gs4. ' ps3. ' gW.strflB. 'pW. ' ps4.EXEC_STR1

bi EXEC_STR2

sSTR2. ' gsl. ' p50. ' decPC. '&.Dpipe_DI.str2_1. ' gs2. ' psl.str2_2.

'gs3. ' ps2.str2_3. ' gs4. ' ps3. 'ps4.EXEC_STR2

8. EXECUTION PIPELINE 161

bi EXEC_LSM1

sLSM1. ' gsl. ' psO.lsml_l. ' gs2. 'psl.lsml_2.

'gs3. ' ps2.lsml_3. ' gs4. ' ps3. ' gW. ' a_XC_AI. 'pW. 'ps4.EXEC_LSM1

bi EXEC_LSM2

sLSM2. ' gsl. ' psO.lsm2...1. ' gs2. 'psl.lsm2...2.

'gs3. ' ps2.lsxn2_3. ' gs4. 'ps3. ' gW.lsmRB. ' pW. 'ps4.EXEC_LSM2

bi EXEC_LSM3

sLDM_ntE. ' gsl. ' psO.lsin3_1. ' gs2. 'psl.lsm3_2.

'gs3. ' ps2.lsin3_3. ' gs4. ' ps3. ' gW. ' a_XC_AI. 'pW. 'ps4.EXEC_LSM3

+ sLDI4_isE. ' gsl. ' psO.lsm3_1. ' gs2. 'psl.lsm3_2.

'gs3. ' ps2.lsm3_3. ' gs4. 'ps3. 'ps4.EXEC_LSM3

+ sSTM_ntE. ' gsl. 'psO. 'd_Dpipe_DI.lsm3_1. ' gs2. 'psl.lsm3.2.

'gs3. ' ps2.lsm3_3. ' gs4. ' ps3. ' gW. ' a_XC_AI. ' pW. 'ps4.EXEC_LSM3

+ SSTM_iSE. ' gsl.'psO.lsm3_1.'decPC.'gs2.'psl.lsm3_2.

'gs3. ' ps2.lzm3..3. ' gs4. 'ps3. 'ps4.EXC_LSM3

bi EXEC_LDM4

sLDM4. ' gsl. ' psO.].sm4_1. ' decPC. ' gs2. 'ps11sm&.2.

'gs3. ' ps2.].sm4_3. ' gs4. 'ps3. ' gW.lsmRB. 'pW. ' ps4.EXEC_LDM4

bi EXEC_SWP

sSWP. ' gsl. ' psO.swpl. 'decPC. ' a_Apipe_AI. ' d_Dpipe_DI. 'psl.EXEC_SWP

bi EXEC_SWI1

sSWI1. ' gsl. ' psO.swil_l. ' gs2. 'psl.swil_2.

'gs3. ' ps2.swil_3. ' gs4. ' ps3. ' gW. ' p_XC_AI. ' pW. 'ps4.EXEC_SWI1

bi EXEC_SWI2

sSWI2. ' gsl. ' psO.swi2_1. ' gs2. 'psl.swi2_2.

'gs3. ' ps2.swi2_3. ' gs4. 'ps3. ' gW.swiRB. 'pW. ' ps4.EXEC_SWI2

bi EXEC_SWI3

sSWI3. ' gsl. ' psO.sw13_1. ' decPC. ' gs2. 'psl.swi3_2.

'gs3. ' ps2.sw13_3. ' gs4. 'ps3. ' gW.swiflB. 'pW. ' ps4.EXEC_SWI3

8. EXECUTION PIPELINE 162

Testing on the CWB

The testing here is concerned with how each individual instruction class is decoded and

then flows through the execution unit. Again, the load operation is used as an example to

demonstrate how testing is carried out.

(1) Testing load operation (LDR) for basic properties:

bi LDR

DEC I EXEC-LDR I PIPE I IMMpipe I SFTpipe I WBUS

\ { decK, decS, gW, gs0, gsl, gs2, gs3, gs4, incK, incS, pW, psO, psi, ps2,

ps3, ps4, sLDR_PRE1, sLDR.PRE2, sLDR.PRE3, sLDR_PST1, sLDR_PST2, sLDR_PST3 I

sort LDR

**{isLDR, isLDR_PRE1, isLDR_PRE2, isLDR_PRE3,isLDR_PST1 , isLDR_PST2, isLDR_PST3,

idrO ,].drl,ldr2,ldr3 , 1drRB,sDEC, ' a_Apipe_AI, ' a_XC...AI, ' declP, ' decPC}

min LDR

LDR'

**LDR' has 106 states.

(2) Testing load operation for desired safety and liveness properties:

(a) Deadlock free

Command: cp LDR'

Proposition: BOX <->T

**true

(b) Livelock free

Command: cp LDR

Proposition: - PUSS BOX <t>T

**true

(c) Pre-indexing load may or may not do a write back; post-indexing load always

performs write back, e.g.,

Command: cp LDR'

Proposition: BOX (CisLDR_PRE1] (POSS <1drRB>T))

**true

8. EXECUTION PIPELINE 163

Command: cp LORI

Proposition: BOX (CisLDR_PRE1] (EVENT <1drRB>T))

**false

Command: cp LORI

Proposition: BOX ([isLDR_PST1] (EVENT <1drRB>T))

**true

(d) While being executed, the instruction flows through the pipeline stages se-

quentially. None of the stages can be bypassed.

Command: cp LDR'

Proposition: NEC-FOR idrO idri

**true

Command: cp LORI

Proposition: NEC-FOR idri ldr2

**true

Command: cp LDR'

Proposition: NEC-FOR].dr2 ldr3

**true

Testing details for other instruction classes are similar to the testings of the load operation.

The testing complexity of each instruction class is tabulated in Table 8.11.

Instruction Class MPY ADD B BL LOR STR LSM SWP SWI

Minimized States 29 35 29 107 106 1226 1392 24 248

TABLE 8.11. Number of minimized states for each instruction class

8. EXECUTION PIPELINE 164

8.5. Summary

This chapter presents a register transfer level specification of the execution unit which is

another major floor plan module of AMULET1, abstracted in chapter 5. It details how

each instruction class flows through the execution pipeline stages and what is carried out

within each stage.

The main contributiori of this chapter is a systematic way of modeling an execution unit

succinctly and efficiently. The specification can be easily expanded/shrunk when more/less

pipeline stages are needed. It is a useful guide to system designers when organizing the

pipeline stages for execution efficiency, and to circuit designers for an actual implementation.

The model suggests that pipeline stage3 can be combined together with stage2 since none

of the instruction classes has any extraneous activity between these stages.

CHAPTER 9

Summary

9.1. History

The formal methods group at the University of Calgary started research on asynchronous

design and its formalization in 1991. Initial efforts focused on learning how to specify

concurrent systems and the intuition and techniques for checking their behaviour and prop-

erties [SABL93, LABS93, Liu92]. These techniques were applied to the specification and

verification of a library of standard cells and then to an "academic strength" prototype

processor, the Move Machine [BLS+94a, BLS+94b]. A four-phase Move Machine, based di-

rectly upon the CCS specifications, was successfully implemented by Tom Borsodi in 1993.

It functioned on the first silicon.

In January 1993, visitors from Manchester University introduced their AMULET1 design

and implementation work to Calgary. Compact (65,000-70,000 transistors) but of indus-

trial strength, AMULET1 seethed to be a worthy challenge for further investigating the

appropriateness of CCS to practical asynch.ronous systems. Further, Manchester Univer-

sity colleagues offered to sustain us with expert help and reciprocal visits from architects,

designers and ithplementors. This input was an essential part of any success we may have

achieved.

The modeling of AMULET1 was initiated in early 1993. It is a team effort between Dr.

Birtwistle and the author, with direct cooperation from the AMULET group in Manchester

University. Given the severity of the task, our initial plan was to specify and verify some of

the major functional units in AMULET1 which range in complexity from the straightforward

(e.g. the data interface, the memory interface, and the decoder) to the very complex (e.g.

165

9. SUMMARY 166

the register bank, the execution unit, and the address interface).

9.1.1. First Round Modeling

The first round modeling focused on the register transfer level specification of the major

functional units. We started with an early draft of Nigel Paver's PhD dissertation [Pav94]

which, amongst other things, gave a clear overall view of the architecture of AMULET1

as well as the organization of major functional units, but very little on the synchroniza-

tions which seem to be documented solely by their schematics. Since CCS concentrates

on synchronizations and ignores data values, we proceeded by understanding the data flow,

building a CCS model that reproduced our understanding, and then explaining the model to

Manchester colleagues - and iterating. The pictures and informal notations used through-

out this dissertation served this purpose well. They convert trivially into CCS, and can be

used as blueprints for actual implementations.

• Address interface

The address interface was the very first unit we specified. Unfortunately, it turned

out to be the hardest piece of hardware to understand since it is shared by several

users contending for access to the memory address register. This difficult task forced

us to devise a notation for communicating with the Manchester team in order to

extract the synchronization details from them [LBP94a]. The informal notation and

the block diagrams used in chapters 5-8 filled this role admirably.

• Register bank

Initial attempts on modeling the register bank failed because they were too state

rich - we included features of little consequence such as tracking both a and b

operands through the lock FIFO in parallel. The breakthrough came when we

found the abstractions described in chapter 4 which abstracted the lock FIFO down

to a counter [LBP94b]. At the end of this stage, our models were still very detailed

and very state rich. But we had the understanding that the register bank acted as

a delay and never as a constraint, and was ripe for further simplification.

9. SUMMARY 167

• Execution pipeline

Although it was clear at the beginning that the AMULET1 instructions could be

grouped into several typical classes, two models of the execution pipeline were ex-

plored [LBP94c] before we settled on the model presented in chapter 8.

The first "throw-away" model described in detail how each instruction class flows

through the pipeline, but only included hardware that was used by this particular

class. The effort was an essential first step to understand the execution detail of

each instruction class, but could not be composed because the hardware descriptions

were different for each class.

The second model attempted to overcome this difficulty by moving the instruction

classes through the same hardware. To reduce the rich number of states in the first

model, the pipeline stages were abstracted into "semaphores" that were seized and

released as an instruction moved down the pipeline. The, model was successfully

used when cothmunicating with the Manchester AMULET team for extracting the

execution details accurately.

• Simple modules

The memory interface, the data interface, and the decode unit were comparatively

simple and were modeled without much difficulty.

By the end of this phase, we had done much of the groundwork and achieved a good

level of understanding of how the major parts of AMULET1 worked in isolation. But it

became clear that a top-level model of the complete AMULET1 chip was needed in order

to understand how the individual functional units interacted and communicated with each

other. This was the major challenge in the second round of modeling.

9.1.2. Second Round Modeling

The second round of modeling started aiming at a very abstract specification that would

show how each instruction class flows through the hardware. This top level model made

little direct use of the detailed work completed in the first round modeling, but was made

much easier by the ground work completed.

9. SUMMARY 168

The first top level model [BL95] completed was very instructive and fulfilled its purpose

of giving us a very clear picture of how the floor plan elements interacted and it proved

to be an excellent teaching tool for passing on our understanding. However, it was far too

state rich to minimize a stand alone version of just the LDR operation on the complete

hardware.

More efforts were then made on finding higher abstractions. This work eventually led to

the model presented in chapter 5. These include the abstraction of the execution pipeline

by noting that each instruction class could be described as a "block" rather than a number

of phases at the top level, and the abstraction of conditional checking which covered colour

checking naturally. Even with these improvements, the model was still on the boundary df

the viable, and the visible trace variables have to be pared to a minimum. However, the

importance of this new model is that we now had a complete overview on where every signal

came from and could set up the complete tabulations of signals for each floor plan module.

9.1.3. Third Round Modeling

Based upon this top level modeling, the major floor plan modules were then reworked

at the register transfer level. During this round of modeling, we came to realize that

an abstract view of each floor plan module at the register transfer level was particularly

useful in understanding the implementation detail at this level. These abstractions present

intuitions behind the implementations. The register transfer level modeling of the register

bank, the address interface, the data interface, and the execution pipeline are presented in

chapters 4, 6, 7 and 8 respectively.

9.2. Contributions

This dissertation describes a systematic attempt to apply formal specification and ver-

ification techniques to a practical asynchronous design. A complex, industrial-strength,

asynchronous microprocessor, the Manchester AMULET 1 chip, was modeled with success

at both the top level and the register transfer level. The top level specification gives a clear

overview of how instructions circulate around the major floor plan modules and would be

a suitable level for modeling the processor in an embedded system. With the top level

9. SUMMARY 169

model making clear the roles and "contexts" of the floor plan modules, the register transfer

level models give good implementation guidance to circuit designers. State spaces were

minimized by simple abstractions of regular structures (e.g. incrementers, FIFOs) whose

implementation techniques are well known, and of highly irregular structures (e.g. the

decision call) whose implementations are efficiently supported by Stevens' automatic tool

[Ste94].

The contributions and conclusions of this dissertation include:

• This is the first time a complete, practical, asynchronous microprocessor has been

specified and verified. Although this is a post facto verification, we believe that the

systematic incorporation of formal specification and verification techniques into the

design cycle could shorten the overall design window and help reduce the probability

of fabrication iterations.

• The main value of the top level model is that it presents a good understanding of

the whole architecture, a very abstract view of major functional units, and most

importantly, how these functional units interact with each other. It has been used

to duplicate several of the well-known deadlocks of early versions of AMULET 1, but

has not uncovered any new design flaws. The succinct and efficient specifications

accurately captured the functionality details. They would also serve as guides to

system analysts and systems designers investigating AMULET1 embedded systems.

• The value of the abstract view of each floor plan module at the register transfer

level lies in that it abstracts away the clumsy implementatiofl details at this level

but retains an admirable intuition of those details. It is easily mapped into the

register transfer level design.

• The value of the register transfer level modeling for major functional units lies in

that it presents implementation details ready to be floor planned by circuit designers.

It is also mechanically easy for direct translation into CCS.

• The specifications were tested for freedom from deadlock, freedom from livelock,

and specific safety and liveness properties. These are very difficult to prove via

traditional simulation techniques. Property checking was demonstrated to be a fast

and efficient way, with full state coverage, of detecting specification flaws.

9. SUMMARY 170

• Throughout this specification and property checking work, CCS was demonstrated

to be an appropriate notation for specifying practical asynchronous systems. Even

with CCS, a very coarse specification language, the models are extremely state rich

and on the limit of what can be handled at the time of writing. Other specification

notations (CSP, value passing CCS, SCCS, ...) would generate even more states.

• The CWB was a robust and reliable tool for property checking and correctness

verification. However, its minimization algorithm is not particularly efficient and

what can be put through depends largely on the user's skill. The reduction theorem

was one of the keys to reduce the number of intermediate states during minimization.

Another key lies in choosing the right order to compose when minimizing - follow

the flow of data rather than a design hierarchy.

9.3. Future Work

The work presented in this dissertation suggests the following future research topics:

9.3.1. Applications

Although the specifications presented in this dissertation are tailored to a specific asyn-

chronous microprocessor, the methodology illustrated can be easily extended when more

functionality is added in. Useful applications include:

• design guidance for next generation AMULET chip;

• specification and verification of AMULET1 embedded asynchronous systems.

Further, the specification style is also applicable to general purpose asynchronous designs.

The specification and verification work presented in this dissertation is a post facto ap-

proach which was started after the design had been fabricated and well-tested. The system-

atic incorporation of formal specification and verification techniques into the above men-

tioned design cycles could shorten the overall design period and help reduce the probability

of fabrication iterations.

9. SUMMARY 171

9.3.2. Notation Formalization

Although CCS process algebra has demonstrated its appropriateness and efficiency in mod-

eling asynchronous designs at both the system level and the register transfer level, it is not

a notation specifically tailored to asynchronous systems. In this dissertation, informal nota-

tions were used at both levels of specifications before the actual codes in CCS are presented.

These intermediate notations are found to be both intuitive and expressive. The formaliza-

tion of these notations into an extension of CCS targeted at the modeling of asynchronous

hardware would be useful.

9.3.3. CCS Based Silicon Compilation

The specifications presented in this dissertation, especially the register transfer level specifi-

cations, demonstrate a direct map to the practical implementation. A CCS based compiler

that translates specifications in CCS into asynchronous circuits seems to be feasible.

There have been several prototype silicon compilers for asynchronous circuit design using

a variety of CSP based notations, including the CHP compiler by Martin and his col-

leagues [Mar86, Bur87, Mar90], the Tangram compiler by van Berkel and his colleagues

[vBS88, NvBRS88], and the OCCAM complier by Brunvand [Bru9l]. However, none of

these compilers consider the formal verification of a design. By integrating the macro-based

property testing mechanism, a CCS based silicon compiler could help put the design of asyn-

chronous systems on a firm formal basis. The structure of the proposed silicon compiler is

illustrated in Figure 9.1.

Property
Testing

9. SUMMARY

Behavioral Description

I

Verification

Specification
in CCS

translating

Label Transition
System

Proof of
Optimization

converting

Netlist

I!
VLSI Layout

Optimization

FIGURE 9.1. Silicon compilation based upon CCS

172

In this compiler, CCS process algebra is used as the programming notation for design

specifications, a translator takes the specifications in CCS to an intermediate label transition

system, and a converter takes the intermediate notation down to circuit netlist (e.g. FPGA

netlist) which is ready for layout. The major supporting tools of this compiler include

property testing of the specification, correctness verification of the translation procedure,

optimization of the direct translation results, and also the proofs of these optimizations.

Bibliography

[ANB91J J. Aldwinckle, R. Nagarajan, and G. Birtwistle. An Introduction to Modal

Logic and its Applications on the Concurrency Workbench. Technical Report,

Computer Science Department, University of Calgary, 1991.

[BE9O] J. Brzozowski and J. Ebergen. On the Delay-Sensitivity of Gate Networks.

Technical Report 90-5, University of Eindhoven, 1990.

[BL95] G. Birtwistle and Y. Liu. Specification of the Manchester AMULET1: Top

level. Computer Science Department Technical Report, University of Calgary,

January, 1995.

[BLS94a] G. Birtwistle, Y. Liu, D. Spooner, J.Aldwinckle, K. Stevens, and W. Yu. Case

Studies in Asynchronous Design. Part I: AMM - Asynchrounous MOVE Ma-

chine. Computer Science Technical Report, University of Calgary, 1994.

[BLS94b] G. Birtwistle, Y. Liu, D. Spooner, J.Aldwinckle, K. Stevens, and W. Yu. Case

Studies in Asynchronous Design. Part II: a 4 stroke AMM. Computer Science

Technical Report, University of Calgary, 1994.

[Bre75] J. G. Bredeson. Synthesis of Multiple-input Change Hazard-free Combina-

tional Switching Circuits without Feedback. International Journal of Electron-

ics (GB), 39(6):615-624, December 1975.

[Bru91] E. Brunvand. Translating Concurrent Communicating Programs into Asyn-

chronous Circuits. PhD thesis, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA, 1991.

173

BIBLIOGRAPHY 174

[BS89] E. L. Brunvand and R. F. Sproul. Translating Concurrent Programs into Delay-

insensitive Circuits. In IEEE International Conference on Computer-Aided De-

sign, pages 262-265, Los Alamitos, CA, 1989. IEEE Comput. Soc. Press.

[Bur87] S. Burns. Automated Compilation of Concurrent Programs into Self-timed Cir-

cuits. MSc Thesis, Caltech, 1987.

[CPB9O] R. Cleaveland, J. Parrow, and B.Steffen. The Concurrency Workbench. In

J. Sifakis, editor, Automatic Verification Methods for Finite State Systems,

LNCS 407, pages 24-37. Springer Verlag, 1990.

[Dam90] M. Dam. Translating CTL into the Modal -calculus. Technical Report ECS-.

LFCS-90-123, Department of Computer Science, University of Edinburgh, Ed-

inburgh, 1990.

[DCS93] A. Davis, B. Coates, and K. Stevens. The Post Office Experience: Designing a

Large Asynchronous Chip. In Proceedings of the 26th Annual Hawaii Interna-

tional Conference on System Science, pages 409-418, Honolulu, 1993. IEEE.

[Dea92a] M.E. Dean. STRIP: A Self-timed RISC Processor Architecture. PhD thesis,

Stanford University, 1992.

[Dea92b] D. Dobberpuhi and et al. A 200-MHz 64-b Dual Issue CMOS Microprocessor.

IEEE Journal of Solid-State Circuits, 27(11):1555-1565, November 1992.

[Di189] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-

Independent Circuits. MIT Press, Cambridge, Massachusetts, 1989.

[DN95] A. Davis and S. Nowick. Introduction. In G. Birtwistle and A. Davis, editor,

Proceedings VII Banff Workshop: Asynchronous Digital Circuit Design, pages

1-49. Springer Verlag, Workshops in Computing Series,. 1995.

[DNS92] D. Dill, S. Nowick, and C. Sproull. Specification and Automatic Verification of

Self-timed Queues. Formal Methods in Systems Design, 1(1):30-60, 1992.

[Ebe87J J. C. Ebergen. Translating Programs into Delay-Insensitive Circuits. PhD the-

sis, Eindhoven University of Technology, 1987.

[Ebe91] J. C. Ebergen. A Formal Approach to Designing Delay-Insensitive Circuits.

Distributed Computing, 5(3):107-119, 1991.

BIBLIOGRAPHY 175

[Ebe93] J. C. Ebergen. A Verifier for Network Decompositions of Command-based Spec-

ifications. In Proceedings of the Twenty-Sixth Annual Hawaii International Con-

ference on System Sciences, pages 310-318. IEEE Computer Society Press,

1993.

[EG91] J. C. Ebergen and S. Gingras. An Asynchronous Stack with a Constant Re-

sponse Time. Tech Report, Department of Computer Science, University of

Waterloo, 1991.

[FDG93] S.B. Furber, P. Day, J.D. Garside, N.C. Paver, and J.V. Woods. A Mi-

cropipelined ARM. In T. Yanagawa and P.A. Ivey, editor, Proceedings of the

IFIP TC 10/WG 10.5 International Conference on Very Large Scale Integration

(VLSI'93). North Holland, 1993.

[FDG+94] S.B. Furber, P. Day, J.D. Garside, N.C. Paver, and J.V. Woods. AMULET1: A

Micropipelined ARM. In Proceedings of the IEEE Computer Conference, March

1994.

[Fur89] S. Furber. VLSI RISC Architecture and Organisation. Marcel Dekker, Amster-

dam, 1989.

[Fur95] S. Furber. Computing without Clocks: Micropipelining the ARM Processor. In

G. Birtwistle and A. Davis, editor, Proceedings VII Banff Workshop: Asyn-

chronous Digital Circuit Design, pages 211-262. Springer Verlag, Workshops in

Computing Series, 1995.

[GA92] G. Gopalakrishnan and V. Akella. VLSI Asynchronous Systems: Specification

and Synthesis. Microprocessors and Microsystems, 16(10) :517-526, 1992.

[Gar93] J. D. Garside. A CMOS VLSI Implementation of an Asynchronous ALIJ. In S.B.

Furber and M.D. Edwards, editors, IFIP Working Conference on Asynchronous

Design Methodologies, North Holland, 1993. M. D. Publisher.

[Gin91] M. Ginns. Archimedes Assembly Language. Dabs Press, 1991.

[Hau95] S. Hauck. Asynchronous Design Methodologies: An Overview. Proceedings of

the IEEE, 83(1), Janauary 1995.

BIBLIOGRAPHY 176

[HJBG81] J. Hennessy, N. Jouppi, F. Baskett, and J. Gill. MIPS: A VLSI Processor Ar-

chitecture. In Proceedings of the CMU Conference on VLSI Systems and Com-

putations. Computer Science Press, 1981.

[11M80] M. Hennessy and R. Milner. On Observing Nondeterminism and Concurrency.

In Lect. Notes in Computer Science 85. Springer, 1980.

[11M85] M. Hennessy and R. Milner. Algebraic Laws for Nondeterminism and Concur-

rency. J. Assoc. Comput. Mach., 32:137-161, 1985.

{11oa78] C. A. R. Hoare. Communicating Sequential Processes. Communications of the

ACM, 21:666-677, 1978.

[boa8l] C. A. R. Hoare. A Model for Communicating Sequential Processes. Technical

Report, PRG-22, Programming Research Group, Oxford University Computing

Laboratory, Oxford, England, 1981.

[Koz83] D. ICozen. Results on the Propositional s-calculus. Theor. Comp. Sci., 27:333—

.354,1983.

[Kun92] D. S. Kung. Hazard-non-increasing Gate-level Optimization Algorithms. In Pro-

ceedings of the IEEE/ACM International Conference on Computer-Aided De-

sign, pages 631-634. IEEE Computer Society Press, November 1992.

[LABS93] Y. Liu, J. Aldwinckle, G. Birtwistle, and K. Stevens. Testing the Consequences

of Specifications in modal ji. In Proceedings of Canadian Conference on Elec-

trical and Computer Engineering, Vancouver, 1993.

[LBP94a] Y. Liu, G. Birtwistle, and N. Paver. Specification of the Manchester AMULET1:

Address Interface. Computer Science Department Technical Report, University

of Calgary, April, 1994.

[LBP94b] Y. Liu, G. Birtwistle, and N. Paver. Specification of the Manchester AMULET1:

Register Bank. Computer Science Department Technical Report, University of

Calgary, June, 1994.

[LBP94c] Y. Liu, G. Birtwistle, and N. Paver. Specification of the Manchester AMULET1:

Execution Pipeline. Computer Science Department Technical Report, Univer-

sity of Calgary, June, 1994.

BIBLIOGRAPHY 177

[LD94] B. Lin and S. Devadas. Synthesis of Hazard-free Multi-level Logic under

Multiple-input Changes from Binary Decision Diagrams. In Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, pages 542-

549. IEEE Computer Society Press, November 1994.

[Liu92] Y. Liu. Reasoning about Asynchronous Designs in CCS. MSc Thesis, Depart-

ment of Electrical and Computer Engineering, University of Calgary, 1992.

[Mar85] A. Martin. Distributed Mutual Exclusion on a Ring of Processes. Science of

Computer Programming, 5:265-276, 1985.

[Mar86] A. J. Martin. Compiling Communicating Processes into Delay-Insensitive VLSI

Circuits. Distributed Computing, 1:226-234, 1986.

[Mar90] A. J. Martin. Programming in VLSI: From Communicating Processes to Delay-

Insensitive Circuits. In C. A. R. Hoare, editor, Developments in Concurrency

and Communication, New York, 1990. Addison-Wesley.

[MBL89] A. J. Martin, S. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus. The De-

sign of an Asynchronous Microprocessor. In C. L. Seitz, editor, Proc. Decennial

CalTech Conference on VLSI. MIT Press, 1989.

[MCS94] A. Marshall, B. Coates, and P. Siegel. The design of an asynchronous commu-

nications chip. IEEE Design and Test, June, 1994.

[Mil83] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Sci-

ence, 25:267-310, 1983.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, London, 1989.

[Mol91] F. G. Moller. The Edinburgh Concurrency Workbench, Version 6.0. Tech Re-

port, Computer Science Department, University of Edinburgh, 1991.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive Systems: specification.

Springer-Verlag, New York, 1992.

[MT89] F. Moller and C. Tofts. A Temporal Calculus of Communicating Systems. Tech-

nical Report ECS-LFCS-89-104, Department of Computer Science, University

of Edinburgh, Edinburgh, 1989.

[ND92] S. Nowick and D. Dill. Exact Two-level Minimization of Hazard-free Logic with

Multiple-input Changes. In Proceedings of the IEEE/ACM International Con-

BIBLIOGRAPHY 178

ference on Computer-Aided Design, pages 626-630. IEEE Computer Society

Press, November 1992.

[NDDH92] S. Nowick, M. Dean, D. Dill, and M. Horowitz. The Design of a High-

Performance Cache Controller: a Case Study in Asynchronous Synthesis. In

Proceedings of the Twenty-Sixth Annual Hawaii Internatioanl Conference on

System Sciences, volume 1, Hawaii, 1992.

[NvBRS88] C. Niessen, C. H. van Berkel, M. Rem, and Ronald W.J.J. Saeijs. VLSI pro-

gramming and silicon compilation: a novel approach from Philips Research. In

Proc ICCD, New York, 1988.

[Pav94] N. C. Paver. The Design and Implementation of an Asynchronous Micropro-

cessor. PhD thesis, Computer Science Department, University of Manchester,

1994.

[PDF+92] N. C. Paver, P. Day, S. B. Farber, J. D. Garside, and J. V. Woods. Register

Locking in an Asynchronous Microprocessor. Proceedingd of ICCD'92, pages

351-355, October 1992.

[PS81] D. Patterson and C. Sequin. RISC I: A Reduced Instruction Set VLSI Com-

puter. In Proceedings of the 8th Annual Symposium on Computer Architecture,

ACM SIGARCH CAN, 1981.

[Rad83] G. Radin. The 801 Minicomputer. IBM Journal of Research and Development,

27(3), May 1983.

[RdSU83] M. Rem, J.L.A.van de Snepscheut, and J.T. Udding. Trace Theory and the

Definition of Hierarchical Components. In R. Bryant, editor, Proceedings of the

Third Caltech Conference on VLSI, pages 225-239, 1983.

[RKDV92] J. Roy, N. Kumar, R. Dutta, and R. Vernuri. DSS: A Distributed High-Level

Synthesis System. IEEE Design and Test of Computers, 9(2):18-32, 1992.

[SABL93] K. Stevens, J. Aldwinckle, G. Birtwistle, and Y. Liu. Designing parallel spec-

ifications in CCS. In Proceedings of Canadian Conference on Electrical and

Computer Engineering, Vancouver, 1993.

BIBLIOGRAPHY 179

[Ste94] K. Stevens. Practical Verification and Synthesis of Low Latency Asynchronous

Systems. PhD Thesis, Computer Science Department, University of Calgary,

1994.

[Sti91a] C. Stirling. Modal and Temporal Logics. Tech Report ECS-LFCS-91-157, Labo-

ratory for the Foundations of Computer Science, Computer Science, University

of Edinburgh, 1991.

[Sti91b] Colin Stirling. , An Introduction to Modal and Temporal Logics for CCS. In

A. Yonezawa and T. Ito, editors, Concurrency: Theory, Language, and Archi-

tecture, number 491 in LNCS, pages 2-20. Springer-Verlag, 1991.

[Sti92] C. Stirling. Modal and Temporal Logics for Processes. Tech Report ECS-LFCS-

92-221, Laboratory for the Foundations of Computer Science, Computer Sci-

ence, University of Edinburgh, 1992.

[Sut89] I. E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720-738,

1989.

[Ung69] S. H. Unger. Asynchronous Sequential Switching Circuits. John Wiley & Sons,

Inc., New York, 1969.

[vb93] K. van berkel; Handshake Circuits. Cambridge University Press, 1993.

[vBS88] C. H. van Berkel and Ronald W.J.J. Saeijs. Compilation of Communicating

Processes into Delay-insensitive Circuits. In IEEE Internal Conference on Com-

puter Design: VLSI in Computers &4 Processors, pages 157-162, 1988.

[vSA94] A. van Someren and C. Atack. The ARM RISC Chip: A Programmer's Guide.

Addison Wesley, 1994.

[WH91] Ted E. Williams and Mark A. Horowitz. A zero-overhead self-timed 160-ns 54-b

cmos divider. IEEE Journal of Solid-State Circuits, 26(11):1651-1661, Novem-

ber 1991.

