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ABSTRACT

Spatially-structured predator-prey models with simple local population dynamics (i.e.
the neutrally stable Lotka-Volterra model) predict spatial population heterogeneity and
stability only when environmental heterogeneity is present. When the local population
model con‘ains biologically realistic features of predators and prey (the Rosenzweig-
MacArthur model), spatial structure affects dynamics similarly in heterogeneous and
homogeneous environments. This model was tested using the Ceriodaphnia-algal
interaction with systems consisting of two aquaria in which mixing of algae was manipulated
along with heterogeneity in light intensity (which affects the algal carrying-capacity). As
predicted by theory, spatial pattern in prey density and depressed Ceriodaphnia birth rates
were observed in both heterogeneous and homogeneous environments. Partial failure of
the model to predict differences among treatments in equilibria, and relationships between
Ceriodaphnia birth rate and prey density, might be explained if the Ceriodaphnia birth rate
was density-dependent, and evidence of this structural theory is provided.
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Overview of Chapters

Spatial structure can have a large effect on predator-prey interactions. Two features
which have been shown to affect spatially-structured populations in theory are the degree
of connectedness of local populations and the amount of spatial environmental variability.
Chapter 1 reviews some of the theoretical research that has been done on the effects of
these two factors.

Chapter 2 describes a model and provides original analyses of the situation where
local dynamics posses a moderate amount of biological realism (the Rosenzweig-MacArthur
model) and spatial structure is incorporated in a way which can be replicated precisely in
an experimental setting. The chosen spatial structure has complete mixing of the predator
population between two patches and complete isolation of the prey population in the two
patches. The model describing this system is compared to the case where both prey and
predator are completely mixed over both patches. The comparison is made both in the
presence and in the absence of environmental heterogeneity in the prey growth rate. A
number of very interesting predictions about spatially-structured predator-prey interactions
are developed from this analysis.

Chapter 3 provides necessary information required to test the model in a specific
experimental system, which has Ceriodaphnia dubia as the predator and a multi-species
assemblage of algae as the prey. The expected equilibria for spatially structured and
unstructured experimental systems are determined from detailed information on the biology
of Ceriodaphnia, and algae-only systems of the experiment. As well, specific predictions
about the effect of spatial structure on the relationship between algal density and the
Ceriodaphnia birth rate are derived, and methods to test these predictions are described.

Chapter 4 presents the experiment and resuits which test the predictions developed
in the previous chapters. The movement of individuals in the experiment is precisely
controlled and corresponds directly to the representation of spatial structure incorporated
into the models of the previous chapters. Although fundamental predictions are realized
there are a number of deviations from predictions that, because the spatial structure has
been so carefuily controlled, must arise because fundamental features of the biology of the
interacting populations have not been accurately represented in the model. A description
of the decessary properties of these features is given.



CHAPTER ONE: Two-Patch Predator-Prey Models

INTRODUCTION

The earliest models describing predator-prey interactions assumed that populations
were mixed and that interaction rates were determined by the law of mass action. In real
populations, individuals do not mix over the entire range of the population and mass action
is only expected to occur locally. in this case, it is useful to think of the population as a
group of local populations (sub-populations or patches), whether they are spatially isolated
or not, for which the law of mass action holds for each well mixed iocal population. The
population is then a metapopulation or a group of local populations. Dynamics of local
populations are dictated by migration, colonization or dispersal, in addition to the usual
processes described for isolated, well mixed, populations. Metapopulation dynamics arise
from the sum of the dynamics of these local populations.

Currently, the term metapopulation has been primarily used to describe systems
where individual sub-populations are destined to become extinct (i.e., there is no population
regulation at a local scale), and when migration is rare enough that it is only important
when an empty region of habitat is colonized (Hanski and Simberloff, 1997). In these
cases, within-patch dynamics need not be modelled explicitly and the number or proportion
of patches in a given state (ie. populated or extinct) is described by the model equations.
The term metapopulation was first coined to describe such a system by Levins (1969).
The definition of metapopulation however, accurately describes a large range of possible
spatial structures and dynamics, and a number of other model formulations could easily be
considered metapopulations. In many spatially structured models, the balance between
independence and connectedness of local populations can give rise to dynamics at the
“metapopulation scale” that are not present for a single isolated local population and can
be similar for a variety of methods of modelling spatial structure (Taylor, 1988).

My thesis focuses on spatially structured predator-prey systems where: (1) local
populations occupy discrete patches, (2) migration is common and can be described by per
capita rates, (3) “within patch” dynamics are modelled explicitly, and (4) isolated patches,
although they may show unstable dynamics, do not go extinct. This chapter reviews some
aspects of theory for this type of metapopulation for predator-prey interactions and
describes some examples that are relevant to this thesis.

If local populations all have equal densities at ali times then a non-metapopulation
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(spatially unstructured) model is sufficient to describe dynamics. Heterogeneity, or pattern,
in prey and predator density can arise from internal or external mechanisms. If isolated
populations diverge from one another when they have identical starting densities or if per
capita migration rates are different among patches, then an external source of
heterogeneity is present. Internal sources of heterogeneity include fixed differences in the
environment between patches which give rise to variation in prey or predator vital rate
parameters (Nisbet, Briggs, Gurney, Murdoch, and Stewart-Oaten, 1992), stochasticity in
vital rates which is independent between patches (Reeve, 1988), or bias in migration
between patches (Nisbet et al., 1992). If isolated patches have identical dynamics, and
migration is not density-dependent or biased, but heterogeneity in prey or predator density
can be maintained among linked patches, then the source of this heterogeneity must be
internal. When there is more than a single isolated patch, there may be dynamics possible
where population densities are notequal in all patches simply because the local populations
are somewhat independent. The mechanisms which allow pattern to persist through time
without an external source of heterogeneity may be system-specific. The delays inherent
in discrete time models can produce spatially non-static but persistent pattern (Hassell,
Comins, and May, 1992; Adler, 1993). If there is sufficient non-linearity in vital rate
functions then a number of different patterns of prey distribution can result in an equilibrium
in predator and prey densities (de Roos, McCauley, and Wilson, 1998).

When a source of heterogeneity is present, dynamics will always have the potential
to be different from those observed in a single isolated patch. Inthe case where the source
of heterogeneity is internal, the solutions for the singie population model are still present
for the metapopulation model and occur when initial conditions in all local populations are
identical. Because alternative solutions exist in the metapopulation model, there is also the
possibility that dynamics of the metapopulation model are more stable than those of the
corresponding non-metapopulationmodel. Stability is expectedto arise because population
trajectories of local populations are somewhat independent. Because of this, migration
serves as a form of density-dependence where the net emigration rate from a local
population tends to be high if the local population has high density, and negative if it has
low density (Nisbet et al. 1992). In addition to this effect, independence of local populations
tends to make the fluctuations in average density for the metapopulation less than they are
in any local population. Therefore, when single population dynamics are unstable and
metapopulation dynamics are stabie, stability usually takes on one of two forms. Local
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populations may display approximately the same dynamics as mixed systems but patches
(or regions) are asynchronous and therefore the metapopulation is more stable (de Roos,
McCauley and Wilson, 1991 for a system without explicit patches; Hassel et al., 1992).
Alternatively, dynamics at a local scale may become more stable and different among
patches (Nisbet et al., 1992; de Roos et al., 1998).

Both internal and external sources of heterogeneity are observed in natural
populations and therefore it is important to understand how they affect metapopulation
dynamics individually and how they interact. The effect of external heterogeneity is
relatively easy to understand. Differences in the environment among patches cause a
difference in parameter values between patches which results in a cascade of effects: (1)
different dynamics at a local scale, (2) interactions between local populations, and (3)
metapopulation dynamics. When only internal sources of heterogeneity are present, the
factors which give rise to differences in local dynamics may be difficult to identify. In the
next section, two examples of predator-prey metapopulation models are given. Inthe first,
metapopulation dynamics are primarily dictated by an external source of heterogeneity in
the prey per capita growth rate. In the second example, there is no external heterogeneity
and heterogeneity can arise solely from non-linearities in the vital rate functions. These
examples, along with the model studied in Chapter 2, form a theoretical foundation for the
experiment that is the topic of Chapter 4 which contrasts metapopulation and non-
metapopulation dynamics both when an external source of heterogeneity is present and
when it is absent. All models described here are shown in Table 1.1.

The experimental system that | have chosen has the fresh water herbivore
Ceriodaphnia as the predator (C) and algae as the prey (A). Nisbet, McCauley, Gurney,
Murdoch, and de Roos (1997) have shown that despite the fact that Cladocera, such as
Ceriodaphnia, have size structured populations, several characteristics of their dynamics
may be captured by the Rosenzweig-MacArthur model, which is a Lotka-Volterra type
model with logistic growth of the prey, a type Il functional response of the predator, and
constant conversion efficiency of ingested food by predators.

In nature, Ceriodaphnia move over much larger distances than their algal prey
(Cuddington and McCauley, 1994). Thus, the prey migration rate will be much less than
the predator migration rate in the experiment. There is one superior choice of prey and
predator migration rates. Consider the following experimental design. The control system
(a system with no metapopulation structure) could consist of two habitat patches with
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complete mixing of predators and prey between the two patches. The metapopulation
systems would have the migration rate of prey and predator lowered to finite values. If only
the prey population had reduced mixing then this would give a better understanding of
metapopulations, because only one factor differed between the metapopulation and non-
metapopulation systems. Prey mixing could actually be reduced to zero. In this case, the
model describing population dynamics does not appear to be a metapopulation model
because migration is not present. There would be a single well-mixed predator population
feeding on two isolated prey populations. However, prey would still be linked through their
common predator, and the behavior of this model would probably be very similar to the
case where prey have a low rate of diffusive migration and predators have a high rate of
diffusive migration. The model of this special case will be referred to as a “separation of
scales” model, but because it is not fundamentally different from metapopualtion models,
it will be considered a metapopulation model.

The model for Ceriodaphnia has an internal source of heterogeneity, the
nonlinearities in prey growth and predator ingestion rates, however, external sources of
heterogeneity are also of interest. In order to develop a more complete understanding of
these factors, the equilibria and local stability of metapopulations with two patches will be
described. First the dynamics of a model with a weak internal source of heterogeneity (the
Lotka-Volterra model) is described when external heterogeneity is absent or present. Next
the dynamics of a model with a strong internal source of heterogeneity (the Rosenzweig-
MacArthur model) is studied. In both models, the case where predators are mixed over
both patches is compared to the case where predator migration is finite and diffusive. In
Chapter 2, the model with a strong internal source of heterogeneity is studied when there
is also external heterogeneity.

METHODS

Some of the results presented here are taken from the literature but in many cases
additional analysis was needed. Linear stability analysis was used to determine the
dynamics near equilibria. This technique uses a linear approximation of the model to
determine whether small deviations from an equilibrium decay or grow over time. This can
be determined from the eigenvalues of the coefficient matrix of the linearized model. If all
of the eigenvalues of the coefficient matrix have negative real parts then the equilibrium is
locally stable. If the eigenvalues cannot be determined explicitly then the Routh-Hurrwitz
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criteria (for the coefficients of the characteristic equation of the coefficient matrix) for
stability can be used. For a more in depth description of this technique see Gurney and
Nisbet (1998) or May (1973). MAPLE V Release 3 (Waterloo Maple Software and the
University of Waterloo) was used for algebraic manipulations. All of the local stability
analyses for this chapter are given in Appendix 1.

In some cases, the expressions for the equilibria or the stability criteria were too
difficult to evaluate. In this event, the stability boundaries in parameter space were
determined using CONTENT (CONTinuation EnvironmeNT, Yu. A. Kuznetsov and V.V.
Leviten, Centrum voor Wiskcunde en Informatica (CWI)). This program computes
eigenvalues of the model and identifies special points where eigenvalues or functions of
eigenvalues and equilibrium values change sign. A more detailed description of the
methods used by this program is given in Kuznetsov (1995).

For the “separation of scales” models, the effect of mixing occurring once daily
rather than continuously was investigated using STAMS SOLVER (University of
Strathclyde). This program uses a fourth order Runge-Kutta method of integration to
produce the trajectory of the state variables over time. It also allows for state variables to
be periodically reset. No effect of a periodic mixing interval on qualitative aspects of the
equilibria and their stability was found, and therefore only the results of the models with
continuous mixing are given.

RESULTS AND DISCUSSION
Lotka-Voliterra Model

The Lotka-Volterra model has a constant prey per capita birth rate and a linear
functional response of the predator. This model has a neutrally stable equilibrium. The
system oscillates with an amplitude which is dependent on initial conditions.

When the Lotka-Volterra model is used as the “within patch” model for a two-patch
metapopulation model with diffusive migration and heterogeneity in the prey growth rate,
the dynamics are quite different. There are three possible equilibria with predators present,
which can be distinguished by the equilibrium prey density in each patch (Table 1.2): (1)
positive prey density in both patches, (2) prey density zero in one patch, and (3) prey
density zero in the other patch. In the equilibrium with positive prey density in both patches,
the prey and predator density are higher in the patch with the higher prey growth rate. The
average prey density is lower than in the non-metapopulation mode! and the equilibrium
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predator densities are the same as they would be if the patches were isolated. This
equilibrium is always stable as long as population densities in each patch are positive
(Table 1.2). The difference between the prey densities increases with migration rate, but
if the migration rate is too high then one of the prey densities may become negative. Inthis
case, the equilibrium with the zero prey density in the patch with the lower prey growth rate
is stable. The alternative equilibrium, where prey density is zero in the patch with higher
prey growth rate, is always unstable (Table 1.2). This model was studied by Nisbet et al.
(1992) and it was shown that the rate of damping of fluctuations increases with the degree
of asynchrony in density between patches, which in turn increases with the degree of
heterogeneity in the growth rates. They show that when prey density is somewhat
independent between patches, this can introduce spatial density-dependence and stability.

Although one of the equilibria of the diffusive metapopulation model is always stable
even for a high predator migration rate, the corresponding equilibrium of the “separation of
scales” model is always unstable. One of the conditions for stability of the diffusive model
is that the predator density in the high growth rate patch is greater than in the low growth
rate patch. It can be seen from the equilibria in Table 1.2 that for a finite migration rate this
condition is always satisfied, but as the migration rate increases, the predator density
approaches equality in the two patches. This is confirmed in the stability analysis of the
equilibrium for the “separation of scales” model (Appendix 1). The system is neutrally
stable, like its non-metapopulation counterpart. The stability analysis also shows, however,
that some component of the deviation from equilibrium of the initial conditions decays away
at a rate thatis proportional to the difference between the prey growth rates.

External sources of heterogeneity can have a stabilizing effect in Lotka-Volterra
metapopulations even if this effect is not strong enough to result in a stable equilibrium in
the “separation of scales” model. The local stability, and equilibria when there is no
heterogeneity in growth rates, are the same as for the non-metapopulation model (see
Table 1.2 for the special case when r,=r,). However, the equilibria and their local stability
do not show the complete picture. Jansen (1995) showed that there are some differences
between the dynamics of the non-metapopulation and diffusive metapopulation model even
when there is no heterogeneity of parameters. Jansen's results are summarized in the
following paragraph.

As described, the equilibrium is neutrally stable when the prey growth rate is equal
in the two patches. This means that near equilibrium, populations fluctuate with an
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amplitude that is dictated by the initial conditions. In the case of the non-metapopulation
model, this is also true far away from equilibrium. In the metapopulation model with
diffusive migration, a large amplitude, unstable limit cycle may exist if the prey migration
rate is low or zero and the predator migration rate is relatively high. So, if the initial starting
density is far away from equilibrium then the amplitude of the fiuctuations will diverge from
the initial amplitude. This can result in a decrease in the amplitude of oscillation and
populations densities can move toward the neutrally stable region near the equilibrium.
Therefore, fluctuations are bounded, and population density does not reach low levels.
Although the system is still technically unstable, the metapopulation structure has a
stabilizing influence on the system. The important of this effect can be is illustrated by
adding a type Il functional response to the interaction. In the absence of self-regulation of
the prey, this is an extremely destabilizing influence. In the non-metapopulation mode!
oscillations diverge over time. in the diffusive metapopulation model, the same bounded
neutrally-stable fluctuations that occur for the Lotka-Volterra model are observed. Details
of how this relative stability comes about are given in Jansen (1995). But a critical
component is that when the oscillations diverge from the unstable limit cycle, the densities
of the two prey populations diverge and therefore there is a weak internal source of
heterogeneity in this system.
Rosenzweig-MacArthur Model

The Rosenzweig-MacArthur model is @ more biologically realistic model than the
Lotka-Volterra model. It has logistic growth of the prey, which has a stabilizing influence
on the dynamics. It also has a type II functional response of the predator, rather than a
linear functional response, which has a destabilizing influence on dynamics. The resulting
non-metapopulation model has a stable equilibrium if the carrying-capacity is iow enough
or the predator death rate is high enough (Table 1.3). If these conditions do not occur then
the equilibrium is unstable (Rosenzweig, 197 1) and a stable limit cycle is present (Hastings,
1978). Instability occurs when the prey equilibrium is such that a perturbation of the prey
above the equilibrium will cause the prey density to increase, because the increase in the
ingestion rate is not proportional to the increase in the prey per capita growth rate which
results in “prey escape cycles” (de Roos, Metz, Evers, and Leipolidt, 1990). Dynamics of
this model when incorporated into a metapopulation structure are much more complex than
in the case of the Lotka-Volterra model. Even local stability analysis is not always possible
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algebraically. Analysis of the diffusive model was done by Jansen (1994) and only a brief
description of his results will be given here. The major focus will be on the “separation of
scales” model which is relevant to the following chapters. de Roos et al. (1998) analyzed
the “separation of scales” model with no environmental heterogeneity for a large number
of patches and results that are applicable to two patch models with some elaboration will
be given here.

The Rosenzweig-MacArthur “separation of scales” model has at most 5 equilibria
with positive predator density. The equilibria and their existence and stability conditions are
shown in Table 1.3. The first equilibrium is homogeneous and is the same as the non-
metapopulation model equilibrium, and it has the same local stability properties. The
second and third equilibria are symmetrical (i.e. if one of the equilibria is A *=x, A,*=y, and
C*=z then the other is A,*=y, A *=x, and C*=z) and have positive prey density that is
unequal in the two patches. The last equilibria are again symmetrical and have prey
density equal to zero in one of the patches. Figure 1.1 shows the possible prey equilibria.
When the prey density is positive in both patches at equilibrium, an expression for the two
prey equilibrium values can be obtained from equation 1.2 (Table 1.3). This expression
results in two possible relationships between prey density in the two patches. These are
shown in bold in Figure 1.1. Additional equilibria occur where one of the two patches has
no prey and the equilibrium will fall on the horizontal or vertical axis. The predator
differential equation gives another expression for the two prey equilibrium densities
'(equation 1.1 in Table 3) which are shown with curves for different values of the predator
death rate. Equilibria occur when the curve for the chosen death rate intersects one of the
bold lines or one of the axes. The non-metapoplation model has a single prey population
but if this population is considered to be two identical populations, then the equilibrium for
the non-metapopulation model occurs where the curve intersects the positively sloped bold
line in Figure 1.1.

The equilibria that exist and their stability change with decreasing death rate (Figure
1.2). When the predator death rate is high, there is only one equilibrium. This is the stable
equilibrium with equal prey density in the two patches. When the death rate decreases, the
homogeneous equilibrium becomes unstable and the two symmetrical heterogeneous
equilibria with positive prey density in both patches become possible. The condition for
stability of these equilibria is given in Table 1.2, but it is interesting to note that the stability
of this equilibrium is dependent on characteristics of the equilibrium with prey equal to zero
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Figure 1.1 Prey and predator equilibria for the Rosenzweig-MacArthur “separation of
scales” model. Inthe left frame, the curves show equation 1.1 (Table 1.3) for a number of
values of d and the bold lines are for equation 1.2 (Table 1.3). The right frame shows the

predator equilibrium as a function of the prey equilibrium in the first patch.

in one of the patches. It is necessary that the death rate be small enough that predators
can be supported when prey density in one of the patches is zero. Thus, the equilibrium
is stable for the value of d at which the homogeneous equilibrium becomes unstable only
if the carrying capacity is small enough (the exact value is shown in Table 1.3). In this case
the equilibrium becomes unstable for some values of d only if the prey growth rate is
extremely high. (Figure 1.2). If the carrying capacity is higher, then the heterogeneous
equilibrium is unstable for the death rate when the homogeneous equilibrium becomes
unstable but becomes stable for lower values of the death rate (Figure 1.2). As the prey
growth rate increases, a lower death rate is required for stability of this equilibrium. As the
death rate increases further, the density in the low density patch becomes negative. When
d is greater than this point, the equilibrium with prey density equal to zero in one patch, is
unstable, and it becomes stable at the same point when the other heterogeneous
equilibrium becomes negative. The lower stability boundary for the equilibrium with one
patch having no prey is at the same prey density as the lower stability boundary for the
homogeneous equilibrium but occurs at one half of the death rate. There are a number of
non-equilibrium features of the model, including stable heterogeneous limit cycles, that are
described in de Roos et al. (1998).

Results for the model with diffusive migration of predators are taken from Jansen
(1994) and are remarkably similar to the model with complete mixing of predators. Again
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Figure 1.2. The stability boundaries for the Rosenzweig-MacArthur “separation of scales”
model. The top frame is for 2r/eg=1 and varying k and d. The bottom frame on the left is
for k/h=4 and varying r and d. The bottom frame on the right is for k/h=2 and varying r and
d. The letters refer to the type of equilibrium: the homogeneous equilibrium that is the same
as for the non-metapopulation model (h), the two heterogeneous equilibria with positive
prey density in both patches (t), and the two heterogeneous equilibria with zero prey density
in one of the patches (z). The lines from each letter point to the stability boundaries for the

equilibria.

a total of 5 different equilibria are possible and they are analogous to those for the
“separation of scales” model (Table 1.3). In the region where the homogeneous equilibrium
is unstable a range of dynamics can be observed. Limit cycles are associated with all of
the equilibria and may be stable for some parameter combinations. Also, the first or second
pair of equilibria can be stable with the stable equilibrium switching from one type to the
other with a change in parameter values.

Inthis model, heterogeneity in prey density can arise without external heterogeneity.
Often, these heterogeneous equilibria are stable when the homogeneous equilibrium is
unstable. The dynamics of this model do not depend on the fact that predators are
completely mixed because results from both spatially structured models are very similar.
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SUMMARY AND CONCLUSION

External heterogeneity is stabilizing in metapopulations where “within patch”
dynamics are described by the Lotka-Volterra model. The diffusive metapopulation model
without external heterogeneity does have dynamics which are different from those of the
non-metapopulation model but the dynamics of both models are neutrally stable near
equilibrium. When heterogeneity is added to the model, a stable equilibrium is introduced.
If the migration rate is very high then the equilibrium has zero prey density in one of the
patches. The “separation of scales” mode! with external heterogeneity does not have a
stable equilibrium, however there is evidence that it has stabilizing features which are not
present in the non-metapopuiation model.

When the ‘within patch’ model is the Rosenzweig-MacArthur model, then external
heterogeneity is not necessary to produce heterogeneity and stability in the metapopulation
models. The “separation of scales” model and the diffusive metapopulation model both
have 5 possible equilibria, some of which can be stable when the equilibrium of the non-
metapopulation is stable. Four of these equilibria are heterogeneous and represent pattern
formation of prey (“separation of scales” model) or prey and predator (diffusive model) in
the absence of underlying environmental heterogeneity.

The “separation of scales” model, which has appeal for use in experiment, is not
fundamentally different from the diffusive metapopulation model. Therefore, experiments
which separate the scales of prey and predator can be expected to have general
implications.

Because internal and external sources of heterogeneity affect metapopulations in
similar ways, it might be expected that adding external heterogeneity to a model with a
strong internal source of heterogeneity would reinforce the factors which promote pattern
formation and stability. In the following chapter it will be shown that for the Rosenzweig-
MacArthur “separation of scales™ model this is not generally the case.
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CHAPTER 2: The Effect of Environmental Heterogeneity on the Rosenzweig-
MacArthur “Separation of Scales” Model
INTRODUCTION

The previous chapter shows that heterogeneity can arise in metapopulation models
of predator-prey interactions as a result of heterogeneity of the environment or internal
features of the predator-prey interaction. This chapter describes a “separation of scales”
metapopulation model (complete mixing of predators and complete isolation of the two prey
populations) when both heterogeneity of the environment and internal sources of
heterogeneity are present. This model is compared to: (1) the non-metapopulation
counterpart and (2) the metapopulation modef without heterogeneity.

In order to make the desired comparisons meaningful, the parameters of the non-
metapopulation model and the homogeneous metapopulation model need to be chosen
carefully because the prey growth parameters have a iarge effect on the dynamics of all
three models. The appropriate choice of parameters for the non-metapopulation model and
the homogeneous metapopulation model can be made by formulating a model of a
homogeneously mixed prey population in a heterogeneous environment. This is done in
the first section of this chapter and the following sections formulate the non-metapopulation
model and the homogeneous metapopulation model. In the fourth section, the
heterogeneous metapopulation model is described and the equilibria and their local stability
are compared to the other two. In the fifth section, the implication of the metapopulations
structure to the “Paradox of Enrichment” (Rosenzweig, 197 1) are given. In the last section,
equilibria are compared among the models, and features are described that will be
important in the subsequent experimental chapters. The methods used in this chapter are
the same as for the first chapter and the derivation of results is given in Appendix I1.
LoaGISTIC GROWTH IN A HETEROGENEOUS ENVIRONMENT

Before the predator-prey model is formulated, it is necessary to understand how the
prey population behaves when some fraction of the population experiences one
environment while the other portion experiences a different environment. This causes the
parameters of the model to be different in the two environments.

There are two types of patches with different environments and only prey present.
The population in environment-a (A,) and environment-b (A,) in isolation are described by:
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dA, ( A J dA A
—2=rAl1-2| (21.1) —2=-nAl1-22] (21.2)
dat ¥k, dat P\ k,

One important assumption of many spatially structured models is that migration and local
dynamics can be described independently. That is, when an individual enters an
environment or patch it behaves in the same way as all others in that environment.
Therefore if a prey population is homogeneously mixed, but one half of the population is in
one type of environment and the other half is in the other type of environment, then the
model for the well-mixed population is:

dA.. 1 Ani 1 Ay
d’;"x =§raAmiX[1_ l:na, J+5rbAmix(1— I:nblxj (2.2)

or, by defining a different set of parameters, by:

A _ Frix A (1 - ——Am"") (2.3.1)
dt mix
(ra + 1y KoKy s+
k, =—<2—-—2-390 (232 l, = 2.3.3
mix rbka +rakb ( ) mix 2 ( )

There are several features of this simple model which are noteworthy. The
equilibrium prey density is not simply the average of the two carrying capacities. it depends
on the intrinsic rate of increase in the two environments if they are different. Also, the
equilibrium is above the carrying capacity of one of the environments. Therefore, there is
some question as to whether this model will capture the dynamics of prey near equilibrium.
However, it may accurately capture the dynamics when the population is below the carrying
capacity of both environments, where the prey equilibria of the predator-prey models are
found uniess the predator death rate is very high. Regardless of these possible
inaccuracies, it is the correct choice given the assumptions of the metapopulation models
that have been chosen.

The above model can be derived by assuming that the two environments are
isolated and prey are mixed between environments at regular intervais. The model arises
from taking the limit as the interval between mixing gets small. This process is shown in
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Appendix Il. inthis case, it is assumed that mixing of prey between environments does not
alter the parameters in each environment. If migration is small but finite, then the dynamics
are very similar to the limiting case. If the assumptions are not met, then the equilibrium
of the derived mixed model will not be right, but it is expected that the equilibrium will
always be between the carrying capacity of the two environments.
THE NON-METAPOPULATION PREDATOR-PREY MODEL

Using the derived equation for a mixed prey population in different habitats, the non-
metapopulation predator-prey model is:

dAmix ___IQ_A (1_ Amixj +La_Am. (1_ Amix) _ gAmimeix (2.4 1)
ix -

a 2 ™ k,) 2 Ky h+A,
Or:
dAmix ( Anmi } FAmixCrni
=r A . 1_ X | _ miX >~ mix 242
dt mix’ ‘mix km,‘x h + Am,-x ( )

aCix -e FAnmix Cimix -dC,., (2.4.3)
ot h+A, ™

This model is exactly the same as the non-metapopulation model described in Chapter 1
except for the added significance of the parameters r, and k... The equilibrium of this
model is:

. d
Am,-x =hgg—d (251)

(2.5.2)

The prey equilibrium does not depend on prey parameters and therefore is the same as if
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the patches were isolated. The predator equilibrium is positive if A,,,* <k, but a sufficient
condition is that A,,*<k, and A<k, As with the equilibrium, a sufficient condition for
stability can be written in terms of two conditions, each of which depend on the parameters

of a single patch:

Ay > ko —h (26.1) And A, > ko —h

(2.6.2)

This shows that if the patches have positive prey density and are stable in isolation, then
the mixed system will also be stable. Likewise, if the equilibria of the two isolated patches
are both unstable, then the mixed system is also unstable.
THE HOMOGENEOUS METAPOPULATION MODEL

In Chapter 1, a “separation of scales” metapopulation model with identical
parameters in each patch was described. One of the questions being asked here is how
external heterogeneity affects a metapopulation model with an internal source of
heterogeneity. External heterogeneity is introduced through the prey growth parameters,
which can have a dramatic effect on the dynamics of the non-metapopulation model. The
goal is to compare homogeneous and heterogeneous metapopuiation models when
dynamics are the same for the corresponding non-metapopulation model. The desired
homogeneous model is:

dA, ( A, ] gA.C dA, ( A, ) gA,C
—2-r Al1- - 271) —2=r_A|1- - 272
dt mixPa h+A, ( ) dt Fmix Ao Komix h+A, ( )

k mix

‘_”E=E( 9AC | gAbC)-dc (2.7.3)
dt 2\h+A, h+A,

Again, this model is exactly the same as the homogeneous metapopulation model
described in Chapter 1 but the parameters r,, and k., have special significance.
Comparison of these two metapopulation models is mainly of theoretical interest in studying
the effects of external heterogeneity on metapopulation dynamics. In an experimental
situation, it would be difficult to produce heterogeneous and homogeneous metapopulations
with identical corresponding non-metapopulations. From a practical point of view, the effect
of introducing heterogeneity by increasing or decreasing prey growth parameters in one of
the patches is of interest, keeping in mind the effect of this on the corresponding non-



22

metapopulation model. Therefore, the models will also be compared when both patches
of the homogeneous metapopulation model have the same parameters as one of the
patches of the heterogeneous metapopulation model.
THE HETEROGENEOUS METAPOPULATION MODEL

When prey growth rates differ between patches then the metapopulation model that
corresponds to the above-mentioned non-metapopulation mode!l and homogeneous
metapopulation model is:

dA, [ A ) gA.C dA ( A ) gA.C
9% _ 1-Zoi 3%~ (281 L2 -nA|1-2| -T2 (282
a k) Then @80 a "%, ) Thea, @82

a

@-:3[ 9AC | gAbC) —dC (283)
dt 2\h+A, h+A,

There can be as many as 5 equilibria with positive predator density for any set of
parameter values. These equilibria each roughly correspond to one of the equilibria of the
homogeneous metapopulation model. One equilibrium has prey density very close to equal
in both patches. There are two with positive prey density in each patch and with large
differences between patches, and there are two with zero prey density in one of the
patches. An in depth description of these equilibria, their stability, and how they can be
displayed graphically, follows.

Assuming that the prey equilibrium densities are positive in both patches, equations
2.8.1 and 2.8.2 each give an equation for the predator equilibrium value in terms of the prey
equilibrium value in one of the patches:

. A, . . A .
c =—r;—[1——k—:’-](h+Aa) (2.9.1) c =%’[ —i](h”\b) (2.9.2)

Equation 2.8.3 gives the relationship between the prey equilibrium density in each patch:

A A
9 L e |_d=0 (2.10)
2 h+A h+A

Equation 2.10 does not specify a specific prey density for which the predator birth and
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death rates are equal as does the non-metapopulation model. Rather, it specifies the
relationship between the two “within patch” prey densities required to balance the predator

birth and death rates.
Equations 2.8.1 and 2.8.2 can be combined while simultaneously eliminating C*.

The resulting equation can be recognized as a hyperbola after it has been manipulated into

the following form:
AR _(ka—h) AR _(kb—h) Z_ri(ka'*'hjz_ri(kb*'h)z(z“)
k,| ° 2 ky| ° 2 k,\ 2 kp\ 2 '

The intersections of the graphs of equation 2.10 and 2.11 (in the A,*- A,* plane) gives the
prey equilibrium values. Equations 2.8.1 or 2.8.2 can then be used to estimate the
corresponding predator equilibrium. Varying prey intrinsic rate of increase or prey carrying
capacity in either patch does not affect equation 2.10. Varying the death rate of the
predator, or varying prey the intrinsic rates of increase while keeping the ratio of the two

intrinsic rates of increase constant, does not affect equation 2.11. Given that A,* is put on
the abscissa and A,* on the ordinate, equation 2.11 specifies a hyperbola opening upwards
and downwards if the right side of the equation is negative, and opening to the left and right
if it is positive (Figure 2.1). If the right-hand side of the equation is zero (this occurs when
r.=r, and k,=k;) then this equation specifies the two diagonal lines of the homogeneous
model shown in Figure 1.1. If there is not much difference between the parameters of the
two patches then the hyperbola passes very close to these diagonal lines. Analysis of this
model will be restricted to the case where the right-hand side of equation 2.11 is negative
(when the hyperbola opens upward and downward) without loss of generality. If the prey
parameters are such that the hyperbola opens to the left and the right then the values of
the prey parameters in each patch can be exchanged to give a hyperbola that opens
upward and downward. Some important points of these equations are given in Table 2.1.

Figure 2.1 shows the graph of equation 2.11 for a specific vaiue of the intrinsic rate
of increase and carrying capacity for each patch. Only the intrinsic rate of increase or the
carrying capacity differs between patches and the other parameter is equal between
patches. Each graph also shows equation 2.10 for a number of values of the predator
death rate. Where equation 2.10 intersects the bold hyperbola there is an equilibrium for
the parameter values which specify the two curves. The non-metapopulation model can
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Figure2.1. Prey (A,* A,*) and Predator (C*) equilibria of the heterogeneous metapopuiation
model. For (a)and (b) the solid grey diagonal lines represent the heterogeneous solution
to equation 2.11 when both patches have a carrying capacity equal to k, or k,. For (a), (b)
and (c), the bold grey lines represent equation 2.11 when the carrying capacity in both
patches is equal to k.,,. The multiple solid black curves represent equation 2.10 and starting
from the top right corner are for 2d/eg equal to:1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, and 0.2. The
bold black line represents equation 2.10 when parameters are not equal between patches.
In all graphs k,/h=4. In (a): k./h=5 and 2r,/eg=2r./eg=1. In(b): k/h=3 and 2r/eg=2r./eg=1.
In (c): k,/h=4, 2r,/feg= 1, and 2r,/eg=1.2. In (d) the predator equilibrium density is shown as
a function of prey equilibrium density in patch-a and applies to a),b) and ¢).
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Table 2.1. Some important points on the equilibrium curves of the heterogeneous
metapopulation model.

Point importance

The upper part of the hyperbola passes
through this point on the right. To the right
of this point the predator density is

A, =k, A, =k,

negative.
- k,-h The minium of the upper part of the
A= hyperbola and the maximum of the lower
2 part of the hyperbola occur at this value of
A
- ky-h The line of symmetry between the upper
A = 5 and lower parts of the hyperbola.
2 The intersection of the upper part of the
+ kyp-h ky, —h kg hyperbola with the A* axis.
A = + +—=2(ry - 1,)
2 2 ry
if r,=r, this reduces to:
A, =k, -h
2 The intersection of the right branch of the
« k,-h k,-h k, lower part of the hyperbola with the A,*
A, = + +_(ra —rb) axis
2 2 Iy ’
if r,=r, this reduces to:
A =k, -h

be interpreted as representing two identical patches with identical prey and predator
densities, and in this case the prey equilibrium of the non-metapopulation model occurs
when equation 2.10 intersects the positively sloped diagonal line. The prey equilibrium of
the corresponding homogeneous metapopulation model occurs when equation 2.10
intersects either of the two diagonal lines.

Equation 2.10 intersects the upper part of the hyperbola once at most (equilibrium
#1). If it intersects this curve on the right branch then the equilibrium is close to the
homogeneous equilibrium of the homogeneous model in the stable region, and the
equilibrium is also stable. If equation 2.10 intersects the left branch of this curve, the
equilibrium corresponds to the heterogeneous equilibrium (with positive prey density in
both patches) of the homogeneous model. This equilibrium becomes stable if the death
rate becomes low enough, as with the corresponding equilibrium of the homogeneous
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model. As the death rate increases further, this equilibrium becomes negative and the
equilibrium with prey density equal to zero in patch-a becomes stable, again, as is seen in
the homogeneous metapopulation mode! (Figures 2.2 and 2.3).

If the death rate is low enough then equation 2.10 will intersect the lower part of the
hyperbola (Figures 2.1-2.3). Again the equilibria produced by the lower part of the
hyperbola corresponds to equilibria of the homogeneous metapopulation model. The limit
point, when equation 2.10 just touches the lower part of the hyperbola, always occurs on
the right branch of the curve, but as the death rate decreases the equilibrium with a higher
prey density in patch-a (equilibrium #2) will be on the right branch of the hyperbola and the
equilibrium with the lower prey density in patch-a (equilibrium #3) will be on the left branch
of the hyperbola. On the right branch of the hyperbola, the equilibrium corresponds to the
heterogeneous equilibrium of the homogeneous model with positive prey density in both
patches (as does equilibrium #1 on the left branch of the upper part of the hyperbola).
Again, this equilibrium becomes stable when the death rate is low enough, and negative if
the death rate is even lower. On the left branch, the equilibrium corresponds to the
homogeneous equilibrium of the homogeneous model in the unstable region, and equilibria
on this part of the curve are also unstable.

The only equilibria which can be written explicitly in a simple form are the two
equilibria with prey density equal to zero in one of the patches. If the prey density in patch
A is zero (equilibrium #4) then the predator equilibrium density is independent of equation

2.8.1 and the resulting equilibrium is:

A =0 (212.1) A[,=egzh‘;d (2.12.2) C'=%’[1——22](h+A;) (3.12.3)
- b

Alternatively the prey density in patch-b may be zero (equilibrium #5) to give the following

equilibrium;

- 2hd - - r A' -

A = 2.13.1 A = 2132) C =-2{1--2|(h+A 2.13.3
DSeag @1 A=0 @12 g[ kaj(+a)( )

As with the homogeneous model, these equilibria become stable when the corresponding
equilibria with positive prey density in each patch become negative. The lower stability
boundaries of these equilibria depend only on the growth rate parameters of the patch
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Figure 2.2. Equilibria and their stability properties for the homogeneous and heterogeneous
metapopulation models as a function of predator death rate when ther is a difference in the
prey carrying capacity (k) between patches. Parameter values are: 2r/eg=2 r/eg=1,
k,/h=4, k,/h=5. In (a) curves for equations 2.10 and 2.11 are as in Figure 2.1 and stable
equilibria are marked in bold. In (b) and (c) grey is for the homogeneous model, black is
for the heterogeneous model. Stable equilibria are shown in bold.

where prey density is not zero and occur at one half of the death rate of the boundary for
an isolated patch.

The results for the heterogeneous model are very similar to those for the
homogeneous model, however, there are some important differences. Figure 2.2 and 2.3
show that when the non-metapopulation model or the homogeneous metapopulation model
have a death rate which results in stability of the homogeneous solution, then equation 2.10
can intersect the upper part of the hyperboia to the left of the minimum. it is possible,
however, for this equilibrium to be stable for this value of d. This is the equilibrium that is
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analogous to the stable homogeneous equilibrium of the non-metapopulation or
homogeneous metapopulation models in this region but it does not become unstable for

A, <(k, - h)/2(i.e. it becomes unstable somewhere on the left branch, rather than at the

minimum, of the upper part of the hyperbola). However, this equilibrium does become
unstable at higher values of the death rate than the corresponding equilibrium of the
homogeneous metapopulation or non-metapopulation models. Ina similar way, equilibrium
#3, the left most equilibrium of the lower curve is always unstable even if it occurs on the
right branch of the lower part of the hyperbola. Another difference between the
homogeneous and heterogeneous metapopulation models is that if the intrinsic rate of
increase is much higher in patch-a than in patch-b of the heterogeneous model, then the
lower part of the hyperbola does not attain positive values and these equilibria are not
possible. When this occurs, the equilibrium with no prey in patch-b is always unstable.

Although the results of the heterogeneous and homogeneous metapopulation
models are similar qualitatively, there are quantitative differences when there are
differences in carrying capacity between patches. In the examples shown, equilibrium #1
of the heterogeneous model always becomes unstable at a higher value of the predator
death rate than the corresponding equilibrium of the non-metapopulation or homogeneous
metapopulation models (Figure 2.4). Equilibrium #1 becomes stable again at a higher value
of the predator death rate than the corresponding equilibrium of the homogeneous
metapopulation model and equilibrium #2 becomes stable at a lower vaiue of the predator
death rate than the corresponding equilibrium of the homogeneous metapopulation model.
Equilibrium #4 becomes unstable at a higher value of the predator death rate and
equilibrium #5 becomes unstable at a lower predator death rate than the corresponding
equilibrium of the homogeneous model. In general, there is no increase in stability, or
introduction of new features when heterogeneity is added to the model, only a shift in the
equilibria and stability boundaries. Figure 2.4 shows that this is true for a wide range of
parameters.

When the carrying capacity in both patches is small, equilibria #1 and #2 and the
corresponding equilibria of the homogeneous model are always stable and therefore stable
equilibria exist for a large continuous range of the predator death rate. The stable range
is twice that of the non-metapopulation model. if the carrying capacity in patch-a is held
constant at a low value, and the carrying capacity in patch-b is increased then the
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Figure2.3. Equilibria and their stability properties for the homogeneous and heterogeneous
metapopulation models as a function of predator death rate when there is a difference in
the intrinsic rate of increase (r) between patches. Parameter values are: k /h=k/h=4,
2r/eg=1and 2r/eg=1.2. In (a) curves for equations 2.10 and 2.11are as in Figure 2.1 and
stable equilibria are marked in bold. In (b) and (c) grey is for the homogeneous model,
black is for the heterogeneous model. Stable equilibria are shown in bold.

equilibrium becomes unstable for some values of the predator death rate. For the
corresponding equilibrium of the homogeneous model, this happens at amuch higher value
of the carrying capacity in patch-b (Figure 2.4).

When there is a difference in the intrinsic rate of increase between patches,
differences in the stability boundaries between homogeneous and heterogeneous
metapopulation models are very similar to the results when there are is a difference in
carrying capacity between patches (Figures 2.3 and 2.5). Equilibrium #1 becomes unstable
at a higher death rate than the corresponding equilibrium of the homogeneous model and
becomes stable again at a lower death rate. Equilibrium #2 can become stable at a higher
or lower death rate than the corresponding homogeneous equilibrium but is positive only
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Figure 2.4 Stability boundaries of homogeneous and heterogeneous metapopulation
models when k, and d vary. Top frame is for k,/h=4. Bottom frame is for k,/h=2. The bold
grey lines are for the homogeneous model and the letters point to the boundaries of stability
for that equilibnum. The equilibria of the homogeneous mode! are: the homogeneous
equilibrium that is the same as for the mixed model (h), the two heterogeneous equilibria
with positive prey density in both patches (t), and the two heterogeneous equilibria with zero
prey density in one of the patches (z). The bold black lines are for equilibria #1 and #4 of
the heterogeneous model and The solid black lines are for equilibria #2, #3 and #5. The
number of the equilibrium points to its stability boundaries.
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when the difference in the prey intrinsic rate of increase between patches is small. The
equilibria with prey density equal to zero in one of the patches has the same lower stability
boundary for both patches and this coincides with that of the homogeneous model.

THE PARADOX OF ENRICHMENT

The non-metapopulation model has been used to demonstrate the paradox of
enrichment. Investigating the effect of increasing prey carrying capacity in one of the
patches of the homogeneous model is of interest because this enriches the system but also
introduces external heterogeneity. Enrichment of patch-b affects the 5 equilibria in different
ways (Figure 2.4). The homogeneous equilibrium is destabilized in the same way, but at
a smaller value of k,, as the equilibrium of the non-metapopulation model. The
heterogeneous equilibrium with a higher prey density in patch-b can be stabilized if it is in
the unstable region or destabilized if it is in the stable region. The stability boundary of the
equilibrium with higher prey density in patch-a changes very little with enrichment.

One of the most interesting effects of enrichment on the equilibrium with higher prey
density in patch-b is that, if d is within a certain range, the prey density in patch-b will
increase with enrichment but the prey density in the other patch and predator density will
not change very much. This is in strong contrast to the non-metapopulation model where
the prey equilibrium density is not affected by enrichment but predator density increases.
COMPARISON OF EQUILIBRIA

In addition to the differences in stability between the metapopulation and the
corresponding non-metapopulation model, there are a number of other features which are
of interest for the experiment investigated in Chapter 4. The requirements for predators to
be in equilibrium are different between the metapopulation and non-metapopulation models,
but do not differ between the homogeneous and heterogeneous metapopulation models.
The required relationships for metapopulation and non-metapopulation models respectively

are:

eg| A A A
- iy —2L_1-d=0 (2.14) eg—=—-d=0 (2.15)
2 h+A h+A h+A

In the non-metapopulation model, the predator equation determines the prey equilibrium
values. inthe metapopulation this equation only specifies the relationship between the two
prey equilibrium values. Because the predator death rate is a constant, the per capita birth
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rate at equilibrium must be the same in both models as with per capita ingestion rate. The
resuit is that the prey equilibrium density and the predator per capita ingestion rate must
either be equal in both patches, and this value must be equal to that of the non-
metapopulation model, or that ingestion and birth must be lower than the non-
metapopulation model in one of the patches and higher in the other. Equating the per
capita ingestion rates of the two models gives:

- - -

A A _
& 2 =2 T (2.16)
1+Aa 1+Ab 1+Am

Equation 2.16 can be put in a form which demonstrates the relationship between the
average prey equilibrium density of the metapopulation model to the prey equilibrium
density of the non-metapopulation model:
A+A . 1 (A-A)
—2 2= A p——2 8T (217)
2 ™ 2Aa+Ab+2h

The average prey equilibrium of the metapopulation model is aiways equal to or higher than
the equilibrium of the non-metapopulation model because the proportion of prey consumed
per predator per unit time decreases with prey density, and an increase in prey density
does not increase ingestion as much as an equal decrease in density decreases ingestion.

There is an interesting corollary to the above resuit. Given a specific average prey
density, ingestion will be maximized if prey density is equal in the two patches and will
decrease with an increase in the difference between the two prey densities. If the
magnitude of the difference in prey density between the two patches is bounded, then when
prey density is high the ingestion rate in both patches will be very close to the maximum
ingestion rate. This results in an average functional response on average prey density to
rise less steeply, but to have the same maximum, as the average functional response when
prey density is equal in both patches. If the functional response was calculated only on the
basis of the average prey density, then the maximum ingestion rate (g) would not be
affected but the half saturation constant (h) would appear to be higher if there was
differences in prey density between the two patches.

The differences between the predator equilibrium of the metapopulation model when
prey density is positive in both patches and non-metapopulation model can be put in the



following form:

] . _1-, n (h+A;)2(h+A[,)2

™ g°C’ kg, ky (h+A;+A;)2 (A;—A;)(A;-A;-kb+ka) (2.18)

From this it can be seen that the predator equilibrium in the non-metapopulation model is
always smaller than the predator equilibrium in the metapopulation model (when prey
density is positive in both patches) if the carrying capacities are equal in both patches. If
the intrinsic rate of increase is equal in the two patches then this equation can be put in a

different form:

r, (h+Afn+A;

- -

mix

gk, A;(2h+A;+Ab)2( )(k “h-A)

o (h+A)h+AD) i i
gks A;(2h+A;+A,,)2( Ab)( “h-4)

(2.19)

It can be shown that the prey equilibria are either both greater than or both less

than(k; — h)/ 2, where the i refers to the patch in question. Therefore, the predator

equilibrium of the metapopulation model is only greater than that of the non-metapopulation
model if the prey density is very high. Numerical analysis shows that for many parameter
values, this difference in the predator equilibria is very small (Figure 2.2 and Figure 2.3).
When prey density is zero in one of the patches of the metapopulation model, then
predator equilibrium density can be higher or lower than the equilibrium of the non-
metapopulation model (Figure 2.2 and 2.3). In this region the non-metapopuiation
equilibrium is always unstable but the limit cycie should center around this unstable
equilibrium and so average predator density should be higher in the metapopulation.



35

CONCLUSION

Adding external heterogeneity to the model does not increase the overall stability;
it only causes a shift in the stability boundaries. It can be argued that in some cases adding
external heterogeneity can be destabilizing.

The focus of metapopulation theory has been the relative stability of metapopulation
and non-metapopulation models but there are a number of other features which can be
tested experimentally. It was found that prey parameters affect the prey equilibria of the
metapopulation model but not the non-metapopulation model. The average equilibrium
between the two patches should always be larger in the metapopulation than in the non-
metapopulation. Also, the average predator ingestion rate should be lower in the
metapopulation for the same average prey density. Predator equilibrium density can only
be much larger in the metapopulation than in the non-metapopulation if prey density is
equal to zero in one of the patches of the metapopulation or the prey density is very large.

Specific predictions about the stability properties and range of patterns that can
be observed depend on parameters values for any given experimental system. Predictions
made about average functional responses can only be tested if the ingestion rate can be
measured for the experimental systems. The following chapter provides the necessary
information required to link the theoretical models in this chapter to the experiment studied

in Chapter 4.
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CHAPTER 3: The Transition From Theory to Experiment

INTRODUCTION

In order to apply the models from Chapter 2 to the Ceriodaphnia-algal interaction
a number of considerations need to be addressed. First, the range of dynamics and
equilibrium patterns in metapopulations are diverse and depend on parameter values. The
predictions of the model can be clarified by using parameter estimates from the literature
and supporting experiments. The second consideration is that interesting predictions were
made about the differences in average ingestion rate between metapopulations and non-
metapopulations. It would be difficult to measure ingestion directly but a method of testing
these predictions, which involves estimating parameters from the experimental systems,
will be described. The third consideration is that in Chapter 2 it was assumed that the
functional response, conversion efficiency, death rate and prey growth did not differ
between metapopulations and non-metapopulations. This assumption can also be
evaluated using parameter estimates from the experimental system. The fourth
consideration is how to evaluate whether or not pattern occurs in metapopulations. There
are a number of approaches that will be used and these are described.

In the experimental systems, the predator is Ceriodaphnia dubia and the prey are

a multi-species assemblage of algae. All systems consist of 2 aquaria (patches), and
metapopulation or non-metapopulations were created by manipuiating the mixing of water,
algae and Ceriodaphnia, to produce systems that were represented by the models in
Chapter 2 (see the Methods section of Chapter 4 for a complete description of the mixing
protocols). Heterogeneous systems were created by manipulating light intensity, which
affects algal growth parameters, and there was one high-light tank and one low-light tank.
Homogeneous systems had two low-light tanks.
ExPECTED DYNAMICS AND EQUILIBRIUM PATTERNS
Algal parameters

“Algae only” tanks were run at the same time as the experimental treatments. Itwas
observed that the effect of increasing light level could be interpreted as a decrease in algal
carrying-capacity (k). There was little difference in the estimated carrying-capacity between
the two high-light tanks, with both having a carrying-capacity of about 3 + 0.5 pug Chl-a /L.
There was a large difference between the two low-light tanks with estimates of 10 £ 5 ug
Chl-a /L and 40 + 5 pg Chi-a /L. The lower value is used, but predictions are not
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qualitatively altered by values throughout this range. It was assumed that the intrinsic rate
of increase (r) was not affected by light intensity and a value of 1.0 /day (as was used in
Nisbet, McCauley, de Roos, Murdoch, and Gurney, 1991). The algal growth parameters
are summarized in Table 3.2.
Ceriodaphnia parameters

Ceriodaphnia dubia has been used for toxicological as well as ecological studies
and therefore a complete set of parameters could be derived from the literature. All of the
parameters of the model are readily interpreted biologically with the exception of
the death rate parameter of the model (d) which is actually the sum of two components: the
actual death rate (d,) and a component that represents ingested energy that is not
converted to new offspring (d,). This arises because it is expected that a proportion of
ingested energy is converted to new offspring only when ingestion is above a certain
threshold, which results in the following relationship between the birth rate and the ingestion
rate (1)
b=el-d; (3.1)

In order to parameterize the model, a number of assumptions were made. It was
assumed that egg production only takes place when somatic growth is positive ( i.e. when
the respiration rate is less than the ingestion rate), and that the proportion of carbon in prey
that was not assimilated was negligible. There is empirical support for both of these
assumptions for cladocera (McCauley, Murdoch, Nisbet, and Gurney, 1990; Porter,
Gerritsen, and Orcutt, 1982). Although, Ceriodaphnia size is not constant, individuals were
assumed to be 0.7 mm long and have a dry weight of 3.74 ug. This is the maximum length
and weight of the smallest adult size class. An egg was assumed to have a dry weight of
0.68 pg. Dry weight of Ceriodaphnia was estimated by the relationship:
In(W)=2.11+2.22*In(L) (Anderson and Benke, 1994). Body carbon is approximately 42%
of dry weight (McCauley 1984) and chlorophyll-a was converted to algal carbon following
known conversion factors (Murdoch, Nisbet, McCauley, de Roos, and Gurney, 1998).
Some parameters are temperature sensitive, and the temperature relationship was used
to estimate the parameter value at the experimental temperature (21 °C).

The parameters of the functional response were estimated from experiments on
filtration rate. Estimates of the death rate, threshold ingestion rate, and conversion
efficiency followed Nisbet et al. (1991). The death rate was estimated from the average
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life span. The threshold ingestion rate for reproduction was estimated from the starvation
time, assuming that an individual dies at 50% of its normal body weight. The conversion
efficiency was calculated from maximum growth rates and other parameters. A summary
of the data used for parameter estimation is given in Tables 3.1 and Table 3.2 summarizes
the parameters used for the predictions in the following section.
Expected dynamics based on literature derived parameter estimates

Although there are expected differences in pattern between treatments, the
chlorophyli-a concentrations of all treatments (heterogeneous and homogeneous,
metapopulation and non-metapopulation) are expected to fall on the same equilibrium curve

derived from the predator growth equation:

1[ °9 A+ eg,Ab']-d=o (3.2)

2{h+A" % h+A,

In the non-metapopulations there is the added condition that A_=A,. Equation 3.2 requires
that if pattern formation occurs in metapopulations but not in non-metapopulations, then the
average chiorophyll-a concentration at equilibrium will be higher in metapopulations. For
the parameters in Table 3.3, this difference in average chlorophyll-a concentration is
expected to be quite small. An equally important expectation from this relationship is that
when pattern occurs at equilibrium, one patch must be higher than, and one must be lower
than, the chlorophyll-a concentration when there is no pattern formation.

Heterogeneous systems

The parameter estimates given in Table 3.3 result in the equilibrium curves from the
prey equations given in Figure 3.1 for the heterogeneous metapopulation (black bold) and
non-metapopulation models (positively sloped grey bold). Aithough the corresponding
homogeneous metapopulation is not represented in the experiment, the equilibrium curve
for this system is also shown (negatively sloped grey bold). The regular black line shows
the equilibrium curve from the predator equation (equation 3.2) derived from Ceriodaphnia
parameters.

Forthese parameter estimates, there are no stable equilibria, and the only equilibria
that exist for the metapopulation mode! are those with zero prey density in one of the
patches. For a slightly lower value of d, the equilibrium with higher prey density in the

high-light (low carrying-capacity) tank, and either zero or non-zero prey density in the low



Table 3.1 Information about Ceriodaphnia individuals and populations from the literature

and supporting experiments that was used to estimate parameter values.

Quantity Reilationship to Value Reference
parameter of the model
F - filtration g g=0.05938 ug Chl-a / individual | Mourelatos
rate F= /day | and
h+A h=1.4129 ug Chl-a/L Lacroix
(1990)
L-average |[ =1/d L=45.8 days Anderson
life span gives: and Benke
d =0.022 / day (1994)
s - starvation 05 = g~"esP"s s =273 days Appendix
time death from starvation at €SP = 0.254 ug C/ug C/ day H
50% of normal body = 0.399 pg Cladult/ day
weight = 0.01662 ug Chl-a/adult/day
- - _ — A Irm=0.23/day Kirk and
maximum Im e(g reSp) d Gilbert
growth rate  |eg —d; -d, (1990)
T - rn=0.5/day Cowgill
maximum and
growth rate Milazzo
(1991)
M- r = 0.28 / day Matveev
maximum and
growth rate Balseiro
(1990)
- r, = 0.31/ day Pace,
maximum Porter, and
growth rate Feig
C. lacustris (1983)
- rn=0.33/day the
maximum gives: average of
growth rate e = 8.23 individuals / the above
yg Chl-a estimates
d,= 0.1368 /day
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Table 3.2 Parameter estimates for the Ceriodaphnia-aigal system used to develop
predictions about dynamics and equilibria of metapopulations and non-metapopulations.
Parameter values were derived from information in Table 3.1 and from the section on algal

arameters.

Parameter estimate of value for
Ceriodaphnia dubia

h 141 pygChl-a/L

e 8.23 individuals / ug Chi-a

g 0.0593 pg Chi-a/ individual / day

d, 0.137 / day

d, 0.022 / day

r 1/ day

k high-light 3ugChl-a/l

k low-light 10 ug Chl-a/L

ki, When lightis | 4.6 uyg Chl-a/L

heterogeneous

light tank can exist and may be stabie.

In this region, the average algal equilibrium is greatest for the equilibrium with zero
prey density in the low -light patch, followed by the other equilibrium of the metapopuilation
model and the non-metapopulation model equilibrium. Forthe predator equilibrium density,
the reverse order is observed with the highest equilibrium density for the non-
metapopulation model.

Homogeneous systems
Figure 3.2 shows the equilibrium curves from the prey equations (black bold) for the

metapopulation model. The equilibrium of the non-metapopulation model falls on the
positively sloped line. The curve is equation 3.2 as in Figure 3.1. Because the carrying-
capacity is so high, both the metapopulation and non-metapopulation equilibria are well into
the unstable region. The only pattern that is possible in the metapopulation has zero prey

density in one of the patches.
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Figure 3.1. Equilibria of the heterogeneous metapopulation and non-metapopulation
models for parameter values from Table 3.2. (a) Equilibrium curves from the prey
equations for the heterogeneous metapopulation model (bold black), the homogeneous
metapopulations model (grey bold), and the non-metapopulation model (positively sloped
bold grey) as well as the equilibrium curve for the predator equation (solid black). (b)
Predator equilibrium as a function of the prey equilibrium in the high light patch for the
metapopulation model (black) and the nonmetapopulation model (grey). (c) The average
equilibrium prey density as a function of the parameter d for the non-metapopulation model
(grey), the equilibrium with prey positive in both patches of the metapopulation model (bold
black), the equilibrium of the metapopulation mode! with zero prey in one patch (solid
black). (d) as in (c) but for Ceriodaphnia density and the upper black curve is for the
equilibrium with zero prey density in the low-light (high carrying-capacity) tank, and the
lower black curve is for equilibrium with zero prey density in the high-light tank.
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Figure 3.2. Equilibria ofthe homogeneous metapopulation and non-metapopulation models
for parameter values from Table 3.2. (a) Equilibrium curves from the prey equations for
the metapopulation model (bold), and the non-metapopulation mode! (positively sloped bold
black) as well as the equilibrium curve for the predator equation (solid black). (b) Predator
equilibrium as a function of the prey equilibrium in one of the patches. (c) The average
equilibrium prey density as a function of the parameter d for the non-metapopulation model
(grey), and the equilibrium of the metapopulation model with zero prey in one patch (black).
(d) as in (c) for Ceniodaphnia equilibrium values.



43

TESTING PREDICTIONS ABOUT AVERAGE INGESTION RATE
The theoretical ingestion rates for non-metapopulations and metapopulations

respectively are:

gA
h+A

9% , 9% ) (3.4)

(33) And /=1(
2\h+A, h+A,

/=

In Chapter 2, an interesting relationship between these two expressions and related
experimental predictions were discussed. When there is a difference in the chlorophyli-a
concentration between the two patches of the metapopulation, the average functional
response on average chlorophyll-a concentration would have the same maximum ingestion
rate, but a lower half saturation constant, than the functional response in the non-
metapopulation model. Comparisons between ingestion in metapopulations and non-
metapopulations is important for testing the theory, but, ingestion is not easily measured
in population experiments. However, the birth rate is easily estimated and is expected to
be linearly related to ingestion (equation 3.1). The per capita birth rate of Ceriodaphnia at

time t can estimated using the following relationship:

—inl Et
b,_ln( Nt+1) /D (3.5)

where b is the birth rate, E is the number of eggs, N is the population size, and D is the egg
stage duration time (Paloheimo, 1974). This estimate strictly assumes that the death rate
is equal for juveniles and adults and that the population has a stable age distribution.
Violation of these two assumptions does not greatly affect the estimate (Taylor and Slatkin,
1981). It also assumes that the birth rate is constant over time and the estimate can be
quite sensitive to this assumption (Taylor and Slatkin, 1981). The egg stage duration (2
days) was estimated from experiments on individuals (Appendix 1l1).

The hypothesized difference in ingestion rates between metapopulations and non-
metapopulation can be quantified by estimating parameters from the following model:

b=—29_A_d, (Modeli-36)
h+A
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Where A isthe average chlorophyll-a concentration between the twotanks. Model I should
give a higher estimate of h in metapopulations than in non-metapopulations.
TESTING THE ASSUMPTION THAT PARAMETERS ARE INDEPENDENT OF POPULATION

SPATIAL STRUCTURE

In the last section it was shown that there are expected differences in the
relationship between ‘average chlorophyll-a and the birth rate (equation 3.5). The
relationship that is expected to fully capture the relationship between the birth rate
chlorophyll-a, and estimate the ‘true’ parameter values in all treatments is:

b= 1[—ﬂ-Aa +—eg—A,,) ~d, (Model Il - 3.7)
2\h+A, h+A,

Note that if A,=A, then Model Il reduces to Model I. Parameters estimated using Model Il
should not differ between metapopulations and non-metapopulations. Although only the
product eg can be estimated, rather than each parameter, this product, as well as h, and
d, can still be compared between metapopulations and non-metapopulations. Parameters
estimated using Model Il can be used to graph what the birth rate curve would be expected
to look like when prey density is equal in both patches (no pattern) and there should be no
difference between these curves in non-metapopulation and metapopulation systems.

Another parameter that can be estimated is the predator death rate (d,). Because
the systems are closed, the death rate of Ceriodaphnia can be deduced from the birth rate
and the population growth rate. The average population growth rate between two sampling
periods (r,) can be estimated by:

ro= IN(Ny /Ny, a¢)
R

m (3.8)

Where N, is population density and t is time. The death rate (d,) is then the difference
between the birth rate and the growth rate:
r=b-d, (3.9

TESTING FOR PATTERN

The section on expected dynamics describes the range of expected pattern at
equilibrium. The degree of difference in chlorophyll-a concentration between the two tanks
cannot be expected to be constant throughout the time series and statistical methods
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(Methods section of Chapter 4) will be used to determine whether or not pattern is observed
thoughout the time series. An additional method can be used to evaluate the relative
amount of pattern in metapopuiations and non-metapopulations. Mode! | and Model Il are
identical when the chlorophyli-a concentration is the same in both patches but very different
when there is pattern, so estimates of the functional response by the two models should be
very different in metapopulations but not in non-metapopulations.
CONCLUSION

A number of the results from the model investigation in Chapter 2 can be tested for
the chosen experimental system. Parameter estimates suggest that pattern formation (but
not necessarily stability) can occur in both heterogeneous and homogeneous
metapopulations. Criteria have been developed to test predictions about differences in
ingestion rate between metapopulations and non-metapopulations over the range of
chlorophyll-a concentrations. A critical assumption was made when the spatially structured
model was formulated, that parameters of the model are not affected by the spatial

structure, and this assumption can be tested.
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CHAPTER 4: The Effect of Algal Movement and Environmental Heterogeneity
on Ceriodaphnia-Algal Dynamics

INTRODUCTION

In this experiment, the movement of Ceriodaphnia and algae are carefully
controlled in order to duplicate the two spatial structures described for the models in
Chapter 2. Metapopulations and the corresponding non-metapopulation populations will
be compared in two situations: (1) when environmental heterogeneity is present
(heterogeneous systems), and (2) when it is absent (homogeneous systems). The
homogeneous systems have a substantially higher average carrying capacity than the
heterogeneous systems and this results in a higher Ceriodaphnia density and a greater
tendency towards oscillation; however, a number of predictions described in Chapter 3 are
the same for both heterogeneous and homogeneous systems. Generally, there should be
differences between metapopulations and non-metapopulations in the degree of pattern
formation, the relationship between Ceriodaphnia birth rate and average chiorophyll-a
concentration between patches, and equilibria.
METHODS
Experimental Design

A single ‘patch’ consisted of a 20 L tank. Tanks were filled with filtered, UV
sterilized Big Hill Spring water and were topped up periodicaily with distilled water. Tanks
were enriched with 2 ml of 121.4 g/ L stock solution of NaNO, and 2 ml of 4.36 g / L stock
solution of KHPO, to increase primary productivity. Air bubblers were put in the tanks. All
tanks were inoculated with 2 mi of a concentrate of Chlamydomonas reinhardtii and 2 mL
of a concentrate of Selenastrum sp. for 5 consecutive days. Algal concentrates contained
approximately 107 cells/ mL. Tanks were all left in high light for 24 hours a day in order for
the algal populations to become established. An equal number of juvenile (1-5)
Ceriodaphnia was then added to each tank daily for 5 days. After Ceriodaphnia were
established, all tanks were mixed with one another to try to make initial conditions the same
in all tanks.

Tanks that were designated low light had a neutral density screening placed over
them; this filter did not alter light quality as measured by the PAR spectrum
(photosynthetically available radiation). High- and low- light tanks had light intensities of
72 and 26 uE/m¥s respectively at the water surface. Temperature, pH and water hardness
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were monitored weekly throughout the experiment. On day 97, the entire experiment had
to be relocated to another laboratory, and it appears as though this created a perturbation
to the systems. Other than the observation that all systems are stable in the long term,
only the first part of the data was used (i.e. before the perturbation).

Non-metapopulation and metapopulation systems consist of two tanks. In the
metapopulation systems, one half of the contents of each tank was removed each day and
sieved through a 35 ym mesh to remove the Ceriodaphnia. The sieved Ceriodaphnia were
introduced into the opposite tank while the water and algae were returned to the original
tank. In the non-metapopulation systems, one half of the contents of each tank was
removed each day and introduced to the opposite tank (as opposed to just the
Ceriodaphnia as in the metapopulation treatment), after the contents had been sieved
through a 35 ym mesh. This process ensured that effects due to the process of sieving
were the same in both non-metapopulation and metapopulation systems.

Non-metapopulation and metapopulation systems were compared in both
homogeneous and heterogeneous light. When light was homogeneous, both tanks had low
light-levels, which resulted in a high carrying capacity (Chapter 3). When light was
heterogeneous, one tank had high light and one tank had low light, which resulted in a
relatively low carrying capacity.

Ceriodaphnia samples were taken every 2 days up to day 20 of the experiment and
chlorophyll-a samples were taken every 4 days. After day 20, Ceriodaphnia samples were
taken every 3 days and Chiorophyll-a samples were taken every 6 days. To estimate
Ceriodaphnia density, a 0.5 L sample was taken from each tank just prior to migration,
sieved through a 35 ym mesh, and counted under a dissecting microscope. The number
in each of 5 size classes was counted as well as the number of eggs. After the sample was
counted, the individuals were returned to their tank. This method of estimating
Ceriodaphnia density does not introduce any mortality to the populations (Lynch, Weider,
and Lampert,1986; McCauley et al., 1990).

Chlorophyll-a was used as an estimate of algal biomass. A 250 ml sample was
taken from the water column of each tank before migration and vacuum extracted onto a
GFC filter. Samples were frozen for later analysis. When the samples were analyzed,
they were ground in 6 mL of 90% acetone, an additional 6 mL of 90% acetone was added,
and then the samples were extracted overnight at 4°C. They were then centrifuged and the
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supernatant was used to estimate chlorophyll-a concentration. The fluorescence of total
chlorophyli-a and phaeophyton was measured using a Turner fluorometer; the sample was
then acidified, and fluorescence was measured again in order to correct the chlorophyll-a
estimate for phaeophyton.
Data analysis
Pattern formation in chlorophyll-a

Three tests were used to evaluate the degree of pattern formation in the systems
and all of them were performed on the difference in chlorophyll-a concentration between
patch tank-a and tank-b over the first 97 days. The proportion of positive differences was
tested against the null hypothesis that the proportion is 0.5 to determine if the chlorophyil-a
concentrations was consistently higher in one of the tanks (test of proportions).
Alternatively, if one tank is not always greater than the other the difference may still be
correlated in time. There are two ways of evaluating this. First, the number of runs of
positive and negative differences can be tested to determine whether the sign of the
difference is independent between consecutive sampling periods (positive and negative
runs test). A second method that can be used to test for the independence of consecutive
differences is to test the number of runs above and below the median difference (runs
above and below the median). The test of proportions is a two-tailed test because the
alternative hypothesis is that the tanks have different chlorophyll-a concentrations: either
tank may be greater than the other. The two runs tests are one-tailed tests because the
alternative hypothesis is that the number of runs is less than if the differences are
independent (i.e. the difference in chlorophyll-a concentrations between the two tanks is
correlated over time). A type Il error rate of @=0.05 was used for all tests and a positive
result from any of these tests indicated pattern formation.
Ceriodaphnia vital rate and parameter estimates

The birth and death rates of Ceriodaphnia were estimated as described in Chapter
3. Inorderto get a relationship between birth rate and chlorophyll-a, it is necessary to have
an estimate of both of these factors at the same point in time. In the experiment,
chlorophyll-a and Ceriodaphnia were never measured on the same day, the sampling
interval changed and sequence of chlorophyll-a and Ceriodaphnia samples changed. An
estimate for chlorophyli-a for every day of the experiment was obtained by linear
interpolation of the natural log-transformed chlorophyll-a estimates. An estimate of birth
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rate for every day of the experiment was obtained by linear interpolation of the estimated
birth rates.

To compare treatments effectively, the birth rate curve from the period when
chlorophyll-a appears to be approaching equilibrium was used, specifically, the period
where the chiorophyli-a dropped below 2 ug/L to day 40. The reason that this was done is
because the transient in the size structure of the Ceriodaphnia needed to be omitted. The
time period that was used includes the first peak in Ceriodaphnia density, and density
varies between 200/L and 800/ L.

The parameters were estimated by non-linear regression of equations 3.6, 3.7 and
3.9. The birth rate curves for the third replicate of the metapopulation systems could not
be fit successfully over the desired time period, as there is a lot more oscillation in
chiorophyll-a in this replicate over the relevant time period. Parameter estimates were
taken during the time period to day 25 for this replicate.

Equilibrium estimates

Equilibrium chlorophyli-a concentrations were estimated using the average of the
observed values over the time period of day 40 to day 80,which is a different time period
from that used for parameter estimates.

Differences between treatments in parameter estimates, birth rate curves, and
equilibrium estimates

Developing parametric tests for the predictions concerning the differences in
parameter estimates and birth rate curves is beyond the scope of this thesis. If the Mann-
Whitney U-test (non-parametric) is used, a significant result (for a type Il error rate of
a=0.05), with three replicates, in two treatments, can only be achieved for a one tail test,
and occurs when all observations of one treatment are ranked higher than all observations
of the other treatment. When this occurs, the result is statistically valid; however, in many
cases there are qualitatively different results within a treatment which are of interest. For
example, treatments may differ in the degree of pattern formation, and the effect of this on
other factors will be evaluated. In these cases, whether or not these results are “real” will
be judged subjectively and will be taken to be of a preliminary nature.

For equilibrium estimates, the standard error was used as an indication of
differences among replicates and treatments. Because the observations used for the
equilibrium estimates are correlated in time, the standard error is biased as an estimate of
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variation, but is used as an approximation.
RESULTS

Graphs of Ceriodaphnia density, Ceriodaphnia birth rate, and chlorophyli-a in each
tank are shown in Figures 4.1 to 4.4. Density is shown per 0.5 liters (the sample volume)
to facilitate the interpretation. Since populations are mixed randomly in tanks prior to
sampling, the estimate of the density per sample volume is expected to follow a Poisson
distribution, and therefore the variance is equal to the mean.

Pattern formation in chlorophyll-a
Heterogeneous systems

There was significant pattern formation in all of the metapopulation systems. The
negative and positive runs test was significant for two replicates of the metapopulation
treatment and could not be used in the third replicate because there was only one
observation with a higher chlorophyli-a concentration in the high light tank which was in
itself a very significant result (test of proportions). There was not significant pattern
formation in the non-metapopulation systems (Table 4.1).

Homogeneous systems

At least one of the tests had a positive result for pattern formation in all but the first
replicate of the non-metapopulation systems (Table 4.2). Two replicates from each
treatment have a significant proportion of positive differences, and one from each treatment
have a significant number of positive and negative runs. All three metapopulations, and
none of the non-metapopulations, had a significant number of runs above and below the
median, which indicates that there was some difference in the quality of pattern between
metapopulation and non-metapopulations.

Birth rate curves and parameter estimates from the time series
Heterogeneous systems

Graphs of the per capita birth rate as a function of the chlorophyll-a concentration
are presented in Figure 4.5. itis clear that the birth rate was lower in metapopulations than
non-metapopulations over the range of chlorophyll-a concentrations.

Table 4.3 (b) shows parameter estimates using Model | (equation 3.6). There does
seem to be a trend towards a higher value of h and a lower value of the quantity eg/h in the
metapopulation systems, but this is not consistent. The curves produced by these
parameter estimates show more clearly that birth rate is depressed for all replicates when
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chlorophyil-a is between 0.1 and 1 ug / L.

Table 4.3 (c) shows parameter estimates using Model Il (equation 3.7). The
difference in the quantity eg/h is much more pronounced when Model Il is used. The birth
rate curves for Model Il in Figure 4.7 are estimated assuming that there are differences in
chlorophyli-a concentration between systems, but are shown for the case where chlorophyll-
a is homogeneous (i.e. the ‘true’ birth rate curve). The difference in this ‘true’ birth rate
curve between treatments (except for the second replicate of the metapopulations),
illustrates that the parameters differ between metapopulations and non-metapopulations;
instantaneous differences in chlorophyll concentration between tanks are insufficient to
explain depressed birth rates in these metapopulations.

It was also predicted that Mode! | and Model Il would give the same parameter
estimates for non-metapopulations. Deviation between Model | and Model Il in the birth
rate curves is larger for metapopulations than non-metapopulations (Figure 4.7).

There was no difference in death rates between non-metapopulation and
metapopulation systems (Table 4.3 (b)). Most replicates had an observed death rate very
close to 0.02 / day but the third replicate of the non-metapopulation systems has a value
of 0.006 / day and the third replicate of the metapopulation systems had a death rate of
0.04 /day (Table 3 (b)).

Homogeneous systems

For the most part, homogeneous systems appear to be less stable than
heterogeneous systems over this time period. The third replicate of the non-
metapopulation systems displays extremely atypical dynamics.

Graphs of the birth rate as a function of the chlorophyll-a concentration are given
in Figure 4.6. As with heterogeneous systems, the birth rate curves for metapopulations
appear to be depressed compared to non-metapopulations.

Table 4.4 shows parameter estimates using Mode! | (Table 4.4 (b)). With the
exception of the first replicate of the metapopulation systems, there was a consistent
difference in the quantity eg/h between treatments and a trend toward a higher value of h
in the metapopulations. This one replicate did not show pattern formation during the period
of time where parameters were estimated and appears to be similar to the non-
metapopulation systems (Figure 4.4). This is consistent with theory. Later in the time
series this replicate did develop pattern. This replicate will be shown to be somewhat
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different from the others and similar to the non-metapopulations in some pther
characteristics.

Table 4.5 shows parameter estimates using Model Il (Table 4.4 (c)). Again the
quantity eg/h was larger in the non-metapopulations and again there were differences in
the birth rate curves (with the exception of the first metapopulation replicate).

There was no significant difference in death rate between treatments. The death
rate of all but one of the replicates was very close to 0.01 / day. The second replicate of
the non-metapopulation systems had a death rate of 0.03 /day. In general, the death rate
was about half the value found in the heterogeneous systems (Table 4.4 (a)).
Equilibrium estimates

Three of the parameters estimated from the experimental data ( e*g, h, d,) are very
close to those estimated from the literature, but the parameter d,is somewhat smaller than
the literature estimates. The chlorophyil-a equilibrium values are all lower than they were
expected to be (which is consistent with a lower value of d,), but the qualitative aspects of
the equilibria discussed in Chapter 3 are not affected by this deviation. Average
chlorophyll-a concentration between the two tanks at equilibrium were higher in the
homogeneous (higher average carrying capacity) systems than in the heterogeneous (lower
average carrying capacity) systems. This difference was not expected, especially for the
non-metapopulation systems. There are no consistent differences in Ceriodaphnia
parameter estimates between heterogeneous and homogeneous systems but there does
appear to be a trend towards differences in parameter estimates that would result in the
observed differences in chlorophyll-a equilibrium values.

Ceriodaphnia equilibrium values were about 10 times higher than they were
expected to be. These differences were probably not caused by Ceriodaphnia parameters
(e, g, h, d,, or d,) because the estimates were relatively similar to the literature derived
values and chlorophyll-a equilibrium estimates are close to the predicted values. These
observed equilibria would require a value of r of at least 5 / day, which is beyond biological
realism. A dramatically larger than estimated carrying capacity could also account for this
observation. However, parameter estimates already predict instability, increasing the
carrying capacity increases this instability, and these experimental systems are stable.

In spite of the above mentioned deviations in equilibria from model predictions,
further details of the equilibria will be described within the context of the experimentally
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derived parameters.
Heterogeneous systems

As predicted, there is much more pattern in metapopulation systems than in non-
metapopulation systems at equilibrium.

The equilibria from the metapopulation systems had a varying amount of
heterogeneity but all appear to fall on the equilibrium curve (equation 3.2) (Figure 4.9).
None of the equilibria of metapopulations has a chiorophyll-a equilibrium value equal to
zero in one of the patches and this type of equilibrium can be excluded from consideration.
The only other type of equilibrium predicted to occur in this region of parameter space is
the one with higher chlorophyll-a concentration in the low carrying-capacity (high-light) tank
but only one of the equilibria is of this type. The other two have a higher equilibrium
chiorophyll-a concentration in the high carrying-capacity (low-light) tank. Forthe estimated
carrying capacities, these two types of equilibria can never both occur for the same
Ceriodaphnia parameters, or even if there is a moderate amount of variation in
Ceriodaphnia parameters. If the carrying capacity in the high density patch is somewhat
lower than estimated, then both of these equilibria can occur for Ceriodaphnia parameters
that are close to those observed. If parameter values are such that both of these equilibria
can occur, then there should be a higher Ceriodaphnia equilibrium in the metapopulation
with a higher chlorophyll-a in the high-light (low carrying-capacity) tank and this is what is
observed.

Two of the observed average equilibrium chlorophyll-a values in the non-
metapopulation systems were much smaller than those observed in the metapopulation
systems and do not appear to fall on the same equilibrium curve (equation 3.2) (Figure 4.9).
This is in contrast to the predictions, but is consistent with the observed differences in the
quantity eg/h between treatments. The model predicts that non-metapopulations should
have a higher Ceriodaphnia equilibrium density than metapopulations for the estimated
parameters, but if there are differences in parameter values between metapopulations and
non-metapopulations then this effect will override the above prediction. The effects of
varying parameters on average chlorophyll-a concentration and Ceriodaphnia density at
equilibrium are summarized in Table 4.5. Any parameter change which makes the quantity
eg/h smaller will increase the equilibrium values of chlorophyll-a and Ceriodaphnia. This
is what is observed. These two replicates with a lower average chiorophyll-a concentration



also have lower Ceriodaphnia densities.

One of the equilibria of the non-metapopulations falls on the same equilibrium curve
as the metapopulations (equation 3.2) (Figure 4.9). Assuming that there are no differences
in parameters among these four systems, and that parameter values are such that all of
these equilibria can occur, the predicted order of increasing magnitude of Ceriodaphnia
density is: metapopulation system with chlorophyll-a concentration higher in the low-light
tank, metapopulation system with chlorophyli-a concentration higher in the high light tank,
non-metapopulation system. The observed order of increasing magnitude of Ceriodaphnia
density is: metapopulation system with chlorophyll-a concentration higher in the low-light
tank, non-metapopulation system, metapopulation system with chlorophyil-a concentration
higher in the high-light tank. This coincidence of two types of equilibria in the
metapopulations and the extremely high density of Ceriodaphnia in the equilibrium with a
higher chlorophyll-a concentration in the high light tank cannot be captured by the model.
Homogeneous systems

Only one replicate of the metapopulation systems appears to have a large difference
in chlorophyli-a between the two patches (i.e. shows pattern) at equilibrium (Figure 4.10).
Two replicates of the non-metapopulation system had quite large differences in equilibrium
chlorophyli-a concentration between the two tanks. This probably occurred because these
systems had not completely stabilized when the equilibrium was estimated.

There was a large amount of variation in average equilibrium chlorophyll-a
concentration and there was no consistent difference between treatments even though the
estimates of the quantity eg/h were higher in metapopulations than in non-metapopulations
as was found in the heterogeneous systems.

Ceriodaphnia equilibrium estimates were much higher in metapopulation systems
than in non-metapopulation systems. The effects of differences in parameters between
metapopulations and non-metapopulations seems to outweigh the prediction that
metapopulations will have smaller Ceriodaphnia equilibrium densities than non-
metapopulation when parameters are the same in the two systems. It is unclear why
differences in Ceriodaphnia density between systems were so pronounced while large
differences in average chlorophyll-a concentration were not observed.
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Figure 4.3. Time series for three replicates of the non-metapopulation systems in
homogeneous light. The left column shows Ceriodaphnia density (dahed), average
chlorophyll-a concentration (bold), chlorophyll-a concentration in tank-a (solid) and
chiorophyll-a concentration inthe tank-b (dotted). The second column shows the proportion
juveniles (solid) and the per capita Ceriodaphnia birth rate (boid).
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Figure 4.4. Time series for three replicates of the metapopulation systems in homogeneous
light. The left column shows Ceriodaphnia density (dashed), average chlorophyll-a
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(solid) and the per capita Ceriodaphnia birth rate (bold).
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Table 4.1. Results of the tests for pattern formation in the heterogeneous systems. The quantity
being tested is the chlorophyll-a concentration in the low-light tank minus the chlorophyll-a
concentration in the high-light tank. a) Positive and negative runs test and test of proportions. b)
Runs above and below the median. ¢) Summary of significant results. * indicates a significant result.

a) # of negative l# of positive  of positive [test of proportions  {Positive and
differences [differences [and negative [critical values negative runs test
runs (a=0.05) two-tail critical values
(x=0.05) one-tail
non-meta 1 |5 14 10 4,15 5
non-meta 2 |6 13 9 4,15 5
non-meta 3 |6 13 6 4,15 5
meta 1 13 6 3* 4,15 5
meta 2 9 11 5* 5,15 6
meta 3 1* 17 2 4,14 -
b) l# of observations [# of observations W of runs above [Runs above and below
below the median [above the median |and below the  [the median test
median critical values
(x=0.05) one-tail
non-meta 1 |10 10 12 5
non-meta 2 |10 10 9 B
non-meta 3 |8 9 B 5
meta 1 9 9 9 6
meta 2 10 10 5* 6
meta 3 9 9 5* 6
c) Test of proportions Positive and Runs above and
negative runs test below the median
test
non-meta 1
non-meta 2
non-meta 3
meta 1 *
meta 2 * *
meta 3 * - *
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Table 4.2. Results of the tests for pattern formation in the homogeneous systems. The quantity
being tested is the chlorophyll-a concentration in tank-a minus the chlorophyll-a concentration in
tank-b. a) Positive and negative runs test and test of proportions. b) Runs above and below the
median. ¢) Summary of significant results. * indicates a significant result.

a) of negative {# of positive  of positive |test of proportions  [Positive and
differences |differences [and negative [critical vaiues negative runs test
runs (a=0.05) two-tail critical values
(ax=0.05) one-tail
non-meta 1 9 11 8 5,15 6
non-meta 2 [15 5* 5* 5,15 5
non-meta 3 [6* 15 7 5,15 5
meta 1 9 11 5* 5,15 6
meta 2 3* 17 5 5,15 3
meta 3 15 5* 7 5,15 5
b) # of observations {# of observations I# of runs above and [Runs above and
below the median [above the median [below the median |below the median
I:?;itcal values
(=0.05) one-tail
non-meta 1 |10 10 10 6
non-meta 2 |10 10 13 6
non-meta 3 |9 9 8 6
meta 1 9 9 5* 6
meta 2 10 10 5* 6
meta 3 10 10 5* 6
c) Test of proportions Positive and Runs above and
negative runs test below the median
test
non-meta 1
non-meta 2 * *
non-meta 3 *
meta 1 * *
meta 2 * *
meta 3 * *
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Figure 4.5. Ceriodaphnia per capita birth rate as a function of the average chlorophyil-a
concentration between the two tanks in the heterogeneous systems. On the left are the
birth rate curves of the three replicates of the non-metapopulation systems. On the right
are the birth rate curves of the three replicates of the metapopulation systems. Data points
were obtained by linear interpolation of the birth rate and by linear interpolation of the
natural-log transformed chiorophyli-a concentrations. Connected points are sequential in

time.
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Figure 4.6. Ceriodaphnia per capita birth rate as a function of the average chlorophyll-a
concentration between the two tanks in the homogeneous systems. On the left are the birth
rate curves of the three replicates of the non-metapopulation systems. On the right are the
birth rate curves of the three replicates of the metapopulation systems. Data points were
obtained by linear interpolation of the birth rate and by linear interpolation of the natural-log
transformed chlorophyll-a concentrations. Connected points are sequential in time.
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Table 4.3. Parameters of the birth rate curves and equilibrium estimates for systems in
heterogeneous light. (a) equilibria estimates. (b) parameter estimates using Mode! | and death rate
estimates. (c) parameter estimates using Model Il.

(a) non- non- non- meta 1 meta 2 meta 3
meta 1 meta 2 meta 3

chlorophyil-a 0.04094 | 0.03509 | 0.08447 | 0.03769 | 0.08967 | 0.10201

low-light tank (ug /L)

chlorophyl-a 0.02339 | 0.02469 | 0.05263 | 0.09617 | 0.03444 | 0.02274

high-light tank (ug / L)

chlorophyl-a 0.03216 | 0.02989 | 0.06855 | 0.06693 | 0.06205 | 0.06238

average (ug/ L)

Ceriodaphnia 250 296 430 576 306 304

density (#/L)

birth rate (1/day) 0.02811 1 0.02798 | 0.02902 | 0.02491 0.02914 | 0.03482

(b) non- non- non- meta 1 meta 2 meta 3
meta 1 meta 2 meta 3

eg 0.6658 0.5402 0.6203 1.1748 0.8253 0.3711

h 1.7173 0.8721 1.9933 20.0000 | 3.7914 1.0230

d, 0.0130 0.0217 0 0 0 0.0090

d, 0.0224 0.0262 0.0058 0.0226 0.0216 0.0415

eg/h 0.387 0.619 0.313 0.059 0.218 0.363

{c) non- non- non- meta 1 meta 2 meta 3
meta 1 meta 2 meta 3

eg 0.6168 0.5540 0.5752 0.1437 1.0799 0.6403

h 1.4895 0.8640 1.7255 1.0008 5.0368 1.8245

d, 0.0137 0.0207 0 0 0 0.0083

eg/h 0.414 0.641 0.666 0.144 0.214 0.351
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Table 4.4. Parameters of the birth rate curves and equilibrium estimates for systems in
homogeneous light. (a) equilibria estimates. (b) parameter estimates using Model | and death rate
estimates. (c) parameter estimates using Model 1.

(a) non- non- non- meta 1 meta 2 meta 3
meta 1 meta 2 meta 3

chiorophyll-a 021182 | 0.08577 | 0.05393 | 0.07342 |0.08252 | 0.12411

tank-a (ug /L)

chlorophyl-a 0.11111 | 0.13125 | 0.03899 | 0.14555 | 0.10136 | 0.08707

tank-b (ug /L)

chiorophyl-a 0.16147 | 0.10851 | 0.04646 | 0.10949 | 0.09194 | 0.10559

average (ug /L)

Ceriodaphnia 500 454 326 608 764 588

density (#/L)

birth rate (1/day) 0.02714 | 0.02618 | 0.01141 | 0.02618 | 0.02704 | 0.01217

(b) non- non- non- meta 1 meta 2 meta 3
meta 1 meta 2 meta 3

eg 0.56135 0.6287 04772 0.5350 0.2110 2.499

h 0.6292 2.5787 1.2679 1.2373 2.3096 20

d, 0.0345 0.0035 0.0088 0.0342 0 .0060

d, 0.0101 0.0307 0.0133 0.0115 0.0127 0.0101

eg/h 0.816 0.244 0.376 0.423 0.091 0.125

(c) non- non- non- meta 1 meta 2 meta 3
meta 1 meta 2 meta 3

eg 0.5156 0.6350 0.4183 0.5609 0.3003 2.6765

h 0.6221 2.5592 0.9187 1.3118 3.0451 20

d, 0.0339 0.0034 0.0112 0.0321 0 0.0078

eg/h 0.829 0.248 0.455 0.428 0.108 0.134
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Figure 4.7. Comparison of birth rate curves between non-metapopulation and
metapopulation systems fit using Model | and Model [l when light is heterogeneous. The
graph shows the birth rate curves of Ceriodaphnia fit using Model | in non-metapopulation
(dashed grey) and metapopulation (dashed black) systems. Also shown are the birth rate
curves fit using Model Il in non-metapopuiation (solid grey) and metapopulation (solid black)
systems when A,=A,. The numbers shown are the replicate numbers.
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graph shows the birth rate curves of Ceriodaphnia fit using Model | in non-metapopulation
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curves fit using Model If in non-metapopulation (solid grey) and metapopulation (solid black)
systems when A_=A,. The numbers shown are the replicate numbers.
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Figure4.9. Observed and expected chlorophyll-a equilibriain heterogeneous systems. The
negatively sloped curves show the expected equilibrium curves (equation 3.2) for non-
metapopulation systems (grey) and metapopulation systems (black) based on parameters
estimated from Model i. The non-metapopulation equilibria should fall on the positively
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(equation 2.11) (based on parameter estimates from Chapter 3) . The symbols are the
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{triangle). Standard Error bars are shown.

66



0.4

Chlorophyli-a Tank-b (pg/L)

O
|
!
e -

D|; i % f ; f i 1

0 0.1 02 0.3 0.4
Chlorophyll-a Tank-a (pg/L)
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Table 4.5. The effect of increasing Ceriodaphnia parameters on the equilibrium of the non-
metapopulation model. 1- signifies increases the equilibrium value. !-signifies decreases the
equilibrium value.

parameter | effect on chlorophyll-a | effect on Ceriodaphnia | In non-metapopulations this
concentration (A*) density (C*) effect on C* is true for:

Th 1 1 A*<k/?

e ‘ : A*<(k-h)/2

'9 : : A <ki2

'd T ' A*<(k-h)I2

DiSCUSSION

There are a number of results that were predicted by the model. A summary of the
predictions and the relevant experimental results is given in Table 4.6. In heterogeneous
systems, pattern formation occurred in metapopulations but not in non-metapopulations.
In homogeneous systems pattern was observed in both metapopulations and non-
metapopulations but other differences occur between metapopulations and non-
metapopulations that are similar to those differences that are observed in heterogeneous
systems, implying that a metapopulation structure can be important even in the absence
of external heterogeneity. The birth rate for a given average chiorophyll-a concentration
is lower in metapopulations than in non-metapopulations. Average chlorophyli-a
concentration at equilibrium is lower in non-metapopulations than metapopulations in the
heterogeneous systems.

There are a number of results that were not predicted by the model. Pattern in
homogeneous metapopulations (1 replicate) and pattern with a higher chiorophyll-a
concentration in the low-light (high carrying-capacity) tank (2 replicates) in heterogeneous
metapopulations can both occur in the model, but not for parameter values close to the
estimated values. The estimated quantity eg/h is smaller in metapopuilations than in non-
metapopulations in both heterogeneous and homogeneous light. Differences in parameter
values which would give rise to a smaller value of eg/h would also produce higher
equilibrium Ceriodaphnia density in metapopulations along with higher chlorophyll-a
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concentrations in both patches of heterogeneous metapopulations than in heterogeneous
non-metapopulations. Both of these things are observed but not predicted by the model
for equal parameter values in metapopulations and non-metapopulations. There are also
results that suggest that the “within patch” model is not structurally correct and these are:
(1) stability was observed for all treatments whereas instability was predicted by the model,
(2) the average equilibrium chlorophyll-a concentration between the two tanks was greater
in the systems with the higher average carrying capacity (i.e. the homogeneous systems),
and (3) Ceriodaphnia densities were much higher than predicted. These three major
groups of observations: the range of observed patterns, differences in parameters between
treatments, and results that indicate structural errors of the “within patch” model, will be
discussed independently, and then the possible relationships among them will be discussed
in the synthesis section.

Range of observed patterns
Higher chlorophyll-a concentrations in the low-light tanks at equilibrium in the

heterogeneous systems, and pattern in the homogeneous systems, were not expected to
occur for the estimated parameter values.

It is unlikely that this result could be caused by inaccurate estimates of the
Ceriodaphnia parameters (h,g.e,d,,d,) because parameter estimates from the literature and
from the time series agree closely. Also, the average equilibrium chlorophyll-a
concentrations, which are exclusively dictated by Ceriodaphnia parameters in the non-
metapopulation model and primarily dictated by Ceriodaphnia parameters in the
metapopulation model, are very close to those predicted by parameter estimates.

If the carrying capacity in low light is actually one half of the estimated value, then
observed range of pattern at equilibrium in metapopulations would be expected. The algae-
only tanks did show a decrease in chlorophyli-a concentration after the initial peak. It has
also been suggested that the presence of inedible algae can reduce the effective carrying
capacity of edible algae (McCauley and Murdoch, 1990; Kretchmar, Nisbet, and McCauley,
1993; Mudoch et al., 1998). Decreasing the carrying capacity of the low light tanks in the
model would have the effect of lowering the already drastically underestimated
Ceriodaphnia equilibrium densities.

It is possible that some small change in model structure, as described in the
following two sections, would also affect the type of pattern that could occur at equilibrium.
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The difference in parameter estimates between metapopulations and non-metapopulations

Higher average equilibria in the metapopulation systems appear to be due to a
decrease in the filtration rate at low chlorophyli-a concentration or the conversion efficiency.
This could be due to one of two factors: either the ‘shape’ of the birth rate curve is different
from what would be expected assuming that Ceriodaphnia have a type |l functional
response, or the metapopulation structure affects the algal community composition. It
would be nice to identify a small change in the model, that would resuilt in a model where
metapopulation and non-metapopulations have the same “within patch” model with the
same parameter values, and would explain the observed differences in parameter vaiues
estimated using the current model.

A first attempt to modify the model to accommodate the observed equilibria
assumes that the following equation still describes Ceriodaphnia dynamics in both

metapopulations and non-metapopulations:

%?— =(e/-d;-d,)C (4.1

Now all that is needed is an ingestion function that gives the same average ingestion when
both patches of the metapopulation have a higher chiorophyll-a concentration than the non-
metapopulation. This type of functional response is shown in figure 4.12 along with the
generally accepted form (a type il functional response). Given the range of chlorophyli-a
concentrations, it is highly unlikely that the ingestion rate decreases with chlorophyli-a
concentration in the region of observed chlorophyll-a concentrations, and this relationship
is also not observed in the birth rate curves of the experimental systems. This explanation
for the observed equilibria is rejected. There are other arguments that follow along
similar lines but they all require that the per capita rate of increase of Ceriodaphnia can
decrease with increasing chlorophyll-a concentration when chiorophyll-a is homogeneous,
which is just not realistic for the low observed chlorophyli-a concentrations. A single
predator equation with a per capita rate of change that is purely dependent on prey density

cannot capture the observed dynamics.
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Ingestion rate

chlorophyll concentration

Figure 4.12. What the shape of the functional response curve would have to look like in
order to produce the equilibria of metapopulations and non-metapopulations observed in
the experiment. The top curve represents what the functional response has been shown
to look like. The bottom curve is the required shape to produce the observed equilibria.
The solid point shows the ingestion rate for a low chlorophyll-a concentration. The open
points show the ingestion rate for two high chlorophyll-a concentrations that give the same
average ingestion rate as the low chiorophyll-a concentration.

Another possible factor which might give rise to the observations is density
dependence in the functional response or the birth rate. If the birth rate were density
dependent, then the birth and ingestion rates may be described by:

gA
b=el-d,-fC (421 |=—"— (422
\~-fC (4.2.1) = 422
Previously, density-dependence has been incorporated into the functional response
assuming predator interference which results in a half saturation constant that is linearly
related to predator density (Beddington, 1975). A more simplistic (non-mechanistic) form

which is analogous to that described for the birth rate is:

b=el-d, (43.1) I= ff‘z- £,C (4.32)

Both of these types of density-dependence result in functionally identical predator growth
equations. In either case, if Ceriodaphnia density is higher in the metapopulations, this
would require a higher chlorophyll-a concentration in order for the birth rate to balance the
death rate. Over the period when parameters were estimated, Ceriodaphnia density is
higher in the metapopulations than the non-metapopulations for any given chlorophyll-a
concentration (Figure 4.13). These two forms have the potential to capture the observed
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differences between metapopulations.

Alternatively the observed differences in parameters between metapopulations and
non-metapopulation could result from an effect of a metapopulation structure on the algal
community composition. Chlorophyll-a was used to estimate edible algai density. If there
was an increase in the amount of inedible algae in the metapopulation systems this would
make it appear as though there were a decrease in the conversion efficiency or attack rate.
In addition to this, the attack rate on edible algae can be reduced when there is an increase
in inedible algae (McCauley, Murdoch, and Watson, 1988). ltis unclear why there would
be more inedible algae in the metapopulation systems. An explanation for the
heterogeneous systems might be that inedible algae grow better (compared to edible algae)
in high light than when they are mixed between high and low light or if they remain in low
light. However, the same factors appear to operate in homogeneous systems to a iesser
extent and the algae competition hypothesis does not work for them.

Results that indicate that there is a structural inaccuracy in the “within patch” model

All of these systems appear to be stable. This is in spite of the fact that parameter
estimates from the literature and the experiment predict instability. This has been observed
both for closely related system (Daphnia-algae) (McCauley and Murdoch, 1990) and for
less closely related systems (red scale - Aphytis) (Murdoch, 1994). This is a general
phenomenon in consumer-resource systems (Murdoch et al., 1998), and research suggests

simple structural changes that can account for the joint phenomena of a stable low
equilibrium prey density in productive environments (McCauley et al., in prep). Murdoch
et al. (1998) tested possible reasons for stability in the Daphnia-algae system include
density-dependence of the death rate or the functional response, both of which were
rejected, and nutrient uptake by inedible algae.

Also not predicted by the model was the result that the equilibrium chlorophyll-a
concentration was higher in the systems with the higher average carrying capacity. This
has also been observed in previous studies (Watson and McCauley, 1988; Watson,
McCauley, and Downing, 1992). Many of the hypothesized mechanisms of stability
proposed by Murdoch et. al. (1998) also result in a positive relationship between equilibrium
prey density and the prey carrying capacity.

Density-dependence in the birth rate or functional response of the predator, as
discussed in the section on parameter differences between metapopulation and non-



500

8
-
(

8

Ceriodaphnia density (#/0.5 L)
4

0

0 02 04 06 08 1 12 14 16 18 2
Chlorophyli-a (pgit)

600

o 500 j L\A
400 + N

- ~

51)

ty (#/

nsi

2300 4" -
200 j‘ "

g
c
=

Ceriodap!

0 - . .
0 02 04 06 08 1 12 14 16 18 2
Chilorophyli-a (ug / L)

Ceriodaphnia densily (#/0.5 L)

o 88 &8 8§

Ceriodaphnia density (#/0.5 L)

23
3

58 8 8

o

(o
3

76

0 02 04 06 08 1 12 14 16 18 2
Chlorophyil-a (ug/ L)

- S !

Fa |

o R S !

S T Sl :

0 02 04 06 08 1 12 14 16 18 2

Chlorophyll-a (pg /L)
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metapopulations, could also introduce stability and a positive relationship between the
equilibrium prey density and the carrying capacity.

There is another possible source of stability observed in these systems. In figure
4.5 and 4.6, in the non-metapopulation systems, the slope of the birth rate curve increases
with increasing chlorophyll-a concentration in the region near the equilibrium. If the
functional response also increases in this way (i.e. is a type il functional response) then
this would introduce stability into the system. Experimental evidence does not support the
hypothesis of a type three functional response for Cladocera (Murdoch et al., 1998 and
references therein) . /n situ measurements of the functional response could test whether
the functional response follows the same shape of curve as the birth rate.

It is also possible that density dependence appears to occur because of features
of the size structure of the Ceriodaphnia population. This could be evaluated by studying
the effect of a metapopulation structure on a more accurate, size-structured plankton model
(for example the model described by McCauley, Nisbet, de Roos, Murdoch and Gurney,
1996). However, this approach is not particularly promising because the size structure of
the metapopulations and non-metapopulations do not appear to differ for any given
chlorophyll-a concentration.

Synthesis of differences between theory and experiment

Initially it appeared as though a fundamental assumption of many spatially-
structured models, that metapopulation dynamics arise from simply adding migration to
“within patch” dynamics, had been broken. However, it does appear as though there is
potential to capture the dynamics of the metapopulation and non-metapopulation systems,
with the same “within patch” model and parameter values, in metapopulations and non-
metapopulations. [f the birth rate is density-dependent then this might be able to explain
all three major categories of deviation of the experimental systems from the existing model.
This will require investigation of a substantially more complex model, even in the case of
non-metapopulation model. Another component of this line of investigation would be to
identify a potential mechanism for a density dependent birth rate or functional response.
Density-dependence in the birth rate might arise as a result of the existence of some
limiting nutrient that is vital for reproduction. Alternatively, the instantaneous birth rate
depends on the food history and not just the current concentration. A faster depletion rate
due to high predator density over the period of time when energy is being gathered for eggs
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may reduce the amount of energy obtained. This argument is similar to those that have
been used to construct ratio-dependent models (Arditi and Ginzburg, 1989) and a formal
approach would need to be taken in order to determine whether a mechanistic food-
dependent model could give rise to the proposed phenomenon. An experimental approach
could also be used to determine whether or not the coincidence of higher predator density
with lower birth rate for the same chlorophyll-a concentration was causal.

The next most promising approach would be to incorporate competition between
edible and inedible algae and/or nutrient cycling. Theoretically, the effect of the presence
of a predator on the competitive metapopulations and the effect of competitive
metapopulations on the predator population are both of interest. Nutrient dynamics might
be important because there is a net flow of Ceriodaphnia (and the nutrients they contain)
from the high chlorophyll-a tank to the low chiorophyil-a tank in metapopulations. This type
of study might also verify that the algae growth parameters were not accurately estimated
and that for the proper estimates, the observations described in the section on ‘details of
observed patterns’ are expected. Also, the approach might aiso explain the observed
stability in these systems (Murdoch et. al., 1998).

It may be found that incorporating a density-dependent birth rate, nutrient cycling
or algal competition, can capture the apparent differences in parameter values between
metapopulations and non-metapopulations, and that differences between these two types
of systems cannot be captured by simply adding migration to the non-metapopulation
model. Although this would mean that an empirical approach to studying metapopulations
cannot mimic the theoretical approach, it does not mean that consideration of
metapopulation features is not necessary to understand the dynamics of experimental
metapopulations. There have been a number of studies where consideration of
metapopulation features has contributed to the understanding of an ecological system in
the absence of a non-metapopulation control system (Harrison and Taylor, 1997). In this
study, variation in vital rates among replicates and within replicates at different points in
time in the homogeneous systems, arise from differences in chlorophyll-a concentration
between patches. In the heterogeneous metapopulations, all replicates have very similar
average chlorophyll-a concentrations at equilibrium but the single replicate with a higher
chiorophyll-a concentration in the high light (low carrying- capacity) tank has a much higher
Ceriodaphnia density. These observations could not be understood without a spatially
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structured model.

One of the specific areas of interest in this study was contrasting metapopulation
dynamics in heterogeneous and homogeneous environments. As was expected, the large
differences in the average carrying capacity, rather than the difference in the degree of
environmental heterogeneity, between homogeneous and heterogeneous environments
appears to be the major factor influencing the difference in dynamics between systems.
It is unfortunate that the homogeneous systems had a higher average carrying capacity
than the heterogeneous systems. An experiment where the heterogeneous systems have
a higher average carrying capacity would more fully determine whether environmental
heterogeneity can promote stability in spite of the destabilizing effect of an increased
average carrying capacity. The model studied in Chapter 2 does not predict this, but it has
been hypothesized from many other theoretical investigations (including for the Lotka-
Volterra model described in Chapter 1), and has been, until recently, a widely held belief
(Reeve, 1990). A very closely related question is whether or not spatial structure can be
important in the absence of environmental heterogeneity. This experiment has
demonstrated that it can be, because there are differences in the nature of pattern
formation, parameter estimates, and equilibrium values, observed between
metapopulations and non-metapopulations in homogeneous light. These differences are
very similar to those differences observed in the presence of environmental heterogeneity.

CONCLUSION

This experiment has demonstrated that spatial structure can have an effect onareal
predator-prey interaction in heterogeneous, and to a lesser extent, homogeneous
environments. A metapopulation model has been shown to be useful in understanding
spatially structured experimental systems.

In addition to testing predictions about the differences between metapopulations and
non-metapopulations, this experiment has helped to identify promising approaches to more
fully understanding the interaction both in metapopulations and well mixed systems. Anew
factor which might be important to the interaction, density-dependence in the predator birth
rate, has been identified and theoretical and experimental approaches to investigating the
role of this factor in metapopulation and non-metapopulations has been described.
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Appendix |

Lotka-Volterra model with diffusive migration
The model can be scaled using the following variables:

A'=efA, A,'=efd, C,'=fC, C,'=fC,

None of the original variables are used so the primes are dropped to give the following

scaled model:
dA dA
dta = raAa - AaCa -d_tb = rbAb - Abe
dacC dac
dta =A,C, ~dC, -m(C, - C,) d—tb = A,C, -dC, -~ m(C, - C,)

There is only one equilibrium with positive prey and predator density in both patches:

-

Ca=r Cp=1

. o . :
A =d+m-m-2 A =d+m-m-=2
a b

Ifr, > r, then the prey equilibrium is positive in both patches if:

Small deviations from equilibrium can be described by:

A, - A, 0 -A, 0 0
X _mx  x= Ca—C% m-|Ca Aa-(d+m) 0O m
at A, - A, 0 0 0 -A,

C, -Cy 0 m C, A, -(d+m)
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llowing form:

w t2 »* '2

2 m[g—‘_’ + C—?}?f‘ + [A;Cc.', +A,C, ]7@ + m{
b

a

AaCa ¥ Abe

}x +A.C.ACp, =0
b

a

By using this form without yet substituting in for the prey and predator equilibrium

expressions it can be seen that the coefficients

as long as the equilibrium values are all positive.

stability reduces to a factor which is always po
density in the two patches is not equal:

m?(C; - C3) (d+2m)? >0

of the characteristic equation are positive
The only additional requirement for local
sitive as long as the predator equilibrium

When r=r, this factor is zero and the equilibrium is neutrally stable.

There are two other interesting equilibria

each with prey density equal to zero inone

of the patches. If the prey density is zero in patch-a then the equilibrium is:

_m
d+m

-

a

Co Co=1p

»

a8

»

A =0

A, =d+m-m=2
b

Small deviations from this equilibrium can be described by:

Aa"Aa ra_Ca
K _mx  x= Ca_C? M= Ce
dt Ab—Ab 0

C, -C, 0

In this case the characteristic equation is:

C—aj 32 +mC,
Co

(l -+ C;){}f’ + m(—g—‘a:’— + ':’

&

a

0
0 m
0 -A,
C, A, -(d+m)

0 0
—(d +m)
0

m

c),
Cb

.2 . .
+m? S C_C_]
Ca Cb

Cs

|
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If r,>r, then the first eigenvalue is negative when:

=

Therefore this equilibrium can only be stable when the equations for the previous
equilibrium give negative prey density in patch-a. As long as the predator equilibrium value
in the second patch is greater than in the first patch the coefficients of the unfactored
portion of the characteristic equation are always positive the additional condition for stability

m>

reduces to:

mz(c; - c;)(c,; + c;)

Co

>0

Again this is true if the predator equilibrium vaiue in the second patch is greater than in the
first patch. This occurs whenr, >r,.
Lotka-Volterra “separation of scales” model

Using the same scaling as in the previous section gives:
dA, dA,
—2=rA,-AC —2=nA, -AC
dt a’’'a a dt b/ b

dc,
dt

= 2(AC+A,C)-dC

Itis clear thatif r, = r, then the prey equilibrium cannot be positive in both patches. In the

case where prey density is zero in patch a the equilibrium is:

A =0 C=r A =2d
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Small deviations from equilibrium can be described by:

r -
" Aa—A% fa—C 0 0*
Et—=MX X = Ab—Ab M= 0 0 —Ab
c-C C* C*
— — 0
L 2 2 J

The characteristic equation is:
(n-n +r2)(x2 +r,d)=0

The first eigenvalue is negative if r, > r, but the second two eigenvalues have zero real part

like the nonmetapopulation counterpart.
Rosensweig-MacArthur “seperation of scales” model
The following scaled variables and parameters are used:

2 e kg2

eg h eg

P a0 B % 8
Aa_h Ab_h ca-eh t-2t

Again the prime notation is not necessary and the following model results:

dA, A) A,C dAb_rA( A,,) A,C
e o S R R . 1

-rAa(1——a
dt k) 1+A, dt k) 1+A,

Assuming that densities in each patch are not equal to zero, the equilibria are described by

the following relationships:

- -

oeea) e es)



87

A A
a4 & ——-d=0
1+Aa 1+Ab

Equating the two expressions for the predator equilibrium gives the following:
(k= Aa)(1+ A0) = (k- A 1+ A5)

which has two solutions:

A=A, A =k-1-A,

The first specifies the homogeneous equilibrium:

This equilibrium has the same local stability properties as the equilibrium of the mixed
model. The second is an equilibrium with prey density positive in both patches but not
equal. Analysis of the two symmetrical equilibria specified by this equation has some factors
in common with the next equilibrium which will be analyzed first.

Itis possible that the prey density is zero in one of the patches. This is a symmetric
solution and only the case where patch-a has zero prey density will be considered. The
equilibrium is;

d

A=0 A== C=r(k-A)1+4)

Dynamics near the equilibrium can be described by:

J A, - A, -a, 0 O
d_: - MX X = Ab - A; M = 0 _ab —bb
c-C C'" ¢ O
where:
. . . KA
a,=- 0 _dA, =r-C* ab=——_i =Lai- 2
CA, dt Ay k °® 1+A
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k- A,
1+ A,

__odf __A o, -2 9 _
°T A, dt] 1+ A b" A, dt

x|~

the characteristic equation is:
(A, =+ aa)(}\.z + ab}. + bbcb) = 0
Therefore the equilibrium is stable as long as a,>0 and a,>0. That is:

K o <k-1

When the prey density is positive in both patches but not equal between the two patches
there are two symmetric solutions. The first one is:

pa Jk+ D2 -d)[2(k - 1)~ d(k +1)]
° 2 2(2-d)

o k-1, Jk+ D2 - d)2(k - 1) - d(k +1)]
°T 2 2(2-d)

For the other solutions the prey equilibria densities are equal to the opposite quantities.
The quantity inside the square root sign is positive as long as d<2, which is also the upper
boundary on d required to make the prey density positive, and that:

d k-1

<—_

2-d 2

This is also the condition for instability of the homogeneous solution so when the
homogeneous solution becomes unstable this equilibrium becomes positive.
Small deviations from equilibrium can be described by:
4 A, - A, -a, 0 -b,
Z-Mx x=|A-A,| M=|0 -a -b,
dt L 4
c-C c, ¢ 0
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where:
N B L) __ 0 A 1, k-A
*TToA, dt| k| 14A ° oA, dt | k| 1+A
8 dAl A po__ 0 9| _ A
*TToCT dt | 1vA, *TTaCT dt| 1A
__0 & _rk-A L0 A [ _rk-A
27 5A, dt k(1+A;) * " oA, ot | k(1+A;)

The characteristic equation is then:

det(r/~ M) =22 +(a, +a,)A% + (8,8, + bsC, + byCp)h

+a,b,Cp +a5bpcp =0
If the predator density is to be positive then k, >A.* and k, >A,*. Under these conditions
¢, and c, will be positive and b, and b, are always positive. All of the coefficients of the
characteristic equation are positive. Of special note is the coefficient of 4? which shows
that although the prey equilibrium in one of the patches would be unstable in isolation, this
coefficient can still be positive for the heterogeneous equilibrium. The other condition that
is necessary for stability is:
(a, +a,) *aza, +a,b,¢; +apbpc, >0
After substituting in the prey equilibria and doing a significant amount of algebra this can
be reduced to the following form:
-(——ﬁ-—](z(k ~1)-d(k+1)x

k*(2-d)

[(@- (1- )k - ))2d - (2- )k - D))r + k(1- d)2- d)(2d - (1-d){k - 1))| > O

The second term is negative if the prey equilibrium values are positive so the term in
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square brackets must be positive for the equilibrium to be stable. The coefficient of r is
always negative as long as the prey equilibrium values are positive so the condition can be

put in the following form:
d _k-1
1-d 2

[k;1'2fd;1fd‘(k'o}

r<k(1-d)

Surprisingly, this condition can be interpreted in terms of characteristics of the
homogeneous equitibrium and the equilibrium when one patch is zero. The upper term is
the deviation of the equilibrium value in one patch when the other patch is zero from the
prey density where the predator density is maximized. The lower left term is the deviation
of the mixed equilibrium from the point that gives maximum predator density.



91

Appendix |l

Logistic growth in a heterogeneous environment
The logistic model can be solved explicitly for prey density as a function of time and
the initial density. The dynamics of the single population in environment-a are described
by:
k,A(0)
As(0)+ (k, - A,(0))e™!

A (t)=

If there are two populations with different parameters that are mixed together, and the
interval between mixing (in days) is m and a migration occurs at time 0 then the dynamics

can be described by:

t=xm+T 0<T=<m, x=1234....

k,A,(mx)
Ay (mx) + (k, - A, (mx))e™"s" Tem
A (t)= 1 k,A(xm) 1 K, A, (xm)
EAa(mX)"’ (ka - Aa(xm))e'fam ' EAb(mx)+ (kb - Ab(xm))e"b”’ T=m
k, Almx)
1+ (Kky - Ay(mx))e " Tem
Ay(t) = k,A,(xm) 1 kA, (xm) o

1
EAa(xm)+ (K, - A, (xm))e "™ "2 Ay(xm)+ (K, - Ay(xm))e "™

The density just after migration can be written in terms of the density just after the previous
migration (the density will then be equal in both patches):

1 Ko Amix (xm) 1 Kp Ay (Xm)
A (xm+m)=_ a’ ‘mix + = mix
i 2 A(xm) + (kg - Ay (xm))e ™™~ 2 A (xm)+ (Ky = A (X)) ™™
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The case where mixing occurs continuously and when it is finite are both of interest.
The differential equation for A, when m approaches 0 can be found by using the definition

of derivative:
dfa) _ . fla+h)-f(a)
da  h-0 h

If t is taken as the time of the previous migration and the time to the next migration as m

then the derivative would be:

A _ (i A (£ + ) — Amic (1)
dt m-0 m

In this case the result is:

dAnix 1 A 1 Ani
-———d,;” ='é'raAmix[1— IZXJ+_2-rbAmix(1_———/?l:x)

Heterogeneous non-metapopulation model
The following scaled variables and parameters are used:

or, 2r, K k, . 2d

r=fa X 0B g 22

“"eg " eg ° h P h eg
, A , 2C.. , €

Again the prime notation is not necessary and the foliowing model resuits:

c’Amix I ( Amix ) I [ Amix J Amix Cmix
=2A [1-1mx| e |1- -
a 2 ™ k, ) 2 ™ ks 1+ A,
deix =2 Amimeix _ deix
dt 14 Anpix

There is a single equilibrium with positive predator density:

. d
Amix = g
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ST

a

The stability analysis for this model can be found in many places but it is useful to
go through it here because of its relationship to the next model. Small deviations from

equilibrium can be described by:
d_X = Mx X = Amix - A;nix M= -a _bjl
dt Cmi - Cmix ¢ 0

where:

a dAle rm’x A:nix 1 kaX - A:nix
= - Py = aa +a b
OAnmix dt l Kmix 1+A x

r,A k,-A A ky - A
aa = mix 1 — -H'IIX ab - mix 1 — 'm:x
2k, 1+ A 2k, 1+ A

mix

The characteristic equation is :

det(#/ - M)= 4% +ai +bc=0

The equilibrium is stable if the predator equilibrium is positive and a>0. The latter condition
is satisfied if :

-1

k mix

2

Amix >
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A sufficient condition for stability is that the following two inequalities are true, if they are
both false then the system is unstable:

A > Ko =h pn A > f-b—z_ﬁ

Homogeneous metapopulation model
Again, the number of parameters can be reduced. Parameters are scaled in the same way
as the last section and state variables are scaled as follows:

A A 2C eg
A _Ta A |=_£ C|=_ tl=_t
" h " h eh 2

Again the prime notation is not necessary and the following model results:

B ] 1 A) AC
ot 2 k,) 2 k,) 1+A

a

i‘izf_a,qb[ _&)+’_b,4b[1_fg)_£_
dt 2 k,) 2 ky) 1+A,

dC_ AC . AC

—= + -dC
da 1+A, 1+A,

The analysis using the new parameters does not give any new information of interest. The
results of this model from Chapter 1 with the parameters r,, and k,,, are sufficient.
Because the homogeneous equilibrium of this model has the same stability boundaries as
the mixed model the homogeneous equilibrium is stable if the equilibrium is stable in both
types of environment and unstable if the equilibrium in each environment is unstable as
shown for the heterogeneous non-metapopulation mode!.
Heterogeneous Metapopulation Model

Using the same parameter and variable scaling as the homogeneous
metapopulation model gives the following heterogeneous metapopulation model:

a1 B) AS (o &) AC

at ky) 1+ A, at ky) 1+A,
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dC _ AC __AC _
dt 1+A, 1+A,

dC

As long as the prey density is not zero in one of the patches the equilibria satisfy the
following relationships:

c' =ra[ —'—:;;—j(nA;) c’ =rb(1—':—f](1+A5)
A P _4oo

1+A. 1+A

Small deviations from equilibria with prey density not equal to zero in either patch can all

be described by:
; A, - A, -a, 0 -b,
-—£=Mx X = Ab_Al; M= 0 —ab _bb
dt :
c-C c, ¢ O
where:
A _ny el KA __ 0 A _n el koA
2TUGA, dt |k, *| 1+A T oA, dt| k, 1+ A
_ ¢ dA, A, __ ¢ dA| A
T dt | 1+ A P dt| 144
LA B AL __8 oA _nk-A
ToA dt| ki (144]) T oA dt| ks (144])

The characteristic equation is then:
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det(1/- M)

=% +(a, +a,)A% +(a,ap + b,C4 + byCy) A +8,b,Cp, +a,0,Cp = 0

If the predator density is positive (A, < k, and A, < k, ) then ¢, and c, will be positive and

b, and b, are always positive. The Routh-Hurwitz criteria are:
a,+a,>0 a,bycp +apb,c, >0 (a5 + @p )a,ap +@,b,C, +apbyc, >0

Itis clear that if a, and a, are positive then the equilibrium is stable and if they are
both negative then the equilibrium is unstable. The condition for a, and a, to be positive
respectively are:

ky—1 Ky —1

A > and A, >
This is analogous to the mixed and isolated patches except that the equilibrium densities
of prey are different than they are for mixed or isolated systems. From this it can be seen
that equilibrium #1 is stable as long as it is on the right branch on the upper part of the
hyperbola. And likewise if equilibrium #3 falls on the left branch of the hyperbola then it is

unstable.
When the prey density is zero in the first patch the equilibrium is:

. . d . A, .
A =0 A=r— C —rb(1—z](1+Ab)

The equilibrium for this model is the same as if patch B were isolated but with twice the
normal death rate. Small deviations from the equilibrium can be described by:

g A, - A, -a, 0 0
a%:Mx x={Aj-A,| M=| 0 -a, -b,
c-C 0 ¢ O

where:
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o dA| oo,
a,=——2Lal _p_cr  ay=-—
@ A, dt @ °T oA K,

* -

_ b Ke=Ay

J dc| A g _dC
Ky 1+ A,

= - Cp = ——
oA, dt| 1+ A *7 oA, dt

bb=

The characteristic equation is:

det(h/- M)= (1 + &, )12 + @) + byC, )= 0

Therefore the equilibrium is stable as long as a,>0 and a,>0. Thus the lower stability
boundary (when changing d) is the same as that of the isolated model with twice the death
rate. The point where the upper part of the hyperbola intersects the A, axis coincides with
a,=0. The values of this point are given in Table 2.1. Therefore the upper stability
boundary of this equilibrium occurs when the heterogeneous equilibrium with prey positive
in both patches becomes negative. Analysis of the equilibrium with prey density equal to

zero in patch-b is identical.
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Appendix Il

The egg stage duration and the average starvation time, which were used for
estimation of parameters, were obtained from supporting experiments.

Individual Ceriodaphnia were grown in 25 mL of Big Hill Spring water which was
changed daily. Individuals were fed a constant amount of food daily throughout their
lifetime. Food concentrations ranged from 1.5 X 10*and 1.2 X 10° celis / mL . A total of 16
individuals reached reproductive age. Juveniles ranging in age from 0 - 2 days were placed
in 25 mL of water without food and placed in the incubator. Water was changed daily and
it was noted whether or not individuals were dead. A total of 21 individuals were starved
to death.

The egg stage duration was always observed to be 2 days at all food levels. The

mean starvation time was 2.73 days (s*= 3.42).





