Indsckion is a central zswe in the philosoply of acieics. it has practical im-
poct for the field of machine jearnlog, which is concerned with discovering
good descriptions of concepts. Examples ste presented to a machkine which
mnukt, wsing hackground kxowledge and rules of inductlve Inference, indace
a Elicory that explains tie data. Enduction ik an extremely powerful lufer-
ence technique. 16 is, however, highly ender—constrained, and evaluation of
inductive inference systeme and teethods can be very ehamve.

The almt of thiz psper is to describe and illesteate the prineiple of
complexity-based induction, Informaliy, this principle jodges theories by
the amoynt of infarmation they need to reproduce a given eol of positive
axampios of a concept. The mepsire strikes & deficate badance betwoen the
comploxity snd geperatity of 2 theory,

The paper is stractered as follows, In section 1 we givie & formal descrip-
tian of Indaetion and generzlization, Induction embraces coscept learning
[16}, connectionist dearning 114], incretsental lesrming, sequence identifica-
tion [9], expianation-based penerafization [20] and unsuperviselt cirssifica.
tien [17]. Here we restriet sitention 1o concept featning—ide resuits extend
nxturally e otier formi. Section 2 develops complexity-hased mduction in
detidl, and gives measures whick can be applied direetly fo logic programs,
Two applications of the techsique ixre presewted In eection 3. Seclion 4
distusses compiekity-based mductive vforance. Section 5 ostlines the prin.
ciples of probabilistic induction, and establishes the relationship batween
pare lagital and probabilistic induction,

1 Formalizing induction

Dedbnctive inference geaerates theoresns; induclive inference genecates by
potleses, We belefly seview Lhe logical fovuedation of induction, as presented
in 133, chapter ¥] and [22]. This exposition of ductien ases legic program-
ming torms [£5]. Eet

Ly b the lamgoage of obseevations,
L be the tanguage of backgronnd knowledge,
Lpr be the fanguage of hypotheses.

‘Tie backpround kyowledge and hypoliwsas am aften expressed in tie sxne
form, and this is asiumed honeeforil, We shall refer to this langnage as the
hupoithesiz space, 2ud denole ik by the symbet £ = Ly = Ly We regoire

that Lo C 2, and that statements in Lo are ground. The hypothesis space
Q and the language of observations Lo may be finite or infinite.

Suppose B C Q is background knowledge, and E C Lo is the set (with-
out duplicates) of observations seen so far. Inductive inference generates a
hypothesis H C § subject to the following requirements:

necessity B} E,
consistency BU E It -H,
explanatory power BUH | E.

The necessity condition ensures that the background knowledge does not
already entail the examples — if it did, there would be no need for an
inductive hypothesis. The consistency condition asserts that the negation of
the hypothesis is not entailed by the background knowledge and examples —
if it were, the hypothesis would be inconsistent with what is already known.
The final condition dictates that the background knowledge and hypothesis,
taken together, entail the observations.

Given a specification of the three languages described above, and a set of
observations E C Lo, there will generally be an indefinite number of induc-
tive hypotheses H that meet the above requirements. The requirements say
nothing about which one to prefer. This is the role of a preference criterion,
an extra-logical rule that prefers one hypothesis to another.

1.1 Concept learning

We now describe concept learning, a basic inductive inference task. Suppose
that there is a concept named c¢. In logic, a instance of the concept is
represented by the conjunction of literals

C(el,...,Ek)/\Bl/\.../\B", (1)

where the e; are constants. The B; are the predicates which are “opera-
tional” or “observable”. In concept learning, it is implicitly assumed that
other predicates “cause” c. For the purposes of concept learning, the in-
stance is therefore translated into the clause

clery...,ex) — BiA...ABy. 2)

A concept C is a set of instances — it may be infinite. The By, ..., By, are
sufficient conditions for concept membership [20]. By reversing the implica-
tion in (2) they become necessary conditions.

A positive ezample is an element of C. A negative ezample or non-
instance of a concept is a clause

=c(e1y..-,€x) — By A...A By. 3)

A non-instance is an element of the set Lo — C. Negative examples do not
naturally occur: they arise from querying an oracle, which can answer the
question “is x € C?” for any possible observation z. The ultimate goal of
learning is to construct a compact, intensional, sufficient definition of the
set C, in finite time, from examples and/or queries of the oracle. Restriction
to a finite amount of time and data necessitates using inductive inference
to achieve or approximate this goal. An approximation to a concept C is
called a theory.

Formally, a theory of a concept is a Horn-clause theory [15], called a
logic program, such that c is the head of at least one clause, that is, there is
at least one clause of the form

C(Xl,...,Xk)(—-..., (4)

where the variables X; are understood to be universally quantified. The
disjunction of the bodies of all such clauses is called a recognition function or
classification rule for the concept. Note that logic programs cannot deduce
negative literals, and we assume a mechanism such as PROLOG’s negation
as failure rule to infer negative information. Induction is very important
in all concept learning areas where background knowledge is incomplete
or non-existent. An induced theory can augment a machine’s background
knowledge, and contribute to improved concept recognition.

1.2 Generality and simplicity

Inductive inference is closely related to the notion of generalization. Here we
give an informal discussion of theory generality; see [4] for a more detailed
description.

A logic program Ty is more general than or subsumes a program T3 if
Ty b T3 and T, H Ty. That is, the ground literals entailed by T; are a
superset of those entailed by T5. This definition imposes a lattice on logic
programs, with the empty clause as the top element, and the empty program
as the bottom element. An upper bound of a set of programs is called a
generalization of that set.

A theory T = B U H ezplains a set of examples E if T F E. In Michal-
ski’s [16] classification, we require that the theory “strongly,” not “weakly,”

entail the examples — that is, every example is a strict logical consequence
of the theory. Note that the examples are points in the lattice, and any gen-
eralization of them is an explanatory theory. In particular, the maximally

simple theory
T=c(Xq,..., Xx) — (%)

and the maximally complex theory
1=FE (6)

both explain any set E of positive examples.

There may be more than one generalization of the examples in the lattice,
and a preference criterion is needed to choose between them. One pervasive
preference criterion is Occam’s principle of parsimony. We accept as an
axiom:

Occam’s principle. Entia non sunt multiplicanda praeter necessitatum,

literally, “entities should not be multiplied without necessity”. The simplest,
least ornate explanatory theory is to be preferred.

Although theory simplicity is an ancient and intuitive notion, Occam’s
principle must be interpreted carefully to yield a useful preference criterion
for machine learning, as the next section will demonstrate.

1.3 Overgeneralization

Suppose that only positive examples are available. Inductive inference ma-
chines employing Occam’s principle under standard interpretation will not
succeed, as they are liable to select the most general theory T. Clearly,
the theory is explanatory and maximally simple, but is probably meaning-
less because it indiscriminately accepts any new observation. We construct
some examples of this phenomenon, drawn from well-known concept learn-
ing systems.

Mitchell [19] characterizes concept learning as searching for generaliza-
tions (propositional theories T') that explain all positive and no negative
examples. The candidate elimination algorithm retains two sets, G and S,
that are, respectively, the most general and most specific theories that ex-
plain the examples. To satisfy Occam’s principle, select the simplest theory
from the set G of maximally general theories. The theory G is initialized
to T. If no negative examples are given, T will be the simplest explanatory
theory.

Quinlan’s 103 [26] inductive learning algorithm learns decision trees
(propositional theories) from examples. The 1D3 algorithm recursively finds
an attribute to test, and for every possible outcome of the test, prunes ex-
amples from E and creates a new branch in the decision tree. The recursion
terminates when all examples are in the same class. If given only positive ex-
amples, this termination criterion will immediately succeed with the theory
T.

Winston [36] describes a general-purpose procedure for learning descrip-
tions of structured scenes from examples. The theory T is initialized to the
first positive example. Subsequent positive and negative examples (“near
misses”) provoke theory generalization and specialization, respectively. If
no negative examples are given, the machine may steadily march towards
the generalization T.

Shapiro’s Model Inference System [32] learns a concept by initializing
T to the most general theory T, and searching through a specialization
hierarchy of logic programs, directed by negative examples. Only negative
examples can remove T from its perch.

The MARVIN concept learning system [30] uses background knowledge B
to guide search through a generalization hierarchy of first~order theories. In
contrast to Shapiro’s system, the theory T is initialized to the most specific
theory E U B. Generalization operators are incrementally applied to the
theory. Although MARVIN does not use negative examples, at each stage of
generalization an oracle must be consulted to confirm that overgeneralization
has not occurred.

The concept learning systems described above do not behave gracefully
when negative examples are not present. This is because T is a generaliza-
tion of any set of positive examples. The insistence on negative examples
is, in many domains, quite artificial. They require careful preparation, and
learning machines lose a large degree of autonomy. The next section de-
scribes and applies an interpretation of Occam’s principle that works in
learning settings that include neither an oracle nor negative examples. Neg-
ative examples may be present; the interpretation has no problem with this.

The abolition of negative examples, however, comes with a price. Fun-
damental theorems of Gold [13] and Angluin [2] show that most hypothesis
spaces are not identifiable in the limit from positive examples. That is, an
inductive inference machine may never converge to an intended or “target”
theory.

Identification in the limit from positive examples is a very strong prop-
erty of a hypothesis space. It is, nevertheless, somewhat unrealistic in most

real-world domains where only a small number of examples are available.
Valiant’s [35] “probably approximately correct” learning framework grants
hypotheses a margin of error. A hypothesis space is PAC-learnable if an
inductive inference procedure exists which will, given a bounded number
of examples, produce a hypothesis that will never accept a non-instance,
and will accept most instances of the concept. Valiant [35] demonstrates
the PAC-learnability of some hypothesis spaces. For example, bounded k-
CNF propositional expressions (where each clause is the disjunction of at
most k literals) are PAC-learnable from positive examples. Monotone DNF-
expressions (where no propositional variable is negated) are PAC-learnable
using an oracle. Note the severe restrictions on the hypothesis space in both
cases.

Both identification in the limit and PAC-learnability of a hypothesis
space Q) state that if there is a theory T € § that explains all positive
instances (most instances in PAC learnability) and no non-instances of the
concept, then there exists an inductive inference machine that will, given
enough examples, eventually find 7. In practice, however, there may not
exist such a theory in Q. In this situation, we are interested in finding the
best possible theory in Q using the available examples. We attribute no
intensional descriptions to nature, and are interested in selecting the theory
that provides the nearest possible approximation to reality, whatever that
may be.

2 Complexity-based induction

Complexity—based induction theory [33] motivates a fresh interpretation of
Occam’s principle, based on the idea of data compression. The metaphor is
one of communication: the set or sequence E of (positive) examples must
be transmitted across a noiseless channel. Any similarity that is detected
among observations can be exploited by giving them a more compact cod-
ing. Instances of the concept should have short codes, and non-instances
should have no code at all. If examples of a problem or concept cannot be
appreciably compressed, it is called random [1].

According to complexity—based induction, the best theory for a concept
is defined to be the one that minimizes the number of bits required to com-
municate the examples. This is the essence of the minimum description
length principle [28, 29]. Complexity—based induction allows the induction
of a theory from positive data without separate hypothesis testing.

Figure 1: The languages of induction.

The ground logical consequences LC(T') of a theory T are defined as
{z : T+ z,zisground}. In logic programming terms, this is the least
Herbrand model of the logic program T. The set of logical consequences
of a theory can be very large, and for this discussion we are interested in
only a subset of them, namely those that are also possible observational
statements:

Q(T) = Lo N LC(T). (7)

In other words, Q(T') is the set of observational statements entailed by T
Popper [24] calls Q(T') the empirical content of a theory.

Figure 1 shows the relationships between the various languages of in-
duction. The goal of concept learning is to make the set Q(T') identical to
the concept set C. The hypothesis space 2 contains all possible theories
and all their theorems, including all that can be expressed in the observa-
tion language Lo. The set — Lo contains all well-formed formulae of the
hypothesis space which are not observational statements. The set Lo — C
contains all non-instances of the concept C; as we have seen, existing in-
ductive inference systems rely heavily on a presentation of this set in the
form of oracle queries or explicit negative examples. Note that the logical

consequences LC(T) of a theory T may contain non-observational state-
ments, and the provably true observational statements Q(7") may contain
non-instances.

Inductive inference hypothesizes a theory T, and this theory explains
some observational statements Q(T'). There are three possible relations
between the set of examples E and Q(T'):

1. E = Q(T). The theory explains all the examples and no more.
2. E ¢ Q(T). There are examples not explained by the theory.
3. E C Q(T). The theory explains all the examples, and more.

In case 1, only the theory T need be transmitted, since the receiver can re-
construct E exactly by deductive inference. As E grows, however, it becomes
increasingly unlikely that a simple theory in a hypothesis space explains E
and only E. If case 2 holds, we must add the set E —@Q(T) — the exceptions
to the theory — explicitly to T, thus ensuring that the theory is explanatory.
This situation is not depicted in figure 1 because it is assumed that T has
already been so augmented. In case 3 the theory is explanatory, but more
general than E — that is fine, to an extent. It indicates that induction has
taken place. However, further information must be transmitted to convey
the set E.

2.1 Coding examples

In case 3, the common situation, to transmit E the explanatory theory T'
must be sent along with some extra coding information that specializes it
to explain E and only E. To transmit E, first transmit T, encode E with
respect to T, then transmit that encoding. Denote the code for T by D(T'),
and the encoding of the examples by D(E|T). If the codes for theories and
examples form a prefiz set (no code is a prefix of any other), upon receiving
the catenation D(T')- D(E|T') a receiver can exactly reconstruct .

The complexity of T is the length (in bits) of the string D(T’); denote
this by L(T). The fit of T to E is the length (in bits) of D(E|T'); denote
this by L(E|T). If T does not explain E, L(E|T) is defined to be infinite.
Complexity-based induction dictates that the best theory T for the data E
minimizes the description length

L(T|E) = L(T) + L(E|T). (8)

If L(T|E) is greater than or equal to L(E), the code length of the raw exam-
ples, useful induction has not taken place. Otherwise, valid generalizations
have been made, redundancy has been extracted from E, and the data has
been compressed.

The quantity L(T') measures the textual complexity of a theory T, and
will be discussed in section 2.2. The quantity L(E|T) measures the com-
plexity of the examples when coded using T'. There is some question about
what this means in a logical setting. As mentioned above, the string D(E|T)
must specialize T' to explain E and only E. There are various ways to do
this:

1. Identif b tional stat ts i i ((Dl

. y n observational statements in Q(T") using log, n
bits. This can (almost) be achieved using an efficient coding method
such as arithmetic coding [37).

2. For every example, send information identifying its position in an enu-
meration of the observational theorems of T'.

The first measure is only useful when Lo is a finite set, because it requires
the computation of Q(T') (see expression 7). If Lo is countably infinite,
measure 2 must be used.

Let us look at the consequences of adopting these interpretations. In
the first, the generality of the theory is counterbalanced by the number of
extra observational statements — other than the examples — it explains
or covers. The theory T has maximal extra coverage; in fact, Q(T) = Lo,

and L(E|T) = log, ([Lnol) = L(E). At the other extreme, consider the

theory L. This theory has zero extra coverage, L(E|L) = log, Z =0,

and Q(L) = E. Neither theory is able to compress the examples. The first
cannot because (as discussed in section 2.2) L(E|T)is just as large as L(E);
the second cannot because L(L) is just as large as L(E).

The first measure discriminates against overly-general hypotheses, as
they will require too much information to specify examples from E. In the
second interpretation, one devises a scheme for enumerating Q(T'). It is
natural to have statements with short proofs appear early in the enumera-
tion. If this is the case, the measure discriminates against hypotheses that
require long proofs to explain E. Muggleton [21] gives an application of this
method, using the structure of the resolution universe as an enumeration

technique. Feldman [10] also uses a proof-theoretic measure of complexity,
called derivational complezity, for evaluating inductive inference of context—
free grammars. Note the similarity with explanation-based learning, where
there is a space/time tradeoff; adding redundant generalizations to a theory
may speed up performance for similar future examples, but also may degrade
overall performance. This is known as the utility problem [18]. Complexity-
based induction can offer a principled objective measure for choosing when
to save a generalization.

In conclusion, when the examples are coded relative to the theory, the
options we identify are (1) to code the identity of the appropriate statements
in Q(T), and (2) to code the proofs of the statements in Q(T"). The first is a
syntactic measure which encodes certain sentences (i.e., the examples) rela-
tive to the language in which they are couched (i.e., the language generated
by the theory). The latter is more semantic: it encodes how the sentences
are generated by the theory in terms of the “proof” which exhibits that they
belong to the language.

2.2 Coding theories

We have discussed two methods for coding the consequences of a logical
theory, and now turn to the problem of coding the theories themselves. For
simplicity, function—free logic programs are assumed.

The easiest way to code a logic program is to transmit it directly in,
say, AscIl format. This, however, is extremely inefficient. Like examples,
theories contain redundancy and can be compressed; there is redundancy
inherent in the grammar of well-formed theories, and there is redundancy
introduced by a particular use of the grammar.

Just as it is impossible to find the best theory for a set of examples, it is
impossible, in general, to find the best “theory for theories” (see section 4.1
below). However, the efficiency of the theory coding scheme can have an ef-
fect on how many examples a complexity-based inductive inference machine
requires. The best coding scheme for theories will have the property that

L(L|E) = L(T|E) (9)

or, equivalently, that L(L) = L(E) and L(T) = 0 (recall that L(E|L) =0
and L{E|T) = L(E)). In practice, L(L) will be at least as large as L(E),
due to Shannon’s second theorem [31]. A good theory coding scheme reduces
this differential.

10

program => clause o program (0.5)

program = A (0.5)
clause = head «— body (1.0)
head => atom (1.0)
body = literal , body (0.5)
body =A (0.5)
literal => atom (0.5)
literal = - atom (0.5)

atom => (see text)

Figure 2: A probabilistic grammar for logic programs.

There are numerous valid ways to code logic programs. We use the
following simple, but reasonably efficient, scheme. Well-formed logic pro-
grams have an unambiguous context-free grammar, shown in figure 2. The
numbers on the right are production probabilities. The probability P(T)
of a particular theory T with respect to the grammar is the product of the
production probabilities used in its derivation. The code length L(T') of
the theory is —log, P(T') bits. All that remains for a particular hypothesis
space is to specify what atoms can occur. This can be done using the the-
ory’s lexicon — the variables, constants, and predicate symbols that appear
in the program — along with their arities. If there are v variables and ¢
constants, there are —;(J%_C);—). ways to arrange them as arguments for a predi-
cate of arity a. If there are p predicate symbols in the lexicon, an individual
predicate symbol can be identified using log, p bits. In general, if there are
c constants, p predicate symbols and v variables in the lexicon, an atom
formed using a predicate of arity a can be coded in

!

log, —(_v(_i_%)t.z)! + log, p bits. (10)
Whereas the ground atoms formed from the constants and predicate symbols
(the Herbrand universe) are fixed in advance, different theories may need a
different number of symbols for variables. To accommodate this, we preface
each theory with a code of length log, v bits, identifying the number of
variables v. In the case that the theory has no variables, one is added so
that the logarithm is defined. The next section shows how this measure is
used.

11

We do not conjecture that our coding method for logic programs is near
optimal. One immediate idea for improvement is to base the probability
of a literal on its relative frequency of occurrence in the theory. Exploring
efficient methods for coding logic programs is a worthwhile area for future
research.

3 Examples of complexity—based induction

This section gives a brief description of the coding scheme described above,
in two simple concept learning settings. In both examples, Lo is finite, and
measure 1 of section 2.1 is used to compute L(E|T). The hypothesis space
) is finite in the first example, and infinite in the second.

3.1 Ravens

The hypothesis space § is the set of logic programs with lexicon
{raven/1,black/1,e,/0,...,€,/0}, (11)

where the e; are constants. In the three theories considered below, there is
only one variable X. Therefore, by expression 10, each atom can be coded
in 1+ logy(n + 1) bits.

The concept under consideration here is that of “raven-ness”. We de-
scribe ravens by one property: “black-ness”. The observation language Lo
is therefore all statements of the form

raven(e) «— black(e), or
raven(e) « -black(e), (12)

where e is a constant.
Consider an example set of n black ravens:

E = {raven(e;) « black(e1) o ...o raven(e,) « black(ey)}, (13)

(the symbol o is a clause separator). The complexity L(E) of n examples
is log, 2; . We now consider the complexity-based evaluation of three

different explanatory theories for E.

12

Theory 1

Consider the maximally complex theory T = E = 1. The code length of
this theory, according to the grammar of figure 2, is

14+ 2n+2n+2n(1 +1ogy(n+ 1)) = 1 4+ n(6 + 2logy(n + 1)) bits. (14)

It is clear that T' needs no specialization, since Q(T) = E. The total
description length is therefore

L(T|E) = L(T) + L(E|T) = L(L) + 0 = 1 + n(6 + 2log,(n + 1)) bits. (15)

Theory 2

Now consider the simplest possible theory T' = {raven(X) «} = T. The
complexity L(T') of this theory is 4+logy(n+1). It is clear that Q(T') = Lo,
that is,

Q(T) ={ raven(e1) « black(ey) o raven(er) « -black(e;)o...o
raven(e,) « black(e,) o raven(e,) «— —black(e,)}. (16)

To specialize this theory, we must identify the statements

{raven(e;) «— black(e;)o...oraven(e,) «— black(e)} (17)
which requires (anol) = L(E) bits. The description length is therefore

L(T|E) = I(T) + L(E|T) = 4 + logy(n + 1) + L(E) bits. (18)

Theory 3

Finally, consider the theory T' = {raven(X) « black(X)}. The complexity
L(T) of the theory is 7 + 2logy(n + 1). It is clear that Q(T) = E, and
therefore L(E|T) = 0. Thus the description length is

L(T|E) = L(T) + L(E|T) = 7+ 2logy(n + 1) bits. (19)

13

100 ¢ T T

{raven(X) «— black(X)} s

o\ -L

compression
ratio

0.1 | ! 1 | | | | 1 i

0 5 10 15 20 25 3 35 40 45 50
number of examples, »

Figure 3: The evaluation of three explanatory theories.

14

Discussion

The graph of figure 3 plots the compression ratio L(T|E)/L(E) against the
number of examples n. Until about 15 black ravens are seen, the machine
prefers the theory that admits the possibility of a non-black raven. Note
that the theories L and T never achieve any compression of the examples.
Given 50 examples, the theory T' = {raven(X) « black(X)} will compress
them to about half their original size.

3.2 Networks

The next application of complexity-based induction is learning a general
network relation from examples, originally discussed by Quinlan [27]. The
concept under consideration is “reachability” in a directed graph. The hy-
pothesis space is the set of logic programs with lexicon

{reach/2,linked/2,0/0,...,8/0}, (20)

where 0,...,8 are constants.
The background knowledge B contains an extensional definition of the
predicate linked:

{ (0,1)0(0,3)0(1,2)0(3,2)0(3,4) 0 (21)
(4,5) ¢ (4,6) 0 (6,8) 0 (7,6) o (7,8)}.

The notation (z,y) is shorthand for the clause linked(z, y) —, meaning that
there is a directed edge between vertices and y in the network. Below we
ignore the complexity L(B) of this background knowledge, as it is constant
for all proposed theories.

The observation language Lo is the set of all statements of the form

reach(z,y) « (22)

where x,y are constants, meaning that there is a path between vertices z
and y. Thus |Lo| = 81.

The example set E is a complete specification of the reach relation for
a particular network:

{ (0,1)¢(0,2)0(0,3)0(0,4) ¢ (0,5) ¢ (0,6)(0,8) ¢ (23)
(1,2) 0(3,2)0(3,4) 0 (3,5) 0 (3,6) 0 (3,8) 0 (4,5) o

[Theory || T [L(T) T L(EIT) [L(TTE)
Ty=T || reach(X,Y) — 11.8 | 60.4 72.2
T2 = L || reach(0,1) — oreach(0,2) —o...0 1758 | 0 175.8

reach(7,6) — oreach(7,8) —
13 reach(X,Y) «— linked(X,Y) 109.8 | 0 109.8
T, reach(X,Y) « linked(X,Y) o 426 | 474 90.0
reach(X,Y) « linked(X, Z)
T reach(X,Y) «— linked(X,Y) o 926 |0 92.6
reach(X,Y) — linked(X, Z),linked(Z,Y)
T reach(X,Y) — linked(X,Y) o 526 [0 52.6
reach(X,Y) — linked(X, Z), reach(Z,Y)
Table 1: Theories for networks
81 .
Thus L(E) = log, 19)= 60.4 bits.

Table 1 presents six theories, with their code lengths, the code lengths
of the examples, and the final complexity-based evaluation L(T|E). The
Appendix gives a detailed derivation of the table.

The intuitively most satisfying theory Ty is preferred by our complexity—
based induction measure. Its closest competitor is the theory T. It is
very interesting to note that the measure will continue to prefer Tg even
as the number of available positive examples is decreased from 19 to 15,

where L(T\|E) = 11.8 + log, f; = 64.7 bits and L(Tg|E) = 52.6 +
19 . . . y
log, 15 = 64.5 bits. It is unclear how Quinlan’s FOIL system [27] would

perform if given 15 randomly—-chosen positive examples, since it assumes that
every possible observation that is not a positive example is a non-instance.

The theories in table 1 are presented in the order in which FOIL constructs
them (with the exception of theory 1, which is not considered). The search
space has some interesting properties. It has a sub-optimal minimum at
T, and a smaller one at T4. An inductive inference machine employing this
complexity—based measure must be on guard against such minima.

Finally, we strongly suspect that, for this concept learning example, the
theory Ts minimizes the description length, although we are not sure how
to give a non—constructive proof of this.

16

T~T

H « first(Q)

while L(H) < L(E)
if EC Q(H) and L(H|E) < L(T|E) then T — H
1 — rest(Q)
H « first(Q)

return T

Figure 4: Induction by enumeration.

4 Inductive inference

Inductive inference can be viewed as a search over a hypothesis space for
explanatory theories, evaluated by a preference criterion. The enumeration
algorithm shown in figure 4 finds the best theory in a decidable, ordered
hypothesis space 2, according to a complexity-based measure.

The algorithm works as follows. T keeps track of the best theory so far;
initially it is the most general theory T. The while block retrieves theories
from the ordered set Q. The if statement saves the retrieved theory as the
best so far if it is explanatory and gives a description length less than the
current best theory. The enumeration continues until the complexity of the
retrieved theory exceeds the complexity of the examples; there is no point
in considering any theory more complex than the examples themselves.

It should be pointed out that the search space may have some struc-
ture. The hypothesis space may have a subsumption relation that can be
exploited, as is the case with logic programs; if a theory does not explain
E, no more specific theory will either. That is, if T E and T F T', then
T’ need not be considered as a candidate. In addition, if the first complex-
ity measure of section 2.1 is used, any theory that has a simpler equivalent
theory in the hypothesis space need not be considered, due to the ordering
imposed on Q. That is, if Q(T) = Q(T") and L(T") > L(T), then T' need
not be considered as a candidate.

If uninterrupted, the algorithm terminates with the best theory in &, or
T if no theory in Q explains E. It will terminate so long as § is decidable,
since there cannot be an infinite number of theories with complexity less
than L(E).

Note that the enumeration algorithm is distinctly non-incremental. If

17

the set E changes, the routine must be performed again. An incremental
learning operator maps a current theory and a single example to a new
theory, and does not require that E be retained. Some examples of incre-
mental inductive inference methods are the candidate elimination algorithm
[19], incremental concept formation [12], the perceptron learning procedure
[14], and types of decision tree induction [34]. Incremental inductive in-
ference machines use hill-climbing search, and are unable to minimize a
complexity-based measure. However, the complexity-based induction prin-
ciple can be used to evaluate two or more proposed theories, provided that
some of E has been retained.

While the enumeration algorithm cannot be feasibly applied to most
hypothesis spaces, it is certainly feasible to use a complexity-based eval-
uation measure to compare a handful of proposed theories. Our view is
that candidate theory generation (inductive inference) is a separate process
guided by heuristics, and evaluated by complexity-based measures. Since
a complexity-based measure is purely objective, induction can be viewed
as a combinatorial minimization problem. As such, optimization techniques
such as simulated annealing [25] may be applicable.

4.1 Randomness and complexity

An attempt to minimize the description length L(T|E) requires the specifi-
cation of a parameterized hypothesis space §2, ordered by increasing theory
complexity. For example, 2 may be the set of logic programs over a Her-
brand universe, DNF formulae over k propositional variables, context-free
grammars over a specified set of terminals and non-terminals, and so on.
Minimization requires that be decidable: there must exist an algorithm
for deciding, given an arbitrary T € Q and observation z, if T I 2. Due
to the halting problem, if @ permits one to define the notion of a Turing
machine, it is not decidable.

Because the set § of all partial recursive functions is not decidable, the
proposition “T minimizes the description length” is only partially decidable
for Q. If it is false, it can be proven so by finding a theory 7" € 2 such that
L(T'|E) < L(T|E). It cannot, however, be proven true.

If Q is the set of all partial recursive functions, and T' minimizes the de-
scription length, then D(T)- D(E|T)is a random string 5], and the quantity
L(T|E) is called the algorithmic entropy [6] of the set E. The algorithmic
entropy of E is uncomputable, and a string cannot be proven random. It is
impossible, in general, to know whether the best theory for a concept has

18

been obtained. Computational complexity of theory enumeration aside, this
shows that one must place restrictions on 2, and hope that some theory
therein is an adequate representation of the concept. There are no “univer-
sal” inductive inference machines that can guarantee inference of the best
theory, no matter how much time and data they are given!

5 Probabilistic induction

An expression of the form (8) is known as the minimum description length
principle [28, 29]. While work in that area has been confined to a form of
probabilistic propositional logic, we have in mind a form of probabilistic logic
program [11]. This section establishes the relationship between pure logical
induction and probabilistic induction. Many examples of (propositional)
probabilistic induction can be found in the literature [23].

5.1 Coding probabilistic theories and examples

In section 1 no restriction was placed on how facts were presented to an in-
ductive inference system. In this section, we consider probabilistic concepts;
the concept C has a probability distribution. Whereas logical induction
could assume that E was a set, for probabilistic induction it is essential that
repetition be preserved and reproduced; E is a set with duplicates.

A probabilistic theory includes a probability function P that attaches
probabilities to observational statements, obeying the usual conditions

Y P(z) =1, and P(z) > 0. (24)
z€Q(T)

Recall expression 8, which defined the best theory T as the one which min-
imized the sum

L(T|E) = L(T) + L(E|T). (25)
This expression has a very strong Bayesian flavour. Bayesian inference [7]
prescribes maximizing the posterior probability P(T|E) for a theory T given
examples E, where
P(T)P(EIT) 20)

P(E)

Since E is held constant, it suffices to maximize the numerator of the ex-
pression, or equivalently, to minimize

~ logy(P(T)) ~ logy(P(EIT)). (27)

P(T|E) =

19

If we let the prior distribution on theories be P(T') = 2~X(T), then (27) is of
the form
L(T) + L(E|T). (28)

In probabilistic induction, L(T') will also include the cost of encoding the
probabilities of each clause in the theory. This exposition of probabilistic
induction is entirely consistent with the first logical measure outlined ear-
lier, which was tantamount to assuming a uniform distribution over C' and
Q(T). The machine has little to lose by attempting to reconstruct a prob-
ability distribution, real or imagined. On the other hand, standard logical
theories view all theorems as equally likely, and cannot make “plausible” in-
ferences. They can fail dramatically when the data include noise [7]. They
are inadequate for modelling probabilistic concepts.

5.2 Entropy and complexity

Information theory is concerned with efficient communication of data across
a channel. It would thus be surprising if there was not a strong relation-
ship with complexity-based induction. This section briefly describes that
relationship.

The entropy H(X) of a random variable X is defined as the minimal
expected number of bits required to specify an element z € X, where

H(X)=-_ P(z)log, P(z). (29)
zeX

The entropy H(C) of a concept C thus gives a lower bound on the expected
complexity of an example. In general, the following inequality will hold

ey < BATIE) an

This is due to Shannon’s second theorem; it is, on average, impossible to
code the examples in fewer bits than the entropy of the concept.

It can therefore be very useful to obtain an estimate of the entropy H(C)
of a concept C. It is a figure that an inductive inference machine can strive
to achieve. The entropy of a concept can be estimated by putting a human
expert in a guessing or gambling situation [8], thereby eliciting probabilities
for instances of the concept.

For example, it is known that the entropy of the English language is
about 1.1 bits. (The concept is that of “next letter in a sequence”, or

20

statetsents of the form =i X, ¥ where X b6 & sequential context and ¥ is
letter). However, the best current text compeession techniques do pot
aehieve thiz figure. That i, the right hand side of expeossion 30 iz about
2.2 biks {3]. This indicates that there s mued rosm for improvement of
irduction techmiguss in this coneept learning domadn.

6 Conclnsion

Complexity—based induction s an objective approach to evaluating bedeced
theories, and is hased on a very natuwral and intuitive principle. I requires
that tleory complexity snd fit to examples be balanced. It redwces the
information storage for an inductive injerence machine, but nol ko the axtent
that theory performatee degenerates. It asks for 1heoties of just the right
SRR,

This paper hay demonstrated that complexity—based induckion, which
has for the most part been applied bo peopositionsl probabiistic theories
and concepts, can e given 2 naturab interpeetation with respreet o logiced
ke seckiom.

Both bopieal and probahilistic induection can benefit from this type of
yesearch. Logic programs hiavs a clear serantics, and can rapresent & much
ricier s[tce of eoncepts than propositioesd fogic, Inductive inference of logle
programs s clear and precise, relying on a welb-defined modet of general-
jration. o the other hand, research in machine lesrning of logical concepts
can benefit from the large body of tesearel on minkmak-tengib encoding and
Hayesian fearsing.

Heferences

[F] Y. 5. Abw-Muostafa, Complexity of random problems. In ¥.5, Abu-
Maostals, wditor, Complerity in Inforrmation Theory. Springer-Verlag,
1348,

28 Ir, Angluwin. Indsctive inference of formal languages fFrome positive data.
Iformation ated contrel, E5:117-155%, 1978,

(4] F.C. Ball, G Cleary, and | 1, Witten. Test Compressiot, Preplice
EEalf, [990,

21

[4] W. Buntine. Generalized subsumption and its application to induction
and redundancy. Artificial Intelligence, 36:149-176, 1988.

[5] G. J. Chaitin. Randomness and mathematical proof. Scientific Amer-
ican, 232(5):47-52, 1975.

[6] G. J. Chaitin. Algorithmic entropy of sets. Computers & Mathematics
With Applications, 2:233-245, 1976.

[7] P. Cheeseman. On finding the most probable model. In J. Shrager and
P. Langley, editors, Computational models of scientific discovery and
theory formation, chapter 3. Morgan Kaufmann, 1990.

[8] T. M. Cover and R. C. King. A convergent gambling estimate of the
entropy of english. IEEE Trans Information Theory, IT-24(4):413-421,
1978.

[9] T. G. Dietterich and R. S. Michalski. Learning to predict sequences.
In R. Michalski, J. Carbonell, and T. Mitchell, editors, Machine Learn-
ing: An Artificial Intelligence Approach, volume II. Morgan Kaufmann,
1986.

[10) J. Feldman. Some decidability results on grammatical inference and
complexity. Information and Control, 20:244-262, 1972.

[11] M. R. Genesereth and N. J. Nilsson. Logical Foundations of Artificial
Intelligence. Morgan Kaufmann, 1988.

[12] J.1. Gennari, P. Langley, and D. Fisher. Models of incremental concept
formation. Artificial Intelligence, 40:11-61, 1989.

[13] E. M. Gold. Language identification in the limit. Information and
Control, 10:447-474, 1967.

[14] G. Hinton. Connectionist learning procedures. In Y. Kodratoff and
R. Michalski, editors, Machine Learning Volume III, pages 555-610.
Morgan Kaufmann, 1990.

[15] J.W. Lloyd. Foundations of logic programming. Springer-Verlag, 1987.

[16] R. S. Michalski. A theory and methodology of inductive learning. In
R. Michalski, J. Carbonell, and T. Mitchell, editors, Machine Learning,
pages 83-134. Tioga, 1983.

22

[17] R.S. Michalski and R.E. Stepp. Learning from observation: conceptual
clustering. In R. Michalski, J. Carbonell, and T. Mitchell, editors,
Machine Learning, pages 331-363. Tioga, 1983.

[18] S. Minton. Quantitative results concerning the utility of explanation-
based learning. Artificial Intelligence, 42:363~392, 1990.

[19] T. M. Mitchell. Generalization as search. Artificial Intelligence, 18:203—
226, 1982.

[20] T.M. Mitchell, R.M. Keller, and S.T. Kedar-Cabelli. Explanation-
based generalization: a unifying view. Machine Learning, 1:47-80, 1986.

[21] S. Muggleton. A strategy for constructing new predicates in first order
logic. In Proc EWSL 88, pages 123-130, 1988.

[22] S. Muggleton. Inductive logic programming. In First Conference on
Algorithmic Learning Theory, 1990.

[23] E. Pednault, editor. Theory and Application of Minimal-Length En-
coding: AAAI Spring Symposium Series. Stanford University, March
1990.

[24] K.R. Popper. The Logic of Scientific Discovery. Hutchinson & Co.
Ltd., 1959.

[25] W. II. Press et al. Numerical Recipes: The art of scientific computing.
Cambridge University Press, 1986.

[26] J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106,
1986.

[27] J.R. Quinlan. Learning logical definitions from relations. Machine
Learning, 5(3):239-266, August 1990.

(28] J. Rissanen. Modelling by shortest data description. Automatica,
14:465-471, 1978.

[29] J. Rissanen. Minimum description length principle. In S. Kotz and N.L.
Johnson, editors, Encyclopedia of Statistical Sciences, pages 523-527.
Wiley, 1985.

23

[30] C. Sammut and R. B. Banerji. Learning concepts by asking questions.
In R. Michalski, J. Carbonell, and T. Mitchell, editors, Machine Learn-
ing: An Artificial Intelligence Approach, volume II, pages 167-191.
Morgan Kaufmann, 1986.

[31] C. E. Shannon and W. Weaver. The Mathematical Theory of Commu-
nicalion. University of Illinois Press, 1949.

[32] E.Y. Shapiro. Algorithmic program debugging. The MIT Press, 1983.

[33] R. J. Solomonoff. Complexity-based induction systems: Comparisons
and convergence theorems. IEEE Trans. Information Theory, IT-
24(4):422-432, 1978.

[34] P.E. Utgofl. Incremental learning of decision trees. Machine Learning,
4(2):161-186, November 1989.

[35] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11), November 1984.

[36] P. H. Winston. Learning structural descriptions from examples. In
P.IL. Winston, editor, The Psychology of Computer Vision. McGraw-
Hill, 1975.

[37] L. 1. Witten, R. Neal, and J. G. Cleary. Arithmetic coding for data
compression. Communications of the ACM, 30(6):520-540, June 1987.

24

A Detailed derivation of network code lengths

Theory 1
Ty =T = {reach(X,Y) «} (31)

Each atom has a code length of log, (121) + log, 2! + log,2 = 7.8 bits.

Q(T) = Lo. L(T) =logy 2 +1+1+1+7.8=11.8. L(E|T) = (|€g‘) -

L(E) = 60.4. L(T|E) = L(T) + L(E|T) = 11.8 4 60.4 = 72.2.
Theory 2

Ty=1=E= { reach(0,1) — oreach(0,2) —o...0 (32)
reach(7,6) — ¢ reach(7,8) «}

There are no variables in this program. Each atom has a code length of
log, g + logy 2! +log, 2 = 7.2 bits. Q(T) = E. L(T)=1+19+4+19+
19(7.2) = 175.8. L(E|T) = 0. L(T|E) = L(T) + L(E|T) = 175.8.

Theory 3
Tz = {reach(X,Y) « linked(X,Y)} (33)

Note that this theory is not explanatory. To make it so, it must be aug-
mented with the clauses E — Q(T) =

{ reach(0,2) — oreach(0,4) — oreach(0,5) « o (34)
reach(0,6) — o reach(0,8) — o reach(3,5) — o
reach(3,6) « o reach(3,8) « o reach(4,8) «}

Each atom has a code length of log, (121) + log, 2! + log,2 = 7.8 bits.

Q(T) = E. L(T) = log, 2+1+10+10+2+11(7.8) = 109.8 bits. L(E|T) = 0.
L(T|E) = L(T) + L(E|T) = 109.8.

25

Theory 4

T, ={ reach(X,Y) « linked(X,Y)o (35)
reach(X,Y) « linked(X, Z)}

Each atom can be coded in log, 122) +log, 2! +log, 2 = 8.0 bits. L(T") =

log, 34 142+ 242+ 2+4(8.0) = 42.6. |Q(T)| = 54. L(E|T) = log, (i‘;) =
47.4. L(T|E) = L(T) + L(E|T) = 90.

Theory 5
Ts ={ reach(X,Y) « linked(X,Y)o (36)
reach(X,Y) « linked(X, Z),linked(Z,Y)}

This theory is not quite explanatory. To make it so, it must be augmented
with the clauses E — Q(T) =

{reach(0,5) «— o reach(0,6) — o reach(0,8) « oreach(3,8) <} (37)

Q(T) = E. L(T) = log;3+1+6+6+6+9(80) = 926. L(T|E) =
L(T) + L(E|T) = 92.6.

Theory 6

Finally, consider

Te = { reach(X,Y) « linked(X,Y)o (38)
reach(X,Y) « linked(X, Z),reach(Z,Y)}

Q(T) = E. L(T) = log, 3+5+6+5(8.0) = 52.6. L(T|E) = L(T)+L(E|T) =
52.6.

26

