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ABSTRACT 

We review the gauge-invariant formalism of Gerlach and Sengupta for the 

perturbations away from spherically symmetric spacetimes. This formalism is 

then applied to a cosmological model containing a perfect fluid. In particular, 

we obtain the propagation equations for the gauge-invariant perturbation quan-

tities representing pure gravitational radiation. From these we derive a master 

equation for the odd-parity waves, and show that in the case of a Friedmann-

Robertson-Walker background the same master equation governs the even-parity 

waves. Lastly, we compare the results obtained in the Gerlach-Sengupta and 

Newman-Penrose formalism for the odd-parity gravitational waves when the 

background is Minkowski. We show that in this situation the formalisms are 

equivalent, and exhibit a simple relation between the gauge-invariants of each of 

these formalisms. 
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CHAPTER 1 

Introduction 

§1.1 Gauge Freedom in General Relativity 

The general covariance principle in gravitation theory requires that all phys-

ical results be preserved under general coordinate transformations. A coordinate 

system represents no more than a choice of label for points in spacetime, and so 

a change in the choice of coordinates should not alter the physical predictions 

of the theory. Accordingly, we say that two metrics represent the same physical 

spacetime if they are related by a coordinate transformation. This freedom in the 

metric implies that all metrics related by the action of the group of diffeomor-

phisms are equivalent.' Given a specific solution of the Einstein field equations, 

we can pick a unique representation if we impose a set of coordinate conditions 

that fixes the coordinate freedom contained in the metric. 

Due to the non-linearity of the field equations, the search for physically 

realistic metrics within general relativity is extremely complicated, and so, in 

practice we are often forced to use various approximation schemes. However, in 

order for the approximation to be physically meaningful, it must also pass the test 
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of general covariance. In perturbation theory, we start with an idealized model 

from which we obtain a solution for the field equations. We then inject some 

realism into our model by allowing small fluctuations in the geometry and matter 

content of this spacetime. The perturbations we wish to solve for correspond 

to the difference between the quantities in the real perturbed model and the 

ficticious background. In this context, general covariance means that two metric 

perturbations represent the same physical perturbation if they differ by the action 

of an infinitesimal diffeomorphism. 

Conceptually, the simplest way to view these transformations is to regard 

them as a one-to-one identification between points in the full perturbed spacetime 

and those in the ficticious background. A gauge transformation is a change in the 

correspondence between the points of these two spacetimes and does not involve a 

coordinate transformation in the background.'—" Because of this gauge freedom, 

a general solution for the perturbation equations will contain some physically 

meaningless degrees of freedom. Unless we know how to work with this gauge 

freedom, the perturbations we obtain could very well correspond to pure coor-

dinate variations. Moreover, it can be shown that in some cases, a perturbed 

quantity which is gauge-dependent can be made to vanish by the appropriate 

gauge condition. This was demontrated by Ellis and Bruni for the density per-

turbations of a Friedmann-Robertson-Walker model.' Since we usually select a 

gauge to gain information about a system, not only can our solution contain 

residual gauge modes, but the interpretation of a gauge-dependent quantity will 

be different for different choices of gauge, and we may therefore not be able to 

agree on the meaning of the solution. 

Some gauge-invariant approaches have recently been formulated.25 The 

motivating idea is to define objects, appearing in the perturbation analysis, that 

are independent of the choice of gauge. Hopefully one can find enough gauge-
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invariants to remove all of the terms that are sensitive to gauge from the linearized 

field equations. In this framework, the solution for the perturbation equations 

possesses an inherent meaning since it will not vary under gauge transformations. 

1.2 Plan of the Thesis 

We begin in chapter 2 by reviewing the gauge-invariant formalism of Ger-

lach and Sengupta.6 Their method not only facilitates the study of perturbation 

analysis by eliminating the gauge freedom, but also yields an elegant formulation 

that is particularly flexible since the only a priori restriction on the background 

is that of spherical symmetry. 

General relativity predicts the existence of gravitational waves. 710 These 

correspond to variations in the gravitational field that can be viewed as ripples 

in the curvature of spacetime. Therefore, in many problems, we can think of a 

gravitational field as being made of two parts: a smooth background and a small 

fluctuation in the curvature. Although gravitational waves have been studied 

extensively, from both a theoretical and an experimental point of view, there is 

still much to be understood. For instance, the mathematical description of a 

gravitational wave is still unclear; many definitions have been proposed, any one 

of which has only a limited range of applications. 

We can gain considerable insight by looking at the propagation of small 

gravitational waves against a background of spherically symmetric perfect fluids. 

In chapter 3, we propose a mathematical description for gravitational waves 

radiating in a perfect fluid. We then apply the Gerlach- Senguptagauge-invariant 

formalism to purely gravitational radiation in a spherically symmetric perfect 

fluid. We derive a master equation for the odd-parity waves, and we show that in 
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the special case of a Friedmann-Robertson-Walker background the same master 

equation governs the even-parity waves. These results are not new, but since they 

were obtained from a different approach, the material in this chapter provides 

an independent verification for the work of Couch and Torrence.'1 

Gravitational radiation has been the subject of several investigations.'214 

In particular, since the waves travel at the speed of light, some interesting results 

have been obtained using the null-tetrad formalism of Newman and Penrose. 15 

In the case of a conformally flat background, some of the fundamental quantities 

in the Newman-Penrose formalism are gauge-invariant. It is therefore a natural 

question to ask whether the gauge-invariants in these two formalisms can be re-

lated. In chapter 4, we compare the results obtained in the Gerlach-Sengupta and 

Newman-Penrose formalisms for the odd-parity perturbations when the back-

ground is Minkowski space. We show that in this situation the formalisms are 

equivalent, and exhibit a simple relation between the gauge-invariants of each of 

these formalisms. 

1.3 Basic Notation 

Our basic geometrical notation is as follows: 

Tensor Indices 

greek indices 

Metric 

Christoffel Symbols 

(a,/3,'y,...) 

total spacetime 

two-sphere 

run from 0 to 3 

7ab 

p 0. _1 tipç 
tL11 - 2g g(Lp,i' -r- gvp,,i gtv,p 
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Riemann Tensor-

RAY, - r r - r r zi13,c* va,13 pa v,6 p13 z,a 

T?ILV  _T?a Yap - .L 

Einstein Tensor 

GIAV = R, - 
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CHAPTER 2 

Gauge-Invariant Formalism 

In this chapter, we review the gauge-invariant formalism of Gerlach and 

Sengupta6 for the perturbations away from spherically symmetric spacetimes. 

First, we use the spherical symmetry to cast the background geometry in a 

2 e 2 form. This allows us to separate the angular dependence, and effectively 

reduce the problem to a two-dimensional one. In §2.2, the perturbtions are 

expressed as geometrical objects on the two-dimensional submanifold spanned 

by some as-yet-unspecified time and radial coordinates. From these objects we 

obtain new gauge-independent quantities, which we describe in §2.3. In the last 

section, we substitute these gauge-invariant quantities in the linearized Einstein 

field equations, and obtain a set of coupled partial differential equations for the 

gauge-invariants. 

Our notation follows closely that of reference [6]. In particular, greek indices 

run from 0 to 3. Capital latin indices, A, B, C, etc., run from 0 to 1 and represent 

the time and radial coordinates, whereas lower-case latin indices, a, b, c, etc., run 

from 2 to 3 and denote the usual spherical angles 0 and q. 



7 

§2.1 Background Geometry 

The structure of spacetime is given by specifying a Lorentz metric g,, on a 

four-dimensional manifold. The metric determines the curvature of the spacetime 

manifold, which in turn is related to the matter distribution in the universe by 

the Einstein field equations 

.L/LV - = t 2 1LV, 

here the gravitational coupling constant r. is given by 

= 16irGc. (1.2) 

The explicit form of these equations can be greatly simplified if one imposes some 

symmetry on the metric. With this in mind, we restrict ourselves to the study 

of spherically symmetric spacetime. It should be noted that, while this facili-

tates our approach to perturbation analysis, it does not in itself constitute an 

unreasonable restriction. Included in the class of spherically symmetric space-

times are some very important cases, such as Minkowski, Robertson-Walker, 

Schwarzschild, Kantowski-Sachs, etc. 16 

The distinguishing feature of a spherically symmetric spacetime is that it 

admits the rotation group SO(3) as a group of isometries.1 That is, since all 

radial directions are equivalent, the metric must be invariant under rotations. It 

is natural to use the group structure to simplify the form of the metric. Here, the 

orbits of the rotation group, corresponding to the action of the group on a given 

point, are the two-dimensional spheres S2. Let M 4 be an arbitrary spherically 

symmetric Lorentzian manifold with signature (-, +, +, +). The space of orbits 

M2 = M 4/S2 is a two-dimensional manifold spanned by the time and radial 

coordinates xC. With every point xc in M 2, we associate a scalar function 

R(xC), which characterizes the concentric spheres in the sense that the area of 
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the two-sphere S associated with the point in M 2 is given by 4irR2(). 12 The 

geometry on this two-surface is described by the metric 

ds2 = R7ab dxadxt, 

where 7ab is the unit-sphere metric given by 

fabdXadXu1 = d82 + sin  9d42. 

(1.3) 

(1.4) 

We can now embed this two-dimensional geometry in the four-dimensional 

manifold M 4. First, we choose a set of coordinates 9 and q on one of the 

two-spheres; then we extend this definition to the other two-spheres by means 

of geodesics. Recall that no vector field tangent to the sphere can be made 

everywhere non-zero. Therefore, to preserve rotational symmetry, these geodesics 

must be orthogonal to each two-sphere. With this definition, M 2 is a totally 

geodesic submanifold,17 and the metric tensor on M 4 has the form 

d.s2 = 9(x') dxAdxB + R2 (XC)7 b dadb. (1.5) 

If Eq. (1.1) is satisfied, then the components GaA of the Einstein tensor ob-

tained using the form of the metric, Eq. (1.5), vanish. It follows that a 2 ED 2 split 

can also be performed on the matter tensor. Accordingly, we write the compo-

nents of the energy momentum tensor corresponding to a spherically symmetric 

metric as 

tdxiLdxI = tAB(Xc )dXA dXB + a R(X)7abdXdX. (1.6) 

Here, because of the symmetry, the partial trace Ita a is a scalar field on M 2 

independent of the spherical angles 9 and 0. 

The formulation above is strictly geometrical; it allows us to take advantage 

of the symmetry of the spacetime with no further assumption on the background 
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or coordinate system on M 2. Furthermore, the coefficients of the metric and 

the energy-momentum tensor, Eqs. (1.5) and (1.6), are given entirely in terms of 

geometrical objects on M 2: two tensor fields 9AB and tAB and two scalar fields 

R andit,,'. We can now cast the background Einstein field equations, Eq. (1.1), 

in a reduced form on a two-dimensional manifold. We obtain one tensor and one 

scalar equation on 

tAB = —2(vAIB + VAVB) 

(taa) = VC IC + Vc VC - 

+ (2vc1C + 

Gaa. 

. C 7)-2\ _,1 
OVCV - £L )gAB = 'JAB, (1.7) 

(1.8) 

Here, the vertical bars refer to covariant derivatives on M 2, the vector field VA 

is constructed from the scalar field R on M 2 

VA = RA (1.9) 

and R is the Gaussian curvature 18 on the submanifold M 2 defined by 

RABCD = R(gACgBD - gADgBc) (1.10) 

The conservation law tL ' = 0, implied by equations (1.7) and (1.8) is 

R2(R2tA8)1B - VA taa = 0. 

We give the background expressions for the connection coefficients, the Ricci 

curvature, the scalar curvature, and the Gaussian curvature, explicitely in the 

Appendix. 
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§2.2 Harmonic Expansion of Perturbations 

We consider perturbation fields away from a spherically symmetric back-

ground. These are described by the changes in the metric tensor and the energy-

momentum tensor, which we denote h,, and The harmonic functions 

used in the expansion of the perturbations are the scalar, vector, and tensorial 

eigenfunctions of the Laplace operator on S2.'9 They are classified into even or 

odd parity according to how they transform under the parity operator 

P:{O—ir-9, qf—ir+q}. (2.1) 

By convention, we call even a parity of (_i)t and odd a parity of (_1) 1.20 

The coefficients in the expansions, free of angular dependence, are geometrical 

objects on M 2. They represent the changes under rotation of the actual metric 

g, and energy-momentum tensor t,,. Accordingly, we can start by classifying 

the components of an arbitrary symmetric tensor on M 4 with respect to how 

they transform under a rotation. This will provide the necessary prescription for 

the harmonic decomposition on M 4. 

Let us consider an arbitrary tensor on the manifold M 4 

M - MAB MAb 
,av—  RK 

1V2 aB .LV.Lab 

Tinder the transformation (0, q!) —* (, ), we have 

- Oxa&c13 
M,L,, = 

Ox's Ox' 

(2.2) 

(2.3) 

For convenience, we shall consider each of the 2 x 2 components MAB, MAb, 

MaB, and M ab separately. Eliminating the vanishing terms, we obtain 

- Ox1 Ox 
MAB = AffMIJ = = MAB, 

Ox 
(2.4) 



- Ox1 Ox Ox3 81 MIj 
MAb = Mi j= 

MaB = a Mjj = 

- Ox1 Ox 
M ab = 

Ox 
= (2.6) 

(2.7) 

It follows from equation (2.4) that, under rotation, MAB transforms like a 

scalar. A suitable basis for the expansion of MAB can be constructed if we use 

the scalar spherical harmonics Yt,m(O, q), which are known to form a complete 

set over the sphere. They are given by 21 

1 

(1)t 1(2-I-1)(E---m)!1 I d-'-  
Y,m = (2e)!! L ( + m)!j (sin 9)m L(d cos 8)t+m [(sin exp(im), 

(2.8) 

where 

(2x4x6x ... xn neven 
t.lx3x5x ... xn nodd. 

(2.9) 

To simplify the notation, we omit the angular indices £ and m, since they will 

not be used explicitly in our formalism other than to evaluate the parity of the 

harmonic functions.The three independent components of a symmetric tensor, 

(M00, M 01, M 11 ), can be expanded if we use the following tensors: 

= 

U 
0 0 

00' 
0 00 

= 

[OY 
*0 

0 
00 
00 

.93= 

[0 0 
0Y 

0 

0 
0 (2.10) 

00 

The (*) symbol indicates that MAB = MBA. 

Under the parity operation, Eq. (2.1), the scalar harmonics Y satisfy 

P(Y) = (2.11) 
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Hence, the tensors 91 ,S2 , and .93 defined in Eq. (2.10) are even-parity tensors. 

The coefficients in the representation of a 2-scalar are 

MAB = MT(xG')Y(9, q5). (2.12) 

For a symmetric tensor, MA ,, = MaA, and so we can consider these compo-

nents simultaneously. It is evident, from Eqs. (2.5) - (2.6), that they transform 

like two-dimensional covectors under rotation. Therefore we need a basis for the 

cotangent space at each point of S2. We take the gradient of Y, and the dual of 

the gradient 

S. = €ab Y,b. 

Here, e is the antisymmetric tensor on 52 given by 

e2 3 e3 2 = , = sin 0, 622 = €3 = 0. e 

(2.13) 

(2.14) 

From direct calculation, we see that the vector Y,a has even parity, and since 

taking the dual changes the parity, the vector Sa has the opposite parity. The 

four independent components (M02, M 03, M 12,M13) can be expanded if we use 

the following pairs of odd-parity and even-parity tensors: 

"odd - 

V1 - 

"even - 

V3 - 

0 

*0 
-* 0 

*0 
*0 

S2 S3 
00 

0 

Y2 Y,3 
00 

0 

0 
"odd — 

— 0 * 
0* 

"even — 
V4 —  

0 

0* 
_0 * 

00 
52 s3 
0 

0 0 

0 
(2.15) 

The expansion of a 2-vector in M 4 splits into an odd and an even part whose 

respective coefficients are 

i,rodd - ?,roddf C\ 5-01 .\ 
.LV.LAa - .LV.LA ) (/1) 

MZC? = M 6n(C) Y a(0, q). (2.16) 
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To complete our basis, we need a representation for a second-rank two-

dimensional symmetric tensor, Eq. (2.7). The tensors used in the expansion of 

the last three independent components (M22, M 23, M 33) are obtained by taking 

covariant derivatives on Y,a and Sa. They are 

-o o 
00 odd 

0 
2S2:2 
* 

0 

S2:3 + S3:2 
2S3.3 

00 00 0 - 

'even - 0 0 "even - 0 0 
722 0 Y,2: Y2:3 
0 33 * 

Here, 7ab is the metric on the unit-sphere given by Eq. (1.4), and the colon 

denotes covariant derivatives on the manifold 52 The tensors and 

Ven are linearly independent for the radiative modes £ ≥ 2.22 We do not consider 

the modes with £ = 0 and £ = 1, since they are non-radiatives. 1° Using Eq. (2.17), 

we can write the coefficients for the odd and even components of a 2-tensor on 

M 4 as 

M 0 ab = 2M(xC )S( a: b)(9,q), 

IN Mi(x") 7abY(, ) + M2(xC) Ya:b(O, q). (2.18) 

The tensors given in Eqs. (2.10), (2.15), and (2.17) provide a covariant ba-

sis for symmetric tensors on M 4. In the Gerlach-Sengupta formalism, we use 

this basis to expand the perturbations of the metric and energy-momentum ten-

sor. The coefficients in the expansions are modeled after Eqs. (2.12), (2.16), 

and (2.18). We give the harmonic decomposition for the odd and even parities 

separately. For the odd-parity perturbations we have 

= 2hodd (XC)Sa(O, )d(AdXa) + 2h(XC)S(a:b) (O, )dxa dx1, (2.19a) 

JAVand 

= 2LtSa(9, cb)dx(4dx' + 2Lt(XC)S(a:b) (9, 4)dx dxb, (2.19b) 
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The coefficients in these expansions consist of two vector fields h0f( and Ltd, 

and two scalar fields h and /t on M 2. 

Similarly, we can write the even-parity perturbations as 

hdxLdxhJ = hAB(XC) Y(, cb)dxAdxB + 2h7(XC)Y a(9, q)dx(Adxz) 

14V + R2(xC)[K(xyY(9, q) + G(XC )a:b(9, 1)}dadxb, 

(2.20a) 

and 

tdx'2dx" = /tAB(XC )Y(6, q)dxAdxB + 2t (XC)Y a(O, q)dxdxa) 

jZV + [R2 (xC )/.t1 (Xe ) 7abY(O, qf) + t2(XC)Y :b (O, q)]dx dxb. 

(2.20b) 

They are characterized by two symmetric tensor fields hAB and LtAB, two vector 

fields h 12 and Atevenand four scalar fields K, G, /t1 ,and on M 2. 

§2.3 Gauge-Invariants 

In the linearized theory, two perturbations p and represent the same phys-

ical perturbation if they differ by the action of an infinitesimal diffeomorphism. 

The gauge freedom corresponds to the Lie derivative of the background quantity 

with respect to an infinitesimal vector field X,1. Under a gauge transformation 

P=P+x, (3.1) 

and ambiguities arise, for we now have two equivalent descriptions for a perturbed 

quantity 

(3.2) 
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To counter this difficulty, we adopt a new representation for the perturbation 

fields, based on Moncrief's definition of gauge-invariance.5 

A perturbation p is said to be gauge-invariant if the gauge changes 

Sp5-p=O. (3.3) 

For example, it can be seen from Eq. (3.1), that any quantity for which the 

zeroth-order part vanishes identically is a gauge-invariant quantity. The metric 

perturbations h,LU and the matter perturbations are position-dependent in 

the background, and hence are gauge-dependent.' However, we can construct 

gauge-invariant quantities from these by taking appropriate linear combinations 

of the coefficients introduced in their harmonic expansions, Eqs. (2.19) and (2.20). 

We start by calculating the changes due to an infinitesimal gauge transformation 

in the metric and energy-momentum tensor perturbations. 

As shown in §2.2, an infinitesimal 4-vector field can be expanded by means 

of spherical harmonics. The odd and even components are 

and 

- 

Xr'2dx' = tA(XC)YdXA + e(XC )Y adxa, 

(3.4) 

(3.5) 

for some scalar fields M and , and vector field eA on the submanifold M 2. 

The Lie derivatives of the background metric and energy-momentum tensor 

with respect to X. are 

Lx . dx'dx' = 2X(u;v)dX'dX" 

= 2 [X(AIB)dXA dXB + (XA:a + XalA)dxMdX + X(a:b)dxadxb], 

(3.6a) 
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0 
Lx t, dx LdxhI = - •' + tz Xvy;zi + tu X,y ;j)dx'dxM 

= _(tABICXC + tACXC lB + tcBxC IA)dxA dxB + 

- 2(tACXC:a + aaX C lA)dX A dX a)+ 

+ tccX( a:b)1dXadX. 

(3.6b) 

For the odd-parity, we substitute in Eqs. (3.6a) and (3.6b) the odd compo-

nent X, Eq. (3.4), of the infinitesimal vector field X, and obtain 

dx'dx' 2 [R2(R_2M),ASadXMdX + MS( a:b)dxadxb] 

(3.7a) 

dx'dx" = [R2(R_2M) ,ASadx 4dX + MS(a:b)dxadXb]. 

(3.7b) 

By comparing the coefficients in Eqs. (3.7a) and (3.7b) with those appearing in 

the odd expansions of the metric and energy-momentum tensor perturbations, 

Eqs. (2.19a) and (2.19b), we obtain the gauge changes of the odd-parity metric 

coefficients 

6hA = —R2(R 2M),A, 

= —M, (3.8) 

and the gauge changes of the odd-parity matter coefficients 

SL.tA = _1 a 2 a - 

st = _I_t,aM. (3.9) 

Similarly, we substitute the even-parity component Xve?z, Eq. (3.5), into 

the Lie derivative of the background metric and energy-momentum tensor, Eqs. 
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(3.6a) and (3.6b), and obtain for the even-parity 

Lx , dx(LdXII = —2 [•(AJB)Ydx A dXB + [A + R2(R_2e)A]YAdx(Adx a)] + 

- 2 [eYa:b + R2vAeA .yabY] dx adxl, 

dxLdxz1 = — [tABIC +tACeC IB +tCBec IA]YdXAdX+ 

- 2[tACY + taaR2(R_2e),A]Y adx Adx+ 

- [tC(tbbR2)C7abY + tbYa:b1dxadXb. 

(3.lOa) 

(3.1Db) 

Comparing the coefficients in Eqs. (3.lOa) and (3.1Db) with those in the even-

parity expansions of the metric and energy-momentum tensor perturbations, Eqs. 

(2.20a) and (2.2Db), we obtain the gauge changes for the even-parity metric 

coefficients 

ShAB = 

ShA = - 

SK= _2vA eA, 

SG —2R 2 , 

and the gauge changes for the even-parity matter coefficients 

F/.tAB = _(tABICeC + tACeC lB + tCBed IA ), 

öLtA _tABB - 

Si..t1 = _R2 (tbbR 2),c 

—tv. 

(3.11) 

(3.12) 

We now define gauge-invariant geometrical objects on M 2. These will be 

used to produce an entirely gauge-invariant formulation of the linearized Einstein 
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field equations. For the odd-parity, they are 

(metric) kA = hA - R2(R 2h),A, (3.13a) 

(matter) LA -A - taahA , 

L=Lt — (3.13b) 

For the even-parity, we have 

(metric) 

(matter) 

where 

kAB = hAB - 2P(AIB), 

k = K - 2VAPA) (3.14a) 

TAB = AB - tAB 'PC - (tCAPC lB + tCBPd lA), 

l C a TA /≥tA - tA PC - t aR2G,A, 

' T' = /t1 - R_2pC(taR 2),C, 

T2 = t2 - 'ta a2 !, (3.14b) 

PC = hC - R2G,c. (3.15) 

It is easily verified, from Eqs. (3.8) - (3.9), and (3.11) - (3.12), that the 

gauge changes under the gauge transformation given in Eqs. (3.4) - (3.5) vanish 

for all the above quantities. 

§2.4 Linearized Field Equations 

The perturbed physical spacetime is approximated to first-order in the usual 

manner 12 

o 
g1LV =gLz, 

0 

tLV =t JLV +M1 . 

(4.1) 

(4.2) 
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The zeroth-order parts, labelled by 0, are the background quantities described in 

2.1, Eqs. (1.5) and (1.6). In the linearized theory, we use the background metric 

to raise or lower the indices of the first-order metric perturbation h, 11. We 

can calculate the contravariant form of the actual metric using the identity 

011 ç ii 
- 

g4aUg U 

Expanding this identity, we have 

6 it = +h,)( + 

V+  0= 8A 9AO' h' + h + 2nd order terms. 

Thus, to first-order, 

/:c7iI = —h, 

which implies 

baLI - 

Therefore, the contravariant form of the perturbed metric is 

gull PU - 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

To obtain the linearized Einstein field equations, we must first expand the 

Christoffel connections, the curvature tensors, and the Einstein tensor in h, 

using Eqs. (4.1) and (4.7). Neglecting higher order terms, we can write each of the 
0 1 0 1 

perturbed geometrical quantities in the form: r;11 r, 11+ r, 11, R,LU = R 11 + R 11, 

and so on. The first-order corrections, labelled by 1, are 

1 
r0 - L 1 i O•' 
£iii - ;v -1- U'11 - ''zv; 1' 

1L1I 
- ;c It 

- 1 L 1;1, j.cwL ;c - ;a + haa;pv ), 2 I"  

R (h1 ; - h,;' + ha3 Rcii), 

1 1 0 1 0 

Guv= R j, - (g 11R +h 11 R). 
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Here, the semi-colon denotes covariant derivative with respect to the background 

0 
metric 

The linearized Einstein field equations are the first-order part of the full 

perturbed equations 

G,,,, + G11M = '(L (4.12) 

Using Eqs. (4.8) — (4.11), we can write them in terms of the perturbations of the 

metric tensor: 

\16 (l fuJ c* ' ;c — 1-. jtcev ; az/;/z — h + hajv )+ 

- g((hP — h 3a + k) + h= (4.13) f3c 

This can now be translated into a gauge-invariant formulation. The procedure 

is straight-forward but lengthy, and, that being the case, we do not reproduce 

it here. Instead, we give a brief overview of the method, and state the results 

obtained by Gerlach and Sengupta.22 

First, the harmonic expansions of the perturbations of the metric and matter 

tensors, Eqs. (2.19)—(2.20), are substituted in the linearized equations Eq. (4.13). 

Collecting the coefficients of the linearly-independent harmonics, we obtain two 

odd-parity equations corresponding to Sa and S(a:b), and four even-parity field 

equations corresponding to Y, Y,a, 7abY, and Y,a:b. We then introduce the gauge-

invariant perturbation objects defined in §2.3, Eqs. (3.13) - (3.14), by forming 

the appropriate linear combinations. The result is a set of partial differential 

equations on M 2. 

For the odd-parity, we have a scalar and a vector equation. They are 

kA JA 

_[R4(R_2kA)Ic - R4(R_2kc )IAIic + (t — 1)(e + 2)kA = ,cR2LA. 

(4.14a) 

(4.14b) 
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The set of even-parity equations consists of a tensor, a vector, and two scalar 

equations. They are 

2vC (1cABIc - kCAIB - kCBIA) - [t(+ 1)R 2+ G C G,,a + 2l}kAB+ 

CD" 
- - kCEID kCD)g + g8(2vCID + 4vCvD_ C )CD 

+ gABV( + 1)R 2 + (Gc + a)+ 1kDD + 2(VAk,B + VBk,A + k,AIB)+ 

- g[2k,IC + 6vG'k,c - (t - 1)( + 2)R 21c] = —IcTAB, 

k,A IC C 
- k AC +kc IAVAkC= ,cTA, 

(4.15a) 

(4.15b) 

(k,c 1C + 2vCk,c+ Ga k) + [kCD IdID + 2vC kcDID + 2(vCID + vCvD)kCD]+ 

+ [kCD1' + VC kD' C+ 7 kcc - E( + 1)R 2kc'] = iT', (4.15c) 

kCC = —icT. (4. 15d) 

We have now obtained linearized propagation equations for the metric gauge-

invariant quantities Ic, kA, and kAB. The formalism is free of the traditional 

gauge problem, in the sense that the solutions to these equations cannot be 

transformed by means of gauge transformation. 
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CHAPTER 3 

Pure Gravitational Radiation for Perfect Fluid 

In this chapter, we apply the formalism developed in the preceding chap-

ter to a cosmological model containing a perfect fluid. In particular, we obtain 

second-order propagation equations for the gauge-invariant perturbation quanti-

ties Ic, kA, and ?cAB, representing pure gravitational radiation. First, we introduce 

the background line element and the energy-monentum tensor describing a spher-

ically symmetric perfect fluid. In §3.2, we propose a physical and mathematical 

description of pure gravitational waves. From this we deduce, in §3.3, a prescrip-

tion for gravitational waves in the Gerlach and Sengupta formalism, and a set of 

gauge conditions for their existence. These enable us to partially decouple the 

linearized field equations for the gauge-invariants, and derive a master equation 

that governs the perturbations. The rsu1t for the odd-parity perturbations is 

given in §3.4. In §3.5, after imposing some restrictions on the line element, we 

obtain a similar result for the even-parity perturbations. Most of the material 

in this chapter provides an independent verification for the work of Couch and 

Torrence." 
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§3.1 Perfect Fluid 

We consider the spherically symmetric line element 

ds2 = gdxAdxB + R2(XC )7abdXadX(, (Li) 

derived in chapter 2. Locally, the two-dimensional Lorentz metric 9AB can always 

be put in a diagonal form 

(2)ds2 = A2(t, r)[—dt2 + dr2], (1.2) 

where the chosen coordinates x0 = t and x1 = r are solutions of the harmonic 

equation xI0 IC = 0 on the submanifold M 2.1 

Using Eq. (1.2), we can rewrite the arbitrary spherically symmetric line 

element, Eq. (1.1), as 

where 

d.s2 = A2(t, r)[—dt2 + dr2 + F2(t, r)dcL2], (1.3) 

df 2 (1.4) 

A is a cosmic scale factor, and the function F is defined by R = AF. The 

specific expressions for the scalars A and F can be obtained, when the matter 

content of the universe is known, by solving the Einstein field equations [see 

§2.1]. For simplicity, we restrict ourselves to cosmological models containing a 

perfect fluid. These are described by the fluid energy p and pressure p, and the 

4-velocity vector field V, tangent to the flow lines of the fluid. In terms of these, 

the energy-momentum tensor becomes 

= (p + p)VV + pg,w. (1.5) 

Because of rotational invariance, the energy density and the pressure of a spher-

ically symmetric perfect fluid have no angular dependence: 

and p = p(xc). (1.6) 
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Furthermore, the 4-velocity vector field V is orthogonal to the two-spheres, and 

= V1(xC). (1.7) 

We are free to choose a comoving coordinate system , = A9, while preserving 

the form of the metric Eq. (1.3).16 In this system of reference, the 4-velocity 

vector field is a timelike unit-length vector 

VVa = —1, (1.8) 

given by 

V=A8. (1.9) 

Together, the form of the metric and matter tensors, Eqs. (1.3) and (1.5), 

and the velocity of the fluid, Eq. (1.9), require that the Einstein tensor G, 

be diagonal. If one calculates the components of the Einstein tensor using the 

line element described by Eq. (1.3), all, with the exception of G01, off-diagonal 

components of the Einstein tensor, vanish. The additional condition G01 = 0 is 

achieved whenever the scalars A and F are chosen to be functions of one variable 

only. Accordingly, we can subdivide the allowed line elements into four classes: 

I.A=A(i) and F=F(t), 

II. A = A(t) and F = F(r), 

III. A = A(r) and F = F(r), 

IV. A = A(r) and F = (1.10) 

Among these classes we find both the static and time-dependent solutions. In 

particular, the first class represents the Kántowski-Sachs line element, and the 

second class includes the Friedmann-Robertson-Walker universes. 
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§3.2 Gravitational Waves 

There are three types of perturbations associated with a perfect fluid. They 

represent gravitational waves and changes in the fluid density and velocity. 23 

Gravitational waves correspond to fluctuations in the geometry; in the case of 

pure gravitational radiation, the matter content of the perturbed universe is 

assumed to remain identical to that of the background. There are several mathe-

matical descriptions for gravitational waves in the literature; 12,23 - 2-1 in each case 

the description is tailored to suit a particular formalism. 

The definition we propose for purely gravitational perturbations in a spher-

ically symmetric model with perfect fluid is 

= 0, (2.1) 

00 
hIWVVV = 0. (2.2) 

This definition is a natural one since, as demonstrated by Niedra,24 in the case 

of a Friedmann background, the vanishing of the perturbations of the energy 

momentum with mixed indices Eq. (2. 1), together with the condition (2.2), imply 

that there is no change in (the matter content: 

1 1 
p=p=O 

1 

and V=0. (2.3) 

It turns out that the specialization to a Friedmann background is not necessary. 

In fact, we can extend this result to the case of a general spherically symmetric 

model filled with a perfect fluid. 

Given a perfect fluid, we can write the first-order correction of the energy-

momentum tensor with mixed indices as 

0 0 
(p +p) - VJ'V + ( +) * u (2.4) 



26 

If we impose condition (2.1), and substitute for the zeroth-order velocity vector 

the definition given in 3.1, we obtain 

= 0, (2.5) 

1 0 0 
P=  — (p +P) [A' Vlo +A V1 0], (2.6) 

o o 
(p +p) [A V j] =0, (2.7) 

o o 
(p +p) [A-' Ti] = 0, (2.8) 

where i = 1) 2, and 3. 

We then expand to first-order the contraction of the perturbed velocity vec-

tor field V, with itself, Eq. (1.8), and obtain the relation 

01 0 0 
2 VV = h v a V '. 

0 0 
The condition that h, V (L V = 0, Eq. (2.2), yields 

substituting in Eq. (2.6), we have 

(2.9) 

= ° = 0; (2.10) 

(2.11) 

The result is that, provided $ + p 54 0, the conditions 
0 0 

At/A = 0 and hIL,, V ' V ' = 0, (2.12) 

imply no perturbations of the matter: 

1 1 
p=p=0 

1 

and V1=0. (2.13) 

In the special case of  false vaciiim,26 characterized by $ + = 0, we cannot 

obtain, at this stage, the full set of conditions corresponding to no perturbations 
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of matter. However, we show in the next section that, in this case, the conditions 

given in Eq. (2.12) do not utilize all of the gauge freedom, and so we are free to 

use three of the gauge functions to satisfy the required condition 

1 

Vi= 0, (2.14) 

where i = 1) 2, and 3. To simplify the notation in the remainder of this chapter, 

we omit the first-order superscript on the perturbed quantities. 

§3.3 Conditions for Pure Gravitational Radiation 

Gauge transformations do not affect the perturbation quantities we wish to 

solve for. They do, however, play an important role in determining the linearized 

field equations for these gauge-invariants. Since the conditions defining pure 

gravitational perturbations, Eq. (2.12), are gauge-dependent statements, we can 

use them to reduce the gauge freedom in the metric and energy-momentum tensor 

perturbations. 

The full energy-momentum tensor tLV can be obtained by contracting t," 

with the perturbed metric. To first-order, we have 

00 0 Aae 0 

g ,-i- L_, -I- 
4 - I A4a il. 4 

By applying the condition for pure gravitational radiation, Lt 0, we obtain 

the first-order correction for the matter tensor 

0 
A4 - 1.. ptce  4 

' (3.2) 

Next, using the definition for the zeroth-order velocity vector field, Eq. (1.9), we 
0 0 

obtain from the condition h,, V /L V" = 0 

h00 = 0. (3.3) 
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It follows that the perturbations represent pure gravitational radiation if there 

exists a gauge such that the condition 

0 
= hija t cl,dxlldxv (3.4) 

is achieved, and 

h00 = 0. (3.5) 

By comparing the coefficients in both the odd and even harmonic expansions 

of the energy-momentum tensor perturbations, Eqs. (2.2.19) and (2.2.20), with 

those of the expression on the right-hand side of Eq. (3.4), we obtain a set of 

conditions equivalent to Lt1" = 0. Because expressions such as (3.4) and (3.5) 

differ for opposite parity, we proceed by analyzing the odd and even parities 

separately. 

For the odd-parity, since the perturbations do not have scalar components, 

the condition h00 = 0 is trivially satisfied. The requirement that the energy-

momentum vanishes, Eq. (3.4), gives 

/L\t 4ddSadXA dXa = hSb adXA dXa, 

= hSaAdXadXA, 

1tS(a:b)dXadXl = hS(a:d)bdXadXb. 

For a perfect fluid, this implies 

A.iodd - j. odd 0 —h odd 0 
- I6Ø - I60 P 

Atodd odd 0 

t=hp. 

(3.6a) 

(3.6b) 

(3.6c) 

(3.7a) 

(3.7b) 

(3.7c) 

The gauge freedom in the odd-parity perturbations consists of one scalar 

function on M 2 [see §2.3]. In the case where $ + P = 0, there is no inconsistency 
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in Eq. (3.7), and the gauge function M(xc) is arbitrary. If + 0, we can 

use M to set h = 0. In this gauge, pure gravitational radiation implies 

odd odd 1,0 _0 " 

= 

Lt=h. 

(3.8a) 

(3.8b) 

(3.8c) 

For the even-parity perturbations, condition (3.4) yields the following equa-

tions: 

/tABYdX'4dX2 = hAD B OD YdXAdXB, (3.9a) 

= h?Y,b dxAdxci,, (39b) 

- 1.evenv DAdXadXA, (3.9c) '1,D ',a 

R2/t'Yyabdx'dx1' = R2KY(7ad t db + '7 bd t da)dXadxb, (3.9d) 

0 0 
I.t21i a:bdx ZdxL = R2GY(Y,a:d t db + Yb:d t da)dXadXb. (3.9e) 

And the full set of equations for a perfect fluid is given by 

Atoo = —h00 $, 
0 0 

= ho1p = —h01 p, 

together with 

0 
= 

seven - j,even 0 - even 
_1 P— 'o 

Ateven - ,even° 
- ''1 P, 

= 

Ltz = 

h00 = 0. 

0 

(3.l0a) 

(3.lob) 

(3.l0c) 

(3.lod) 

(3.10e) 

(3.lOf) 

(3.1Mg) 

(3.loh) 
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The gauge freedom in the even-parity perturbations is contained in the scalar 

field (xc) and the 2-vector field eA(x') [see §2.3]. When $ = 0, we can 

use one function worth of gauge freedom to satisfy h00 = 0, and the remaining 

two gauge functions are arbitrary. Otherwise, we select a gauge such that h00 = 

h01 = = 0. In this gauge, the conditions implied by pure gravitational 

radiation are 

Ltoo = hoo = 0, (3.11a) 

= h01 = 0, (3.11b) 

Atil = h11 , (3.11c) 

Ateven = = 0, (3.11d) 

= (3.11e) 

= (3.11f) 

= PO R2G. (3.11g) 

In summary, for the case where $ + p 54 0, our choice of gauge is equivalent to 
the synchronous gauge 

h 0 = 0, (3.12) 

widely used in perturbation theory. 23,27,21 For the false vacuum case, we choose 

hoo = 0 and require that the three arbitrary gauge functions be chosen so that 

the condition 

1 

V= 0 (3.13) 

is satisfied. 
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§3.4 Odd-Parity Perturbations 

The odd-parity linearized field equations for the gauge invariants were in-

troduced in §2.4. From these, we can obtain propagation equations for odd 

gravitational waves by imposing the pure gravitational radiation conditions, Eq. 

(3.7) for the false vacuum or Eq. (3.8) for the generic case + 0, derived in 

the previous section. It is easy to show that, under either of these conditions, 

the matter gauge-invariant quantities LA and L vanish identically [see §2.3].The 

relevant field equations are therefore homogeneous. They can be expressed in 

the following form: 

k0,0 = k1,1, (4.1) 

and 

(R4 [(R-2k0),1 - (R2k1),o])IA = A2(e - 1)(.e + 2)k,—A, (4.2) 

where the angular index £ ≥ 2. 

The explicit form of Eq. (4.2) is such that one can achieve a partial decou-

pling for the type of background under consideration, class I-IV [see §3.1]. With 

the help of Eq. (4.1), we can decouple Eq. (4.2) into an homogeneous equation 

on the one hand, and on the other an inhomogeneous equation driven by the so-

lution to the homogeneous equation. In particular, k0 satisfies an homogeneous 

equation if the scalar F is chosen to be a function of the time coordinate t (class I 

and IV), and k1 satisfies an homogeneous equation if F is chosen to be a function 

of the radial coordinate r (class II and III). 

But the perturbation equations receive their simplest treatment if one intro-

duces a potential V, which satisfies 

R4 [(R 2v,i),i - (R -2V'0)'0] = A2(t - 1)( + 2)V, (4.3) 

related to the gauge-invariant quantities kA by 

kl.A = V,A. (4.4) 
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From Eq. (4.4), we can see that the integrability condition for the existence of 

the potential 

V,01 = V, io, (4.5) 

is equivalent to Eq. (4.1). By differentiating Eq. (4.3) with respect to the time co-

ordinate t, and substituting the defining equation (4.4), we recover Eq. (4.2) with 

A = 1. We obtain Eq. (4.2) with A = 0 in turn from Eq. (4.3) by differentiating 

with respect to the radial coordinate r and substituting Eq. (4.4). It follows that 

the solutions of the odd-parity perturbations are most easily obtained from Eq. 

(4.3), and we call this equation a master equation, for it single-handedly governs 

the odd-parity perturbations. 

§3.5 Even-Parity Perturbations 

In this section, we discuss the propagation equations for the even-parity 

gravitational waves in backgrounds that are filled with perfect fluid, but whose 

line element are restricted to those of class II [see §3.1] 

ds2 = A2(t) [—dt2 + dr2 ± F2(r) d 2] . (5.1) 

It is well known' that the zeroth-order solution for the field equations, corre-

sponding to the line element (5.1) and a perfect fluid, is given by the Friedmann-

Robertson-Walker cosmological models. These models describe homogeneous 

and isotropic spacetimes with perfect fluid. The hypersurfaces of homogeneity, 

are three-dimensional surfaces of constant curvature. Since it is always pos-

sible to obtain a normalized curvature e by rescaling the function A(t), the 3 

admissible geometries for E t, corresponding to a positive , negative, and zero 

curvature, are first, the unit three-sphere (e = 1), second, the three-dimensional 
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flat space (6 = 0), and third, the three-dimensional hyperboloid (6 = —1). The 

Robertson-Walker line element is characterized by 

IsinT ife=1, 
ifE=0, 

1sinhr ife=-1. 
(5.2) 

The explicit forms for the background density and pressure can be obtained 

from the tensorial field equation for the background Eq. (2.1.7). They are 

and 

(5.3) 

(5.4) 

It follows from these expressions, that the restriction to the Robertson-Walker 

line element implies 

00 0 0 
p=p (t) and p = p(t). (5.5) 

When Eq. (5.5) and the condition for pure gravitational radiation Eq. (3.11) 

are taken into considerations, the matter gauge-invariants can be written as 

T1 = A_2,0p0 + 

0 0 
T00 =p,o P0 — p Ic00, 

0 0 0 
T01 = (p+p)po,i +plcoi, 

T11 = P,oP0 + pkil. (5.6) 

First, we consider the generic case $ 0. The results for the false 

vacuum are similar, and will be outlined at the end of this section. If we use the 
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matter gauge-invariants given in Eq. (5.6), the scalar field equation corresponding 

to T2, Eq. (2.4.15d), yields that kAB is traceless 

kc C = 0, (5.7) 

or simply 

k00 = k11. (5.8) 

The differential equations for the gauge-invariant metric quantities k, koo, and 

are obtained by substituting Eq. (5.8) and the matter gauge-invariants, 

Eq. (5.6), into the remaining linearized field equations (2.4.15). The resulting 

equations are 

k00,1 - k01,0 - S, = 0, (5.9a) 

- k01,1 + S,o - 2voS = _A2,($ +)po, (5.9b) 

k00,00 + koo,ii - 2k01,01 + 2v1(koo,i - k01,o) - 2(v - vo,o + )koo+ 

+ S,00 - S,11 - 2voS,o - 2viS,1 - 2v0,0S = _A 2$ ,0p0, (5.9c) 

2 [vokoo,o + v1 k00,1 - 2v0 1c01,1 - 4v0v1k01 + (v + 2v - 6)koo] + 

+ ( - 1X + 2 k —2 - 2voS,o + 3v1S,1 + 4vS] + 

+(t1)(+2)s=A2 0 
F2 "P,oP0, 

2 [vokoo,o + v1 k00,1 - 2v1 k01,0 + (2v0,o - v 2 - )koo] ( -  1)( +  
F2 

(5.9d) 

(e -

- 2v0S0 - 2v00 SJ +  1)(e + 2) = _A24 ,opo, + 2 [S,00 - v15,1 , ,  F2 

2 [vokoo,i - v1 k00,0 + 2v1v0k00 + (Vo,o - V - V)koi] (t -  1)( +  
F2 

+ 2[S, - 2voS,1 + v1S,0 - 2vov1S] = _A2ic($ +) [ko1 +po,i] .21  

Here, the function S is defined by 

(5.9e) 

(5.9f) 

SEA2k, (5.10) 
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and the components of the vector field VA are 

= A 
F1 

V1 = 

A,0 

In the above, we have used the following identities: 

1_ (F1 
F2 

1 (F,1'\ 2 

F 1\F) 

(5.11) 

(5.12) 

(5.13) 

We can use equation (5.9b) and our knowledge of the background matter 

fields to eliminate the gauge-dependent quantities from the remaining propaga-

tion equations. The background conservation law Eq. (2.1.11) yields 

0 
P,o —3vo(p +). (5.14) 

Therefore, by using (5.9b), we obtain for the right-hand side of Eq. (5.9d) 

A 2o ,o po = 3v0[koo,o - k01,1 + S,0 - 2voS]. (5.15) 

Next, if we take the partial derivative with respect to time of (5.9b), we get 

- A2 [($, 0 +,o)po + ($ +)po,o + 2v0($ +)Po] 
= k00,00 - k01,10 + S,00 - 2v0,0S - 2V0S,0. (5.16) 

Using Eq. (5.14) and the gauge-invariant metric quantity 

k00 = —2(po,o - vopo), (5.17) 

we obtain for the right-hand sides of Eqs. (5.9c) and (5.9e) 

_A24 ,opo = k00,00 - k01,10 + S,00 - 2voS,o - 2(v - vo,o + E)koo. (5.18) 



36 

Finally, we use the partial derivative with respect to the radial coordinate r of 

(5.9b), and the background matter fields Eqs. (5.3) and (5.4), and obtain for the 

right-hand side of Eq. (5.9f) 

_A2K($ + ) [koi + p0,1] = k00,01 - lC0i , + S,01 - 2v0S,1 + 2(v - v0,0 + )k01. 

(5.19) 

In order to decouple the linearized field equations, we introduce a new gauge-

invariant quantity W, defined by 

W=k00 —S. 

In terms of IF, equation (5.9a) reduces to 

(5.20) 

(5.21) 

We obtain an homogeneous partial differential equation for W by substituting 

this result and Eq. (5.18) in (5.9e): 

(t_ 11,11 - T,00 - 2v1 W,1 + 2v0,0W  1)(+2) 0 ,0  F2 (5.22) 

Likewise, we substitute Eqs. (5.19) and (5.21) in (5.9f). The result is an inho-

mogeneous partial difFential equation for the gauge-invariant quantity k01 that is 

driven by a solution of Eq. (5.22): 

k01,11 - koi,00 + 2v0k01,o + 2(€ - v)ko1 (t - 1)( +2)  F2 k01 = 2v1W,0 - 4v1v0W. 

(5.23) 

As in the odd-parity perturbations, the propagation equations for W and 

k01, Eqs. (5.22) and (5.23), are best described if we introduce a potential V [see 

§3.4], satisfying 

R4 [(R —2V,,),, - (R 2V,o),o] = A2(e - 1)( + 2)V. (5.24) 
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Here, the potential V is related to the gauge-invariant quantities by 

'I' = V,o, (5.25) 

.and 

k01 = V,1. (5.26) 

Eq. (5.21) is equivalent to the integrability condition for V; if we take the partial 

derivative of (5.24) with respect to time we have Eq. (5.22). On the other hand, 

if we take the partial derivative of (5.24) with respect to r we get Eq. (5.23). 

This similarity between the two parities was first pointed out by Couch and 

Torrence'1. 

We can determine the gauge-invariant quantity k from the remaining field 

equations (5.9c) and (5.9d). First we substitute Eq. (5.15) in Eq. (5.9d). The 

result is 

2v1 ,1 - vo(W,o + k01,1) - 8v0v1k01 + 2(v + 2v - + - 1)( + 2)  
F2 

2A2 + 2v1 k,1 - (2v - )k - 1)( + 2)  
F2 k] 

(5.27) 

Next, we define 

B = A2($ 

Using this notation, we can write 

A2,,0=B,o+voB. 

From this and Eq. (5.9b), we obtain for the right-hand side of Eq. (5.9c) 

( + vo) [icoo,o - k01,1 + 5,0 —2voS]. 

(5.28) 

(5.29) 

(5.30) 
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Substitution in Eq. (5.9c) yields 

(W,o - k01,1),0—( B'O- + vo)('T!,o - icoi,1) - f ui' 

= —2A2 [k,00 + 2v0k,o + (2v0,o - 11 v0 - 6)k]. (5.31) 

It follows that a solution for k must be of the form 

Ic = Ic + Fo(r) [co Go(t) + ciGi(t)] + F, (r) [c2Go(t) + c3Gi(t)], (5.32) 

where Icy, is a particular solution of equation (5.27) determined by the master 

equation (5.24). FA satisfies the 2nd-order homogeneous differential equation 

d 2 k dk 2 (t-1)(t+2)  
-j-+2vi--dr (2vi  — €)k — F2 k=O, 

and GA satisfies 

d 2 k dic 
2v0 + (2vo,o - - ) k 0. 

j t- 2 + 

(5.33) 

(5.34) 

Accordingly, the master equation (5.24) governs all of the even-parity perturba-

tions except for the freedom of four arbitrary constants contained in Ic. The issue 

of consistency was treated in reference[11]. 

We now consider the case of the false vacuum. When $ + = 0, it follows 

0 0 
from Eq. (5.14) that p and p are both constant. The linearized field equations 

(5.9) are homogeneous and the propagation equations (5.8). (5.22), (5.23), (5.26), 

and (5.27) are unchanged. This time Eq. (5.9c) is empty, and Eq. (5.9b) yields 

- koi,i = —2A2 [k,0 + vok]. 

A solution for Ic must be of the form 

k = 1cr, + G(t) [coFo(r) + ciFi(r)], 

(5.35) 

(5:36) 

where 1cr, is a particular solution of Eq. (5.27), FA satisfies the differential equa-

tion (5.33), and G(t) satisfies 

dk +vok=0. 
Tt 

The freedom in Ic is reduced to two arbitrary constants. 

(5.37) 
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CHAPTER 4 

A Comparison with the Newman-Penrose Formalism 

Thus far, we have used, as a mathematical basis for perturbation theory, 

a tensorial description of the Einstein field theory. An alternative treatment is 

provided by the null-tetrad formalism of Newman and Penrose. 15 The Newman-

Penrose formalism is especially useful in applications in which null vectors are 

geometrically preferred. Since gravitational waves have null trajectories, a large 

body of work on pure gravitational radiation has been done in this formalism. 

In this chapter, we explore the relation between the formalism of Gerlach and 

Sengupta and that of Newman and Penrose. In particular, we consider the odd-

parity perturbations representing pure gravitational radiation propagating on a 

fiat background, under the simplifying assumption of axial symmmetry. 

First, we give a brief geometrical introduction of the Newman-Penrose for-

malism. In §4.2, we describe the null-tetrad formulation of perturbation theory, 

specialize the background to that of Minkowski space, and supply the equations 

governing the perturbations. The preliminary work required to compare the two 

formalisms is presented in §4.3, along with the gauge transformation that allows 

us to express the components of the Gerlach- Sengupta metric perturbations in 

terms of the Newman-Penrose quantities. In the last section, we establish the 
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relationships between the gauge invariant quantities of each of these formalisms, 

and discuss their implications. 

§4.1 Null-Tetrad Formalism 

In the tetrad formulation of general relativity, we begin with a four dimen-

sional Riemannian manifold with signature (+, -, -) -), but rather than intro-

duce a coordinate basis, we introduce a tetrad. A tetrad, or moving frame, is a 

moncoordimate basis of smooth vector fields.' The Newman-Penrose formalism15 

consists of choosing a null-tetrad made up of two real null vectors, l and 

and a pair of complex null vectors, mIL and its complex conjugate 7TTA, satisfying 

the normalization conditions 

= = 1, (1.1) 

all other products being zero. In terms of the tetrad vectors, the metric is given 

by 

=10, + 10, - - (1.2) 

The Christoffel symbols are replaced by twelve complex functions called the spin 

coefficients. They measure the rotation of the tetrad under parallel transport, 

and are obtained by projecting the covariant derivatives of the tetrad vectors 

onto the null tetrad. They are given by 

= l,m1LlhI, (1.3a) 

Il. = Th,j;y1fll (1.3b) 

= . (l,m1zl - Wi'l"), (1.3c) 

P l;vmTh', (1.3d) 
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)¼ = _fl,L;zI TflhL 71i , (1.3e) 

a = (l ;un'ii' - m,t;v T'), (1.3f) 

0 = l;um'2m', (1.3g) 

/2 n;p?i'm", (1.3h) 

/3 = (lt;pnm' - m,2;v , (1.3i) 

ii = _ri ;urntLfl , (1.3j) 

= . - m ;y W Ln hI ), (1.3k) 

= l,m1 '. (1.31) 

Using the tetrad, we can express the various components of the curvature —the 

Weyl tensor, Ricci tensor, and scalar curvature— as follows: 

TO = lml"m5 (1.4a) 

= lan fl'm S, (1.4b) 

= — 5 rilm5, (1.4c) 

Cc .yô (1.4d) 

= —Cy5 ian1ñimm, (1.4e) 

= _1 7? ljttll' (1.5a) 
2 

= - R w lIL m", (1.5b) 

'O2 (1.5c) 

= - R,l'??i, (1.5d) 

'CD11 = - R(l'n" + m1Wi"), (1.5e) 4 AV 

12 = —R,nm", (1.5f) 

2O = - R,WWTh", (1.5g) 

21 = (1.5h) 



22 = - 1  Rnn", 

A= R. 
24 

We also introduce a set of intrinsic differential operators: 

(1.7) 

The Newman-Penrose equations consist of a system of coupled first-order 

differential equations in the variables WA, 'AB, A, and the spin coefficients, 

which arises from the definition of the Riemann tensor in terms of the Newman-

Penrose quantities. 2' Because all of the information contained in the Einstein field 

equations can be obtained from a solution to the Newman-Penrose equations, 

they are said to form an equivalent set .3' The Newman-Penrose equations can 

be found in their most general form in reference [15]. At this stage, they are 

very long and somewhat complicated, but, as we shall see, we can simplify them 

considerably by choosing one of the tetrad vectors to be hypersurface orthogonal. 

This is precisely what happens in the case of pure gravitational radiation. Since 

gravitational waves are propagated at the speed of light, their wave fronts are null 

hypersurfaces, and we can take full advantage of the structure of the formalism 

by tailoring the tetrad to match the wave fronts. 

Just as in the case of the tensorial description of the field equations, it is con-

venient to choose a coordinate system in order to write down specific information 

about a solution to the Newman-Penrose equations. For problems involving grav-

itational radiation, an appropriate choice of coordinates is the Bondi coordinate 

system, 15 constructed in the following manner. 
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First, we introduce a family of null hypersurfaces designated by u, rep-

resenting a gravitational wave front, and take the vector 1. orthogonal to the 

hypersurfaces u = constant. This means that l is proportional to a gradient 

field, and we set 

ilL = (1.8) 

If we choose x0 = u as our first coordinate, then its covariant and contravariant 

components are simply 

(1.9) 

and 

ilL = li (1.10) 
I 

The hypersurface u = constant is generated by a two-parameter family of 

null geodesics; we choose the two parameters labelling the geodesics as our coor-

dinates x2 and x3. The coordinate x1 = r can be determined by taking an affine 

parameter3' associated with the congruence of null geodesics at each point u, 

and x3 constant.' Because affine parameters are not unique, different ones being 

related by linear transformations,' the coordinate x1 is not uniquely determined. 

An appropriate selection is usually made at a later time to match the geometry 

of a specific application. With this choice of coordinate system, the metric takes 

the form 
0 1 0 0-
1 
0 

_0 

(i,j = 1,2,3). 

Applying the normalization conditions Eq. (1.1), we obtain that the remaining 

tetrad vectors are of the form 

nIL =5+U8+Xö, 

rnlL =w8+6r, 

(1.12) 

(1.13) 
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where U, X, w and are arbitrary functions of the coordinates x, and i = 2,3. 

Equation (1.2) tells us that the metric components are related to the tetrad 

components, Eqs. (1.10), (1.12), and (1.13) by 

g1' =2(U<—w5), 

9 i = Xi - (i + 

= (ii (1.14) 

(i,j = 2, 3). 

The tetrad is still not fully determined, for there remains the freedom of 

rotating the tetrad about l. One way of eliminating most of this freedom is 

to require that the vectors n11 and miL be parallelly propagated along YL. This, 

together with the choice of 1's, Eq. (1.8), yields the following simplifications for 

the spin coefficients: 

(1.15) 

In terms of the Bondi coordinate system, the differential operators D, A, 

and S are given as follows: 

LUo a 
ôr + TU +X', 

(1.16) 

here i = 2,3. 

Finally, with each of the Newman-Penrose quantities, we associate a spin 

weight according to how it transforms under a rotation of the tetrad legs mA and 
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TFT/,.?2 We say that a quantity i, defined on the two-sphere, has spin weight a if, 

under the transformation 

it transforms as 

- exp(iA)m'2, ) real, (1.17) 

i—exp(isA)i. (1.18) 

Let rl be a quantity with spin weight a. We define the spin-weighted differential 

operator a,32 pronounced edth, as follows: 

1977 = _(sinO) 8 { 19  + 4} [(sin 9)8]TO  Tin—O To- (1.19) 

The concept of spin weight will play an important role in the spherical harmonic 

decomposition of the Newman-Penrose quantities. 

To conclude this section, we give, written in the Bondi coordinate system, the 

Newman and Penrose field equations and the Bianchi identities in empty space. 

These will be the starting point of the perturbative scheme. They are obtained 

by inserting the proper expression for the stress energy tensor; for vacuum we 

set A = 0 and AB = 0. The Newman-Penrose equations are 

D2 = p 2 + o, (1.20a) 

Dw=p+ci—r, (1.20b) 

DX' = F + re2, (1.20c) 

DU =w+rZ5—(y+7), (1.20d) 

Dp = p2 + o, (1.20e) 

Do, = 2pcT + To, (1.20f) 

Dr=p'r+cff+J!1, (1.20g) 

Da = pa + Ffl, (1.20h) 
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Do = p/3 + 0a + Wi, (l.20i) 

D'y=ra+8+W2, (l.20j) 

DA = pA + FIL, (1.20k) 

Dy = p,u + crA + W2, (1.201) 

Dv = rA+i-p+ W, (1.20m) 

Sx  - z =(fL+ - 7)e + i, 

S -. = (a)ei (3)i 

AA -v 2av+(5 -37— p- 71)A — W4, 

Sa —8,8 = ,up— Ao- aZi  W2, 

Sp-8o-=rp+(-3a)o—'I'i, 

SA -  31L =9+(— 39)A - 

Si'— LL = 'y/ 2,8v + Tit + j2 

ST - Lo = 2T/3+(57— 37+[L)0+Ap, 

zp —r =(7+—ji)p - 2ar - At - 

The Bianchi identities, 

R4ai#[pc,;A] = 0, 

take the following form: 

(1.22) 

- = (4— A)pWA+l 2(2 - A)a'TJA - AA'PA_l, (1.23a) 
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ATA - = Av'I'A_l - 2(A - 2)yWA + (A - 4)TWA+,+ 

- (A + 1)WA + 2(A - 1)I3WA+1 - (A - 3)criltA+2, 

(1.23b) 

where (A = 0,1,2,3). 

§4.2 Perturbation Method 

A well-known application of the Newman-Penrose formalism is the study of 

the asymptotic behavior of the Riemann tensor and the metric tensor in empty 

space.'6 The motivations arise from the need to study a model that represents an 

isolated source.33 The requirement that a solution be asymptotically flat reflects 

the fact that, as one recedes from an isolated source of radiation, the geometry of 

the spacetime should approach that of flat space. In what follows we make use of 

a program of study for gravitational radiation in asymptotically flat spaces pro-

posed by Janis and Torrence.34 The procedure, based on the Newman-Penrose 

formalism, applies a small-parameter perturbation approximation to a flat back-

ground. The specialization to pure gravitational radiation is achieved by the 

requirement that the first-order corrections satisfy the linearized field equations 

corresponding to empty space. 

In general, we expect to have two types of gravitational radiation: a retarded 

solution, which represents outgoing radiation emitted by the source itself, and 

an advanced solution coming in from infinity, which will affect the source in the 

future. To facilitate their analysis, it is customary to isolate each type of radia-

tion by means of boundary conditions. In this section, we present the first-order 

solutions for retarded asymptotic gravitational radiation fields in Minkowski as 

given by Couch el al.,35 with a view to comparing these results with those oh-
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tamed in the Gerlach-Sengupta formalism. We start by giving the null-tetrad 

formulation for Minkowski space used in reference [35]. 

The geometrical meaning of the null tetrad is best understood if we first 

consider the Minkowski line element in its usual spherical form, 

ds2 = dt2 - dr2 - r2 dS 2. (2.1) 

Here, an obvious choice for the family of null hypersurfaces is the future light 

cones at r = 0 and t =constant. We label each of these null cones with the 

parameter u = x0, and choose the unique affine parameter r = x1 such that r is 

the proper radius of the two-spheres defined by u and r constant. Then, 1a as 

defined in the previous section, is tangent to the future light cbne, n1 is tangent 

to the past light cone, and m and its complex conjugate 77FA are vectors tangent 

to the two-spheres. 

Also, since the null coordinate u designates the future light cone, u = t - r. 

Therefore, the Minkôwski line element expressed in the null coordinates u and r 

becomes 

ds2 = du2 + 2dudr - r2 d 2. (2.2) 

The explicit relationship between this choice of coordinates and the tetrad vectors 

is 36 

iii - 

- 

= 8011-

1 81A 

m'=.-(S+9 3 
V2-r sin 

(2.3) 

It follows from the definitions, Eqs. (1.3), (1.4), (1.12), and (1.13), that the 

non-zero Newman-Penrose quantities are 

1 
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2\/ r C0t9 

- j9) (2.4) 

The perturbed geometry is approximated to first-order in the usual manner: 

we assume that each of the Newman-Penrose quantities can be written in the 
0 1 0 1 0 1 

form p = p + p, WA = WA + WA, U = U + U, and so on. (To simplify the 

notation in the remainder of this chapter, we omit the first-order superscript on 

the perturbed quantities.) Each of the first-order corrections is approximated 

by means of harmonic functions according to its spin weight. This time, the 

appropriate harmonic functions are the spin-weighted spherical harmonics, 12,17 

which we denote by Y,m (9, q). They are constructed from the usual spherical 

harmonics as follows: 

(P_$(E)5YJm, (0 ≤ ≤ £), 
sYt,m = (1)8P8()53Yt,m, ( <s ≤ 0), 

where 
1 

((e-i-s)' 2 

( - s)!) (2.6) 

The differential operator 9 was defined in §4.1. 

In the null-tetrad perturbation method, we consider small variations in the 

Weyl tensor rather than in the metric tensor. The idea is to regard WA, which 

encodes all the information about the Weyl tensor, as a field in Minkowski space. 

When written in terms of the Newman-Penrose quantities, the Bianchi identities 

decouple and provide a set of equations for that field. 

If we use the angular differential operator ö, the linearized Bianchi identities 

reduce to 

(2.5) 

WADWA   

DWA+l   
r 2r 

(2.7) 

(2.8) 
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where A = 0,1,2,3 and denotes O/Ou. 

If we impose the condition that the solution be asymptotically flat at null 

infinity, 38 a solution to Eq. (2.8) is given by 

= t+1.  Ir r4 2r4 r _AWAdrI 
00 

(2.9) 

Here the TO are arbitrary functions of the variables u, 0, and q. Substituting 

this result in Eq. (2.7), we obtain 

= 
where i = 1,2,3, and 

v/2 0 9110 
Tr 910 1 1 foo r'3aWodr'+ —0 

--- i  T r5 

(2.10) 

(2.11) 

Given initial conditions, and a solution for 90, Eq. (2.11), the solutions 

for the other TA are immediately obtained from Eqs. (2.9) and (2.10). We 

derive the first-order corrections for the remaining Newman-Penrose quantities 

by linearizing and integrating the field equations (1.20). The results, as given in 

reference [35], are: 

P = 0, 

0.0 
12 

0. = + ;j f 
o 

a = - a J cdr, 
00 

0 

7=—raj00  r' 

r 

I'2 di", 

= fr1 2dr', 

(2.12a) 

(2.12b) 

(2.12c) 

(2.12d) 

(2.12e) 

(2.12f) 

(2.12g) 
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= -- j dr' + -, (2.12h) r r 

V = - r 2r' dr' + ql3drl, (2.12i) 

u=_J 7, (+)dr', (2.12j) 
00 

1 çr 
r rdr + -, (2.12k) 00 

X =rif dr' + r fri dr', (2.121) 

= f crdr', (2.12m) 

where o°, A°, and w° are arbitrary functions of the variables u, 9, and q. Sub-

stituting Eq. (2.12) in the linearized remaining field equations (1.21), we obtain 

a set of equations relating the integration functions: 

A° = 

do jo 1(2o.0 _820) 

q/ 3= 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13d) 

(2.13e) 

Essentially, this constitutes a complete solution to the first-order problem. 

But, in the present application, to compare the two formalisms, we also need 

to calculate the first-order metric components. This is done by linearizing the 

tetrad-formalism expressions for the metric components Eq. (1.14), and substi-

tuting in the Minkowski solutions Eq. (2.4) for the background quantities. The 

results are: 

= —2U, 
! 0. . 

h"= —X2 + + 'w), 

(2.14a) 

(2.14b) 
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o...... 2.. . .2.. —.0 . 
h' = (' + ') + (e'e2 + e'e) 

(i,j = 2, 3) 

§4.3 Gauge fixing 

(2.14c) 

If the solutions obtained in the Gerlach- Sengupta formalism represent pure 

gravitational radiation, then they are effectively equivalent to those obtained 

using the Newman-Penrose formalism, and so there must be a gauge in which 

the forms of the metric perturbations in both formalisms are identical. In this 

section, we show that this is indeed the case, at least for the odd-parity pertur-

bations, by deriving the Gerlach- Sengupta gauge transformation that will allow 

us to identify the odd-parity metric perturbations in each of the formalisms. To 

match the results presented in the previous section, we take Minkowski space as 

background for the perturbations, and for simplicity we assume axial symmetry: 

the perturbed quantities are assumed to be independent of q. 

We start with the Newman-Penrose approach to perturbation theory. First, 

it is necessary to isolate the portion of the Newman-Penrose metric that corre-

sponds to the odd-parity perturbations. It was shown by Janis and Newman" 

that the real part of 1'A is the electric/even part of the perturbations, and that 

the imaginary part of XPA is the magnetic/odd part of the perturbations. Here, 

the terminology is borrowed from electrodynamics,2° in which the parity of an 

electric multipole is (-1) (even) and that of a magnetic multipole is (-1)' 

(odd). To incorporate this in the metric tensor, we need to calculate the metric 

components in terms of the WA. 
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Using (2.12), we obtain for the first-order correction of the metric variables 

U=-2 ReW2dr'dr, 

W, = _ [f'r'widr'dr _w0] 

r rl 
X2 1 I [ = r"R&I 1dr'dr, 

Jo0 Joo 

pr pr 

X3  no 
- I / r"ImI'1dr'dr, 

si .100 J 00 

= - [f  dr  f - r t2 frh12Wdrdr] 

63   
= 'rsin9 1'0' dr + f 100 rh12 odr1dr] (3.1) 

By substituting these into Eq.(2.14), we get the components of the metric per-

turbations in terms of the Weyl tensor: 

r r' 
hll = 4 1 1 ReW2dr'dr, 

00 ./00 

h 12   
= _ [r2 I -b- L r"R&I'1dr'dr + j 1 r"ReWidr'dr - Re wr2  ' 

00  00 00 

13   12 ?•1 ' rh 2 sinO r  f r r"ImW1dr'dr + f f r"Im 1dr'dr - Imw00  0000 

= r pr Rea  r 

J r'2 dr + / f h22 2 rfl2R eWdr1dr] 

L 00 JOO 00 

- 2 r r Irno° r 1 rr' 
h 23 - r2 sin9 [100 r'2 dr + f 100 rl2Imodr1dr], 
h33 - - 2 r r Reo°  1 r' 

- r2 sin9 I r'2 dr+ Ir f rh12R eWodr1droo 0 00 

We arrive at the odd-parity metric perturbations by setting 

and 

Re(WA) = 0, (3.3) 

Re(o°) = 0. (3.4) 
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The latter condition is a consequence of (3.3), and is obtained by substituting it 

into Eqs. (2.9) and (2.13c). 

To facilitate the comparison between the formalisms, we depart from the 

usual Newman and Penrose notation, and explicitly write the harmonic functions 

used in the perturbative expansions. For the case of axial symmetry, we set 

m = 0. The spin-weighted spherical harmonics 3Yt,o are then real, and we denote 

them by Y8g. The spin weight of each of the Newman-Penrose quantities can be 

directly calculated from their definitions Eqs. (1.3) - (1.4). For the quantities 

appearing in the odd-parity metric perturbations, we have 

WA ) A(U, r) P_A(t)Y2_A e, 

cr° ... o(u,r)P_2()Y2t, 

W O . o(u,r) P_1 (t)Y1 , (3.5) 

A=1,2. 

In terms of these, the non-zero components for the odd-parity metric per-

turbations h'3 and h23 are, respectively, 

-  Pi)Y't r2 f f ri r r"Imt 1dr'dr + 10, f r"Im 1dr'dr - Im° 
r 5in9 

(3.6) 

and 

2P....2()Y2t r r r1 r  IMF  1 [L 100 r"2Imb0dr'dr f r' drr2 sin 0 ]. (3.7) 

We now turn our attention to the Gerlach-Sengupta formalism introduced 

in chapter 2. The odd-parity metric perturbations were written in §2.2 as 

h,, = 

0 
0 
h0S2 
h0S3 

0 
h, S2 2hS2.2 
h1S3 h(S2:3+53:2) 2hS3:3 

(3.8) 
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Several steps must be taken before we are able to compare this representation 

directly with that given by Eqs. (3.6) - (3.7). For a start, it should be noted 

that the two formalisms employ different signature conventions. Under a change 

of spacetime signature, the coordinate components of the metric tensor change 

sign, and so we have h - p Next, if we raise the indices using the 

background metric, and apply the coordinate transformation t = u+r, we obtain, 

for the contravariant form of the metric perturbations in the null-coordinate 

= (u,r,O,q), 

h!W = 

0 
o 0 

(ho+h)S2 hi S2  
r2 r2 

(ho+hi)S3 hi S.9  
- r2 sin2 B - r2 sin2 B 

2hS22  
r4 

h( S2.+S32)  
- r4sin20 

2 hS3.3 
r4 sin4 0 

(3.9) 

Here the hat indicates that the quantity has been converted to a null coordinates 

representation. The spherical harmonic vector 5a was defined in §2.2. Taking 

axial symmetry into account, the explicit expressions for the harmonic functions 

appearing in Eq. (3.9) are 

S2=o, 

S3 = sin 6 TO Y, 

S2:2 = 53.3 = 0, 

5 2:3 + S3:2 = sin a2 a 
- cot 9Y]. (3.10) 

To establish the connection between the harmonic functions, we calculate 

the spin-weighted spherical harmonics appearing in equations (3.6) and (3.7). By 

definition Eq. (2.5), they are 

Ylt = _P_i(t)Y0 , 
ao 

Y2 92 a YO 
= .. p_2()[yO - cot (3.11) 
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Here, Y° Y, the usual spherical harmonics used in the Gerlach-Sengupta 

formalism. 

Using Eq. (3.11), we can write the odd-parity metric perturbations, Eq. 

(3.9), in terms of the spin-weighted spherical harmonics. The result is 

h'" = 

0 
0 
0 

(ho+ h1) P1Y1 £  
- r2 sin 9 

0 
0 

h1 P1 Y1t  
r2 sin 9 

0 
hP2Y2  
r4 sin 9 0_ 

(3.12) 

A direct comparison between the two forms of the metric perturbations is 

now possible; consider the Newman-Penrose odd-parity metric perturbations 

hA' 

0 
0 
0 
0 

•0 
o 0 

7j13p_1y1 ç2ap2y2 0 

(3.13) 

The requirement that the metric perturbations 1l` be put into an identical form 

is equivalent to. the existence of a gauge in which 

i0 + hi = 0. (3.14) 

This can always be achieved if we choose the appropriate gauge function [see 

§2.3]. In this gauge, we obtain the following identification between the Gerlach-

Sengupta metric components and the Newman-Penrose quantities, 

I I 

_/p12 [r2f r! r"Imb1dr'dr + f J r"Imb1dr'dr - Im l 0] , 

= ao 
—2P2r2 11. - f r"2Imb0dr'dr + 10,  " dr]  

§4.4 Interpretation of the Results 

Since we now have a means to go from one formalism to the other, we can 

compare the results obtained in each formalism to derive a relation between 
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the gauge-invariants. Before turning to the explicit equations, let us briefly 

point out the conceptual differences in the respective perturbation methods. The 

formalism of Gerlach and Sengupta is characterized by gauge-invariant quantities. 

Because these quantities are defined in terms of the components of the metric 

perturbations, their perturbative approach is essentially a perturbation of the 

metric. Yet, we do not have a gauge-independent physical interpretation for the 

gauge-invariants. This information, because it is contained in the metric, depends 

on a choice of gauge. By contrast, the fundamental quantities in the null-tetrad 

perturbation analysis are the WA; these are the Newman-Penrose representation 

of the Weyl tensor. Because both the WA and the Weyl tensor vanish identically 

in vacuum, they are gauge-invariant [see 2.3], and there is no ambiguity in their 

physical interpretation. 

We start by calculating the Gerlach-Sengupta odd-parity gauge-invariants 

kA in terms of the Newman-Penrose equations. By definition, we have 

kAhA_r2(-.),A 
r  

This definition canbe converted into the null coordinates = (u,r,O, ) by 

means of the coordinate transformation t -f u + r. 

(h 

r2) 'U 
(h 
r2 

(h 
r2 

'U] 

(4.1) 

(4.2) 

To calculate their Newman-Penrose representations we choose a gauge in which 

ho = —h1. This allows us to use the results from the previous section. We obtain 

r r' 

IC0 = v'P1(t) [f / Irnb1dr'dr - Irn0] + 

00 '/00  r/2 
- P2() 12rImOI0 - r2 / Imt 0dr + r2 r 1 100 100 rhhlm'cbodrldrl, 
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Imb1dr'dr - $ Im Imd0] + P 2() [21m—a' + 2rIrri0J + 
r T 
  

+ P2(t) f r'2Imb0dr - r2 f Imb0dr + r2 f - f rhuImbodr'dr1. 
(4.3) 

In the above calculations, we have used the following identities: 

3° = 4P_1(e)Y'€ 60, 

= - [(r'1)o)P22(e) - V2r Or r2 01P!•Y)j (4.4) 

These were obtained from Eq. (2.13b) and from the linearized Bianchi identities, 

Eq. (2.7). 

It is easy to verify that the two methods are compatible, for, if we substitute 

the exact retarded solutions given by Couch and Torrence39 in equation (4.3), 

the resulting expressions satisfy the propagation equations derived in chapter 3. 

Moreover, this gives us a check on the correctness of the applied procedure. 

Also, notice that the gauge-invariants themselves do not have a well defined 

spin weight. However, if we evaluate the potential V introduced in 3.4, 

(t - 1)(t + 2)V = r 4 
[()i - ()oJ 1 r 

2r2P1() J r'Imbdr - J J r"Imb1dr'dr + mw  
r r 

(4.5) 

we find that it has a spin weight of 1. This could explain why it was necessary to 

take a particular combination of the gauge-invariants to derive a master equation. 

Finally, we now have a readily available gauge - independent physical interpre-

tation, for if we add the expressions for the Gerlach- Sengupta gauge-invariants, 

Eq. (4.3), and take a partial derivative with respect to r, the result is 

(o + ii),r = 2P. 2(t)r2Im o. (4.6) 
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By taking a particular combination of the kA, we have obtained a potential for 

the imaginary part of To. If we know k0 and k1, we effectively have a solution 

for the imaginary part of WA. The advantage is that we now have a means to 

classify the solution 29 without introducing a gauge. 
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CHAPTER 5 

Conclusion 

The results obtained in chapter 2 indicate that the Gerlach- Sengupta for-

malism is well suited to perturbation analysis. Since the gauge freedom is treated 

explicitly, we can impose some gauge conditions that simplify the calculations 

without disturbing the outcome. Although the fact that the same master equa-

tion governs both parities is quite a simplification, it is not surprising. In a related 

line of work Janis40 also found a connection between the parities. There, it was 

shown that if the background is a Robertson-Walker spacetime, the even and 

odd gravitational waves share the same propagation properties. In the Gerlach-

Sengupta formalism, this connection is expressed in 'a remarkably simpler form. 

Furthermore, the formalism is flexible and broadly based; it seems not unreason-

able to anticipate that these results could be extended beyond the Friedmann-

Robertson-Walker class of spacetimes. Another point worthy of mention is that 

in the work of Janis 40 the metric isn't easily recuperable: more calculations are 

required and the gauge issue is totally clouded. In the Gerlach and Sengupta 

framework, we can readily obtain the metric perturbations in the gauge of our 
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choice. 

Where do we go from here? There are two obvious extensions to the work 

presented here. First, our understanding of the odd-parity perturbations is much 

greater than that of the even-parity. The even-parity perturbations are inherently 

more complex. There are more gauge-invariants and, even in a simple case like 

Minkowski space, the equations that relate them are intricate. In spite of this, 

it would be useful to duplicate the results, obtained in §4.3 for the odd-parity, 

linking the Gerlach- Sengupta and Newman-Penrose formalisms. The compari-

son between the two formalisms may provide an explanation for the additional 

constants generated in the solution for the system. 

Secondly, since the even-parity problem has been solved for only one of the 

classes of spacetimes introduced in §3,1, it is somewhat tempting to try to solve 

it for other classes. In particular, since there are known exact solutions for the 

Kantowski-Sachs spacetimes with perfect fluid,4' we can utilize the background 

information to simplify the linearized field equations and attempt to reproduce 

the result obtained in §3.5. To our knowledge this hasn't been done. The situ-

ation is not so simple if we consider arbitrary stress-energy momentum tensors. 

During our investigation of gravitational waves it became apparent that Lt,1 ' = 0 

may not be an adequate mathematical description for purely gravitational radi-

ation [see §3.2]. More intensive research is required in this direction. 

Finaily, we would like to point out that, since this work was started, two 

more gauge-invariant formulations have been proposed. The first one, by Ellis 

and Bruni,3 offers a covariant framework that by-passes the need for an awk-

ward three- dimensional harmonic decomposition. More recently, Stewart4 has 

presented a formulation that allows a further breakdown in the perturbative 

analysis. In his approach, there are six independent sets of equations corre-

sponding to scalar, vector, and tensorial equations for the odd and even parity 
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perturbations. Each of these types of perturbation can be analyzed indepen-

dently of the others, and this fact could potentially facilitate the study of the 

kind of questions considered in this thesis. 
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APPENDIX 

In this appendix, we give the geometrical quantities obtained using the form 

of the metric derived in §2.1: 

ds2 = 9ABdx AdXB + R2(XC)yabdXdXt, 

where 

7abdXadXb = dO2 + sin  9dq 2. 

The non-vanishing Christoffel symbols are 

nC 
LAB, 

J 
-Aa = VAV ai 

nA_ A 
ab - —v gab, 

r3 = —sinOcosO, 
r3 3 

= r13 = cot 0. 

Defining the Riemann tensor, the Ricci curvature tensor, and the scalar 

curvature as in §1.3, we obtain 

ID -i-iD riD i--iDi -i F niDriF ( 
SLAB = AB,D - 1AD,B + FD1AB - FB-'-AD - 2VAIB + VAVB), 

RAa = RaA = 0, 

Rab = rab,d - rad,b + rdCr'b - rdbr'ac - gab( (vAj + 2vAvA), 

R = _2(2vAIA + 3VAVA - R 2 

where 7?. is the Gaussian curvature on M 2, given by 

2R 

- AB i-iD 
- II'AB,D - rAD,B + rFDrAB -  rWAD] , 

and 2R is the scalar curvature on M2. 


