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Abstract 

My supervisor, Professor P.C. Consul found that there has been a need of a more 

versatile L-shaped discrete probability model in order to cope with the modern com-

plex data sets. So, in 1990, he defined and introduced the Geeta Probability Model 

to the statistical literature. Therefore, I decided to have a systematic study of the 

Geeta Probability Model and this becomes the primary objective of this thesis. 

An introduction of different types of discrete distributions has been given in 

Chapter 1. Major families of discrete distributions and their basic properties have 

also been presented there. 

Chapter 2 has given the definition and the basic properties of the Geeta distri-

bution which are essential for our further study. 

A systmatic investigation of some important properties of the Geeta distribution 

has been done in Chapter 3. 

Chapter 4 deals with the estimation of the parameters and functions of parameter 

of the Geeta probability model. 
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Chapter 1 

Introduction 

1.1 Mathematical Formulae, Notations and Terminology 

Some mathematical formulae, notations and terminology, which are used at various 

places in this thesis are defined as below: 

1.1.1 Abbreviations 

• pmf: probability mass function of a discrete distribution. 

• pdf: probability density function of a continuous distribution. 

• pgf: probability generating function. 

• gf : generating function. 

• mgf: moment generating function. 

• cgf: cumulant generating function. 

1.1.2 The Gamma Function 

Also, 

and 

1'(a) = ro x0_le_dx, a> 0. 

al'(a)=r(a+l),a>O, 

1 
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F(a + 1) = a!, when a is a non-negative integer. 

In particular, 

= 1.2.3...(m - 1).n., if n is a positive integer. 

0! = 1, and I'(1/2) = 

1.1.3 Binomial Coeifficents 

When n and x are two non-negative integers, x < n, then 

Ti 

I I (n—x)!x! 
\XJ 7i—X 

Also, 

- (—n). (—n - 1) ... (—n - x +1) - (_1)x.(n).(m + 1)...(n + x —1) 

X! 
a, 

When n and r are any real numbers, then 

- r(m-i-1)  

r - r(r-i-1)r(n—r+l)' 

1.1.4 Descending and Ascending Factorials 

For all real values of a and positive integral values of r, the descending and ascending 

factorials are defined by, 

a(r) = (a). (a - 1).(a - 2)...(a - r + 1), 

a(r) = (a).(a+ 1)).(a+2) ... (a+r— 1), 

= 1 and a(o) = 1. 
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1.1.5 Feller(1968) 's Inequality: 

Vyv+h/2eve12+1 < r( + 1) < V2-7ry 12y 

where y> 0. 

1.1.6 Lagrange Expansions 

If (x) is an analytic function then Taylor's theorem can be used to express it as a 

convergent power series in x, i.e., 

oo DJ(0)xJ  
- 3=o j 

where D3 4 (0) is the jth derivative of the function , evaluated at zero. 

Then, the equation x = y(x) can be easily written in the form 

y = x/(x) = E -o akxk 

by the simple operation of division. 

Lagrange(1770) was concerned with the inversion of the above series so that the 

variable x may be expressed as a power series in y when (0) 0 0. Hence, any other 

analytic function f(x) can be explicitly given as a function of y. He obtained these 

in the form of a power series of y. 

The Lagrange's expansion is usually defined for complex functions f(z) and g(z) 

which are analytic on and within a Contour C surrounding a point a. If u is another 

variable such that the inequality ug(z)I < (z - al is satisfied at all points of z on the 

perimeter of Contour C, then the equation z = a + ug(z) has one root in the interior 

of the Contour C, then by Lagrange's theorem any function f(z), which is analytic 

on and inside the Contour C, can be expanded as a power series in u by the formula, 
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00 uk ok_i 
f(z) = f(a) + k! Oz' 

k=i 

where f(z) is the derivative of f(z) with respect to z and g(a) 54 0. 

See [Whittaker & Watson,1972]. 

The inversion of the function z under I ug(z) ≤ Iz - al, follows directly from the 

above by taking f(z) = z and becomes 

00 k0k-.i 

1.1.7 Taylor Expansion for bivariate functions 

[Burden & Faires,1985] have given the well-known Taylor's bivariate expansion as 

the following theorem. 

Theorem: Suppose that f(t,y) and all its partial derivatives of order less than or 

equal to n+1 are continuous on D = {(t,y): a < t ≤ b, c < y ≤ d }. Let (t0,y0) E D. 

For every (t, y) E D, there exists some numbers e (between t and ) and n (between 

y and yo) with 

f(t, y) = P. (t, y) + R", (t, y), 

where, 

P(t, y) = f(t0, Yo) + [(t - t0) Of (0) °) (y — Yo) Of (to , Yo)  
at + '9y 

- t0)2 02f(t0,y0) 82f(t0,y0) 
2  92 + (t - t0)(y - °) OtOy 
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1 
2  1+ ... + ) (t - t0)(y - )Of(tOYO)  

j=O (i 8t'i0yi 

and 

( m + 1 1 &+' )  =  1 f(6, ) (t - - 

-Y atn+I-jayj 
(n+ )jO j 

1.2 Discrete Distributions 

In many scientific investigations, observations are taken repeatedly under essentially 

the same set of conditions or with slight variations. Each of these observation taking 

procedures is called an 'experiment' and the corresponding observations are called 

the 'outcome' of the experiment. Clearly, we cannot predict the result or outcome 

of each experiment before the experiment is performed. 

An arbitrary outcome is denoted by 'w' which will refer to the observed member 

of all possible outcomes that could be realized. Such an experiment is a 'random 

experiment', a particular outcome w is a 'sample point', and the set fl of all possible 

outcomes is the 'sample space'. 

A random variable (r.v.) X is a real-valued function X(w) defined on the sample 

space fl for the sample point w. 

A cumulative distribution function Fx(x) for the r.v. X is, in general, a contin-

uous function of x. When F(x) is a step function with an enumerable number of 

steps, then it represents a discrete distribution. 

By far, the most commonly used discrete distributions are those for which x's are 

the non-negative integers. They are used in models for "count data", which include 
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variables representing the results of counts(of defective items, apples on a tree, etc.). 

However, it is not necessary that the random varible X takes only integer values (an 

observed proportion is a simple counter example). 

Most of the discrete distributions commonly used in theoretical and applied statis-

tics belong to a much narrower class of distributions called 'lattice distribution' which 

will be described in the following section. 

1.2.1 Lattice Distributions 

A discrete random variable X has a lattice distribution if there exits numbers a and 

h> 0 such that all possible values of X are representable in the form a + kh, where 

k may take on any integral values in (—oo < k < co). See [Gnedenko,1967]. 

Lemma: A necessary and sufficient condition for a probability distribution with 

characteristic function f(t) to be a lattice distribution is that there exists a real 

number to 54 0 such that If(t0)I = 1. 

Proof: If X has a lattice distribution and pic is the probability of X = a + kh, 

then the characteristic function of the variable X is 

00 00 

f(t)= E 

From this, we have 

pke' = eiat E pkeiikh. 
k=—oo lc=—oo 

21ni S 00 e 2irik 2iri he =e h. 

k=—oo 

Hence, we see that 

If(fll = 1 for every lattice distribution. 

Now, assume that for some to 52 0, Jf(t0)I = 1, then X will be shown to have a 

lattice distribution. 
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The last equation implies that for some 0 

So, 

or, 

It follows that 

fe° °)dF(x) = 1. 

fcos(tx - O)dF(x) = 1. 

In order that the above relation be possible, it is necessary that the function F(x) 

increases only at those values of x for which 

cos(t0x - 0) = 1. 

This implies that all the possible values of X must be of the form 

0 2ir 
x=—+k—. 

to to 

Hence, the proof is completed. 

1.2.2 Inflated Distributions 

When the probability of one value, say x0, of the discrete random variable X is 

increased and the remaining probabilities are multiplied by an appropriate constant 

to keep the sum of probabilities equal to unity, the distribution of such modified 

probabilities is called an inflated distribution F* of the original distribution F. 
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Denoting P(X = rIF) by Pr, the inflated distribution F* has 

p*(Xx0) 1—a+aP,,0, O<a<1, 

P*(X = x) = aPa,, for all x 54 cc0. 

In terms of the moments about zero f.1 ft of F, the rth moment about zero of the 
inflated distribution F* is 

*' I 

Pr =(1—a)x+apr. 

It can be shown that if a recurrence relation g(4, 4, ...) = 0 holds for F, the 
moments of the inflated distribution satisfy the recurrence relation, 

g(Pi(1 c)x0 ,I42(1 a)xO ,•••)=0• 
a a 

In particular, if Ej cjp = 0, then 

Ej Coll,= (1 - a) Ej c1x. 

1.2.3 Decapitated Distributions 

When a discrete probability distribution is defined over non-negative integers includ-

ing X = 0 and if the probability mass at X = 0 is proportionately distributed at all 

other values of the r.v. X, the resultant distribution is termed as the 'zero-truncated' 

or 'decapitated' distribution of the original. 

Thus, corresponding to the Poisson distribution 

(1.2.4) P(X=x)= ecc0!O ,(x=0,1,2,...), 

the decapitated Poisson distribution is 

(1.2.5) P*(X = cc) = (1— e9)16,(x = 1,2,3,...). 
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Sometimes, this term is extended to include truncation by omission of more than 

one variable value. If value x = 0 and x = 1 are truncated, the term 'doubly 

decapitated' is used occassionally. 

1.3 Classes of Discrete Distribution 

The discrete probability distributions have been classified into many broad classes. 

Four of these are, 

(i) Generalized Power series distributions(GPSD) 

(ii) Modified Power series distributions (MP SD) 

(iii)Factorial series distributions(FSD) 

(iv) Lagrangian probability distributions(LPD) 

(i) is a sub-class of (ii). Also, (ii) is a sub-class of (iv). Hence, the properties 

that are proven true for (iv) will be true for (i) and (ii) and the properties which are 

proven for (ii) will also be true for (i). The definitions of the probability distributions 

belonging to the above four classes and some general properties are given in the 

following sections. 

1.3.1 Generalized Power Series Distributions (GP SD) 

Let f(0) be a positive analytic function such that 

00 

(1.3.6) f(0) = a(x)O, 
x0 

where a(x) ≥ 0 for all integral values of x, 
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then the Power Series Distribution(PSD) is defined by 

(1.3.7) 
x=0,1,2,...,O> 0 

0, otherwise 

The PSD was introduced by [Kosambi,1949] and [Noack,1950] independently. 

Later, [Patil,1962] generalized the domain of the distribution 1.3.7 to be the set 

T which is a subset of the set of non-negative integers. The resultant family of 

distributions is said to be the Generalized Power Series Distribution(GPSD). Some 

general properties of the GPSD are 

1. A truncated distribution of a PSD is a GPSD. Probability distributions 1.2.4 

and 1.2.5 are examples of this type. A truncated GPSD is also a GPSD. For 

example, distribution 1.2.5 is a GPSD, if it is truncated further for the value 

of x=1, then the resultant distribution is given by 

(1.3.8) P.* (X = x) = 1— °(1+ 0) ! ,x =  

which is still a GPSD. 

2. The specific choices of f(0) and T reduce the GPSD to many well known 

distributions like the Negative Binomial, Poisson and Logarithmic series dis-

tributions and their truncated forms. 

3. Moments and generating functions: 

(1 9) din f(0) - 9f'(0) 3 mean 
dO - f(0) 

f(0) "(0) - (1.3.10) variance 2 = + 02d1 02 = - 2 +02f 
O2 (0) - dO 
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The pgf and mgf of GPSD are given by 

(1.3.11) 

9  
- f(iO) 

- 

M(t) 
- f(Oet) 

- 

1.3.2 Modified Power Series Distributions(MPSD) 

A discrete random variable X is said to follow a Modified Power Series Distribu-

tion(MPSD), if its probability mass function (pmf) is given by 

. ([G(9)] X E T 
(1.3.12) P(X = x) = 

1 0, otherwise 

where T is a subset of the set of non-negative integers; a(x) > 0; G(0) and f(0) are 

positive finite and successively differentiable functions of 0 and if f(0) = >IET a(x) [G(0)]. 

See [Gupta,1974]. 

If G(0) equals 0 or if G(0) is invertible, 1.3.12 reduces to the GPSD. In addition, if 

T is the set of all non-negative integers,1.3.12 becomes the PSD. Therefore, the PSD 

and GPSD are sub-families of the MPSD. Accordingly, all properties of the MPSD 

are also properties of the GPSD. 

Similar to 1.3.9, a truncated MPSD is also a MPSD. Also, the MPSD family 

includes not only all the discrete probability distributions of the GPSD but also it 

contains the Generalized Negative Binomial distributions, the Generalized Poisson 

distributions, the Generalized Logarithmic Series distributions and their truncated 

forms. 

Some general properties of the MPSD are 

1. mean /.L  

(1.3.13) 
- G(0)f'(0)  

- f(0)G'(0) 
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By following [Gupta,1974]'s method, the proof of 1.3.13 is provided 

as follows 

Since f(0) 

differentiating both sides of the above with respect to 0, we have 

f'(0) = Ex xa(x)[G(9)]'G'(0), or 

f'(0) = E(X)°'° G(0) 

- G(9)f'(9)  
Hence, E(X) = - f(0)G'(0) 

2. Variance o,2 

(1.3.14) 
2 G(0) d 

GI(0) d0 

3. Recurrence relation between the moments ., 

(1.3.15) 
G(0) d,4 , I 

1r+1 = G,(o)do+1121' = 1,2 

4. Recurrence relation between the central moments It,, 

(1.3.16) 
G(9)  diUr 

Note that 1.3.9 and 1.3.10 are particular cases of 1.3.13 and 1.3.14 respectively. 
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1.3.3 Factorial Series Distribution (FSD) 

The family of FSD defined and studied by [Berg,1974, Berg,1978]. 

Let 1(N) be an analytic function of the integer-valued variable N. 

Suppose that 1(N) can be expanded in a factorial series in N with non-negative 

coefficients a. That is, we assume that 

f(N) = EaxN, 

where is given by section 1.1.5, and a ≥ 0. 

Based on this expansion, the probability mass function(pmf) for a FSD is given 

by 

(1.3.17) 

N(c)ax 
1(N)' 

0, otherwise 

The set of values of x, for which a > 0, is called the range of the FSD. 

It has been shown that a = where /f (0) is the xth forward difference 

of the function f(N), computed at zero. 

Accordingly, the FSD can be written in the form 

(1.3.18) 

fn\ 4-f(0) 

P(X ) { ) 1(N)' 
0 , otherwise. 

The factorial moments of a random variable X having an FSD are given by 

(1.3.19) (r) = N(r) [,rf(N - r)] 
f(N) 
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The proof of 1.3.19 is given as follows 

N 

E(X(r)) E x(r)P(X = x) 

x!f(N) 

N(') N()z1f(0)  
= f(N) N(r)(x - 

N) (N 7-

= f(N) (x—r)! 

= N(r) (N - r)(T) x_rf(0)I 
f(N) a;-r (x - 

N(') 
[zYf(N  

= 1(N) 

In particular, putting r=1 in 1.3.19, the mean of X is 

(1.3.20) E(X) = = f(N) [f (N) - f(N - 1)]. 
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The family of FSD introduced here is the discrete parameter analogue of the PSD. 

Note that the two families of discrete distributins have many properties in common. 

See [Berg,1974] and [Johnson & Kotz,1977]. Some of them are listed in the following 

table. 

Table 1.3.1: Common Properties of PSD & FSD 
PSD FSD 

- OXDxf(0) 
- 

F(X 
N(x)Axf(0) 

P(X - - ) 
x'f(0) 

where x=O,1,2,... and Df(0) is 
the xth derivative of f(8) 
computed at zero. 

= X) v!f(N) 

where x=O,1,2 .... and Alf (0) is 
the xth forward difference 
of f(N) evaluated at zero. 

(r) - orrt o N(r)rf(N_ ) 
- 

RX h h(9), = I DXfO 

provided that 

F,. D"(h(0)f(0)) = h(0)f(0). 

.1! 0fi(N), 
f(3) ] - 

provided that 
'-' N(x) x(h(o)f(o)) = h(N)f(N). 

The family of FSD includes members among others, such as the Binomial distri-

bution (with f(N) = (1 + O)N), the classical occupancy distribution (f (N) = N) 

and the matching distribution (f(N)=N!). 
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1.3.4 Lagrangian Probability Distributions (LPD) 

The wide class of discrete Lagrangian probability distributions, introduced and de-

fined by [Consul & Shenton,1972], consists of many important families auch as the 

Generalized Poisson distribution, Generalized Negative Binomial distribution, Gen-

eralized Logarithmic distribution, Modified Power Series distribution. The LPD was 

named by the above authors on account of the fact that LPD was generated by 

the well known Lagrange expansion of a function f(x) as a power series in y when 

Long before the introduction of LPD into the statistical literature, [Otter,1949} 

pointed out the applicability of Lagrange expansion into branching process in uni-

variate situation. Later, [Good,1965] extended it to the multivariate case. 

Basic Lagrangian Probability Distributions(BLD) When f(t)=t and g(t) is 

an analytic function of t, such that 

g(0) > O,g(1) - 1 

(1.3.21) and 

"at)'[g(t)]Io ≥ O,x ≥ 1, 

then the Lagrangian expansion equation (1.1.3) with the transformation 

(1.3.22) t = ug(t) 

gives 

(1.3.23) t = O(U) = UX11 8 
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Since 1.3.22 gives u=O for t=O and u=1 for t=1, also 1.3.23 satisfies 1.3.21 and 

the Lagrange's expansion conditions, thus the equation 1.3.23 satisfies the property 

of a pgf. Hence, the equation 1.3.23 can be written as 

O(U) = Elul. 

The expansion 1.3.23 is the basic Lagrangian pgf and the discrete distribution 

represented by it, i.e., 

(1.3.24) P(X = x) - 1 — —.[( 9 x-1 ) (g(t))x]0,x E N. 

The distribution 1.3.24 is the basic Lagrangian probability distribution (BLD) 

defined on N, a subset of the set of positive integers. 

It is easily seen that numerous values of g(t) satisfying the conditons of 1.3.21 

give paricular families of the BLD. Some members of the BLD are the Geometric 

distribution, the Haight distribution, the Consul distribution, the Geeta distribution 

and the Borel distribution. 

[Consul & Shenton,1974] showed that all BLD's are closed under convolution and 

all BLD's are the probability distributions of the busy periods of a single server when 

the queue is initiated by a single customer and is served on the basis of first come 

first served. 

The General LPD If f(t) is another analytic function such that 

(1.3.25) 

O≤f(0) ≤1,f(1)=l, 

and 

8_1 t)r° 10 ≥ O,x ≥ 1, 
at 
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then, by using 1.1.2 and the transformation 1.3.22 one gets the General La-

grangian probability generating fucntion which gives the General LPD as 

(1.3.26) 

( 1r8'_1  
P(X = x) = x!Latx-i ([g(t)]'f'(t))]t=o; x E N 

f(0); x=O 

where N is a subset of the set of positive integers. 

Note that in this case the pgf of the General LPD is a function of u given by f(t), 

where t = ug(t). 

Numerous families of distributions can be obtained by assigning different values 

of g(t) and f(t) satisfying the conditions of 1.3.21 and 1.3.25. 

The Generalized Poisson distribution, the Generalized Negative Binomial distri-

bution and the Generalized Logartlimic Series distribution , are some well known 

members of the General LPD. 

It should be noted that [Consul & Shenton,1972] originally took f(t) and g(t) as 

pgf's defined on non-negative integers such that g(0) 0 0. [Consul,1981] removed 

the restriction that f(t) and g(t) necessarily be pgf's and widened the class of the 

General LPD to include MPSD as a subclass. 



Chapter 2 

The Geeta Distribution(GD) 

2.1 Definition of the Geeta probability model 

[Consul,1990a] defined the Geeta probability model by a discrete random variable 

X, defined over the set of all positive integers, with the probability mass function, 

( -- -'o-"i - 

P(X = x) = x-1 J ' / 

(.0, otherwise 

whereO<O<l and l<,8<0'. 

The model exists for all values of /9 in the above range, However, the moments 

do not exist for all those values of 9 and 0 where 30 = 1. When /9 - 1, the model 

degenerates to a single point at x = 1. 

The model can also be expressed as a location-parameter probability distribution 

which is given by 

x = 1,2,3,... 

1 (-'  i-1  1-1[I1O31)]I3x_1 
(2.1.2) P(X = ) = f T )r i(p_i)J pa-i 

x = 1,2,3,... 

0, otherwise 

where 1a is the mean of the Geeta distribution and 3> 1. 

Note that this form does not seem to have an upper limit on /3, however, one 

should not conclude that it is superior to the previously defined Geeta probability 

model because the above model presupposes the existence of the mean which needs 

the condition /30 < 1. 

19 



20 

The family of Geeta probability models belongs to the classes of the Modified 

Power Series distribution(MPSD), the exponential class and the Lagrangian Series 

distributions (LP S D). 

Various properties of the Geeta probability model are described in the following 

sections. 

2.1.1 Recurrence Formula for successive probabilities 

The successive probabilities for different values of X can be computed from the values 

(2.1.3) P(X =1) - - 

- (2.1.4) P(X = 2) = /21 rC8  

L 

and the recurrence relation, 

(2.1.5) P(X = k + 1) = [11(1+ )]/2 - 1[(fl ' '?F(X = 
i2 k/3—i /2 fli-1 

for k=2,3,4,... 

2.1.2 Graphical Representation of the GD 

There are only three L-shaped discrete probability models, namely, the Logarith-

mic series distribution, the discrete Pareto distribution, and the Yule distribution 

[Johnson & Kotz,1969]. 

All of them have a single parameter, so they are not versatile enough to meet 

the needs of modern complex data sets. [Consul,1990a] defined the GD which has 
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two parameters and is L-shaped, which is far more versatile than other L-shaped 

probability model. See [Consul,1991]. 

In order to study the behaviour of the family of Geeta models with varying values 

of /3 and y, the probabilities for the model were computed for various values of x 

and different sets of values of /3 and jt. Thirty bar-diagrams were drawn on which 

the probabilities were ploted on various values of the two parameters. 

For the study of the effect of changes in the value of /3, Graph 2.1, 2.2,and 2.3 

were plotted with fixed values of y = 1.5,3.0, and 6.0 respectively. Each of these 

three graphs contains six bar-diagrams of 9 = 1.1, 1.6,2.6,4.6, 8.6 and 16.6. 

It is observed from these graphs that P(X = 1) reduces as 8 increases and the 

probabilities for all other values of X increase but the model always remains L-

shaped. Thus the tail becomes more and more heavy and long with the increase in 

the value of P. Also, it is observed that P(X = 1) seems reduces faster at Graph 2.3 

(with fixed = 6.0) than that from Graph 2.1( = 1.5). This seems to imply that 

at higher value of t, the influence of /3 to reduce P(X = 1) and to increase other 

probabilities is more effective. 

Similarly, in order to study the effect of changes in the value of /2, Graph 2.4 

and 2.5 were drawn with fixed value of /3 = 1.1, and 2.6 respectively. Each of these 

two graphs contains six bar-diagrams of various value of y = 1.5,3.0,6.0, 9.0, 12.0 and 15.0. 

It is observed from these graphs that P(X = 1) also reduces as increases. However, 

it is noticed that the effect of reducing P(X = 1) and increasing the tail probabilities 

is more obvious in Graph 2.5(with /3 = 2.6) than that of Graph 2.4 (/3 = 1.1) with 

the same amount of increase of u. But all the bar-diagrams still remain in L-shaped. 

Moreover, through careful visual comparision between graph 2.1 and graph 2.4, 
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one can observe that the changes for p(with fixed /3) are at a faster rate than those 

changes for 3(with fixed ). 

It is also observed from all these bar-diagrams that all the corresponding values 

of P(X = 1) never drop below 0.4 no matter how much /3 and ,a increase. This seems 

to suggest that there may exist a limiting value for P(X = 1) as /3 or p, increase. 

To investigate further on the limiting value of P(X = 1), one can differentiate 

P(X = 1) or P1 by ,u and by /3 respectively. One can get 

dP1 
- (i3 —l)  (/3'1)P1(p_i) < 0. 
- 

dP1 - 

-dfl- — IL /3a-1 

filL — i 

<0. 

Therefore, P(X = 1) is a monotonically decreasing function for y and /3 respec-

tively. So, P(X = 1) achieves its minimum value at the largest possible value of 

y and P. Note that /L is a monotonically increasing function of /9 and y -+ oo as 

/3 -* oo.(See section 2.2.1) Hence, taking limit of P1 as - p oo and as /3 -p oo 

respectively, one has 

urn Pi 
Ii—*oo 

= lim [ -  
iz—oo 

- (1-- 
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However, the RHS of the above is a monotonically decreasing function of 

Hence, one can deduce that 

Similarly, 

urn P1 
/3—oo 

urn P1 
14-+00 

= 

> urn (1 - 

= 6_i. 

(1 -  

lim[ 
/3—too 

urn (1 - urn ( ) 
/3 

6 1.60 

Thus, the limiting value of P(X = 1) is found to be e. 

Also, it is clear from all these five graphs that none of the bar-diagrams has two 

humps, it seems to indicate that the GD models are all unirnodal. Some of these 

properties will be verified in the following chapters. 

2.2 Mean and Variance of the GD 

2.2.1 Mean 1a 

Since the GD is a member of MPSD with G(0) = 0(1 - 

G'(0) = (1 - /30)(1 - 0)/9_2, f(0) = 0, and f'(0) = 1. 
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Hence, by applying 1.3.13, the mean it is given by 

G(0)f'(0)  

= f(0)G'(0) 

(226) - (1-0) 
- (1—/30) 

One point to note about the mean t is that if one differentiates the /2 with respect 

to 0 and /3 respectively, one can get 

- _1'l - 0t'1 - 
dO - dO' ' " 

1)  - (/3 
(2.2.7) - (1 _[30)2 > O for /3> 1, [30 <1, 

and, 

- -/3-(1 - 0)(1 - /30)-' 
d/3 - d 

(2.2.8) = (i_fiO)2 >0, as 0 < 0 < 1. 

Therefore, ,a is a monotonically increasing function of 0 and /3 respectively which 

is a useful fact in the last section of this chapter. 

2.2.2 Variance o2 

By applying the same G(0) and G'(0) of the above section and 2.2.7 in 1.3.14, then 

the variance a2 is given by 

01 2 G(0)  d/2 
G'(0) dO 

(2.2.9) = (/3— 1)0(1 - 0)(1 - 39)3 

= - 1)(/3/2 - 1)(/3 - 1)'. 
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Since 

do 2 - 

[(1' - 1)(13p - 1) + pC8,a - 1) +  

(2.2.10) > 0, as 1a > 1 and /3p> 1, 

so o.2 increases monotonically as it increases in value and that the smallest value 

of o-2 is zero when p = 1, i.e. when the model reduces to a single point at x = 1. 

Also, 
do-2 - —p(p - 1)2 

0. 
- (13_1)2 < 

Thus, the variance o-2 decreases monotonically as 8 increases and the smallest value 

of o-2, for the largest value of 9, becomes 14 2(p - 1). From this, one can conclude 

that when fl/.t - 1 ≤ (18 - l)(p - 1)-', the variance will be less than the mean p and 

will have the range A2 ([1 - 1) <o-2 ≤ p. If 1@p - 1> (18 - 1)(p - 1)_i, the value of 

o-2 will become larger than p. 

2.3 Properties of the Geeta distribution(GD) 

2.3.1 Generation of the Geeta distribution 

There are basically two ways of generating the GD, which are described in the fol-

lowing section. 

Method I: By Basic Lagrangian Expansion 

The pgf of the GD can be obtained by using the Basic Lagrangian Expansion 1.1.3 

with g(t) = (- )'',and /3 > 1. Details of this method will be described in the 

section of 'Generating Functions'. 
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Method II: Expansion of 0 in powers of 0(1 - 

The GD can also be generated by expanding the parameter 0 (0 < 0 < 1) by the 

basic Lagrange expansion 1.1.3 under the transformation of 0 = u(1 - 0)1_1, /3 > 1 

as follows: 

00 u 5x-1 
0 = a 80x_1 [(1 - 

X=1 

(2.3.11) 
[0(1 -  

= x! (fix - x)(fix - x +1) . . . (fix —2) 
X=1 

00 1 (/3x_ 1) 0(1 - 

= fix-1 

On division by 0 on both sides of 2.3.11, one can immediately obtain two kinds of 

result, namely, the GD probability distribution is obtained by the above expansion 

of 0 and also one has already proved that the sum of the probabilities of the GD 

2.1.1 over the domain of X is unity. 

2.3.2 Generating Functions 

The probability generating function of the Geeta distribution 2.1.1 is given by 

(2.3.12) f(u) = t(u),where t = u(1 - 0)''(1 - Ot)'',fi> 1. 

It is clear from 2.3.12 that u = 1 when t = 1. The Lagrange expansion of t in 

terms of u, under the given transformation, becomes 
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t(u) 

00 u X Ô1 
1(1 - 0)" (1 - Ot) Jt=o 

00 X 

j-(1 - 0) 0a_1(/9X - x)(/3x - x + 1)... (8x - 2) 
X=I 
00 

- 

) 
which establishes the result. 

The properties of the generating function can be studied by the implicit function 

t(u) defined by 

(2.3.14) 

t(u) = u(1 - 0)''(1 - 

or 

- 0(u))'' = u(1 - 0)13_i . 

On differentiation of 2.3.14 with respect to u, one can get 

(1 - 9)/31 t'(u)(l - 0t(u))' + (/3 - 1)(1 - 0t(u)) 2(-0t'(u))t(u), 

or 

(1 - 0)' = [1 - 0t(u)]'32t'(u)[1 - 0t(u)/3]. 

After rearranging terms, one has 

(2.3.15) 
dt(u)  0)'(i - 9t(u)) 132 

du - (1—/30t(u)) 
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By comparing coefficients of 2.3.13, one obtains 

(2.3.16) P(X = 1) 
- dt(u) 
-   tz0 

du 

= (i_O)P-1 

Similarly, on further differentiation of 2.3.15 and comparing coefficients of 2.3.13, 

one has 

(2.3.17) 

P(X - 2) - - 1 d2t(u) 
-  2! du2 

P(X - k) 1 dt(u) 
- - 1ddukl0 

2.3.3 Recurrence Relations for Central Moments 

The k-th central moment Yk of the GD 2.1.1 is 

fLk 00 •i ( x-1 

Multiplying the above by 0 on both sides and differentiating with respect to 0, 

one has 

dk dlt 00 
Itk + 0-- = —k0[ k_1 + >(x - )k 1 (/3x - I 0_1(1 - O)Px_x_1(i - /30),dO dO x=1 /3x-1\ X  

which can be written in the form 
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1- 130  
1-0 [pk+1+/2pk] 

The above expression gives the recurrence formula [Consul,1990a], 

(2.3.18) Pk+1 = o[ d/2k + /2k-j], fork = 2,3,4..... 

It may be noted that i1 = 0 and /22 = o.2 whose value is given in 2.2.9. By using 

the formula 2.3.18 successively for k = 2,3,4 and 5, one can get 

/23 = (/3 - 1)0(1 - 0)[1 - 20 + 2/30 - /302](1 - 

(/3 -  4 =  1)0(1 - 0)2 + - 1)0(1 - 0) [1 - 60 + 602 
/2 (1_ /99)6 (1-190)7 

+190(8 - 180 + 802) + /3202(6 - 60 + 02)], 

= io19_1)202(1_0)2 + (19-1)0(1 _0)[1_140+3602 —240 
(1_190)8 (1-130)9 

+130(16 - 1130 + 15202 - 5803) 

(2.3.19) +/3202(58 - 1340 + 9102 - 1803) 

+p303 (24 - 360 + 2402 + o)}, 

/26 = 15 +10 (/3_1)202(1_0)2 
 [1 - 20 + 2/30 - /302]2 

(1_ /30)9 (1_/30)10 

+15 - 1)202(1 - 0)2 [1 60+602+/30(8_ 180 + 802) +19202(660+02)1 
(1—f30)'° 

- 1)0(1 - 0) [1 -300 + 15002 — 2400 +240 
(1_/30)11 
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+130(40 - 5200 + 136002 - 135003 13500 +44404) 

+13202(286 - 14840 + 245002 +149403 +30004) 

(444 - 12600 + 126002 - 48803+ 4880 + 280) 

+/30(120 - 2400 + 18002 - 4603 -  

The recurrence formula 2.3.18 gives the values of the higher moments in terms of 

the parameter 0 and P. If the values of jija are needed in terms of the mean 14 and 

the parameter /3, one can obtain another recurrence formula by using form 2.1.2 of 

the GD and by differentiating 

fk 
00 1  (/3x - 1\ fL - 1  W_1[/(13 - 1) ] _1( - ){ (/3_i)1 

with respect to . On rearrangement and simplification, one can get the recur-

rence formula 

(2.3.20) 2 Pk+1 [ dltk ---+lc1k-1], for k=2,3,4 

The above formula gives 

(2.3.21) P3 = o2 (3/9t2 - 2/3k - 2 + 1)(/3 - 1)_i, 

and 

(2.3.22) = 30A + o2[(3/3p2 - 2/3k + 2/4 + 1)2(/3 - 1)_2 

+2cr2(3/3u —/3+ 1)(3 - 1)'] 

= 3cr4 +  2 - 1)2 [6 + /3(15 - 20 2) 

+/322(6 - 20t + 152)J 
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2.3.4 Convolution Theorem 

If X, i = 1,2,.. . , n are n independent and identically distributed random variables 

having the Geeta distribution 2.1.1 then it can be shown that the probability distri-

bution of the sum Y = X1 +X2 +. . . +X is the following Geeta-n distribution(GND). 

I  0' (1 - 

(2.3.23) P(Y y) V (v-n). 

10, 

where (a) () = a(a + 1) . . . (a + a, - 1). 

The proof of 2.3.23 is given as follows: 

Since the pgf for the Geeta distribution is 

f(u) 

So, 

= t(u) 

1  (fix_ 1) 0'(1 - = 00 uIx_1 

QOI 

= £ (/3x - x)_'  Ox_1(1 - 

x 

[t(u)]2 = 00  [E u' (f3x— X1)(l_l)0i_l(1 
a1 x1 (x1 - 1)! 

Y = n, n + 1..... 

otherwise 

where u = 1 when t =1 

x[E00 1 (,0x2 - X2)(2_l)02_l(1 - 0)22] 
U3;2 

Xz1 x2 (x2  

Since both series are absolutely convergent for 0 <u ≤ 1, they can be multiplied 

and rearranged into power series of u as 

[t(u)]2 y-1 = u'[ 1 (fix' - 1  (P (Y - xi.) - y + ')(3;1')  
y=2 Xj=I X1 (x1 - 1)! Y - xi (y - x1 - 1)! 

(2.3.24) x0 2(1 - 
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where x1 + x2 = y. 

Also, for the Lagrangian expansion of [t(u)]2 under the transformation 

t = u(1 - O)'(1 - Ot)'', 3> 1, one gets 

00 

[t(u)]2 =  [(1 - O)'' 
y=2 '(l - y!ôtv 

(2.3.25) 

get 

00 2 = u'(1 O)11.- - 1) (f3y - 

1 

= u1O?12(1 - O)Y—Y00 2 (/3Y - y)(y-2)  

y=2 y (y-2)! 

By equating the coefficients of uz1O2(1 - 0) (,8-1)v in. 2.3.24 and 2.3.25, one can 

1 (I?.v. - .s 1 (R(,, - r..\ - ,, _L r.', ' "' -2) 
-\t-"'i '1)aj-1) -  t-'1 "IJ I ' \t'.;1 5JY 

X1 (xi - 1)! Y - (y - - 1)! - y (y - 2)1 

which proves the convolution theorem for Y = Xi + X2. 

As a result, in general, for the convolution theorem of Y = Xi + X2 + ... + X, 

one can use the expansion of t' on one side and the product of the n expansions of 

t on the other side. By doing so, one has 

(2.3.26) [t(u)]' fl[ u 1 (3x - - 

v-i x-i x (x - 1)! 

Since all the n series are absolutely convergent for 0 < u ≤ 1, they can be 

multiplied and rearranged into power series of u as 

[t(u)]Th 00 = u?J[ y—i> (n -  1) (/3yn-i -  

y=n yn_1=n—i Yn-1 (Yn-i - + 1)! 

(2.3.27) X 1  (/9(y - yn-1) - y + yn-1)(v-_1-i)  
Y - Yn—i (y - Yn—i - 1)! 

xO'(1 - 9)()I_i)Y 
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where Yn_1+Xn =y, and Yn1 = X1+X2+...+X_1. 

Also, for the Lagrangian expansion of [t(u)]' under the transformation 

= u(1 - - Ot)'', /3> 1, one gets 

(2.3.28) 

get 

00 

[t(u)]' = [(1 - - Ot)nt']io 
y=n Y• 

oy-n 
00 n! (y_1'\ ) 

aty 

= > u'(1 - ov_v_. - (fly - y)y 
v=n 
00  = u'O'(l - 0) _ jTh (fl -  

v=n y (y n)! 

By equating the coefficients of uOY(1 - O)(1)v in 2.3.27 and 2.3.28, one can 

y-1 
(m - 1) (/3yn—i - 

y_in-1 Yn-i (Yn-i fl + 1)! 

72' (/3y Y)(,-n)  

y (y—n)! 

1  (fl(y - yn-1) y + Yn-1)(Y_yn_i-l)  

y - y_i (Y - Yn-1 - 1)! 

which proves the convolution theorem of Y = X1 + X2 + ... + Xn. 

The location parameter form of 2.3.23, where fn is the mean of the random 

variable Y is given by 

n (I3vY)(y_n) t r -n lv_n[(13_1)ILn1.1f3v_v 
(2.3.29) P(Y v (n-n)! 13_ni fain  

0, 

y = n, 72 + 1..... 

otherwise 

The Haight distribution is a particular case of the GND 2.3.23 which is given by 

fl=2 and O=q(1+q1. 
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Note that the probability distribution of 2.3.23 is also a Modified Power Series 

distribution(MPSD) which will be used to study the negative moments and cumu-

lants in the following chapters. 

2.4 Model leading to the GD based upon a Differential 

Difference Equation 

[Consul,1990b] considered a regenerative process which is initiated by a single mi-

crobe, bacteria or cell and which may grow into any number. The resulting Differ-

ential Difference equation model is contained in the following theorem. 

Let P1(0) denote the probability of x microbes or cell in a location and let the 

mean p of the distribution of X be a function of two parameters 0 and j3. 

Theorem: If the mean p for the distribution of the microbes is increased by 

changing 0 to 0 + M in such a manner that 

(2.4.30) dP(0) + x(8-1)  P(0) = ( ... fl+1)(a- ) (1. - 

for all integral values x ≥ 1 with the initial condition P1(0) = 1 and P(0) = 0 

for x ≥ 2, then show that the probability model P is the GD, where (a)(h) 

a(a+1)...(a+lc-1). 

Proof: For x = 1, the equation 2.4.30 becomes 

dP1(0)  
dO 1_0 

which is a simple differential equation with the general solution 
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(2.4.31) P1(0) = C1(l - 

By the initial condtion P1(0) = 1, the constant C1 = 1. 

For x = 2, the equation 2.4.30, on using 2.4.31 gives 

dP2(0) 2(0 - 1) (0 - 13 - ivi - 

dO 1-0  2k 1k 1k 1 

which is a linear differential equation with the integrating factor (1 - o) -2P+2. 

Thus, the solution of the differential equation becomes 

P2(0) = (1— O)2P_2J(l - O)_2/3+2(/3 - 1)(i - O)2' 2dO 

= (i - 1)0(1 - O)2P_2 + C2(1 - O)2 _2 

Since P2(0) = 0, the constant C2= 0. Therefore, 

(2.4.32) 

P2(0) = (9 - 1)0(1 - O)21 2 

- 0(1 - 0)2 _2 

- (29 - 2)(1)  2! 

By putting x = 3 in 2.4.30 and by using 2.4.32, one can get 

dP3(0) + 3 1)  P3(0) = 1.(3/3 - 3)(3/3 - 2)(1 - 
dO 1- 0 

On integration, the solution of the above linear differential equation is 

P3(&) = (1_0)33 J(3/3_3)(2) .d0 

- (3/3 - 3) (2) 02 (1 - 0)3P3 + C3(i - 

- 3! 
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By the initial condition P3(0) = 0, the constant C3 = 0 and hence 

- (3/3 - 3 )(2)  92(1 - 9)3P3. 
(2.4.33) P3(0) - 3! 

Now, assuming the value of Pk(0) as above 

(2.4.34) Pk (0) 
(1q9 - k)(k_1)  ok_1(1 - O)k13—k , 

= 

Putting x = k + 1 in 2.4.30 and use 2.4.34 to get 

dPk+l(0) + (k + 1)(/3 - 1) Pk+1(0) =  k  (p3k + /3 - k 1)(k)  0'(1 - 

dO 1-0 k+1 k! 

On integration of the above linear differential equation, 

(2.4.35) 

Pk+1(0) = (1 - O)(k+1)(/_1) (/3k + /3 - k - 1)(k) f kOk_ldO 
(k+l)! J 

= (/3k + ff3 - k -  1)(k)  ok(1 - 

(k+1)! 

as the constant of integration vanishes by the initial condition Pk+1 (0) = 0. 

Hence, the result is true for all integral values of k. This completes the proof of the 

theorem. 



Chapter 3 

Other Important Properties of the GD 

In this chaper, other important properties of the GD models will be investigated 

with reference to some of the fundamental results described in the last chapter. 

3.1 Unimodality of GD models 

[Wegman,1972] and [Barndorff-Nielsen,1976] have shown that the property of uni-

modality plays an important role in the problem of density estimation. [Keilson & Gerber, 1971] 

as well as [Steutel & Van Harn,1979] have presented some interesting results on the 

unimodality of discrete distributions. 

A discrete probability distribution {P,,} is said to be unimodal if there exits at 

least one integer M such that 

Pv ≥ Pr-i for all x ≤ M 

and 

Pz+i ≤ F3, for all x ≥ M. 

Theorem: The Geeta distribution(GD) in (2.1) is unimodal for all values of 0 and 

/3 in 0 <0 < 1. and 1 <8 < 0' respectively, and the mode is at point x=1. 

Proof: Consider the unimodality of the GD for 1 < /3 < O' only, since when 

/3 - 1, the model degenerates to a single point at x=1. 

37 
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Let the mode be at the point x=IVI. 

For the mode of GD to be at point M=1, one has to show that 

for all x=1,2,3..... 

Now, 

1 (P(r+1)_1\ o(+1)_1(1 - 

  - f+1)-1 2,+1 )  
P33 - 1 (p33-i )O33-1(1_0)i -x 

- (/3x - 1)r(/3(x + 1))xT(13x -  x)0(1 - 

- (8(x + 1) - 1)(x + 1)!r(/3(x + 1) - (x + 1))1'(/3x) 

(/3x - 1)  1  r(8( + 1))1'(/3x - x) 
= (/3(x +1) —1) (x +1) r(fl(x +1) - (x + 1))r(/3x) 0(1 - 

(/3x -  1)  1 r(f3(x + 1))P(/3x -  x + 1)  
(3.1.1) (fi(x +1) —1) F(/3(x +1) - x)r(/3x) -  

for x=1,2,3..... 

Since 0(1 - 0)'' is an increasing fucntion of 0 and 1 </3 < 0, i.e. 0 < , and 

o < 0 < 1, 

so, when x = 1, 

P2 

P1 

When, x = 2, 

1  (/3 - 1)r(2/3)r(/3 -  1) 1 
< 2(2/3— 1)1'(2/3 - 2)(/3) P - 

- P 

< 1, for all /3>1. 

P3 - 
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— 
< (3j3-2) —1 

By differentiation, one can show that the right hand side of the above is an 

increasing function of P. Hence, it achieves its maximum value at the largest possible 

value of P. Therefore, one has 

lim (3/3 - 2) (1 - .y3_1 = <1. 
P—oo 2/3 /9 2 

So,<1, for l</9< 0 ',andO<O<l. 

When x = 3, one has, 

P4 - 2(2/9_1)(4/9_3)o(1o)_1 
- 3 (3/9-2) 

2(2fi_1)(4/3_3)1 ( i) _1 

< 3 (3/9-2) 9 

Similarly, the right hand side of the above is an increasing function of 3 and, 

lim 2(2/3-1)(4/3-3) 16 
.e—+00 3 (3/9-2) /3 /3 <1. 

So, <1, for 1</3 <0', and O<O<l. 
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For x > 4, one can use the Feller's inequality 1.1.1 on 3.1.1. 

When applying the in.quality, one has 

r(fix + fi)r(fix -  x + 1) (/3x+ /3 -  1)''3x - 

T(fix +13- x)I'(fix) < (fix +13- x - 1)'(fix - 
1 1 

12(/3z+/3-1) 12(/3-x) 

Therefore, 

P+1  
P. 

>< 1 1 

e 12(13x+fi-x-1)+1 e  

(fix - 1) 1 - 0)' (/3x + /3 -  1)P P' <  (fix - 
(fi(x +1) —1) x (fix +13- X - 1)P1+(fix - 

x 

1  1 
e 12(px+)9-1) e 12(/3x_x) 

1  1 

e 2(Px+P_x_1)+1 e 12(flx-1)+1 

- (fix - 1) 1 0(1 - I (ft - i)x /9x + /3 - 1  
- 16 (fi(x+ 1)— i)x L/3xx +fihi 

+ i)(3x -  i) 1i1/3x + fi 'ir_x 
1 x(/3x+fi — i) fix —  i ' 

12/3-11  12/3-1  
X exp{1213 — x)[12(fix - x + 13-1) + 1] 12(fix + /3 — i)[12(fix —1) + 1] 

Further, by applying 0 < I and also since the exponent part of the right hand 16 

side of the above is a decreasing function of both /3 and x, and it approaches one as 

either 8 or x increases. Hence, on further simplification, one has 

P+1 
P33 

(fix — i) 
- (fi(x+1)_1),81 13 .1 

fi—i /3x+,8-1 J)[x+1 ]1[fix+fi i]/33_i [  x 

e 1(/3-1)(x-I-1) x fix—i x+1 
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= (/3x-1)  [/3X+I3l]Pl(1l)[  8x2+,8x_x 

(fl(x+ 1)-1) /3x+,8 e x 18x2+/3x—x---1 
< [/3X+/9-1]P1 

- /3x+j3 

So, '- < 1 for x = 1,2,3,... and it follows that the GD is unimodal for all PM 

values of 0 and /3 in 0 <0 < 1 and 1 <8 < 0' respectively, and the mode is at the 

point x = 1. Hence, the proof is completed. 
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3.2 Recursive relation between negative moments of the 

Geeta distribution(GD) 

The negative moments are found to be useful in applied statistics, especially in 

Estimation, Life testing and in survey sampling, where ratio estimates are used. See 

[Deming,1950]. 

Let X be a random variable(r.v.) having GD defined by 2.1.1. 

Let k be a non-negative number. For a positive integer r, the rth negative mo-

ment, M(r,k) about the point —k is defined as 

(3.2.2) 

(3.2.3) 

where 

M(r, Ic) = E[(X + k)] 

= 00 a(x)[O(1 - O)13_h]OJ 

(x+k)"O 

). 1  (tUx_1 

fix—i x 

Obviously, M(O,Ic) = 1, 

and 

(3.2.4) [0(1 - O)'] = (1 - /30)(1 - 

dO 

On differentiation of 3.2.3 with respect to 0, one get 

00 M'(r, k) = a(x)  [0(1 -  0)"-']x x(1 - fiO)(1 - 0)2  
0 0(1-0)P 1 0" 
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(3.2.5) = 
00 a(x)  [0(1 - 0)"-']x x(1 -  ,80)(1 - o)P2 k(1 -  /30)(1 - 0)P_2 

+ 
0 0(1-0)/ -' 0(1-0)P-' 

k(1 - ,80)(1 - 0) 2 1 

0(1 - 0),6-1 0 

or equivalently, 

(3.2.6) M'(r, k) = (1 - 90  M(r —1, k) - 0(1 —0) k(1-130) 0 + ]M(r, k). 
0(1-0) 

Hence, 3.2.6 provides us a simple linear differential equation, 

(3.2.7) M'(r, k) + [k(1 - 130) + ]M(r, k) - (1 - go) M(r -1, k). 
0(1-0) - 0(1-0) 

Multiplying 3.2.7 by the integrating factor [0(1 - 0)'_']'0 and integrating from 

0 to 0, one can obtain 

(3.2.8) M(r, k) = 0_k_1(1 - 

0 
x / M(r - 1, k)0(1 - 90)(1 - 0)1_2[0(1 - 0)_1}'_'d0. 

Jo 

So, 3.2.8 provides us a recursive relation between the negative moments about 

the point —k for the GD and is given by 

0 

(3.2.9) M(r, k) = 1  J M(r - 1, k)I(k)d0, 
ok+1(1 - 0)13k-k 

where 

1(k) = 0(1 - 130)(1 - 0)13_2[0(1 - 

= (1 - fiO)Ok(1 - 0)/3k_k_1 
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3.2.1 Negative moments for the Geeta distribution 

The first negative moment about the point —k (k > 0) for th random variable having 

the Geeta distribution 2.1.1 is given by the recursive relation 3.2.9 for r = 1 as 

1 1 (3.2.10) E [x + k' = ok+1(1 - 0)Pk-k JO 
(1 - )30)ok(1 - 0)1Th_k_1d0. 

For,8k—k=.e>0, wehave 

(3.2.11) 

1  

ok+1(l - 0) 1 0 
(0k - 0k+1)(1 - 0) 1d0 

- 1 ç°k(1—/30) 
- k0k+1(1 - 0) o 0(1 —0) 0'(1 - 

— 1 jlc(1/30) 1 1}0(1 
- kok+1(1 - 0) a 0(1-0) + -  

- 1 

J0, ok+1(l 0)k-k [ok+1(1 0)k_k  0k(1 0)_kd0] 
k 

_11 1 
- kkOk+1(l_0)P_ 0+1t+1) 

where Bo (p, q) is the incomplete beta function 

foo  0<0<1, p>0,q>0. 

The first negative moment (about k=0) of the Geeta distribution is given by the 

recursive formula 3.2.9 for r=1 and k=0 as 

1 .10(1 —/30)(1— 0) -do 

1 

= JO 1-0 
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(3.2.12) 

1 '°l /3 
= 

= 

= [(fl-1)ln(1—O)+PO] 

= /3+(13-1)0 'ln(l — O). 

On substituting the result 3.2.12 in 3.2.9 for r = 2 and k = 0, one can get the 

second negative moment about k = 0 of the Geeta distribution as 

E[] 

= 

- 1) ln(1 - 0) + 89}  

1 1)ln(1 —0) + 329 - (/3 - )2 1n(1 —0) (3 - 10}dO 
0 10 (1-0) (1-0) 

1){01n(1— 0)} + (/3 - 1)2[ln(1 - 0)12 + 1fl292}O 

(3.2.13) = /3(/3 - 1) ln(1 - 0) +1 /32 + (/3 - 1)2[ln(1 - 0)]2. 
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3.3 Cumulants of the GD 

The expression of the cumulants can be calculated from the central moments. See 

[Ken.dal,1987]. However, this is a painful and time-consuming task. So, in the 

later part of this section, a recursive relation between cumulants of MPSD wil be 

developed and the recursive formula of the GD will be obtained as a particular case 

of this recursive relation. 

3.3.1 Recursive relation between cumulants of MPSD 

Let X be a MPSD random variable given by 1.3.12. 

Then, the moment generating function ç(t) is given by 

(3.3.14) 

E [et] 

a(x)[G(0)et] 

xET f(°) 
F(O, e')  

f(o) 

where F(O, et) = >ieTa(x)[G(0)e?. 

Then, 

F:(0,) 

(3.3.15) 

F'(O,et) 

(3.3.16) 

= F(O, et) 

at = 
ET 

= a(x)a[G(0)et], 
a'ET 

= a(x)x2[G(0)et]v, 
xET 
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(3.3.17) 

(3.3.18) 

F'9, et) 
a 

= F'(O, et) ao 
= Ea(x)x2[G(0)et] GG'((99)) 

- G'(0) fFF(0t) 

- G(0) 

F4(0, et) = 49 •70 a(x)[G(0)et] 
rET 

= a(x)x[G(0)et} °) 
G(0) 

q(0) 
= 

So, the cumulant generating function &(t) is given by 3.3.14 as 

(3.3.19) (t) = log 

= log F(O, et) — log f(0). 

Differentiating 3.3.19 with respect to t, one has 

(3.3.20) 
a& (t) - Ft(O, et) 

at - F(O, et) 

and differentiating 3.3.20 with respect to t again, one has 

(3.3.21) 
&b(t) = F"(O, 6t) Ft'(O, et)  ]2} 

1  [ 
8t2 ' F(O, et) F(O, et) 

Now, differentiating 3.3.20 with respect to 0 and substituting in 3.3.17 and 3.3.18, 

one has 

(3.3.22) 

O2& (t) Ft0, et) 1(0, et)F(0, et) 

aoat F(0, et) [F(0, et)]2 

- G'(0) F(0, et) Ft(0, e) 2 
- G(0) F(0) et) F(0, et) 1 }. 
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Comparing 3.3.21 and 3.3.22, one can deduce the following relationship for the 

MPSD, 

(3.3.23) 

Since by defintion, 

(3.3.24) 

02 &(t) - G(0) &b(t) 

- G'(0) Doot 

00 tr 

b(t) = EKr— r  
r=1 r. 

where Kr is the rth cumulant. 

Hence, by comparing the coefficient of Lr for both sides of 3.3.23, one can deduce 

the following recursive relation between cumulants of MPSJD, 

(3.3.25) 
G(0) t9If, 

Kr+i = G'(0)ôO' r = 1,2,3 



49 

3.3.2 Recursive formula between cumulants of the GD 

Note that when G(0) = 0(1 - 0)'', 1(0) = 0 and a(x) = (') in 1.3.12, the 
coresponding MPSD is the GD 2.1.1. So, by substituting G(0) and G'(0) into 3.3.25 

the recursive formula between cumulants of the GD is given by 

(3.3.26) 
- 0(19)OKr for r=l,2,3,..., 

(1 - /30) 90' 

where If, = (1 - 0)(1 - [30)-'. 

By using the formula 3.3.26 for r = 2,3,4 and 5, one can get 

(3.3.27) K2 = (/3 - 1)0(1 - 0)(1 - 

(3.3.28) K3 = (/3 - 1)0(1 - 0)[1 - 20 + 2/30 - /392](1 - 

(3.3.29) K4 - 1)0(1_0)[169+602 
- (1_ /30)7 

+/90(8 - 180 + 802) + /3202(6 - 60 + 02)], 

(3.3.30) K5 -- 

- (/9_ 1)0(1 0) [1_140+3602 —240 
(1-190)9 

+130(16 - 1130 + 15202 - 5803) 

+/3202(58 - 1340 +9102 - 1803) 

+#303 (24 - 360 + 2402 + 0)], 



(3.3.31) K6 U =  (1 j9) 0) [1 - 300 + 15002 - 2400 + 240 

+fl0(40 - 5200 + 136002 - 135003 13500 +44404) 

+,8202(286 - 14840 + 245002 +149403 +30004) 

+,80(444 - 12600 + 126002 - 48803 4880 +28o4) 

+/3O(120 - 2400 + 18002 - 4603 460 - 0)]. 
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3.4 Factorial Moments of the GD 

The factorial moments are found to be useful in evaluating moments of some discrete 

distributions. In this section, a recursive relation between factorial moments of the 

MPSD will be developed and the recursive relation between factorial moments of the 

GD will be obtained as a particular case of this relation. 

3.4.1 Recursive relation between factorial moments of the MPSD 

Let X be a random variable having MPSD given by 1.3.12. Then, the rth factorial 

moments is defined by 

(3.4.32) = E[X(X - 1) . . . (X - r + 1)], r = 1,2,3..... 

It is easily seen that when r = 1, 

(3.4.33) = P 

E(X) 

fo'(0) G(0)  
= f(0)G(0)' 

where f(0) = 80 

Let the pgf of this random variable X(defined at the begining of this section) be 

g(t), then the factorial moment generating function of X is g(1+t), such that 

(3.4.34) g(1 +t) = 

where (') is the rth factorial moment. 
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However, g(1+t) can also be expressed as 

(3.4.35) g(1 +t) a(x)[G(0)]'(1+t) 9;  
9;ET f() 

By differentiating 3.4.35 with respect to t, r and r+1 times respectively, one can 

have 

Org(1 + t) - a(x)[G(0)]9; 
Otr - 

f(0) x(x_1)...(x_r+1)(1+t)r (3.4.36) , 

8T+lg(1 + )  

(3.4.37) 

= a(x)[G(9)]  
x(x-1). 

= a(x)[G(0)]v 2(x - 1) 
9; f(s) X 

19; 
—r a(x)[G(0)j  x(x - 

f(o) 
Then by differentiating 3.4.36 with respect to 0, one has 

..(x—r+1)(x _r)(1+t)_r_l 

Or+1g(1 +  - a(x)x(x —1)... (x - r + 1)(1 + )9;_r 0 [G(0)] 9;  
000tr -. 9; 90 f(0) 

a(x) [G(6)]9; + )9;_r [XGO (0) f'(0) I. 
(3.4.38) = f(9) x(x - 1) . . . (x - ' + 1)(1 f(s) 

Multiplying 3.4.38 by jy and substituting 3.4.33, one has 

G(0)  O'+1g(1 + t) = a(x)[G(0)]9; 2( - 1) . . . (x - r + 1)(1 + t) ' 
GI(0) O00t 9; f(0) 

(3.4.39) f(0) G(0) a(x)[G(0)]x ( - 1)... (x - r + 1)(1 + t)9; T 
f(0)G'9(0) 1(0) 

a(x)[G(0)]9; 2( —1) . .. (x - r + 1)(1 + t)9;-
= 9; 1(0) 

org(1 + t)  

atr 
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By evaluating the derivatives of 3.4.37 and 3.4.39 at t = 0, and comparing the 

result after evaluation, one can deduce the following recursive relation, 

OT+lg(1 + t) - G(0) D' 1g(1 + ) (1) 8'g(l + t)  
- GI (0) 000tr It=o + /'t 9tr It=o 

(3.4.40) örg(1 + t)  
atr 

- G(0) ôr+19(1 + t) t= ôrg(1 + t)  
- GI(0) o + 1 - r) btr ° 

From the relation of 3.4.34, if one compare the coefficient of for the both sides 

of 3.4.40, one can deduce the following recursive relation between factorial moments 

of MPSD, 

(3.4.41) j(1) = G(0) Op) + (fh' - r)p(r), r = 2,3,4 
GI (0) 50 

Note that the above result is same as that obtained by [Gupta,1974] but in a 

different approach. 
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3.4.2 Recursive formula between factorial moments of the GD 

Since GD is a member of MPSD and its corresponding G(0) and G'(0) is given by 

(3.4.42) G(0) = 0(1 - 0)13_i, 

G'(0) - dG(0) 
- dO 

= (1_/30)(1_0)13_2. 

Substituting 3.4.42 in 3.4.41, the recursive formula between factorial moments of 

the GD is given by 

(3.4.43) 

where (i) = 

0(1 - 0) all (r) + (it' - r)p T) , 
(1—/30) ô0 

r = 2,3,4,..., 

By using the formula 3.4.43 successively, one can obtain 

(2) = (f3-1)0(1-0)(2—PO)  

(1-130)3 

(3.4.44) (3) - (,8 - 1)0(1 - 0) 
 [130(11 + 60) 

- (1-130)5 

_13202(15 +40) + /30(9 + 0) - 2fiO - 60], 

(4) (/3 - 1)0(1 - 0) [/30(20 - 740 - 2402) 
(1 - /90) 

+13202(73 + 1160 + 8402) - p0(120+930+ 1102) 

+#404 (63 + 400 + 202) - /30(37 + 70) 

+613606 + 2402]. 
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3.5 The GD as a stochastic model of Epidemics 

The problem of finding the probability distributions of the total size of an epidemics 

started by a single infectious has been considered by [Neyman & Scott, 1963]. This 

has been an important issue in the study of Epidemics. In this section, it will be 

shown that the GD model is a possible stochastic model of Epidemics by applying 

the Galton-Watson branching process. 

Without loss of generality, one may assume that an epidemic in a particular 

habitat is started by a single individual who contracted the epidemic outside that 

particular habitat. This individual forms the zero-th generation of the branching 

process so that X0 = 1. 

Then, after a fixed incubation period T,this individual becomes infectious with 

sufficiently close contact. As a result, some of his/her immediate family members 

and other friends most probably will be infected and will become the first generation 

of the infected X1, which is a random variable. 

Similarly, after a constant incubation period T, each individual of X1 becomes 

infectious and some of their classmates, colleagues, friends and relatives may also be 

infected and become the second generation of the infected X2 under the same condi-

tions as described above, and so on in successive generations of infected. Therefore, 

our task is to find the probability distribution of the total number of infected in that 

particular habitat. 

Given Xo = 1, let X1,X2.. .. ,X,... represent the number of infected in the 

1st, 2nd,. . . , nth,... generations. Note that the only assumption made here is that 

the probability distribution of the number of infected, generated by each infectious 
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individual, remains the same over all generations. 

Since all the infected persons in this particular habitat contracted the disease 

through the direct or indirect close contact with the single individual Xo, so it is 

reasonable to assume that X1 has a contagious probability distribution whose pgf is 

g(t). 

Let g(t) = E[t] and go() = t, gi(t) = g(t). 

For 

gfl+1(t) 

(3.5.45) 

00 

P(X 1 = 

00 00 

= kjXn = j)P(X = j) 
/c=O j=O 

00 00 
P(Xn = j) E P(X +1 = kjXn = j)t'' 

00 

>P(XTh =j)[9()]1 

g(g(t)). 

Also, g2(t) = gi(g(i)) = g(g(t)) = g(gi(t)), 

and g3(t) = g2(g(t)) = g(g1(g(t))) = 9(92(t))-

Similarly, 

(3.5.46) g1(t) = g(gn()). 
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Now, assume that the increase of the number of infected stops and reaches a 

steady state after the nth generation. 

Define Z. = X1 + X2 + X3 + ... + Xn with its pgf being G(t), 

and N = Xo + Z = 1 + Z, with its pgf being Rn(t). 

Since Z1 = X1, G1(t) = = g(t), and 

(3.5.47) 

R1(t) = E[t'h] 

= E[t1 '] 

tE[t"h] 

= iG(t) 

= tg(t). 

Since each infected individual of X1 will start a new generation, the pgf of Z2 

becomes 

(3.5.48) 

G2(t) = E[t22] 

= E[iX1200 00  

= X21XI = xi)P(Xi = x1) 
X1 = 0 X2 =0 

CO 00 

=E t"P(X1 = x1)E t2P(X2 = x2IXi = x1) 
XI =0 X2= 0 

00 

= P(X1 = 
i=O 

= g(tg(t)) 

= g(tGi(t)) 

= g(R1(t)). 
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Similarly, the pgf of Z3 = X1 + X2 + X3 is given by 

G3 (t) 

(3.5.49) 

E [tXl+X2+X3] 

00 00 00 
= E  E  tP(X3 = x3IX2 = X2, XI = x1) 

Vi=O X2O V3=O 

xP(X2 = x2IXi = xi)P(Xi = x1) 
00 00 

= E  tp(x2 = x2IXi = xi)P(Xi = x1) 
xi=O 22O 

00 

X E tP(X3 = x3IX2 = X2, X1 = 
V3O 

00 00 

= E t12P(X2 = x2IXi = xi)P(Xi xi)[g(t)]$2 

vj=O r2=O 

00 00 

= jfC1(x1 = x1)E P(X2 = x2IXi = x i )[tg(t)]w2 

2O 

00 

= E P(Xi = x i )tx1 {g(tg(t))] 1 

xiO 

= .g(tg(tg(t))) 

= g(tG2()) 

= g(R2(t)). 

In general, it can be shown that, 

(3.5.50) 

G +1 (t) = g(tG(t)) 

= g(R(t)),forn=1,2,3,..., 
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or equivalently, 

(3.5.51) 

tG(t) = 

= 

which gives the limiting form (as n increases) 

(3.5.52) G() = 

and 

(3.5.53) R(t) = tg(R(t)), respectively. 

Since our objective is to find the probability distribution of the total number of 

infected N, so by putting R(t) = s in 3.5.53, one can obtain the Lagrange transfor-

mation, 

(3.5.54) s = ty(s). 

Also, as the author pointed out earlier, g(s) requires to be the pgf of a contagious 

probability distribution, so it is not unreasonable to put g(s) = (1—O)'(1  OS) '', 

/3> 1, which is the pgf of the negative binomial distribution(a well known contagion 

model). 

Hence, using the Lagrange expansion 1.1.3 to expand s in power of t under the 

transformation of 3.5.54, thus the required pgf of N can be obtained by putting z = 

U = t, k = x and a = 0 in the formula 1.1.3. Therefore, one can get 

(3.5.55) 
00 5;_1 

= " x! 5833-1 {[g(s)]33}3=Ø. 
33=1 
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As a result, 3.5.55 gives the probability distribution of the total number of infected 

N(starting with a single infected individual) as 

(3.5.56) P(N = i) = (13i 1)oi_1(i - 9)i-i, i = 1,2,3,. 

which is the GD 2.1.1. 



Chapter 4 

Estimation of the Geeta Distribution(GD) 

4.1 Estimation by method of Moments 

Let X be a discrete R.V. having the GD 2.1.1, then the mean p and the variance cr2 

is given by 2.2.6 and 2.2.9 respectively. 

Let X1, X2,.. . , X,, be a random sample of size n taken from the GD 2.1.1. Then, 

the sample mean and the sample variance are defined as 

(4.1.1) 

M1 = 

M2 = 

1 -'n 
z..i 

E-.1(x - mi)2. 

Equating the sample mean m1 with the population mean y and the sample vari-

ance m2 with the population variance a2, we obtain the moment estimators A, 8 and 

O of the parametes z, /3 and 0 in the GD models 2.1.1 and 2.1.2 respectively, which 

are given by 

(4.1.2) 1712 

1-0 

1 - PO 
and 

Solving the first relation of 4.1.2 for 0 and substituting that value in the second 

relation, we get 

(4.1.3) 

M2 - Ml (MI-1)  
m_m(m_1) 
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(4.1.5) 

where 
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4.1.1 Asymptotic Bias, Variance and Covariance of the Moment Esti-

mators 

Since the moment estimator f of the population mean p is the sample mean m1, so, 

we have 

(4.1.4) E(A) = E(MI) = p. 

Hence, f is an unbiased estimator of p. 

The moment estimators 0 and of 0 and /3 respectively, are functions of the 

sample mean m1 and the sample variance m2. 

Let 

m1 
0 = F(mi,m2) =  

rn2 

2 

and 

= G(mi,m2) = 
- mi(mi - 1) 

M2 - m(mi - 

Expanding F(mi, m2) in a bivariate Taylor series as in section 1.1.8, we obtain 

the first six terms as 

F(mi, M2) = F00 + (Ml - 14)F10 + (m2 - p2)Foi + (MI - 14)2F20 

+(mi - i4)(m2 - p2)Fii + (m2 - p2)2Fo2 + 

3i+JF(mi, m2) 
F3= 

m1=p 

M2 = P2. 

For example, F01 is obtained by firstly differentiating F(mi, m2) with respect to 

m2 once. We get 
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OF(mi,m2) = m(mi-1) 

am2 m 

Secondly, the above expression is evaluated at m1 = i4 and m2 = P2 respectively 

and simplified. Hence, we have 

F01— 1u?(i4-1) - P2CLL-1)  
- 14 - CT4 

Similarly, F02 can be obtained by differentiating F(mi, m2) with respect to m2 

twice we get 

a2f(mi,m2) - 2m1(mi —1) 

- 2 M2 

Then, the above expression is evaluated at m1 = /4 and m2 = P2 respectively 

and after simplification, we have 

F02— 2p2(p-1) 
- 016 

Following the above preocedure, we obtain Fij for i,j = 1, 2 and 0 ≤ i + j ≤ 2 as 

follows: 

.1. -   

11 - 4 

(4.1.6) 7:;' - 

01 -  4 F02 476  

F10 - - p(3z-2) F20 - 2(3z-1)  
- U2 - U2 
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A similar expansion can be written for G(mi, m2) by replacing F by G in 4.1.5 

that is, 

(4.1.7) 

G( 1, m2) = GOO + (mi - 14)G10 + (m2 - t2)Goi + (mi - 14)2G20 

+(mi - - j2)G + (m2 - /22)2G02 + 

where 

Gij 
ô'G(mi, m2)  

8m18m 

mi=i4 

M2 = 

Similarly, G01 is obtained by firstly differentiating G(mi, m2) with respect to m2 

once. We get 

aG(m1,m2) - mi(mi-1)2  

8m2 - (m2_m(m1_1))2 

Then, the above expression is evaluated at m1 = /4 and m2 = ,a2 respectively. 

Hence, we have 

G01— (/3_1)2 
- 

Also, G02 can be obtained by differentiating G(mi, m2) with respect to m2 twice 

we get 
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02G!(mi, m2)  
- 2  mi(mi—i)2  
- (—m2+m—m)3' 

Then, the above expression is evaluated at m1 = /4 and m2 = ft 2 respectively 

and after simplification, we have 

G02=2  (fl—i)3  
- 1)4 

Following the above preocedure, we obtain G2 for i,j = 1, 2 and 0 ≤ i + j ≤ 2 as 

follows: 

(4.1.8) 

Goo 

G11 

=fl, 

(31) (i-32-4fl+6fl2), 
- 

— (fl-1)2 

- 

G02 - 2 (fl—i)3 
- 

G10 - - (P 1)  '1-2p-2flp+3flht2), 

G20 = 2 —1) - 5 + 5112 —3/3+ 8f3 - /i21) X  - 6/9 

+4p2/_t- 12/32JL2 + 9p23). 

And, in general, we know from [Cramer,1946], 

E[mi—/4] = 0, 
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E[m2 — it2] = 

(4.1.9) Var(mi) = E(mi - 

Var(m2) = E(m2 - t2) 2 = +0(.-2 ), 

Cov(mi, 7722) = - - 112)] = + O(n 2). 

On taking expectation on both sides of 4.1.5, one can show that 

E[F(mj, m2)] = F00 + E(m2 - 112)F01 + Var(mi)F2o 

(4.1.10) +Cov(mi,m2)Fu + Var(m2)Fo2 + Q(m 2) 

Since 

Var[F(rni, m2)] = E[(F(mi, 7722))] - (E[F(mi, 7722)1) 2, 

so, squaring and taking expectation of 4.1.5 and squaring 4.1.10, we have respectively, 

E[(F(mi, M2 ))2] = F 0 + 2Cov(mi, m2)F11F00 + 2E(m2 - 112)F01F00 

+E(rni - 14)2F 20F00 + E(m2 - 112)2F02F00 + E(mi - 14)2F0 

+2Cov(rni, rn2)FoiFio + E(m2 - p2)2F 1 + O(m 2), 

and 

[E(F(mi, M2) )]2 = F 0 + 2Cov(rni, m2)FuFoo + 2E(rn2 - 112)F01F00 

(4.1.12) +E(mi - 14)2F20F00 + E(m2 - 112)2F02F00 + 0(n -2) . 
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Then, by subtracting 4.1.12 from 4.1.11, we get 

Var[F(mi, M2)] = Var(mi)F20 + 2Cov(mi, m2)F01F10 + Var(m2)F,Dl 

(4.1.13) 

In order to simplify the symbol, let F = F(mi, M2) and G = G(mi, m2). 

Also, 

Cov(F, G) = E(F.G) - E(F).E(G). 

Hence , multiplying 4.1.5 by 4.1.7 and taking expectation, one can get 

E(F.G) = G00F00 + E(m2 I 1z2)G01F00 + E(mi - 14)2G20F00 

+E(m2 - p2)2Go2Foo + Cov(mi,m2)G11F00 + E(mi - 14)2F10G10 

+Cov(rni, m2)G01F10 + E(m2 - 2)F01GOO + Cov (Ml , m2)F01G10 

+E(m2 - p2)2FoiGoi + .E(mi - 14)2F20G00 + .E(m2 - u2)2Fo2Goo 

+Cov(mi, m2)FuGoo + Q(n 2) 

Also multiplying 4.1.10 with its counterpart of G (just by replacing F by G in 
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4.1.10), one can obtain 

E(F).E(G) = G00F00 + E(m2 - 2)G01F00 + E(mi - 14)2G20F00 

(4.1.15) +E(m2 - p2)2G02F00 + Cov(mi, m2)G11F00 + E(m2 - 

+E(mi - 14)2F2oGoo + .E(m2 - 1a2)2Fo2Gco + Cov(mi, m2)F11G00 

+O(n_2). 

Then, subtracting 4.1.15 from 4.1.14, one can get 

Cov(F(mi, m2), G(mi, m2)) = Var(mi)F10G10 + Cov(mi, m2)[F10G01 + F01 G10] 

(4.1.16) +Var(m2)F01G01 + O(m 2). 

Now, since F00 = 0 and Bias[O] = E[O] - 0, so by subtracting F00 from both sides 

of 4.1.10, one can have 
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(4.1.17) 

Bias[O] = E[F(rni,m2)] —0 

= E(m2 - p2)Foi + Var(mi)F2o + Cov(mi, m2)Fu 

+Var(m2)Fo2 + O(n 2). 

By substituting 4.1.6 and 4.1.9 into 4.1.17, we have the asymptotic bias of 0 as 

—1  
Bias[O] 

(4.1.18) x[6p2 - 1 + ,8i(7 + 4z - 144a2) + 923(  

Also, by substituting 4.1.6 and 4.1.9 into 4.1.13, after collecting terms and sim-

plification, one can obtain the asymptotic variance of 0, 

Var[] 110 - 1)  

(4.1.19) x[5p2 + 18i(6 + - 1Oi2) + 6/321L3(1 - 

Since G00 = /3, so, similarly, one can have 

(4.1.20) 

Bias[/] = E[G(mi, m2)] - /3 

= E(m2 - 2)G01 + Var(mi)G20 + Cov(mi) m2)Gu 

+Var(m2)Go2 + O(n). 
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And, by replacing F by G in 4.1.13, one can get 

Var[/3] = Var[G(ni, m2)] 

(4.1.21) = Var(mi)G 0 + 2Cov(mi,m2)G01G10 + Var(m2)G 1 

+O(n_2). 

Substituting 4.1.8 and 4.1.9 in 4.1.20 and 4.1.21 respectively, one can obtain the 

asymptotic bias and variance of 3 as 

.Bias[/] 

(4.1.22) 

and, 

(i3a - 1) 

IL(1t - 1)3 

x[-1 + 82 - 2j 3 + /3i(6 + 4p - 162 + 3/,0) + 6/323(t - 

/3] _1{ (/31)(f3I1)  Var[  
t(- 1)3 

(4.1.23) x[-1 + 2p + 4122 + /312(6 + 12 10122) + 6/32123(12 - 

Finally, by substituting 4.1.6, 4.1.8 and 4.1.9 into 4.1.16, and after simplification, 

one can obtain the asymptotic covariance of 0 and /3 as 

Cov[/, Ô] - 1) 
(121)2(/312_i) 

(4.1.24) x[-1+2[t+ 4 2 + /3p(6 + p 10,i) + 6/32123(12 - 1)]}. 
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4.2 Maximum Likelihood Estimation 

Let a random sample of size n, taken from the Geeta distribution 2.1.1, consists of 

the observations 1, 2, 3, ..., k with frequencies fl, f2, •., fk respectively, where 

fi + 12 + . . . + fk = n. Also, let and s 2 be the sample mean and sample variance 

respectively, given by 

= n'[l.fj + 2.12 + 3.f3+ ... + lc.fk] 

and, 
k 

= (n -  
1)_i - 

It was shown in Chapter 2 that the minimum value of o2, for a maximum value 

of fl , is p2( - 1). Accordingly, a necessary condition for the applicability of the 

Geeta model to a given data set becomes 

(4.2.25) > 2 (.;• - 1). 

The likelihood function L can be written with the help of individual probabilities 

in 2.1.2 in the form 

L =   
8fL-1 [1 

k 1 (/3 . i - 1" i. f.t - 1 ]if_.f[P(/3 -  1)  ligh-ifi 

fl  

which gives the log-likelihood function as 

1nL = 
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k i k 

(4.2.26) 1n( - 1)} + E f1n(/3i -j) - ln(i!). 
2 j=2 i=2 

On partial differentiation of in L w.r.t. y and on equating to zero, 

8lnL(/3-1)ñ 32 /3 
 + +  ay - /3fL1 t-1 

which gives, on simplification, the ML estimate j% of it as [Consul,1990a] 

(4.2.27) 

On partial differentiation of 4.2.26 w.r.t. 3 and on substitution of , we get 

ô in L 

a'? = 

i=2 j=2 . ,3 

=0. 

On simplification the above equation gives 

(4.2.28) 

where 

(4.2.29) 

= 

= 

1 ifi  
H(/3)= — EE... 

inx =2 j=2 ' 3 

The equation 4.2.28 and 4.2.29 cannot specifically solved for the ML estimate 3. 

However, the function 
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(4.2.30) G(/3)   

monotonically increases form 0+ to 1 as /3 increases from 1+ to oo. One can 

easily draw the graph of the curve 4.2.30 by a computer. 

Also, the function H(/3), defined in 4.2.29, is a sum of a finite number of functions. 

Each one of these functions monotonically decreases as /3 increases from 1+ to oo. 

Therefore, the function H(/9) monotonically decreases with the increase in the value 

of P. Thus, the function 

(4.2.31) G(/3) 

represents a monotonically increasing curve, with a maximum value of 1. The 

curve 4.2.31 can also be drawn with the help of a computer. Since both curves, 

4.2.30 and 4.2.31, are monotonically increasing with almost the same domain, they 

can have, at most, a single point of intersection. The value of /3 given by this unique 

point of intersection, if it exits, is the ML estimate of /.3 [Consul,1990a]. 

Our conjecture is that if s2 > 2( - 1), the two curves 4.2.30 and 4.2.31 will 

always intersect. We have not been able to prove it though we have verified this 

conjecture in many examples. 
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4.3 Minimum Variance Unbiased Estimation 

Suppose X1, X2,. . . , X1r is a random sample from the Geeta probability model 2.1.1. 

It can be shown by factorization theorem that the statistic Y = X1 + X2 + . . . + X 

is a sufficient statistic for the parameter 9 in the model 2.1.1. Also, since the model 

2. 1.1 belongs to the exponential family, it is a complete family. Thus, Y is a complete 

and sufficient statistic for the parameter 9. 

The probability distribution of Y is a Lagrangian power series distribution (LPSD), 

given by 2.3.23, and is of the form 

(4.3.32) 

where 

P(Y = y) = b(n,y) 
{O/g(o)}  

for y=n,n+1,r&+2,... (f(0))n 

f(o) = 

g(0) = 

and 

b(n,y) 
n(18y - n — i ). 

y — n 

[Kumar & Consul,1980] has given following theorem on the minimum variance 

unbiased (MVU) estimation of parametric function £(9) for the Geeta distribution. 

Theorem: A parametric function of the parameter 0 in the LPSD is MVIJ es-

timable Hf the function (9) = t(0).(f(0))" admits an expansion in a absolutely 

convergent Lagrange series. 

W(0) = E c(n,i)(0/g(9)) where En 9 {O,1,2,. . .} 
iEE 

and 



75 

1 0, where b(n,i)=0  
(4.3.33) c(n, i) d ]i1[(9(o))i(0)]00, otherwise. 

Then, the MVU estimator h(y) of £(0) is given by 

(4.3.34) 
b(n,y)' 

h()= io) 

ifb(n,y)0 

otherwise. 

We denote the MVU estimator of £(0) by (€(0)). 

We shall obtain the MVU esitmator for   gk_1(l _o )Pkk and P (X=k). 

The proofs are given for the MVU estimation of and O''(1 - 9)I3k_k respec-

tively. 

Firstly, for ((1 - 9)21(1 - /9)), let 

(4.3.35) (0) = (1 - 9)2(1 - 30)'(f(0))' = 0(1 - 9)2( - /90)_i. 

By expanding the function (0) into a series by Lagrange expansion,under the 

transformation 0 = u(1 - 0)1_P, we get 

00 (0) [0(1 1[]i_1 [(1 - - 0)2(1 - 139)_1}]oo 
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The expression for the (i-1)th derivative is 

00 

[d li-1[(l - O)-(Pi-i_1) {n0 1 + Efi3 '0''[fi(n +j) - (m +j + 1)]}] 
dO 3=1 

(i_i) fg(n( - n!(i/3—i - 1)(_) ++j),— (n.+j + i)}3' I(m-i-j —1)! 
3=1 n+j-1) 

x(ifi - i - 1)(__3). 

On simplifying the above and using it with the value of (0),we get 

0(1 - 0)2(1 - p0)' = 00 E [0(1 - 0)P-1]i 
i=n 

where (a)(1) =a(a+1)(a+2) ... (a+i-1). 

Thus, the function c(n,y) in 4.3.33 becomes 

(4.3.36) 

'0 

1, 

y < n 

y=n, 

(i—n.—j)! 

x31 '(i18 - i - 1)_,_] 

- Y  

+ 13(n+j)-(n+j+1)  
3=1 (y-n--j)! 

xfl31(y_y_1)(_n_3), y=n+1,n+2,... 

Hence, the MVU estimator of pf the Geeta distribution becomes 

h1 - '(n, Y)  
b(n,y) - 



77 

(4.3.37) 

(y-y-1) v'Y- (/3Y-y-1) (yThj+1)(j)  
(y-n-1) Lij1 n 

x[,8(n-i-j) - (n+j +  

1, 

0) 

Secondly, for (0''(1 - o)I3k_k), let 

(4.3.38) 

Similarly, we have 

y n+ l,ri +2,... 

y  

otherwise 

ço(0) = 0n+k_1(1 - 0)/3k_k 

°° [0(1 - 0Yh]2[d]_l[(1 - 0)i_i138 {0n+Ic_1(l - 0)''}]eo. ço(0)= 
i=n+k-1 

The expression for the corresponding (i-l)th derivative is 

[d]_l[(1 -0)46i-0100 0)_(i_i){ (/9k_ lc) (_1)(m + k +j - 
dO 

= []i_1[(1 - o)_(i_i){( + k - l)On+k_2 + 00  (k Ic) (4)i 
dO 

j=1 

X(n + k +j - 

/ i — i = i-n-k+' (,I — i — I 
m + Ic —2) (m + Ic - 1)!(i - i)(__/,+i) + E Ic) (l)i (n + —2) 

x(n + Ic + j - l)! (i/3 - 

On simplifying the above with (0), we have 
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00 

9n+k_1(1 - 9)/3k_k = [9(1 - 9)11}i (n. + ' - 1) (i,@ - i)(....k+i) 

i (i—n—k-I-i)! 
i=n+k-1 

-:' (/3k k)   • —n—k— j+i)! (i - 

Hence, the function c(n,y) for <O'(i - O)1Th_1c > in. 4.3.33 becomes 

(4.3.39) 

0, 

1, 

(m+k-1)  
y(y-n-k+1) (/3Y - Y)(y-n-k+1) 

+1  
y 31 5 

x  (n+k+j-'l)  (f3,i - Y)(-n-h-j+1), 
(-.n-k-j+1)! y 

y<n+k-1 

y = n + k — 1 

y=n+k,n+k+1,... 

Therefore, the MVU estimator of O'' (1 - o)13k_k of the Geeta distribution is 

(4.3.40) 

h(y) -- c(n,y) - 

b(n,y) - 

(n+k-1) (y-n-k+2)(k_1)  
n ()3V-n-k+1)(k_1) 

+ (Ph_k) (—i)i (n+k+j-1)  

(y-nk-j+2)(+J_j)  
X (Py-n-k-j+1)(k+j_1)' y = n + k, n + k + 1, 

n+k-1 (k-l)!  
(13(n+k-1)- (n+k-1))(k_l)' = + k - 1 

0, otherwise 
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The MVU estimators of and P(X = are derived in the same manner. 

The corresponding results are provided in the following Table. 

Table 4.3.1: MVU estimators of 0(1 - 0)1(1 - /30)2 and 
P(X = k) of the Geeta distribution 

£(0) MVU estimator (t(0)) 

0(1-0)  
(1_fl0)2 

P(X=k) 

{1)-(n+1) (Y_n_i)( +i)  
n 13(n+ y-n-1 (n+1) (V-n1 + Ij=1 (fly-n-j-1(J.) 

n(Pv- n- 1 x  

fl  

'0 - 

n+k-1   
nk (/(n+k-1)-(n+k-1))(,_l)' 

(n+Ic-1) (13kk)(k_l) (Y- n- k+2)(k_l)  

nk! ()3v-n-k+1)(k_1) 

+ !;'(—l) (n+k+j-1) nj!k! "' ('ak - - .1 + l) 
(v-n-k-j+2) +j-1  

x(13k - k) (k-1) (Pv-fl-k-j+1)(k+3_1)  

y≤n 

y=n+2,n+3,... 
y < m+k — 1 

y=n+k-1 

y=m+k,n.+k+1,... 
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Bar-diagrams of the Geeta Distribution 
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