
CoLe: A Cooperative Distributed Data Mining

Model

Jie Gao1, Jörg Denzinger1, and Robert C. James2

1 Department of Computer Science
University of Calgary, Canada

{gaoj,denzinge}@cpsc.ucalgary.ca
2 Aechidna Health Informatics

rob@aetiologic.ca

Abstract. We present CoLe, a cooperative, distributed model for min-
ing knowledge from heterogeneous data. CoLe allows for the cooperation
of different learning algorithms and the combination of the mined knowl-
edge into knowledge structures that no individual learner can produce.
CoLe organizes the work in rounds so that knowledge discovered by one
learner can help others in the next round. We implemented a CoLe-
based system for mining diabetes data, including a genetic algorithm
for learning event sequences, improvements to the PART algorithm for
our problem and combination methods to produce hybrid rules contain-
ing conjunctive and sequence conditions. In our experiments, the CoLe-
based system outperformed the individual learners, with better rules and
more rules of a certain quality. Our improvements to learners also showed
the ability to find useful rules. From the medical perspective, our sys-
tem confirmed hypertension has a tight relation to diabetes, and it also
suggested connections new to medical doctors.

1 Introduction

In recent years, data mining has been a hot topic that attracts both database
and machine learning researchers. With the rapid development of data storage
capacity, data mining calls for methods to handle large quantities of data, which
could be heterogeneous with various types of data. However, most of the ex-
isting data mining methods are only capable of processing homogeneous data.
Even many large-scale distributed data mining methods do not consider the het-
erogeneity of data much. Another problem in data mining is that methods are
more and more specialized (as was indicated in [1]). They perform well on ideal
data sets. But when applied to real-world data, they often cause unsatisfactory
results. Quite often different parts of the same data set are heterogeneous in
characteristics. A method may need different tuning for those different parts.

Therefore it is necessary to propose a data mining model that allows for
multiple different methods (or differently tuned methods) to work on one data
set to handle its heterogeneity. In this model, it is not satisfactory to leave the
results from multiple learners isolated. We need to consider the relations among

2

them and produce integrated results as the knowledge discovered from the whole
heterogeneous data set.

In this paper, we present a cooperative distributed data mining model in a
multi-agent system framework. In such a multi-agent system, the agents could
use different methods to handle different types or parts of information in hetero-
geneous data sets. The results are combined to get integrated results. Critically,
this model implies that agents cooperate with each other, so that our multi-
agent mining model is not merely applying multiple algorithms to a data set,
but trying to gain synergetic effects through the cooperation.

The rest of this paper is organized as follows: The CoLe model is introduced
in Sect. 2. A proof-of-concept implementation in mining medical data is described
in Sect. 3, and experimental results with this system are presented in Sect. 4.
Section 5 compares our model with some related work in distributed data mining.
Finally Sect. 6 concludes this paper with some remarks and future work.

2 A Cooperative Learning Model

Our model for cooperative data mining is called CoLe (Cooperative Learning).
First of all, our model works on different types of data. We can take them

altogether as a “super data set”. So we can define the data like this:

Definition 1. Let D1,D2, · · · ,Dn be n data sets related to the same topic but
in different types (or with different characteristics). We call the data set

D = D1 ./ D2 ./ · · · ./ Dn

a heterogeneous data set about the topic. And each of the D1, · · · ,Dn is called a
simplex data set in D.

In this definition, the data sets D1, · · · ,Dn are related to the same topic,
which means that there are some keys to keep the relations among them.

From the data set we expect to discover knowledge. Although knowledge is an
abstract concept and in many cases the knowledge representations depend on the
specific learning/mining method, we can represent (or convert) the knowledge in
the majority of cases into an “if. . . then. . . ” form. A piece of knowledge in this
representation can be regarded as a rule. So we can define our concept of rule
like this:

Definition 2 (Rule). Let condition be a pattern that can match some tuples
in a data set, and conclusion be some characteristics a data instance can have.
We call the following representation of a piece of knowledge a rule:

condition ⇒ conclusion

In our learning model, we have several learning/mining methods employed
to discover different rules from a given heterogeneous data set. For each simplex
data set in it, we can have one or more suitable learning methods to discover
knowledge from it. Such a learning method is called a learner :

3

Definition 3 (Learner). Let Di be a simplex data set in a given heterogeneous
data set D. A learner is a learning/mining method (algorithm) that resembles a
function l : D+

i → K+
i , where Ki is the set of possible rules (knowledge) to be

discovered by the learner.

In our learning model, given the heterogeneous data set D, the learner set
will be L. For all l ∈ L, Rl is the set of possible rules to be discovered by l. And
Cl = {conclusion|condition ⇒ conclusion ∈ Rl}. Then the following should
hold for two different learners:

For l1 and l2 in L, Cl1

⋂

Cl2 6= φ

so that we can combine the rule sets learned by different learners. Otherwise, the
rules never have any conclusion in common, which gives us no hope to combine
the rules. Another remark on the simplex data sets is that for Di and Dj , they
do not necessarily need to be different. The different indices are mainly used for
showing the learners’ ownerships of the simplex data sets. It is quite possible that
the same simplex data set is worked on by several different mining algorithms.

2.1 Our Cooperative Learning Model

The cooperative learning system we propose can be described by a multi-agent
system model so that it is easy to describe the system model and the interaction
of the components at an abstract level without unnecessary details.

In this cooperative multi-agent learning system, there are two types of agents.
One type are learner agents, which implement the mining methods. (We can call
them directly learners without ambiguity since the learner definition, Defini-
tion 3, and “learner agents” are referring to the same concept from different
points of view.) The other type of agents are agents that combine the different
types of rules. We always assume there is only one such agent in a system (mul-
tiple such agents can be taken as a whole as a super agent). We call this agent
combination agent, or AgCBN for short. It is at the core of the cooperation in
our learning system model.

AgCBN decides how the learners cooperate. Its main task is to receive the
learned rule sets from individual learners, use some strategies to combine them,
evaluate the combined rules against the whole heterogeneous data set and put
the satisfactory ones into a final rule set, and at the same time extract helpful
information from the rule sets and send it back to the learners so that each
learner can utilize the discoveries from other learners.

The implementation of AgCBN can vary according to different needs. It can
be a simple agent that only validates the different combinations of the rule sets.
It can also be a group of agents (forming a super AgCBN) to achieve complex
interaction and cooperation strategies with the learners.

Basically our cooperative learning model contains the following elements: A
heterogeneous data set D (whose simplex data sets decide what learners to use),

4

a set of learner agents L, and the combination agent AgCBN. And we name this
model CoLe (Cooperative Learning):

CoLe =< D,L, AgCBN >

The agent interactions in CoLe are illustrated in Fig. 1: Given a heteroge-
neous data set D, each learner li learns on the simplex data set (Di) it can
handle. The learned set of rules (Ri) are sent to AgCBN, which combines the
rules and considers their quality in the whole heterogeneous data set D, and
puts the combination results to the final rule set R. At the same time, for each
learner li, AgCBN extracts useful information from R1, · · · ,Ri−1,Ri+1, · · · ,Rn

and sends this feedback to li to help its work. The feedback could be rule condi-
tion fragments to help form good rules, data set clusters to help concentrate on
uncovered data cases, etc.. In this model, the learners are cooperating via the
intermediate AgCBN.

Fig. 1. CoLe model

In the above description, we propose a learn-and-feedback way of cooperation.
To make use of the feedbacks, a learner should receive them before its learning
work ends. In our model, this is achieved by dividing the whole learning process
into iterations. In this way, the learners are synchronized to send their partial
results after an iteration ends. AgCBN can then do its combination work and send
feedback to help the learners’ work in future iterations. The iterations continue

5

until some end condition is met (e.g. an iteration number limit, or some rule
quality threshold). This workflow of CoLe is presented in Fig. 2.

Fig. 2. CoLe work flow

3 Application Problem and CoLe Solution

As a proof of concept for the CoLe model, a cooperative learning system was
developed and implemented for mining diabetes patient data from the Calgary
Health Region. The application problem definition and the solution using the
CoLe model are discussed here.

In the Canadian public health system, large amounts of data about individ-
uals’ medical services and diagnostic codes are collected. For now, the data is
only used for public health insurance and billing purpose. As the data contains
very complete and comprehensive medical records, we want to use data min-
ing methods to the data, to discover knowledge that can help identify future
diseases using a case history. To identify the real disease cases from such data,

6

the medical experts are not only interested in the diagnoses the individuals ever
had, but, more over, they are also interested in the chronic development of the
diseases. The CoLe learning model, with the ability to learn from different types
of data, is very promising for their needs.

Here the particular disease we are focusing on is diabetes. In the diabetes
health data, an instance that is really a diabetes patient is called a case, and an
instance that is not a real diabetes patient is called a control.

3.1 Problem Definition

In Sect. 2, the general CoLe model has already been discussed. When we fit the
application problem — discover knowledge from medical history for identifying
future diabetics — into the CoLe model, we instantiate it as follows.

The heterogeneous data set in this problem is the public health data, which
contains two different simplex data sets. One simplex data set Ds is the medical
records of the individuals. These records come with timestamps and can be
interpreted as discrete temporal sequences. The other simplex data set Dc is the
non-temporal version of these medical records (with only boolean fields for each
possible diagnosis) and their annual statistics of the number of medical services,
together with the personal information (with an aggregated 10-year age group
label).

For the temporal simplex data set, we need a sequence learner (SL) to work
on it. SL is using a genetic algorithm to identify some key diagnosis sequences
that are the indication of future diabetes diagnoses. These key diagnoses are
called events. We do not care about the time when an event takes place but
about the relative order of the events. SL’s results are actually rules that use
temporal sequences as conditions and the conclusion is always “diabetes”. Such
rules are called sequence rules in the following.

For the non-temporal simplex data set, the learner is called conjunctive
learner (CL) because its results are rules with conjunctions of predicates as
conditions. The predicates are in the form “attribute rel op value”, where rel op
is a relation operator such as “=”, “>”,“<”, and the order of these predicates
in a rule is of no consequence. These rules are called conjunctive rules.

We use a single combination agent AgCBN to combine the rules from CL
and SL respectively. The combined rules may contain both sequence conditions
and conjunctive conditions. Thus we call them hybrid rules. A sequence rule or
conjunctive rule can also be taken as a hybrid rule when we take its sequence
condition or conjunctive condition as empty (or always true).

In summary, in this problem of mining diabetes health data, we have the
data set D = Ds ./ Dc, three types of rules: sequence rules, conjunctive rules
and hybrid rules, the learner set L = {SL, CL}, and the combination agent
AgCBN.

7

Fig. 3. Learning system model

3.2 System Design

As already stated, there are three major components in our system, namely
SL, CL and AgCBN (see Fig. 3). The system works in iterations, presented in
Fig. 4: Each learner receives its simplex data set, and learns rules from it. Both
types of rules are sent to AgCBN, which combines them into hybrid rules and
then validates them against the heterogeneous data set. The hybrid rules with
higher quality than a pre-defined threshold are put into the hybrid rule set as
the result of the combination. At the same time, AgCBN also gives help to the
two learners — generate the simplex data sets for the next iteration and send
useful information extracted from CL’s results to SL to help its future work.
Such mining iterations will continue until our predefined iteration number limit
has been reached.

Data Sets The data set our system is going to work on is considerably large.
To make the learners run efficiently, we do not let the learners run directly on
the whole data set. Instead, we introduce working data sets with a smaller size
for the learners to work on. In each of our mining iteration, AgCBN generates
working data sets for SL and CL. The working data sets contain the same set of
instances but different types of data, fitting the two learners respectively. The
details of generating the working data sets are presented in AgCBM’s design.

Sequence Learner The sequence learner (SL) is the agent that does mining
on the temporal simplex data set, and finds the sequence rules that can reflect
the temporal relation of the diagnoses that can predict diabetes. SL first uses a
genetic algorithm to discover interesting sequence rules from the data. It then

8

Fig. 4. Learning system work flow

checks the subrules of the discovered sequence rules. Finally the top sequence
rules and good subrules are sent to the combination agent.

SL uses a genetic algorithm to achieve temporal rule learning. We designed a
Michigan-like approach (see [2]) with sequence rules as individuals. A Michigan-
like approach has a smaller granularity and its average run time is shorter than
that of Pittsburgh approaches. This is suitable for dividing the whole genetic
algorithm search process into many short runs — more suitable for cooperation
as required by CoLe. In the representation of individuals, these sequence rules
have a common conclusion: “diabetes”, i.e., SL only learns positive rules from the
data set. This is suitable when we are interested a knowledge discovery instead

9

of a classification problem. And we can omit the conclusion part since they are
all the same in SL. So finally, the actual individuals are sequences that indicate
diabetes cases.

Besides the commonly used genetic operators crossover and mutation, we
designed an “intelligent” genetic operator called intellicut, using similar ideas
from [3], to make the evolutionary process more targeted. In intellicut, each event
in the middle of an individual is checked to see if the quality of the individual
can be increased by cutting off the events after this point, i.e., it will cut off a
bad “tail” in the sequence. In this way, even if an individual is not very good,
good parts of it are preserved.

The fitness of an individual is evaluated according to its accuracy — the ratio
of true positives to all instances it matches, and coverage — the ratio of true
positives to all cases in the data set. These two factors are both considered to
make sure the individuals contain valid knowledge and they will not overfit the
data. To balance the accuracy and coverage, we propose the following equation
to calculate the fitness:

fitness = 10×

(

tp

tp + fp

)x

×
ln(tp)

ln(case num)
(1)

In (1), tp and fp are the true positives (cases matched by this individual)
and the false positives (controls matched by this individual) respectively, and
case num is the number of all cases in the data set. Here in the coverage cal-
culation, we do not directly divide tp by case num. Instead, we calculate their
logarithm value before the division. In this way, the fitness is less sensitive to
coverage when the coverage is big enough. The fitness is the product of the two
factors so that neither the accuracy nor the coverage can be low. The exponent
x of the accuracy controls the weight of the two factors in the fitness. And we
multiply it by 10 so that the resulting range will have better readability. In fact,
(1) is used as a global assessment of rule quality throughout the system. Differ-
ent x values are chosen for specific situations by experimenting with various x

values in these situations.

Conjunctive Learner The conjunctive learner (CL) is the agent that mines
on the non-temporal simplex data set to discover conjunctive rules.

The base learning algorithm used for CL is the PART algorithm (see [4]).
It forms rules from pruned partial decision trees built using C4.5 ’s learning
method (for C4.5, see [5]). The resulting rules are in the form of conjunctive rules.
PART has no global optimization and therefore can return a rule immediately
after discovering it. This gives us the ability to interrupt it halfway with partial
results, allowing run time limits for CL and easy synchronization with other
learners. In our system we use an implementation of PART directly from the
machine learning package WEKA (see [6]).

As PART is designed for creating rule sets for classification problems, it
is necessary to do some pre- and post-learning work to make the result more
suitable for our cooperative mining problem.

10

The pre-learning tasks are mainly used for data reduction. The original data
set contains so many attributes (possible diagnostic codes) that the PART al-
gorithm would generate rules with a large amount of “junk” predicates and it
would take a long time to run. Therefore, it is necessary to reduce the number
of distinct attributes.

In the pre-learning task, we use a relevance factor to calculate how much an
attribute can discriminate the cases and controls (inspired by [7]). The equation
is:

RF (A) = Pr(A) × log

(

Pr(A|case)

Pr(A|control)

)

(2)

In (2), A is the attribute being calculated, Pr(A) is the probability of A having
value true in the data set, and Pr(A|case) and Pr(A|control) are the probabili-
ties of A having value true given the instance is a case or a control respectively.
This relevance factor will have a high absolute value if an attribute is frequent
enough and it is relevant for discriminating the cases and controls. In the actual
calculation, these probability values are estimated by the corresponding frequen-
cies in the non-temporal data set. respectively. A relevance factor threshold is
set to get those relevant attributes into CL’s data input.

The post-learning task is used for generalizing the results from PART. The
PART algorithm favours the accuracy more than we should do in this mining
problem and consequently makes the coverage of the rules very small — too
specialized for combination. We need to relax the condition of the rules and
make them cover more instances, at the cost of lowering down their accuracy
a bit. We do not harm the mining result by doing this, because in our specific
application, having some false positives is acceptable as long as we have large
coverage on the disease instances. The fitness measure in (1) is used to balance
the coverage and accuracy.

The post-learning task is done in two stages:

1. Rule merging: every pair of rules in the result is checked by the fitness
measure to see if we can get a better rule by using the intersection of the
two rules’ conditions as the condition of the new rule. We do this as a hill-
climbing process in iterations. In each iteration, the pair that can lead the
biggest fitness boost is chosen and one (both) of them is (are) replaced by
the new rule if the new fitness is higher. The iterations continue until no
replacement can be done.

2. Predicate pruning: For each rule, we test each predicate to see if we can
gain a higher fitness by removing this predicate. This is also a hill-climbing
process and done in iterations. In each iteration, the predicate resulting in
the biggest fitness boost if removed is chosen for deletion. The iterations also
continue until no deletion can result in a fitness increase.

These post-learning stages can simplify the conditions of the rules, making
them more generic. This is better for the combination.

11

Subrule Checking in Both Learners Subrule checking is done in both SL
and CL before sending their results to AgCBN to prepare more candidates for
combination. A subrule is one whose condition is a subset of the original condi-
tion (and for sequence rules, the events should also appear in the same relative
order as the original rule). For each rule, all the subrules of this rule will be
checked against a fitness threshold over the entire data set D. All qualified sub-
rules are sent together with the original result set to AgCBN as the result of an
individual learner.

Although this subrule checking process seems to be similar to some earlier
tasks in the learners, e.g. the post-learning task in CL and the deletion of an
event in the mutation genetic operator in SL, its purpose is different from them.
Tasks like post-learning and genetic operators are mainly used for replacing a rule
with a new one. They can help increase individual rule quality. But the subrule
checking process here is aimed at producing as many good rules as possible for
the combination. All subrules, whether better or worse than the original ones,
are put to the rule set if their fitnesses are higher than the threshold. This brings
more “materials” for the combination while the earlier tasks aim at increasing
the overall rule quality.

Combination Agent The cooperation in the CoLe model is mainly achieved
by AgCBN combining the results from the learners. In our specific problem, the
combination has to produce hybrid rules from conjunctive and sequence rules.

In AgCBN, the combination inputs are srules and crules, which are the result
rule sets of SL and CL, respectively. The combination is done in several stages:

1. Direct combination: Combine a sequence rule with a conjunctive rule (in-
cluding subrules)

2. Crossing combination: Covert a predicate to an event (or vise versa) and
combine with existing hybrid rules

3. Rule pruning: Remove duplicates and unnecessary parts
4. Working data set generation: Generate the working data set for the next

iteration to the learners
5. Hints to SL: Give hints to SL according to CL’s results.

In these stages, a rule’s quality is also measured by the fitness calculated by (1).
And a fitness threshold ft is set before hand. The combined rules with fitness
greater than ft will be put into the hybrid rule set hrules. We assume all these
rule sets contain only rules with a conclusion “diabetes”, because the knowledge
we intend to discover is “what a diabetes patient should be like” instead of “what
a diabetes patient should not be like”.

In direct combination, if a rule in srules or crules already has greater fitness
than ft, it will be put to hrules directly. Then each possible direct combination
of a sequence rule in srules and a conjunctive rule in crules will be checked. If
this new hybrid rule has a higher fitness than ft, it is also put into hrules.

The second stage, crossing combination, uses the hybrid rules in hrules after
the first two stages, together with srules and crules, as the base. This is a deeper

12

combination than the first two stages. The basic idea of crossing combination
is to convert some diagnostic predicates in conjunctive rules to events and put
them into the sequence parts of a hybrid rule to see if the hybrid rule’s fitness
increases, or vise versa. The conversion can be made because both the diagnostic
predicates and events are on the same set of possible diagnoses. For example,
we can convert a predicate “Diagnosis A = true” to an event “[Diagnosis A]”.
In this way, the use of one learner’s result to help the other is maximized. A
hill-climbing method is used in the iterations to find the best results for each
hybrid rule’s combination. The detailed algorithm is given in Fig. 5.

After the combination stages, the resulting rule set hrules is pruned to elim-
inate duplicate rules and useless conditions according to the following criteria:

– Single-event sequences are converted to a predicate since a single event can-
not indicate any temporal order.

– A predicate that has a counterpart in the sequence part is erased because
the condition in the sequence part is stronger than the conjunctive part.

– Duplicate rules are erased.

AgCBN then generates the working data sets for the two learners. The first
working data set is generated randomly from the whole data set before the min-
ing work starts. Later ones are generated according to the combination results,
based on the previous working data set. We denote the previous working data
set and the new (currently generating) one as Wo and Wn respectively. AgCBN

first eliminates the correctly covered instances (true positives), as well as the
true negatives covered by conjunctive rules predicting controls, from Wo. The
remaining instances can take only up to 80% in Wn. The rest of pending instances
in Wn are randomly picked from the whole data set. By doing this, AgCBN can
guide the miners to focus on the cases that have not been covered by existing
rules without driving the miners into smaller and smaller corners.

The predicates of the conjunctive rules from CL may contain some key indi-
cators of diabetes. So they can act as topic specific knowledge to SL. After the
combination, AgCBN will extract the predicate attributes from CL’s result, and
make some candidate sequence segments from them to help SL’s work. These can-
didate segments can be used by the mutation operator in SL’s genetic algorithm.
For example (shown in Fig. 6), we have conjunctive rules cr1 and cr2 coming
from the conjunctive rule learner. Let evt1, · · · , evt5 correspond to pre1, · · · , pre5.
We have sequence segments ss1, ss2, · · · , ss8 to be used as candidate individual
parts in SL.

We do not have a counterpart for giving hints to CL, because CL is using an
existing implementation and we have few ways to influence the PART algorithm
directly.

4 Experimental Evaluation

Our cooperative learning system has been tested with different experiments to
show the advantage of cooperation, as well as the various improvements in the
system.

13

Algorithm CrossingCombination

input: D //Diabetes census data set
R //Hybrid rule set after the first two combination stages
S //Result of SL, the sequence rule set
C //Result of CL, the conjunctive rule set

output: H //Hybrid rule set

E: list of events converted from predicates
P : list of predicates converted from events
h1: new hybrid rule from combination
R0, R1: hybrid rule set scratch for loops

01 begin
02 //Predicates to events
03 foreach conjunctive rule c in C do
04 foreach predicate p in c do begin
05 covert p to event e;
06 insert e into E;
07 end
08 R0=R;
09 while not R0 empty do begin
10 foreach hybrid rule h in R0 do begin
11 h1=h;
12 foreach event e in E do begin
13 append e to h1’s sequence part;
14 fitness calculation(h1,D);
15 if h1.fitness>h.fitness then begin
16 insert h1 to R1;
17 insert h1 to H;
18 end
19 end
20 end
21 R0=R1;
22 R1.clear;
23 end
24 //Events to predicates
25 foreach sequence rule s in S do
26 foreach event e in s do begin
27 covert e to predicate p;
28 insert p into P ;
29 end
30 R0=R;
31 while not R0 empty do begin
32 foreach hybrid rule h in R0 do begin
33 h1=h;
34 foreach predicate p in P do begin
35 insert p to h1’s conjunctive part;
36 remove all diagnostic codes indicated by p from h1’s sequence part;
37 fitness calculation(h1,D);
38 if h1.fitness>h.fitness then begin
39 insert h1 to R1;
40 insert h1 to H;
41 end
42 end
43 end
44 R0=R1;
45 R1.clear;
46 end
47 return H;
48 end

Fig. 5. Crossing combination algorithm

4.1 Data Preparation

The diabetes medical control data for our learning system comes from the Cal-
gary Health Region. The data contains population born before 1954 and have
been living in Calgary continuously since 1994. We want to analyze the medical
records 5 years prior to the identification of diabetes. So we keep only the in-
dividuals who have no diagnoses of diabetes before 2000 but have at least one
diabetes diagnosis in 2000 (April 1, 2000 to March 31, 2001), i.e., first diagnosed
as diabetes patients in 2000. They are the cases in our data. For each of the

14

cr1 : pre1 ∧ pre3 =⇒ disease

cr2 : pre2 ∧ pre4 ∧ pre5 =⇒ disease

can generate sequence segments:

ss1 : evt1 → evt3

ss2 : evt3 → evt1

ss3 : evt2 → evt4 → evt5

ss4 : evt2 → evt5 → evt4

ss5 : evt4 → evt2 → evt5

ss6 : evt4 → evt5 → evt2

ss7 : evt5 → evt2 → evt4

ss3 : evt5 → evt4 → evt2

Fig. 6. Hints from CL to SL example

cases, we also give 2 controls who are in the same sex and similar age but have
no diabetes diagnoses at all.

In the original data set, there are three tables. One is the registration table
containing ID, age, gender, and class (case or control). The other two are medical
records, one for hospital (HOSP table, see Table 3) and the other for clinical
services (MD table, see Table 2). The medical records are mainly the diagnostic
codes given by the doctors, together with the date of service. In Tables 1, 2 and
3 the sample data tables are shown (some unused fields are omitted).

Table 1. Sample data table REG

ALT ID CC GENDER YEAR

2 0 M 1921
3 0 F 1922
5 0 F 1946
6 0 F 1930

19 1 M 1940
... ...

We put the clinical and hospital medical records together and only extract the
records from 1995 to 1999 (April 1, 1995 to March 31, 2000) for both the cases
and controls to find knowledge in the 5-year period before diabetes diagnoses.

The first step of preparation is to aggregate the diagnostic codes. The codes
are defined by the International Classification of Diseases, 9th revision, or ICD-9
for short (see [8]). A full-length ICD-9 code is often 5–6 digits long and there are
over 17000 possible codes. These are too many for learning because it will result

15

Table 2. Sample data table MD

... SERV SDATE DIAG1 DIAG2 DIAG3 ALT ID

... 2000-03-06 2

... 2000-03-25 595 2

... 2000-03-14 V70.0 2

... 1997-08-11 706 3

... 1997-06-27 594.9 788.0 3

... 1995-12-07 466 5

... 1999-12-14 733 5

... 1999-10-08 174 5

... 2000-02-25 780.5 6

... 2000-02-25 780.5 6

... 1999-09-15 785 6

... 1997-05-06 783 717.8 719.4 7

... 1997-10-27 723.1 7
... ...

Table 3. Sample data table HOSP

ADMIT DX 1 DX 2 DX 3 DX 4 DX 5 ... ALT ID

1996-12-21 9975 5968 E8788 7140 36610 ... 3
1997-06-19 57420 ... 3
1997-06-30 57410 V1301 ... 3
1998-04-08 9962 E8781 ... 7
1999-04-16 99677 72709 2851 E8781 ... 7
1999-08-12 5409 ... 7
1998-04-27 9962 99813 E8781 ... 7

... ...

in a very sparse data set. We use a higher-level abstraction, the ICD-9 Basic
Tabulation List[9], to aggregate the diagnostic codes. In this list, the diagnostic
codes are abstracted to 307 disease types in about 70 categories. And we also
gain a clearer logical relation in the diagnostic codes.

The second step is to split the data set into sequence and conjunctive simplex
data sets. For the sequence simplex data set, we order each instance’s diagnoses,
both hospital and clinical, by the date of service, and use this diagnosis sequence
as the instance’s sequence data. The conjunctive simplex data set contains two
parts. One part is the basic information of the instances: age, gender and statis-
tics including the number of medical services each year and average number of
medical services per year. The other part is a boolean table for the diagnoses. If
an instance ever had a diagnosis, the corresponding field has the value true, and
vice versa.

There were two data sets prepared for the testings. A small data set contains
1800 instances, with 600 cases and 1200 controls. The corresponding working
data set for the learners contains 900 instances. This small data set is used for

16

most of the tests and comparisons in Sections 4.2 and 4.3. We also prepared a
large data set with all valid instances we have, containing 9450 instances (3150
cases and 6300 controls). The corresponding working data set size is 3150 in-
stances. Test runs on this larger data set were made to get rules for evaluation of
the knowledge discoveries in Sect. 4.4. In Table 4 some detailed statistics about
the two data sets are presented.

Table 4. Data sets

Data set Small Large(full)

Size 1800 9450
Cases 600 3150
Controls 1200 6300

Number of aggregated diagnostic codes 308
Number of events 81087 436776

4.2 The Effect of Combination

Our first evaluation is the comparison of the single learners and the combinations
so that we can show the effect of combination in our system. We had five test
runs with different fitness thresholds in AgCBN. These fitness thresholds control
how a rule is qualified (see Sect. 3.2). Table 5 shows these fitness threshold
values. Other parameter values were decided by some experiments before hand
so that their values used in the tests were reasonable and the same for all our
tests here.

The resulting hybrid rules are focused on in our evaluation. The first compar-
ison is the number of rules with different origins. If a rule is the contribution of a
single learner, the origin is the corresponding learner. This includes qualified orig-
inal rules from a learner, as well as the qualified subrules in the subrule checking
stage in AgCBN. The rules with contributions from both learners take “Combina-
tion” as their origins. When our system records the origins, single-learner origins
have higher priority, i.e. when a rule discovered by a single learner happens to be
re-discovered by AgCBN, we give credit to the single learner instead of AgCBN.
In Table 5 we can clearly see that the combined rules are much more than the
ones with origins SL or CL. This is the first indication that the combination can
produce more potentially good rules according to our fitness measure. Addition-
ally, these numbers also show that SL can discover more qualified rules than CL.
This is because:

1. Sequence rules are naturally more complex than conjunctive rules, and thus
better for expressing complex knowledge about diabetes

2. CL’s base algorithm is intended for classification problems instead of getting
descriptive knowledge (although our post-learning work improves this)

17

Table 5. Tests with different thresholds

Test No. 1 2 3 4 5

Fitness threshold 3.8 3.9 4.0 4.1 4.2

SL 263 104 25 13 5
Rule CL 0 0 3 0 0
origins Combination 5745 1852 743 287 72

Total 6008 1956 771 300 77

SL 3.973 4.089 4.162 4.282 4.251
Fitness CL N/A N/A 4.183 N/A N/A
averages Combination 4.054 4.117 4.258 4.312 4.344

Overall 4.051 4.116 4.254 4.311 4.338

SL 67.18 61.73 65.36 26.62 33.00
True positive CL N/A N/A 46.333 N/A N/A
averages Combination 56.55 55.66 45.92 26.49 25.25

Overall 57.02 55.98 46.55 26.49 25.75

However, this does not mean CL has no contribution. Every combined rule con-
tains parts from CL’s results, either predicates or events converted from conjunc-
tive rules’ predicates (otherwise the origin will be SL instead of Combination).

The average fitness of the rules by origin is calculated as well. The averages
differ as the thresholds are different. The average fitness of the combined rules
is a bit higher than the ones from single learners. This again indicates that
combination increases the quality of the discovered knowledge, or in another
word, produce better knowledge from two types of materials.

In each test run, the combined rules have comparable true positive coverage
with the ones from single learners. This shows that our combination strategies
are not overfitting the given data. Although the true positive coverages of com-
bined rules are a bit lower than the ones of individual miners, this shows that
the combined rules have higher accuracy, because our fitness measure in (1) is
balanced between coverage and accuracy and the combined rules have higher
fitness.

In addition to the summaries for the whole rule sets, summaries for the top 10
(by fitness) rules in each test are also presented here in Table 6. From this table
we can see that most of the top 10 rules are combined rules. And in the only
test with rules from SL in the top 10, the combined rules are obviously better
than the ones from SL. For the same reason indicated above, in Test No. 2 the
true positive average of rules from SL is a bit higher than that of the combined
rules, indicating combined rules have higher accuracy.

In summary, the results of the five test runs shown in Table 5 indicate that
our combination/cooperation model successfully makes much more better rules
out of the raw discoveries from the individual learners.

18

Table 6. Tests with different thresholds (top 10 rules)

Test No. 1 2 3 4 5

Fitness threshold 3.8 3.9 4.0 4.1 4.2

SL 0 2 0 0 0
Rule CL 0 0 0 0 0
origins Combination 10 8 10 10 10

Total Top 10

SL N/A 4.594 N/A N/A N/A
Fitness CL N/A N/A N/A N/A N/A
averages Combination 4.769 4.684 4.821 4.696 4.491

Overall 4.769 4.666 4.821 4.696 4.491

SL N/A 24.50 N/A N/A N/A
True positive CL N/A N/A N/A N/A N/A
averages Combination 23.80 23.38 24.40 23.20 25.60

Overall 23.80 23.60 24.40 23.20 25.60

4.3 Particular Experiments

In addition to the comparisons of the rules from different origins in the previous
section, some particular experiments are also made to show the contribution of
various knowledge-based designs in our system.

Hints in Sequence Learner In Section 3.2 we presented how AgCBN generates
hints from CL’s results and gives them to SL to make more cooperation possible.
And an example was also given in Figure 6. This mechanism was specially tested
and evaluated to prove its contribution.

The tests are to run SL’s genetic algorithms with and without hints, to see if
the results will be different in quality. To get some valid hints for the tests, the
run log in test No. 3 in Table 5 was used and we extract the hints and working
data set in the tenth iteration from it. The tests made here all ran on this working
data set, and the ones with hints used this hint set. To make sure we have a
general result without the interference of random numbers, we repeat each test
individually for five times. So totally we have 5 runs with hints, and 5 without
hints. In each run, we use a generation size of 300, evolve the individuals for 50
generations, and finally filter out those individuals with fitness greater than 2.8.

Table 7 shows the qualified individual numbers for each test run. From the
numbers and the averages, an obvious conclusion is that the runs with hints
generate more qualified individuals. More detailed observations are made on the
evolutionary process. In Fig. 7, average fitnesses of the first 10 generations in
each test run’s evolutionary process are drawn in lines. We can see the average
fitnessses for test runs with hints increase much faster than the ones without
hints.

19

Table 7. Number of qualified individuals

Generation size 300
Generation limit 50
Fitness threshold 2.8

Testing No. 1 2 3 4 5 Average

With hints 13 33 33 51 63 38.60
Without hints 7 9 12 15 28 14.20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8 9

G
en

er
at

io
n

av
er

ag
e

fit
ne

ss

Generation number

Sequence learning with and without hints (first 10 generations)

With hints
Without hints

Fig. 7. Average fitness with and without hints (first 10 generations)

From the results shown in Table 7 and Fig. 7, we can have the conclusion
that our SL does benefit from hints so that it can start faster and get more
potentials from the data.

Intellicut in Genetic Algorithm The special genetic operator intellicut is
another attempt to speed up our genetic algorithm in SL and improve the result
quality (see Sect. 3.2). The intellicut run logs were extracted from the five test
runs presented in Table 5 and were analyzed to see the contribution of intellicut
in our genetic algorithm in SL.

Table 8 shows our analysis. The total number of intellicut operations that
takes place is 1350000 in the five test runs with 20 iterations each and 3 repe-
titions of the evolutionary process in each iteration. In all these occurrences of
intellicut, about 40% successfully increase the individual fitness. And the overall
average fitness boost in the 1350000 occurrences is 0.5098, from 2.8532 to 3.3630.
This shows the introduction of intellicut in our sequence learning genetic algo-
rithm is a success.

20

Table 8. Statistics about intellicut

Total number 1350000
Resulting fitness increases 546516
Fitness increase ratio 40.48%
Average fitness before intellicut 2.8532
Average fitness after intellicut 3.3630

Pre- and Post-learning in the Conjunctive Learner In CL, we have pre-
and post-learning tasks in addition to the PART algorithm (see Sect. 3.2). These
tasks were also tested and evaluated.

The pre-learning task is mainly used to reduce the running time of the PART
algorithm, and to reduce junk predicates in the results. Test runs with and with-
out the pre-learning process were made to see the effects. In our experiments, a
PART run without pre-learning is only done once because PART is an algorithm
without any randomness. But we need to run PART with pre-learning multiple
times because randomness is introduced in our pre-learning task.

Table 9. PART tests with and without pre-learning processing

Run Average Average
Test

time fitness condition size

Without pre-learning 265.811s 1.765 26.854
Pre-learning Average 3.373s 1.655 4.390

With pre-learning 1 3.190s 1.628 4.381
With pre-learning 2 3.096s 1.628 4.381
With pre-learning 3 4.832s 1.710 4.409

In the results of the shown in Table 9, the most obvious difference is the
running time. The test run without pre-learning takes much longer than tests
with pre-learning. On average, the rules from a PART run without pre-learning
contain much more predicates. While the average fitness shows not much differ-
ence, we can tell many of the predicates in the results without pre-learning are
junk predicates. A direct consequence of this is a much longer running time for
the post-learning task.

The post-learning task is to increase the coverage of the rules from PART
and to generalize them. The run logs in the test runs shown in Table 5 were
extracted and are presented in Fig. 8. There are 100 pairs of points in the figure,
corresponding to the 100 iterations in our five tests, to show the boost of fitnesses
in post-learning procedures. We can clearly see that post-learning increases the
quality of the rules according to our fitness measure in (1).

21

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 fi
tn

es
s

CL run number

Average fitness before and after post-learning

Before
After

Fig. 8. Post-learning: Increased fitness

4.4 Knowledge Discovered

In this section the discoveries of our test runs on the full data set (with 9450
instances, see Table 4) are examined and analyzed. We find in our results there
are not only rules matching known facts about diabetes, but also promising and
interesting discoveries that are new to the medical experts.

The most important discovery of our learner is the relation of hypertension
and diabetes. In the medical field, it is already known that diabetes has a tight
relation with hypertensive diseases. There is a high chance that a diabetes patient
also has hypertensive diseases. In our test runs, the diagnoses for hypertensive
diseases were identified in many stages. CL’s run logs show that the pre-learning
task picked “hypertensive diseases” as one of the most discriminating diagnoses.
In SL, the hypertensive diseases diagnoses appear in over 90% of the best indi-
viduals in each generation. And in the final hybrid rule sets 100% of the rules
have either “hypertensive diseases” in the sequence part as an indicative event,
or “hypertensive diseases=true” in the conjunctive part. With such high occur-
rences of hypertensive diseases diagnoses in our results, it is a very exciting result
to the medical experts.

Another discovery is about a general diagnose “signs, symptoms and ill-
defined conditions”. This diagnosis also has high occurrences in our results.
However, unlike the hypertension diagnoses, this diagnose cannot tell us about
any specific diseases or disorders, but only some indication in general that the
patient does not feel well. In particular, many rules come in the form like Fig.
9, where the “signs, symptoms and ill-defined conditions” diagnoses appear re-
peatedly in the sequence part. This is an indication that the patients may have
been feeling uncomfortable for long before diabetes related diagnoses are made.

22

And this is not a rare phenomenon. Among all our cases there are about 25%
who match the rule in Fig. 9.

Part Condition (ICD-9) Description

Conjunctive {466,480-519}=1 Other diseases of the respiratory system

{780-799} Signs, symptoms and ill-defined conditions
{780-799} Signs, symptoms and ill-defined conditionsSequence
{780-799} Signs, symptoms and ill-defined conditions
{401-405} Hypertensive disease

Fig. 9. A hybrid rule

Another frequent diagnosis, “other diseases of the respiratory system”, has
an average of over 80% to appear in all the final hybrid rules (the rule in Fig. 9 is
one of them). In medical doctors’ eyes, this discovery does not have an obvious
explanation (according to the experts we have talked to so far). This should be
an interesting topic for the medical experts.

5 Related Work

According to the categories for cooperative search problems discussed in [10]
(knowledge-based search is essentially the core in data mining methods), the
CoLe model has characteristics from both dividing the problem into subproblems
— split of the heterogeneous data set into simplex data sets and use of multiple
miners — and improving on the competition approach — result segments from
different miners are competing to appear in the combined rules. Depending on
the way the heterogeneous data set is split and the strategies for combination
in AgCBN, the CoLe model’s similarity to dividing the problem into subproblems
and improving on the competition approach may vary.

More importantly, the CoLe model emphasizes the combination of the dif-
ferent types of rules, which is not a key characteristic in any of the existing
cooperative distributed methods. The combination is not only an effort to make
the cooperation more thorough but it also produces more, respectively better
knowledge. This can lead to greater synergetic effects.

Compared to some existing applications, the CoLe model also has differences
and improvements to them.

In [11] a cooperative heterogeneous theorem proving system is presented.
This system utilizes two types of provers, namely universal provers and special-
ized provers respectively. In the proving process, the provers exchange selected
clauses periodically with each other and integrate received clauses into their own
search states. This system is referred to as the TECHS (TEames for Cooperative
Heterogeneous Search) model. Our CoLe model has some design similarities with
TECHS. However, the major difference is that CoLe’s combination of rules is

23

done in a central agent AgCBN, while in TECHS each agent is responsible for its
own integration of others’ results. The central combination agent in CoLe can
have a global view on all the different types of results and thus ha more potential
to gain good rules through combination.

Viktor et al. developed a cooperative learning framework named Coopera-
tive Inductive Learning Team (CILT) in [12]. In this framework, several agents
form the cooperative mining team. The agents are either machine learners —
implementations of machine learning algorithms — or human learners — in-
terfaces to human experts. The machine learners each employ a different data
mining technique to discover knowledge from data; and the human learners ob-
tain knowledge from human experts. The learning is done in iterations and the
whole team will finally come to a knowledge fusion phase to combine the learn-
ers’ results and form the team rule set. Although in CILT different algorithms
and different types of learners are used, they all produce the same (compatible)
type of results. This leads to very few potentials of knowledge reproduction. In
CoLe, we consider the results from the learners to be heterogeneous. Combining
these heterogeneous results can gain hybrid results that can not be achieved by
any single learner.

In both comparisons above, we have a common difference that was not men-
tioned: CoLe proposes the split of a heterogeneous data set into simplex data
sets, while in TECHS and CILT, the data sets are not split. This emphasizes the
concept that we should take the characteristics of the data into account and use
suitable algorithms for different parts of the data. In this data set definition we
can also let the combination agent split the heterogeneous data set dynamically,
depending on the specific instantiation of our CoLe model.

6 Conclusion and Future Work

We proposed a cooperative multi-agent mining model — CoLe. In CoLe, mul-
tiple learners use different algorithms to mine a heterogeneous data set. These
results are sent to a combination agent to create hybrid results and extract use-
ful information as feedbacks to the learners. CoLe highlights the interaction and
cooperation of different algorithms and the combination of different-typed re-
sults from different algorithms, resulting in synergetic improvements against the
single algorithms.

We implemented a mining system using our CoLe model, aimed at mining
knowledge from diabetes data with both temporal and non-temporal informa-
tion. We use a sequence learner for temporal knowledge mining. This learner
contains our genetic algorithm for sequential pattern discovery, with a new
knowledge-based genetic operator intellicut and targeted beaviours to the mu-
tation genetic operator. Non-temporal knowledge is mined by our conjunctive
learner, using an existing implementation of PART algorithm, with our pre- and
post-learning improvements. The combination agent in this system contains our
strategies for combination of the two types of knowledge, as well as feedback
generation for cooperation.

24

Experiments showed clearly how our combined hybrid results enhance and
strengthen the raw results from single miners. Detailed particular tests were
also made to show that our various knowledge-based targeted strategies played
important roles to improve the individual learners’ results. Additionally, in the
medical field, these results not only confirmed known knowledge about diabetes,
namely that hypertension has a tight relation with diabetes, but also found some
observations new to the medical experts.

The implemented learning system is the first proof of concept for our CoLe
model. While it shows good results in the experiments, we have a lot of additional
work to do.

First, more implementations of cooperative learning systems using CoLe
should be made to show that our CoLe model is indeed a generic paradigm
for various learning/mining problems. In our presented implementation, we only
have two learner agents. In future work, we should apply our CoLe model to a
more complex heterogeneous situation where we have more different algorithms
to be introduced into the learning systems. Besides complex heterogeneous data
sets, the CoLe model is also useful for the situation where the data calls for dif-
ferent levels of abstraction or different levels of emphasis. We can let the learner
agents use processed data with different abstraction, or the same algorithm with
different parameters to fit such situation.

On the conceptual side, more ways are needed to provide feedback from one
learner (or the combination agent) to others. This will make the cooperation
more powerful and thus result in greater synergetic effects.

On the medical data mining side, future work should include: using different
levels of abstractions on the data; considering both the temporal order and
relative time for the diagnoses; making use of other information together with
diagnoses; learning on data sets where the distribution of disease cases is more
close to general population. The application s of data mining to data on more
diseases is also promising.

References

1. Fayyad, U., Uthurusamy, R.: Evolving data into mining solutions for insights.
Communications of the ACM 45 (2002) 28–31

2. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley Professional (1989)

3. Chan, B., Denzinger, J., Gates, D., Loose, K., Buchanan, J.: Evolutionary behavior
testing of commercial computer games. In: Proceedings of the 2004 Congress on
Evolutionary Computation, Portland, Oregan, IEEE Press (2004) 125–132

4. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.
In: Proceedings of the 15th International Conference on Machine Learning, Morgan
Kaufmann (1998) 144–151

5. Quinlan, J.R.: C4.5: Programs for Machine Learning. The Morgan Kaufmann
Series in Machine Learning. Morgan Kaufmann (1993)

6. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann (1999)

25

7. Liu, H., Lu, H., Yao, J.: Toward multidatabase mining: Identifying relevant
databases. IEEE Transactions on Knowledge and Data Engineering 13 (2001)
541–553

8. Karaffa, M.C., ed.: International Classification of Diseases, 9th Revision, 4th Edi-
tion, Clinical Modification. Practice Management Information Corp., Los Angeles
(1992)

9. World Health Organization: International Classification of Diseases, 9th Revi-
sion: Basic Tabulation List with Alphabetical Index. World Health Organization,
Geneva (1978)

10. Denzinger, J.: Conflict handling in collaborative search. In Tessier, Chaudron,
Müller, eds.: Conflicting Agents: Conflict Management in Multi-agent Systems,
Kluwer Academic Publishers (2000) 251–278

11. Denzinger, J., Fuchs, D.: Cooperation of heterogeneous provers. In: Proceedings
of the 16th International Joint Conference on Artificial Intelligence (IJCAI’99),
Stockholm, Sweden, Morgan Kaufmann (1999)

12. Viktor, H.L., Arndt, H.: Data mining in practice: From data to knowledge using
a hybrid mining approach. The International Journal of Computers, Systems and
Signals 1 (2000) 139–153

