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ABSTRACT 

The objectives of this study are to survey analytical and computational 

exhaustible resource models and then to develop a hybrid reservoir production 

model encompassing desirable properties of both approaches. 

Analytical models tend to give only a limited role to geological and reservoir 

engineering considerations in oil production. From these considerations it is 

evident that the physical properties contribute to the individuality of reservoir 

production. Any attempt to apply theoretical findings to a specific exhaustible 

resource is virtually destined to fail because of the complications omitted. 

Computational models tend to be highly specialized and only through 

significant simplification and expansion can they be adjusted to handle economic 

relationships. 

Both analytical and computational models have strengths and limitations. 

For economic analysis there appears to be considerable scope for developing 

hybrid models which incorporate the desirable features of both. The linear 

programming model developed in this study incorporates the physical properties 
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of a specific reservoir and the economic relationships important to decision 

making. Results of the after-tax model differ from what is expected by economic 

intuition and finding the cause of this deviation reveals the power of the 

computational approach. 
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Chapter 1 

Introduction 

1.1 General Remarks 

How can exhaustible resources be allocated efficiently over time? Extensive 

progress has been made in answering this question since the OPEC-induced crude 

oil shortage of 1973. Even before this time, there was concern over optimal 

resource use; see Hotelling (1931). To answer the question of efficient allocation 

of resources and to understand the performance of the resource industries, 

theoretical models have been constructed, and these models have largely succeeded 

in revealing general efficiency patterns or relationships common to all exhaustible 

resources. 

To a greater extent than any other exhaustible resource, petroleum has 

come to dominate world concern. Thus, oil production models have been 

extensively developed and widely applied. Through the use of oil production 

models analysis has been made of key relationships among capital flows, costs, 

revenue flows, rates of return, aggregate production, rates of production, and 

timing of production. See, for example, Kuller and Cummings (1974). 
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The conclusions that follow from these analytical models suggest how 

exhaustible resources should optimally be depleted. The decision concerning the 

amount of production is usually based on the relationship between marginal 

revenue, marginal cost, and the user cost. This relationship is discussed in greater 

detail in Chapter 3. Associated key elements for the decision include: expected 

price trends, the existence of a backstop technology, and the influence of a tax 

structure. All of these factors contribute to an understanding of the efficient 

allocation of an exhaustible resource over time. 

However, the relationships embodied in such analytical models give only a 

limited role to geological and reservoir engineering considerations in oil production. 

For making real-world decisions, adequate attention must be given to these 

disciplines and their contribution to production decisions. For example, the 

geological makeup of the reservoir rock in terms of structure and placement of 

fluids affects the amount of recoverable reserves and rate of recovery. Porosity, 

permeability, and water saturation levels differ among reservoirs. Through 

reservoir engineering the size of the reservoir and feasible rate of recovery 

combine to show the individuality of reservoir production. All these reservoir 

properties contribute to the uniqueness of reservoirs as detailed in Chapter 2. 

Thus, to group all reservoirs into one stylized framework exposes one limitation 

of the theoretical models. Any attempt to apply theoretical findings to a specific 

exhaustible resource is virtually destined to fail because of the complications 
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omitted. 

Outside the mainstream economics literature exists a host of modelling 

approaches incorporating details of the technology of recovery for specific 

exhaustible resources. Computational approaches allow the assembly of models 

incorporating the specific characteristics of an actual reservoir. However, to 

capture all the significant properties and relationships, a computational model can 

easily become highly complex. For example, the Lasdon et al. (1986) gas model 

employs a complex equation to properly define the quantity of gas produced as 

a non-linear function of the gas pressure on a monthly basis. To expand this 

model to the life of the gas reservoir rather than the five months that are used 

would complicate the model considerably. Nevertheless, it is these computational 

models as formulated by petroleum geologists, reservoir engineers, and operation 

researchers which have elements that economists might want to borrow to breathe 

more realism into economic models of depletion. 

From an economic standpoint, however, the prime disadvantage of such 

models lies in their highly specialized nature. Usually, they cannot be used directly 

to analyze questions of economic interest without significant simplification and 

expansion to include economic components. Again an example of this is the gas 

model of Lasdon et al. (1986). The model shows that through "proper control 

of declining pressure, cumulative production can be increased, but there are very 
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few economic factors in this model. No prices or costs are incorporated, and the 

time horizon is only five months. Major changes would be necessary to allow this 

model to be used for economic analysis. 

Both analytical and computational models have strengths and limitations. 

For economic analysis there appears to be considerable scope for developing 

hybrid models which incorporate the desirable features of both. 

1.2 Objectives of the Thesis 

Several specific objectives are pursued in this work. One principal objective 

is to survey theoretical approaches to exhaustible resource depletion. This survey 

identifies the most important findings, the elements most critical for economic 

models of resource depletion, and the principal shortcomings. Since the literature 

is so vast, only selected approaches are surveyed. 

A second objective is to survey computational approaches to resource 

depletion, some from outside the mainstream economics literature. In this survey 

certain components are identified that might best be included in modified 

economic models. Again this survey is selective. 
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A third objective is to develop a computational economic model embracing 

elements drawn from both theoretical models and computational models. A linear 

programming model is constructed to analyze the optimal depletion of a petroleum 

reservoir, taking account of economic factors and geological and technological 

considerations. 

The final objective is to show, using the programming model, how the 

inclusion of taxes and changes in crude oil prices, discount rates, and tax rates may 

alter the optimal depletion path. Various scenarios are examined to determine the 

sensitivity of optimal decisions to these changes. 

1.3 Format of the Thesis 

The rest of the thesis is presented in six chapters. The content of these 

chapters is as follows. 

Key geological and reservoir engineering considerations are discussed in 

Chapter 2. These are foundational elements necessary for a discussion of reservoir 

depletion. They are used later to pinpoint some of the limitations of the analytical 

models. 
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Analytical models of exhaustible resource production are then discussed in 

Chapter 3. These types of models form the basis for economic research on the 

efficient allocation of resources over time. 

Computational models of resource depletion are surveyed in Chapter 4. 

These models range from petroleum reservoir production models to aggregate 

energy supply and demand models. Their inclusion of real world conditions and 

constraining factors produce model results that add to the conclusions of 

theoretical models. 

The linear programming model of oil production is formulated in Chapter 

5. The production profiles included in the model are described in the context of 

Leontief input-output production functions. Also discussed are the constraints on 

production, EOR techniques, and a tax structure. 

Model results for different scenarios are presented and discussed in Chapter 

6. These scenarios include the representation of a tax structure, different discount 

rates, changes in the price, changes in the tax rate, and deficit restrictions. Results 

of the after-tax model deviate from what is expected by economic intuition and 

finding the cause of this deviation reveals the power of the computational 

approach. 
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Concluding remarks are provided in Chapter 7. In particular, the success 

of incorporating ideas from computational models to enhance the findings of 

theoretical models is discussed. Further modifications and areas of research are 

also suggested. 
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Chapter 2 

Geology, Reservoir Engineering, and Maximum Efficient Rate 

2.1 Introduction 

Much work in the economic literature on petroleum use has ignored basic 

geology and the technology of production, even though geology and reservoir 

engineering are fundamental to the analysis of reservoir depletion. The amount 

and duration of production is determined mainly by physical factors such as the 

size of the reservoir, the type of source rock, permeability, porosity, fluid 

saturation, and the pressure differential within the reservoir and at the well bore. 

These factors interact to determine the natural drive associated with a particular 

reservoir. The rate of production is set by the original natural drive pressure, the 

maximum efficient rate (MER), or the operator's decision to produce at a lower 

rate than the two previous limits on production. 

The purpose of this chapter is to explain geological, petroleum engineering, 

and MER considerations which bear on reservoir depletion. The duration and 

rate of production is reservoir specific, a fact which can be explained by geology 

and reservoir engineering. Depending on the physical characteristics of the 



9 

reservoir, there exists an MER, where a higher rate of extraction will lead to 

reservoir damage. The three sections of this chapter focus on the geology of 

reservoir production, reservoir engineering considerations, and the factors 

determining the MER. Several reasons are given for the differences between 

reservoirs and different reservoir performances. The geological factors mentioned 

above, such as porosity, all affect the quantity of recoverable oil-in-place and the 

rate of recovery. There is a high correlation between the type of trap and the 

type of drive mechanism available for petroleum production. Regarding 

engineering factors, the type of drive mechanism is also shown to affect the 

quantity of recoverable oil-in-place and the rate of recovery. Since each of these 

characteristics has a range of possibilities, the chance of two reservoirs being 

identical is very remote. Thus an economic-petroleum model which classifies all 

reservoirs into one group limits the application of conclusions from this model to 

a specific reservoir. 

2.2 Geological Considerations 

Several topics are discussed briefly in this section, including reservoir rock 

properties, types of traps, and how these geological elements affect reservoir 

performance. 
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2.2.1 Physical Properties of Reservoir Rock 

Four properties that make reservoirs heterogeneous and affect the level of 

production are porosity, permeability, fluid saturation and fluid composition. In 

the following paragraphs each property is defined, elements influencing the 

property are identified, and the property's effect on reservoir performance or 

reservoir heterogeneity is discussed. 

Porosity (0) is the measure of the space in the reservoir rock occupied by 

pores which has the potential to contain petroleum. This decimal fraction of the 

rock volume is determined by the shape and size of the sediment, the degree of 

compaction, and the cementation.' If the particles are large and have the same 

shape, the porosity level can be high, thereby allowing for a greater potential 

volume of petroleum. If the pressure from overlying sediment is great, then 

compaction occurs and the pore volume decreases. Cementation is a process 

occurring during reservoir formation which can limit the amount of compaction. 

Certain mineral crystals act as a cement between sand grains. Once the sand 

grains placement is cemented, the pore space should not decrease due to 

compaction. 

Permeability (K) is the ability of fluid to flow through a porous medium. 

A volume of rock may be porous, but if the pores are poorly interconnected, the 
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rock is not very permeable. Usually, porosity and permeability are highly 

correlated so a high porosity value is associated with good permeability. The 

geological elements that determine porosity also determine permeability: size and 

shape of the sediment, compaction, and cementation. The permeability within a 

reservoir is also affected by the different viscosities of the fluids involved.' The 

chemical makeup determines the flow resistance (viscosity) of a fluid. A high 

degree of permeability in a reservoir is desirable since higher rates of production 

can be maintained without potential reserve loss. 

Fluid saturation (ô) is the mixture of oil, water, and gas that exists in the 

reservoir. A low water saturation level indicates that a larger portion of the pore 

volume is occupied by petroleum. The water saturation level measures the amount 

of connate water present, or the water intrinsic to the reservoir. One cause of 

heterogeneity among reservoirs is that oil, water, and gas can be present in 

different proportions. Water saturation can also affect reservoir performance. As 

the oil is drawn from the reservoir, the percentage of water production increases 

over time. A high water saturation level indicates that reservoir performance will 

deteriorate much sooner.' 

The last physical property considered in this section is the composition of 

the petroleum in the reservoir. This really is an area of petroleum chemistry, but 

is mentioned since it contributes to reservoir heterogeneity. Petroleum is a natural 
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substance that can occur as a solid, liquid or gas. The terms "oil" and "gas" are 

used in reference to the liquid and gaseous states. An oil and gas solution is a 

mixture of hydrocarbons, usually containing impurities. Common examples of 

hydrocarbon compositions are: methane, ethane, propane, butane, pentane, and 

benzene. Since the mixture of hydrocarbons is variable, it is highly unusual for 

reservoirs to be identical. 

All the properties mentioned influence reservoir performance or contribute 

to heterogeneity among reservoirs. The type of trap can also affect reservoir 

performance and cause heterogeneity among reservoirs. 

2.2.2 Entrapment of Petroleum 

Through time the petroleum migrates from the source rock to the 

permeable rock, and then may be trapped in this formation if the necessary 

boundaries exist. There are three main forms of traps: anticlinal traps, fault 

traps, and stratigraphic traps.' 

An anticlinal trap is identified in Figure 2-1. The features of this type of 

trap are: geometric closure (the structural contours form closed rings), a reservoir 

rock that is permeable, and a fine-grained or relatively impermeable cap rock that 

overlies the reservoir and seals it. 
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This type of trap is highly desirable since it has the potential to have a gas 

cap drive, a water drive, and a gravitational segregation drive. The advantages of 

these drive mechanisms are discussed later. Due to geometric closure and high 

structural relief, the existence of a gas cap greatly improves recoverability. There 

is also the potential for extensive lateral continuity (porosity over large areas) 

which can allow an aquifer to be in contact with the reservoir. If an aquifer is 

in contact with the reservoir, then water displaces the petroleum during production 

and reservoir pressure is maintained. 

A fault trap is illustrated in Figure 22.6 The characteristics of this type of 

trap are: an inclined reservoir, a cap rock, a fault that forms an up-dip barrier 

across the reservoir, and a barrier in the reservoir along the fault which prevents 

lateral movement. This trap can also be as productive as the anticline trap. The 

fault and the inclined reservoir act the same way as the geometric closure. Thus, 

there is the potential for gas cap drive and water drive with this type of trap. 

A stratigraphic trap is depicted in Figure 2-3.1 In this case migration is 

limited by stratigraphic causes such as permeability or porosity changes in the 

reservoir rock, convergence of rock units, isolated rock units of porosity and 

permeability different from adjacent units, and an unconformity providing the 

barrier. Stratigraphic traps usually do not have extensive lateral continuity and 

thus a water drive caused by an aquifer is highly unlikely or it has very limited 



14 

influence. As well, stratigraphic traps are associated with small formation dips 

(limited vertical movement of the petroleum). 

Figure 2-1 

Anticlinal Trap 

Figure 2-2 

Fault Trap 



15 

Figure 2-3 

Stratigraphic Trap 

Thus a gas cap has little influence on the whole reservoir, and gravitational 

segregation is severely limited as a type of drive mechanism. This leaves only 

solution gas drive as a force to push petroleum to the surface. 

Clearly, the type of trap and its physical properties all play a role in 

determining reservoir performance. 

2.3 Petroleum Reservoir Engineering 

Of prime importance for reservoir engineering is precise information 

concerning physical conditions that exist in wells and underground reservoirs. With 

this information, estimating a relationship such as a gas-oil ratio, a volumetric 
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measure, or a material balance equation can be made. 

The most important basic information for reservoir performance calculations 

is the reservoir pressure. To determine the volume of oil and gas in place, it is 

necessary to know the physical properties of bottom-hole samples under various 

pressures. These properties can be of the rock or of the fluids in the reservoir. 

The important properties are: porosity, permeability, viscosity, and fluid 

saturations and distributions. Before describing the quantitative relationships of 

these properties, it is necessary to examine the forces that move the petroleum in 

the reservoir towards the well. 

2.3.1 Petroleum Drive Mechanisms 

As described earlier, petroleum occurs in traps where the portion of the 

trap that holds the petroleum is called a reservoir. Since different drive 

mechanisms can have different rates of recovery and different cumulative amounts 

of recovery, it is essential to know what type of drive is the major mechanism for 

petroleum production. Four possible ways that oil and gas can be displaced to the 

well are: fluid expansion, fluid displacement - natural or artificial, gravitational 

drainage, and capillary expulsion! 
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Fluid expansion is a drive mechanism common to all reservoirs. It may not 

be the main driving force, but it does contribute to oil and gas production. This 

drive mechanism results from the pressure differential. In a reservoir the 

petroleum is contained under pressure in the trap which is greater than the 

atmospheric pressure at the earth's surface. When a well is drilled, the reservoir 

pressure declines to match the pressure at the earth's surface through fluid 

expansion forcing oil to the surface. 

A fluid displacement drive forces petroleum to the surface by means of a 

gas cap or water from an aquifer. A gas cap drive has a pocket of gas which 

exerts downward pressure on the oil, and displaces it by expansion, thereby forcing 

it to the well and then to the surface. The water displacement drive pushes 

petroleum to the well by the upward pressure of incoming water. This aquifer 

exerts pressure on the oil, and as the oil leaves, more water enters the reservoir. 

Water displacement of oil can also be artificially induced by pumping water down 

to the bottom of the reservoir (waterflooding). This type of drive mechanism 

maintains pressure and allows greater oil recovery. 

The gravitational drainage drive mechanism operates at low production 

rates. As petroleum is pumped to the surface from the lower region of the 

reservoir, gravity pulls petroleum from the higher regions down depending on the 

dip of the reservoir. If the rate of extraction is faster than the rate gravity pulls 
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petroleum to the lower regions, the petroleum can become segregated by other 

fluids such as water. Thus, the effectiveness of the gravitational drainage is 

reduced and less petroleum is recovered. 

The capillary expulsion drive mechanism contributes only a minimal amount 

to the potential production. Capillary forces are the result of surface and 

interfacial tensions in an oil and gas reservoir. The surface tension is derived 

from the molecular property of a liquid to expose a minimum amount of free 

surface. Interfacial tension is similar where the tendency is to achieve the 

minimum surface contact between two liquids. When the velocity of fluid flow is 

low and the capillary forces are stronger than the gravitational pull, the capillary 

forces pull petroleum to the well and less petroleum is lost by water entrapment. 

When there is no aquifer and fluids are not artificially injected, fluid 

expansion and gravitational drainage are the mechanisms of recovery for an oil 

reservoir. It is possible for all four types of recovery mechanisms to operate, but 

usually only one or two dominate. 

An example of how recovery mechanisms may change is the following. A 

reservoir having no aquifer will produce initially by fluid expansion. When the 

pressure from this type of displacement has substantially decreased, there can be 

a switch to gravitational drainage. Even later, water can be injected to force 
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additional petroleum to other wells by fluid displacement. Reservoir engineering 

typically plans these cycles of displacement to maximize recovery. The amount of 

oil or gas recoverable is called the reserves which can occur in four different ways: 

free gas, dissolved gas, oil in the oil zone, and recoverable liquid from the gas cap. 

The sizes of these reserves are estimated through formulas provided in the next 

section. 

2.3.2 Oil in Place by the Volumetric Method 

Due to the physical properties of a reservoir, the size of reserves is not a 

simple calculation such as length by width by height. For the following volumetric 

equation, the oil that is produced equals the initial oil in place less the oil 

remaining after production:' 

2.1 Recovery = 7758 Vb [ (1 - S (1 - j ≥ B0 

where: 

7758 - number of barrels per acre-foot 

Vb - reservoir volume, in acre-feet 

0 - porosity, as a percent 

B01 - initial formation volume factor 

B0 - abandonment oil formation volume factor 

S - water saturation, as a percent 
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Sg - gas saturation, as a percent. 

The initial oil in the reservoir is the percentage of the pore space not 

occupied by water while the final amount of oil in the reservoir is the percentage 

not occupied by water or gas. The oil that is produced is replaced by the 

expansion of the remaining oil and gas. Since the volumes vary with temperature 

and pressure changes, the formation volume factors convert these subsurface 

volumes to surface volumes at a standardized temperature and pressure. 

Another method that reservoir engineers use to calculate the recoverable 

oil is the material balance equation. 

2.3.3 Material Balance Equations for Oil Reservoirs 

It is not always possible to acquire all the information necessary for the 

volumetric method. In this situation the material balance method may be used to 

calculate the initial oil in place. Since the oil and gas are in solution (the gas is 

dissolved), initial production is through fluid expansion. As fluid expansion takes 

place the pressure declines and eventually the dissolved gas reaches its bubble 

point. At the bubble point the dissolved gas becomes free gas and can act like 

a gas cap. So the oil material balance equation can be viewed in two parts - 

before and after the dissolved gas reaches its bubble point. Initially production 
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is given by the following equation: 1° 

2.2 NB01 = (N - N)BO, 

where: 

N - the initial reservoir oil in stock tank barrels 

N - the oil produced in stock tank barrels 

B01 - the oil volume factor at the initial pressure 

B0 - the oil volume factor at the final pressure. 

As the pressure decreases with continued production, the bubble-point 

pressure is reached and a free gas phase begins. The equation then becomes: 

2.3 NB01 (N - N)130 + GfBg, 

where: 

Gf - the free gas 

Bg - the gas volume factor at the lower pressure. 

The amount of free gas that will exist is equal to the initial gas less both 

the solution gas and the produced gas. Thus the free gas can be found from the 

following equation: 
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free gas = initial gas - solution gas - produced gas 

2.4 Gf = NR 1 - (N - NP)RS - 

where: 

R 1 - the initial solution gas-oil ratio 

R - the final solution gas-oil ratio 

R - net cumulative produced gas-oil ratio. 

This equation for free gas can be substituted into the material balance 

equation to yield: 

2.5 NB01 (N - N)B0 + NR 1 - (N - N)R NpRp)Bg. 

This gives the material balance equation for an oil reservoir without water 

drive. The equation can be solved for N to measure the initial stock tank oil in 

place. 

To solve the material balance equation it is necessary to have information 

from two core samples with a significant production time between them. This 

limits the usefulness of the material balance equation until well into the production 

life of the reservoir. 
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2.3.4 Darcy's Law 

Darcy's Law describes the movement of fluids through a porous medium. 

The velocity of the fluid is directly proportional to the pressure gradient and 

inversely proportional to the fluid viscosity. A representative equation is given 

below.11 

2.6 v= 
u ds 

where: 

v the apparent velocity in centimetres per second (the word apparent is 

used since the fluid is moving through a porous medium) 

u - the fluid viscosity expressed in centipoise units 

dp/ds - the pressure gradient in atmospheres per centimetre 

k the proportionality constant showing the permeability of the rock 

expressed in darcy units. 

Although this representation of the movement of fluids is in its simplest 

form, this equation estimates the movement of petroleum within a reservoir. 

With these equations and core samples taken from exploratory wells the 

drive mechanisms in use can be ascertained and their effects on reservoir 

performance estimated. 
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2.4 Maximum Efficient Rate 

For most pools the ultimate recovery depends on the rate of production, 

so at each instant of time a rate exists where production above this limit damages 

the reservoir. This limit is defined as the maximum efficient rate (MER). 

The history of the MER shows a variety of possible definitions for this rate; 

see Kraus (1947). The following discussion is of general principles involved in 

determining the MER and a specific case of MER determination, namely how the 

Alberta government defines the MER for various Alberta reservoirs. 

2.4.1 General Principles for Determining the MER 

The MER depends on the type of recovery mechanism employed and the 

physical nature of the reservoir. The conditions that determine the MER are: 

the rate must not exceed the capabilities of the reservoir, the individual well rate 

must not be excessive, and the individual well rate must not be so low as to 

prohibit profitable operation.12 The first two conditions are limitations imposed 

by physical properties and the third condition is a limitation imposed by an 

economic consideration. The types of recovery mechanisms that the MER is based 

on are dissolved-gas drive, gas-cap drive, and water drive. 
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As previously stated, a dissolved-gas driven reservoir has a very low recovery 

of the oil in place. The production rate is so low that the reservoir is not rate 

sensitive. Thus, there is no production rate above which reservoir damage can 

occur. 

A gas-cap driven reservoir does have an MER since recovery efficiency may 

be very sensitive because gas is not an effective oil displacement mechanism. 

Given that the encroachment of free gas through the oil zone occurs through the 

most permeable channels, if the rate of production is sufficiently high, oil is left 

behind. The gas that would otherwise displace the oil escapes through the more 

permeable channels which become accessible at the higher production rate. 

With this type of drive the MER depends on the formation permeability, 

the permeability distribution, the relative permeability-saturation relationship 

between gas and oil, the angle of formation dip, the viscosity of the oil, and the 

size of the gas cap.13 In the section on Alberta's MER calculation, it is shown 

how these characteristics directly determine the MER. 

A water driven reservoir requires estimates of the oil, gas and water 

production to determine the MER. These estimates are used to find a sustainable 

pressure level that will not cause reservoir damage. 
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The relation between reservoir pressure and the water influx is determined 

by the permeability of the formation, the uniformity of the productive horizon, the 

reservoir structure and zone of water entry, the areal extent of the reservoir and 

formation thickness, the stage of reservoir depletion, and the pressure decline.14 

2.4.2 Alberta's MER Regulations and Formula 

The acronym used by the Alberta Government for the MER is MRL - 

maximum rate limitation." The MRL is determined by the greater of: the basic 

well rate (BWR), the rate determined using the Preliminary Rate Limitation (PRL) 

surveillance formula, and the rate established by the Energy Resources 

Conservation Board on the basis of MRL studies submitted by the operator. The 

three rates are described next. 

The basic well rate (BWR) or well minimum allowance (MA) has been 

set at 150m3/month (5m3/day). This is the rate of production that the Board has 

set that will cover well operating and completion costs. This minimum allowance 

has been set to prevent premature abandonment of wells. 

The Preliminary Rate Limitation (PRL) in m3/day is found using the 

following formula: 
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2.7 PRL = 9000 x 106 (U) x 12/365. 

U equals the initial recoverable reserves of oil in thousand m3 and is obtained 

from the following volumetric equation: 

2.8 U = R1 x h x 0 x (1 - S) x i/B01 x AA x 10000/1000, 

where: 

R, expected initial recovery of oil in place, a decimal fraction 

b net oil pay thickness, in meters 

0 porosity, a decimal fraction 

S water saturation, a decimal fraction 

B01 oil volume factor at the bubble point, a decimal fraction 

AA - assigned area, in hectares. 

The information in this volumetric equation is provided by the operator to 

the Board with an application for a New Well Base Allowable (production rate) 

or Base MRL (form 0-38). 

The MRL may also be determined by the Board on the basis of MRL 

studies submitted by the operator. 
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The production rate that a well can be operated at is known as the base 

allowable. The base allowable for the month is the greater of the minimum 

allowance (MA) multiplied by the number of days in the month, and the 

proratable reserves multiplied by the monthly proratable reserves allocation factor. 

If the proratable reserve (U-1/2P) is not stated on the 0-38 form, then the 

established reserve figure (U) is used instead. The base allowable is the greater 

of the above two; however, it must not exceed the base MRL multiplied by any 

applicable penalty factors multiplied by the number of days in the month. It is 

in the penalty factors that water and gas production are taken into account. 

The penalty factors allow a certain amount of gas and water production. 

If this level is exceeded, then a penalty is imposed by lowering the MRL. The 

amount of gas and water produced is measured by the gas-oil ratio (GOR) and 

the water-oil ratio (WOR). For gas production a penalty is imposed if the 

produced GOR exceeds the base GOR. For water production a penalty is 

imposed if the produced WOR is greater than zero, and the water drive index 

(WDI) is zero. (A WDI of zero implies that there is no water drive.) The 

penalty factors are given below in equation form. 
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2.9 Compound penalty factor 

GOR penalty factor X WOR penalty factor 

Base GOR  
Produced GOR X 2 + (Produced WOR)(1 - WDI) 

2 

These penalty factors can also increase the MRL if the produced GOR is 

less than the base GOR or if the WDI has a more significant effect on the WOR 

penalty factor than the produced WOR. A numerical example is given in the 

Appendix. 

The base allowable is determined by three elements. First, there is the 

MA, which ensures that production will cover operating costs. Second, there is the 

reserves allocation, which partitions production between the production space units 

(PSU - wells or fields). Third, the base allowable is limited from above by the 

penalized MRL. The penalized MRL is determined by the BWR (MA), or the 

PRL (physical characteristics of the PSU), or on the basis of MRL studies 

submitted by the operator, and gas and water production. 

2.5 Conclusion 

From the discussion of geology, petroleum engineering, and MER 

considerations, it is evident that certain physical factors greatly influence the size, 

composition, and performance of a reservoir. These factors must somehow be 
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accounted for in a reservoir production model. Computational models, as 

discussed in Chapter 4, are able to include this type of behaviour. Due to the 

heterogeneity of reservoirs caused by differences in porosity, permeability, water 

saturation, fluid composition, and fault type, aggregation of reservoirs weakens the 

ability of a model to "portray reality." Performance patterns are also reservoir 

dependent due to variation in the operating drive mechanisms and variation in 

certain physical properties (MER and degree of porosity and permeability). Thus, 

costs and production paths are different for each reservoir. 
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Chapter 3  

Analytical Models of Exhaustible Resources 

3.1 Introduction 

With the physical nature of reservoir behaviour as background, several 

analytical models of exhaustible resource allocation are surveyed in this chapter. 

Since the literature involving analytical models of exhaustible resource extraction 

is vast, only selected articles are discussed. In this survey the models are 

formulated, the underlying assumptions delineated, and the associated conclusions 

presented. When a model involves the depletion of a petroleum reservoir, how 

it captures the physical nature of reservoir performance is emphasized. 

The majority of the analytical models of this chapter yield the outcome that 

optimal production occurs where marginal revenue equals marginal cost plus user 

costs. This condition values the exhaustible resource differently from renewable 

resources through the user cost elements. 

To begin this survey the model of Kuller and Cummings (1974) is presented 

in detail and henceforth is referred to as the KC model. Their model has many 
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appealing features and other models can be viewed as representing only a specific 

part of their model or using a simplified version of their model and extending 

their analysis in a slightly different direction. 

3.2 Production, Investment and User Cost Relationships 

The KC model provides an excellent foundation for analytical models by 

incorporating the technical nature of reservoir behaviour and several economic 

considerations.' The optimal production path is determined for a reservoir through 

the interaction among current production rates, investment and the dependence 

of recoverable reserves on the time-path of production. 

Due to the physical nature of a reservoir, the annual extraction rate (u) is 

directly related to pressure. Under a water drive mechanism, the reservoir 

pressure is maintained by the incoming water displacing the exiting oil, and this 

displacement rate is dependent on the reservoir properties as mentioned in 

Chapter 2 (permeability and porosity). However, faster extraction allows water to 

infiltrate the reservoir more rapidly, and since water moves through the porous 

channels of a reservoir easier than oil, the water bypasses oil in place causing 

permanent loss. Thus, a faster extraction rate resulting in a quicker pressure 

decline lowers ultimate recoverable reserves. This relationship establishes the rate 

sensitivity of the reservoir and the need for MER restrictions as described in 
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Chapter 2. However, the KC model also provides an opportunity to regain these 

lost reserves through investment (v). By implementing artificial lifting and 

enhanced oil recovery (EOR) techniques, the pressure decline and lost reserves of 

faster extraction can be restored. 

Since this is a single reservoir model, and thereby only a small portion of 

total industry production, the firms are assumed to be price takers, and the prices 

are exogenously determined. The model maximizes discounted profits subject to 

the physical constraints on reservoir production. 

The model variables are: 

ujt volume of petroleum extracted by firm j in period t, for j = 1 to J 

Ut annual production rates by all firms during period t; U = (u1 u2, ..., u) 

for t = 1 to T 

Vjkt gross investment by firm j in capital type k in period t; v = (Vjit, V2D 

vJK) for t = 1 to T and j = 1 to J 

Vt gross investment for all types of capital for all firms in period t; Vt = 

(v1, v2, ..., v) for t = 1 to T 

firm j's physical capital stock of type k at the beginning of period t; K 

= (K1, KjK) for t = 1 to T and j = 1 to J 

Dkt net depreciation of firm j's capital stock k during period t 

Fjt - upper bound on firm j's capacity to produce petroleum during period t 
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firm j's cost function during period t 

discount factor, 1/(1 + r)t, where r is the discount rate 

price at time t; all prices are exogenously specified 

the total recoverable quantity of petroleum in the reservoir. 

The model is: 

TI 

3.1 MaxY. Y, (pu - V, K))J3 
t=1 j=1 

subject to: 

3.2 Iç. 44 = Kjkt - D k(u t, vj, K) for all j, k and t 

3.3 .≤. F(U, V, K) for all j and t 

Ti 

3.4 Y, I u , X(UT, VT) 
t=1 j=1 

3.5 u 0, Vkt ≥. 0 for all j, k and t. 

The objective function is the present value of revenues minus costs. Costs 

are a function of production, investment and existing capital stocks: If current 

production and investment increase, then current costs will also increase. However, 

current investment lowers future costs. It is also assumed that an increase in 

capital stocks will cause more efficient production by lowering current unit 

production costs. 
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Equation 3.2 defines the capital stock in each period as the capital stock 

in the previous period less net depreciation. The amount of depreciation in a 

period depends on the rate of production, the size of existing capital stocks and 

the amount of gross investment. If the production rate increases or if the size 

of existing capital stock increases, then the amount of depreciation increases. 

Depreciation is only offset by gross investment which is the addition of new capital 

stock. Equation 3.3 sets an upper bound on current production. It is the current 

reservoir pressure which is influenced by past production, current production, and 

investment rates from all firms producing from the reservoir that sets this 

boundary on current production. Thus, the physical behaviour of the reservoir, the 

key element of Chapter 2, is implicitly represented in these constraints. The limit 

on recoverable stock is determined by the time-path of production and investment 

during the life of the reservoir in equation 3.4. Finally, inequalities 3.5 require all 

variables to be non-negative. 

The necessary conditions for maximization characterize the optimal 

production and investment paths: 
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Production Path 

BF 
3.6 (Pt - = U13T(1 - - 8X 6ujt ;; + cI.I3 T=ti=1 8jt 

K jkt f3 T 6CJT + cTI3T + 
k=1 T=t+1 8u T=t j1 Ujt 

i&j 

i, j = 1, ..., J; 1 <. t ≤ T 

Investment Path 

3.7 f3 = - jkt 
SVjkt 8"jkt + cJI3T ax 6 

T  

+ - it P E SC- 13r 
•T=t 1=1 1=1 8 'jkt Tt+1 i=1 BVjktij 

i, j = 1,..., J; k = 1,..., K; 1 <. t <. T 

In 3.6 the present value of marginal net income is equated to six terms 

which are defined as user costs. User costs are the discounted future profit 

foregone by producing one more unit now instead of in the future. 

The first user cost term values the limited stock of the resource. When one 

unit of crude is produced now instead of in the future, the value, o$T, is the 

future profit foregone. Also, since faster current rates of production cause a 

decline in total recoverable reserves, producing this one unit today lowers total 

reserves. Thus, future production falls by the amount (1 - 8X/8u), where 

< 0. The stock user cost is the discounted shadow price (value of an additional 
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unit of crude oil) multiplied by the lost future production. 

The second and third terms are defined as "boundary user costs". The term 

(i3) gives the discounted profit foregone from an additional unit of crude oil 

which cannot be produced once the maximum production rate is reached. If 

another firm j increases production in an earlier period t, then the maximum 

production level for firm i in period 'i- declines due to the rate sensitivity of 

production described earlier. Thus, through the summation of the components of 

this user cost, current production is influenced by production in other periods. It 

is the profit foregone due to this lowering of the maximum extraction rate which 

is captured by the third term. 

The fourth term in 3.6 is called "capital consumption user costs". The 

shadow price, ILjt+i$t+i, is a measure of the productivity from an additional unit 

of capital stock. If production increases, the capital equipment runs down sooner 

and therefore depreciates faster. Thus, the capital consumption user cost shows 

the discounted profits foregone because capital is used (consumed) now instead 

of in the future. 

The last type of user cost, involving the last two terms, comprises 

"production user costs". Increasing current production causes a faster decline in 

reservoir pressure and future production to have higher costs; i.e. alternative 
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recovery methods are developed sooner since the natural drive is no longer 

sufficient to bring the oil to the surface. The other production user cost term is 

identical except that it deals with the relationship among firms. If firm j extracts 

oil at a faster rate today, then firm i has higher costs in the future and thereby 

foregoes future profits. The summation that is involved in the user costs is 

important because it links production, limits on production, investment, and costs 

between periods so that any current decision affects future periods as well. 

Characterizing the optimal level of firm i's investment in capital type k 

during each period, equation 3.7 equates the discounted marginal costs of 

investment with the discounted marginal benefits. The first term on the right hand 

side of 3.7 measures the impact on marginal productivity of increasing the capital 

stock, the second term measures the increase in total recoverable stocks, the third 

term measures the increase in the upper bounds of production, the fourth term 

measures the decline in variable costs for other firms, and the fifth term measures 

the decline in future variable costs of an increase in investment. 

These two sets of equations determine the optimal path of operation for 

the firm where reservoir properties contribute to defining rates and limitations on 

production. In each period production should be at the rate where discounted 

marginal net income equals discounted marginal user costs, and investment should 

be at the rate where the discounted marginal cost of investment equals the 
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discounted marginal benefit. These conclusions show that analytical models 

provide results useful for understanding optimal exhaustible resource behaviour. 

However, a possible shortcoming of this approach in practise is the 

generality of the KC model. In constraint set 3.3 the extraction rate is a function 

of previous production rates, investment and capital stocks, but what is the 

functional form? Are these variables connected in a linear, exponential or 

quadratic relationship? These forms are not specified, and based on Chapter 2 

and the introduction to the KC model, the nature of these equations is unique to 

each reservoir. Similarly, the optimal production rates and user costs are unique. 

Yet the KC model is not intended to yield specific solutions, but rather to 

show the relationships among the key variables. The model successfully captures 

the relationships governing the physical behaviour of production and the economic 

considerations in the production and investment of a petroleum reservoir. Thus, 

it is useful for comparison with other analytical models. 

3.3 Hotelling's Economics of Exhaustible Resources 

The key seminal paper in the theory of exhaustible resources is Hotelling 

(1931). A summary of this paper is presented in Levhari and Liviatan (1977), who 

also provide some extensions. In their summary, Levhari and Liviatan discuss the 
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important assumptions of and conclusions found by Hotelling. The assumptions 

are: output of the resource shrinks to zero at the terminal time, firms produce 

up to the point where the resource is completely exhausted, costs are directly 

proportional to output, and the firm maximizes the present value of profits. 

Model variables, functions and relations are: 

x(t) cumulative output by the firm at time t; x(t) . a, cumulative output is 

constrained by resource availability 

q(t) - output at time t; q(t) = clx(t)/dt 

R(q) revenues as a function of output; prices are exogenous 

C(q) costs as a function of output 

v(q) profits as a function of output, and prices are exogenous; 

'w(q) = R(q) - C(q). 

The model is: 

fo T 3.8 Max e r(q)dt, subject to: 

3.9 x(t) < a 

3.10 q≥.0. 

The condition for optimal extraction is: 
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3.11 e &w/8q = or 6ir18q = (De', for 0 < 
. t ≤ 

Optimal extraction occurs when marginal profit rises exponentially over time 

at the rate of interest r. This condition is widely known as the Hotelling R-

percent rule and is a highly simplified version of equation 3.6 in the KC model. 

The only user cost in the Hotelling model is associated with the limited availability 

of the resource. 

The Levhari and Liviatan extension to the Hotelling model allows costs to 

be an increasing function of output, which also allows costs to be a function of 

current and cumulative output: C(q,x). This extension allows for incomplete 

exhaustion: since costs increase with cumulative output, the termination time can 

be reached before complete exhaustion occurs. The condition for optimal 

extraction for the new model is: 

3.12 R'(q) = 3C(q,x)I8q + et)(R'(q(T)) - 6C(q(T),x(T))/8q(T)) 

- JT et)(8e1r(q,x)/8x)ds, for all t. 

Using MR to denote marginal revenue and MC to denote marginal cost, the 

condition can be rewritten as: 

3.13 MR = MC + et)(MRT - MCr) + ft e't)(8C(q,x)/(3x)ds. 
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Profit is maximized when marginal revenue equals the marginal cost of 

current production plus two user cost terms. The first term is the profit foregone 

at time T when an additional unit is produced at t, which is similar to the stock 

user cost term in equation 3.6 of the KC model. The second user cost term is 

the present value of all future additional costs incurred from producing an 

additional unit now (time t), which is similar to the production user cost term (the 

fifth term in equation 3.6) of the KC model. 

The presence of the second user cost term means that the R-percent rule 

no longer applies. If complete exhaustion does not occur, then the first user cost 

term vanishes leaving only the second user cost term as the difference between 

marginal revenue and marginal cost. If we assume that complete exhaustion 

occurs in the Levhari and Liviatan model, then marginal profit increases but at a 

rate slower than the interest rate. 

Altering the interest rate, the demand, or adding a severance tax changes 

the optimal output path for both scenarios of complete and incomplete exhaustion. 

For both cases an increase in the interest rate accelerates production, provided 

that production cost does not depend on the interest rate. The cumulative output 

is the same, but it is recovered sooner. With an increase in demand the results 

differ between scenarios. Since a competitive firm is modelled, an increase in 

demand can be viewed as an increase in price. For both cases, an increase in 



44 

price accelerates production. However, for incomplete exhaustion, output that was 

previously uneconomical is now profitable and produced, resulting in a higher level 

of cumulative production. A severance tax per unit of resource or ad valorem tax 

has a similar impact as a decline in price or decline in the demand for the 

resource. In the case of complete exhaustion, an ad valorem tax decreases the 

rate of production and prolongs production. In the case of incomplete exhaustion 

the effects are ambiguous. The rate of production declines, lengthening the 

duration of production, but cumulative production also declines, shortening the 

duration of production. Thus, the net change in the duration of production can 

be either positive or negative. 

Since this model is intended to apply to all exhaustible resources, no 

reference is made to the influence of the physical characteristics of resource 

extraction on the output path. 

3.4 Rule of Capture 

Davidson (1963) also considers the short run question of the optimal level 

of production. His optimal production condition is similar to the one for the 

Kuller and Cummings model - marginal revenue equals marginal cost plus marginal 

user costs. Marginal revenue is equal to the price under the assumption that the 

producer faces a perfectly elastic demand curve (prices are exogenous). Davidson 
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argues that physical factors distinguish reservoirs in terms of operating costs and 

that MER should be imposed for optimal operation. However, Davidson does not 

specify an explicit model of reservoir depletion but just the conditions for the 

optimal allocation of crude oil. 

Similar to the KC model, Davidson's optimality condition contains user 

costs: a raw material user cost, an ultimate recovery user cost, and a rule of 

capture user cost. The raw material user cost (Urn) is the profit foregone when 

production occurs today rather than in the future at a possibly higher price (stock 

user cost). The ultimate recovery user cost (Un) is the profit foregone when 

production exceeds the maximum efficient rate (MER) and output is lost 

(boundary user cost). The rule of capture user cost (Us), is the profit foregone 

when a competitor produces from the same reservoir and captures potential 

production and its profit (producer user cost - the sixth term in equation 3.6). 

Denoting marginal revenue and marginal cost by MR and MC, the optimal output 

condition can be formulated as: 

3.14 MR = price = MC + dUm/dQ + dU/dQ + dUjdQ. 

From this condition the rule of capture user cost lowers the value of crude 

oil and hastens production. Davidson suggests that the optimal allocation of 

resources over time occurs when the rule of capture user cost is eliminated and 
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free competition exists within the market. 

3.5 Conservation and the Theory of Exhaustible Resources 

Gordon (1966) argues that a lower discount rate does not necessarily lead 

to resource conservation. Starting with Hotelling's R-percent rule, Gordon 

discusses how interest rate changes bear on the present value of marginal profits. 

A discount (interest) rate increase has two different effects. First, future 

marginal profits have lower present values, causing production to be shifted 

towards the present. This is the traditional conservationist argument where the 

resource is exhausted too soon because of the high discount rate. The second 

effect of higher interest rates is an increase in costs. With higher interest rates, 

less is invested in cost-reducing machinery and equipment rental costs rise. '1The 

longer into the future this cost increase is discounted, the less impact it has on 

present value; this effect therefore increases the attractiveness of the future."' 

However, higher costs also make some deposits unprofitable, reducing the total 

recoverable stock of resources. Technical progress may lead to cost reductions in 

the future and the previously uneconomical recoverable stock can then be 

produced. 
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With the marginal cost constant for all periods and defined as the rental 

cost of capital equipment based on the interest rate, Gordon shows that increasing 

the interest rate lengthens the lifetime of the resource industry. This result only 

occurs over a certain range of interest rates, however, and then for higher rates 

the traditional effect dominates, shortening the resource industry lifetime. Prices 

in this model are endogenously determined through a linear demand function. 

3.6 Supply Price and Initial Capital Outlay 

Bradley (1967) examines the question: "Should this reservoir be 

developed?" where the production rates are modelled by an exponential decline 

curve. The key parameters of this function are the initial production rate and the 

decline rate, both of which are determined by the physical characteristics of the 

reservoir. The production rates along with the initial capital costs are used to 

determine the unit cost or supply price of developing the reservoir. Production 

occurs if current prices exceed this supply price. 

The equation for finding the supply price is given below. Z is the supply 

price, I is investment, q(t) is the production in period t, and the integral represents 

cumulative production. Operating costs are very small relative to investment costs, 

and therefore are not included in the supply price formulation. 
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3 fo.15 Z   - 

I 
q(t)e-' dt 

The supply price (z) shows the investment cost per barrel that must be met 

by current and future prices before production occurs. Assuming that production 

follows an exponential decline path, q(t) = qoet, the equation can be rewritten 

as: 

3.16 T I  

fo qe ( dt 

Integrating and assuming that the T is large (T approaches co), the relation 

is approximated by: 

3.17 Z=(D+r). 
q0 

Estimates of I, D, r, and q0 can be obtained and thus an estimate of the 

supply price can be made. 

Bradley's approach differs from the KC approach but adopts some of their 

assumptions, namely that the unit cost for a reservoir varies with the output rate 

and the total volume of production. 
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3.7 The Relationship Between Price and Extraction Cost for a Resource with 

a Backstop Technology 

The influence of a backstop technology and increasing extraction costs on 

the optimal production conditions (marginal revenue equals marginal costs plus 

user costs) is determined by Heal (1976). Since the backstop technology, an 

inexhaustible resource which forms a perfect substitute, provides an unlimited 

stock of resources, the stock user costs of the KC model vanish. This also implies 

that the Hotelling R-percent rule no longer holds for this model. However, the 

production user costs caused by increasing extraction costs through time are 

included. 

Initially, production occurs from the lower cost exhaustible resource and 

then at exhaustion switches to the backstop technology. Assuming perfect 

competition, the optimal rate of production equates price to the marginal 

extraction cost plus the production user costs. Once production starts from the 

backstop technology, there are no user costs since production costs are constant, 

and prices equal the cost of the backstop technology. Thus, the cost of the 

backstop technology sets an upper bound for prices which are determined 

endogenously and also an upper bound for the marginal extraction cost plus 

production user cost of the exhaustible resource. 
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Heal describes the production user costs as social costs reflecting the effect 

of present extraction pushing up the costs of future extraction. As extraction costs 

approach the cost of the backstop technology, the potential increases in extraction 

costs shrink, and therefore, the associated user costs decline. This conclusion of 

decreasing user costs is completely opposite to the conclusions of the previous 

analytical models, exemplifying the significance of the assumptions used to frame 

the model. 

3.8 Economic Theory and Exhaustible Resources 

Dasgupta and Heal (1979) argue that under competitive conditions an 

individual is indifferent between owning a unit of an exhaustible resource whose 

price rises at the interest rate and a unit of a commodity that earns interest 

through time. Assuming that there is no extraction cost, the price of the extracted 

resource (Pt) is the same as the stock price (q). If the individual maximizes the 

present value of profits through his choice of the extraction rates, it follows that 

00 

3.30 qS = max ft pR1 e(t)) dt, (i t). 

subject to: 

OD 

3.31 ft Ridi = S 
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In equation 3.30 the value of owning the stock (S) equals the present value of 

'selling the extracted resource (R), and equation 3.31 limits the aggregate 

extraction to the size of the stock. 

Differentiating equation 3.30 leads to the following optimality condition: 

3.32 (4 - rq) = (q - P) Rt 

St 

where *qt = dq/dt and St = dS/dt. 

But with the extracted resource price equal to the stock price, this equation 

becomes: 

3.33 = r or qt = q0 rt 

q 

This equation states that the stock price must increase at the interest rate 

which is just the Hotelling rule. 

Dasgupta and Heal then change their focus to a socially managed 

exhaustible resource where the discounted consumer surplus is maximized. This 

also yields the optimal condition of equation 3.33; however, the initial price and 

extraction rate are determined which did not happen in the previous example. 

Thus, in the absence of forward-looking planners or a complete set of future 
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markets, the producers are myopic decision makers and could set the wrong initial 

price and extraction rate for optimal depletion. 

Relaxing the assumption of no extraction costs places a wedge between the 

stock price and the resource flow price. This difference is the marginal cost of 

extraction. 

3.34 pt = q + 6C/8R 

Equation 3.33 now becomes 

3.35 4 - 5C/8S, = 

q q 

Consequently, when the resource stock is abundant, the stock price is small 

and so the resource flow price is almost entirely determined by the marginal 

extraction cost. As the resource nears exhaustion the stock price and the resource 

price rise, with a large percentage of the resource price determined by the stock 

price. 

In their analysis of taxation, Dasgupta and Heal consider a sales tax, profits 

tax, royalties, and a capital gains tax. A sales tax that increases at the rate of 

interest identical to the nonextracted resource price does not alter the pattern of 

extraction. A constant profits tax has the same impact and so in both cases the 
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tax is absorbed by the resource owner. If the sales tax is constant over time, 

production is lower initially and prices are higher. Thus, the pattern of extraction 

is distorted and the consumer bears a portion of the tax. Generating the same 

type of distortion, a royalty tax acts like an increase in average extraction costs. 

A capital gains tax causes no distortion if the tax on capital gains is the same as 

the tax on interest income. 

3.9 Analyzing Nonrenewable Resource Supply 

Several different exhaustible resource models are considered by Bohi and 

Toman (1984). They start with a simple case, then add complexities to show how 

the optimal production path changes as extensions are made. In their base model 

firms make decisions independent of other firms' behaviour, each firm is a price 

taker, and each firm is fully integrated.' The decision to produce is based on 

maximizing profits (equation 3.36) subject to the stock change equation (R +1 

R - q) and the firm's knowledge of prices, extraction costs and initial reserves. 

The extensions made to this model are the addition of the development phase to 

the extraction phase, capacity constraints on extraction, joint products, common 

property externalities, and technical progress. Each of these extensions is made 

separately; no single model incorporates all of them simultaneously. 



54 

The variables of the base model are: 

V - the present value 

q - extraction rate in period t 

T - terminal date (model determined) 

d - discount factor d = 1/(1+r) 

R - stock of reserves; R +1 = R - q, t = 0, 1, 2, ..., T 

p - price 

E - cost of extraction; a function of qt and R. 

The firm maximizes the net present value of extraction, namely 

T 

3.36 V(q0, q1, ..., q, T) = E dt(pq - E(qR)). 
t=o 

The marginal profit rule to maximize V is: 

T 

337 Pt = Eq(qt,Rt) + dt(-E(q,R)), t = 0, ..., T. 
st+1 

In the preceding equations and the ones following, subscripts other than s 

or t represent derivatives. 

The optimal production occurs where the price is equal to the marginal 

extraction cost plus a degradation charge (user cost). These equations imply that: 
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3.38 (P,i - Eqt1) - (p - E) +  -En'  
(Pt - Eqt) (Pt - Eqt) = r, t = 0, •••' T. 

This is equivalent to equation 3.35 that Dasgupta and Heal derived. The 

first term represents the rate of capital gain from holding the reserves in the 

ground, or it could be interpreted as the rate of change in the value foregone by 

extracting one unit of reserves now instead of in the future. The second term 

shows the rate at which future extraction costs change due to current extraction. 

Thus, the second term is the rate at which future costs increase if one more unit 

of reserves is produced today and can be regarded as a user cost. The term on 

the right-hand side is the interest rate, and it shows the rate of return the 

investment could have made in the market instead of in the development of the 

reserve. If the left-hand side were greater then the discount rate, then the firm 

would not produce; a higher rate of return would be earned by leaving the 

reserves in the ground. 

The extensions of the base model alter this marginal profit rule. Including 

the development phase allows for the possibility of reserve additions. The 

marginal profit rule for extraction remains almost the same except that the user 

cost component also depends on the future levels of reserves. The future levels 

of reserves are optimized through a marginal profit rule for reserve additions 

similar to the marginal profit rule for resource extraction. The marginal benefit 

from adding to reserves is equated to the marginal cost of the reserve addition 
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plus a user cost (the depletion of undiscovered reserves is similar to the depletion 

of a reserve). The development marginal profit rule sets the level of marginal 

benefits from reserve additions equal to the extraction user cost. Since the 

extraction user cost occurs in both marginal profit rules, the decisions to extract 

and develop are simultaneously determined. 

Capacity constraints lead to another user cost term in the extraction 

marginal profit rule. "If extraction reduces capacity, an incremental increase in 

current output reduces the present value of future capacity."' This type of user 

cost is similar to the boundary user cost of the KC model. 

When joint products are present, the quantities and reserves of all joint 

products are included in the model, and there is a marginal profit rule for each 

joint product. The rate of extraction of each resource depends on the price of 

that particular resource, the prices of all the joint products and the quantity of 

reserves. 

The common property externality modifies the extraction marginal profit 

rule such that as the number of firms depleting the reserve increases, the value 

of the user cost of extraction declines. This externality leads to higher initial 

extraction rates and lower prices. So this optimality is seen from the standpoint 

of the individual producer and not the industry. 
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By adding a marginal investment rule, technical progress is incorporated into 

the model. Investment in knowledge can result in a decrease in extraction costs. 

The marginal investment rule equates the marginal cost of investment to the 

marginal benefits (the present value of future decreases in extraction costs). 

3.10 Intertemporal Extraction of Mineral Resources Under Variable Rate 

Taxes 

Conrad and Hool (1984) examine the effects of three different types of 

taxes on the optimal production path which, in the absence of taxes, equates 

marginal revenue to marginal extraction cost plus a user cost in each period. The 

user cost arises from the constrained availability of the resource - the stock user 

cost of the KC model. Their model distinguishes between the grades of the ore 

extracted. Applying the Kuhn-Tucker conditions to the Lagrangian function of 

their model yields in the following profit maximizing equation: 

3.39 1  
(1 + r)t1 (Ptag - C'(X)) .≤. o•, g = 1, ..., G, 

where: 

Pt - the exogenously determined price of metal in period t 

G 

X - quantity of ore extracted in period t; X = I Xtg 
g=1 

ag - proportion of metal in ore of grade g, 0 < a < 1 
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C' - marginal cost in period t; where C' > 0 and Ce" > 0 

- shadow price or user cost of reserves of grade g 

r - discount rate. 

The inequality in equation 3.39 allows the discounted marginal revenues less 

the marginal costs in a period to be less than the shadow price. If production 

is zero in a particular period, then the marginal revenue less the marginal cost is 

zero even though the shadow price is positive. 

The three types of taxes are: variable per-unit severance tax, variable ad 

valorem severance tax, and progressive profits tax. 

The per-unit tax is included by substituting P - for P. If this is a 

constant per-unit tax, there occurs a reallocation of extraction from the present to 

the future and a decline in total extraction. If the tax rate is not constant but has 

a sufficiently high growth rate, the effects are reversed. 

The ad valorem tax is included by substituting (1 - f3jP for P. If this is a 

constant ad valorem tax, there will be a reallocation of extraction towards the 

periods with lower discounted prices and a decline in total extraction. If the tax 

rate is variable, the grade selection may be changed, the intertemporal profile may 

be altered in either direction, and the total recovery may be increased. 
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The progressive profit tax is not as easily incorporated into the model. To 

show the tax rate as being progressive it is given in a quadratic form. 

3.40 Tt = Iir + r2/2, where , > 0 

Inserting Tt into the Lagrangian function of the original model yields 3.41: 

T G T 

3.41 L = (1+r)41) (1- 'I - /hlrt/2)lrt + - I Xtg) 
t=1 g=1 t=1 

With this type of tax the grade selection, the extraction rate, and the 

recovery path are all modified depending on the past path of profits. 

The different types of variable tax rates included in the model all change 

the optimal production path. Similar changes occur in the optimal production path 

of the reservoir production model described in Chapter 5. These changes are 

shown in the results presented in Chapter 6. 

3.11 The Economics of Exhaustible Resources and The Economics of Mining 

Bradley (1985) considers whether or not advances in the theory of 

exhaustible resources have contributed to the understanding of observed depletion 
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behaviour in the context of capital investment and the sequential depletion of ore 

deposits. 

He formulates a model yielding an optimality condition which is similar to 

that of the KC model except that investment is directly included in the marginal 

profit condition. The condition equates net present value of profits to marginal 

investment cost plus a user cost: 

3.42 (P - C)a = dl/dQ0 + (P C)Tv, 

where: 

P-C - price less marginal costs; net profits 

a - annuity factor evaluated for T periods 

dl/dQ0 - incremental investment per unit of capacity 

(P-C)Tv - user cost 

Tv - discount factor associated with the user cost. 

Since extractive industries are highly capital intensive, an examination of 

changing capital cost conditions is warranted. Assuming a knowledge of future 

prices and a perfectly elastic supply of capital, the optimal solutions given by most 

analytical models are acceptable. However, in reality producers compete for 

capital with other industries and face price risks. These conditions of possible 

rising capital costs, risk associated with future prices, and variation in estimation 
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of reserves may alter the decision process for the producer. In Bradley's study the 

present value of profits is not very sensitive to changes in the rate of extraction 

near the optimum. Bradley shows this by using an example of a hypothetical 

petroleum reservoir. When output is set at half the rate suggested by the optimal 

solution the loss in present value is only five per cent. If a firm is operating at 

this sub-optimal position, a large increase in investment would only bring a slight 

increase in profits. "With small and falling incremental return to additional 

investment, a risk-averse producer will probably opt to commit less capital and to 

operate at a lower rate than dictated by present value maximization."5 The above 

statement by Bradley readily explains a large portion of any divergence between 

observed rates of use and calculated optimal ones. 

Another assumption common to analytical models is that resources are 

depleted from highest to lowest grades. However, sequential depletion of varying 

grade deposits is highly unlikely since nature does not arrange them in this order 

nor are they necessarily discovered in this order. Thus, high cost resources are 

developed while low cost resources are still undiscovered. When these low cost 

resources are discovered, they have a cost advantage which is defined as a 

differential rent. Firms have an added incentive to explore for and find low cost 

deposits to take advantage of these differential rents. 
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Bradley argues that the marginal benefit from modelling more realistically 

the geological, engineering, and institutional characteristics is larger than the 

marginal benefit from refinements in the optimizing models. 

3.12 Switching From Primary to Secondary Recovery 

Amit (1986) examines the switch from primary to secondary recovery. Two 

types of investment are possible: capacity investment which improves the 

productive capacity of the reservoir but does not affect cumulative production 

(adding wells), and reserve investment which is aimed at increasing the cumulative 

recovery (switching to secondary recovery). For primary recovery, the natural drive 

moves the oil to the wellhead, there are no lifting costs, and the recovery rate is 

not controlled by the producer. For secondary recovery artificial displacement 

mechanisms are used, there are lifting costs, and the recovery rate is controlled 

by the producer. 

From the optimality conditions of Amit's model, all of the capacity 

investment (number of wells drilled) should take place before production 

commences. Production should occur at the highest allowable rate. If secondary 

recovery is inexpensive and the natural drive is weak, then secondary recovery 

should be started immediately. If secondary recovery is expensive and the natural 

drive is strong, then only primary recovery is necessary. A third possibility exists 
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where reservoir production occurs initially by primary recovery and then switches 

to secondary recovery when the reward from secondary recovery just equals the 

reward foregone by ceasing primary recovery. 

Sensitivity analysis yields two other results. If price increases, secondary 

recovery should occur sooner, allowing faster extraction to take advantage of the 

price increase. Second, if the capital outlay required to commence secondary 

recovery increases, then the primary phase should last longer. 

This model has a parallel framework to the KC model where production 

is categorized into two types: unaided natural production or primary recovery and 

artificially increased ultimate recovery through investment or secondary recovery. 

However, in the Amit model production relationships are developed to a more 

detailed extent (eg. production will follow a natural decline path) which allows for 

the direct conclusions already presented, but some strong assumptions are 

necessary to determine this result. These assumptions are that a single fixed price 

represents future prices, a single firm produces the reservoir, secondary recovery 

can only be initiated once, and the capital required to start secondary recovery is 

fixed. Due to these asumptions the optimality condition for the Amit model is 

to produce as long as the price is greater than the marginal lifting costs plus the 

stock and production user costs. Furthermore, the condition for initiating 

secondary recovery in the Amit model is similar to the optimal condition for 
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capital in the KC model. 

3.13 Rate Sensitivity and the Optimal Choice of Production Capacity of 

Petroleum Reservoirs 

Nystad (1987) investigates an oil company's optimal choice of production 

capacity (the level of initial production that will maximize profits) taking into 

account the production decline rate, up-front capital costs, and the rate sensitivity 

(if any) of the reservoir. A rate sensitive reservoir is defined as a reservoir where 

an increase in the depletion rate leaves oil trapped underground that cannot be 

recovered. 

Increasing the discount rate in a simple model (which excludes capital costs 

and follows the Hotelling rule) always shifts production from the future to the 

present. This result does not hold for Nystad's model due to the inclusion of 

capital costs. In both models an increase in the discount rate attaches a higher 

value to discounted current production revenues as compared to future production 

revenues. But, in Nystad's model, it also raises the up-front investment costs 

relative to the discounted future revenues. Nystad demonstrates that there is a 

discount rate which maximizes the initial production rate. As the discount rate 

approaches this rate, the initial production rate rises since the increased discounted 

revenues are greater than the increase in the discounted investment costs. The 
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reverse holds for discount rates above this rate. The initial-output maximizing 

discount rate changes depending on the degree to which a reservoir is rate 

sensitive. The discount rate that maximizes the initial production rate is lower for 

a reservoir that loses cumulative production when the initial production rate is 

increased. 

When a reservoir is rate sensitive, a change in prices or the addition of a 

tax rate changes the optimal output rate. Comparing the results under two 

different price paths shows the higher price path reaching its optimal initial 

production rate at a higher discount rate. When taxes are included, the initial 

production rate reaches its maximum level at a lower discount rate than the 

before-tax initial production rate. 

3.14 Conclusions 

The analytical models presented in this chapter suggest that optimal 

production occurs where marginal revenue equals marginal cost plus user costs. 

The most elaborate user cost configuration is presented in the KC model. When 

prices are assumed exogenous, the condition is price equals marginal cost plus user 

costs. 
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There are many types of user costs as discussed in relation to the analytical 

models. Stock user costs reflect the value of having only a limited amount of the 

resource. The stock user cost measures the profit foregone from producing an 

additional unit now instead of in the future. A variant of this user cost is 

quantified in Chapter 6. Boundary user costs reflect the profit of an additional 

unit of production foregone due to the maximum production rate limitations. 

Capital consumption user costs reflect the profits foregone because capital is used 

now instead of in the future. Production user costs reflect the profit foregone due 

to increasing extraction costs. This type of user cost also occurs due to the rule 

of capture or common property problem. Heal also introduces a backstop 

technology which dramatically affects the path of user costs. 

Few of the analytical models consider physical characteristics. Exceptions 

to this assertion are the KC model, the Amit model and the Nystad model. The 

KC model, however, does not capture explicitly the influence of these factors on 

production. In the Amit model the switch from primary to secondary recovery 

mechanisms is emphasized. In the Amit and Nystad models the importance of the 

MER is included in the determination of production. 

Most analytical models ignore investment. Bradley emphasizes this 

limitation and argues that it can greatly influence the production decision. The 

models which have incorporated the investment decision are the KC model, the 
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Bohi and Toman model, the Amit model, and the Nystad model. 

The next chapter focuses on computational models which successfully 

incorporate the physical characteristics of reservoir depletion and investment costs. 
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NOTES 

1 Two models very similar to the KC model are those of Cummings and 

Burt (1969) and Burt and Cummings (1970). 

2 Richard L. Gordon, "Conservation and the Theory of Exhaustible 

Resources," Canadian Journal of Economics, 32, no. 3 (1966): 322. 

A vertically integrated company is involved in all aspects of the industry, 

namely exploration, development, production and marketing. 

' Douglas R. Bohi and Michael A. Toman, Analyzing Nonrenewable 

Resource Supply (Washington: Resources for the Future, 1984), 31. 

Paul G. Bradley, "Has the 'Economics of Exhaustible Resources' Advanced 

the Economics of Mining?" Progress in Natural Resource Economics, ed. Anthony 

Scott (Oxford: Oxford Univ. Press, 1985), 322. 
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Chapter 4 

Computational Models of Exhaustible Resources 

4.1 Introduction 

This chapter surveys computational models of exhaustible resources and 

identifies their contributions to exhaustible resource economics. These models 

attempt to capture the physical and market conditions of exhaustible resources, 

which can be resource and even resource-deposit specific. Examples of these 

conditions are the reservoir pressure used in determining the production for an oil 

reservoir, the investment associated with platforms, rigs, and wells, the reservoir 

formation and pressure maintenance used to improve reservoir performance, 

interfuel substitution, and the load duration curve associated with electricity 

generation. In representing these conditions, computational models may be able 

to contribute to areas of exhaustible resource economics where analytical models 

can not. 

Bradley (1985) argues that the proper inclusion of physical and investment 

considerations may be able to extend exhaustible resource theory. This chapter 

examines computational models to show how they have handled these 
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considerations. At the same time this chapter notes the exclusion of economic 

analysis by some of these models. The scope of the work surveyed is very broad, 

ranging from a single reservoir depletion model to a global energy supply and 

demand model, and thus the survey is selective. Most models adopt a 

mathematical programming approach. 

4.2 Computational Models of Petroleum Reservoir Production and 

Development 

4.2.1 Pressure as a Key Determinant of Reservoir Production 

The computational model of Garvin, Crandall, John, and Spellman (1957), 

shows how pressure affects the production rate. By focusing on pressure, the 

model includes a very important physical characteristic as discussed in Chapter 2 

and only mentioned by a few of the analytical models in Chapter 3. The model 

is presented below, with the variables and parameters defined as follows: 

Q1 

Qi 

Q3 

°max 

Pio 

'i,min 

production from reservoir i in period j 

oil purchased from an outside source in period j 

production commitment that must be met in period j 

production limitation 

- exogenously determined initial pressure in reservoir i 

- exogenously determined minimum pressure in reservoir i 
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profit/barrel fdr oil from reservoir i in period j 

profit/barrel for oil from an outside source 

- a function relating production to pressure. 

K N K 

4.1 Max Z = Y, Y, cijQ ij + cQ1 
j=1 i=1 j=1 

4.2 j1 - i,k.J)QI ≤ 1iO - i,min, 

i1 + Qj = Qcj, 

for all i 

for all j 

44 Q1i ≤ Qjmax, for all i and j 

The objective function maximizes profits from production from the 

reservoirs and from oil imported. Constraint 4.2 defines production as a function 

of the exogenously-specified change in pressure. Equation 4.3 requires production 

from the reservoirs and from the outside source to meet demand or the resource 

commitment. Finally, there is a limit on production from a given reservoir in a 

given period, and all variables are non-negative. 
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4.2.2 Well Placement and Decline Curve Production 

Following the same approach in one of their models, Aronofsky and 

Williams (1962) assume a completely developed field and optimize profits with 

pressure being the main determinant of production. In a second model production 

follows a specified production decline curve and profits are maximized by the 

optimal number and placement of wells. 

b(t) 

'1k 

r 

r 

Vk 

a 

c 

d 

e 

w 

x 

/3 

N 

The variables and parameters of the second model are: 

production at period t based on a production rate decline curve 

number of wells drilled at the end of period k 

number of rigs purchased at the beginning of period k 

number of wells drilled by a rig in one period 

number of rigs in operation during period k 

maximum number of wells drilled by a rig 

- revenue/unit at pipeline terminal 

- the cost of a rig and installation 

operating expenses to lift and transport one unit of oil 

the cost of operating a rig 

completion costs for a well 

the discount rate 

- the number of cells (blocks of land) for the reservoir; only one well can 
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be drilled per cell 

R1 - pipeline capacity 

t - time period s 

B - maximum reserves available from a single cell 

I - final time period of production 

The model is as follows. 

$ 

(c8 - e) Y, (nkh(ts-tk)) - dr, wv - xn 
4.5 max  = Y, k—i  

S=1 (1 + )S 

k 

4.6 Vk ≤ E r, k = 1 ... I 
s=i 

4.7 nk ≤ Vkrk, k 

k k 

4.8 . n≤aEv, k=1 ... I 
$=i 

k 

4.9 1 n≤N, k=1 ... I 
S=1 

4.10 Y, nkh(tl - tk) ≤. R1, 
k=1 

4.11 nh(t - tk) < B E n,  
s=1 k=1 s=i 

The objective (4.5) is to maximize profits, where the profits are the 

revenues minus operating costs minus fixed costs. Fixed costs are: the purchase 
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price of a rig, the operation of a rig, and the completion costs of a well. 

Constraints of the model are: the number of rigs in operation must not exceed 

the number of rigs purchased (4.6), the number of wells drilled can not exceed the 

number allowed by the number of rigs in operation in a period (4.7), the 

cumulative number of wells drilled can not exceed the cumulative number of rigs 

in operation multiplied by the maximum number of wells each rig can drill (4.8), 

the cumulative number of wells drilled can not be greater than the number of cells 

(4.9), the well flow can not exceed the pipeline capacity (4.10), and cumulative 

production can not exceed the reserves available from the cells (4.11). 

The Aronofsky and Williams linear programming model captures the 

influence of investment and physical factors such as pressure and rig constraints 

on production decisions. It is not obvious if the model follows the optimizing rule 

of analytical models where marginal revenues equal marginal costs plus user costs. 

However, production continues as long as marginal revenues are greater than 

marginal costs, and production is limited by capacity constraints. Production is 

terminated when the physically defined reservoir capacity is exhausted. 

4.2.3 Platform Placement, Well Location, and Production Scheduling Models 

Frair and Devine (1975) employ a model similar to the second model of 

Aronofsky and Williams. They determine the strategy of platform and well 



75 

placement for an offshore oil reservoir that maximizes discounted after-tax 

cashflow. Production is assumed to follow an exponential decline curve, and prices 

are exogenous. The development strategy determines: the number of fixed 

platforms, the size and location of each platform, the assignment of wells to 

platforms, when platforms are set up, when wells are drilled, and the production 

rates in each period for the oil reservoirs. 

There are the normal capacity constraints on production, wells and 

platforms, but the production constraints also allow for shut in production. Shut 

in production may be desirable under certain conditions such as very low prices 

for a certain period of time followed by higher expected prices. In this case, 

during the low price period, the model sets production levels to zero and then 

returns them to the pre-shut in levels at the higher prices. No production is lost, 

and the production strategy is able to take advantage of the high prices. Few if 

any analytical models of exhaustible resources appear to allow for shut in 

production. 

The model also incorporates discrete (integer) variables - rarely seen in 

analytical models - for platforms and for connecting platform wells to the target 

areas of a reservoir. Drilling a fraction of a well or using only a fraction of a 

platform are not viable alternatives. 
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Investment expenditures in the form of platform, well and drilling costs are 

incorporated into the model. Thus, by varying the number of wells and platforms 

used in production, Frair and Devine can determine the sensitivity of the optimal 

solution to changes in the amount of investment. 

This model is developed from an earlier model by Devine and Lesso (1972) 

in which only the platform placement and the assignment of targets to platforms 

is modeled. Devine (1973) extends the latter model to allow for dual completion 

wells. For this extension each well is allowed to extract oil from one or two 

targets. 

4.2.4 Pressure and Investment for Reservoir Development 

McFarland, Lasdon, and Loose (1984) model a gas reservoir where 

pressure and investment are allowed to influence production. They employ an 

optimal control approach and show numerically how sensitive the objective function 

value, initial investment, production horizon, and ultimate recovery are to changes 

in price, cost, discount rate, initial pressure, size of the reservoir, and the strength 

of the water drive. 

Their objective is to: 
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4.12 Max J = fo ( g(t)(1 - u)qg(t) - ID(t)I(t) - ®(t)K(t))(1 - $)e'tdt - C(u), 

where: 

K(t) number of producing wells at time t 

1(t) rate of well drilling at time t (wells per year) 

qg(t) reservoir production rate at time t 

rg(t) wellhead price of gas, exogenously determined 

a royalty rate 

cI(t) drilling cost per well 

0(t) operating, maintenance, and overhead cost per well 

/3 tax rate 

i - discount rate 

U - maximum number of wells that can be drilled 

C(u) - platform cost. 

In this model the discounted profits from a gas reservoir are maximized 

subject to the following constraints. 

4.13 dV/dt = -t(P0 - P), V(0) = V0 

4.14 dP/dt = (-RTqg + /hP(Po - P))/V, P(0) = P0 

4.15 dK/dt = 1(t) - (1 - V/V0)K(t), K(0) = K0 
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4.16 qg(t) - ((Pb)')' K(t), 

where: 

V - volume 

P - pressure 

P0 - initial pressure 

11 - water drive constant 

R gas constant 

T absolute temperature 

Qg gas well flow constant 

n - gas well flow constant 

Pb - bottom-hole pressure. 

Equation 4.13, the change in reservoir volume, shows that as pressure 

declines water moves into the space originally occupied by gas. Thus the reservoir 

volume decreases through time. Equation 4.14, the change in pressure, is derived 

from a material balance equation (Chapter 2) and the gas law. Equation 4.15, the 

change in the number of producing wells, is the difference between the number 

of wells drilled and the number of wells flooded-out (produce only water). Finally, 

equation 4.16 shows production as the flow per well determined by the pressure 

multiplied by the number of producing wells. 
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Similar to the investment optimality condition of the KC model, wells are 

only drilled when the marginal benefit is greater than or equal to the marginal 

cost of drilling the well. With a constant price for all periods, following this 

decision rule leads to drilling only in the first period. 

Sensitivity analysis shows how economic and physical parameters can change 

the production schedule, production horizon, net present value (NPV), final 

pressure, and ultimate recovery. The effects of an increase in price, decrease in 

royalty, and decrease in cost are similar. Production is shifted toward the present, 

the exploitation period is shortened, the final pressure is lowered, the NPV is 

increased, and the ultimate recovery is increased. The decision to start production 

is delayed only when future prices are significantly higher than current prices 

(future prices are three times the size of current prices). A decrease in the 

discount rate lengthens the production horizon, decreases the initial investment 

(fewer wells drilled), slightly decreases ultimate recovery, and increases NPV. If 

the water drive is stronger, then production occurs faster, ultimate recovery is 

lower, and the NPV shrinks. If the initial pressure is higher, then the reservoir 

operates fewer years, ultimate recovery is higher, and NPV is higher. Finally, if 

the size of the reservoir is smaller, then there are fewer wells drilled and NPV is 

lower. 
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This model follows very closely the model of McFarland, Aggarwal, Parks, 

and Lasdon (1982). However, the latter model also has an oil/gas example. The 

sensitivity analysis follows the same pattern as the gas example. 

Although the sensitivity analysis shows changes in production with variations 

in the economic factors, these changes are very small, especially for ultimate 

recovery. For the gas and oil/gas models ultimate recovery is determined mainly 

by the physical nature of the reservoir, and only very small changes in ultimate 

recovery result from changes in economic parameters. This conclusion is not 

stressed by analytical mbdels but becomes very evident in computational models. 

By showing bow a change in the cost of investment changes the optimal 

production strategy, the model reinforces a conclusion of Bradley (1985) that 

investment plays an important role in production decisions. 

4.2.5 Pressure Maintenance Model 

Lasdon, Coffman, MacDonald, McFarland, and Sepehrnoori (1986) seek the 

production strategy to maximize gas deliverability subject to the properties of a gas 

storage reservoir. This production strategy involves well spacing and the 

production rate schedule for each well. Different objectives are maximized. One 

objective is the deliverability potential for the last period. To maximize this 

deliverability, production in each period is determined so that it just meets demand 
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in each period, and then the flow rate can be at its highest level in the last 

period. The other objective is the excess of production over demand. Model 

constraints consist of the deliverability limits of each well in standard back pressure 

form (4.20), the daily demands for production (4.21), and flow rates which must 

lie within specified ranges (4.22), and nonnegativity restrictions (4.23). This is a 

reduced form of the model. In the original model the material balance equation 

and Darcy's law for gases are included in a system of difference equations. These 

equations incorporate the physical properties of the reservoir which influence 

pressure such as pore volume, compressibility, viscosity, and the amount of 

underground migration. It is assumed that the daily well flows satisfy this set of 

difference equations. 

Key variables and parameters of the model are: 

W - set of indices of grid blocks which contain a well 

i, j - horizontal and vertical grid block indices 

t time period index 

qijt flow rate from the well in block W(i, j) during time period t 

Pt pressure in block W(i, j) at the end of period t 

Cii well constant for well in block W(i, j) 

(pb)1 back pressure of well in block W(i, j) 

nij well slope for well in block W(i, j) 

dt specified demand field flow rate in period t; an underline indicates a 
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minimum and an over bar indicates a maximum 

et excess production in period t 

IMP a parameter. between 0 and 1 showing the importance attached to the 

deliverability or excess objective 

DEL the deliverability objective 

EXCESS - the excess objective 

The objective is to: 

4.17 Max Z = IMP(DEL) + (1 - IMP)(EXCESS) 

where: 

I .T 

4.18 DEL = E E clJ((p1JT)2 - ((pb)1)2)'i 
i=1 j=1 

T 

4.19 EXCESS = I e 
t=1 

subject to 

4.20 q1 .≤. - ((pb)1)2)'i 

4.21 ijt -  e = 
1=1 j=1 

4.22 O.≤e≤d-d1, 

for all i and j, t=1 ... T 

t=1 ... T 

t=1 ... T 

4.23 qijt ≥ 0, for all i and j, t=1 ... T. 
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The model maximizes a convex combination of the well flow rate and excess 

production taking into account the loss of pressure caused by other operating 

wells. It is solved by nonlinear programming techniques. 

With the emphasis on the physical nature of the reservoir and its impact 

on optimal production, few economic considerations are included. Indeed, no 

prices, costs or investment outlays are incorporated into the model. The suggested 

time duration for analysis is one to three years. For an economic analysis a much 

longer time is ' preferable (20-30 yrs). In ignoring economic considerations a 

potential deficiency of this and other computational models is revealed. However 

the complexity of the model does not readily allow for these extensions. 

This numerical model shows that pressure maintenance increases the 

amount of recoverable gas for a reservoir consisting of two connected deposits. 

If the production rate is substantially higher for one of the areas, gas will migrate 

toward this area and from the other deposit. An undesirable consequence of this 

migration is trapped gas between the two areas. Pressure maintenance at the 

wellhead controls this migration by creating a pressure barrier between the two 

areas, and the potential loss does not occur. This type of optimal production 

strategy is found because the physical nature of the reservoir is so well detailed 

by the computational model. An analytic economic model is unlikely to give 

similar results. 
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4.2.6 Optimizing Gas Production Using the Decomposition Method 

Dougherty, Dare, Hutchison, and Lombardino (1987) develop a multi-

reservoir production model to determine how best to exploit the gas and oil 

reservoirs in Australia's Cooper Basin. The need to evaluate the economic options 

arises from the complexity of dealing with 60 small to medium size reservoirs. For 

each reservoir the questions are: bow many wells should be drilled and when, 

bow much compressor capacity should be installed and when, and at what rate 

should each reservoir produce? 

Because of the complexity of the problem addressed, the authors employ 

decomposition. Their decomposition method involves solving a series of models 

where the outputs of one model become the inputs of another model. Diagram 

4.1 shows the path for determining a solution. First, the whole system is solved 

in the Systems Integration Module (SIM). The shadow prices on the sales and 

spare capacity constraints from the SIM result are used as pointers for changing 

the production rates and capacities in the Linearized Field Development Module. 

The Trunkline Optimization Module (TOM) then accepts these modified 

production capacities and finds the least cost trunkline expansion to meet them. 

This information is part of the input into the Field Development Module/Simple 

Reservoir Model (FDM/SRM) which determines the optimal schedule for drilling 

wells and installing compressors. With more than one reservoir in a field, only the 
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necessary development is performed in this module and additional costs added 

to the NPV calculation. Then the TOM is run again. All four of these modules 

provide data that can be used in the next iteration of SIM. This model 

incorporates both simulation and optimization approaches to reservoir 

development. 

According to the optimal solution, NPV improves by $40 million 

(Australian) above the NPV from the production plan that existed before this 

model was built. 

Figure 4.1 

Flow Diagram of SIPS Optimization' 
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This model is so large that it can only be solved by dividing the problem 

into submodels. This feature illustrates two unfavourable characteristics of large 

scale computational models: in detailing the physical characteristics, the model 

expands so much that it cannot be solved as a single model, nor is it easy to 

comprehend. 

4.2.7 Conclusion to Petroleum Reservoir Production and Development Models 

In these computational models certain factors are captured that are either 

only mentioned or glossed over by analytical models. Constraining physical factors 

such as pressure in determining production, pipeline capacity limiting flows, the 

limitation of wells per platform for offshore oil reservoirs, and the effect of 

reservoir configuration and pressure maintenance definitely influence the optimal 

production strategy. Investments such as rig construction, well drilling, and 

platform construction are also included in numerical models. Thus, several 

computational models incorporate elements that Bradley (1985) considers 

important. 

Discreteness is also represented in several computational models. In 

determining the number of platforms, the number of rigs used, or the number of 

wells drilled, the models 'allow only for integer values. The case of only a fraction 

of a well being drilled is not possible. 
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The computational models contrast with the analytical models of the 

previous chapter. The analytical models simplify the production process, 

emphasize economic factors such as economic rents and user costs, and employ 

a much higher level of aggregation in production. User costs form part of the 

optimal solutions for computational models but are rarely discussed. 

4.3 Aggregated Energy and Exhaustible Resource Computational Models 

The computational models surveyed in the rest of this chapter employ a 

much higher level of agregation. In achieving this level of aggregation some of 

these models make simplifying assumptions about the physical characteristics 

similar to the analytical models. At the same time these computational models 

place more emphasis on economic factors such as economic rents and user costs 

than the previous computational models. However, these computational models 

are able to incorporate complexities such as inter-fuel substitution, terminal 

conditions, backstop technologies, exports, and the cost of incorrect speculative 

information about the future which are not represented in analytical models. 

4.3.1 The Allocation of Energy Resources 

Nordhaus (1973) seeks the optimal allocation of the world's resources to 

meet energy demands over a 200-year time horizon (1970-2170). He employs five 



88 

demand categories which are met from seventeen resource categories. The model 

is a linear programming problem which minimizes the extraction, transport and 

processing costs subject to supply and demand constraints. Thus, the Nordhaus 

model is a modified transportation problem which minimizes the transportation 

costs between energy sources and demand destinations. 

Nordhaus shows that the least cost fossil fuels are used first, followed by 

the rest of the fossil fuels in the order of increasing costs. Nuclear power is 

provided by the light-water reactor and then the breeder reactor as the technology 

is developed. Eventually all the fossil fuels are exhausted by 2120, and the 

breeder reactor supplies all energy demand. Since perfect knowledge of future 

costs and availabilities is not possible, the dates of changing technologies are only 

suggestive; however, the pattern of switching appears plausible. 

In his theoretical discussion Nordhaus argues that prices are the sum of the 

marginal extraction cost plus a royalty or user cost reflecting the scarcity of the 

exhaustible resource. Before including the effect of a backstop technology and 

assuming extraction costs are zero, the optimality condition is that efficient prices 

rise at the rate of interest, which is the same as the Hotelling rule. Given the 

long run nature of the problem, the terminal conditions are critical and influence 

the optimizing condition. Nordhaus postulates the existence of a backstop 

technology - a virtually infinite supply of a specific resource which is able to meet 
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the demand requirements. This is similar to the backstop technology included by 

Heal (1976). The example given by Nordhaus is nuclear energy from a breeder 

reactor. After switching from the exhaustible resource to the backstop technology, 

the efficient price of energy is the cost of the backstop technology. The price and 

royalty of the exhaustible resource at this date is also determined by the backstop 

cost. Assuming that there is only one exhaustible resource, the efficient price for 

the exhaustible resource in each previous period is the backstop cost discounted 

to that period. The user cost (royalty) in each period is the difference between 

the price and the marginal extraction cost. Thus, at the switch date user costs are 

reduced to zero. 

The optimal solution provides the least cost combination of supplies to meet 

demands. It also provides shadow prices with the demand and supply constraints 

which can be interpreted as efficient delivered prices or royalties. The royalties 

are very small so that the delivered prices for 1970 as calculated by the model are 

close to the actual market prices for 1970. The main exception is the petroleum 

price which is higher than the efficient delivered price, but this is explained by 

import restrictions and prorationing. 

Nordhaus also displays results relating to free trade and self-sufficiency 

policies. In the optimal solution the U.S. incurs large trade deficits and is highly 

dependent on foreign petroleum in the 1990's. However, this trend reverses 



90 

between 2020 and 2070 with high exports of coal and shale oil. If the U.S. were 

to avoid the periods of foreign dependence for energy requirements, costs to the 

U.S. would increase significantly. 

Solving the model extensions such as free trade, self-sufficiency and limit on 

imports shows one of the major advantages of employing computational models. 

Analytical models would have difficulty incorporating these extensions. 

4.3.2 Waiting for the Breeder - Electricity in the United States 

In a long term model of electricity supply and demand, Manne (1974) 

focuses on the race between the development of breeder fission and the 

exhaustion of low cost natural uranium. The linear programming model also 

represents uncertainty as to the date of a functional breeder fission technology. 

Manne finds that near term decisions are insensitive to the future uncertainties. 

The model time frame is 1983 to 2027. Capacities that come on stream 

during this time are from decisions made five to ten years earlier. Uncertainty is 

incorporated through the breeder capacity becoming available in 1990, 1995, or not 

until after 2025, each of these events occurring with exogenously specified 

probabilities. The electricity supply is from hydro plants, three types of fossil 

units, peak storage, light water reactors (LWR), and breeders. Uranium supply 
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becomes important because uranium is used extensively in LWR plants. These 

plants have a comparative advantage in the production of base-load, intermediate-

load and peak-load electricity as characterized by the load-duration curve. The 

load-duration curve illustrates how electricity demand can be allocated into blocks 

over time. The peak-load block requires the highest electricity load but only for 

a very short period of time. The base-load block requires a lower level of 

electricity generation, but this level must be maintained throughout the period. 

The demand projections are included in two different ways: independent 

of future prices and dependent on future prices. The exogenously determined 

demands follow forecasted expectations and after 1990 a growth rate of 3 per cent 

per year. The endogenously determined demands allow rising future prices to 

decrease demands below the exogenously specified reference levels. 

The model assumes only a limited amount of hydro and current technology 

coal-fired thermal potential for electricity generation. Coal is viewed as a backstop 

technology to be used if a safe and competitive breeder reactor is not developed. 

Thus, the LWR using uranium must supply electricity if the breeder reactor is not 

a feasible technology during the time frame considered. Uranium extraction costs 

are assumed to increase with cumulative production and the supply of uranium is 

modelled by a step function. The model divides the uranium supply into five 

categories with the costs increasing as each category is exhausted. 
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Included in the model is a terminal value credit to reduce horizon effects. 

Since the capacity additions have different life spans, if no correction is made a 

capacity addition with a short life span and a high unit cost would be selected 

instead of a capacity addition with a longer life and a lower unit cost. 

The numerical results show that the value of perfect information concerning 

the breeder implementation date is relatively low. Even if the breeder is 

developed as soon as possible, there will be no significant changes in the pattern 

of capacity expansions in the first two periods or 15 years. It is only in the final 

periods that the pattern is changed, but these alterations have only a very small 

impact because of the high discount factor based on a 10% discount rate. 

Results concerning the use of uranium show that the price path is directly 

linked to the implementation of the breeder reactor. If the breeder reactor is not 

implemented before 2025, uranium is used in greater quantities and at higher 

prices. The shadow prices associated with the constraints on uranium supply are 

equal to or greater than the uranium supply costs. The differences between the 

shadow prices and supply costs are interpreted as scarcity rents by Manne, which 

are the same as the royalty values defined by Nordhaus. In the Manne model, 

the backstop technology is not reached but for the last category of uranium ore 

which is produced and not exhausted, the shadow price equals the cost of 

extraction. Thus, the Manne model determines efficient prices in a similar fashion 
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as the Nordhaus model. However, unlike the Nordhaus model, Manne allows for 

price responsive demand. 

4.3.3 Strategies for a Transition From Fossil to Nuclear Fuels 

Hafele and Manne (1975) examine the transition of fuel use in a manner 

similar to Nordhaus. In their model there is more than one type of breeder 

reactor, secondary forms of energy are included and three different demand 

projections are used. The third demand scenario allows demands to be responsive 

to prices. The reserves of oil and gas are assumed to last 40, 60 and 80 years 

and thus the base results include nine scenarios. 

The model minimizes the discounted costs of capacity expansion and 

operating these plants to meet intermediate and final demands. Before stating 

their results, Häfele and Manne stress the ambiguities in the estimates of resource 

availabilities. The exact dates of change from one resource to another are highly 

suspect, but the pattern of change seems plausible. 

Model results show that the cost of meeting energy demands increases with 

faster demand growth rates and with shorter years-of-reserves. By comparing the 

40, 60 and 80 years-of-reserves scenarios, a value is attached to having additional 

reserves. The model is also solved when one type of reactor is excluded. 
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Comparing the costs for this scenario with the original results shows the benefits 

of implementing this technology. 

The results of the model also show shadow prices in each period for 

electricity and non-electricity demand constraints. These shadow prices are 

dependent on the growth rate of energy demand. If the demand growth rate is 

high in the near term and then declines, the shadow prices increase rapidly 

through time. If the demand growth rate starts small and increases exponentially 

through time, the shadow prices increase gradually. When demand is endogenous, 

the shadow prices change even less. 

4.3.4 ETA: A Model for Energy Technology Assessment 

Another energy model by Manne (1976) follows a similar framework but 

incorporates both own- and cross-price elasticities of demand which allow for price-

induced interfuel substitution and fuel conservation. The objective of his non-

linear programming model can be viewed as maximizing consumers' plus producers' 

surplus or minimizing the sum of costs of conservation plus interfuel substitution 

plus the costs of energy supply. This objective is subject to constraints on 

extraction of exhaustible resources and expanding capacities for electricity 

generating plants and reactors and the demand for electric and non-electric energy. 

Manne's contribution lies in the specification of his objective function, which 
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captures the following behaviour: the higher the price of a fuel, the less that is 

consumed and the greater the demand for a competing fuel. That is, interfuel 

substitution occurs which is not incorporated in the Häfele and Manne model. 

Moreover, the higher the price of energy in general, the less electric and non-

electric energy that are consumed. Manne's results show patterns similar to the 

Nordhaus model and his own previous work. 

The model incorporates increasing costs for the supply of uranium. There 

is a step function representing the various quantities of ores at different costs 

similar to Manne (1974). Given the equilibrium price path and that uranium is 

exploited along the step function from the low cost to the high cost deposits, the 

user costs associated with uranium production are declining through time. This 

result of declining user costs is derived analytically by Heal (1976). 

4.3.5 A Dynamic Optimization Model of Depletable Resources 

Modiano and Shapiro (1980) construct a dynamic optimization model of the 

U.S. coal industry. Their model minimizes the present value of total costs of 

meeting exogenous demands for the energy sector and is solved using mathematical 

programming decomposition methods. 
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Model constraints embody the conversion of the depletable resource to end-

use products, the conversion of other resources to end-use products, the demands 

for the end-use products, and limit the depletable resource use to no more than 

its ultimate recovery. The objective function minimizes the costs of conversion, the 

costs of extraction (which increase with cumulative production), and the costs of 

the other primary commodities. The model time frame is 1979 to 2000. But the 

future beyond 2000 must be represented somehow since resource depletion cannot 

continue forever. Thus, a salvage value for the unused exhaustible resource (coal) 

is included and subtracted from these costs. 

The model is subdivided into two parts. First, there is a model for each 

period which minimizes the costs of meeting the exogenous demands. These 

temporal models are linked through the supply model which maximizes the cost 

savings of using the exhaustible resource as opposed to a higher cost alternative 

less the costs of extraction plus the salvage value. 

Modiano and Shapiro then focus on the dual program of the temporal and 

supply models. A demand curve for the depletable resource is derived by 

examining how the dual model responds to various prices. The optimality 

condition for the temporal and supply models is for the marginal benefits to equal 

the marginal costs. Marginal costs consist of marginal extraction costs plus three 

user costs. These user costs are the discounted effect of current extraction 
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increasing future extraction costs, the stock user cost, and the loss in salvage value 

due to current extraction. 

Modiano and Shapiro show that the growth rate of coal consumption is very 

low due to increasing reliance on nuclear power as an energy source. The price 

of coal rises until 1991 and remains constant thereafter. The user costs increase 

from 1979 to 1982 and then shrink to zero by 1991. By that year cumulative 

extraction reaches the point where costs remain constant. The results also show 

that coal usage is much more sensitive to changes in nuclear power supply than 

to changes in oil and gas supply. 

4.3.6 Dynamic Equilibrium Energy Modelling: The Canadian BALANCE 

Model 

Daniel and Goldberg (1981) model the energy sector in Canada in a 

framework similar to the Nordhaus model but make prices endogenous. The 

model consists of three parts: a linear programming supply model, an econometric 

demand model, and a mechanism to equilibrate prices between the two models. 

Their work is an extension of the PIES framework (see Hogan (1975)) to many 

time periods. This model goes a step beyond the Nordhaus model which obtains 

an efficient set of prices from exogenously specified demands. Hence Nordhaus's 

demands are not based on the "efficient prices." The objective of the equilibrium 
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mechanism is to derive a set of prices which are inputs for the demand model 

and are simultaneously consistent with the shadow prices from the supply model. 

Given these prices, demands are generated in the demand model. Then, these 

demands are used as inputs for the supply model which generates shadow prices 

of supply. These shadow prices are subsequently used in the equilibrium 

mechanism to derive the prices for the demand model. 

There are 20 supply sources and 3 primary demands for energy - crude oil, 

natural gas, and coal. Coal demand is assumed not to be price sensitive, so cross-

price and own-price elasticities are included only for oil and gas. The model is 

expanded by allowing gas to be exported to the U.S. The time frame of the 

model is 1980 to 2000. Terminal conditions for the year 2000 are important 

because Canadian reserves are projected to last until just after 2000. Thus, a 

model which ignores terminal conditions would show a problem-free situation, low 

user costs or rents on scarce resources, and little investment in long term energy 

technology. The terminal conditions for this model aggregate all future periods 

beyond the time frame into one final period. 

The results of the model show that as the demand prices and the shadow 

prices of supply converge to equilibrium, oil and gas demand prices increase and 

demand declines between the first and second iteration, and the same occurs for 

oil prices and demand between the second and third iteration, but gas prices fall 
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and gas demand increases. These results exhibit both own-price and cross-price 

elasticity effects. In moving to the third iteration where gas prices fall, the 

demand for gas increases because gas becomes more attractive relative to oil. 

Given the equilibrium shadow prices and the supply costs which increase 

with cumulative production, the user costs must decline through time, a result 

similar to the ETA model of Manne (1976). Since ETA is a nonlinear 

programming model and BALANCE is an equilibrium model, it is unlikely that an 

optimizing model can be formulated for BALANCE because of non-symmetric 

cross-price effects. 

4.3.7 Allocation of Canadian Natural Gas to Domestic and Export Markets 

Rowse (1986a) models the allocation of Canadian natural gas to domestic 

and export markets. Gas is supplied from four producing areas to seven domestic 

and five export markets. The nonlinear program consists of twenty-five 3-year 

time periods. The objective function maximizes the sum of discounted consumer 

surplus plus revenues from domestic and export gas consumption less discounted 

costs of gas production and transportation. There is a salvage value determined 

by the backstop cost for all conventional gas left in the ground at the horizon 

(terminal conditions). Rising unit supply costs are also captured in the objective 

function. The constraints for the model are: mass balance constraints equating 
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supply and demand, constraints on production from current supply, constraints on 

production from new supplies, constraints limiting supplies of gas from new sources 

to the size of estimated reserves, and limits to the size of exports. 

The results of the model show that efficient gas prices do not follow the 

standard Hotelling rule because of the recovery profile, allowance for shut in 

production and technology transition constraints. Due to the size of Canadian gas 

supplies relative to domestic and export demands, the discount rate and the 

natural gas recovery profile, near term prices are low. The model also shows 

many near-optimal depltion paths so that the cost of wrong assumptions about 

future demands is small. 

Rowse (1986b) also examines the user costs and efficient prices for a British 

Columbia gas model. Prices rise monotonically over time to the backstop 

technology. User costs of existing supplies of natural gas rise in a similar manner; 

however, user costs of new supplies at the margin first rise, reach a maximum, and 

then decline to zero as the backstop technology is implemented. 

4.4 Conclusion 

Computational models include details of behaviour or complexities (self-

sufficiency or limited imports) that are only mentioned or glossed over by 
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analytical models. As already mentioned, computational models are able to 

capture the physical behaviour of resource depletion through constraints not easily 

represented in analytical models. The highly aggregated models surveyed in the 

latter half of this chapter also show that computational models can provide 

information about user costs and can incorporate extensions such as export 

markets, interfuel substitution, and comparisons of optimal solutions under different 

circumstances (different price paths, different reserve estimates, and different 

export prices). They are thus able to address resource allocation problems that 

analytical models cannot. 

The next chapter presents a computational model which maximizes profits 

of producing petroleum from a crude oil reservoir. This model includes the 

physical characteristics of the reservoir production in the cost and production data. 
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Notes 

1 Elmer L. Dougherty et al., "Optimizing SANTO'S Gas Production and 

Processing Operations in Central Australia Using the Decomposition Method," 

Interfaces 17, no. 1 (1987): 75. 
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Chapter 5 

The Reservoir Production Model 

5.1 Introduction 

Reservoir development and production are modelled in this chapter by 

incorporating some of the characteristics of analytical and computational models 

into a linear programming model maximizing the profits of producing oil from 'a 

single reservoir. Production is allowed to occur according to three different 

production profiles through primary, water flooding and enhanced oil recovery 

(EOR). The physical characteristics unique to this reservoir are captured in the 

cost and production data, and economic factors are captured by the inclusion of 

a royalty, tax and pricing regime. The physical and economic characteristics are 

discussed next, and then presented in equation form. 

5.2 Production Profiles 

Production profiles show the allowable pattern of production. Each 

production profile is represented by a Leontief production function capturing a 

fixed-proportions technology. Several inputs are required to produce one or more 
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outputs, and the increase of each output requires all inputs to expand 

proportionately. The intertemporal nature of oil production is embodied in the 

Leontief production technology. The inputs to the Leontief production technology 

are the initial capital costs and the operating costs which depend on the number 

of operating wells and the production levels which decline through time. The 

outputs are the production levels and revenues. Each Leontief process specifies: 

the number of producing wells in each period, the time duration of reservoir 

production in number of periods, the amount of production in each period, the 

size of the capital outlay, and the operating costs associated with each period.' 

Thus, for each process, the number of wells drilled, production in each period, and 

costs in each period are exogenously specified. 

Leontief processes have several advantages. Costs are matched precisely 

to the corresponding profile of production. Each profile incorporates variable and 

fixed costs which are production specific, well specific, and facilities specific as 

shown in the cost data section. The Leontief production functions also allow for 

limited substitution. If half of the cumulative reserves are produced using the 8-

well profile and half are produced using the 10-well profile, then this combination 

can be viewed as the 9-well profile result. 

For computational ease, only three production profiles are available. Each 

profile is feasible for production by MER restrictions and constitutes a plausible 
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alternative to the producer. The reservoir modelled is assumed to have original 

oil in place (OOIP) of 1,250,000 rn3.2 Recovery from primary production is 

approximately 20% or 242,725 rn3 of oil. The production technologies 1 (long 

profile), 2 (medium profile), and 3 (short profile), require drilling 8, 10, and 12 

wells, respectively. The placement of the wells and connecting pipeline facilities 

is shown in Figures 5-1, 5-2, and 5-3. 

Figure 5-1 

Well and Pipeline Placement for Profile 1 (Long) 
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Figure 5-2 

Well and Pipeline Placement for Profile 2 (Intermediate) 
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Figure 5-3 
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Well and Pipeline Placement for Profile 3 (Short) 
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The daily production rates and well count for each year are given in Table 

5-1. These production rates are reservoir specific since they are determined by 

the physical nature of the reservoir; see Chapter 2. The profile drilling 12 wells 

incurs higher costs, higher initial production rates, a higher decline rate, and 

therefore depletes the reservoir faster. The annual production decline rates are 

approximately 10, 14, and 18% for profiles 1, 2, and 3, respectively. The years 

specified in Table 5-1 are for production profiles beginning in period one. Each 

period is three years long. Since the model allows profiles to be initiated in each 

of the first ten periods, this greatly expands the choices and time frame of the 

model. Furthermore, due to the inclusion of future production the model must 

include not just one or ten periods but twenty-four periods (72 years). This is 

explained in a later section. 

A rule of thumb for production termination is to stop producing when the 

level of production reaches 1m3/well/day. This is similar to the shutdown condition 

of analytical models where MR = MC. If the price is $ 113/rn3 and given the costs 

as defined in the Cost Data section, an additional year of production will incur 

operating costs slightly higher than production revenues. Due to these losses, no 

production occurs in subsequent years.3 

Waterflooding is a secondary recovery technique that is assumed to be 

possible for this reservoir. The decision to produce using waterflooding depends 



108 

Table 5-1 

Primary Production 

Profile 1 Profile 2 Profile 3 
Year Output Well Output Well Output Well 

(m3/day) Count (m`/day) Count (m3/day) Count 

1988 0 0 0 0 0 0 
1989 6 1 12 2 18 3 
1990 20 3 40 6 60 9 

1991 48 8 64 10 80 12 
1992 64 8 80 10 96 12 
1993 60 •8 75 10 90 12 
1994 54 8 65 10 74 12 
1995 49 8 56 10 61 12 
1996 44 8 48 10 50 12 

1997 39 8 41 10 41 12 
1998 35 8 35 10 34 12 
1999 32 8 30 10 28 12 
2000 29 8 26 10 23 12 

2001 26 8 22 10 10* 12 

2002 23 8 19 10 
2003 21 8 16 10 
2004 19 8 14 10 
2005 17 8 12 10 
2006 15 8 10 10 
2007 14 8 
2008 12 8 
2009 11 8 
2010 10 8 

2011 9 8 
2012 8 8 

* only a half year of production 
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mainly on the physical characteristics of the reservoir. Water is only injected if 

it does not destroy the pore structure of the reservoir. There must also be 

significant lateral continuity for the injected water to push the oil to the producing 

wells. Thus the reservoir's physical properties must be analyzed to find if water 

injection is possible. Also a water supply must be accessible before water injection 

can occur. 

If waterflooding is feasible, it will be initiated quickly to take advantage of 

the improved production due to pressure upkeep. Production declines when water 

breakthrough occurs; water from the injection wells comes out in the production 

wells. 

For each of the production profiles 5 more wells are assumed to be drilled 

for water injection. The pattern of well drilling for profile 1 with waterflooding 

is shown in Figure 5-4. Cumulative reserves are now increased by an additional 

10% to 379,965 m3. The daily production values and well count for each year are 

given in Table 5-2 for both primary and waterflooding techniques. 

A similar shutdown condition applies to primary and waterflooding recovery 

as to primary recovery alone. Costs are higher under secondary recovery, so 

termination occurs at a slightly higher level than 1m3/well/day. 
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Figure 5-4 

Well Placement for Water Injection for Profile 1 
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For computational ease each time "period" of the model consists of three 

years. Using the daily production rates from Table 5-2, production is found for 

each period and divided by the total production. The resulting decimal fractions 

comprise the physical production components of each Leontief process and are 

shown in Table 5-3. Since the first year incurs only capital costs and no 

production, it has been defined as a separate period. 
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Table 5-2 

Primary and Waterflooding Production 

Profile 1 Profile 2 Profile 3 
Year Output Well Output Well Output Well 

(m'/day) Count (m3/day) Count (m/day) Count 

1988 0 0 0 0 0 0 
1989 6 1 12 2 18 3 
1990 20 3 40 6 60 9 

1991 48 8 64 10 80 12 
1992 64 13 80 15 96 17 
1993 64 13 80 15 96 17 
1994 64 13 80 15 96 17 
1995 64 13 80 15 96 17 
1996 64 13 80 15 96 17 
1997 64 13 75 15 83 17 
1998 60 13 64 15 68 17 
1999 55 13 58 15 56 17 
2000 51 13 51 15 46 17 

2001 47 13 45 15 37 17 
2002 43 13 40 15 30 17 
2003 40 13 36 15 25 17 
2004 36 13 31 15 21 17 
2005 33 13 27 15 19 17 

2006 31 13 24 15 18 17 
2007 28 13 22 15 
2008 26 13 19 15 
2009 24 13 17 15 
2010 22 13 16 15 

2011 20 13 
2012 19 13 
2013 17 13 
2014 16 13 
2015 15 13 
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Table 5-3 

Output per Period as a Fraction of Total Production 

Periods 
1 2 3 4 5 6 7 8 9 10 

Profile 1 
Production 

0.000 0.071 0.184 0.184 0.160 0.125 0.096 0.075 0.059 0.046 

Profile 2 
Production 

0.000 0.111 0.231 0.226 0.166 0.116 0.079 0.056 0.015* 

Profile 3 
Production 

0.000 0.152 0.277 0.264 0.163 0.084 0.056 

* This last coefficient is for only one year of production. 

The sum of all of the components of each of these normalized production 

vectors is unity. If the reserve consists of one cubic meter of crude, then each 

coefficient shows the fraction of the cubic meter that is produced during that 

particular time period. Each vector is multiplied by a decision variable 

representing resource commitment! Each resource commitment variable can range 

in size from zero to the capacity of the reservoir (379,965 m3). Thus the resource 

commitment variable indicates the number of cubic meters of the reservoir that 

are used with a particular production technology. Therefore, the products of the 

resource commitment variable and the vectors defining a production technology are 

vectors representing the physical production, capital and operating costs that occur 

over all periods. The vectors defining the production technologies for primary and 
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waterflooding recovery are given in Table 5-6 at the end of the next section. 

5.3 Cost Data 

The capital and operating cost data for each primary recovery profile are 

given in Table 5-4. Once again these data pertain to a production decision 

occurring in period 1. The capital costs are for drilling and pipeline construction. 

Comparing the drilling costs with the number of wells completed (Table 5-1) shows 

that each well costs $600,000.00. The facilities costs are not proportional but show 

economies of scale. The total cost of facilities per well declines when comparing 

the three profiles as more wells are drilled. These facilities include the pipelines 

from the wells to a collection centre and then to a major pipeline, road 

construction, and a production plant to handle and separate the fluid volumes. 

There are two types of operating costs, fixed and variable, which are based 

on the number of wells and production levels respectively. The monthly well cost 

covers labour, road maintenance, and well upkeep costs. The production costs 

include transportation and processing costs. Initially the oil produced is 

transported by truck at $9.00/rn3. After the pipeline facilities have come on 

stream, oil can be transported through the pipelines at a lower cost of $4.00/rn3. 

Included in this cost is oil processing, water separation and disposal, and solution 

gas separation. It is assumed that the solution gas produced is minimal and 
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therefore can be consumed on site as fuel. 

Table 5-4 

Capital and Operating Costs for Primary Recovery 

Capital Costs (000's of 1987 dollars) 

Year Profile 1 Profile 2 Profile 3 
Drilling Drilling Drilling 

1988 600 1200 1800 
1989 1200 2400 3600 
1990 3000 2400 1800 

Total 4,800 6,000 7,200 

Facilities Facilities Facilities 

1988 60 120 180 
1989 770 900 1000 
1990 600 700 750 

Total 1,430 1,720 1,930 

Operating Costs - common to all scenarios (1987 dollars) 

Fixed Costs $3000/well/month 

Variable Costs 

1989 $9.00/rn3 of oil 
1990 $9.00/rn3 of oil 
1991 $4.00/rn3 of oil 
1992 $4.00/rn3 of oil 
1993 $4.00/rn3 of oil 
1994 $4.00/rn3 of oil 
1995 $4.00/rn3 of oil 
1996-2012 for remaining production life there is a real growth rate 

of 5% on this $4.00/rn3 cost of oil 
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The 5% growth rate in the variable production cost is caused by the 

increase in water production. Higher costs are incurred because more water has 

to be separated from the oil and disposed of. 

Waterflooding requires increased capital and operating costs. The capital 

and operating costs of both primary and waterflooding recovery are presented in 

Table 5-5. The drilling costs increase by the same amount since five additional 

wells are drilled for each profile. The facility costs also increase because a 

pipeline from the water source, water treating facilities, injection pumps, enlarged 

production facilities, and lines to injection wells are needed. Larger production 

facilities are required to handle and separate higher fluid volumes. 

Operating costs climb from $4.00/rn3 to $ 10.00/rn3 due to the increase in 

water production and the treatment of the water injected. 

It should be noted that these cost conditions are not readily incorporated 

into an analytical model but are easily handled by a computational model. The 

years specified in this table and the previous ones are for the profiles beginning 

in the first period, and profiles initiated in subsequent periods would have the 

same costs but a different time frame. 
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Table 5-5 

Capital and Operating Costs for Primary and Waterflooding 

Capital Costs (000's of 1987 dollars) 

Year Profile 1 Profile 2 Profile 3 
Drilling Drilling Drilling 

1988 600 1200 1800 
1989 1200 2400 3600 
1990 3000 2400 1800 

1991 3000 3000 3000 

Total 7,800 9,000 10,200 

Facilities Facilities Facilities 

1988 60 120 180 
1989 770 900 1000 
1990 830 1200 1100 
1991 700 775 830 

Total 2,360 2,995 3,110 

Operating Costs - common to all scenarios (1987 dollars) 

Fixed Costs $3000/well/month 

Variable Costs 

1989 $9.00/rn3 of oil 
1990 $9.00/rn3 of oil 
1991 $4.00/rn3 of oil 
1992 $10.00/rn3 of oil 
1993 $10.00/rn3 of oil 
1994 $10.00/rn3 of oil 
1995 $10.00/rn3 of oil 
1996-2015 for remaining production life there is a real growth rate 

of 5% on this $10.00/rn3 cost of oil 
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The normalized cost coefficients of the production profiles are presented 

in Table 5-6 along with the production coefficients. The unit capital cost 

coefficients are found by dividing the capital cost for a period by total production. 

The operating cost coefficients are found by dividing the operating cost for a 

period by the production for that period and then multiplying by the production 

coefficients for that period. These capital and operating cost coefficients, when 

multiplied by the resource commitment variable, yield the capital and operating 

costs in each period for the production profile assigned to the particular resource 

commitment variable. The production rates are determined by multiplying the 

resource commitment variable by the production profile coefficients. 

5.4 Enhanced Oil Recovery 

Enhanced oil recovery (EOR) is very uncertain at the beginning of 

reservoir depletion and only appraised for large sized pools. Since the original oil 

in place shows that a small to medium sized pool is developed, EOR would not 

normally be considered. At existing prices, EOR is only economically feasible for 

large pools. However, since EOR production may be highly sensitive to price and 

tax changes, it is an option included in the model and becomes economically 

feasible with a substantial increase in oil prices. 
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Table 5-6 

Coefficients for the Leontief Processes for Primary and Waterflooding Recovery 

Periods 

1 2 3 4 5 6 7 8 9 10 
Profile 1 
Production 

0.000 0.071 0.184 0.184 0.160 0.125 0.096 0.075 0.059 0.046 
Operating Costs 

0.000 1.546 5.540 5.633 5.630 5.449 5.257 5.106 4.972 4.859 
Capital Costs 

1.737 25.002 

Profile 2 
Production 

0.000 0.111 0.231 0.226 0.166 0.116 0.079 0.056 0.015* 
Operating Costs 

0.000 2.401 6.569 6.633 6.278 5.895 5.542 5.311 1.741* 
Capital Costs 

3.474 27.568 

Profile 3 
Production 

0.000 0.152 0.277 0.264 0.163 0.084 0.056 
Operating Costs 

0.000 3.256 7.599 7.602 6.806 6.069 5.738 
Capital Costs 

5.211 29.819 

* This last coefficient is for only one year of production. 

EOR requires that the physical properties such as porosity, permeability, 

and continuity between wells not deteriorate with the implementation of this 

technique. FOR occurs only after waterflooding. Unlike waterflooding which is 

an immiscible flooding technique, FOR is a miscible flooding technique. Miscible 
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flooding is the injecting of a solvent into the reservoir to bond with the oil. This 

bonding also occurs with oil that would have been left behind by waterflooding. 

Injecting this solvent, likely consisting of natural gas liquids, lowers the viscosity of 

the oil and improves the recovery from the reservoir. 

The decision to start FOR occurs after considerable production takes place. 

A rule of thumb to start FOR studies is when water production reaches 66% of 

total fluid production. These studies determine if FOR is physically feasible. If 

FOR is found to be technically feasible, then sensitivity studies are undertaken at 

different percentages of recovery (3% to 10%) to find the necessary level for 

economic feasibility. Given expected prices and costs these studies determine what 

level of recovery is necessary for a company to achieve its profit target. A rule 

of thumb for the commencement of EOR is that the level of water production is 

90% of fluid production. 

If the incremental recovery factor is 10% for FOR, then the daily 

production rates for primary, waterflooding, and FOR together and for FOR alone 

are those shown in Table 5-7. The solvent, natural gas liquids, has a higher cost 

than the price of the oil produced. Of the solvent injected, 80% is recovered 

during the production using EOR. The solvent is injected during the first five 

years of FOR followed by renewed water injection. 
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The years presented in Table 5-7 correspond to the primary and 

waterflooding profiles starting in the first period. If one of the profiles chosen 

starts in a later period, then EOR would also be correspondingly delayed. 

Figure 5-5 shows annual production rates using primary, waterflooding, and 

EOR for the longest profile (1) starting in the first period utilizing the data from 

Table 5-7. The EOR production, operating cost and capital cost coefficients are 

determined in the same way as the primary and waterflooding coefficients. 

The additional costs incurred for EOR production are presented in Table 

5-8 and the coefficients for each profile in Table 5-9. Again it should be noted 

that these EOR coefficients correspond to the specific profiles initiated in period 

1. If a production profile is started in later period, then there will be a 

corresponding delay in the EOR production. The model is constructed so that the 

decision to begin an EOR Leontief process can only occur if the corresponding 

primary and waterflooding Leontief process has been implemented. 
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Table 5-7 

Coefficients for Primary, Waterflooding, and EOR Production 

Year 
Profile 1 Profile 2 Profile 3 
(M3/ day) (m3/day) (M3/ day) 
01 102 01 102 01 102 

2001 47 45 37 
2002 43 40 30 
2003 40 36 29* 4 

2004 36 31 31 10 
2005 33 27 33 14 
2006 31 28* 4 33 15 
2007 28 30 8 32 32 
2008 26 34 15 31 31 
2009 24 33 16 30 30 
2010 27* 5 32 16 29 29 

2011 29 9 31 31 28 28 
2012 31 12 30 30 28 28 
2013 34 17 29 29 27 27 
2014 34 18 28 28 27 27 
2015 32 17 27 27 26 26 
2016 31 31 27 27 26 26 
2017 31 31 26 26 25 25 
2018 30 30 26 26 25 25 
2019 29 29 25 25 25 25 

2020 28 28 25 25 24 24 

2021 27 27 24 24 24 24 
2022 27 27 24 24 24 24 
2023 26 26 24 24 
2024 25 25 23 23 
2025 25 25 23 23 
2026 24 24 23 23 
2027 24 24 
2028 23 23 
2029 24 24 
2030 24 24 
1 Output 
2 Incremental Output 
* The start of EOR. 
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Table 5-8 

Costs During EOR 

Capital Costs 

Solvent 60,000m3 x $ 150/rn3 
= $9,000,000 

Facilities $3,000,000 

Operating Cost 

Fixed $3000/well/Mos.' 

Variable Continue with waterflooding costs of $ 10/rn3 which grows at 
rate of 5% starting in the eighth year of production. 

1 This is the same as during waterflooding so this cost is only incurred in the 
production years extending beyond waterflooding. 
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Figure 5-5 

Annual Production Rates for Profile 1 (Long) 

70 
Production (m3/day) 

60-

50-

40-

30-

20-

10-

oil II Ill 

7 
/7 

7  

// 7 

(ITTTTIT i 

2026 
I
 

1985 1990 1995 2000 2005 2010 2015 2020 

Primary Recovery = Watertlooding 

EOR EM Recovered Solvent 

1 
2030 



124 

Table 5-9 

Coefficients for the EOR Leontief Processes 

Profile 1 

Periods 
9 10 11 12 13 14 15 

Production 

0.055 0.110 0.194 0.177 0.165 0.154 0.146 
Operating Costs 

1.214 2.774 13.794 14.114 14.563 15.105 15.769 
Capital Cost 

75.140 

Profile 2 

Periods 

7 8 9 10 11 12 13 14 
Production 

0.008" 0.082 0.163 0.177 0.167 0.156 0.150 0.097** 
Operating Costs 

0.144 1.568 9.822 13.840 14.240 14.651 15.236 10.542 
Capital Costs 

25.047 50.094 

Profile 3 

Periods 

6 7 8 9 10 11 12 13 
Production 

0.008* 0.082 0.196 0.179 0.169 0.160 0.154 0.051* 
Operating Costs 

0.125 1.350 14.311 14.527 14.878 15.303 15.828 5.428 
Capital Costs 

25.047 50.094 

* One Year of Production 
** Two Years of Production 
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5.5 Royalties, Taxes and Prices 

5.5.1 Royalties 

Royalties and taxes can exert a major influence on the profitability of 

production. The Alberta royalty formula is shown in equation 5.1 and is adjusted 

from time to time. The latest parameter values are used. 

5.1 R=S+yS X 
(X - B) 

R - royalty payable in m3 

S - for production of 0.1 to 190.7 m3, S = p2/1271.28; for production of 190.7 

m3 and over, S = 28.6 + .25(p - 190.7), where p = produced m3 for the 

month. 

B - new oil select price for the month, $40.90/rn3 

X new oil par price for the month, $138.00/rn3 

y new oil royalty factor, 0.246154 

This formula specifies the royalty that the Alberta Government collects per 

month per well. A vector of royalty coefficients can be determined from this 

formula for each profile using the production coefficients, total production, and the 

well count. The royalty coefficients are presented in Table 5-10 for primary 

recovery, waterflooding recovery, and incremental EOR production. The royalty 
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for EOR is 5% of the incremental production. These royalty coefficients are 

determined under the assumption that total production occurs using each of the 

technologies separately.' 

Table 5-10 

Royalty Coefficients 

Primary and Waterflooding 
Periods 

1 2 3 4 5 6 7 8 9 10 

Profile 1 
.0000 .0057 .0255 .0255 .0191 .0117 .0069 .0042 .0026 .0016 

Profile 2 
.0000 .0105 .0345 .0331 .0181 .0089 .0041 .0020 .0005* 

Profile 3 
.0000 .0164 .0439 .0402 .0157 .0046 .0018 

EOR 
Periods 

9 10 11 12 13 14 15 
Profile 1 
.0027 .0055 .0097 .0089 .0082 .0077 .0073 

Periods 

7 8 9 10 11 12 13 14 
Profile 2 
.0004* .0041 .0081 .0089 .0083 .0078 .0075 .0049** 

Periods 

6 7 8 9 10 11 12 13 
Profile 3 
.0004* .0041 .0098 .0090 .0085 .0080 .0077 .0025* 

* one year of production 
** two years of production 
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5.5.2 Income Taxes 

Federal corporate income tax is calculated at 33% of taxable income, and 

Alberta provincial corporate income tax is calculated at 15%. To calculate taxable 

income requires that certain allowances, credits, and deductions must be defined. 

The relevant items are: capital consumption allowance (CCA), resource allowance, 

Canadian Development Expense (CDE), Canadian Exploration and Development 

Incentive Program (CEDIP), Alberta Royalty Tax Credit (ARTC) - this credit will 

be terminated in 1991, and an Alberta royalty deduction. Since some of the tax 

items are very similar (CCA and CDE) or have no influence on this reservoir's 

evaluation (Alberta royalty deduction), the tax structure has been simplified. The 

tax system modelled includes the CCA, the resource allowance, and the ARTC. 

As well the tax rates have been "grouped together." 

All of the capital costs are assumed to qualify for the capital consumption 

allowance (CCA). The oil and gas equipment is designated as Class 10 which has 

a 30% write-down on a declining balance basis. In the initial year of the capital 

equipment only 1/2 of the 30% can be claimed under CCA. 

Another allowance available to the producer is the resource allowance. The 

resource allowance is 25% of resource profits where resource profits are defined 

as revenues less operating costs and CCA. 
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The Alberta Government allows for an Alberta Royalty Tax Credit (ARTC). 

The ARTC is 50% of crown royalties with a ceiling of $2 million which will be 

paid to producers. 

Taxable income is defined as resource profits less the resource allowance 

plus the ARTC. Net revenues are production revenues plus the ARTC less 

operating costs, capital costs, royalties, and income taxes. The income tax rate 

used is 46% which is based on: a 33% federal income tax, a 3% federal surtax, 

and a 15% provincial tax on the remaining taxable income. 

5.5.3 Prices 

Two price scenarios are examined. The first scenario assumes that real 

prices are constant at $ 125.00/rn3 ($20.O0/bbl) over the life of the reservoir. The 

second scenario assumes that real prices start in 1987 at $ 125.00/rn3 and grow at 

a rate of 2% per year. 
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5.6 The Reservoir Development and Production Model 

5.6.1 Production From Primary and Waterflooding Recovery 

The reservoir production model selects among three decision variables which 

correspond to each of the three production profiles in each of ten time periods. 

These resource commitment variables select the portion of the total reservoir 

capacity that will be developed through a particular Leontief process. The 

production decision variables are: 

RCG1 - resource commitment variable for the longest profile initiated in period 

i, i = 1 to 10 

RCM1 - resource commitment variable for the medium profile initiated in period 

i, i = 1 to 10 

RCS1 - resource commitment variable for the shortest profile initiated in period 

I, i = 1 to 10 

TP - total production in period t, t = 1 to 19 

The production coefficients from the Leontief processes (Table 5-6) are 

represented by: 

pdgg - coefficients for the long profile, g = 1 to 10 

pdmm - coefficients for the medium profile, m = 1 to 9 
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pds - coefficients for the short profile, s = 1 to 7 

The objective function consists of net revenues to the producer. To simplify 

the understanding of the model and allow easy modification, the objective function 

is defined as the sum and/or difference of several elements, each defined in 

separate equations. The first set of equations discounts future net revenues to the 

present. The next set of equations defines net revenues as production revenues 

less capital and operating costs. The remaining equations define production 

revenues, capital costs and operating costs which are based on production and the 

resource commitment variables. By decomposing the objective function into these 

components, changes in prices, costs or the discount rate can easily be made.' 

The single constraint of the model is the stock constraint. 

The remaining decision variables and coefficients of the model are: 

Rt the production revenue in period t 

Oct the operating costs in period t 

KC the capital costs in period t 

NRt the net revenue in period t (total revenue less operating and capital 

costs) 

VP the value in period t of the sum of net revenue in period t and the 

present value of VP,1 
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coefficients: 

/33 the time-period discount factor; /3 = (1/1+i), where i is the discount rate 

and the power of three causes the discounting to be for the length of the 

period (three years) 

kcgg the capital cost coefficients for the corresponding 
kcmm 
kcs Leontief production vector 

ocgg - the operating cost coefficients for the corresponding 
ocmm 
ocs8 Leontief production vector 

Pt - the price in period t 

RC - reservoir capacity 

The objective function is defined as follows: 

Max obj = /33VP1 

5.1 VP NR + p3W t+l for t = 1 to 18 

= NR19. 

The equations for t > 1 discount all net revenues to the present. To show 

that this format discounts properly, it is briefly described starting in period 18. 

The value for period 18 (\1P18) is the net revenue in period 18 plus the net 

revenue in period 19 discounted to period 18. Likewise, the value in period 17 

(VP17) is the net revenue from period 17 plus the discounted value from period 

18 (VP,,). In the row or equation for period 17 the net revenue in period 18 is 
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discounted for one period and net revenue in period 19 is discounted for two 

periods. Thus, each row, has all future period values discounted to the time period 

of that particular row. 

Equation 5.2 defines net revenue in each period as the difference between 

production revenues and total costs. 

5.2 NR = - Oct - KC for t = 1 to 19 

Equations 5.3 define total revenue as the total production in period t 

multiplied by the price. 

5.3 Rt = pTP for t = 1 to 19 

Production in each period is defined in equations 5.4. There are thirty 

resource commitment variables corresponding to the three types of profiles which 

can be initiated in any of the first ten periods Each resource commitment 

variable has a set of production coefficients representing a Leontief technology. 

Production in each period consists of crude production during that period from 

current and past resource commitments. The subscript values for the production 

coefficients are presented in more detail below equation 5.4 in order to show that 

production is initiated and terminated in the proper periods depending on the 
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type of profile and the starting period of the profile. 

10 

5.4 TP = (pdg 1RCG1 + pdm 1+1RCM1 + pds.1+1RCS1) 
i=1 

for t = 1 to 19 

pdg 11 is defined to equal 0 when t-i+ 1 < 1 or t-i+ 1 > 10 

pdm 1+1 is defined to equal 0 when t-i+1 < 1 or t-i+1 > 9 

pds. +1 is defined' to equal 0 when t-i+ 1 < 1 or t-i+ 1 > 7 

The equation system is expanded below for the medium length technology 

to show how the production coefficients relate to each resource commitment 

variable. 

TP1 = pdm1RCM1 + 0 * RM2 + 0 * RM3 + 
TP2 = pdm2RCM1 + pdm1RCM2 + 0 * RCM3 + 
TP3 = pdm3RCM1 + pdm2RCM2 + pdm1RCM3 + 

+O*RCM10 
+0*RCM10 
+0*RCM10 

TP9 = pdm9RCM1 + pdm3RCM2 + ... + pdm1RCM9 + 0 * RcM10 
TP10 = 0 * RCM, + pdm9RCM2 + ... + pdm2RcM9 + pdm1RcM10 

TP17 = 0 * RCM, + 0 * RCM2 + + pdm9RcM9 + pdm8RcM10 
TP18 = 0 * RCM, + 0 * RcM2 + ... + 0 * RcM9 + pdm9RcM10 
TP19 = 0 * RCM, + 0 * RcM2 + + 0 * RcM9 + 0 * RcM10 

Following the same form as equation 5.4, the operating and capital costs 

are defined in equations 5.5 and 5.6, respectively. 
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10 

5.5 oct = (ocg 11RCG1 + ocm 1+1RCM1 + OCS I+1RCS) 
i=1 

for t = 1 to 19 

ocg j+1 is defined to equal 0 when t-i+ 1 < 1 or t-i+ 1 > 10 

ocm 1+1 is defined to equal 0 when t-i+ 1 < 1 or t-i+ 1 > 9 

ocs 4.1 is defined to equal 0 when t-i+1 < 1 or t-i+1 > 7 

Capital costs for a particular profile are not incurred in every period of the 

profile. In fact, there are only two non zero capital cost coefficients, as indicated 

in the notes to equation 5.6. 

10 

5.6 KC = (kcg.11RCG1 + kcm.1+1RCM1 + kcs.1+1RCS1) 
1=1 

for t = 1 to 19 

kcg.11 is defined to equal 0 when t-i+1 < 1 or t-i+1 > 2 

kcm +1 is defined to equal 0 when ti+1 < 1 or t-i+1 > 2 

kcs 1+1 is defined to equal 0 when t-i+ 1 < 1 or t-i+ 1 > 2 

In constraint set 5.7, the sum of the production from all of the technologies 

is limited to the size of the reservoir capacity (RC). These are mutual exclusivity-

type constraints. 

10 
5.7 (RCG1 + RCM + RCS) < RC 
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Non-negativity restrictions apply to all variables except for net revenues. 

RCG, RCM1, RCS1, VY, Rt, C, and TP ≥. 0 
5.8 

for i = 1 to 10, and t = 1 to 19 

5.6.2 Production From EOR 

Representation of EOR production is similar to the above. There are 

equalities or constraints for production (5.9), operating cost (5.10), capital cost 

(5.11), and reservoir EOR capacity (5.12). The decision variables for EOR 

determine the portion of the total incremental production that is produced using 

a particular technology. The EOR Leontief processes are viewed as extensions to 

the existing technologies from primary and waterflooding recovery. Thus, there 

must also be constraints linking EOR production to the relevant primary and 

waterflooding profiles. This linkage is provided in constraints 5.13. The decision 

variables are: 

ECG1 - EOR commitment variable for the corresponding RCG1 variable; EOR 

commences in period i + 8 

ECM1 - EOR commitment variable for the corresponding RCM1 variable; EOR 

commences in period i + 6 

ECS1 - EOR commitment variable for the corresponding RCS1 variable; FOR 
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commences in period i + 5 

The coefficients are: 

ekcgg, ekcmm, ekcs - capital cost coefficients for EOR 

eocgg, eocmm, eocs8 - operating cost coefficients for EOR 

epdgg, epdmm, epds - production coefficients for EOR 

EORC - EOR incremental-cumulative capacity 

New elements or equations to be added to existing constraints are: 

10 

5.9 TP = (epdg.1.7ECG1 + epdm.15ECM1 + epds 14ECS1) 
i=1 

for t = 1 to 24 

epdg.17 is defined to equal 0 when t-i-7 < 1 or t-i-7 > 7 

epdm 5 is defined to equal 0 when t-i-5 < 1 or t-i-5 > 8 

epds is defined to equal 0 when t-i-4 < 1 or t-i-4 > 8 

The coefficients and variables for the medium length profile are presented 

on the next page to show the production equations in expanded form with the 

addition of EOR. 
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TP7 = epdm1ECM1 + 0 * ECM + 0 * EM3 
TP8 = epdm2ECM1 + epdm1ECM2 + 0 * EM3 + 
TP9 = epdm3ECM1 + epdm2ECM2 + epdm1ECM3 

TP14 = epdm8ECM1 + epdm7ECM2 + 
TP15 = 0 * ECM, + epdm8ECM2 + 
TP16 = 0 * ECM + 0 * ECM + 

TP22 = 
TP23 = 
TP24 = 0 * ECM, + 0 * ECM + 

+ epdm1ECM9 + 0 * ECM10 
+ epdm2ECM9 + epdm1ECM10 

+ epdm3ECM9 + epdm7ECM10 
+ 0 * ECM9 + epdm8ECM10 
+ O*ECM+ 0*ECM1O 

The other additions to the equations from EOR are: 

10 

s.io oct = (eocg 7ECG + eocm 5ECM1 + eocs.1.4ECS1) 
1=1 

for t = 1 to 24 

eocg. 7 is defined to equal 0 when t-i-7 < 1 or t-i-7 > 7 

eocm 5 is defined to equal 0 when t-i-5 < 1 or t-i-5 > 8 

eocs is defined to equal 0 when t-i-4 < 1 or t-i-4 > 8 

10 

5.11 KC = (ekcg 7ECG1 + ekcm 5ECM1 + ekcsECS1) 
1=1 

for t = 1 to 24 

ekcg 7 is defined to equal 0 when t-i-7 < 1 or t-i-7 > 1 

ekcm 5 is defined to equal 0 when t-i-5 < 1 or t-i-5 > 2 
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ekcs 4 is defined to equal 0 when t-i-4 < 1 or t-i-4 > 2 

10 

5.12 (ECG1 + ECM1 + ECS) . EORC 
1=1 

Equation 5.12 limits the amount of production from the EOR profiles to 

the capacity for EOR production. Constraints 5.13 allow EOR to be initiated only 

when the corresponding technology for primary and waterflooding has been 

selected. 

ECG1 . EORC/RC x RCG 

5.13 ECM1 . EORC/RC x RCM1 for i = 1 to 10 

ECS1 < EORC/RC x RCS1 

For example, if the RCG1 variable is made positive, it is then possible for 

the ECG, variable to be made positive, and EOR may occur starting in period 8. 

With the addition of EOR, production can occur even further into the future. 

Thus, more equations must be added to equations 5.1, 5.2, and 5.3 so that the 

model can handle twenty-four time periods (t = 1 to 24) or 72 years. 
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5.6.3 Royalties and Taxes 

The model allows for taxes and royalties through equalities defining taxes 

and royalties which are then deducted from profits. The royalty equations have the 

same form as the production equations and are presented in 5.14. The additional 

variables and coefficients are: 

ROY - the crown royalty in year t, 1O m3 

RY - the crown royalty in year t, 103 dollars 

rgg, rmm, rs - the royalty coefficients for primary and waterflooding 

production 

regg, remm, res - the royalty coefficients for EOR production 

10 

5.14 ROY = (rg 1,1RCG1 + rm.1+1RCM1 + rs 1+1RCS1 
1=1 

+ reg.17ECG1 + rem5ECM1 + res.14ECS) 

for t = 1 to 24 

rg jj is defined to equal 0 when t-i+1 < lor t-i+1 > 10 

rm 1+1 is defined to equal 0 when t-i+1 < 1 or t-i+1 > 9 

rs 1+1 is defined to equal 0 when t-i+ 1 < 1 or t-i+ 1 > 7 

reg 7 is defined to equal 0 when t-i-7 < 1 or t-i-7 > 7 

rem, is defined to equal 0 when t-i-5 < 1 or t-i-5 > 8 
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res 4 is defined to equal 0 when t-i-4 < 1 or t-i-4 > 8 

5.15 RY, = p,ROY, for t = 1 to 24 

To determine the federal and provincial income taxes, equations are 

included to define: federal and provincial taxable income; federal income tax, 

provincial income tax and federal surtax; CCA balance, CCA, resource allowance, 

resource profits; and the ARTC. The variables for these constraints are as 

follows: 

CCAB, the CCA balance in period t 

CCAt the CCA in period t 

RPt the resource profits in period t 

RA, the resource allowance in period t 

TI, - positive federal taxable income in period t 

TAXI - the federal income tax, federal surtax, and provincial income tax 

ARTC, - the ARTC in period t 

The equations are: 

CCAB1 = KC, 

5.16 CCAB, = KC, + CCAB, 1 - CCA, 1 for t = 2 to 24 

CCA, I  0.3CcAB, for t = 1 to 24 
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The above constraints create a capital consumption allowance balance. 

Capital costs are stored in this balance and can be deducted from resource profits 

at a maximum 30% rate. This deduction is defined as a capital consumption 

allowance which lowers taxable income by decreasing the size of resource profits. 

The inequality allows the use of the CCA to be deferred to future periods. 

RP = R - OC - CCA 
5.17 

RA = O.25RP 

TIt = RP - RA + ARTC 
5.18 

TAXI = 0.46TI 

5.19 ARTC = 0.5RY 

for t = 1 to 24 

for t = 1 to 24 

for t = 1 to 24 

for t = 1 to 24 

for t = 1 to 24 

Inclusion of these taxes and royalties changes the net revenue equations. 

Equations 5.2 are thus modified to 5.20: 

5.20 NRt = R - OC - KC - RY - TAXI + ARTCt for t=1 to 24 

The additional variables are also constrained to be nonnegative: 
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ECG1, ECM1, ECS1 > 0 for i = 1 to 10 and 

5.21 ROY, RYE, CCAB, CCA, RP, RAE, TI TAXI, 

ARTC > 0 for t = 1 to 24 

5.7 Concluding Remarks 

The linear programming model is designed to select from among three 

production profiles and can initiate these profiles in any of the first ten periods. 

With each of these thirty possible production strategies exists a compatible EOR 

production profile which can also be initiated if it is profitable. In representing 

the future production from these reservoir development strategies, the model 

includes 24 time periods or 72 years. The model also includes a tax system 

consisting of royalties and corporate income taxes. This model thus effectively 

includes the physical behaviour of a reservoir and a complex tax system. 

The results of this model as presented in Chapter 6 include profits, 

revenues, operating and capital costs, royalties, and taxes. Simulation models such 

as POGO (Profitability of Oil and Gas Opportunities), and other similar industry 

models, are able to produce this type of analysis. POGO can represent different 

types of production strategies and complex royalty and taxation formulas. Unlike 

POGO this model has optimization capabilities and searches out the best depletion 

strategy, namely the one with the highest discounted profits. Only one production 
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strategy at a time can be analyzed by POGO. Any scenario represented in POGO 

may have greater detail but really presents the same information as a single 

Leontief process. Advantages of POGO are its ease of data input and allowing 

for changing the duration of production given different price and cost schedules. 

Although this last capability is not represented in the current model, it could be. 

This numerical model is able to optimize, and therefore, choose among the 

different technologies and whether EOR is a viable alternative. With this method 

the effects of changing taxes, royalties, prices, and discount rates on the choice of 

technology can readily be determined. Constraints limiting the size of negative net 

revenues (debt) can also be imposed to measure the loss of profits as debt 

restrictions are tightened. This type of analysis is not easily accomplished by 

POGO. 

The next chapter shows the results that are obtained from the reservoir 

production model. 
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NOTES 

Hung-po Chao, "Exhaustible Resource Models: The Value of 

Information," Operations Research, 29 (1981) 907-908. 

2 Source of Data: Petro-Canada 

Simplification of course incurs costs, but it also gains benefits. (The 

shutdown condition is not allowed to vary when prices are increased.) 

" The term "resource commitment" is borrowed from Hung-pb Chao, 

"Exhaustible Resource Models: The Value of Information," Operations Research, 

29 (1981) 907. 

Due to the nature of the royalty formula (non-linear and well dependent), 

if the model selects a combination of profiles as optimal, the royalties calculated 

will be slightly biased. 

6 Since all of these equations are equalities the model (in the absence of 

EOR and taxes) could be reduced to two equations: the objective function and 

the reservoir capacity constraint. However, any adjustments to this model would 

be extremely complicated. Such a reduction would also rule out the imposition 

of constraints on the sizes of cashflows or certain elements entering the objective 

function, such as capital expenditures in one or more periods. 
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Chapter 6  

Results From the Reservoir Production Model 

6.1 Introduction 

Results from solving the reservoir production model are presented in this 

chapter. The discussion is divided into three sections: the before-tax model 

results, the after-tax model results, and user costs. 

A high discount rate penalizes future net revenues relative to current net 

revenues, implying that the earliest production generates the highest profits. 

Profits are maximized for the before-tax model by developing the reservoir as soon 

as possible (drilling commences in the first period) and by producing the crude as 

quickly as possible (the short profile). This outcome is highly insensitive to 

changes in the price or the discount rate. Only extreme levels of change, such as 

doubling the price, alter the choice of production profile. Production from EOR 

does not enter the optimal solution since enhanced recovery is not profitable at 

the existing prices of $ 125.00/m3. 
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However, including a tax structure changes the optimal solution to include 

both the short and medium length profiles, not just the short profile. The reason 

is that, with the tax structure represented, the interaction between the short and 

medium profile capital consumption allowances (CCAs) causes a combination of 

the profiles to be optimal. Comparing this solution with the before-tax optimal 

solution shows the inefficiency of the tax system. The surplus or profits from the 

reservoir are now divided between the producer and the government. For the 

producer to maximize profits under the tax regime, the production path changes 

and total surplus declines. Other results are obtained by varying the discount 

rate, prices, tax rate, and CCA rate. The optimal production path is much more 

sensitive to these parameter changes with the inclusion of the tax structure. This 

sensitivity occurs because the sizes of the individual short and medium profiles' 

after-tax profits are very close and gains are available from pursuing a convex 

combination of these two production profiles. An additional constraint, on the size 

of the deficit associated with high initial costs, shows the trade-off between the 

reduction in the maximum deficit and the loss of profits. 

6.2 Before-Tax Model Results 

The optimal solution of the reservoir production model includes only the 

short profile (RCS, = 379.965). Intuition suggests that production should occur 

as quickly as possible because the high discount rate causes discounted current 
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production revenue to be larger than discounted future production revenue. Net 

profits increase if the higher discounted cost of present production does not exceed 

the higher discounted revenues. 

Table 6-1 shows the production profiles before and after discounting when 

each profile is used individually to develop the reservoir and drilling commences 

in the first period. The entries in the table are based on the cost and production 

coefficients of Chapter 5 as well as a price of $125.0O/m3 for all years and a 

discount rate of 10% per year. 

Table 6-1 

Revenues, Costs, and Profits Before and After 
Discounting for the Before-Tax Model 

($ 1,000s) 

Short Medium Long 

Undiscounted Revenues +47,821 +47,821 +47,821 
Undiscounted Capital Costs -13,310 -11,795 -10,160 
Undiscounted Operating Costs -14,085 -15,339 -16,715 

Undiscounted Profits 20,426 20,687 20,946 

Discounted Revenues +24,485 +21,758 +18,585 
Discounted Capital Costs -11,344 - 9,977 - 8,512 
Discounted Operating Costs - 6,107 - 5,696 - 5,135 

Discounted Profits 7,034 6,085 4,938 
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Since all profiles produce the same amount of crude oil, undiscounted 

revenues are the same for each profile. However, the differences between 

discounted revenues are due to the differences in each profile's production over 

time. With the short profile lasting for fewer periods and having a higher initial 

production, the short profile's revenue is not discounted as heavily as the revenue 

for the other two profiles. Even though the short profile has lower undiscounted 

operating costs, discounted operating costs are higher for the short profile because 

the operating costs are incurred sooner (similar to discounted revenues). The 

ranking of capital costs among the three profiles does not change when discounting 

occurs. However, since capital costs occur as a lump sum at the beginning of 

production, the decline in value after discounting is not as much as compared to 

operating costs and revenues. Thus, the magnitude of the differences between 

revenues and operating and capital costs is also dependent on the discount rate 

which, as Nystad (1987) notes, can affect the optimal production strategy (this is 

much more evident in the after-tax model). Before taxes, discounted profits are 

maximized when production occurs using the short profile. 

EOR production is not included in the optimal production strategy since the 

discounted costs from this production technique exceed the discounted revenues 

at the assumed prices. This result is similar to one of the possibilities of the Amit 

(1986) model, where EOR production occurs depending on the prices and the 

costs of primary and EOR production. For the reservoir production model, EOR 
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production occurs when prices rise far enough for this type of production to be 

profitable. Also for the reservoir production model, the allocation of EOR 

production over time is determined by the choice of primary-waterflooding 

production profiles.' Thus, by varying the prices and the primary-waterflooding 

profiles selected, different EOR results can be found. This shows how the 

computational model can go well beyond the type of analysis that is possible with 

an analytical model, such as that of Amit (1986). 

Considerable sensitivity analysis was carried out for the before-tax model. 

In the following diagrams, sensitivity results are represented showing the discounted 

profits as various parameters are changed. In each diagram the allocation of 

production to each profile as a percentage of the total reservoir capacity is also 

provided as a parameter adjusts. In Figure 6-1, the short profile dominates other 

profiles as the optimal choice when the discount rate is varied from 1% to 25%. 

Only at a 0.5% discount rate does the model select an alternative profile (the long 

profile) as optimal. At a 26% discount rate, the discounted capital and operating 

costs exceed the discounted revenues, and thus no production occurs. 
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Figure 6-1 

Before-Tax Choice of Profile and Discounted Profits 
For Different Discount Rates 
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A second set of analyses involves varying the price of crude oil, with the 

discount rate returned to 10%. Figure 6-2 shows that the short profile is selected 

at all prices, and it is not until the price reaches $250.00/m3 for all periods that 

EOR is initiated. For the case where prices are allowed to rise at 2% per year 

there is no significant change since the short profile is still optimal, and discounted 

profits are $8,709,000. 
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Figure 6-2 

Before-Tax Choice of Profile and Discounted Profits 
For Different Prices 
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These figures show that the optimal production strategy for the before-tax 

model is highly insensitive to changes in the discount rate and prices. 

6.3 After-Tax Model Results 

After-tax model results are generated by a model which includes a tax 

structure composed of royalties, an Alberta Royalty Tax Credit (ARTC), a capital 
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consumption allowance (CCA), and income taxes. If the tax structure causes no 

major bias, the short profile will likely continue to be the most profitable. 

However, the optimal production path for the after-tax model is a combination of 

the medium and short profiles. In particular the variables chosen are RCS, 

273.619, RCS6 = 13.937 and RCM, = 92.409. 

The optimal solution produces 287,556 m3 using the short profile and 

92,409 m3 using the medium profile for a total of 379,965 m3. Table 6-2 shows 

the revenues, costs and taxes for the short profile, medium profile, and the optimal 

combination of profiles before and after discounting. From these tabular entries 

it is not immediately obvious why the optimal solution includes the short and 

medium profiles. However, the discounted profits for the medium profile are 

greater than the discounted profits for the short profile. This is opposite to the 

before-tax results and is due to the tax structure penalizing faster production to 

a greater extent. If any gains are available to one of these profiles from unused 

tax-reducing capital cost allowance of the other, a combination of the two profiles 

could provide higher profits. This is exactly what occurs. Even though the 

medium profile produces higher discounted profits, a cubic meter of production 

from the short profile has unused CCAs which can be used by the medium profile 

to reduce taxes paid. Thus, a combination of the medium and short profiles 

increases discounted profits. 
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As defined in Chapter 5, taxes are a percentage of Alberta Royalty Tax 

Credits and resource profits. The latter consist of production revenues less 

operating costs and CCAs. Consequently, taxes can be reduced by lowering 

resource profits by maximizing the CCA used for a given period. Once the 

resource profits have been reduced to zero, any unused CCA will be left in the 

CCA balance and carried forward to future periods. 

Table 6-2 

Revenues, Costs, and Profits Before and After 
Discounting for the After-Tax Model 

($ 1,000s) 

Undiscounted 
Undiscounted 
Undiscounted 
Undiscounted 
Undiscounted 
Undiscounted 

Revenues 
Capital Costs 
Operating Costs 
Royalties 
Taxes 
ARTC 

Undiscounted Profits 

Discounted 
Discounted 
Discounted 
Discounted 
Discounted 
Discounted 

Revenues 
Capital Costs 
Operating Costs 
Royalties 
Taxes 
ARTC 

Short Optimal Medium 

+47,821 +47,821 +47,821 
-13,310 -12,935 -11,795 
-14,085 -14,390 -15,339 
- 5,863 - 5,736 - 5,342 
- 9,001 - 8,596 - 8,675 
+ 2,932 + 2,868 + 2,671 

8,494 

+24,485 
-11,344 
- 6,107 
- 3,187 
- 4,735 
+ 1,593 

9,032 9,341 

+23,139 
-10,695 
- 5,837 
- 2,967 
- 4,392 
+ 1,484 

+21,758 
- 9,977 
- 5,696 
- 2,649 
- 4,043 
+ 1,324 

Discounted Profits 705 732 717 
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Production using only the short profile occurs for 7 periods, resulting in 

production revenues and operating costs for only 7 periods. The CCAs available 

for the short profile reduce the resource profits to zero in period 7, and leave 

unused CCA in period 7 and for all future periods. For the medium profile, 

production occurs for 9 periods with unused CCA in period 9 and all future 

periods. For this profile, resource profits in period 9 are reduced to zero but are 

still positive in periods 7 and 8. Thus the unused CCA in periods 7 and 8 of the 

short profile can be used by the medium profile to reduce its resource profits for 

tax purposes, yielding higher profits. Therefore, medium profile production is 

exchanged for short profile production to the point where the gains from the 

unused CCA vanish. Medium profile production is exchanged for short profile 

production until the resource profits in period 8 are reduced to zero. This occurs 

at 92,409m3 of medium profile production and 287,556m3 of short profile 

production.' 

The inclusion of the tax structure alters the optimal production profile, the 

amount of surplus (discounted profits) available and the distribution of this surplus 

between the private producer and the government. From the data of Tables 6-

1 and 6-2, Figure 6-3 shows that the dead weight loss or loss of surplus from 

including the tax structure is $427,000 or 6% of the before-tax discounted profits. 

The dead weight loss is calculated as the difference between the total surplus 

before and after tax ($7,034,000 - $6,607,000). This is a small loss of surplus, but 
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the results show the inefficiency of the tax system. 

Although this tax system, by including CCA as a tax deduction, is not 

similar to any of those employed by Conrad and Hool (1984), both here and for 

the Conrad and Hool results, distortions occur in the optimal production strategy. 

Results of the Conrad and Hool model show that a tax structure usually delays 

production from the present to the future and causes a decline in total production. 

Applying the before-tax model optimal production strategy of using only the 

short profile, to the after-tax model and comparing this result to the after-tax 

optimal result shows a gain to the private producer in the after-tax results of 

$27,000 and a loss to the government of $454,000. Comparing these two findings 

shows that, if the private producer alters his production strategy slightly, there is 

a very small percentage change in profits and thus there are multiple near-optimal 

solutions. 
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Figure 6-3 
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A - The before-tax optimal solution where production occurs using only the 

short profile. 

B The after-tax solution when producing only from the short profile. 

C The after-tax optimal solution where production occurs using both the 

short and medium profiles. 

D The after-tax solution when producing only from the medium profile. 
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For the next set of after-tax analyses the discount rate is varied from 1% 

to 12%, with all prices held at $125.00/m3. In Figure 6-4, depending on the 

discount rate, each of the profiles enters the optimal solution. Comparing Figures 

6-4 and 6-1 indicates how the tax structure changes the optimal choice of profiles 

at the various discount rates. The short profile no longer dominates the other 

profiles as it did before taxes, and the optimal production strategy is very sensitive 

to changes in the discount rate. 

The next three figures (Figures 6-5 to 6-7) show how discounted profits and 

the choice of profiles change as the price (increase), tax rate (decrease) and CCA 

rate (increase) change. From these three figures it can be seen that, once the 

model moves away from the initial values of these parameters (price - $125.00/m3, 

tax rate - 46%, CCA rate - 30%), the short profile is chosen as the optimal 

production path and again dominates the other profiles. When these parameters 

are changed, the difference between the discounted profits of the individual short 

and medium profiles increases such that the gain from sharing CCA is no longer 

greater than the loss of profits through switching production from the short profile 

to the medium profile. 
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Figure 6-4 

After-Tax Choice of Profile and Discounted Profits 
For Different Discount Rates 
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Figure 6-5 

After-Tax Choice of Profile and Discounted Profits 
For Different Prices 
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Allowing prices to rise at 2% per year yields discounted profits of 

$1,994,134 with 68% of production from the short profile and 32% from the 

medium profile. For the short profile, production is not initiated until the third 

period since the gains from higher future prices offset the losses from discounting 

the revenues from production which occurs further into the future. 
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Figure 6-6 

After-Tax Choice of Profile and Discounted Profits 
For Different Tax Rates 
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There are many near-optimal solutions for both the constant and rising 

price scenarios. If each of the profiles produced the reservoir individually, the 

percentages in Table 6-3 show how close discounted profits for these profiles 

would be to discounted profits for the optimal solution. 
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Figure 6-7 

After-Tax Choice of Profile and Discounted Profits 
For Different CCA Rates 
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Table 6-3 

Percentage of Optimal Solution's Discounted Profits 

Constant Prices Rising Prices 

Short Profile 96% 84% 
Medium Profile 98% 92% 

Long Profile 73% 88% 

55 
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Thus, if a producer decided to minimize his capital outlay by using the 

longest profile to produce the reservoir, a loss of at most 12% to 27% of 

discounted profits would result. 

As emphasized by Bradley (1985), capital costs play a significant role in 

determining production strategies. In general, investors prefer to minimize capital 

investment as part of a risk minimizing strategy. In the model the trade-off 

between decreasing the maximum deficit and reducing profits can be examined by 

imposing a cash flow constraint limiting the size of the deficit for each period? 

This constraint is included in the model by setting a lower bound on the net 

revenue variables in equations 5.20 in Chapter 5. Thus, a limit is imposed on the 

size of negative net revenues which acts as a deficit restriction. 

The results are shown in Figure 6-8. At first the deficit is restricted to be 

$6 million since the largest single period debt for the optimal solution is $6.45 

million. As the deficit restriction is tightened, some of the reservoir production 

is delayed until later periods and increasing amounts of production occur from the 

medium profile. Comparing the results of a maximum single-period debt of $6 

and $3 million shows that the producer loses only 11% of discounted profits when 

the maximum deficit is reduced by 50%. Furthermore, an 83% reduction in the 

maximum deficit leads to a 34% reduction in profits. This trade-off may well be 

preferred by a decision maker and illustrates Bradley's conclusion that a producer 
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may choose a lower output rate than the unrestricted profit maximum in order to 

avoid debt or a high initial capital outlay. This type of comparison is not easily 

accomplished by analytical models if at all, and is very important to the private 

producer in evaluating production decisions. 

Figure 6-8 

After-Tax Choice of Profile and Discounted Profits 
For Different Deficit Restrictions 
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6.4 User Costs 

Although this model does not quantify all the user costs presented by the 

analytical models, there is a shadow price associated with each constraint of the 

model. The shadow price associated with the reservoir capacity is the stock user 

cost (Kuller and Cummings (1974)). This stock user cost is equivalent to the 

discounted unit net profit associated with developing, producing and selling crude 

from the reservoir. For the before-tax model the user cost is $18.51/m3 and for 

the after-tax model it is $1.93/m3. If an additional cubic meter of oil is available 

for the after-tax model, it is allocated over all of the time periods according to the 

optimal production profiles and yields a discounted profit of $1.93. The other 

shadow prices show the discounted gain or loss of profit if an additional unit is 

available for the constraints associated with net revenues, revenues, operating costs, 

capital costs, royalties, taxes, taxable income, CCA, and resource profits. 

The other types of user costs as mentioned in Chapter 3 could have been 

calculated by the model with the addition of endogenous demands, endogenous 

capital costs, rising unit operating costs, and other possible companies' production. 

profiles. However, including these complexities would cause a tremendous increase 

in model size and require solution by nonlinear programming techniques. 
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6.5 Summary 

Although the reservoir production model provides many results that agree 

with intuition, the initial parameter settings (price - $125.00/m3, discount rate - 

10%, tax rate - 46%, CCA rate - 30%) provide a result that is not likely to be 

predicted by intuition alone. The tax structure represented, which is different than 

any used by the analytical models and arguably far more realistic, moves the 

optimal solution away from the before-tax model optimal solution. The tax 

structure causes a combination of the short and medium' profiles to be optimal, 

rather than just the short profile in the before-tax model. 

This result also shows the importance of computational models in analyzing 

the resource allocation problem. A first glance at the tax structure described in 

Chapter 5 does not show the tax structure significantly taxing one profile more 

than another. However, the tax system does impose greater taxes on the short 

profile, and allows tax reducing CCA trade-offs between profiles. These distortions 

are only revealed and quantified through the results of the computational model. 

The results discussed must be regarded as reservoir specific, meaning that 

any conclusions reached apply only to very similar reservoirs and not to all 

reservoirs. This is due to the differences in physical characteristics between 

reservoirs, which for this particular reservoir are included in the production profiles 
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and capital and operating costs. Nevertheless, the empirical results indicate the 

kinds of findings that may well extend to a large number of different types of 

reservoirs. 
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NOTES 

1 EOR production can only occur if the physical nature of the reservoir is 

suitable for the implementation of this recovery technique. 

2 Representing the tax structure leads to the inclusion of a number of 

inequality constraints in the model. Thus more than one variable enters the basis 

at the optimum, meaning that more than one profile can be selected for the 

optimal solution. 

Adding this maximum debt constraint causes computational difficulties 

for the linear programming package (APEX IV). On numerous occasions the 

system exited without giving an optimal solution but printing the message 

"convergence too slow" and providing a basis which could be used for a subsequent 

computer run. An optimal solution was only found when this basis was included 

in a later computer run of the model. 
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Chapter 7 

Concluding Remarks 

7.1 Summary and Conclusions 

Substantial ground has been surveyed in the following areas: the physical 

nature of reservoirs, analytical models of exhaustible resources and computational 

models of specific energy commodities. Although significant differences exist 

among these areas, they all provide ingredients that are necessary for a realistic 

approach to determining the optimal allocation of exhaustible resources through 

time. 

From the survey of geological, reservoir engineering and MER 

considerations, it is evident that the physical nature of a reservoir plays a vital role 

in the rate of production and in the size of total production. Such properties as 

porosity, permeability, water saturation, the type of trap, and the composition of 

the fluids in the reservoir all cause reservoirs to be unique. Thus, any model that 

groups all reservoirs together weakens the credibility of any conclusions concerning 

the optimal allocation of production for a specific reservoir. 
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Although most analytical models adopt highly simplifying assumptions, these 

models contribute substantially to the understanding of the resource allocation 

process. The general rule for optimization from the analytical models equates 

marginal revenue to the sum of marginal cost and user cost. User costs provide 

a wedge between prices and costs to recognize the exhaustibility of a nonrenewable 

resource, the fundamental difference with a renewable resource. Other 

considerations such as the rule of capture, increasing costs as production proceeds, 

a backstop technology, and investment are incorporated by a few of the analytical 

models, thereby changing the optimizing condition. It is through these additions 

and the changes in the optimizing condition that insight is gained into 

understanding optimal resource management. 

Computational models provide a framework for including the physical nature 

of reservoir development, investment, terminal conditions, a backstop technology, 

a complex tax structure, and discrete variables. Representation of these 

complexities is not easily accomplished, if at all, by analytical models. Although 

some of the computational models surveyed do not include economic 

considerations (prices, demands, costs, or discount rate), these models provide 

examples of specific resource problems that computational models could solve. 

Such problems as the optimal production of an offshore reservoir, the optimal 

pressure maintenance of a gas reservoir, and the optimal distribution of exhaustible 

resources and energy supply from new technologies to meet world energy demands 
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are readily modeled through the computational framework. 

The reservoir production model presented in this study is a hybrid of the 

analytical and computational models. The model "takes into account" the physical 

nature of a reservoir in determining production rates and each profile has its own 

unique capital and operating costs. By including a set of equations representing 

the tax structure and the constraint on the maximum deficit, the advantage of the 

computational approach is shown. Model results are found that could not be 

attained by an analytical model. Moreover, the reservoir production model does 

focus on results such as user costs and the sensitivity of the optimal production 

path to changes in prices, discount rates and taxes which are considered by 

analytical models. 

For a simple profit maximizing reservoir production model, intuition suggests 

that production should take place "as quickly as possible." But with real world 

conditions represented, intuition becomes clouded and the nature of the optimal 

results become less clear. The tax structure penalizes fast production, leading to 

the optimality of a combination of the short and medium length production 

profiles. Trade-offs are made to minimize the taxable income such that capital 

expenditures are written off through the capital consumption allowance (CCA). 

The tax structure modeled is inefficient in that it distorts the optimal allocation; 

different profiles are selected than for the before-tax model. Hence, this 
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computational model shows a result that would be difficult to predict with any 

confidence and may even be impossible to obtain from an analytical model. 

Investment costs also play an important role in the reservoir production 

model. Since the majority of the capital costs are incurred before production, they 

become much larger relative to operating costs and revenues after discounting. 

Thus, if a company pursues not just the single objective of maximizing profits but 

is also concerned with risk or the financing of capital expenditures, alternative 

production scenarios may be desirable. One set of results from the computational 

model suggests that the percentage loss of profits may be small when capital costs 

are reduced. Given the complexities of the tax and royalty systems, this result 

could have been found using an analytical model only with great difficulty or 

perhaps not at all. 

This reservoir production model also compares favourably with POGO 

(Profitability of Oil and Gas Opportunities). POGO is a simulation model which 

allows the easy incorporation of different production rates, prices and tax 

structures. The reservoir production model in its present form does not have the 

ease of data input or ease of changing to different scenarios that POGO has, but 

all of these variations or extensions can be included. However, POGO does not 

have the optimizing capabilities of the reservoir production model. 
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7.2 Extensions of the Reservoir Production Model 

Simple additions to the reservoir production model could be made by 

including more recovery profiles and changing to annual time periods. Complex 

extensions include discreteness in production strategies through mixed-integer 

programming, allowing production to switch from one type of profile to another 

in the middle of production, developing more than one reservoir, including 

exploration costs and demand constraints, modelling rising marginal costs of 

production, and representing byproducts. All of these changes would make the 

model larger but the only constraint on implementing these extensions would be 

the capabilities of the computer programming package. The package would have 

to handle a larger model, and be able to solve mixed-integer programming and 

nonlinear programming problems. 

Overall, there appears to be considerable scope for constructing hybrid 

models for examining issues of exhaustible resource allocation which require 

incorporation of geological, engineering and economic factors which bear on 

resource extraction. 
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Appendix 

The following numerical example determines the MRL (Maximum 

Rate Limitation) and Base Allowable for an Alberta PSU (production 

space unit) which were briefly described in section 2.4.2 of 

Chapter 2. 

The Base MRL is the greater of the Basic Well Rate (BWR), the 

Preliminary Rate Limitation (PRL) or the MRL set by the Energy 

Resources Conservation Board (ERCB) on the basis of studies 

submitted by the operator. 

BWR set by the ERCB as the value of the Maximum Allowable (MA) 

- 5.0 m3/d 

PRL 9000 x 106 (U) x 12/365 

- The value of U is determined from the 0-38 form. 

- for example if U = 11.0 iO m3, then PRL = 3.25 m3/d 

- in this example there are no submissions 

So for this example the Base MRL is 5.0 m3/day. 

The Base Allowable is the greater of the MA for the month and 



174 

the Reserves Allocation. 

MA - (from the 0-38 form) x 30 

- 5.0 x 30 = 150 m3/month 

Reserves Allocation 

- U (from the 0-38 form) x reserves allocation (from the MD 

Order form) 11.0 x 4.7867 = 52.7 m3/month 

Therefore the Base allowable is 150.0 m3/month, but it cannot 

be greater than the penalized MRL. 

Penalized MRL 

- MRL x days x combination penalty factor 

- 5.0 x 30 x 0.80 = 120 

The effective monthly allowable is 120 m3/month. 

Combination penalty factor (all values from the 0-38 form) 

Base GOR 2 
Produced GOR X 2 + (Produced WOR)(1 - wDI) 

-  130 2  
- 152 X2 + (0.14)(1 - 0) = .80 
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