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ABSTRACT 

Geoid determination is an important research area in geodesy. In this 

thesis, a PC-based software package, which incorporates the most recent 

developments in FFT-based techniques for geoid determination, has been 

developed. The software package can be used for computing large-scale 

continental geoids efficiently on low cost microcomputers. With the developed 

software package, a new high-precision geoid model (UC93) has been computed 

for all of Canada and part of the U.S., ranging from 35N to 9ON in latitude and 

210°E to 320°E in longitude. As compared to other existing geoids in North 

America, the new geoid model achieves the best agreement with the 

GPS/levelling data available in the region. Its absolute agreement with respect to 

the GPS/levelling datum is better than 10 cm RMS and the relative agreement is 

better than 15 cm, in most cases. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

With the advances of GPS techniques, it is now possible to obtain the 

ellipsoidal height (or geodetic height) with an accuracy of a few centimeters. 

The combination of the GPS-derived ellipsoidal heights with a gravimetric 

geoid of compatible accuracy could lead to the replacement of levelling as the 

main method to obtain the orthometric heights which are required for many 

engineering and scientific applications. The GPS I geoid approach would be 

more cost effective than conventional levelling while maintaining, in most 

cases, the same accuracy. In oceanography, a high-accuracy geoid combined 

with satellite altimetry data is required to obtain the sea surface topography 

which is important for studying ocean currents and other oceanographic 

phenomena. Therefore, the computation of a high-accuracy geoid is becoming 

increasingly important. 

The basic method for geoid determination is the Stokes integral which 

is the solution of the third boundary value problem in physical geodesy 

(Heiskanen and Moritz, 1967). For local or regional geoid determination, the 

available discrete gravity anomaly data and height data are usually combined 
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with a high degree geopotential model to generate the geoidal undulations 

through the remove-restore technique (Schwarz et al., 1990; Sideris and 

Forsberg, 1990). With this technique, the surface gravity anomaly data are first 

reduced to the geoid through a terrain reduction using the available height 

data and further reduced for the reference field contribution computed by the 

geopotential model. Then, the reduced anomaly data are used to generate the 

residual part of the geoid through the discrete Stokes integral. The final 

geoidal undulation will be the summation of the residual part, the reference 

undulation computed by the geopotential model, and the indirect effect 

obtained using height data. 

Basically, there are two approaches to evaluate the discrete Stokes 

integral. The conventional approach is to evaluate the discrete Stokes integral 

directly through numerical integration or summation. The advantage of this 

approach is that it does not require gridded data and both mean and point 

data can be used conveniently. Since the numerical integration has to be done 

point by point with this approach, the computation is very time consuming 

especially when a large regional or continental geoid is to be computed. 

Usually one has to spend a lot of CPU time on large computers. In addition, 

the Stokes integral is usually truncated to a certain cap size and the 

information from data points outside the selected cap in the region is not 

used in this approach. 

The second approach for evaluating the discrete Stokes integral is to 

use the fast Fourier transform (FFT) method. In addition to its speed, this 

technique allows for evaluation of the discrete Stokes integral for all the 
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points on a regular grid using all the data available in a large region 

simultaneously. Therefore, it is an ideal approach for the determination of 

large-scale regional geoids, such as the Canadian geoid, in a unified way. 

The first version of the FFT-based technique for evaluating the discrete 

Stokes integral is the planar FFT formula (Sideris and Schwarz, 1985; Schwarz 

et al., 1990). In this technique, the original Stokes integral, which is not a 2D 

convolution integral itself, is transformed to a 2D convolution by 

approximating the spherical Stokes kernel function with its planar 

approximation. This technique has been applied to compute quite a number 

of local or regional geoids both in and outside Canada (Sideris and Schwarz, 

1985; Sideris et al., 1988a ana 1988b; Denker, 1990; Forsberg, 1990; Veronneau 

and Mainville, 1991, etc.). 

Due to the planar approximation, the geoid obtained by the above FFT 

technique is subject to an error which will increase with the integration area. 

To overcome this limitation, Strang van Hees (1990) put forward an approach 

which transforms the discrete Stokes integral to a 2D convolution by 

modifying Stokes' kernel function through spherical trigonometry and 

evaluates it directly on the sphere by 2D FFT. This technique has been 

successfully used to compute the U.S. continental geoid GEOID9O (Milbert, 

1990). Due to the modification of Stokes' kernel function, this technique is 

subject to a latitude-dependent error which is not negligible for determining 

large-scale continental geoids. To reduce the effect of this latitude-dependent 

error, Forsberg and Sideris (1993) proposed an improved 2D (multi-band) 

spherical FFT approach. In this approach the whole grid is divided into a 
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number of latitude bands of certain width with some overlap between 

neighbouring zones. The geoidal undulations are evaluated band by band by 

Strang van Hees' approach, thus reducing the latitude-dependent error 

significantly if the grid is divided into a sufficient number of bands. 

The previous FFT-based techniques are approximations to the true 

discrete Stokes integral. To get rid of the approximations, Haagmanns et al. 

(1992) developed an approach called the 1D spherical FFT technique, which 

allows for evaluation of the true discrete Stokes integral parallel by parallel 

without any approximation. Another important advantage of this technique 

is that it just needs one dimensional complex arrays to perform the FFT 

operations, resulting in a considerable saving in computer memory. This 

makes it possible to compute large-scale continental geoids, such as the 

current Canadian geoid, efficiently even on microcomputers. 

Another important development, which is essential to ensure the 

equivalence of the FFT-derived 2D or 1D discrete convolutions to those 

obtained through direct summation, is the proper use of zero padding of both 

the data grid and/or the kernel grid. Sideris and Li (1992 and 1993), Haagmans 

et al. (1993) have shown the effects of circular convolution on geoid 

determination and how they are eliminated by zero padding. 

Up to now, the FFT-based techniques for evaluating convolutions in 

physical geodesy have been developed to such an extent that it is possible to 
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evaluate the original discrete Stokes integral and other integrals, which are 

either 2D convolution integrals themselves or a linear combination of 2D 

convolutions, very efficiently by FFT without approximation. The algorithms 

can process large amounts of gridded data over large regions simultaneously. 

On the other hand, the developments in modern measurement techniques 

make it possible to extend and update the old data sets at a faster pace. 

Therefore, the development of efficient software which incorporates the 

theoretical and practical developments in the spectral techniques for 

evaluating the convolution integrals in physical geodesy on more cost-

effective microcomputers is becoming increasingly important. Such a 

software package is especially important for geoid determination in Canada, 

which is the second largest country in the world with a 9.9 million km2 

territory. 

In Canada, several gravimetric geoids have been computed using 

different techniques in the past few years. Vanicek et al. (1986, 1990) computed 

geoid models (UNB86 and TJNB9O) for the area 41°N - 72°N, 218°E - 314°E at 

a spacing of 10 arcminutes by direct numerical integration using 

Molodenskij's truncation method. Sideris and Schwarz (1985, 1988a and 

1988b) computed local geoidal models for the provinces of Alberta and British 

Columbia using the planar FFT technique. In 1991, Veronneau and Mainville 

computed the GSD91 geoid model for Canada by means of the planar FFT 

technique using the newly gridded 5tx5' gravity anomaly data and lkmxlkm 

height data as well as the OSU91A geopotential model complete to degree and 

order 360. No zero padding was applied in the GSD91 geoid determination 

due to the limitation of computer memory (Veronneau and Mainville, 1992). 
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All these geoid models were computed on large computers and were subject 

to the various approximations mentioned before. 

With the rapid expansion of applications of GPS positioning in Canada 

and the improvement of positioning accuracy, there is a demanding need for 

a unified gravimetric geoid of high accuracy to be used together with the GPS-

derived heights to provide orthometric heights for various engineering and 

scientific users over vast areas in this country in a more cost effective way 

than conventional levelling. 

1.2 Objectives of the Research and Outline of the Thesis 

One of the major objectives of this research is to develop a PC-based 

software package for geoid determination which incorporates the most recent 

theoretical and practical developments in FFT-based techniques for 

evaluating various discrete convolution integrals related to geoid 

determination. The software package will include efficient PC-based programs 

for the rigorous evaluation of the discrete Stokes integral, the terrain 

corrections, and the dicr rri4-indirect effec' of the terrain on the geoid 

efficiently by means of the 1D FFT technique using gridded data in very large 

continental areas such as all of Canada or even the whole of North America. 

It will also contain a program for error propagation, interpolation and 

graphical display of geoidal undulations. 

Another major objective of this research is to produce a unified geoid 

of high accuracy for all of Canada and part of the U.S. (35°N - 90°N, 210°E - 
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320°E) at a spacing of 5 arcminutes (a total of 871200 grid points) and quantify 

its accuracy. The geoid will be available on floppy or optical disks together 

with the interpolation program and will be provided to various interested 

users in industry, government and scientific institutions in the region. 

Chapter 2 describes the basic formulas and procedures for geoid 

determination. The fundamental formulas for geoid computation are first 

introduced. Then, the 1D and 2D continuous and discrete Fourier transform 

theory is briefly reviewed. Some of the important properties of the discrete 

Fourier transform are discussed with emphasis on the convolution theorem, 

addition theorem, as well as the relation between the 1D and 2D discrete 

convolutions. Practical formulas for evaluating various discrete integrals 

related to geoid determination by FFT in the frequency domain are 

introduced. Chapter 3 discusses the precision of the geoidal undulations by 

error propagation using the given a priori statistical error information of the 

data. Formulas for evaluating the contribution of the gravity anomaly noise 

to the standard deviation of the computed geoidal undulations by FFT are 

derived. Chapter 4 contains a brief description of the computer software 

developed in this research. Chapter 5 gives a description of the data sets used 

for computing the current Canadian geoid and various geoid files produced 

in this research. In Chapter 6, extensive comparisons are made between the, 

newly computed gravimetric geoid and the GPS/levelling data to evaluate its 

absolute and relative accuracy. Other existing geoid models in the region are 

also included in the comparison. Some conclusions and recommendations 

are given in Chapter 7. 
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CHAPTER 2 

FORMULAS FOR GEOID DETERMINATION 

In this chapter, the formulas used for local or regional geoid 

computation in both the space domain and frequency domain are 

summarized. First, the remove-restore technique, which is widely used for 

local or regional geoid determination by combining a global geopotential 

model, topographical heights and gravity anomaly data, is reviewed. Then 

the 1D and 2D discrete Fourier transform and the properties closely related to 

their application in evaluating the convolution integrals involved with geoid 

determination are discussed. Finally, the various techniques for evaluating 

the discretized Stokes integral and other related discrete convolutions using 

gridded data by fast Fourier transform (FFT), including the 2D planar FFT 

method (Schwarz and et al., 1990), the 2D spherical FFT method (Strang van 

Hees, 1990), the multi-band 2D spherical FFT approach (Forsberg and Sideris, 

1993) and the 1D spherical FFT method (Haagmans and et al., 1992), are 

presented. The advantages and disadvantages of these approaches are 

discussed, as well. 
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2.1 Stokes Integral 

The Stokes integral for computing the geoid undulation at an arbitrary 

point on the geoid can be expressed as (Heiskanen and Moritz, 1967) 

N=—--5fg S() do, 
4ic-y 

(1) 

where R is the mean earth radius, y the normal gravity, o the sphere of 

integration, ig the gravity anomalies reduced to the geoid, and S() the 

Stokes function. To get the true value of the geoidal undulation, the 

integration should be extended to the whole sphere. For local or regional 

geoid computation, usually a global geopotential model (GM) is combined 

with the discrete local gravity data as well as height data. The geopotential 

model provides the low frequency or long wavelength part of the geoid. Local 

gravity anomaly data . and height data provide the medium and high 

frequency components of the geoid spectrum. The formula for practical 

computation of the local geoid by the remove-restore technique is 

NNGM+Nzg+Nind i (2) 

where NGM is the geoidal undulation implied by the geopotential model, 

N g is the contribution of the terrain-corrected mean free air gravity 

anomalies reduced to the reference field and Nind is the indirect effect of the 

terrain reduction. The contribution of the GM coefficients can be computed by 

the spherical harmonic expansion formulas (Heiskanen and Moritz, 1967) 

given below in spherical approximation for the OSU91A model 
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360 n 

AgGM = G I (n - 1)[CamCOS m2 + Ssin m2]P (sin p), 

360 n 

Ncm = Rl ,[CnmCO5 m2+Snmsin m2]Pnm (sin (p), 
n=2 m=0 

(3) 

(4) 

where G is the mean gravity of the earth, Cnm and Snm are the fully 

normalized harmonic coefficients, and Pnm are the fully normalized 

associated Legendre functions. 

Given an M x N equi-angular mean gravity anomaly data grid on the 

sphere, the second term in (2) can be evaluated by (Strang Van Hees, 1990; 

Haagmans and et al., 1992) 

"N 

N(, 7p) R.zp.& I S(WpQ) g((pQ ,? Q) COSPQ , (5) 
47t?  

PQP1 XQ=A.1 

where F, Q denote the computation point and data point respectively, &p, AX 

are the grid spacings in latitude and longitude, M and N are the number of 

parallels and meridians in the grid, w denotes the spherical distance between 
two points on the sphere, and S(WpQ) is the Stokes' kernel function 

computed by 

S(NJ) =  4 6sin+ 10sin2() —[3— 6sin2()]In[sin + sin2()], (6) 
sin— 2 
2 

where 
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2 'VPQ 2( PQ ) 2  PQ  
sin 2 )sin +sjn 2 AT )COS(P PCOS(PQ 

(7) 

A(p pQ  (PP  (PQ , 

Ag in formula (5) is the residual mean free-air gravity anomaly which, using 

Helmert's second condensation reduction, is obtained by 

Ag = Ag+ c + Mg - (8) 

where the first term on the right hand side of (8) is the mean free air gravity 

anomaly corrected for atmospheric attraction, the second term c is the classical 

terrain correction, given in linear approximation by (Sideris, 1984) 

c = !k [5f24-dxdy - 2h f$2dxdy + hf$-'dxdy], (9) 
2 ES ES ES 

where p is the density of the topographical masses, s is the planar distance 

between the computation point and data point, and k is Newton's 

gravitational constant. The third term in equation (8) is the indirect effect on 

gravity which is very small (smaller than 1 mGal) and can usually be 

neglected, the fourth term is the reference anomaly computed by the GM 

coefficients. The indirect effect of Helmert's condensation reduction on the 

geoid, considering the first two terms in planar approximation, is 

approximately (Wichiencharoen, 1982) 

i h3 - h3 itkp 
Njndh 5l ff s3 "dxdy 

E (10) 
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The effects of terrain on the geoid (direct effects) can be directly evaluated by 

(Sideris et al., 1989) 

Nd=NO+N1, (11) 

where Nd denotes the direct effect, NO, Ni are the first two terms given by 

NO = - kp  [ff dxdy 2hp fl dxdy 1, (12) 

Ni - Iff  dxdy - 3hp dxdy + 3h ff dxdy 

6y ST  ff + h ff dxdy] 

E 

(13) 

Formulae (2) to (10) are the practical formulas widely used for local and 

regional geoid determination. They have been adopted in this research. 

2.2 The 1D and 2D Fourier Transform and Its Properties 

The fast Fourier transform is a powerful tool for signal analysis and 

synthesis in science and engineering. In addition, it can be used to compute 

the convolution integrals defined in the space or time domain very efficiently 

in the frequency domain. Since many of the integrals in physical geodesy, 

including the formulas for geoid computation discussed in the previous 

section, are themselves convolution integrals and become discrete 
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convolutions on regular grids, they can be evaluated by FFT much faster than 

the conventional method of pointwise direct summation, generating results 

on all the grid points in one run. Therefore, the fast Fourier transform has 

now become a standard procedure for evaluating the discrete integrals in 

physical geodesy. In the sequel, the definitions of 1D and 2D Fourier 

transforms are outlined and some of their properties, which are important for 

their applications in the evaluation of the discrete convolutions encountered 

in physical geodesy, are outlined. 

2.2.1 The 1D and 2D Continuous Fourier Transform (CFT) 

The 1D Fourier transform or spectrum of a function h(x) in the space 

domain is defined (Bracewell, 1986; Brigham, 1988) as 

" + 00 

H(u) = j h(x) e 2 dx = F [h(x)] , (14) 

where x is the distance variable, u is the spatial frequency in cycles per 

distance unit, j is the imaginary unit, and F is the direct Fourier transform 

operator. 

Integral (14) gives the spectrum of a function defined in the space 

domain if the function is known. If the spectrum of a function is known in 

the frequency domain, the function can be recovered in the time domain by 

the following inverse Fourier transform: 

h(x) = J H(u) e2< du = F 1 [H(u)], (15) 
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where F 1 denotes the inverse Fourier transform operator. The Fourier 

transform pair h(x) and H(u) is denoted as 

h(x) -> H(u) . (16) 

where indicates the Fourier transform pair. Similar to the definition of the 

above 1D continuous Fourier transform, the 2D continuous Fourier 

transform of a function h(x,y) can be defined as 

+oo+00 

H(u,v) = f f h(x,y) dx dy = F {h(x,y)]. (17) 

The inverse transform is 

h(x,y) = $ $ H(u,v) e 2 Y du dv = F 1 [H(u,v)] . (18) 

The Fourier transform pair is denoted by 

h(x,y) <- H(u,v). (19) 

Comparing (17), (18) with (14), (15), one can see that the 2D Fourier transform 

can be obtained by applying the 1D Fourier transform twice, where each time 

one of the two variables is held constant. 



15 

2.2.2 The 1D and 2D Discrete Fourier Transform (DFT) 

In practice, data are usually given on discrete random points for a 

limited space area. In the one dimensional case, assuming that data are given 

at M data points with equal spacing Ax, i.e., 

x = kAx , k=O,1,2,...,M-1, (20) 

and if X denotes the data length (period), then the data spacing Ax is given by 

x 
M 

The 1D discrete Fourier transform of the data sequence is given by 

M-1 
H(mAu) = Ax I h(kAx) e-i27tm1ukx 

k=O 

where Au is the frequency interval given by 

From (21) and (23) we have 

AuAx = 
M 

, 

(21) 

(22) 

(23) 

(24) 
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Considering (24) we can rewrite (22) as 

M1 mk 
H(mAu) = Ax Y . h(ki.x) e j2--

k=0 

with m=O,1,2,...,M-1. 

The inverse Fourier transform corresponding to (25) is given by 

M-1 ink 
h(kAx) = Au Y, H(rniu) e 

in =0 

1  M-1 

MAX 
rn=O 

with k=O,1,2,..., M. 

ink 
H(mzu) e 

(25) 

(26) 

Similarly, the 2D discrete Fourier transform pair can be defined as 

M1 N-I mk ni 
H(mAu, niv) = Ax Ay Y, Y, h(kx, liy) (27) 

k=0 10 

M-1 N-i 

h(kx, lzy) = Au Av H(mx, niy) 
m=0 n=0 

(28) 

1 1 M-I N-I 

= Mzx NAy H(mAx, nY)e2 $. 
0 n=0 
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The above discrete Fourier transform pair is denoted as 

h(k,l) H(m,n) . (29) 

The discrete Fourier transform can be calculated very efficiently by the fast 

Fourier transform algorithm. Detailed discussion of the algorithm can be 

found in many references such as (Brigham, 1988). 

2.2.3 Convolution Theorem 

One of the most important properties of the Fourier transform is the 

convolution theorem which allows for evaluation of convolution integrals 

defined in the space or time domain in the frequency domain with the very 

efficient FFT algorithm. The 1D and 2D continuous convolution integrals are 

defined as 

h(x)*g(x) = h(xQ) g(xQ—x) dXQ = g(x)*h(x), (30) 

+Oo +00 

h(x,y)*g(x,y) = $ j. h(XQ, YQ) g(xQ—x, YQY) dXQ dYQ 
(31) 

= g(x, y)* h(x, y) 

where * denotes convolution. The convolution theorem states that 

(Brigham,1988; Bracewell, 1986) 
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h(x)*g(x) -> H(u) G(u) / (32) 

h(x,y)*g(x,y) H(u,v) G(u,v). (33) 

The theorem shows that the convolution integral in the space or time 

domain can be replaced by the product of their spectrum in the frequency 

domain, i.e., the convolution integral in the space domain can be evaluated 

by 

h(x,y)*g(x,y) = F' [ F [h(x,y)] F [g(x,y)] 1 (34) 

or 

h(x,y)*g(x,y) = F 1 [H(u,v) G(u,v)J (35) 

In the discrete case, the corresponding discrete convolutions are defined as 

M-i 

h(k)*g(k) = Ax I h(i) g(k—i) 
i=O 

M-1 N-i 

h(k,l)*g(k,l) = AxAy I I h(i,j) g(k—i,l—j) 
i=O j0 

(36) 

(37) 

The convolution theorem in this case has the following form 

h(k)*g(k) -> H(m) G(m), (38) 

h(k,l)*g(k,l) -> H(m,n) G(m,n). (39) 
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According to the theorem, the discrete convolution summations 

specified by (36), (37) can be evaluated by FFT very efficiently in the frequency 

domain similar to (35), (39) as 

h(k)*g(k) = F 1 11 H(m) G(m)], (40) 

h(k,l)*g(k,l) = F 1 [H(m,n) G(m,n) 1. (41) 

As will be shown later, the integrals for terrain correction, direct and indirect 

effects of the terrain reductions on the geoid, the planar approximation of the 

Stokes integral and the spherical approximation of the Stokes integral are all 

2D discrete convolutions on a given 2D grid and can thus be evaluated by FFT 

for all the grid points in one run instead of the time-consumming pointwise 

summation. Even the discretized Stokes integral can be expressed as the 

linear combination of 1D discrete convolutions and thus be evaluated 

efficiently by FFT without any approximation. 

2.2.4 Some Properties of the Discrete Fourier Transform 

In the following, several properties of the discrete Fourier transform 

which are important for this research are outlined. Detailed discussion and 

derivation of the properties of the Fourier transform can be found in a 

number of books, such as (Brigham, 1988) and (Bracewell, 1986). The relation 

between the 2D discrete convolution and the 1D discrete convolution, which 
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allows for evaluation of the 2D discrete convolution by 1D FFT, are discussed 

in some detail. 

According to (Brigham, 1988), we have the following properties: 

(i) Addition theorem (linearity): 

ah(k,1)+bg(k,1) <-* aH(m,n)+bG(m,n), (42) 

where a,b are constants. 

(ii) Shifting theorem: 

h(k-A, 1-t) -> H(m,n) m n.t (43) 

where ?, t are integer numbers. Since the origin of the 2D data grid is usually 

selected at the centre of the grid while some of the FFT subroutines, such as 

the IMSL subroutine used in this research, assume the south-west corner of 

the grid as the origin, the shift theorem allows for getting the correct 

spectrum of the data grid by using these subroutines. 

By rewritting the 2D discrete convolution summation (37) as 

M-1 N-i 

h(k,l)*g(k,l) = Ax E { Ay I h(i,j) g(k-i,l-j) 
i=O j=O 

(44) 
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we can see that the summation in the brackets of (44) is actually a 1D discrete 

convolution summation for fixed k and can be evaluated by the 1D FFT. By 

applying the addition theorem (42) to (44) one gets 

M-1 

h(k,l)*g(k,l) = Ax I F 1( F[h(i,j)] F [g(k,l) 
i=O 

(45) 

M-1 

= F 1 fAx I t F[h(i,j)] F[g(k,l) 
i=O 

for fixed k. 

The major advantage of computing the 2D discrete convolution by 1D 

FFT through (45) is that the computer memory required is reduced 

dramatically, which is especially important for dealing with large 2D data sets 

on small computers or microcomputers, as is the case with the computation 

of large scale continental geoid in this research. Another advantage is that it is 

possible to reformulate the 2D discrete Stokes integral, which is not a 2D 

discrete convolution by itself, in such a way that it can be evaluated rigorously 

parallel by parallel by the 1D FFT method (Haagmans and et al., 1992). 

2.3 The FFT-Based Methods For Evaluating The Discrete Stokes Integral 

In principle, the residual part of the geoid undulation at each grid point 

can be obtained by direct evaluation of the discrete summation (5) of the 

Stokes integral. But the summation has to be repeated for every point. For the 

computation of large-scale regional geoids, such as the current Canadian 
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geoid with a 660x1320 grid, the computational burden is too big to be handled 

efficiently, even on medium-size or large computers, needless to say 

microcomputers. Therefore, the FFT-based numerical methods which allow 

for a fast evaluation of discrete convolutions using all the data on the grid are 

the only realistic approach to the problem. Currently, three FFT-based 

techniques are available for the evaluation of the discrete Stokes integral and 

have been included in the PC-based software package in this research. They 

will be briefly described in the following three subsections. 

2.3.1 The 2D Planar FFT Formulas 

In planar approximation, the discrete Stokes formula (5) becomes 

(Schwarz and et al., 1990) 

N(xp,y)   ≥ci1 YI zg(xQ,yQ ), 
XQXI YQYI lPQ 

(46) 

where IPQ is the horizontal distance between points P and Q, and Ax, Ay are 

the grid spacings in x and y directions. Equation (46) is a 2D discrete 

convolution and can be evaluated by 2D FFT (Schwarz and et al., 1990) 

N(x,y) = Axy F [F[---1 F(g] 1. 
'P 

(47) 

With appropriate zero padding of the gridded data, the 2D FFT algorithm of 

eq.(47) will give the same results as those obtained by direct evaluation of (46) 

for all the grid points in one run. Thus, the original discrete Stokes integral is 
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approximated by summation (46) on the plane which can be evaluated by 2D 

FFT enhancing the computational efficiency dramatically. The sacrifice is the 

loss of accuracy due to plainar approximation. As will be shown later in the 

numerical results, the loss of accuracy is significant mainly in mountainous 

area with rough topography but negligible in flat area when a high degree 

geopotential model is combined with the local data. 

The 2D discrete convolution (46) can also be evaluated through 1D FFT 

in the same way as discussed in 2.2.4. By applying (45) we have 

N(xp,y)- - '' 2it'y r XM 1 F 1 t I F [-1 F [g(xp,yp]]  xl, = xl lP 

with fixed Xp, or equivalently 

Ax.Ay YM 1 
N(xp,y) = 21t? F 1 I I F [-] F [g(xp,yJ II 

YpY1 'P 

(48) 

(49) 

with yp fixed. (48) or (49) are used in the case where the grid size is too large to 

be handled by the capacity of the available computer memory. 

2.3.2 The 2D Spherical FFT Formula 

In planar approximation, the true Stokes kernel function as specified by 

equations (6) and (7) is approximated for small distance ip by 
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1  2 2R 
S(llJpQ) 

sin VPQ NJPQ lPQ 
(50) 

The effect of the approximation on the geoid will increase with the area of 

integration although this error can be reduced by adopting a higher order 

geopotential model. To overcome this limitation, Strang van Hees (1990) put 

forward an approach to approximate the true Stokes function directly on the 

sphere by means of spherical trigonometry. As can be seen from equations (6) 

and (7), Stokes function is not only a function of latitude and longitude 

differences but also a function of the latitudes of both the computation point 

P and the data point Q. Therefore, the discrete Stokes integral (eq.(5)) is not a 

2D discrete convolution and can not be evaluated by 2D FFT. In Strang van 

Hees' approach, Stokes' function is still computed by eq.(6). But the term 

involving cosqpcosq q in eq.(7) is approximated by 

COS (Op COS (PQ C052(Pm - sin2 pp (PQ) (51) 

where p is the mean latitude of the whole integration area. Thus the 

approximated Stokes function is only dependent on the latitude and 

longitude difference. Equation (5) becomes a 2D discrete convolution and can 

be efficiently evaluated by 2D FFT on the sphere. The formula is (Strang Van 

Hees, 1990; Forsberg and Sideris, 1993) 

N(p - ,2p) — R•  F [F[S(w] F[Ag(p,Xp) cospp]]. 4ny (52) 
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This approach avoids the limitation of planar FFT but introduces a latitude-

dependent error to the computed geoid. Only the grid points located on the 

parallel with the mean latitude (Pm are free from this error (equation (51) 

strictly holds only on this parallel). This approach was adopted for the 

computation of the American continental geoid, GEOID9O (Milbert, 1990), and 

was also used to compute a geoid file for the area of Canada in this research. 

2.3.3 The Multi-Band Spherical FFT Approach 

As mentioned above, the 2D spherical FFT formula is subject to a 

latitude-dependent error which is not negligible for the determination of 

large scale regional geoids. On the other hand, the approach gives exactly the 

same results as the direct summation using the true discrete Stokes 

integration for the points on the parallel with the mean latitude. This 

property was employed by Forsberg and Sideris (1993) to propose a so-called 

multi-band spherical FFT approach which reduces the latitude-dependent 

error inherent in Strang Van Hees' approach. In this approach, the whole area 

is divided into a set of latitude bands extending from north to south. For the 

i-th band, the geoidal undulations at all the points in the band are obtained 

still by Strang van Hees' 2D spherical FFT method (see eq.(52)) while using the 

mean latitude (i for computing Stokes' kernel function for all points in the 

band. If the i-th computation makes use of all the data on the whole grid (this 

means that one has to perform a 2D FFT for the whole grid at the i-th 

computation), then the computed undulations at all the points along the i-th 

parallel will be exactly the same as those obtained by direct integration using 

(5) for all the data grid points. Obviously, if the whole area is divided into n 

zones, the computation time will be about n times that of usuall 2D spherical 
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FFT to get the exact solution. The alternative is to perform 2D FFT only 

within a certain band with some overlappings between neighbouring zones, 

at the price of losing some accuracy due to discarding the data outside each 

zone. The geoidal undulations at points between two neighbouring 

overlapping zones can be obtained by linear interpolation (Forsberg and 

Sideris, 1993), namely 

N(p) = - Ni + (pj+1 -  (  
N+i, 

(pj—(p j+1 (Pi —(p+1 
(53) 

where N, Nj+i are the undulations at the point from two neighbouring 

computations. 

2.3.4 The 1D Spherical FFT Formula 

To overcome the limitations of the previous 2D FFT methods, 

Haagmans and et al. (1992) made further use of the property that Strang van 

Hees' 2D FFT gives the exact undulations for all the points along the parallel 

of mean latitude. Using this property and the addition theorem of FFT, he 

came up with an approach which allows for the evaluation of the true 

discrete Stokes integral without approximation, parallel by parallel, by means 

of the 1D FFT. In fact, for fixed latitude (pp on a certain parallel, the 

summation in the longitude direction in the 2D discrete Stokes integral (5) is 

a one dimensional discrete convolution and can be evaluated by 1D FFT. By 

employing the addition theorem of DFT (see equation. (42)), the discrete 

Stokes integral (5) for the fixed parallel can be evaluated by (Haagmans and et 

al., 1992) 
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_R•z\p• PM 
N((Pp,A.p)  4 ry F 1 [ F[S(iji)] F [Ag(p,2.,p)cosp] I —  

(pp=q 1 
(54) 

with Pp fixed. Eq. (54) yields the geoidal heights for all the points on one 

parallel which are strictly equivalent to those obtained by direct summation 

using (5) point by point. 

The major advantage of the 1D spherical FFT approach is that it gives 

exactly the same results as those obtained by direct numerical integration. In 

addition, it only needs to deal with one 1D complex array each time, resulting 

in a considerable saving in computer memory as compared to the 2D FFT 

techniques discussed before. In fact, assuming that the grid size is 660x1320 

(the same size as the Canadian geoid to be computed), the memory required • 

for storing the two 1320x2640 complex 2D arrays (after zero padding the grid is 

extended 4 times as laie as the original grid) when the 2D FFT methods are 

used will be 55.7 MB and 111.4 MB for single precision and double precision, 

respectively, while the 1D FFT technique only needs one one-dimensional 

complex array of the size of 2640 elements occupying a memory of only 0.42 

MB for storing the spectrum of the undulations for each parallel. Moreover, 

the adoption of FFT makes it far more efficient computationally than the 

classical direct numerical integration. Detailed comparisons of various 

techniques can be found in (Haagmans and et al., 1992; Forsberg and Sideris, 

1993). 
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2.5 The 2D and 1D FFT Formulae for Terrain Corrections, and Direct and 

Indirect Topographic Effects 

Given a MxN digital height grid on the plane, the indirect effect of the 

Helmert's condensation reduction is computed by the following discrete 

integral corresponding to (10) 

Nindp = —h + 617 h 
XQXI YQY1 

irkpAxy xm YN 1—h. 

XQX1 yQ=y1lPQ 

(55) 

Obviously, the second term and the third term on the right-hand side of (55) 

are two 2D discrete convolutions and can be evaluated by 2D FFT efficiently, 

yielding the indirect effects for all the grid points in one run. Since the 

summations in both the x and the y direction are 1D convolutions, (55) can 

also be evaluated by ID FFT either row by row or column by column. The 1D 

and 2D FFT formulas for evaluating (55) are as follows 

XM 
Nindp = +  piy  h F1 11 F[—] F[1]] 

7 6y xP=x1 'P 

1 
-  irkpAxiy F1 [ XM F[—] F [h] I 

6' xp=xl 'P 

irkp 2 irkpzx.y h F1 [ F F[1] 1 Nindp = ---hr + 6'y 'P 

irkpiXxAy F 1 [F[!} F[hfl] 
6'y lP 

(56) 

(57) 
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Equation (56) is the 1D FFT equation for evaluating indirect effects row by 

row. The formula for evaluating, the indirect effects column by column can be 

written as 

YM 1 
Nfndp = LkP  + h F 1 [ F[—] F[1]] 

YpYi 'P 

itkpAxAy Y 1 F1 [ M F[—] F [hIl 1. 
YpX1 'P 6y 

(58) 

Discretizing integral (9) for terrain correction and integrals (12), (13) for 

direct effects, we have the corresponding 2D discrete convolution 

summations 

XM YN 1 kpxA 
CF 2 Y{ - 2hp ---hc 

XQX1 YQYI 'PQ XQX1 YQYI 'PQ 

XM YN 1 
+h  

XQX1 YQYI PQ 

(59) 

XM YN YN 1 
kpAxiy hQ NOP - 2hp XM -}, (60) 

XQX1 YQY1 lPQ XQXI YQYI lPQ 
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XM YN h N1 =- kpzxLy  

6y XQX1 YQY1 lPQ 

XM YN 

—3hp I ' 

XQXI YQYI 

XM YN hQ XM YN 

—+h 
XQXI YQYI lQ XQ=X1 YQYI 

IL1_3 
Q 

13 
1PQ 

The 2D FFT formulas for evaluating (59), (60) and (61) are 

12 
ILQ 

IPQ 

C P   

- kpAthy { [ F [-i] F [hi] ] —2 hp F 1 [ F [-i] F [hp]] 
2 1 'P 

+hF1[F[] F[1]]}, 

Nop kpxiy { F[ F [!] F [hJ J - 2hp F 1[ F [--] F [1] 1 }, 
'1 1p ip 

= - kPAxY V 1[ F [ -} F [hI I - h3- P p F[ F [ 3 1 ] F [h]] 
N1 6y 'P 'P 

+ 3h F 1[ F F [hp] ]+h F 1[ F F [1] 1 }. 
'P 'P 

(61) 

(62) 

(63) 

(64) 

The 2D discrete convolutions (59), (60), (61) can also be evaluated by 1D FFT 

row by row using the following formulas: 
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= kpxAy XM 1 F11 Y, F [j-] F [h ]] 
xP=x1 'P 

-2hp F 1[ Y, F 'P F [hp] 
Xp=X1  

+ hp F 1[ I F F [1] J }, 
xP=x1 'P 

XM 

kpxiy11 F 1[ F F [hp]] N0 = - 

xp=x1 Ip 

-2hp F1E Y, F F [1] 1 }, 
xP= x1 p 

kpAxAy XM 
= - F 1[ F F [hfl I N1 6y 

xP=x1 'P 

-3hpF 1{ F F [h 2] 
xp=x1 'P 

XM 

+ 3hF 1[ F [-i-] F [hp] I 
xp=x1 

xm + 3h F 1[ F 31 F [1] 1 1 
xP=x1 'P 

(65) 

(66) 

(67) 
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with Xp fixed. If Yp is fixed, the evaluation can be done column by colum 

using 

- kpAxzy 1 YM 
Cp - 2 F 1 II F I-,31 F [h]] 

YpYj 

YM 

—2hp F 1[ Y, F [-i] F [hp] 
YpY1 1p 

YM 1 
+ hP F' 1[ Y, F [--} F [1] ] }, 

YpYj 1p 

YM 1 
No = kpxiy { F 1[ I F [-1 F [hp]] 

YpYj ip 

YM 1 
—2 hp F 1[ F [-] F [1]lp 

yp=y1 

YM 1 
Nip = - kpixiy { F 1 [ F F [hJ] 

6 YpY1 'P 

YM 

—3 hp F [ F 31 F {hI] 
YpY1 'P 

YM 

+ 3hF 1[ F 31 F [he] 11 
YpYi 'P 

(68) 

(69) 
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YM 

+ 3hF-1[ F [-'} F [1]] }. 
YpYi P 

(70) 

Considering the computational efficiency, one may choose the 1D FFT 

formulas in the direction with the smaller number of columns or rows. If the 

number of rows M is smaller than the number of columns, it is 

computationally more efficient to use the 1D FFT formulas row by row, since 

the number of direct Fourier transforms required to evaluate each row is less 

than that column by column. The gain in computational efficiency will be 

very significant if (M-N) is large. 

Whether to adopt the 2D FFT formulae or the 1D FFT formulas 

depends on the computer memory available. The difference in computer 

memory requirements is dramatic between the two methods. Taking the 

evaluation of the direct effect of terrain on the geoid, i.e., eq.(60) and (61), as 

an example, one has to evaluate six 2D discrete convolutions. Considering the 

common terms in these convolution summations, we need at least six 2D 

complex arrays to store the spectrum of data and kernel functions. Since the 

original data grid has to be extended 50% in all directions for proper zero 

padding to get the correct results, the size of each array will be 4 MxN. The 

memory to be allocated to these six arrays will be 192 MxN bytes for single 

precision and 384 MxN bytes for double precision. Assuming that the grid size 

of the digital terrain model is 1000x1000 (as is the case in B.C.), the memory 

required will be 192 MB and 384 MB respectively, which is too big to be 

handled even on large computers, needless to say microcomputers. If one 
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stores the data and intermediate results on hard disk or some other type of 

external memory device, the read and write operations will make the 

program extremely slow. However, if one uses the 1D FFT approach, one only 

needs one MxN real array to store the height grid and twelve 2N or 2M one 

dimensional complex arrays to perform the computation. In double precision 

mode, the memory required for these work arrays is less than 5 MB, which 

most of the microcomputers can handle. In this research, a software package 

has been written for evaluating the indirect effects, the direct effects, and the 

terrain correction by the 1D FFT approach on a PC 486 computer. 

2.6 Zero Padding for Eliminating the Effects of Cyclic Convolution 

When applying the FFT formulae described above directly to the 

original data grid, the results will not be equal to those obtained by the direct 

evaluation of the discrete convolutions through pointwise summation due 

to the effect of circular convolution with FFT using data in a limited domain. 

As will be shown later in the numerical results, the effect of this error can be 

as large as 24 cm RMS in computing the Canadian geoid. Proper zero padding 

must be used to overcome this effect (Brigham, 1988). To obtain the same 

results as those by direct summation, the original data grid ( gravity anomaly 

grid or height grid) should be extended 50% in all directions with zeros and 

the kernel function should also be extended 50% in all directions with its 

values (not zeros) (Sideris and Li., 1992 and 1993; Haagmans and et al., 1992). 

In the case of 1D spherical FFT, one only has to extend the data and kernel 

functions in longitude direction, resulting in a considerable saving in 
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computer memory. More detailed discussions on the cyclic convolution 

problem and the ways to deal with it can be found in the above references. 
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CHAPTER 3 

PRECISION OF GEOIDAL UNDULATIONS - ERROR PROPAGATION 

In theory, the exact evaluation of the geoidal undulations requires 

continuous coverage of errorless gravity anomaly data all over the earth. In 

practice, only discrete noisy gravity anomaly data over limited areas are 

available. For local geoid determination, usually the local gravity anomaly 

data are combined with height data and a geopotential model of certain 

degree and order. Therefore, the accuracy of the geoid obtained using these 

data depends on the density, coverage and accuracy of the local gravity 

anomaly and height data, and the errors of the adopted geopotential model. 

In this research, only the error variances of the gravity anomaly 

measurements and the noise variances of the geopotential model coefficients 

(commission error) are available. Therefore, attempts were made to only 

evaluate their effects upon the precision of the ge'oidal undulations through 

error propagation. 

In this chapter, the formulas for evaluating the error variances of the 

computed geoidal undulations due to the gravity anomaly measurement 

noise are derived by error propagation, which can be evaluated efficiently 

through 1D spherical FFT. Formulas for computing the effect of the 
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commission error and truncation error of the geopotential coefficients upon 

the geoid undulations are briefly reviewed, as well. 

3.1 Formulas for Error Propagation by FFT 

Assuming that the errors of the gravity anomaly data are uncorrelated 

and their a priori variances are known, then their effect on the computed 

geoidal height can be derived by error propagation through (5) as 

2 RcP.&)2 IN XN  (S(vpQ)cosPQ)2 2 
4ty g(QxQ) (71) 

PQ'I1 Q1 

where G2 denotes the variance. Equation (71) can be evaluated by the 1D FFT 

as 

2 R•• AX )2F_1 [ PM F{ (S(w))2] F[ () cos2 p]]. 
O•NL g=( 4ic-y 

qp=q1 
(72) 

The contribution of the random noise in the GM coefficients 

(commission error) to the geoidal undulation error variance, neglecting the 

correlation beween the coefficient errors, can be computed by 

n 
R E ( 2 NGM ), n=2in=O Cnm Sim 

(73) 
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where the two terms in the brackets of (73) are the given variances of the fully 

normalized geopotential coefficients. Formula (73) gives the global mean 

variance of the geoidal undulation contributed from the commission error of 

the geopotential model coefficients. Using the given variances of the OSU91A 

geopotential model coefficients complete to degree and order 360, (73) gives a 

standard deviation of about 0.49 m for the point undulation. Table 3.1 (the 

numerical values in the table are taken from (Rapp and et al., 1991) ) gives the 

geoid undulation commission error by spherical harmonic degree for 

OSU91A. 

Combined with a truncation error of about 24cm (Rapp and et al., 1991), 

the total point geoidal undulation error is about 54cm for OSU91A complete 

to degree and order 360. Note that this error is the global mean error and the 

actual error for different areas may be larger or smaller depending on the data 

coverage, density, quality, and the roughness of topography. As will be shown 

later in comparing the model-implied undulations with the GPS/levelling-

derived geoidal undulations, the error in Canada is over-estimated for areas 

with good gravity coverage and mild terrain but under-estimated in 

mountainous area with rough terrain, such as the area of British Columbia. 

By error propagation through (4) we derive the point-dependent 

formula for evaluating the geoidal undulation commission error as 

NGM = R2 [a nm cos2m? + 2 sin 2 mA.] P m (Suh1(P) 
n=2 m=O snln 

(74) 
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Table 3.1 The Commission Error of Point Undulation (Units: cm) For 

OSU91A (After Rapp et al., 1991) 

Degree By Degree Cumulative 

2 0.2 0.2 

6 1.3 2.2 

10 2.4 5.0 

20 3.6 10.6 

30 4.3 16.8 

50 3.0 24.8 

75 3.7 32.3 

100 3.2 36.5 

180 2.2 43.2 

360 1.3 48.7 

When estimating the total undulation error in local geoid 

determination, the truncation error of the geoidal undulation derived from a 

geopotential model should not be included due to the introduction of local 

data of a higher density which allows for resolving the higher frequency part 

of the geoid spectrum. In fact, according to Schwarz (1984), the low and 

medium part (from degree 2 to 360) of the gravity spectrum dominates the 

undulation spectrum. 
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3.2 The Precision of Relative Undulation 

So far, only the point geoidal undulation error has been discussed. In 

terms of the relative geoidal undulation error, it can also be evaluated in two 

parts: the contribution of the gravity anomaly data noise and the contribution 

from the geopotential model coefficient errors. Considering the correlation 

between undulation errors at any two points, the contribution of the anomaly 

measurement error to the undulation difference error can be computed 

simply by 

= + G2 + COV(NPINQ) ,6NPQ NP NQ (75) 

where the first two terms on the right hand side of (75) are the variances of 

the undulations at point P and Q to be computed by FFT using (72). The third 

term is the covariance between the geoidal undulation errors at the two 

points. Assuming that the gravity anomaly data errors at all grid points are 

uncorrelated, then the covariance can be derived by error propagation. 

through (5) as 

I Y, s(vPB)s(wQB)cos2cB g(pB,7.B)' cov(Np,NQ) =(  4ic'y 
cB-P1 ?t.B1 

(76) 

where B denotes the data point. Unlike eq. (72), the summation in the 

direction of longitude in eq.(76) is no longer a one dimensional discrete 

convolution. Therefore, the covariance between the geoidal undulation 

errors due to the effect of the uncorrelated anomaly data errors can not be 
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computed by the 1D FFT technique on the sphere. It can only be evaluated by 

direct summation. Neglecting the third term in (75), the relative undulation 

error standard deviation due to the gravity data noise can be computed 

approximately by 

NPQ - Ni' NQ 
(77) 

The contribution of the geopotential coefficient errors can be evaluated 

(Christodoulidis, 1976; Rapp and et al., 1991) as follows 

Commission error: 

c2 2R 2 360 1  2 n+2 
n=2 (n —i)2 en S [i — Pfl (COS liipQ )]. 

Truncation error: 

T Q =   C n+2 [1—P fl (COS wpQ )] 
YL  n=360 (n - 

(78) 

(79) 

where En and c11 are the error anomaly degree variances and the anomaly 

degree variances of the geopotential model, s is a scale factor close to 1. Table 

3.2 lists the commision error of geoidal undulation differences for OSU91A at 

different distances (the numerical values are taken from (Rapp and et al., 

1991)). 
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Table 3.2 The Commission Errors of Relative Undulations for OSU91A 

Linear 

Distance (km) 

Angular 

Distance (deg.) 

Commission 

Error (cm) 

10 0.09 9.2 

20 0.18 18.1 

30 0.27 26.6 

40 0.36 34.4 

50 0.45 41.3 

70 0.63 52.4 

90 0.81 59.6 

100 0.90 62.0 

200 1.80 71.8 

400 3.60 77.1 

600 5.40 77.7 

800 7.19 77.7 

1000 8.99 77.8 

1600 14.39 77.4 

2000 17.99 77.4 

10000 89.93 77.4 

As shown in the table, the relative undulation error of the geopotential 

model shows a trend of increasing with distances which is further verified by 

the results of comparing the model-implied geoid with the GPS I levelling 

derived undulations in chapter 6. Again, the values in table 3.2 are global 
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mean relative errors. For different areas, the error may be larger or smaller. 

Later, the above commission error of the relative undulations will be 

combined with the relative error from the contribution of anomaly data noise 

(equation (77)) to generate the relative error estimates (internal precision) of 

the geoidal undulation differences for comparison with the results of external 

precision in chapter 6. 

In this chapter, practical formulas for evaluating the effect of the 

gravity anomaly data noise upon the geoidal undulation variance by FFT 

were given. Approximate formulas for evaluating the precision of both point 

and relative undulation were also introduced. These formulas will be used to 

compute the error variances of the geoidal undulations using the given a 

priori statistical information of the gravity data and the GM coefficient noise. 

The internal error estimates thus obtained will be used for comparison with 

the actual error estimates obtained from comparing the gravimetric geoid 

with the GPS/levelling-derived geoidal undulations. It will provide useful 

information on the relation between the data precision and the model errors, 

and the accuracy of the computed local or regional geoid. This information is 

important for examining the causes of some large discrepancies of the 

gravimetric geoid with respect to the GPS/levelling data at some of the 

stations and for finding appropriate ways to minimize the effects of various 

errors on the geoid by data combination. It must be mentioned that the 

formulas discussed in this chapter just give the internal error variances of 

both point and relative undulation errors under the assumption that the 

gravity anomaly data noise at different grid points is uncorrelated (only the 

error variances of the gravity anomaly data are available in this research). If 
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the error covariance function of the gravity anomaly data is known and the 

error covariance function of geoidal undulations is assumed to be distance-

dependent (homogeneous and isotropic), we can get the error covariance 

function of both point and relative undulations in the form of harmonic 

expansion. Detailed formulas of this type and their applications can be found 

in (Sideris and Schwarz, 1986; Strang van Hees, 1986). Various theoretical 

aspects in error minimization in geoid determination in the space domain 

and/or frequency domain can be found in (Sjoberg, 1984, 1986, 1991; Yan, 1992; 

Sideris, 1987; Kearsley, 1984; etc.). 
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CHAPTER 4 

COMPUTER SOFTWARE 

To fulfill the objectives of this research project, a PC-based software 

package has been developed based upon the formulas described in chapter 2 

and chapter 3. The package includes the programs described below. 

The first program, called N_1DFFT, is the major program which 

performs the computation of geoidal undulation as well as error propagation 

by the 1D spherical FFT and/or by direct summation. Due to the adoption of 

the 1D FFT algorithm, the program can be applied for computing large-scale 

continental geoids efficiently on microcomputers. The requirement on 

memory for computing the current Canadian geoid (660x1320 grid) is about 7 

MB. The program was designed in such a way that it can compute the geoid 

for the whole grid or a subgrid of the whole grid or even a few parallels. All 

computations are controlled by two control parameters for selecting options 

and methods and an input file containing the grid sizes, spacings, grid 

boundary limits, I/O data file names and formats of random access I/O data 

files. Figure 4.1 shows the block diagram of the program. 
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Figure 4.1 Block Diagram of Program N_1DFFT for Geoid Computation 

Read grid sizes, spacings, boundary limits, I/O 
data file names, record lengths and scale 
factors of random access I/O binary files 

Select options: 
1. Compute undulation only 
2. Perform error propagation 
3. Both 

Read observed and reference anomaly data and/or 
a priori variances, form residual anomalies 

* 
/11 

Select methods: 
1. By 1D FFT 
2. By direct summation 

 1 

* 
Compute the residual part of the geoid 
and/or error estimates by direct 
summation or parallel by parallel by 1 D FFT 

* 
Add the reference undulation and the 
indirect effects to get the final geoid. 

* 
Output results to random access binary 
files in given formats 

* 
(End J 
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The second program, called N_2DFFT, computes the geoidal 

undulations by the 2D spherical FFT or by the 2D planar FFT. The third 

program, called TC_2DFFT, computes the indirect effects of Helmert's second 

condensation reduction of up to second order by the 2D FFT. The fourth 

program, called TC_1DFFT, computes the terrain correction, the indirect 

effect and the direct effect of Helmert's condensation reduction by means of 

the 1D FFT. It has the option of computing each or all of them. 

The above four programs accept direct random access binary files as 

input and output files to improve the computational efficiency and save 

memory. All the programs are written in Lahey Fortran 77 and realized on a 

PC 486 / 50i computer with 20MB of RAM. 

The 5th program, called STAT, performs the comparison between the 

gravimetric geoid and the GPS / levelling geoid, producing statistics of both 

absolute and relative agreements of the gravimetric geoid with respect to the 

GPS / levelling datum. The program also performs datum transformation 

between the two data sets by regression, removing the systematic datum 

difference between the two types of undulations. 

The 6th program, called PLOTCTR, performs the interpolation as well 

as the graphical display, in contour form, of the geoid grid. The program can 

draw the contour map of the geoid for any selected area with the option of 

annotating the interpolated random points on the map using different colors. 
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CHAPTER 5 

THE UNIFIED GEOID FOR CANADA AND PART OF THE U.S. 

Using the PC-based software package developed in this research, a 

unified geoid together with its error estimates has been computed for all of 

Canada and part of the U.S. All the computations were performed on a PC 

486/50i computer with an expanded RAM of 20 MB and 330 MB of hard disk. 

Section 5.1 describes the data sets used in this computation. Section 5.2 

describes the results of geoid computation from a test run using data on a 

small subgrid both by the 1D spherical FFT and by direct summation to show 

the equivalence of the 1D spherical FFT algorithm to the direct evaluation of 

the discrete Stokes integral. Section 5.3 gives a brief description of the files 

containing the computed results and lists the simple statistics of the 

computed geoid files. In section 5.4, the computational efficiency of the 1D 

spherical FFT method is briefly discussed as compared to the direct 

summation in computing large scale continental geoids. 
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5.1 Data Sets Used 

The data files used in the computation were all prepared and sent to us 

by the Geodetic Survey Division of Canada. They are the same sets of data as 

those used in computing the GSD91 geoid model (Veronneau and Mainville, 

1992). The data sets include the following data files: a 5'x5' mean gravity 

anomaly grid corrected for the atmospheric effect and terrain correction, a 

reference gravity anomaly data grid and a reference geoidal undulation grid 

computed from the OSU91A geopotential model complete to degree and 

order 360. The grid size is 660x1320 (871200 grid points) covering all of Canada 

and part of the U.S., ranging from 35°N to 90°N in latitude and 210°E to 320°E 

in longitude. The average spacing of the surface gravity anomaly 

measurements used for gridding was about 10 km on land and 1 km over the 

oceans in Canada (Mainville and Veronneau, 1989). The gravity anomaly data 

are stored in three direct access binary files which also contain the standard 

deviations of the mean gravity anomalies and other information related to 

the gridding. To make the computation convenient, the three data files were 

combined into two data grids covering the whole area which contain the 

mean gravity anomalies and the corresponding standard deviations, 

respectively. In addition, a 1km x 1km digital terrain model for the Canadian 

Rockies was available. The GPS/levelling data in six GPS networks in Canada 

and two GPS networks in the U.S., which were used for comparison with the 

gravimetric geoid, were provided by the Geodetic Survey Division of Canada 

and the National Geodetic Survey of the U.S., respectively. 
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5.2 Results of Test Computation Using the 1D Spherical FFT Program 

To show the equivalence of the 1D spherical FFT algorithm to the 

direct evaluation of the discrete Stokes integral and the correctness of the 

developed software, a test computation was carried out using data on a 50x50 

subgrid located in the area of British Columbia (50°02'30"N to 54°07'30'tN in 

latitude, 230°02'30"E to 234°07'30"E in longitude) both by the 1D spherical 

FFT algorithm and by the direct summation of the discrete Stokes integral. 

Table 5.1 lists the statistics of the residual part of the geoidal undulations 

computed by the two methods and table 5.2 contains the statistics of the 

differences of the geoidal undulations obtained by the 1D spherical FFT 

method with respect to the values obtained by direct summation, which are 

considered as the true values. 

Table 5.1 Statistics of the Residual Part of the Geoid Undulations from 

the Test Computation Using Both the Direct Summation and 

the 1D Spherical FFT Method 

Method 

Used 

Mm. Max. Mean RMS 

(m) 

Summation -0,894 0.900 0.111 0.238 0.211 

1D-FFT -0.894 0.900 0.111 0.238 0.211 
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Table 5.2 Statistics of the Differences of Geoidal Undulations Between 

the 1D Spherical FFT Method and the Direct Summation 

Differences Mm. Max. Mean RMS 

(m) 

1D-FFT 

Minus 

Summation 

-1.8E-7 1.2E-7 3.1E-1O 2.1E-S 2.1E-8 

As shown in the above two tables, the 1D spherical FFT algorithm gives 

exactly the same results as those by direct evaluation of the discrete Stokes 

integral. The differences are of the order of about 2x10 7 m which are caused 

by the limitation of the computer word length and are completely negligible 

for our application. 

5.3 Geoid Files Produced 

The following files have been produced in this research: the geoid file 

UC93_1D.BIN (or simply called UC93) and the corresponding standard 

deviation file STD_CAN.BIN by 1D spherical FFT; the geoid file 

UC92_2DP.BIN (or simply called UC92) by 2D Planar FFT, and the geoid file 

UC92_2DS.BIN by 2D spherical FFT. The first geoid file covers the area of all 

of Canada and part of the U.S. with a grid size of 660 x 1320. The remaining 

two geoid files only cover the area of Canada which ranges from 41°N to 72°N 



52 

in latitude and 218°E to 314°E in longitude with the grid size being 372 x 1152. 

The geoid file computed by 1D spherical FFT is the final product to be used by 

various users. 

All the above files are direct access binary files with each record 

containing a real*4 number. The data are stored from north to south and 

from west to east for each latitude (the same way as the input data files). The 

results can also be stored as integer*2 binary files to save storage space as 

required. 

In addition to the above geoid files, a file containing the indirect effects 

of up to second order of Helmert's condensation reduction for the 

mountainous area of British Columbia, called IND_BC.BIN, was produced 

using the digital terrain model. The grid size is 800 x 720 and the spacing is 32" 

x 50", covering the area from 49°N to 56°N in latitude and 114°W to 124°W 

in longitude. The inclusion of the indirect effects does not show considerable 

improvement in the agreement between the gravimetric geoid and the 

GPS/Ievelling geoid because the GPS stations are located mostly in the 

valleys. But the indirect effects were still added to the geoid file 1JC93_1D.BIN 

since for the points on top of the mountains the indirect effects are not 

negligible ( the value may reach as much as half a metre as shown in table 

5.5). 

Table 5.3 gives a brief list of the files described above. 
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Table 5.3 Files Produced in this Research 

File Name TYPE Area Grid Size 

UC92_2DP Geoid All Canada 373 x1152 

UC92_2DS Geoid All Canada 373 x 1152 

UC93_1D Geoid All Canada and 

Part of U.S. 

660 x 1320 

STD—CAN Internal Error 

Estimates 

All Canada and 

Part of U.S. 

660 x 1320 

IND_CAN Indirect Effects B.C. 800 x 720 

Table 5.4 lists the statistics of the three geoid files. Table 5.5 contains the 

statistics of the geoid error standard deviations contributed by the anomaly 

data noise. In table 5.6 are the statistics of the indirect effects. 

Table 5.4 Statistics of the Three Geoid Files Computed 

FILE 

NAME 

MIN MAX MEAN RMS a 

(m) 

UC93_1D -48.534 50.991 -4.990 23.237 22.694 

UC92_2DP -48.893 44.152 -15.333 25.125 19.904 

UC92_2DS -48.813 43.878 -15.250 25.023 19.838 
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Table 5.5 Statistics of the Geoid Noise Contributed by the Gravity 

Anomaly Data Noise 

FILE 

NAME 

MIN MAX MEAN RMS a 

(m) 

STD—CAN 0.017 0.278 0.095 0.117 0.068 

Table 5.6 Statistics of the Indirect Effect of Helmert's Condensation 

Reduction 

FILE 

NAME 

MIN MAX MEAN RMS a 

(m) 

IND_BC -0.523 0.000 -0.101 0.126 0.075 

As shown in table 5.5, the undulation error contributed by the gravity 

anomaly data noise is, on the average, about 10 cm with a maximum value of 

28 cm. The variation is about 7 cm (la). The larger undulation errors are 

mainly due to lack of gravity data coverage in some area. It should be 

mentioned that the undulation errors were obtained through error 

propagation using the given a priori variances of the anomaly data noise 

while the real accuracy of the computed geoid should be evaluated, by 

comparing it to the independent external information such as the 

GPS I levelling-derived geoid. As will be shown later in chapter 6, the error 

estimates from the error propagation compare well with actual error 

estimates from the external comparison. 
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Figure 5.1 and Figure 5.2 shows the UC93 geoid in all of Canada and its 

internal error estimates contributed from the gravity anomaly data noise, 

respectively. To demonstrate the long wavelength and short wavelength 

features of the geoid, Figure 5.3 and Figure 5.4 show the geoid derived from 

OSU91A model and the residual part of the geoid in the area of Western 

Canada. 

5.4 The Computation Efficiency of the 1D Spherical FFT Method 

The major advantage of the FFT-based techniques for evaluating the 

discrete convolutions in physical geodesy is its remarkable speed. The 1D 

spherical FFT technique for geoid computation is not only rigorously 

equivalent to the direct summation of the discrete Stokes integral but also far 

more efficient in terms of computation time. To show this, the CPU time 

required for calculating the geoidal undulations at all the grid points on a 

660x1320 grid (Canada and part of U.S.) and a 373x1152 grid (only Canada) both 

by the direct summation method and the 1D Spherical FFT method were 

recorded using a Lahey system subroutine. All the computations were made 

on a 486/50i PC computer. Table 5.6 and table 5.7 list the CPU time spent for 

evaluating the two geoid grids. Note that the CPU time for the direct 

summation method is obtained by multiplying the CPU time required for 

computing one point with the total number of grid points. 
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Figure 5.1 UC93 Geoid for All of Canada 

(Contour Interval: 4 m) 
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Table 5.7 CPU Time for Evaluating the 660x1320 Geoid Grid 

Method CPU Time in Hours 

1D Spherical FFT 70.58 

Direct Summation 15112.9 

Table 5.8 CPU Time for Evaluating the 373x1152 Geoid Grid 

Method CPU Time in Hours 

1D Spherical FFT 16.39 

Direct Summation 3712.86 

As shown in these tables, the CPU time required by the direct summation 

method is over 200 times that by the FFT method. For the 660x1320 grid the 

CPU time required by the direct summation method is about 629.7 days 

(almost two years) while it needs only about 2.9 days with the FFT method. 

These numbers definitely show how much time can be saved using the FFT-

based methods when dealing with the problem of calculating large-scale 

continental geoid such as the current Canadian geoid. This result also shows 

that it is now practically possible to evaluate large-scale local or regional geoid 

accurately at high speed on low-cost microcomputers. Note that the above 

time does not include the time required for read/write data and results, 

which is the same for each of the above two methods. 
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CHAPTER 6 

RESULTS OF COMPARISONS BETWEEN THE GRAVIMETRIC AND 

THE GPS/LEVELLING-DERIVED GEOIDAL UNDULATIONS 

To evaluate the accuracy of the computed geoid, data from eight local 

GPS networks in Canada and U.S together with the levelling data were used 

to derive the geoidal undulations for comparison with the gravimetric 

geoidal heights. Statistics of the GPS networks are shown in table 6.1. To show 

the distribution of GPS stations in the area of Canada, contour maps of the 

geoid annotated with GPS points for Western Canada and the 

Ontario/Quebec area were plotted using the PLOTCTR program, as shown in 

Figures 6.1 and 6.2, respectively 

The geoidal height from GPS/levelling data is computed simply by 

N=h-H, (80) 

where h is the ellipsoidal height derived from GPS and H is the orthometric 

height from levelling. To get the real picture of the agreement of the 

gravimetric geoid with respect to the GPS/levelling data, the systematic 

datum difference between the gravimetric geoid and the GPS/levelling data 
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and the possible long wavelength errors of the geoid were removed by the 

following 4-parameter transformation equation (Heiskanen and Moritz, 

1967): 

N = N + bo + bicoscpcosX + b2cosçsin X + b3sin ( / (81) 

where b0 is the shift parameter between the vertical datum implied by the 

GPS/Levelling data and the gravimetric datum, and b1, b2, b3 are the three 

translation parameters in x,y,z axes between the coordinate system implied by 

the GPS data and that by the gravimetric data. The program STAT allows for 

selection of different combinations of one to four parameters in (81) to get the 

best fit. 

Table 6.1 Statistics of Eight GPS Networks in Canada and the U.S. 

Area 

Geographical Range No. of 

Stations 

Time 

of 

obs. Latitude(DEG) Longitude(DEG) 

British Columbia 49N - 61N 114W - 130W 280 1989 

Northern Alberta 56N - 60N 111W - 121W 51 1990 

Central Alberta 54N - 56N 110W - 120W 52 1990 

Southern Alberta 49N - 54N 110W - 116W 107 1991 

Great Slave Lake 60N - 63N 111W - 118W 93 1987 

Ontario/Quebec 42N - 46N 70W - 83W 228 1988 

Washington State 46N - 49N 117W - 124W 62 1988 

Oregon State 42N - 46N 117W - 124W 15 1988 
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Figure 6.1 Contour Map of Geoidal Undulations Annotated with 

GPS Stations for Western Canada 
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Figure 6.2 Contour Map of Geoidal Undulations Annotated with 

GPS Stations for Ontario/Quebec 
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Six geoid models were used in the comparison. These models are: 

OSU91A, UNB9O by the University of New Brunswick, GEOID9O by the 

National Geodetic Survey of the U.S., GSD91 by the Geodetic Survey 

Division of Canada, UC92 (UC92_2DP or planar 2D FFT) and UC93 (spherical 

it) FFT) by the author. 

Both the absolute comparison and the relative comparison were made 

between the gravimetric geoid and the GPS/levelling-derived geoid. 

Subsection 6.1 describes the results of the absolute comparisons. The results of 

relative comparisons are in subsection 6.2. Subsection 6.3 gives a comparison 

of different geoid models in terms of approximation error and agreement 

with GPS I levelling data. 

6.1 The Absolute Accuracy of the Gravimetric Geoid with Respect to 

the GPSILevelling-Derived Geoidal Undulations 

The statistics of the absolute differences between the two types of 

geoidal heights for the eight local GPS networks are summarized in tables 6.2 

to 6.9. The numbers in parentheses refer to the results before removing the 

datum differences. 
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Statistics of the Differences between the Gravimetric and GPS/Levelling 

Geoidal Heights 

Table 6.2a Area: British Columbia No. of Points: 280 

GEOID 

MODEL 

MIN MAX MEAN RMS CY 

(m) 

OSU91 A -4.74(-7.43) 2.78(0.07) 0.00(-2.77) 0.98(2.94) 0.98(0.98) 

UNB9O -1.51(-2.87) 2.19(2.44) 0.00(-0.13) 0.72(1.26) 0.72(1.25) 

GSD91 -1.58(-5.52) 1.17(-2.29) 0.00(-3.05) 0.30(3.09) 0.30(0.52) 

UC92 -1.28(-5.81) 0.89(-2.69) 0.00(-3.48) 0.27(3.52) 0.27(0.52) 

UC93 -1.29(-6.39) 0.70(-3.35) 0.00(-4.08) 0.24(4.11) 0,24(0.53) 

Table 6.2b Area: British Columbia No. of Points: 203 

GEOID 

MODEL 

MIN MAX MEAN RMS 

(m) 

OSU91A -2.46 2.40 0.00 0.77 0.77 

UNB9O -1.47 2.19 0.00 0.71 0.71 

GSD91 -0.41 0.31 0.00 0.15 0.15 

UC92 -0.32 0.29 0.00 0.12 0.12 

UC93 -0.19 0.18 0.00 0.10 0.10 



67 

Table 6.3 Area: Northern Alberta No. of Points: 51 

GEOID 

MODEL 

MIN MAX MEAN RMS 

(m) 

OSU91A -0.37(-0.47) 0.46(0.74) 0.00(0.26) 0.17(0.39) 0.17(0.29) 

UNB9O -0.18(-0.11) 0.12(0.86) 0.00(0.27) 0.07(0.34) 0.07(0.21) 

GSD91 -0.23(-0.29) 0.13(0.12) 0.00(-0.84) 0.06(0.08) 0.06(0.08) 

UC92 -0.20(-0.39) 0.14(0.03) 0.0O(-O.23) 0.05(0.24) 0.05(0.08) 

L1C93 -0.19(-0.99) 0.13(-0.57) 0.00(-0.84) 0.06(0.85) 0.06(0.08) 

Table 6.4 Area: Central Alberta No. of Points: 52 

GEOID 

MODEL 

MIN MAX MEAN RMS cr 

(m) 

OSU91A -0.22(-0.27) 0.21(0.23) 0.00(-0.02) 0.10(0.12) 0.10(0.12) 

UNB9O -0.19(-0.53) 0.33(0.59) 0.00(0.10) 0.10(0.28) 0.10(0.27) 

GSD91 -0.16(-0.87) 0.15(-0.45) 0.00(-0.58) 0.05(0.59) 0.05(0.07) 

UC92 -0.11(-0.99) 0.16(-0.57) '0.00(-0.76) 0.05(0.76) 0.05(0.07) 

UC93 -0.12(-1.54) 0.17(-1.14) 0.00(-1.33) 0.05(1.33) 0.05(0.07) 
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Table 6.5a Area: Southern Alberta No. of Points: 106 

GEOID 

MODEL 

MIN MAX MEAN RMS CY 

(m) 

OSU91A -0.65(0.18) 0.46(1.36) 0.00(0.65) 0.16(0.69) 0.16(0.22) 

UNB9O -0.42(0.10) 1.22(3.57) 0.00(1.24) 0.22(1.41) 0.22(0.68) 

GSD91 -0.09(-0.25) 0.25(0.86) 0.00(0.27) 0.05(0.34) 0.05(0.21) 

UC92 -0.10(-0.38) 0.12(0.41) 0.00(0.09) 0.04(0.20) 0.04(0.17) 

UC93 -0.10(-0.92) 0.13(-0.11) 0.00(-0.46) 0.04(0.48) 0.04(0.16) 

Table 6.5b Area: Southern Alberta No. of Points: 100 

(With six points deleted) 

GEOID 

MODEL 

MIN MAX MEAN RMS cy 

(m) 

OSU91A -0.33 0.44 0.00 0.14 0.14 

UNB9O -0.34 0.55 0.00 0.18 0.18 

GSD91 -0.08 0.12 0.00 0.04 0.04 

UC92 -0.10 0.09 0.00 0.03 0.03 

UC93 -0.08 0.09 0.00 0.03 0.03 
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Table 6.6 Area: Great Slave Lake No. of points: 93 

GEOID 

MODEL 

MIN MAX MEAN RMS 

(m) 

OSU91A -0.16(-0.60) 0.35(0.73) 0.00(-0J3) 0.10(0.35) 0.10(0.32) 

UNB9O -0.19(-0.39) 0.23(0.52) 0.00(-0.07) 0.07(0.20) 0.07(0.18) 

GSD91 -0.16(-O.37) 0.16(0.44) 0.00(-0.08) 0.05(0.19) 0.05(0.17) 

UC92 -0.16(-0.58) 0.20(0.31) 0.00(-0.27) 0.05(0.34) 0.05(0.20) 

UC93 -0.16(-1.21) 0.21(-0.27) 0.00(-0.90) 0.06(0.92) 0.06(0.21) 

Table 6.7a Area: Ontario/Quebec No. of points: 228 

GEOID 

MODEL 

MIN MAX MEAN RMS 

(m) 

OSU91A -1.03(1.13) 1.49(1.30) 0.00(0.06) 0.27(0.34) 0.27(0.34) 

UNB9O -1.21(-0.85) 0.83(1.23) 0.00(0.29) 0.23(0.39) 0.23(0.26) 

GSD91 -1.28(-1.42) 1.35(1.22) 0.00(-0.03) 0.23(0.26) 0.23(0.26) 

UC92 -1.18(-0.91) 1.39(1.63) 0.00(0.25) 0.23(0.35) 0.23(0.24) 

UC93 -1.19(-1.19) 1.36(1.30) 0.00(0.02) 0.23(0.25) 0.23(0.25) 
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Table 6.Th Area: Ontario/ Quebec No. of points: 197 

(With 31 points deleted) 

GEOID 

MODEL 

MIN MAX MEAN RMS a 

(m) 

OSU91A -0.59(0.51) 0.54(0.72) 0.00(0.01) 0.19(0.26) 0.19(0.25) 

UNB9O -0.31(-0.25) 0.36(0.70) 0.00(0.0.28) 0.12(0.32) 0.12(0.17) 

GSD91 -0.26(-0.34) 0.24(0.37) 0.00(-0.05) 0.10(0.15) 0.10(0.14) 

UC92 -0.24(-0.13) 0.26(0.53) 0.00(0.22) 0.10(0.25) 0.10(0.12) 

UC93 -0.22(-0.33) 0.25(0.38) 0.00(0.00) 0.10(0.13) 0.10(0.13) 

Table 6.8 Area: Washington State No. of Points: 61 

GEOID 

MODEL 

MIN MAX MEAN RMS a 

(m) 

OSU91 A -0.96(-1.63) 1.22(0.53) 0.00(-0.77) 0.42(0.91) 0.42(0.48) 

UNB9O -0.48(-0.83) 0.57(1.78) 0.00(0.45) 0.24(0.75) 0.24(0.61) 

GEOID9O -0.24(-1.44) 0.37(0.30) 0.00(-0.81) 0.10(0.84) 0.10(0.23) 

GSD91 -0.35(-2.02) 0.21(-1.23) 0.00(4.90) 0.09(1.91) 0.10(0.14) 

UC92 -0.26(-2.36) 0.22(-1.50) 0.00(-0.46) 0.09(0.48) 0.09(0.17) 

UC93 -0.22(-2.98) 0.15(-2.16) 0.00(-2.49) 0.08(2.50) 0.08(0.18) 
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Table 6.9 Area: Oregon State No.of Points: 15 

GEOID 

MODEL 

MIN MAX MEAN RMS cr 

(m) 

OSU91A -0.34(-1.78) 0.44(-0.67) 0.00(-1.13) 0.22(1.19) 0.22(0.37) 

UNB9O -0.23(-1.12) 0.40(0.28) 0.00(-0.45) 0.15(0.59) 0.15(0.38) 

GEOID9O -0.13(-1.61) 0.18(-0.99) 0.00(-1.31) 0.10(1.33) 0.10(0.21) 

GSD91 -0.14(-1.92) 0.19(-1.12) 0.00(-1.62) 0.10(1.63) 0.10(0.20) 

UC92 -0.14(-2.21) 0.17(-1.69) 0.00(-1.99) 0.09(2.00) 0.09(0.14) 

UC93 -0.14(-2.48) 0.19(-2.10) 0.00(-2.55) 0.09(2.56) 0.09(0.20) 

As shown in these tables, the geoid model computed by the 1D 

spherical FFT method agrees with the GPS/levelling data to better than 10 cm 

(RMS) in all GPS networks except the one in British Columbia and the one in 

Ontario/Quebec. In BC, this is due to the rough terrain and poor gravity data 

coverage in part of the province (Northwest corner). In Ontario/Quebec, the 

GPS results on a small portion of the stations are very poor and there are also 

some gravity gaps in part of the area. The best agreement is achieved in 

Southern Alberta where the RMS error is 4 cm for the whole set of 106 points 

(Table 6.5a) and reduces to only 3 cm after 6 noisy points with differences 

larger than 10 cm are eliminated (Table 6.5b). In the area of Northern and 

Central Alberta as well as in the Great Slave Lake region, the agreement is at 

the level of 5 cm to 6 cm (Table 6.3, 6.4, 6.6.). For the two GPS networks located 

in the state of Washington and Oregon in the U.S., the agreement is 8 cm and 

9cm, respectively (Tables 6.8 and 6.9). In British Columbia, the statistics made 

on all 280 stations of the network show an RMS error of 24 cm (Table 6.2a). 
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But a detailed analysis shows that this large rms error mainly comes from the 

contribution of a small portion of the points. Table 6.10 gives the percentage 

of points falling into different ranges of errors for the UC93 (1D FFT) geoid 

model. 

Table 6.10 Distribution of Points in Different Error Ranges in 

British Columbia for UC93 Geoid Model 

Error Limit 

(m) 

No. of Points Cumulative 

Percentage 

RMS Error 

(m) 

0.10 118 42.0% 0.06 

0.20 203 72.5% 0.10 

0.30 249 88.9% 0.14 

0.40 256 91.4% 0.15 

0.50 262 93.6% 0.16 

0.70 271 96.8% 0.19 

1.30 280 100% 0.24 

As shown in the table, over 70% of the points in the network have a 10 cm 

RMS agreement with respect to the GPS/levelling data. The agreement is 

better than 15cm RMS for 90% of the points. Only 8.6% of the points (24 

stations) have differences larger than 40cm which increases the RMS error 

from 15cm to 24cm. Some of these noisy points are in the area where there is 

no surface gravity coverage (Northwest corner of BC). More careful 

investigations are required as to the real causes of the large differences at 

these points. 
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In the Ontario/Quebec area, the statistics made on all stations of the 

network (228 points) shows an RMS error of 23 cm (table 6.7a). But a detailed 

analysis shows that this large RMS error is mainly from the contribution of a 

small number of stations in the network. Table 6.11 gives the percentage of 

points falling into different ranges of errors for the UC93 (1D FFT) geoid 

model. 

Table 6.11 The Distribution of Points in Different Error Ranges 

in Ontario/ Quebec for UC93 Geoid Model 

Error Limits 

(m) 

No. of Points Cumulative 

Percentage 

RMS Error 

(m) 

0.10 134 58.8% 0.06 

0.20 188 82.4% 0.09 

0.25 197 86.4% 0.10 

0.30 205 89.9% 0.11 

0.40 209 91.7% 0.12 

0.50 217 95.2% 0.15 

1.40 228 100% 0.23 

As shown in the table, over 86% of the points in the network has a 10 cm 

RMS agreement with respect to GPS I levelling data. The agreement is better 

than 12 cm RMS for about 92% of the points. Only 8.3% of the points (19 

stations) have differences larger than 40cm which increases the RMS error 

from 12 cm to 23 cm. 4.8% of the stations (11 stations) have differences 



74 

ranging from 0.5 m to 1.4 m, bringing the RMS error from 15 cm to 23 cm. 

These 11 points are believed to have gross errors coming from GPS/levelling 

data. More careful examinations are required to diagnose the real causes of 

the large differences at these points. 

It should be mentioned that the above accuracy of the gravimetric 

geoid with respect to the GPS/Ieve1ling datum is obtained after removing the 

datum difference through a least-squares fit using eq. (81) where all the data 

points in each network are used. To further verify the reliability of the 

accuracy estimates thus obtained, the datum difference is removed only using 

the data in a portion of the points in a network each time. Table 6.12 shows 

the statistics of the absolute comparison after performing datum 

transformation using different number of data points in the GPS network in 

British Columbia. 
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Table 6.12 Statistics of the Differences between the Gravimetric Geoid and 

the GPS/levelling Geoid after Removing the Datum Difference by 

LS Fit Using Different Numbers of Data Points 

No. of 

Fitted 

Points 

MIN MAX MEAN RMS 

(m) 

none -6.39 -3.35 -4.08 4.11 0.53 

4 -1.30 0.78 0.06 0.26 0.25 

15 -1.36 0.72 0.00 0.26 0.26 

60 -1.32 0.82 0.02 0.25 0.25 

140 -1.20 0.81 0.03 0.24 0.24 

200 -1.18 0.78 0.01 0.24 0.24 

280 -1.29 0.70 0.00 0.24 0.24 

As shown in the table, the statistics of the accuracy of the gravimetric geoid 

with respect to the GPS/levelling datum after fitting with different number of 

data points are basically the same. This result indicates that there exists a 

significant datum difference between the gravimetric geoid and the 

GPS/levelling geoid. A LS fit using only a few points (larger or equal to 4 

points) will usually be enough to remove the datum differences. This result is 

of practical importance when one uses GPS heights and gravimetric geoidal 

undulations to obtain orthometric heights instead of levelling since only a 

few benchmarks occupied by GPS receivers are required to obtain the 

necessary transformation parameters. 
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To investigate whether there is a correlation between the above 

external errors of the gravimetric geoid and the internal errors obtained by 

propagating the measurement noise of the gravity anomaly data onto the 

geoid, statistics of the internal errors were computed for each area where the 

GPS networks are located using the results in file STD_CAN.BIN. Table 13 

lists the statistics for the eight GPS networks used in the comparison. 

Table 6.13 Statistics of the Internal Geoidal Undulation Errors Contributed 

from the Measurement Noises of the Anomaly Data (Unit: metre) 

Area Max. Min Mean a RMS 

British Columbia 

Northern Alberta 

Central Alberta 

Southern Alberta 

Great Slave Lake 

Ontario 

Washington 

Oregon 

0.203 0.036 0.059 0.029 0.066 

0.056 0.033 0.042 0.005 0.042 

0.047 0.032 0.038 0.004 0.038 

0.041 0.031 0.035 0.002 0.035 

0.168 0.036 0.048 0.021 0.053 

0.234 0.035 0.057 0.024 0.062 

0.068 0.042 0.051 0.006 0.051 

0.163 0.044 0.057 0.009 0.058 

Comparing the results in the above table with those in tables 6.2 to table 6.8, 

we see a strong correlation between the external errors and the internal 

errors. As can be seen from table 13, the highest precision occurs in the area of 

Alberta where the effect of the gravity anomaly noise on the geoid is about 3.5 

to 4 cm and very uniform (notice the small variations), showing a remarkable 

consistency with the results of the external comparison. In accordance with 

the results of the external comparison, the internal precision in the area of 
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British Columbia and the Ontario/Quebec area is the worst (at the level of 

about 6cm) and show relatively larger variations than other areas. The 

maximum standard deviation reaches over 20 cm, which may be caused by 

the lack of data coverage in the neighborhood of these points and is one 

reason for the large discrepancies of the gravimetric geoidal undulations with 

respect to GPS/Ievelling results. 

To examine the possible correlation between the topography and the 

accuracy of the geoid, simple statistics of the topographic heights were also 

made for each area. Table 6.14 lists the results. 

Table 6.14 Statistics of the Topographic Heights for the Eight Areas 

Where GPS Networks are Located (Unit: Metre) 

Area Max. Min Mean CY RMS 

British Columbia 

Northern Alberta 

Central Alberta 

Southern Alberta 

Great Slave Lake 

Ontario 

Washington 

Oregon 

2719 -2925 99 673 1123 

1067 176 510 195 546 

1846 435 726 187 749 

2587 557 989 389 1063 

808 91 223 239 85 

1244 -128 259 166 308 

2704 -194 682 480 833 

2392 -50 1064 518 1184 

As shown in the table, it seems that there is little correlation between the 

topographic variations (roughness) and the accuracy of the geoid. This is not 
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surprising, and just shows that the topography and its indirect effect have 

been properly modelled. 

To study the influence of indirect effects upon the accuracy of the geoid, 

comparisons were made using the data in the area bounded by 49°N - 56°N 

latitude and 114°W - 124°W longitude in British Columbia. The available GPS 

stations in the area are 203. Table 6.15 gives the results of the comparison with 

and without adding the indirect effects to the geoid. The geoid file is 

1JC93_1D.BIN. Three cases were considered: case 1: no indirect effects added; 

case 2: indirect effect of the first term added; case 3: indirect effect of both the 

first and second term added. 

Table 6.15 Statistics from Comparison Between the gravimetric 

and the GPS/levelling Geoid Undulations With and 

Without the Indirect Effects 

Area: B.C.(LAT. 49°N-56°N, LON. 114°W-124°W) No. of GPS Points: 203 

CASE MIN MAX MEAN RMS a 

(m) 

CASE 1 -0.58(-4.54) 0.80(-3.35) 0.00(-3.82) 0.18(3.83) 0.18(0.24) 

CASE 2 -0.59(-4.51) 0.79(-3.28) 0.00(-3.77) 0.18(3.78) 0.18(0.25) 

CASE 3 -0.60(-4.54) 0.79(-3.28) 0.00(-3.77) 0.18(3.78) 0.18(0.25) 

As shown in the table, the addition of indirect effects only affects the mean 

difference slightly but have no influence on the RMS error. Case 2 and case 3 
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have the same results, indicating that the effect of the second-term is 

negligible. The GPS stations used in above comparison are in the valleys, 

however, larger effects are expected for stations at mountain peaks. Thus, it is 

recommended to properly take into account the indirect effects in such 

extreme cases. 

To sum up the analyses in this section, we conclude that the absolute 

agreement of the newly computed geoid with respect to the GPS/levelling 

datum is at the level of 10 cm or better areas with good gravity coverage. 

6.2 The Relative Accuracy of the Gravimetric Geoid With Respect to 

the GPS/Levelling-Derived Geoidal Undulations 

To evaluate the relative accuracy of the gravimetric geoid with respect 

to the GPS/levelling data, relative differences were formed on all the 

baselines of different lengths in each network and plotted against distance 

both in units of one part per million (ppm) and metres as shown in figure 6.3 

to figure 6.12. Note that the relative accuracy value at a certain distance is the 

average value of all the baselines of about the same length in each network, 

with an increment of about 20 km. 

As seen in these figures, for the UC93 geoid model computed by the 1D 

spherical FFT, the relative agreement is, in most cases, about 1 to 4 ppm over 

short baselines of 20 to 100km, 0.5 to 1ppm for distances of 100 to 200km, and 

0.1 to 0.5 ppm over distances of 200km to more than 1000km. 
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Best relative agreements are achieved for the three networks in the 

Province of Alberta, where the relative agreement is about 0.5 to 2ppm, 0.3 to 

0.5ppm, 0.1 to 0.3 ppm for the above distances (fig. 6.5, fig. 6.6 and fig. 6.7). 

In British Columbia, due to the roughness of topography and lack of 

gravity data in some parts of the area, the relative agreement is poorer than in 

other networks. Figure 6.3 shows the relative agreement computed from the 

data of all 280 points in the network where the RMS error of absolute 

agreement is 24 cm. It can be seen that the relative agreement is about 8.7 to 2 

ppm for distances of 20 km to 100 km, 2 to 1ppm for distances of 100 to 240 

km, 1 to 0.5 ppm for distances of 250 to 500 km, and 0.5 to 0.3 ppm for 

distances of 500 to 1700 km. However, for most of the stations in the network, 

the agreement is much better. Figure 6.4 shows the results of statistics on 203 

points where the absolute differences are all below 20 cm corresponding to a 

RMS error of 10 cm. As shown in the figure, the relative agreement is about 

4.1 to 1.3 ppm, 1.3 to 0.5 ppm, 0.5 to 0.2 ppm, 0.2 to 0.1 ppm or less for the 

above distance ranges. 

In the Ontario/Quebec network, due to a few noisy GPS stations, the 

relative agreement based upon the data from all 228 stations where the 

absolute agreement is 0.23 m RMS is poor. As shown in figure 6.9, the relative 

agreement is about 5.7 to 2 ppm for distances of 20 km to 100 km, 2 to 1 ppm 

for distances of 100 to 200 km, 1 to 0.5 ppm for distances of 200 to 400 km, and 

0.5 to 0.3 ppm for distances of 400 to 1000 km. Figure 6.10 shows the results of 

statistics from 197 stations where the absolute agreement is 10 cm RMS. As 
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shown in this figure, the relative agreement is about 3 to 1. ppm, 1 to 0.7 ppm, 

0.7 to 0.3 ppm, 0.3 to 0.1 ppm for the above distance ranges. 

It is also noted that the relative agreement between the newly 

computed regional gravimetric geoid and the OPS /level ling-derived geoidal 

undulations is quite uniform in each network and no significant trend 

dependent on baseline length can be seen, as shown in figures 6.3b to 6.13b. In 

most cases, the relative error of the gravimetric geoid with respect to the 

GPS/ievelling datum is smaller than 15 cm for baselines of tens of kilometres 

to over 1500 kilometres. In areas with good gravity data coverage and mild 

terrain, the error is smaller than 10 cm. In the area of Alberta Province, the 

relative error is only 5 to 6 cm (fig. 5b, 6b and 7b). However the relative error 

of the geoid implied by the global geopotential model OSU91A shows an 

increasing trend with baseline length (as clearly shown in fig. 4b and table 3.2). 

This might be due to the long wave-length error of the geopotential model. 

This result indicates that the combination of high-degree geopotential model 

and local gravity data can overcome the long wave length error of the 

geopotential model and result in geoid of uniformly high accuracy. 
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To compare the above actual relative error estimates with those 

obtained from error propagation, the relative undulation error contributed by 

the geopotential model coefficient noise (table 3.2) and the error contributed 

from gravity measurement noise were combined to generate the internal 

relative precision of the undulation differences. The contribution of the 

anomaly noise to the relative undulation is taken approximately as 9 cm, 

which is obtained by multiplying the mean error of the undulation in the 

area of BC in table 6.13 by . Table 6.16 lists the computed relative error 

estimates for various baseline lengths. 

Comparing the results listed in table 16 with those shown in figures 

6.3b to 6.12b, one can see that the relative error (l(Y) obtained from error 

propagation increases with the distance. This reflects the overall error 

behaviour of the GM-implied actual relative geoid error with respect to the 

GPS / levelling datum, though it exaggerates the magnitude of the error in 

most cases. However, the internal error estimates can not properly describe 

the actual relative undulation errors of the regional geoid obtained by 

combining the geopotential model with local gravity data and height data. 

The relative error of the regional geoid is quite uniform and basically 

independent of the distance (see Figures 6.3b to 6.12b). 



93 

Table 6.16 The Internal Errors of Relative Undulations Computed by Error 

Propagation 

Linear 

Distance (km) 

Angular 

Distance (DEG.) 

Error Standard 

Deviation (cm) 

10 0.09 12.9 

20 0.18 20.2 

30 0.27 28.1 

40 0.36 35.6 

50 0.45 42.3 

70 0.63 53.2 

90 0.81 60.3 

100 0.90 62.6 

200 1.80 72.4 

400 3.60 77.6 

600 5.40 78.2 

800 7.19 78.2 

1000 8.99 78.3 

1600 14.39 77.9 

2000 17.99 77.9 

10000 89.93 77.9 
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6.3 Comparison of Different Geoid Models 

In terms of comparing different geoid models, the tables and figures 

listed in the previous two sections indicate that most geoid models show 

good agreement with the GPS/Levelling data, with UC93 giving the best 

results. 

The addition of local gravity data and height data improves the 

reference geoid computed from the OSU91 geopotential model significantly, 

both absolutely and relatively over distances from tens of kilometres to over 

1000 km. The improvement is especially large in rough terrain such as the 

British Columbia area. As shown in tabe 6.2b, the absolute geoidal undulation 

error drops from 77 cm RMS to 10 cm RMS. The relative undulation errors 

range from 28 cm to 204 cm over distances of 20 km to about 1500 km for 

OSU91A geoid model while for the UC93 geoid model the error is only about 

12 cm uniformly over all distances (Figure 6.4b). Moreover, the incorporation 

of local or regional data into the solution removes the possible distance-

dependent trend of the undulation error inherent in the geopotential model, 

as clearly shown in Figure 6.4b. 

In relatively flat areas, such as Great Slave Lake and Ontario/Quebec, 

the geoid file GSD91 which was computed by planar FFT without zero 

padding is almost as good as the UC93 geoid which is the strict evaluation of 

the discrete spherical Stokes integral and the UC92 which is the rigorous 

evaluation of the planar approximation of the Stokes integral. But in 
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mountainous areas, such as the province of British Columbia, the 

contribution of the errors from planar approximation and edge effects is 

significant. As shown in table 6.2a, the RMS error of GSD91 is 6 cm higher 

than that of UC93, and 3cm higher than that of UC92. It is expected that the 

effect of the FFT edge error will be more severe toward the edges of the grid. 

To further study the errors of the various approximate techniques, 

comparisons were made between the rigorous 1D FFT results and other geoid 

files computed by approximate methods for the grid points covering all of 

Canada. Table 6.17 gives the statistics of the comparison results. 

Table 6.17. Statistics of the Approximation Errors of Three Geoid Files 

Computed by 2D FFT With Respect to the Geoid File Computed 

by the Rigorous 11) Spherical FFT Technique 

GEOID FILES MIN MAX MEAN RMS 

(m) 

NGSD91 -1.928 2.321 0.496 0.718 0.519 

UC92_2DP -0.767 1.508 0.330 0.476 0.343 

UC92_2DS -0.665 1.704 0.248 0.324 0.208 

As shown in table 6.17, the combined effects of planar approximation and FFT 

edge effects is about 72 cm RMS for the GSD91 geoid model . The error caused 

by planar approximation with the geoid file UC92_2DP, which was computed 

by planar FFT with proper zero padding, is about 48 cm, indicating that the 

error caused by edge effects is about 24 cm RMS. As expected, the 2D spherical 
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FFT approach shows significant improvement over the planar FFT. The RMS 

error was reduced by about 15 cm as compared to the planar FFT results. But it 

still has a 32cm RMS error against the true results due to the latitude-

dependent error introduced by the modification of the Stokes kernel function 

in Strang van Hees' approach. 

In the two networks in the U.S (Washington and Oregon), the accuracy 

of GEOID9O, which was computed by the 2D spherical FFT technique using a 

3' x 3' mean gravity grid, is slightly poorer than that of UC93. As shown in 

table 6.8 and table 6.9, the RMS error of GEOID9O is 2cm and 1cm higher than 

that of UC93 (1D FFT). This might be due to the latitude-dependent error 

caused by the modification of the Stokes kernel in the 2D spherical FFT 

technique adopted for that computation. 

In the Great Slave Lake region and in the Ontario/Quebec area, the 

UNB9O geoid is at the same level of accuracy as other geoid files. But in all 

other GPS networks, UNB9O is poorer than other geoid models. In Southern 

Alberta, the results from UNB9O are even poorer than those of OSU91A (table 

6.5a and figure 6.7). One of the possible reasons for the poorer accuracy of 

UNB9O might be that the geoid was obtained through integration point by 

point using data in a spherical cap of a certain limited radius (like 6 degrees) 

around each computation point while the FFT-based technique makes use of 

all the data on the grid. Another reason might be that a different scheme for 

terrain reductions (Vanicek and et al., 1990) was adopted for computing the 

geoid. More research is required to account for the differences. 
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It should be mentioned that the GPS heights were obtained by fixing 

the coordinates of one station in each network. Therefore, the GPS heights are 

referred to the datum defined by this station. To get a better picture of the 

absolute agreement between the gravimetric geoid and the GPS/levelling 

implied geoidal undulations, an absolute datum such as that provided by the 

coordinates of a VLBI or SLR station should be fixed for the network 

adjustment. It is also worthwhile to make a combined adjustment of all the 

individual GPS networks in Canada using the above datum for a more 

comprehensive comparison of the different types of geoidal undulations. 

Summarizing the discussions in this chapter, we conclude that the 

newly computed UC93 geoid model shows the best agreement with the 

GPS/levelling data available in the region. The absolute agreement is better 

than 10 cm RMS in most cases and better than 5 cm in areas with mild terrain 

and good gravity data coverage. The relative agreement is better than 15 cm 

over distances from tens of kilometres to over 1000 kilometres, showing no 

significant dependence on the distance as is the case with the geopotential 

model. Results from regression analyses show that the significant datum 

difference between the GPS/levelling datum and the gravimetric datum can 

be reliably removed by just using a few benchmarks (4 stations) occupied by 

GPS receivers, which is important for GPS-aided levelling projects. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

The major objectives of this research have been accomplished. A PC 

based software package, which incorporates the most recent developments in 

spectral techniques for geoid determination, has been developed. It allows for 

rigorous evaluation of the discrete Stokes integral, the standard deviations of 

the computed geoidal undulations contributed from the gravity anomaly data 

noise, the terrain corrections, and the direct and indirect effects of terrain 

reductions on the geoid using data on large 2D grids efficiently by the ID Fast 

Fourier Transform. The package also includes a program for interpolation 

and graphical display of the geoid as well as a program for comparing the 

gravimetric geoid with the GPS I levelling-derived geoidal undulations. The 

software package can be used for computing large-scale continental geoids 

efficiently on low cost microcomputers. 

With the developed software package, a new high-precision geoid has 

been computed for all of Canada and part of the U.S. which achieves the best 

agreement with the GPS/levelling data available in the region as compared to 

other existing geoids. The comparison of the UC93 geoid with GPSllevelling 

data shows that the absolute agreement with respect to the GPSllevelling 

datum (after the systematic datum difference between the gravimetric and the 
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GPS/levelling-derived undulations is removed) is better than 10 cm RMS, 

and the relative agreement is better than 15 cm over distances ranging from 

tens of kilometres to over 1000 kilometres or about 1 to 4 ppm over short 

baselines of 20 to 100km, 0.5 to 1ppm for distances of 100 to 200km, and 0.1 to 

0.5 ppm over distances of 200km to more than 1000 km, in most cases. In 

some areas with good gravity data coverage and relatively flat terrain, such as 

Southern Alberta, the absolute agreement is 3 cm and the relative agreement 

is about 5 cm over distances of 20 km to 500 km. 

The UC93 geoid shows significant improvement over other existing 

geoid models in the test regions. The improvement is especially significant in 

mountainous areas. In the mountainous Province of British Columbia, the 

absolute accuracy with respect to GPS/levelling data (203 points) is 10 cm RMS 

for the UC93 geoid model while it is 15 cm, 71 cm and 77 cm RMS, for the 

GSD91, the UNB9O, and the OSU91A geoid model, respectively. The relative 

accuracy of the UC93 geoid model is about 12 cm uniformly for distances of 20 

km to 1500 km while it is 18 cm for GSD91, 20 cm to 210 cm for UNB9O, and 30 

cm to 200 cm for OSU91A. The results also indicate that the incorporation of 

local or regional gravity anomaly data and height data in the geoid 

determination removes the distance-dependent error inherent in the 

geopotential model effectively and results in relative geoidal undulations of 

uniformly high accuracy. 

The investigation on the errors of the planar FFT technique and the 2D 

spherical FFT approach shows that for the determination of large-scale 
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continental geoids the approximation errors of these two methods are quite 

significant and may lead to severe degradation of the accuracy of the 

computed geoid. In the area of Canada, the planar FFT technique shows an 

error as large as 48 cm RMS with respect to the results derived by the rigorous 

1D spherical FFT method. The approximation error of the 2D spherical FFT 

approach also reaches 32 cm RMS. Therefore, the 1D spherical FFT method 

should be used for computing large-scale continental geoids. 

The above agreement of the gravimetric geoid with respect to the 

GPS/levelling data indicates that the combination of the geoid with GPS 

heights can generate orthometric heights without levelling with high 

accuracy for most of the area tested. For areas with moderate terrain and good 

gravity coverage, such as southern Alberta, better than 5 cm accuracy over 

distances of 20 km to 500 km can be expected. It must be mentioned that there 

may exist significant systematic datum difference between the GPS/levelling 

data and the gravimetric geoid. At least 4 levelling benchmarks should be 

occupied by GPS receivers to provide datum transformation parameters when 

the GPS heights are combined with gravimetric geoidal undulations to 

generate the orthometric heights. 

Note that the current accuracy is achieved with a 5' x 5' gravity grid 

which was compiled using point gravity data with an average separation of 

about 10 km. However, in areas with relatively good gravity coverage (no data 

gaps) and moderate terrain, such as Southern Alberta, the accuracy of the 

UC93 geoid is comparable to the best local geoids available in the world, such 

as the 1989 geoid model for the Federal Republic of Germany (Denker,1990), 
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which was computed using a 60"xlOO" gravity grid compiled from point 

gravity data of an average spacing of 2 km to 5 km, and showed an RMS error 

of 1 cm to 6 cm with respect to the GPS/levelling data available in that region. 

With the improvement of gravity data coverage, density, and quality, 

which might be realized by modern measurement techniques such as 

airborne gravimetry in the near future, the realization of cm-accuracy geoids 

may be achievable. This will, in turn, make it possible to replace costly 

levelling procedure by GPS and geoid data to generate the orthometric heights 

(or height differences) with sufficient accuracy for a wide range of 

applications. More research is required to determine the requirements on the 

quality and density of gravity measurements as well as other information 

such as digital terrain model to achieve the goal. 

In addition, the combination of different types of data, such as high-

degree geopotential models, satellite altimetry data plus sea surface 

topography model, GPS/leveling data, and surface gravity data, is becoming 

an important area of research in geoid determination. To combine all data 

types in an optimal way and to maintain operational efficiency is an 

intriguing question. Some theoretical and practical problems, such as how to 

get reliable statistical information on the errors of different data types which 

are necessary for optimal data combination, how to get rid of gross errors in 

the data sets, whether to perform the combination in the frequency domain 

or space domain, etc., are related to this research topic and remain to be 

investigated. They are recommended for further research. 
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