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Abstract 

Voltage stability is a subject of great concern in the planning and operation of power 

systems. As open access market principles are applied to power systems, stability 

margins have been reduced to respond to market pressures. This has lead to events 

such as rotating blackouts in several power systems, for example, California, and 

has generally resulted in increased electricity prices. A novel approach to reduce 

the tension in electrical systems is to establish a Fast Acting Load Control (FALC) 

program for price and system stability. Using this approach, load can be modelled 

and controlled similar to a generator, providing spinning reserve. 

The thesis will review existing implementations of Fast Acting Load Control. Fur-

thermore, in this thesis, two new Fast Acting Load Control procedures are proposed. 

One is a Lagrange Based Fast Acting Load Control, which is based on Lagrange mul-

tipliers to determine optimal locations and curtailment levels for voltage stability. 

Another procedure is Optimal Load Curtailment, which includes four techniques to 

determine the optimal load curtailment schemes for system and cost stability. 

The effects of applying these approaches are analyzed using the IEEE 30-bus and 

IEEE 57-bus test systems. 
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Chapter 1 

Introduction 

1.1 Background 

The application of open market principles to the operation of power systems has 

resulted in stability margins being reduced in response to market pressures [1]. Gen-

erally, the stability margin can be increased by having more spinning generation 

available to the system administrator, or by implementing Fast Acting Load Control 

schemes, in which some loads are treated as virtual generators that can be quickly 

curtailed [2]. 

1.1.1 Fast Acting Load Control (FALC) 

Fast Acting Load Control can be defined as a load that can be curtailed quickly and 

directly by a system operator or a dispatcher without intervention of an operator at 

the end-use customer [3]. 

Due to the significant load growth and limited installation of new generation, var-

ious market operators have implemented load control programs to provide a venue 

for loads to compete with generation in the deregulated wholesale energy market. 

These programs provide an additional mechanism by which a proper load and re-

source balance might be maintained to avoid system reliability problem [4]. Various 

market operators have either implemented or considered implementing Fast Acting 

Load Control programs for system stability improvement. 

1 



Introduction 2 

Two trial demand response programs were implemented by the California Inde-

pendent System Operator during the summer 2000 period [5]. The Alberta Electric 

System Operator (AESO) implemented a procurement of system load as an ancil-

lary service to procure reserves in order to ensure continued system reliability and 

put downward pressure on ancillary services costs [6]. Also in 2001, the New York 

Independent System Operator implemented two programs aimed at increasing the 

opportunities for interruptible load and standby generation to participate in the New 

York wholesale electricity market [7]. 

Furthermore, the potential benefits of implementing load control schemes are 

explored in [8]. The load control scheme in [8] allows consumers to shift load from 

high priced hours to low priced hours during the day. The benefits to the individual 

consumer are explored through an example applied to residential air conditioning 

using price and demand data from California. 

1.1.2 Power System Optimization 

Optimization techniques are widely implemented in power system analysis and plan-

ning. 

The Optimal Power Flow (OPF) problem, first formulated by Carpentier in 1962 

[1] is a typical implementation of optimization techniques in power systems. Many 

voltage collapse problems can be restated and analyzed as optimization problems [9]. 

The applications of optimization techniques to voltage collapse analysis are discussed 

in many papers [10]-[11]. Also, Lagrange multiplier based optimization techniques 

have been used in several power system problems, including determining reserve 

allocation [12] and reducing power, losses and the associated costs in the distribution 
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system [3]. 

Furthermore, Interior Point Methods (IPM) are powerful tools for solving many 

linear and nonlinear power system optimization problems such as transmission plan-

fling [13] and reactive power optimization [14]. 

This thesis applies numerical optimization techniques to Fast Acting Load Con-

trol to determine the load curtailment schemes to enhance system security and im-

prove the stability margin of the system. 

1.2 Research Motivation and Objectives 

When power systems can not operate with large enough stability margins, instability 

problems can occur. Several voltage collapse events happened throughout the world 

[15]-[16] indicating systems are being operated with reduced stability margins. Thus, 

the development of effective approaches to enhance stability margin is necessary. Fast 

Acting Load Control is one of approaches to improve system stability margin. 

The main motivation of the thesis is to provide a control scheme, which can 

determine the optimal locations and the amount of loads that should be curtailed to 

meet stability margin requirements. 

The main objectives of the thesis research are as follows: 

• Development of Maximum Loadability formulations that incorporate system 

loading ability to consider the influence of the stability margin on the OPF 

problems. 

• Development of Optimal Load Curtailment formulations that determine the 

location that has the greatest effect to the system stability. 
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. Determination of the amount of loads that should be curtailed to meet the 

stability margin requirement. 

• Implementation of the proposed formulations by testing them using several 

systems to analyze their feasibility and characteristics. 

1.3 Implementation Methods 

The proposed techniques are implemented using a combination of AMPL [17] and 

MATLAB [18] programming. AMPL is a modeling language, which is employed to 

develop and apply mathematical programming models [17]. The set of equations 

describing the objective and constraints of the system are modeled using AMPL. 

The optimization results from AMPL are modified into MATLAB format using a 

script file, and MATLAB routines are written to load the data files and generate the 

required vectors and matrices for numerical analysis. The software package LOQO 

[19] is used to solve the optimization problems. LOQO is based on Interior Point 

Optimization methods which tend to be well suited for power system problems [20]. 

1.4 Outline of the Thesis 

The remaining chapters of the thesis are organized as follows: 
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Chapter 2 

Chapter 3 

Chapter 4 

provides a brief review of power system stability problems. This is 

followed by an introduction to small signal stability and bifurcation 

analysis. Two types of bifurcations, Saddle-Node and Limit-Induced 

bifurcations, along with Operating Limit Constrained Maximum Point 

are introduced to analyze a system stability problem. Finally, a formu-

lation of the Maximum Loadability problem is provided. 

reviews unconstrained and constrained optimization problems, along 

with a detailed derivation of the relationship between Lagrange multi-

pliers, the objective function and constraints in an optimization prob-

lem. An interpretation of Lagrange multipliers is then presented. Next, 

an introduction to the Interior Point Method used to solve power sys-

tem optimization problem is given. 

presents a Lagrange based Fast Acting Load Control technique, which 

is one of the main research contributions of this thesis. The technique 

uses numerical optimization techniques and Lagrange multipliers to 

determine which buses are having the greatest impact on stability and 

also determine the amount of load that should be curtailed. An analysis 

of the results obtained from applying the techniques to the IEEE 30-

Bus and 57-Bus test systems is provided. 
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Chapter 5 presents the remaining research contributions of the thesis. Based on 

the Generation Cost Minimization Optimal Power Flow and Optimal 

Load Curtailment formulations, four techniques are introduced to de-

termine load curtailment schemes for stability and generation cost op-

timization. The simulation results from implementing the formulations 

to two test systems are analyzed and the four techniques are compared. 

Chapter 6 summarizes the work presented in the thesis. A summary of the main 

contributions of the thesis is given. 



Chapter 2 

Power System Stability 

2.1 Introduction 

Power System Stability may be defined as a property of the power system to regain an 

acceptable operating point or reach a new operating point of equilibrium after being 

subjected to a disturbance [21]. Stability analysis is very important for ensuring 

normal operation of a power system. 

Stability in a power system may depend on many factors, such as the system con-

figuration, operating mode, the size of disturbance and the period of time enduring 

disturbance. 

If a sudden change or a sequence of changes occurs in one or more of the param-

eters of the power system, then the system is undergoing a disturbance. 

Disturbances can be classified as either large disturbances or small disturbances. 

Large disturbances can include transmission system faults or loss of generation where 

the operating point moves far away from an equilibrium point. Therefore, the effect 

and stability of large disturbances is analyzed by nonlinear equations that describe 

the dynamics of the power system. Often, large disturbances are studied in transient 

stability analysis. If the power system undergoes changes that can be analyzed 

by linearized dynamic and algebraic equations, then it can be said that a small 

disturbance occurred. The daily change of loads is an example of a small disturbance. 

Linearized models of the system are valid when the operating points are 'close' to 

7 
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equilibrium points. The space that can be defined as 'close' in general can not be 

explicitly defined. 

Instability in a power system may be manifested in many different ways. The abil-

ity of power system to maintain steady acceptable voltages at all buses can be defined 

as Voltage Stability [22]. Traditionally, voltage stability includes large-disturbance 

voltage stability and small-disturbance voltage stability [21]. Angle Stability, is the 

ability of interconnected synchronous machines of a power system to remain in syn-

chronism , which generally includes small signal stability and transient stability [21]. 

In power system analysis, it is convenient to normalize system variables by using 

a per unit (p.u.) system, which may simplify computation by eliminating units. 

Therefore, some variables are expressed by the per unit system in this thesis. 

In this chapter, the fundamental aspects of small signal stability are introduced. 

Also, this chapter presents analytical techniques for the study of small signal stability 

and small-disturbance voltage stability.. Existing optimization techniques for the 

analysis of small-disturbance voltage stability problems are presented. 

2.2 Small Signal Stability 

Small signal stability is the ability of the power system to remain in synchronism 

when subjected to a small disturbance. From the definition of small disturbances, 

the disturbances are considered to be small enough that the equations describing 

the system models may be linearized [21]. Therefore, a linear approximation of the 

system can be used to determine the small signal stability. 

One important small signal analysis method is investigating eigenvalues of the 
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linearized system. 

2.2.1 Linearization 

A system model may be represented by Differential and Algebraic Equations (DAE): 

* = f(x,y) 

o = g(x,y) 

(2.1) 

(2.2) 

where x E is the vector of differential variables, y e is the vector of algebraic 

variables, f and g E Rm are nonlinear equations. 

To linearize equation (2.1) and (2.2), let x0 be the vector of differential states and 

yo the vector of algebraic states corresponding to the equilibrium point around which 

the small signal performance is to be investigated. By definition, an equilibrium point 

is a solution of equations (2.1) and (2.2), where the system is at rest, i.e: 

Therefore 

x=O (2.3) 

o = f(xo,YO) 

o = g(xo,yo) 

(2.4) 

(2.5) 

Assume the system has undergone a disturbance from the equilibrium point, the 

new operating point is defined as: 

x = xo+Ls.x 

y = yo+L.y 
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where the prefix L denotes a small deviation. 

Since the new point must satisfy equation (2.1): 

* = Xo+L* 

= f[(xo + Ax), (yo + AY)] 

(2.6) 

(2.7) 

As the disturbance is assumed to be small, the nonlinear functions f(x, y) can 

be expressed in terms of lower terms of Taylor's series expansion. When the terms 

involving second and higher order powers of Lx and /y are neglected, equations 

(2.6) and (2.7) can be written as: 

* = 

= f[(xo + Ax), (Yo +Ay)) 

= f(xo, yo) + Df(.)x + Df(.)Ly 

where Lx E Rn, Ay E Rm, Df(.) € Rnxn, Df(.) E R nxm and 

Df(.) = 

Df(.) = 

Of,  
Oxi 8xn 

La O h 
Oxj Ozn 

am Of,aym 

Since ,o = f(xo, yo) = 0, equation (2.8) can be re-written as: 

= Df(.)Lx + Df(.)Ly 

(2.8) 

(2.9) 
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In the same manner, the linearized approximation of (2.2) is: 

0 = Dg(.)Lx + Dg(.)Ly (2.10) 

where Dg(.) E mXn and Dg(.) E mXm 

Rearranging equation (2.10), gives: 

Ay = —(Dg(.))'Dg(.)zx (2.11) 

where the inverse of Dg(.) is assumed to exist. Substituting (2.11) into (2.9), gives: 

Ak = - Df(.)(Dg(.))'Dg(.)Lx 

= (Df(.) - Df(.)(Dg(.))'Dg(.))/.x (2.12) 

Therefore, the linearized set of equations can be expressed in the form as follows: 

(2.13) 

where A Rnxn is equal to Df(.) - 

2.2.2 Eigenvalues and Eigenvectors 

Eigenvalues are a special set of scalars associated with a linear system of equations. 

The eigenvalues of a matrix is given by the values of the scalar parameter for which 

there exist solutions other than 4' = 0 to the equation: 

AqS=?qS (2.14) 

where A is a n x m matrix and 0 is a n x 1 vector. 
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Generally, there are n eigenvalues 77 =qj , ..., of matrix A. Each eigenvalue is 

paired with a corresponding right eigenvector. For any eigenvalue ijj, the eigenvector 

çf.j which satisfies equation (2.14) 

Vi=1,2, ... ,n (2.15) 

In order to express the eigenproperties of A briefly, the following matrices are 

introduced: 

= [1 02 

?7j. 0 ... 0 

On  

0 ?72 ... 0 

(2.16) 

(2.17) 
o o 0 

o o ... 

where each of the matrices is n x n and A is a diagonal matrix with the eigenvalues 

?71,...,?7n. 

Assume 41 exists, then A can be transformed to the diagonal matrix A accord-

ing to equation (2.15) as follows: 

A4 =4A 

A. =4r'A 

A =W' 

(2.18) 

(2.19) 

where A is expressed as in equation (2.17), which is a diagonal matrix with eigen-

values 
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2.2.3 Eigenvalue and Stability 

A linearized system model can be expressed as follows: 

= ALx (2.20) 

where A, in general, is non-diagonal. 

From equation (2.19), the non-diagonal matrix A can be transformed to a diag-

onal matrix A. Therefore, equation (2.20) can be rewritten as: 

L± =A'Lx 

= 'z± = A'x (2.21) 

Assume a new vector z related to the original vector Lx by the transformation: 

Z = (2.22) 

= 

Substituting equation (2.22) and (2.23) into (2.21), gives: 

(2.23) 

= Az (2.24) 

where A is a diagonal matrix with the diagonal term equal to the eigenvalue 77j. 

Therefore, equation (2.24) represents n equations as follows: 

ii = 

with i= 1, 2, ..., n. 

The solution of equation (2.25) with respect to time t is: 

(2.25) 

z(t) = zj (0)emt (2.26) 
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where z (0) is the initial value of z. 

From equation (2.22), /x is given by: 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
i=1 

where çb E is the ith column vector of as defined in equation (2.16). 

By using ci to represent the scalar z(0), equation (2.30) can be written as: 

11 

/.x(t) = ) qcje t (2.31) 

From equation (2.31), the stability of the system can be determined by the eigen-

values as follows: 

1. If the eigenvalue is real, the system has a non-oscillatory mode. A negative real 

eigenvalue denotes a decaying mode. The larger the eigenvalue's magnitude, 

the faster the decay. A positive real eigenvalue denotes instability. 

2. If the eigenvalue is complex, conjugate pairs occur and the system has an 

oscillatory mode. For complex eigenvalues, if any real part of eigenvalues is 

positive, the system is unstable; If all the real parts of eigenvalties are negative, 

the system is stable. 
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VgL 

Pm 

Z=JX 

Infinite Bus 

Figure 2.1: Generator connected to Infinite Bus system 

2.2.4 Small Signal Analysis Example 

The power system can be modeled by Differential-Algebraic Equations (DAE) as 

follows: 

z =fd(z,y,A) 

0 =fa (Z,Y,A) 

(2.32) 

(2.33) 

where z e R N  is a vector of the differential variables, y E RM  is a vector of algebraic 

variables, and A E R is any parameter in the system that changes slowly. 

A two-bus lossless system shown in Figure 2.1 is used to illustrate small signal 

analysis. From the classical model of generator, the system can be represented by 

equations as follows: 

Li, = (Pm Pe KDW) 

(2.34) 

(2.35) 

where Pm is mechanical power, Fe is electrical power, H is the inertia constant of the 

machine, KD is the machine damping, w is the difference from synchronous angular 

velocity of the generator rotor in electrical rad/s, and 5 is the angular position of 



Power System Stability 16 

the rotor in electrical radians with respect to a synchronously rotating reference. In 

this case, the mechanical power Pm is considered as the bifurcation parameter. The 

electrical power transmitted through the transmission line Pc is defined as: 

IIII  sin 5 X (2.36) 

where X is the transmission line impedance, IVqI is the magnitude of generator 

voltage, I Vi I is the magnitude of the infinite bus voltage, which is a constant regardless 

of the power delivered to it or absorbed from it. 

Let H = 0.1, KD = 0.1, X = 0.5, IVgI = 1 and IVil = 1, and substitute equation 

(2.36) into (2.35), then equations (2.34) and (2.35) can be re-written as: 

as: 

as: 

w 

61 10Pm 20 sin 6w 

The Jacobian of (2.37) with respect to [ö w]' is 

1 

—1 

Assume the system has undergone a disturbance from an equilibrium point (5o, WO) 

0 

cos —206 

(2.37) 

w = wo+Lw 

(2.38) 

Therefore, the linearized model around equilibrium point (Jo, w0) can be expressed 



Power System Stability 17 

Equation (2.39) is of the form I≥± = ALx. The eigenvalues of matrix A can be 

obtained by solving the characteristic equation: 

or 

The eigenvalues are 

-n 1 

—20cos60 -1-97 

772 fl+ 20 cos = 0 

0 (2.40) 

?71,72 = - ± /1— 80c0s50 

(2.41) 

(2.42) 

Assume JO E {0, ir}, equation (2.42) gives: 

1. When cos öo <0 i.e., . <50 <ir, then q > 0 and the system is unstable. 

2. When cos JO > 0 i.e., Jo < Z, then 77 < 0 and the system is stable. 

3. When cos JO = 0 i.e., JO  , then 17 = 0 and the system is at critical point 

between stable and unstable. 

2.3 Bifurcation Analysis 

Bifurcation analysis is used to describe how a system goes from being stable to 

unstable. If ?jj are the eigenvalues of the linearized dynamic system model, the 

system can be described as follows: 

1. If Re[77j] < 0 for all i, the system is stable. 

2. If Re[] > 0 for all i, the system is unstable. 
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3. If Re[cr j] = 0 for any i, the system is going from stable to unstable (bifurcation 

point). 

Several types of stability problems in power systems can be explained using bi-

furcation theory [23]. Bifurcation points can be defined as equilibrium points where 

changes in the 'quantity' and/or 'quality' of the equilibria associated with a nonlin-

ear set of dynamic equations occur with respect to slow varying parameters in the 

system [24]. 

Saddle-Node Bifurcations (SNB) and Limit-Induced Bifurcations (LIB) are two 

typical types of bifurcations for analysis of power system. They are introduced in 

the following sections. 

2.3.1 Saddle-Node Bifurcations (SNB) 

Saddle-Node Bifurcations are characterized by the disappearance of a system equi-

librium as parameters change slowly. Two equilibrium points, typically one stable 

and one unstable, merge at the bifurcation point. 

In power systems, the Saddle-Node Bifurcation occurs when a stable operating 

equilibrium disappears. The consequence of the loss of the operating equilibrium can 

be voltage collapse. Therefore, Saddle-Node Bifurcations of power system models can 

be used to understand and analyze the voltage stability problem. 

Figure 2.2 illustrates Saddle-Node Bifurcations of the two-bus lossless system 

shown in Figure 2.1. The equilibrium values of 8 for different values of Pm are 

illustrated in Figure 2.2. When m = 2.0, the lower and upper curves merge, and no 

equilibrium exist for Pm > 2.0. The point at P,,, = 2.0 is the saddle-node bifurcation 

point. In Figure 2.2, the upper branch corresponds to unstable equilibria and the 
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Figure 2.2: Illustrative Diagram for Saddle-Node Bifurcations 

2.5 

bottom branch corresponds to stable equilibria. 

In a power system, the bifurcation parameter can be many factors, for example, 

the loading level and generator reactive power. As values in power systems are 

always restricted by operating limits, Limit-Induced Bifurcations are introduced in 

the following section. 

2.3.2 Limit-Induced Bifurcations (LIB) 

In power systems, control and/or operational limits have been shown to yield bifur-

cations known as Limit-Induced Bifurcations (LIB) [25]. As with SNB, LIB are also 

generic bifurcations. For example, when reactive power limits of certain generators 

are reached, the generator model is changed from constant voltage and active power 
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Figure 2.3: Illustrative Diagram for Limit-Induced Bifurcations with unstable limit 
point 

model (PV), to constant active and reactive power model (PQ). There are two pos-

sible results when the reactive power limit is encountered. One is no local equilibria 

may exist for increased loading conditions [26] resulting in instability. Figure 2.3 

shows this instability possibility. It is also possible that the system remains stable 

since the equilibrium point may be on the stable part of the Limit-Induced model's 

bifurcation diagram, and this possible result is shown in Figure 2.4. 

The SNB/LIB point is also referred to as the voltage collapse point. At the point, 

the stability region of the system decreases until it becomes zero, resulting in a system 

collapse due to lack of equilibria. Thus, a voltage stability margin can be defined as 

the 'distance' from the present operating point to the voltage collapse or SNB/LIB 

point. The system is assumed to be voltage secure if this margin is reasonably greater 
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Figure 2.4: Illustrative Diagram for Limit-Induced Bifurcations with stable limit 
point 
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than zero. In practical systems, operators would be interested in maintaining the 

system with a given voltage stability margin, so that small disturbance do not make 

the system unstable [23]. 

2.3.3 Operating Limit Constrained Maximum Point 

The Operating Limit Constrained Maximum Point is a critical point that is not 

related to stability problems in the network. Power systems have to be maintained 

within operating limits, for example there are strict rules on the magnitude of the 

bus voltages. Generally, the voltage magnitudes at each bus or node in the system 

must be always within a certain percentage of the nominal system voltage. Changes 

in loads, can result in situations where these limits are violated. If changes can not 

be made to independent variables to correct these violations, then corrective action 

such as load curtailment must be taken. Figure 2.5 shows the Operating Limit 

Constrained Maximum Point, which is not a bifurcation point. 

2.3.4 Bifurcation Analysis Methods 

Continuation and direct methods are two traditional methods for bifurcation anal-

ysis. The continuation method can be used to trace the set of equilibrium points 

the system goes through to arrive at the bifurcation point. For the saddle-node 

bifurcation, direct methods have been applied to determine the exact location of 

the saddle-node in power systems [27]-[28]. A brief review of these two bifurcation 

analysis methods is given in following sections. 
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Continuation Methods 

In power systems, continuation methods can be used to trace the voltage profile up to 

the maximum loading point of the system. The advantage of the continuation method 

is a continuous voltage profile is traced and more information about the system 

behavior is obtained. However, the expensive computation cost is a disadvantage of 

this method. 

Generally, continuation methods includes two or three steps: 

1. Predictor Step: Start from an initial solution, use a tangent predictor to 

calculate the subsequent point corresponding to the incremental change in the 

bifurcation parameter. In this step, the estimated point on the predictor is not 

the real equilibrium point. 

2. Corrector Step: Determine the real equilibrium point corresponding to the 

change in parameters. 

3. Parameterization Step: Ensure that the Jacobian used in the continuation 

method does not become singular at a saddle-node bifurcation. This step can 

be omitted in some algorithms. 

Figure 2.6 illustrates the predictor and corrector steps in continuation methods. 
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Direct Methods 

Direct methods consist in solving the following set of equations to determine saddle-

node bifurcations [29]: 

s(z,.A) = 0 (2.43) 

DTsI*w = 0 (2.44) 

IIwIk = 1 (2.45) 

where DTsl* is the Jacobian of s(z, A) and w is a normalized right eigenvector of 

2.4 Optimization Techniques 

Based on bifurcation analysis methods, optimization techniques are introduced to 

analyze voltage stability and determine system settings to optimize power systems. 

In this section, the 'Maximum Loadability' (ML) problem is discussed. 

2.4.1 Maximum Loadability Problem 

In order to directly incorporate stability limits, a separate set of equations is defined 

to represent the system at the critical or maximum loading point [11, 30]. Using 

this approach, the constrained optimization problem (3.5) can be transformed into 

a 'Maximum Loadability' problem with constraints incorporated on the present and 

critical loading point [11, 30]. The Maximum Loadability problem can be written as 
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max )* - 

s. t. : F(x,p,AP) = 0 

= 0 

HH(x,p)H 

ll≤H(x,p)≤H 

x<x<5 

(2.46) 

i≤p≤ii 

where the subscripts p and * indicate the present and collapse points, respectively. 

H(x) usually represents transmission line limits, with lower and upper limits repre-

sented by H and H , respectively. The lower and upper limits of the system variables 

x are given by and R, respectively. Finally, p,, D p is used to map the control 

variables at the present operating point into the maximum loading point to account 

for certain system changes. For example, generation levels at the present loading 

point are mapped to generation levels at the collapse point using a distributed slack 

bus. Thus, generators at the critical point are assumed to have the same terminal 

voltage set points as at the base loading point, and their power levels are represented 

based on the following distributed slack-bus model: 

= PG(1 + KG*) 

where is a variable that distributes the generated powers at the critical point 

proportionally to the value of the independent control variable Pap E x, i.e. 

X - 10* .r V r L* ' G* ' , S*j IT 
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Hence, 

p = [PG(PGP,KG) VG ,]T 

Observe that the tap settings a are assumed to be the same for the present and 

maximum loading points. 

The variable A,4, is a variable in the optimization problem, i.e. it is fully free to 

change during the solution process; on the other hand, Ap is given a fixed value. 

Thus, the critical point is affected by changes in the control variables p, due to the 

relationship between p and p. 

Furthermore, system load is modeled as constant PQ load as follows: 

P=Apo 

Qt = AQo 

where A € {A, A} is used to map the base load (Po, Qo) to the present and critical 

loading levels. Observe that in this case, A. stands for only one parameter instead 

of several, i.e. the load is assumed to change in only one known direction, which is a 

reasonable assumption based on an adequate load forecast at an 'initial' operating 

point x0 associated with A0.. 

This problem maximizes the distance to a bifurcation or an operating limit con-

strained maximum. This distance may be defined as the stability margin. It is 

important to highlight the fact that in (2.46), the total generation at the critical 

operating point, is based on the generation at the present point and spinning reserve 

generation. Including the present loading point into the constraints ensures that, 

the feasibility and inequality constraints at the present loading point are met when 
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independent variables are calculated to maximize the distance to voltage collapse 

[11]. 

2.5 Summary 

In this chapter, a review of power system stability is given. Small signal stability 

and bifurcation analysis are introduced to analyze the system stability. To deter-

mine the bifurcations, typical bifurcation analysis methods are presented. Based on 

these bifurcation analysis methods, a problem of maximizing the distance to voltage 

collapse is formulated by introducing optimization techniques. More detail about 

optimization techniques will be presented in the following chapter. 



Chapter 3 

Numerical Optimization 

3.1 Introduction 

Mathematical models of optimization can be generally represented by a constraint 

set X and a cost function g(.) that maps elements of X into real numbers [31]. The 

set X consists of the available decisions X and the cost 9(x) is a scalar measure of 

choosing decision x. The optimal minimum is wanted, that is, an x,, € X such that 

g(x)≤g(x), VxEX 

In subsequent sections, unconstrained and constrained optimization will be in-

troduced. 

3.1.1 Unconstrained Optimization 

In this section, the following unconstrained optimization problem is considered: 

min g(x) VxE Th (3.1) 

Unconstrained Optimization problems are characterized by having an objective func-

tion but no constraints placed on the variables x. 

The following definitions are given to clarify the material presented in this chap-

ter. 

Global minimum is a point x,, such that 

g(x) ≤ g(x) 

30 

Vx E  Rn (3.2) 
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Figure 3.1: Unconstrained local and global minima [31] 

X 

Local minimum is a point x,,, satisfying the condition that there is a > 0 such 

that 

g(x) ≤ g(x) VIIx - x*II <6 (3.3) 

The unconstrained local or global minimum x is said to be strict if the corre-

sponding inequality in (3.2) or (3.3) is strict for x 5/ x,. Otherwise, there are more 

than one x that let g(x) be minimal. Figure 3.1 illustrates these definitions [31]. 

Gradient of g(x) is a first-order differential operator that maps g(x) to vector field. 

It is a n-vector expressed as: 

(3.4) 

To find the minimum of an unconstrained function, one of the general methods is 

setting $- = 0. For example, given a function g(x) = x + x. To find the minimumx. , 

set Vg(x) = 0, i.e. = 0 and 09 = 0. Therefore, the function g(x) = x + x 

has the unique minimum of g(x) = 0 while x1 = 0 and x2, = 0. The graphic 

illustration is shown in Figure 3.2, 
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Figure 3.2: Plot of g(x) for various values where g(x) = x + x. The minimum is 
at the origin (x1, x2) = (0, 0) 
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3.1.2 Constrained Optimization 

Constrained Optimization problems are characterized by having an objective func-

tion and some equality and/or inequality constraints. Problems involving both equal-

ity and inequality constraints can be written as follows: 

mm g(x) 

s.t. : F(x) = 0 

(3.5) 

where g(x) is the objective function or cost function, F(x) represents the equal-

ity constraint, H(x) represents the inequality constraint and s.t. is an acronym for 

Subject to:. 

For example, consider the function introduced in last section, g(x) = x +x with 

the constraint F(x) = x1 + x2 + 2 = 0 added. The problem can be written as: 

mm 

s.t. : x1+x2+2=0 

(3.6) 

Without the constraint, the problem is an unconstrained optimization problem, 

and the minimum is at origin (x1, x2) = (0, 0). However, the constrained minimum 

is at (x1, x2) = (-1, —1). Figure 3.3 shows the graphic illustration of problem 

(3.6), where the dashed line represents the constraint function and the minimum for 

this constrained problem is at x1, = —1 and x2., = —1. 



Numerical Optimization 34 

Figure 3.3: Illustration of the minimum for function g(x) = x 2 + x with constraint 
X1  x2 + 2 = 0. The minimum is at (x1 , x2 ) = (-1, —1) 
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3.2 Lagrange Methods 

35 

The constrained optimization problem can be solved by many methods. One ap-

proach is to use the constraint to solve for one of the variables. For example, con-

sider the problem in equation (3.6), use x2 = —2— x1 and minimize the new function 

f(x) = x + (-2 - x1)2. The difficulty with the above is that it is not always easy to 

solve explicitly for one of the variables. Therefore, another approach is the Lagrange 

method [32], which approaches the constrained optimization in a symmetric way 

almost like an optimization problem without constraints. In this section, Lagrange 

methods are firstly introduced. Then an interpretation of Lagrange Multipliers is 

presented. 

In 1788, Lagrange discovered how to transform a constrained optimization prob-

lem, with equality constraints, into an unconstrained problem. 

3.2.1 Lagrangian Function 

The first step is forming the Lagrangian function. Assume a problem with equality 

constraints: 

mm g(x) 

s.t. : F(x)=O 

where F(x) : Rn x Rm  m and x is a vector of n independent variables. 

The Lagrangian function L: -+ R is defined by: 

M 

L(x,'y) = g(x) + 
i=1 

yF(x) 

(3.7) 
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where 'y represent the Lagrange multipliers. Then, if x is a local minimum, the 

equation (3.17) in Lagrange multiplier theorem can be written as [31]: 

VL(x,'y)=O (3.8) 

The next step is to minimize the unconstrained function L(x, 'y) by solving the 

KKT (standing for 'Karush-Kuhn-Tucker') conditions VL(x, 'y) = 0. The system of 

(n + m) equations can be solved using Newton's method. 

3.2.2 Optimality Conditions 

The Lagrangian function for inequality constrained optimization problem (3.5) can 

be written as follows: 

L(x;'y,w) = g(x) +yTF(x) +wTH(x) (3.9) 

where y € RI and w E W are Lagrange multipliers. 

Let x,, denote a point where the following conditions hold: 

1. Feasibility: 

F(x) = 0 

ll≤H(x)≤H 

(3.10) 

(3.11) 

2. The first-order KKT conditions: 

The terms 'KKT point' and 'KKT conditions' are used often. The first-order 

KKT conditions for the problem given in (3.5) hold at the point x, or, equiva-

lently, x, is a (first-order) KKT point, if there exist an m-vector 'y and p-vector 
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called a Lagrange multiplier vector, such that: 

F(x) = 0 (feasibility) (3.12) 

Li ≤ H(x) H (feasibility) (3.13) 

Vx,1,L(x, 'y ) w) = 0 (stationarity) (3.14) 

w ≥ 0 (multipliers nonnegativity) (3.15) 

H(x) = 0 (complementarity) (3.16) 

It is common to refer to x as the 'primal variables' and to the Lagrange mul-

tipliers y and w as the 'dual variables' [33]. 

3. Constraint qualification: The gradients of the constraints equal to zero at 

x, are linearly independent. 

3.3 Lagrange Multiplier 

The main Lagrange multiplier Theorem [31] can be presented as follows: 

Let x be a local minimum of g(x) subject to F(x) = 0, and assume that the con-

straint gradients VF1 (x), ..., VF,,, (x) are linearly independent. Then there exists 

a unique vector 'y = ('yi, ..., y), called a Lagrange multiplier vector or Lagrange 

multipliers, such that 
m 

Vg(x) + 
i=1 

VF(x) = 0 (3.17) 

Equation (3.17) can be interpreted as follows: the cost gradient Vg(x) belongs 

to the subspace spanned by the constraint gradients. To illustrate this, the con-

strained optimization problem (3.6) is considered again, and Figure 3.4 illustrates 
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Figure 3.4: Illustration of the Lagrange multiplier condition (3.17) for the problem 
g(x) = x + x, and with constraint x1 + x2 + 2 = 0. 

this interpretation. As shown in the figure, at the local minimum x = (-1, —1), the 

cost gradient Vg(x) is normal to the constraint surface and is therefore, collinear 

with the constraint gradient VF(x) = (1, 1). The Lagrange multiplier is = 2. 

To find critical points x of g(x) subject to F(x) = 0 is equivalent to finding 

critical points (x, 7) of L(x, 'y). The unknown Lagrange multipliers accompany 

a critical point x of g(x). Normally, the Lagrange multipliers are viewed as dual 

variables. They are not a part of the solution to the original problem, but has been 
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introduced as a convenience by which to arrive at that solution. 

Moreover, Lagrange multipliers frequently have an interesting interpretation in 

specific practical contexts. In economic applications they can often be interpreted 

as prices, while in other problems they represent quantities with concrete physical 

meaning. Within the mathematical framework, they can be viewed as rates of change 

of the optimal cost as the level of constraint changes [31]. In other words, Lagrange 

multipliers represent local 'prices' associated with the right hand sides of the con-

straints. Therefore, they are very important in sensitivity analysis, such as cost vs. 

a budget or output vs. available material. 

3.3.1 Sensitivity with Linear Constraints 

Assume a problem involving a linear constraint as follows: 

mm g(x) (3.18) 

s.t. : a'x = b (3.19) 

where x E Rn . Given x,, is a local minimum and 'y, is the corresponding Lagrange 

multipliers. If the level of constraint b is changed to b + ib, the minimum x will 

change to x, + Ax, where Lx is undefined at the moment. Substituting b -+ b + Lb 

and x, - x,, + Lx into equation (3.19) gives: 

a'(x+Ax) =b+Lb 

a'x+a'Lx =b+Ah 

but from (3.19) a'x = b, so (3.20) can be re-written as 

(3.20) 

b + a'Lx = b + tb . (3.21) 
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from (3.21), the variations Lx and /.b are related by 

a'Lx = Ab (3.22) 

The Lagrangian function in this case is L(x, 'y) = g(x) + 'y(a'x - b). So at the 

optimal point x, using the Lagrange multiplier condition (3.12) gives: 

VL(x, 'y) = 0 (3.23) 

Vxg(x*) + 'yV(a'x - b) — 0 (3.24) 

= Vg(x) + 'ya'I = 0 (3.25) 

Vg(x) = —7a'I (3.26) 

where I := (1, . . .1)' is a vector of ones of n dimension. The change in the objective, 

x,, + x), between the original optimal solution x and the optimal solution 

to the new problem, corresponding to b + L.b can be written as 

zg(x,x + Ax) = g(x + x) - g(x) (3.27) 

The Taylor series of g (x + Ax) is given by: 

g(x + Ax) = g(x) + Vg(x)'Lx + o(IA.xII2) (3.28) 

where o(IILxIl2) represents high order components. Substituting (3.28) into (3.27) 

gives: 

x + /-ix) = g(x) + Vg(x)'z1ix + o(IIxjI2) - g(x) 

= 

Then substituting (3.26) into (3.29) gives: 

x,, + Ax) = —ya'zx + a(IkxM2) 

(3.29) 

(3.30) 
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Substituting (3.22) into (3.30) gives: 

Lg(x, x,, + Ax) = —'yLb + o(IILxII2) 

41 

(3.31) 

If the higher order components of (3.31) are assumed to be small enough to be 

ignored, i.e. o(IILxII2) = 0, an approximate relationship between the Lagrange 

Multiplier, 'y, and the unit change in the objective function can be derived by 

rewriting (3.31): 

Lg(x,x + /x)  

zb 
(3.32) 

Thus, the Lagrange multiplier 'y gives the rate of optimal cost decrease when the 

level of constraint increases. 

A similar procedure can be followed for the case of multiple constraints. In 

the case where there are multiple constraints ax = b, i = 1, ..., m, the preceding 

argument can be appropriately modified. 

While constraints in this case become ax -  bi  = 0, i = I, -, m, the Lagrangian 

function becomes: 

L(x,'y) = y(x) + 'yj(ax - b) 
i=1 

Then equations (3.23), (3.24) and (3.25) can be re-written as follows: 

VL(x,'y) = 0 (3.33) 

Vg(x) + -b) = 0 (3.34) 
i1 

m 

Vg(x) + 'yaI = 0 (3.35) 

where I:= (1, ...1)' is a vector of ones of n dimension. Therefore, 

m 

Vg(x) = -> 
i=J-

(3.36) 
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Then substituting (3.36) into (3.29), the equation (3.30) can be modified as fol-

lows: 

zg(x, x, + Lix) = Vg(x)'Lx + a(IILxII2) 

yj*ax + o(lIzxII2) 
i=1 

While from equation (3.22), there is azx = b, then equation (3.37) becomes: 

(3.37) 

rn 

x + x) = - +,7 (IIxII2) (3.38) 

Also, up to the first order, equation (3.38) can be written as follows: 

x + Ax) - (3.39) 

To illustrate the interpretation of Lagrange multipliers in equation (3.39), the 

example in equation (3.6) is considered again. The optimal solution for this problem 

is x = —1,x2 = —1, with = 2. If the constraint changes on the right hand side, 

and becomes: 

x1+x2+2=-1 

The new right hand side is Lb = —1, so the approximate change in the cost is: 

Lg —'yzb = —2 * (-1) = '2 (3.40) 

Equation (3.40) states that the objective cost will increase by about 2 for a per unit 

decrease in the constraint. This is illustrated by Figure 3.5. The figure indicate 

that the local minimum is at x,, = (-1) —1), and the Lagrange multiplier is 'y = 2. 

When there is —1 change in the constraint, there is a x increase in objective cost. 

The difference between x and 2 is attributed to ignoring higher order terms in the 

derivation of equation (3.39). 
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Figure 3.5: Illustration of the sensitivity of Lagrange multipliers indicated in equation 
(3.32) for the problem g(x) = x + 4, and with constraint x1 + x2 + 2 = 0. 
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3.3.2 Sensitivity with Nonlinear Constraints 

This section provides an interpretation of Lagrange multipliers for the case of non-

linear constraints. 

Given an optimization problem with an objective g and nonlinear constraints 

F(.) as follows: 

mm g(x) 

s.t.: F(x)=u 

(3.41) 

where F(.) : R1 x m and u e R1 is a vector representing changes on the 

right hand side of the constraints. The Lagrangian function for (3.41) can be written 

as [33]: 

L(x,'y) = g(x) + 'y(F(x) - u) 
i=1 

For u = 0, let x, with the associated Lagrange multiplier vector y be the solution 

to the local minimum. At the optimal point, the first order KKT conditions [33] are: 

VL(x, y) 

VL(x,'y) 

Vg (x) +i'V(F(x) - u) 

F(x) — u 
= 0 (3.42) 

where y E Since u is not a function of x, the first term in (3.42) can be 

re-written as: 

Vg(x) +'yVF(x) = 0 (3.43) 

Vg(x) = —'yVF(x) (3.44) 

In order to demonstrate the relationship between the Lagrange multipliers and 

the objective function, a small non-zero value for u is considered. Let x + Ax, with 
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corresponding Lagrange multiplier 'y + Ay, be the new local optimal solution. The 

difference between the original value of the objective function and the value at the 

new point is given by: 

4g(x, x, + Ax) = g(x + Ax) - g(x) 

Taking the Taylor series expansion of (3.45) around x., gives 

zg(x,x + Ax) = g(x) + - g(x) 

substituting (3.44) into the above and removing higher order terms gives: 

x, + Ax) —'yVF(x)'x 

(3.45) 

(3.46) 

Similarly, the difference between the left hand side of the equality constraints for the 

original case and the new case, i.e. where u 0 0 can be written as: 

x, + Lix) = F(x + Lix) - F(x) 

F(x) + VF(x)'x - F(x) 

VF(x)'Lx (3.47) 

Substituting the right hand side of (3.47) into (3.46) gives 

Lg(x, x,, ± zx) —'yF(x, x + Ax) (3.48) 

Therefore, an approximate relationship between the Lagrange Multiplier, y, and 

the change in the objective function can be derived by rearranging (3.48): 

,y* ZF(x,x+Ax) 
zg(x,x + Ax) 

(3.49) 
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3.4 Interior Point Methods 

Since Karmarkar's widely publicized announcement in 1984 of an interior point 

method [33], there has been extensive research into algorithms for linear and non-

linear programming that approach the solution through the interior of the feasible 

space. 

The theoretical foundation for Interior Point (IP) methods fundamentally consists 

of three theories [34] 

1. Isaac Newton's method for solving nonlinear equations for unconstrained opti-

mization; 

2. Joseph Lagrange's methods for optimizations with equality constraints; 

3. Anthony Fiacco and Garth McCormick's Barrier methods for optimizations 

with inequality constraints. 

3.4.1 Barrier Methods 

In the 1960s, the most popular approaches to solving constrained nonlinear optimiza-

tion problems were based on Barrier methods, which have a common motivation: 

finding an unconstrained minima of a function that reflects the original objective 

function as well as the presence of constraints [33]. 

The idea of the barrier methods is to start from a point in the interior of the area 

defined by the inequalities and construct a barrier that prevents any variable from 

reaching the boundary. A barrier parameter is used to balance the contribution of 

the true objective function against that of the barrier function. 
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The Logarithmic-Bafrier function, a composite based on the logarithmic interior 

function, is the overwhelmingly predominant barrier function employed today. Given 

a problem with inequality constraints: 

mm g(x) 

s.t.: x≥O 

(3.50) 

The associated Logarithmic barrier function can be written as following: 

B(x,t) = g(x) - (log xi) (3.51) 

where p is a positive scalar, the barrier parameter. An important feature of B (x, Act) 

is that it retains the smoothness properties of g(x) and x as long as x> 0. 

The problem (3.50) becomes an unconstrained problem as follows: 

mm g(x) - jt1(1ogx) (3.52) 

As a simple example, consider the problem 

mm (x1 + 1)2 + (X2 - 1)2 

s.t. : xi≥0 

X2 ≥ 0 

The unconstrained minimum is at (x1, x2) = (-1, 1), but the constrained mm-
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imum is at (x1, x2) = (0, 1). In this case, for any p > 0 

B(xj) = (XI +1)2+(x2-1)2 

—,a log(x1) - log(x2) 

= 2(xi+l)—=0 
i9x1 
aB 

= 2(x2-1)--- =0 
5x2 x2 

11 
x1 = -. + (l + 2,a)'I2 

1 
X2 = 1 

which approaches (0, 1) as y —* 0. 

3.4.2 Logarithmic-Barrier Interior Point Methods 

A brief review of the Logarithmic-Barrier IP methods can be written as following: 

Step 1: Transform inequality constraints into equality constraints by introducing 

slack vectors s1 and s2; 

Step 2: Put the nonnegativity constraints on the elements of s1 and s2 into the 

objective function using a logarithmic function; 

Step 3: Introduce the barrier parameter p, which is a constant and reduced after 

each iteration; 

Step 4: Approximately solve the KKT conditions of the Lagrangian function; 

Step 5: Update the variables and reduce the barrier function; 

Step 6: Test for convergence. (If the solution meets the convergence criterion, 

optimal solution is found, otherwise go back to step 4.) 

In this section, the steps in the Logarithmic-barrier IP method for Optimal Power 

Flow problem given above is presented in detail. 
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Assume a constrained problem with equality and inequality constraints: 

mm g(x) 

s.t. : F(x) = 0 

(3.53) 

The first step in solving (3.53) using the Logarithmic-Barrier IP method is to 

transform the existing inequality constraints into equality constraints by introducing 

strictly positive slack variables s1,s2 E RP . Thus, the original problem can be re-

written as: 

mm g(x) 

s.t.: F(x) 

H(x) — si 

H(x)+s2 

S1) S2 

=0 

=H 

>0 

(3.54) 

From (3.54), in order to enforce the strict positivity constraints on Si and s2, an 

associated problem is formed by introducing a logarithmic barrier term written as 

following: 

min g  - k >...1(logsi(i) + 1ogs2(i)) 

s.t. : F(x) = 0 

H(x) — si =11 

H(x)+s2 =11 

(3.55) 
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where ltk represents the positive barrier parameter at the kth iteration. This pa-

rameter is approaching to zero as the iteration number k increases. To reduce the 

number of nonlinear terms, equation (3.55) can be re-written as follows: 

mm 

s.t. 

g(x) - ,k =1 (log s1(i) + log s2 (i)) 

F(x)=O 

Si + S2 +11- = 0 

H(x)+s2—H= 0 

For each fixed j, the Lagrangian function L(v) is defined as 

LA (V) = g(x) - k a _1 (109 s1(i) + log s2(i)) 

+yTF(X) + wT(si + S2 + L - 

+w'(H(x) + S2 - 

(3.56) 

(3.57) 

where v := {x; s1; s2;'y; WI; w2}, y E Rm and w1,w2 E RP are Lagrange multipliers. 

The first-order 'KKT' optimality conditions may be used to define the minimum 

of equation (3.57) with the following necessary conditions: 

Dg(x) - JF (X)T Y + JH (X)TW2 - 

_ksj- iJ + Wi 

VL(v) = = 0 (3.58) 
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where I := (1, 1, 1, ...i)T is a vector of ones of the appropriate size, and S1 = diag(sl) 

and S2 = diag(s2). The function diag(s) : 'R? -* Y<' represents a diagonal matrix 

with the ith diagonal term equal to the i1h element in the vector s, and JF(x) E Rmxq 

and JH(x) E W,q are the Jacobians of F(x) and H(x), respectively, i.e, JF(x) = 

DxF(x) and JH(x) = DH(x). When the second term is scaled by S1 and the third 

by S2, equation (3.58) can be rewritten as: 

Dg(x) - JF(X)T7 + JH(X)TW2 

VL,(v) = 

_/2k1+S1W1 

_k1 + S2(w1 + w2) 

F(x) 

Si +s2+—T 

3.4.3 Primal-Dual Interior Point Methods 

= 0 (3.59) 

In the past decade Primal-Dual algorithms have emerged as the most important 

and useful algorithms from the interior-point class [31]. As in Primal-Dual, meth-

ods for linear programming, the primal variables x and the dual variables 'y and w 

(representing the Lagrange multipliers) are treated as independent. 

Assume a general constrained optimization problem as follows: 

min g(x) 

S. t. : F(x) = 0 

H<H(x)<H 

(3.60) 
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The Lagrangian function of the primal problem (3.60) is defined as 

L(x,7,wi,w2) = g(x)+FyTF(x) 

+w'(ll — H(x)) ±c4'(H(x) -ii) 

where y, w1 and w2 are Lagrange multipliers. 

The dual function is defined as follows: 

52 

(3.61) 

y(7,w1,w2) = inf L(x,'y,wi,w2) (3.62) 
xEX 

Then the dual problem of (3.60) is: 

max y('y,w1, 2) (3.63) 

s. t. 

The Primal-Dual Interior Point Methods solve the primal and dual problems 

independently. The outline of the Primal-Dual IF methods is as the following: 

Step 1: Initialization; ( Choose a proper starting point such that the optimality 

conditions are satisfied.) 

Step 2: Compute the barrier parameter, ; 

Step 3: Solve the system of equations for primal and dual variables; 

Step 4: Determine the step size and update the solutions; 

Step 5: Convergence test. (If the solution meets the convergence criterion, the 

optimal solution is found, otherwise go back to step2) 

The software package LOQO used to solve the optimization problems in this 

thesis implements a Primal-Dual Interior Point Method [19]. 
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3.5 Power System Analysis using Optimization Techniques 

In power system analysis, the Optimal Power Flow (OPF) problem has grown into 

a powerful tool for power system operation and planning. The OPF problem, first 

formulated by Carpentier in 1962, is a nonlinear programming problem that is used 

to determine the 'optimal' control parameter settings to minimize a desired objective 

function, subject to certain system constraints [35]. Depending on the definition of 

different objective functions, different Optimal Power Flow strategies can be pursued, 

and solutions to a variety of distinct problems can be obtained [36]. 

The OFF problem has been solved using a variety of nonlinear optimization 

techniques [35]. Interior Point methods are widely used tools for solving this problem, 

given their computational advantages when dealing with large systems that include 

a variety of operational and control limits [37]. 

The implementations of modified Interior Point Methods to solve power system 

optimization problems have been discussed recently [38]-[39]. 

3.6 Summary 

In this chapter, methods of solving unconstrained and constrained optimization prob-

lems are presented. To solve the constrained optimization problems, Lagrange func-

tion and Lagrange multipliers are introduced. This is followed by a brief introduction 

of Lagrange methods, which transform the constrained optimization problem into an 

unconstrained problem. Also, the interpretation of Lagrange multipliers for sensi-

tivity analysis is presented in this chapter. Next, a brief review of Interior Point 

methods is presented. This is followed by the derivation of the Logarithmic-Barrier 
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IP method and the introduction of the Primal-Dual IP method. The Primal-Dual 

IP method is implemented by the software package LOQO, which is used to solve 

the Optimal Power Flow problem in this thesis. 



Chapter 4 

Lagrange based Fast Acting Load Control 

4.1 Introduction 

Lagrange Based Fast Acting Load Control (LB-FALC) introduced in this chapter 

is used to determine which loads and how much load should be curtailed when the 

stability margin of the current operating point is lower than a desired value. The 

stability margin is increased by quickly decreasing the loading level in the system 

instead of by increasing spinning generation available to the system administrator. 

The main focus of this chapter is on using numerical optimization techniques and 

Lagrange multipliers to determine, which buses are having the greatest impact on 

stability and also determine the amount of load that should be curtailed. Lagrange 

multiplier based optimization techniques have been used in several power system 

problems, including determining lost opportunity cost [12] and reducing power losses 

and the associated costs in the distribution system [3]. 

4.2 Lagrange Based Fast Acting Load Control 

Since Lagrange Multipliers give an estimate of the effect of each of the constraints 

on the objective function, it is proposed that these multipliers be used to identify 

buses where loads are having the greatest impact on system stability and/or cost. 

One disadvantage of using Lagrange multipliers is that they are only an estimate. 

55 
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Furthermore, if you make any changes in the system, for example, curtail load at 

a particular bus, the multipliers no longer provide relevant information, since the 

system has changed. 

Based on the above discussion, two Lagrange based Load Curtailment technolo-

gies have been developed 

1. Single Curtailment Procedure (SCP): Use the Lagrange Multipliers to 

identify the bus that has the greatest effect on the system stability, and make 

a single reduction in load. 

2. Iterative Curtailment Procedure (ICP): Use an iterative approach. At 

each iteration, use the Lagrange Multipliers to identify the bus that has the 

greatest effect on the system stability. 

4.2.1 Single Curtailment Procedure (SCP) 

The main steps in the Single Curtailment Procedure are as follows: 

1. Solve the Maximum Loadability (ML) problem. 

2. Check the Lagrange Multipliers, and find the maximum to identify the bus 

that has largest impact on the loadability of the system. 

3. Curtail the load at the identified bus according to the following formula: 

Pnew(i) = (1 - k)Po() (4.1) 

where Pflew is the new active power of the load , P0 is original active power 

of the load, i is the bus identified using the Lagrange Multipliers and k is the 

curtailment parameter representing the percent of load being curtailed. 
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For the above procedure, the challenge is to determine the curtailment parameter 

k. That means how much load should be curtailed to reach the desired loading 

level. The A desire and Lagrange Multipliers are important factors to determine the 

parameter k. 

Using the relationship between the Lagrange multipliers and the change in the 

objective function presented in Chapter 3, the parameter k in equation (4.1) is 

determined. 

Assuming an initial solution, {x, A} to the Maximum Distance to Collapse 

problem is found, where A is less than a desired value, A desired The largest Lagrange 

multiplier is used to identify the bus having the greatest impact on the stability 

margin. This bus is then selected for load curtailment. The difference between 

the initial value of A and the desired value can be expressed as a difference in 

the objective function between the original case and the case were load has been 

curtailed: 

Lg(x, x* + Lix) = g(x + Lix) - g(x) 

= (Adesired - A) - ((A - Ar)) 

= (Adesired - (4.2) 

The change in the right hand side of the load flow equation identified as having the 

biggest impact on the stability margin before and after load curtailment is: 

AF(x) (AdesiredFnew - APO) (4.3) 
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where and P0 are the new and old active power of the load at the identified 

bus respectively. Substituting (4.1) into (4.3), gives: 

AF(x) = (Adesire (1 k)P0 - APo) 

AF(x) = — (Adesire - A)Po + AdesirekPO (4.4) 

Equations (4.4) and (4.2) are substituted into (3.49), the expression found in Chap-

ter 3, that relates the Lagrange multiplier with the incremental change in the con-

straint and objective equations. 

-  (Adesire - A)  

- —(A - A)F0 + AdesirekPO 
(4.5) 

The following steps are then taken to re-write (4.5) as an explicit function of k. 

(Adesire - A*) PO + AdesirekPO  

HAdesire - A) 

(Adesire - A)Po + AdesirekPO  

A desire - 

= —PO+ 
AdesirekPO 

A desire - 

;. + P0 =  AdesirekP0  
A desire - 

 1  A desire -  

=. k = (1 + yp0) A desire (4.6) 

Equation (4.6), which is used to determine how much load should be curtailed at 

the selected bus, can be interpreted along with (4.1) as follows: 

• the reduction in load will have two components, one relating only to the dif-

ference between the desired maximum loading level and the initial maximum 

loading level and the other a function of the Lagrange multiplier and the load-

ing levels. 
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• the amount of load curtailed is inversely proportional to the magnitude of the 

Lagrange multiplier. This intuitively makes sense, because if the Lagrange 

multiplier is large, then curtailing load at the bus, will have a large impact on 

the maximum loading level, so less load needs to be curtailed. 

Because of the nonlinear nature of power systems, and the fact that the Lagrange 

multipliers give only an approximation of the effect of a constraint on the objective 

function in the global sense, the above procedure may not be effective when there 

is a large difference between the desired and initial maximum loading margin. This 

difference will be shown in the numerical analysis section. 

4.2.2 Iterative Curtailment Procedure (ICP) 

In order to compensate the local nature of Lagrange multipliers in nonlinear prob-

lems, an iterative procedure based on the method described in the previous section 

is proposed. The steps in the iterative procedure are as follows: 

1. Solve the Maximum Loadability (ML) problem. 

2. Check the Lagrange Multipliers, and find the maximum to identify the bus 

that has largest impact on the loadability of the system. 

3. Curtail the load at the identified bus according to the following formula: 

Pnew(i) = (1 - k')Po() (4.7) 

where P tL, is the new active power of the load, P0 is the original active power 

of the load, i is the bus identified using the Lagrange Multipliers and k' is the 
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curtailment parameter representing the percent of load being curtailed. The 

parameter k' is calculated as follows: 

k' = /3k (4.8) 

where /3 is a scaling factor and k is defined by (4.6). The value used for /3 will 

depend on the desired characteristics of the solution. Different chooses for /3 

are considered in the numerical simulations. 

4. Resolve the Maximum Loadability problem. 

5. If the value for A,, is less than A desired then repeat steps #2 through #4 until 

A ≥ )"desired. 

The advantage of the above procedure versus the single iteration procedure is 

that changes in the characteristics of the system that result from changes in loads 

are taken into account when determining the total amount of load that should be 

curtailed. This will tend to allow the problem to converge to a better or more optimal 

final solution. 

4.3 Numerical Analysis 

The proposed formulations presented in Section 4.2 are tested on sample systems 

based on the IEEE 30-bus and 57-bus test system [40]. The optimization problems 

are solved using the software package LOQO [19] and the modeling language AMPL 

[17]. LOQO is based on Interior Point Optimization methods which tend to be well 

suited for power system problems [20]. 
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In the numerical simulations performed, two methods are used to interpret the 

desired stability margin )'desired, as a percentage of the current loading level and 

also using total load active power (MW). Both approaches are taken because the 

distance to between the current load and the maximum loading point in terms of 

MW will change as load is curtailed when using the percentage method. 

4.3.1 Single Curtailment Procedure (SCP) 

The Single Curtailment Procedure is first applied to the IEEE 30-bus system. In 

Tables 4.1 and 4.2, the values of ) obtained when using different values of Adesjred 

are given. For each case, the current loading level, i.e. ), is fixed at one. 

Present Loading Level Maximum Loading Level 
(p.u) )'desire (p.u.) )* (p.u.) 

1.00 1.3 1.253 
1.00 1.4 1.309 
1.00 1.5 1.359 
1.00 1.6 1.400 
1.00 1.7 1.435 
1.00 1.8 1.466 

Table 4.1: Maximum loading levels, )'*, and desired maximum loading levels, ) desjre, 

of the modified system for IEEE 30-bus system 

Next, the Single Curtailment Procedure is applied to the IEEE 57-bus system. 



Lagrange based Fast Acting Load Control 62 

Stability Margin 
(MW) 

Desired Margin 
(MW) 

Difference 
(MW) 

Difference 
(%) 

81.1 100 18.9 18.9 
106.42 150 43.58 29.1 
125.27 200 74.73 37.37 
140.46 250 109.54 43.82 
152.17 300 147.83 49.28 

Table 4.2: Stability Margin (MW) and Desired Stability Margin (MW) of the mod-
ified system by using Single Curtailment Procedure for IEEE 30-bus system 

A summary of the results are given in Tables 4.3 and 4.4. 

Present Loading Level Maximum Loading Level 
A (p.u) Adesire (p.u.) )'* (p.u.) 
1.00 1.3 1.241 
1.00 1.4 1.272 
1.00 1.5 1.314 
1.00 1.6 1.355 
1.00 1.7 1.381 
1.00 1.8 1.402 

Table 4.3: Maximum loading levels, ), and desired maximum loading levels, .Adesjre, 
of the modified system for IEEE 57-bus system 

The tables illustrates difference between the desired maximum loading level A desire 

and the real maximum loading level A,, after load curtailment. From the tables, the 

following observations are made: When the value of A desired is low, the procedure 

tends to choose the , amount of curtailment that allows the stability margin to ap-

proach the desired value. When the value of A desired is high, the difference between 

A and A desired after applying the procedure tends to be large. This result can be ex-
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Stability Margin 
(MW) 

Desired Margin 
(MW) 

Difference 
(MW) 

Difference 
(%) 

294.39 300 5.61 1.87 
318.23 400 81.77 20.4 
358.84 500 141.16 28.23 
409.36 600 190.64 31.77 
451.44 700 248.56 35.5 

Table 4.4: Stability Margin (MW) and Desired Stability Margin (MW) of the mod-
ified system by using Single Curtailment Procedure for IEEE 57-bus system 

plained because of the local nature of Lagrange multipliers, and the linear approach 

used to formulate the value of k, the curtailment parameter. 

4.3.2 Iterative Curtailment Procedure (ICP) 

The Iterative Curtailment Procedure is applied to IEEE 57-bus test case. 

Load curtailed (MW) Iteration number 
2.00 1.677 16 
1.00 1.6766 36 
0.50 1.6766 75 
0.20 1.6765 193 

Table 4.5: Amount of loads curtailed and iteration times for reaching the desired 
stability margin 400 MW, with different fi 

Table 4.5 gives the size of load; in MW, that will be curtailed and the total 

number of iterations required to reach the desired stability margin 400 MW with 

different values of the parameter /3. As expected, the rate of convergence is directly 
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proportional to the value of /3. The advantage of using a smaller value of /3 is the 

procedure will tend to better select which loads would be curtailed and therefore the 

total amount of load curtailed with be reduced. The disadvantage is making /3 too 

large may result in excessive load curtailment. This disadvantage is illustrated in 

Table 4.6 which lists the excessive loads • curtailed using different values of j3. The 

curtailed loads are very close when choosing /3 0.5, 1 and 2. However, if /3 is 8, a 

lot of excessive loads are curtailed, which reduces the accuracy of load curtailment 

program. 

/3 Load curtailed (MW) Excessive load 
curtailed (MW) 

0.5 3.55 0 
1.00 3.56 0.01 
2.00 3.57 0.02 
5.00 3.86 0.31 
8.00 5.8 2.25 

Table 4.6: Amount of loads curtailed for reaching the desired stability margin 500 
MW, with different /3 

Figure 4.1 is a plot of the value of A. at each iteration of the procedure using 

different values of the parameter P. 

Unlike the Single Curtailment Procedure, the Iterative Curtailment Procedure 

tends to reach the desired stability margin. Figure 4.2 shows the load curtailment 

on each bus when the desired stability margin is 400 MW, 500 MW and 700 MW 

respectively. When the desired stability margin is 400 MW, the load curtailment is 

applied only on bus 31 to meet the required stability margin. However, when the 
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400 

300 

0 50 100 
Iteration Number 

150 

Figure 4.1: Maximum loading level versus iteration times using ICP when the desired 
stability margin is 400 MW. The dotted, dashed, dashdot and solid lines correspond 
to fi = 2, 1, 0.5 and 0.2 respectively. 
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Figure 4.2: Load curtailment on each bus using ICP when the desired stability 
margin is 400 MW,500 MW and 700 MW. 

desired stability margin is 500 MW, the results show that bus 33 has the greatest 

effect in some iterations and bus 31 is no longer the only bus that should have load 

curtailment. Moreover, when the desired stability margin is 700 MW, bus 57 will 

be required to curtail some loads. This is one of the advantages of the Iterative 

Curtailment Procedure compared to the Single Curtailment Procedure, which only 

cut load once and ignore the the change of Lagrange multipliers. 

Figure 4.3 is a plot of the magnitude of the Lagrange multipliers at different 

iterations of the procedure. During, the initial iterations, the effect of each of the 

buses on the system maximum loadability is very different, with Bus 31 having 

initially the greatest impact. After several iterations of the procedure, the relative 
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Figure 4.3: Lagrange multipliers of each bus using ICP when the desired stability 
margin is 700 MW. The dash, dotted and solid lines correspond to iteration times 
= 1, 30 and 115 respectively. 

impact of each of the buses is more equal. 

Figure 4.4 shows the iteration numbers while implementing the Iterative Curtail-

ment Procedure to reach different desired stability margins. In this case, the scalar 

/3 was held constant at one. The symbol * indicates the iterations when 95% of 

the desired stability margins are reached. From this figure, the higher the desired 

stability margin, the more iteration times required. 

The iterative Curtailment Procedure checks the Lagrange Multiplier every itera-

tion, where the Single Curtailment Procedure only checks the Lagrange Multiplier at 

the original loading level. Therefore, the Iterative Curtailment Procedure is more ac-

curate and preferred. However, the Iterative Curtailment Procedure takes more time 
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Figure 4.4: The Comparison of ICP with different stability margin. The dotted, 
dashdot, dashed and big dotted correspond to stability margin = 400, 500, 600 and 
700 respectively. The solid line indicates when 95 % of the desired stability margin 
is reached. 



Lagrange based Fast Acting Load Control 69 

to approach the desired maximum loading level. Moreover, the Iterative Curtailment 

Procedure sometimes fails to meet the desired maximum loading level because there 

are no loads to curtail on the bus with largest Lagrange multiplier. 

4.4 Summary 

This section presents an iterative and single cut approach to curtail load that is 

participating in a Fast Acting Load Control program. The approaches are based 

on using Lagrange multipliers to not only identify which buses should be selected 

for load curtailment but also the amount of load that should be curtailed from the 

buses. First order Taylor series expansions are used to explicitly find an approximate 

relationship between the loading level at a particular bus and the stability margin 

of the system. Results from applying the approaches to the IEEE 57-bus system 

showed that the iterative approach was better used to the load curtailment problem 

because of the nonlinear nature of power system models. 



Chapter 5 

Optimal Load Curtailment Program 

5.1 Introduction 

Load control in bulk power systems has been studied for many years [41]. The load 

control schemes to prevent power system losing stability can be classified into two 

sorts: 

1. Improvement Based Load Control: This method determine which loads and 

how much load should be curtailed if the stability margin of the current oper-

ating point is lower than a desired value. 

2. Contingency Based Load Control: This method analyzes the system stability 

margin with respect to credible contingencies, i.e. incidents with a reasonable 

probability of occurrence, and control loads to restore sufficient margins when 

needed. 

A Lagrange Based Fast Acting Load Control (LB-FALC) technique is proposed in 

Chapter 4. The technique uses Lagrange multipliers to identify buses where loads are 

having the greatest impact on system stability. However, one disadvantage of using 

Lagrange multipliers is that they are only a local estimate. Furthermore, it tends 

to take a long time to approach the optimal solution, and the LB-FALC can only 

consider the Maximum Loadability problem. Therefore, in this chapter, an Optimal 

Load Curtailment (OLC) formulation is introduced to determine the location and 
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amount that should be curtailed to meet stability and cost requirements. 

5.2 Improvement Based Load Curtailment Modelling 

System load is modelled as a static load model with constant active and reactive 

power, which is called constant PQ load. At the present operating condition, the 

load model can be represented as follows: 

Pt = )oPo (5.1) 

Qz = A0Q0 

where Ao E {A,o, )*o} is used to map the base load (P0, Qo) to the present and critical 

loading levels. 

When the Fast Acting Load Control is applied, the system loading level reduces. 

The load can be modelled as follows: 

P1 

Qt = 

where (P1, Q) is the loading level after curtailment, ) E {A, )*} is used to map the 

load (P1, Q) to the present and critical loading levels. Since this is an improvement 

based approach, the load is curtailed at both the current and maximum loading 

points. 

The system stability margin can be expressed in per unit or MW. When ex-

pressed in per unit, the margin can be represented as follows: 

Am = A - (5.2) 
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Figure 5.1: Illustration of Optimal Load Curtailment program with the stability mar-
gin in percentage. The solid and dashed lines represent the pre and after conditions 
of load curtailment respectively. 

where Am represents the stability margin. In the work presented in the thesis, a 

power base of 100 MW is used. The present loading level parameters A0 and A 

are equal to one before and after the load curtailment. Typical PV curves for before 

and after Optimal Load Curtailment are illustrated as Figure 5.1. In this figure, the 

stability margin is represented in per unit. 

The stability margin can also be represented in MW as follows: 

Am = - Ap) (5.3) 

where Am represents the stability margin and P1, is summation of the active power 

of all the loads in the system. ,The present loading level parameter ) is in different 
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Figure 5.2: Illustration of Optimal Load Curtailment program with the stability 
margin in MW. The solid and dashed lines represent the before and after conditions 
of load curtailment respectively. 

values in MW before and after the load curtailment while the total loads reduce. In 

Figure 5.2, the PV curves of different operatidn conditions are illustrated while the 

stability margin is represented in MW. 

5.3 Generation Cost Minimization Optimal Power Flow 

The Generation Cost Minimization Optimal Power Flow (GCM-OPF) problem can 

be modelled to determine generation scheduling for a pool based electricity market. 

The formulations can be expressed as following: 
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mm G(x,p,A) 

s.t. : F(x,p,A)=O 

HT(xp,p) ≤ HT 

HB ≤ H,(x,,p) 

HB(x,p) ≤ RB 

HR(x,p) ≤ i 

x≤x≤5 

where the objective function, 

(Load Flow Eqns.) 

(Transmission Line Limits) 

(Generator Lower Bid Limits) 

(Generator Upper Bid Limits) 

(Active Power Reserve Margin) 

(Dependent Variable Limits) 

(Independent Variable Limits) 

(5.4) 

= )CP (5.5) 
iEg 

includes the bid-price C for energy, which is a constant vector, and the independent 

variable P which is the amount of generation scheduled from generator i. The symbol 

g represents the set of generators in the system. The formulation (5.4) represents a 

typical Optimal Power Flow problem with generator cost minimization. 

5.4 Optimal Load Curtailment 

The Optimal Load Curtailment problem can be formulated as follows: 
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mm 

s.t. 

Pr 

F(x,p,A) = 0 

F(x,p,A) = 0 

- As,) ≥ Amd 

ll≤H(x,p)≤H 

ll≤H(x,p) ≤ 

(5.6) 

where P is the total amount of loads curtailed, F(x, p, A) functions are load flow 

equations, H(x, p) represent the transmission line and generator active power limits, 

and the subscripts p and * indicate the present and collapse points, respectively. To 

simplify the expression, the upper and lower limits of system variables x and p are 

included in R and H. Pu is the total amount of loads in the system and Amd is the 

desired stability margin expressed in MW. 

The following inequality has been added to (5.6) to set the stability margin as a 

constraint: 

P1(AA) ≥Am d (5.7) 

The objective of (5.6) is to minimize the amount of load that should be reduced. 

Normally, when the load is reduced, the generators will also reduce their active power 

production to balance the system power flow. Therefore, the generator scheduling 

needs to change. Based on economic operation, the generator with the highest bid 

should produce the least power. To consider generation cost as well as stability 

margin of the system, the following four techniques are proposed: 
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1. Fixed Generator Scheduling Technique (FGST): Based on a Generation 

Cost Minimization OPF (GCM-OPF) solution, solve the Optimal Load Cur-

tailment problem while fixing the generator active power scheduling, except for 

the slack bus. 

2. Generator Active Power Distributed Technique (GAPDT): Based on 

a Generation Cost Minimization OPF (GCM-OPF) solution, solve the Opti-

mal Load Curtailment problem while distributing changes to the active power 

of generator according to a participation factor. The participation factor is 

a function of current generator active power settings, which depends on the 

margin to generator active power lower limit. 

3. Cost Constraint Technique (CCT): Based on a Generation Cost Minimiza-

tion OFF (GCM-OPF) solution; solve the Optimal Load Curtailment problem 

with a constraint that the total generation cost of the curtailed system is within 

a cost limit. The cost limit is based on the solution of the GCM-OPF. 

4. Multi-Objective Technique (MOT): Based on a Generation Cost Mini-

mization OFF (GCM-OPF) solution, introduce a new function incorporating 

changes of the generation settings into the objective function of Optimal Load 

Curtailment formulation. The motivation of Multi-Objective Technique is to 

meet all stability constraints with the least change of load and generation. 

Generally, the Optimal Load Curtailment schemes can be illustrated with the 

chart in Figure 5.3. As shown in the chart, the initial values of system variables 

x0 and Po are firstly used as the input data for the Generation Cost Minimization 
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Figure 5.3: Illustration of Optimal Load Curtailment program. 

OFF (GCM-OPF) formulation. And then, the solutions of GCM-OPF x and p are 

loaded as the input data forthe Optimal Load Curtailment formulation. The system 

variables including depended variables x, which include voltages and angles of load 

buses, reactive power and angles of generator buses and independent variables p such 

as active powers of generator and load buses. 

5.4.1 Fixed Generator Scheduling Technique (FGST) 

The main steps in the Fixed Generator Scheduling Technique are as follows: 

1. Solve the Generation Cost Minimization Optimal Power Flow (GCM-OPF) 
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problem formulated in (5.4). 

2. Set the solutions of step # 1 as the input of Optimal Load Curtailment pro-

gram. 

3. Solve the Optimal Load Curtailment formulation 5.6 while fixing the generator 

active power scheduling from the solution of step # 1, except for the slack bus. 

Sometimes, when active power is fixed at generator buses except for the slack 

bus, there will be no convergence of the OLC program. This is because there could 

be no room for reduction when loads are removed to balance the load flow equations. 

To solve this potential unconvergence problem, active power of slack bus is set free, 

and is set a negative lower limit. However, having the active power of the slack bus 

being negative is not practical. 

Changing the slack bus is considered when the active power at slack bus goes 

negative. Normally, the slack bus should have enough active and reactive power to 

balance the whole system. 

5.4.2 Generator Active Power Distributed Technique (GAPDT) 

The main steps in the Generator Active Power Distributed Technique are as follows: 

1. Solve the Generation Cost Minimization Optimal Power Flow (GCM-OPF) 

problem formulated in (5.4). 

2. Set solutions of step # 1 as the input of the Optimal Load Curtailment pro-

gram. 
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3. Introduce the participation parameter [i] and the distribution parameter ii, 

so that reductions in the generator's active power is distributed as follows: 

P9[i] = P90 [i] - [i] * 71 (5.8) 

where i E gb, and gb is the set of generator buses in the system, A[i] is the 

participation factor and ii is the distribution parameter. The participation 

factor 14i], a function of current generator active power settings, depends on 

the margin to the generator lower active power limit. For example, if the 

generator at bus 5 is at a lower limit, then [5] is set to zero. 

Adding (5.8) as a constraint into formulation (5.6), the GAPDT problem can 

be written as: 

Pr 

F(x,p,A) = 0 

F(x,p,A) =0 

- ≥ )'md 

Pg[i] = P90 [i] - ,u[i] * v Vi E gb 

(5.9) 

where gb is the set of generator buses in the system, x0 and Po are system 

depended and independed variables. 
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4. Solve the new Optimal Load Curtailment problem (5.9) with the generator 

active power distributed. 

5.4.3 Cost Constraint Technique (CCT) 

The main steps in the Cost Constraint Technique are as follows: 

1. Solve the Generation Cost Minimization Optimal Power Flow (GCM-OPF) 

problem formulated in (5.4). 

2. Based on the Optimal Load Curtailment formulation (5.6), the following in-

equality relating to generation cost is added as a constraint: 

c9< C (5.10) 

where the cost limit Z7 can be defined as follows: 

=i3 Co (5.11) 

where 0 ≤ I3 ≤ 1 is a scalar used to control the total cost limit, and Co is 

the generation cost by solving generator operation cost minimization Optimal 

Power Flow (OPF) problem at the original loading level. The load curtailment 

always tends to reduce the generation production, and the generation opera-

tion cost should decrease after load curtailment, so the parameter /3 tends to 

be equal or less than one to incorporate this effect. The new Optimal Load 
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Curtailment problem can be written as: 

min Pr 

s.t. : F(x,p,A) = 0 

F(x,p,A) =0 

- .Ap) ≥ Amd 

81 

(5.12) 

3. Solve the new Optimal Load Curtailment problem 5.12 with the cost constraint. 

In this technique, active power on generator buses is not fixed, and the generator 

cost is considered as a constraint. However, this formulation only considers loads, 

not generators in the objective, so that would tend to have generators be rescheduled 

more than loads, except for the new. constraint. That means active power of gener-

ators are going to be rearranged while the loads are reduced, and the new generator 

scheduling may not meet the requirement of minimizing generator costs. 

5.4.4 Multi-Objective Technique (MOT) 

The main steps in the Multi-Objective Technique are as follows: 

1. Solve Generation Cost Minimization Optimal. Power Flow (GCM-OPF) prob-

lem formulated in (5.4). 

2. Set solutions of step # 1 as the input of Optimal Load Curtailment program. 
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3. Introduce a new component into the objective of the formulation 5.6 to model 

generator operation cost as follows: 

gb 

f(r) Pgr) = ye - r[i]  Pgr[] 
r[i} 

(5.13) 

where i € gb, yb is the set of generator buses in the system, is the clearing 

price of the system, r[i] is the bid price of the i1h generator and Pgr[i] is 

the reduction of generator active power due to curtailed loads on the i1h bus. 

Equation 5.13 is related to the generation cost function, and tends to reduce 

the generator active power based on cost. 

The new formulation with the multiple objectives can be written as follows: 

min w1P + w2f(r, P9,.) 

s.t. : F(x,p,.)) = 0 

= 0 

- A) ≥ "rnd 

W1 +W2 = 1 

(5.14) 

where f('r, Pgr) is defined in equation (5.13), w1 and w2 are weighting factors. 

4. Solve the new multiple objective Optimal Load Curtailment problem. 

The purpose of weighting factors w1 and w2 is to change the emphasis placed on 

load curtailed versus generater operation cost. However, the exact effect of weights 

is not known in advance, but the general characteristics are clear. 
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5.5 Numerical Analysis 

83 

The Optimal Load Curtailment formulations presented above are tested on two sam-

ple systems, one based on the IEEE 30-bus test system, and the second one based 

on IEEE 57-bus test system [40]. The optimization problems are solved using the 

software package LOQO [19] and the modelling language AMPL [17]. 

5.5.1 Fixed Generator Scheduling Technique (FGST) 

Fixing the generator scheduling based on the Generation Cost Minimization OFF 

results in reducing the active power at the slack bus. Sometimes the slack bus has 

the highest operation cost, so the active power scheduled to the slack bus is very low. 

When the slack bus has to reduce a lot of active power to balance the system power 

flow, the active power at slack bus goes negative. Having a generator bus with 

negative active power is not practical and leads to unconvergence in simulations. 

Changing the slack bus based on the original scheduling is tested on IEEE 30-bus 

test system. 

Bus Number Bid Price Scheduled P9 (MW) 
1 5.00 0.00 
2 1.20 14.43 
5 1.30 0.00 
8 1.20 51.77 
11 1.00 147.94 
13 1.10 85.01 

Table 5.1: The generator scheduling based on generator cost minimization OPF of 
IEEE 30-Bus System. 

Table 5.1 shows the generator bid prices and scheduling after solving the genera-

tion cost minimization OPF problem of IEEE 30-Bus test system. When the desired 
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stability margin is 170 MW, the results of solving the Fixed Generator Scheduling 

problem with different slack bus is shown in Table 5.2 shows. Because the generator 

buses 1, 2 and 5 do not have enough active power to reduce when the desired sta-

bility margin is 170 MW, the simulations of choosing them as slack bus, does not 

converge. 

Slack Bus Pg reduced (MW) 
1 No convergence 
2 No convergence 
5 No convergence 
8 47.19 
11 28.83 
13 41.78 

Table 5.2: The generator active power reduced when the system choosing different 
slack bus. 

When using this approach, the slack bus should be the one that has the most 

generator active power. Figure 5.4 depicts the curtailed amount of loads at different 

desired stability margins when choosing a different slack bus. Different generator 

buses have different effects for the system stability, so choosing different slack bus may 

result in a different amount of load curtailment. From the observation of Figure 5.4, 

Bus 11 is better suited to be set for the slack bus because of the reduced curtailment. 

Figure 5.5 illustrates the total generation cost at different desired stability mar-

gins when a different slack bus is chosen. Because of the load curtailment, generators 

tend to reduce the production to balance the system power flow, which leads to the 

decreasing generation cost when increasing the desired stability margin. 

Based on the Generation Cost Minimization OFF, cheaper generator tends to 

have more generation production. Choosing the bus that has the most active power 
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Figure 5.4: Load curtailment versus stability margin using Fixed Generator Schedul-
ing technique with different slack bus. The symbols o and * correspond to solutions 
for the system choosing # 11 and # 13 bus as slack bus respectively. 
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Figure 5.5: Total generator cost versus stability margin using Fixed Generator 
Scheduling technique with different slack bus. The symbols o and * correspond 
to solutions for the system choosing # 11 and # 13 bus as slack bus respectively. 

as slack bus is not always positive for generator cost minimization. In the case shown 

in Figure 5.4, less load curtailment leads to less generator reduction, and then tends 

to result in more generation cost. This disadvantage of choosing Bus 11 as the slack 

bus is depicted in Figure 5.5 where the total generator cost is higher when selecting 

Bus 11 as the slack bus. However, because the loads can also bid for curtailment, 

the less load curtailment tends to results in the less payment for the loads curtailed. 

Therefore, when changing the slack bus is necessary, the generator bus having the 

most active power in the original scheduling is chosen as the new slack bus. 
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5.5.2 Generator Active Power Distributed Technique (GAPDT) 

The Generator Active Power Distributed Technique (GAPDT) is then applied to 

IEEE 30-Bus test system. This technique balances the system power flow by dis-

tributing the reduction in generator active power between all generator buses. 

Figure 5.6 illustrates the amount of loads that should be curtailed to meet dif-

ferent desired stability margins. The advantage in minimizing the load curtailment 

using Generator Active Power Distributed Technique can be observed in the fig-

ure. The Generator Active Power Distributed Technique (GAPDT) results in less 

load curtailment compared to Fixed Generator Scheduling Technique (FGST). In 

the Fixed Generator Scheduling Technique, the generator scheduling is fixed except 

for the slack bus, so only one generator bus is available to balance the whole sys-

tem power flow. However, in the Generator Active Power Distributed Technique, all 

the generator buses are controllable based on the participation parameters. Because 

the reduction in generation can be distributed between all the generator buses in 

GAPDT, it is possible to find a better solution for minimizing the amount of load 

curtailment. 

5.5.3 Cost Constraint Technique (CCT) 

Next, a set of numerical analysis was performed applying the Cost Constraint Tech-

nique (CCT) to IEEE 57-Bus test system. Unlike the Fixed Generator Scheduling 

Technique and the Generator Active Power Distributed Technique, the generator 

scheduling based on the generation cost minimization OPF is free to vary. Instead, 

a total generation cost limit is set as a constraint in this technique. The cost limit is 

based on the solution of generation cost minimization OPF, but a control parameter 
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Figure 5.6: Load curtailment versus stability margin using the Generator Active 
Power Distributed technique and Fixed Generator Scheduling technique with dif-
ferent slack buses. The symbols i, o and * correspond to solutions for the system 
using the Generator Active Power Distributed technique, Fixed Generator Schedul-
ing technique choosing # 11 as slack bus and Fixed Generator Scheduling technique 
choosing # 13 bus as slack bus respectively. 
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i8C is incorporated. The parameter le is a scalar between zero and one. However, 

if P, is chosen too low, the system may curtail more loads to meet the generation 

cost constraint. Figure 5.7 shows the load curtailment results using different values 

of parameter 1@. 

Generally, the stability constraint, ).* - )p ≥ )'m, has an effect on the objective 

function, which means the higher the stability margin, the more loads tends to be 

curtailed. However, when /3 is less than one and the desired stability margin is low, 

the cost constraint, C. < I3Co, tends to have more effect on the objective function. 

In other words, when the cost limit is low, the system has to curtail more loads to 

meet the cost requirement. It can be observed from Figure 5.7 that when the desired 

stability margin is 250 MW, the amounts of load should be curtailed are 11 MW 

and 23 MW when fi is chosen as 0.99 and 0.98 respectively. However, when le is 

equal to one, the amount of load should be curtailed is zero to reach the stability 

margin 200 MW. 

To avoid the excessive load curtailment due to the cost limit, the value of param-

eter fi is always set equal to one. 

5.5.4 Multi-Objective Technique (MOT) 

The final set of numerical analysis is applying the Multi-Objective Technique (MOT) 

to the IEEE 57-Bus test system. Figure 5.8 depicts the load curtailed versus stability 

margin when using different values of weighting factors. 

It is observed that the amount of load curtailed is greater when choosing w1 

smaller. In other words, when less emphasis is laid on load curtailment, more loads 

need to to curtailed to meet the stability requirement. However, the effects of differ-



Optimal Load Curtailment Program 90 

30 

Lo
ad
 C
ur

ta
il

ed
 (
M
W
) 

25 

20 

15 

* * * * * * 
10 

0 

0 
5 

0 

01, 

0 

0 e 
0 200 400 600 800 1000 1200 

Stability Margin (MW) 

Figure 5.7: Load curtailment versus stability margin using different cost control 
parameter /3 in Cost Constraint technique to IEEE 57-Bus test system. The symbols 
o, * and < correspond to solutions by using /3 1, 0.99 and 0.98 respectively. 
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Figure 5.8: Load curtailment versus stability margin using different weighting factors 
in Multi-Objective Technique to IEEE 57-Bus test system. The symbols *, <and o 
correspond to solutions by using w1 = 0.99, 0.5 and 0.001 respectively. 

ent weighting factors are not very obvious, which is because the load curtailment and 

the reduction of generation cost are not always conflicting each other. Normally, the 

load flow equations give the relationship of the load curtailment and the reduction 

of generation. Therefore, different weighting factors do not have conspicuous effects 

on the results. 

In Figure 5.9, the generation cost versus stability margin using different weighting 

factors is illustrated. From the figure, it is also observed that the cost is only affected 

a little by the changes in the weighting factors. 



Optimal Load Curtailment Program 92 

38000 

37900 

37800 

37700 

(I) 
0 

U 37600 

37500 

37400 

37300 

4 

4 

4 

4 

37200  
0 200 400 600 800 1000 1200 

Stability Margin (MW) 
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5.5.5 Comparison of Results 

Comparison of four techniques 

To generally compare the results from the four technique proposed in section 5.4, 

Figure 5.10 illustrates the load curtailment versus stability margin results. Observed 

from the figure, the Generator Active Power Distributed, the Cost Constraint and 

the Multi-Objective techniques result in very similar amount of load curtailment, 

and Fixed Generator Scheduling technique results in the most load curtailment. 

Unlike the Fixed Generator Scheduling, the Generator Active Power Distributed, 

the Cost Constraint and the Multi-Objective techniques have all the generator buses 

controllable, and. the generator settings are rearranged with some new constraints 

at the new loading level. Therefore, the Fixed Generator Scheduling technique has 

the highest load curtailment because the generator scheduling is fixed except for the 

slack bus in this technique. 

The total generation cost for the different techniques is shown in Figure 5.11, 

which indicates that the Multi-Objective Technique (MOT) leads to the lowest gen-

eration cost and the Cost Constraint Technique (CCT) results in the highest gener-

ation cost. The Multi-Objective Technique has the objective with a generation cost 

component, which reduces more generater production on the bus with more expen-

sive generator. Therefore, the MOT tends to result in the lowest generation cost. 

However, in the Cost Constraint Technique (CCT), the original generator scheduling 

is free to be rescheduled when implementing load curtailment, and the new generator 

scheduling may not be based on generation cost minimization. So the CCT tends to 

result in the highest generation cost. 
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Figure 5.10: Load curtailment versus stability margin using different techniques to 
IEEE 57-Bus test system. The symbols *, , o and 4 correspond to solutions by using 
Fixed Generator Scheduling, Generator Active Power Distributed, Cost Constraint 
and Multi-Objective techniques respectively. 



Optimal Load Curtailment Program 95 

37900 

37800 

37700- 0 

.-...37600- 0 

0 37500-

37400- 1 0 

37300-

37200 1 . 

0 200 400 600 800 1000 1200 

Stability Margin (MW) 

Figure 5.11: Cost versus stability margin using different techniques to IEEE 57-Bus 
test system. The symbols *, , o and < correspond to solutions by using Fixed 
Generator Scheduling, Generator Active Power Distributed, Cost Constraint and 
Multi-Objective techniques respectively. 
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Furthermore, the following tables help summarize the comparison of the four 

techniques. 

Table 5.3 lists the amount of loads that should be curtailed based on the so-

lutions of the four techniques presented. The results are from implementing the 

four techniques into the IEEE 57-Bus test system, which has the original total loads 

1250.8MW. The desired stability margin is chosen 1000MW in this comparison. 

The Cost Constraint Technique (CCT) and Multi-Objective Technique (MOT) cur-

tail the least loads among all four techniques. 

Total Loads (MW) Curtailed Loads (MW) 

1250.8 
FGST GAPDT CCT MOT 
15.88 14.86 14.83 14.84 

Table 5.3: The amount of total load in original system and the load curtailed to 
reach the stability margin 1000 MW by implementing FGAPT, CCT, GAPDT and 
MOT to IEEE 57-Bus System 

Table 5.4 lists the changes in the active power settings of the generators based on 

the solutions of applying the four techniques into the IEEE 57-Bus test system. The 

total scheduled generation of the orignial system is 1259.8MW. It can be observed in 

that the Multi-Objective Technique (MOT) changes the least generater production 

among all four techniques. 

Total P. (MW) Generation Reduction (MW) 

1259.8 
FGST GAPDT CCT MOT 
17.42 17.15 18.62 17.05 

Table 5.4: The amount of total generator active power in original system and the gen-
eration reduction to reach the stability margin 1000 MW by implementing FGAPT, 
CCT, GAPDT and MOT to IEEE 57-Bus System 

Table 5.5 lists the changes in the total generator operation cost based on the 
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solutions of implementing the four techniques into the IEEE 57-Bus test system. As 

indicated in the table, the Multi-Objective Technique (MOT) results in the lowest 

generater operation cost. 

Generator Cost ($) 
FGST GAPDT CCT MOT 
37382 37329 37412 37268 

Table 5.5: The generator cost after curtailing loads to reach the stability margin 1000 
MW by the applying FGAPT, CCT, GAPDT and MOT to IEEE 57-Bus System 

Comparison with Lagrange Based Fast Acting Load Control 

A comparison of the Optimal Load Curtailment (OLC) program with the Lagrange 

Based Fast Acting Load Control (LB-FALC) presented in Chapter 4 is given to 

evaluated the advantages of direct optimization versus using lagrange multipliers. 

Figure 5.12 shows the load curtailment results for different desired stability mar-

gins using the different techniques applied to the IEEE 57-Bus test system. The 

results of implementing Fixed Generator Scheduling, Generator Active Power Dis-

tributed, Cost Constraint and Multi-Objective techniques are represented by the 

symbols *, , o and i respectively. The solution of Iterative Curtailment Procedure 

of LB-FALC is, represented by the dotted line. It can be observed that the results of 

load curtailment by using the Generator Active Power Distributed, Cost Constraint 

and Multi-Objective techniques of OLC are similar with the result by using the Iter-

ative Curtailment Procedure of LB-FALC. Therefore, the Optimal Load Curtailment 

(OLC) program and the Lagrange Based Fast Acting Load Control (LB-FALC) tend 

to obtain very similar results on the amount of load, that should be curtailed to reach 

the desired stability margin. However, the Iterative Curtailment Procedure (ICP) 

of the LB-FALC takes significantly longer to approach the solution, so the Optimal 
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Figure 5.12: Load curtailment versus stability margin using different techniques to 
IEEE 57-Bus test system. The symbols *, o, o and i correspond to solutions by using 
Fixed Generator Scheduling, Generator Active Power Distributed, Cost Constraint 
and Multi-Objective techniques respectively. The dotted line represents the solution 
by using Iterative Curtailment Procedure of LB-FALC. 

Load Curtailment program tends to be more effective on fast calculation for large 

systems. 

5.6 Summary of Results 

This chapter presents the Fixed Generator Scheduling, Generator Active Power Dis-

tributed, Cost Constraint and Multi-Objective techniques to curtail load that is 

participating in a Fast Acting Load Control program. The approaches are based 

on combining the Generation Cost Minimization OPF (GCM-OPF) and Optimal 
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Load Curtailment (OLC) programs to not only identify the location and amount of 

loads that should be selected for load ci'irtailment but also the changes in generator 

scheduling that should be rearranged due to load curtailment. 

The Fixed Generator Scheduling Technique (FGST) keeps the original generator 

scheduling except for the slack bus, but it is a challenge to change the slack bus when 

the original slack bus can not reduce enough active power. 

The Generator Active Power Distributed Technique (GAPDT) is based on Fixed 

Generator Scheduling Technique, but the reduction of generation due to curtailed 

loads is distributed between all generator buses. 

The Cost Constraint Technique (CCT) tends to result in the least load curtail-

ment, but it also leads to the highest generation cost because of generator reschedul-

ing. Moreover, the total generation cost limit is unknown at the beginning of the 

optimization analysis. 

The Multi-Objective Technique (MOT) combines loads and generation cost into 

the objective function, and the simulation results show that this technique tends 

to be the best suited when considering the load curtailment and generation cost 

together. 

The four techniques are implementing on the IEEE 30-Bus and 57-bus test sys-

tems and a comparison of results is given. It is shown that these four Optimal Load 

Curtailment techniques can be used to support the optimal decision making for load 

control and generation scheduling. 



Chapter 6 

Conclusions 

In Chapter 2,,, a review of power system stability is given. Small signal stability and 

bifurcation analysis are introduced to analyze the system stability. Based on these 

bifurcation analysis methods, a Maxmimum Loadability problem is formulated by 

introducing optimization techniques. 

In Chapter 3, concepts of optimization analysis are described. Lagrange methods 

are introduced to solve the constrained optimization problems. This is followed by 

the interpretation of Lagrange multipliers for the sensitivity analysis. Next, a brief 

review of Interior Point methods for non-linear optimization problems is presented, 

where the Primal-Dual Interior Point methods are used in software package LOQO 

to solve the optimization problems presented in this thesis. 

A Lagrange Based Fast Acting Load Control (LB-FALC) procedure is presented 

in Chapter 4. This procedure is based on using Lagrange multipliers to identify which 

buses should be selected for load curtailment and the amount of load that should 

be curtailed from the buses. Two Lagrange based techniques, the Single curtailment 

and the Iterative Curtailment technique, are presented in this chapter. 

Finally, in Chapter 5, an Optimal Load Curtailment procedure is proposed. This 

procedure considers not only the system voltage stability, but also the generator 

costs. Four different' techniques for Optimal Load Curtailment are formulated and 

the simulation results are compared. 

The main contributions of the thesis can be summarized as follows: 

100 
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Two procedures, Lagrange Based Fast Acting Load Control (LB-FALC) and Op-

timal Load Curtailment (OLC), are proposed to curtail load that is participating in 

a Fast Acting Load Control program. Both procedures can be used to determine the 

optimal locations and curtailment levels for desired stability requirements. There-

fore, the two load curtailment schemes tend to offer decision making support for 

system operators when load control is used to enhance power system stability. 



Appendix A 

List of Acronyms and Symbols 

DAE Differential-Algebraic Equations 
FALC Fast Acting Load Control 
IEEE Institute of Electrical and Electronics Engineers 
IPM Interior Point Method 
KKT Karush Kuhn Tucker 
LM Lagrange Multiplier 
LB-FALC Lagrange Based Fast Acting Load Control 
ML Maximum Loadability 
NLP Non-linear Programming 
OLC Optimal Load Curtailment 
OFF Optimal Power Flow 
P Real Power 
PDIPM Primal-Dual Interior-Point Method 
P.U. Per unit 
Q Reactive power 
V Voltage 
77 Eigenvalues 
6 Angular position of rotor 
W Angular velocity of rotor 
X Independent variables 
P Dependent variables 
ly Lagrange Multipliers 

Barrier parameter 
S1, S2 Slack vectors 
A Loading level 
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