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Abstract

We present Puppet Master, a system that enables designers to
rapidly create interactive and autonomous character behaviors (e.g.,
of a virtual character or a robot) that react to a main character con-
trolled by an end-user. The behavior is designed by demonstration,
allowing non-technical artists to intuitively design the style, per-
sonality, and emotion of the character, traits which are very diffi-
cult to design using conventional programming approaches. During
training, designers demonstrate paired behavior between the main
and reacting characters. During run time, the end user controls the
main character and the system synthesizes the motion of the react-
ing character using the given training data. The algorithm is an
extension of image analogies [Hertzmann et al. 2001], modified to
synthesize dynamic character behavior instead of an image. We
introduce non-trivial extensions to the algorithm such as our se-
lection of features, dynamic balancing between similarity metrics,
and separate treatment of path trajectory and high-frequency mo-
tion texture. We implemented a prototype system using physical
pucks tracked by a motion-capture system and conducted a user
study demonstrating that novice users can easily and successfully
design character personality and emotion using our system and that
the resulting behaviors are meaningful and engaging.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques;

Keywords: Demonstration, Artistic Design, Interactive Anima-
tion, Interaction

1 Introduction

Characters, such as those in animated films or computer games,
or even autonomous robots interacting in the real world, are be-
coming increasingly common in everyday life. Having convincing,
believable personalities and behaviors is very important for these
characters, as it strengthens communication and suspension of dis-
belief, and ultimately results in a more rewarding, engaging, and
comfortable experience [Bates 1994; Breazeal 2002; Reeves and
Nass 1996]. In particular, it is critically important that interactive
characters react convincingly to real-time user input while main-
taining a coherent personality. For example, an aggressive merchant
in a video game may chase after the user”s character, a shy cleaning
robot may hide from humans while cleaning, and a pet robot dog
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Figure 1: During training, the system learns the behavior of a re-
acting character in response to a main character’s behavior. At run
time, the system synthesizes a reacting character’s behavior, repro-
ducing the personality and emotion demonstrated in the training.

may jump happily when its owner returns home.

Programming a character’s real-time interactive behavior is a diffi-
cult problem, particularly when trying to achieve a certain person-
ality or interaction style. The logical, step-by-step state-machine
style endorsed by conventional programming languages is good for
specifying goal-oriented actions, but is not well suited to the design
of human-like traits such as personality and emotion; consider how
difficult it is to program shyness or anger using a series of logical
states, rules and steps.

Artists, however, such as actors, puppeteers, and so forth, have an
incredible ability to develop interactive characters and personali-
ties in various performance-based mediums such as puppet shows,
plays, computer avatars and even remote-controlled robots. Un-
fortunately, conventional tools available to create autonomous in-
teractive behaviors are often inaccessible to non-technical artists,
in part because of their algorithmic nature and their incapability
to explicitly express character personality and emotion. The result
is that interactive behaviors are generated primarily by computer
software engineers using logic-based algorithms, with results often
being predictable and boring.

In this paper, we introduce a programming-by-demonstration ap-
proach to make the design of interactive character behavior acces-
sible to artists. In the training phase a user (or two working col-
laboratively) demonstrates paired motion of two characters, with
one character reacting to the actions of the other. At run-time, the
end-user controls the main character and the system generates, in
real time, the reactive behavior of the other character with the char-
acteristics observed in the training data (Figure 1). Demonstrating
an interactive behavior allows artists to encapsulate personality and
emotion that they may not be able to logically explain using com-
puter algorithms. Furthermore, training is quick (average 33s in our
study) and generation is done in real time without preprocessing.

Our behavior synthesis algorithm is an extension of the image
analogies algorithm [Hertzmann et al. 2001], which learns static
image filters from example image pairs and applies them to a new
input image. Similarly, our system learns reactive behavior from
an example pair of motions and applies it to a new input motion.
Our paper describes how we extend the original method to work
for real-time, dynamic, reactionary locomotion behavior. Specifi-
cally, we introduce meaningful behavior-related features, a method



for balancing between the similarity and coherence metrics, and
we also separately synthesize general motion trajectory and motion
texture, integrating them during the final stages of motion synthesis.

We built two prototype systems, one using a standard mouse as
input and the other using a tabletop system with physical pucks
tracked by a motion capture system. The mouse-based system al-
lows the user to control the movement of one character at a time,
while the tabletop system allows for simultaneous control of both
the main and reacting characters, and allows the user to control the
orientation of the two characters. We ran a user study using the
tabletop system asking one group of participants to design a set of
character behaviors and the other group to interact with a set of de-
signed behaviors. The results shows that novice users can design in-
teractive behaviors quickly using our system and successfully con-
vey personality and emotion in the form of interactive behavior.

2 Related Work

There has been a great deal of work that aims for life-like, con-
vincing interactive behavior. One common approach is through ex-
plicitly programming the behavior model [Blumberg and Galyean
1995; Maes 1995; Reynolds 1987], where the programmer explic-
itly and directly defines what to do for particular input scenarios.
These systems require an understanding of the underlying algo-
rithm and so are less accessible to the general artist, and do not sup-
port direct and intuitive design of emotion, personality, and style.

Programming by demonstration was originally used to auto-
mate GUI operations [Cypher 1991; Maulsby et al. 1989], e.g.,
Pavlov [Wolber 1997], explicitly for interactive agents, defines the
low-level stimulus-response behavior of the agent. These systems
define behavior using logical event sequences and conditionals, and
do not provide tools to represent personality and emotion.

Several systems design animation by performance demonstra-
tion [Dontcheva et al. 2003; Hertzmann et al. 2002; Igarashi et al.
2005b; Igarashi et al. 2005a; Thorne et al. 2004], and some ap-
ply the idea to robotic motion [Frei et al. 2000; Raffle et al. 2004].
These systems, however, focus on the playback of the demonstra-
tion and do not respond intelligently to user interaction.

Other systems focus on synthesizing new motion from a large, pre-
processed motion example database in real time [Lee and Lee 2004;
Lerner et al. 2007; Wiley and Hahn 1997]. While some systems
interactively respond to user input (joystick control, moving obsta-
cles, other characters, etc), the mapping from the user input to the
output is explicitly (and often tediously) defined by the program-
mer. Furthermore, the target of these systems is primarily the plau-
sibility of physical motion (punch, jump, walk, collision avoidance,
etc.), not the explicit design of character or personality emerging
from interactive motion.

Research in human-robot interaction is shifting attention from
viewing robots as tools or laborers, to designing affective and so-
ciable robotic interfaces [Breazeal 2002; Norman 2004]. Robots
are active participants in their users’ physical environments, and as
such the design of their form, posture and movement play a dra-
matic role in the quality of the resulting interaction [Matsui et al.
2005]. Designing robotic actions and movement by demonstration
has been investigated extensively (for example, [Breazeal 2002;
Frei et al. 2000; Raffle et al. 2004; Matsui et al. 2005]) with ef-
forts ranging from simple movement playbacks to complex inte-
grated actions. However, again, these methods were targeting goal-
oriented design of robotic pose and motion, and did not allow to
explicitly convey emotion or personality.

Figure 2: The mouse GUI. Notice the large work area and lack of
parameters and settings.

3 System Overview

The ultimate goal of our research is to allow the direct and intuitive
design of all aspects of reactive behavior (gestures, facial expres-
sions, eye movement, pose, etc) to create believable whole-body
characters. As an initial experiment to explore the programming
of characters by demonstration, this paper focuses on character lo-
comotion (movement paths). We have implemented two interfaces
that enable designers to demonstrate behaviors: a mouse-based GUI
and a tabletop Tangible User Interface (TUI).

3.1 Mouse-Based GUI

The mouse-based GUI (Figure 2) is fast and easy to use on any
regular desktop PC. The standard mouse, however, lacks a rotation
sensor and is designed for use by a single-user. This means that
the main character and reactor behaviors must be trained sequen-
tially and that the direction a character is looking cannot be explic-
itly specified, e.g., a character cannot move sideways or back away.
With sequential training, the designer first demonstrates an example
input path to represent the main character. Then, the system replays
the main-character”s motion path while the designer demonstrates
the sample reaction. For behavior generation, the user simply con-
trols the main character and reaction is generated in real time. Here,
the entity”s look direction is matched to the movement direction.

Figure 3: A user interacting with the Vicon TUI system.



3.2 Tabletop Tangible User Interfaces (TUIs)

Training interactive behaviors by demonstration is reminiscent of
acting or puppetry; actions generally done in the physical world,
away from traditional computers. Using a mouse mapped to an on-
screen avatar removes this direct physicality and forces an artist to
map their intentions through the arguably less-than-intuitive mouse
interface, separating the artist action and perception space [Fjeld
et al. 1986; Sharlin et al. 2004].

Our Tangible User Interfaces (TUIs)-based tabletop design (see
Figure3) allows artists to use physical objects (the TUIs) as handles
to demonstrate behavior. The TUIs are both input to the system and
offer immediate physical feedback of the system state, providing in-
tuitive interaction not possible with traditional interfaces[Ishii and
Ullmer 1997]. Using TUIs also allows for character orientation,
and multiple TUIs can be used for simultaneous training of both
the main and reacting character behaviors, either two-handed by
one designer or by a pair of collaborators.

4 Algorithm

During training, the system simply stores the paired motion data.
During generation, the algorithm compares the run-time situation
between the main and reacting character to the training data. The
training most similar to the current situation is used to direct the
generation of the next character output; the generation is based on
a mix of training data from various source locations. This method
avoids large chunks of consecutive, static replay of training data,
and reacts immediately to changing user input, while maintaining
the style and properties of the training data.

The key problems to be solved are to a) select a similarity met-
ric with meaningful features that matches behavioral similarity as
end-users may recognize it, and b) ensure the generation output al-
gorithm maintains the characteristics and textures given in the train-
ing data; all of this must happen in real time. We offer solutions to
both of these problems.

4.1 Algorithm Formalization

The variables < I,R > represent time-series data for the two
characters, where I is the main and R is the reacting charac-
ter. Following, < It, Rt > are the training time-series data
used by the generation system, which is simply recorded as it is
demonstrated. Pseudo code for the generation is given below:
BestMatch() finds training data most similar to the current sit-
uation, and Generate() uses the selected data to direct the next
output action. New user input is not used until the subsequent it-
eration because features used in tracking (such as relative character
position) require data for both characters. Our implementation op-
erates at 40Hz so this delay is negligible.

Loop
e = BestMatch(It, Rt, I, R)
newMovement = Generate(e)
R.append(newMovement)
I.append(getNewInput())

4.2 Data and Features

Our data is a time-dependent array containing the location, x,y, and
the direction d of each entity at each time interval. From here we
select and extract various features, a core part of our approach that
decides what characteristics of behavior will be matched and gen-
erated. We generally ignore world-coordinates, focusing on the re-
lationship between the two entities and changes in local state. The

similarity metrics use these features over a time window to encap-
sulate a trend over time. We explored many features not discussed
here (e.g., direct path data, distance and delta distance between
characters), and settled on the following features, as illustrated in
Figure 4. We omit a detailed discussion here on reasons for this
final feature selection for brevity. The use of these features is dif-
ferent for each algorithm step as outlined in each respective section.

Velocity – calculated by taking the magnitude of the vector be-
tween an entity”s position and its previous one. This captures
speed and acceleration-related aspects of behavior such as dif-
ferent reactions for stopped, accelerating, fast, or slow input.

Relative position – position of the reactor in relation to the main
character”s position and look direction (coordinate space).
This captures ‘relational behavior such as following, circling,
and approaching. This is two scalar values, one per axis, rep-
resenting how much the reacting character is behind or in front
of, and to the left or right of the main character.

Normalized look direction – look direction normalized to the
movement direction, with 0 pointing forward. This captures
the relationship between where a character is looking and
moving, e.g., if a character is backing up or moving sideways.

Relative look direction – the difference between the entities’ look
directions. This captures a character turning away shyly when
observed or aggressively facing an opponent.

Absolute Movement direction – the vector from the character”s
previous world-coordinate position to its current one. This
feature, treated separately from the others, does not involve
the other entity. The generation phase (Section 4.4) uses this
to add high frequency texture to the output motion.

∆Direction – change in direction from one step to the next, repre-
sents the shape of the locomotion path (not in relation to the
other entity). This feature helps to identify similar movement
shapes and styles such as shaky or smooth.

4.3 BestMatch (Similarity Metric)

Our similarity metric is based on Hertzmann et. al’s Image Analo-
gies [Hertzmann et al. 2001] and Curve Analogies [Hertzmann et al.
2002] but various modifications are made to work for dynamically
generated motion sequences. This metric has two key components:
overall situational similarity and generated path coherency. These
searches are done in parallel and combined in each step. Both com-
parisons are done over a given movement-history neighborhood n
which is forty samples (one second) in our implementation.

Figure 4: Some of the data features calculated in our algorithm.
All features except relative position are on both entities, but only
shown on one for image clarity.



4.3.1 Situation Similarity

The situation similarity is based on the relationship between the
two entities. This step uses the relative position (input-character
centric), relative look direction, and velocity features. It compares
the n most recent pieces of user input and generated output from
< I,R > to a moving window of size n over the training data
< It, Rt > (Figure 5(a)). At each window location the features
from each of the four paths form multi-dimensional vectors and
corresponding vectors (I vs It, R vs Rt) are compared using Eu-
clidean distance squared. These distances are then summed over the
window, providing a measure of similarity at that window location.
A smaller value represents a better match.

4.3.2 Generated Path Coherency

Done in parallel to situation similarity, this emphasizes the shape,
style and features of the generated path R in relationship to the
trained Rt while putting less emphasis on the relationship between
entities I and R. This relationship is still important, however, as
some aspects of coherency depend on the relationship between the
entities, such as when the reacting entity wants to finish a circle
around the main entity it must properly follow as the main char-
acter moves. This metric uses normalized look direction, delta di-
rection, relative position, and velocity. When there is no training
data that matches well to the current inter-entity situation (i.e., sit-
uation similarity is weak) generated path coherency helps to ensure
a generation that matches the characteristics of Rt.

This metric compares the recently generated data from R over n to
the regions inRt that were used to generate the recentR (the entire
Rt is not searched). That is, given recently generated elements
Rk over the n, the source neighborhood in Rt that was originally
used to generate Rk is compared to the most recently generated
R (Figure 5(b)). The intuition here is to continue a patch from a
previous similarity match if the current similarity match is weak.

4.3.3 Similarity Balancing

The Image Analogies algorithm [Hertzmann et al. 2001] combines
the two similarity metrics by statically weighting them with a co-
efficient k to add bias; the metric with the best weighted score is
selected for that step. This did not work with our application and

(a) Situation Similarity

(b) Generated Path Coherency

Figure 5: In Situation Similarity the system compares recent real-
time data to the entire dataset. In Generated Path Coherency the
system only examines the regions of the training data recently used
in generation. In both instances, the training data with the best
feature match is chosen to generate the next output.

resulted in a problem we call coherence loops: when coherence
match is used to generate output for several consecutive steps then
the result of generation, by design, will be increasingly similar to
the training data. The improving coherence match is eventually ex-
clusively used, with situation similarity being ignored, and the re-
acting entity starts to loop through sections of Rt. This issue does
not occur in Image Analogies and Curve Analogies because all data
is given at the beginning, allowing the use of multi-resolution ap-
proaches. Multi-resolution is difficult in our system, however, as we
are generating in real time and cannot look ahead in our input data.
To fix this problem, we tried to mesh results from both metrics in
several ways (e.g., average, trend-vs-detail, staggered sample rate),
but did not get satisfactory results. Our solution is given below, but
this is a rich area for future work.

We change the previously-static weighting coefficient k to a dy-
namic value that follows a target situation-similarity-to-coherency
match ratio t. Then, k is automatically and continuously tuned each
generation step to bias the results to reach t, so that over time we
keep a balanced use of both metrics. In our implementation, we use
a 1:1 target ratio. A similar algorithm is used in texture synthesis
systems to match the overall color histogram [Kopf et al. 2007].
Once the best-matching source region is calculated, the data from
Rt immediately following this source region is passed to the gen-
eration system. One problem with this balancing approach is noise.
Instability in the similarity metrics (jumping between regions) and
switching rapidly between situation similarity and coherence can
cause large, rapid variations in the source data passed to the gen-
eration system, resulting in distracting rapid character movements.
We explain how we deal with this in the next section.

4.4 Output Generation

The generation system receives the piece of training data (called the
target data) to be used from the BestMatch function and gener-
ates the next entity output. The naı̈ve approach is to simply copy
this data directly to the output as in texture synthesis. The problem
with this is that many features depend on entity history as well as
the other entity (relative position, etc.) and it is impossible to solve
a movement that matches all features. Also, when the training data
jumps between drastically different states over consecutive steps
this approach does not provide a meshing mechanism to generate
intermediate data. That these jumps happen suggests that transi-
tions are missing from the training data, and the generator function
must provide a good approximation of the target features while han-
dling discontinuities, all the while maintaining the texture, person-
ality, and character that was demonstrated to the system.

Our generation approach, a key technical contribution of this pa-
per, is to decompose the motion into its low-frequency (intentional
move to certain relational position) part and high-frequency (texture
of the motion) part and treat them separately.

4.4.1 General Trajectory Generation

The system generates motion using the relative position, normal-
ized look direction, and velocity features. Normalized look direc-
tion is copied directly to output, and a vector is constructed to move
the entity from its current location to the target relative position.
This vector is scaled to the target velocity (Figure 6). Although this
makes the entity move toward the target relative position rather than
be at that position, the velocity scaling in combination with the high
generation rate helps to create very convincing results.

Here we deal with the noise resulting from the BestMatch insta-
bility by applying a simple linear smooth (average) over a history
of three samples. The results of this are very convincing and re-



sult in a more stable, consistent generation. The problem, however,
is that by removing the high-frequency noise we also remove the
high-frequency data, such as the movement detail and texture. We
implemented a fix for this described in the next section.

Another problem with this system is that, even with smoothing, nor-
malized look direction is very noisy. This happens because of the
nature of the normalized look direction itself: if a character keeps
a static look direction in the world, but rapidly changes movement
direction, the normalized look direction (based on movement di-
rection) changes rapidly between drastically different values. In
particular, an entity moving rapidly forward and then backward has
data that alternates between 0 and π. Our solution to this is to limit
rate of change of the actual world-coordinate look direction. This
lowers the amount of noise in resulting look direction, but some
jitter remains. This is an important problem for future work.

4.4.2 Detail Incorporation

To restore the high detail information that was removed from the
generation by smoothing we do frequency analysis using Haar
wavelets, extracting the high-frequency detail from the target and
directly incorporating it into the output. We apply Haar decompo-
sition on the motion direction feature as this captures path texture
irrespective of velocity. A single application of the discrete Haar
decomposition scales our path data to half resolution and stores the
removed high-frequency detail separately. This gives a frequency
cut at fs/2 where fs is the sampling rate: given k cumulative de-
compositions, this cut is at fs/2

k. The resulting k high-frequency
datasets (one per decomposition) can be re-composed to form a
single high-frequency-only signal that we use in our generation.
Our system uses four-level Haar decompositions, a frequency cut
of fs/16, or about 2.5 samples per second. We found this to cap-
ture sufficient detail without affecting general trajectory.

The high-frequency data from the target is used to perturb the gen-
erated (but smoothed) trajectory. While smoothing compensated for
BestMatch instability in trajectory generation, high-frequency
source data cannot be smoothed in the same fashion and so this
instability remains, where interweaving detail from rapidly alter-
nating training locations results in noisy output not coherent to the
training. Our solution applies the detail in patches of sixteen sam-
ples: a target”s source patch is used in subsequent steps until the
end when a new patch is selected. These patches are only 0.4 sec-
onds long so the delay between changed behavior and matching
path detail is minimal and the results are satisfactory.

5 Evaluating Puppet Master

Our evaluation consisted of two parts. The first part of the study,
the artist study, asked participants to design new behaviors using
our system. The second part of the study, the end-user study, asked
participants to interact with pre-modeled behaviors. Our general

Figure 6: Computation of general trajectory. To prevent drastic
jumps, the reactor moves towards the target position with the given
velocity taken from the training data.

goals were to identify weaknesses in our algorithm and interface,
to construct an initial picture of what the users think about the sys-
tem, and to determine how much (and what sorts) of characteristics,
emotions, and personality traits are captured by our system.

We initially conducted a pilot study to evaluate the study protocol
and procedure. 5 participants (2 female, 3 male) joined the artist
pilot and 2 participants (1 male, 1 female) joined the end-user pilot.
These pilots exposed language and questionnaire wording that was
confusing or strongly biased users toward particular responses.

5.1 Experimental Testbed

For the experiments we used the tabletop TUI interface (Sec-
tion 3.2). It was run on a Pentium 4, 3.0 GHz PC, maintaining
around forty frames-per-second for up to about 80 seconds of train-
ing data (a behavior generally requires less, as described below).
For all experiments we used the graphics shown in Figure 7 which
were static textures and were not animated other than changes in
its location and orientation. We use a SMART Technologies 4’10”
x 3’7” high-resolution (2800x2100) rear-projected tabletop display
with plastic pucks on the top to control input (Figure 3). The pucks
are tracked at 100fps by a six-camera Vicon motion-tracking sys-
tem, and the character graphics are drawn on the tabletop surface
directly below the pucks in real time.

5.2 Methodology

5.2.1 Participants

Twenty students (10 per study) from varying disciplines were se-
lected from our university population and paid $15 for participation.
All users reported some to extensive programming experience and
strong confidence with computers. In the artist study (2 female, 8
male), four participants reported artistic experience with three hav-
ing formal training and one identifying herself as an artist, and three
users reported basic animation experience. Ages ranged from 19 to
32 (M=22.8, SD=3.8). In the end-user study (4 female, 6 male),
nine participants reported artistic experience with five identifying
themselves as artists, and four users reported animation experience
(two extensive). Ages ranged from 19 to 27 (M=23.7, SD=2.71).
All participants had no prior exposure to the system and no partici-
pants from the artist study took part in the end-user study.

5.2.2 Procedure

The purpose of the artist study was to see how general users can
use our system to create interactive behaviors. Participants in this
study, in roughly one-hour sessions, were first asked to design five
particular interactive character behaviors given the following key-
words: lover, bully, playful friend, stalker, and afraid. Participants
completed a short written survey about the result and experience
after each behavior. Following, we evaluated the internal validity
of the design by loading the five created behaviors each participant
created in a scrambled order (fixed across participants) and asking
them to interact with, and recognize, each behavior. Participants

Figure 7: The graphics used in our evaluation, designed generi-
cally to avoid conveying particular emotion or personality.



were not notified ahead of time that they would be revisiting and
evaluating their own designed behaviors.

The end-user study was conducted to observe how a general user
reacts to the behaviors created using our system, and whether a
sense of character emotion and personality will emerge. We sub-
jectively selected five behaviors created by participants in the artist
study (one per each of the five behavior types), and participants
were asked to “interact with and explore the characters” for each
behavior in a fixed order. Participants were asked to “describe the
character” in a questionnaire. Particular care was given to avoiding
affective or anthropomorphic language when presenting the task to
the end users. Words such as “personality”, “social”, “behavior”,
“emotion”, etc., were avoided. In the second part of the end-user
study participants were asked to interact with a set of “other” behav-
iors which were in-fact a scrambled set of the previous behaviors.
This time users were asked to match each of the behaviors to the
list of “correct” behaviors as given in the artist study.

5.3 Artist-Study Results

Eight of ten users in the artist study properly identified and la-
beled all five of their own behaviors. Further, in 74% of the be-
havior cases (using 5 point Likert scale) users agreed or somewhat
agreed that they were satisfied with the resulting behavior, and in
22% of the cases they neither agreed nor disagreed. The mean
of the training time across users for accepted behaviors is 32.5
seconds (SD=18.0s, min=9s, max=85s). The average number of
training trials (iterations) required before accepting a behavior was
1.7 (SD=0.9, mode=1 at freq.=56%, max=4 trials). The average
amount of time a user spent testing a generated behavior before ac-
cepting it was 70.0 seconds (SD=68.2s). In 46% of the cases users
disagreed that the generated behavior felt mechanical with 26% nei-
ther agreeing nor disagreeing. In 48% of the cases users agreed that
the behavior felt human-controlled (42% only somewhat) with 26%
neither agreeing nor disagreeing.

In the post-test questionnaire, on seven-point Likert scales, all 10
artist users agreed (5 strongly) that they enjoyed using the system,
while 7 disagreed that the system was frustrating to use (1 strongly
and 2 only somewhat), all users reported that the resulting charac-
ters were fun to play with (6 strongly and 2 somewhat) and 6 users
reported that movement jitter was distracting. The only two users
who failed to fully recognize their own designed behaviors were
also the only two users who did not use puck orientation during
behavior training, resulting in poor quality behaviors.

Four of the artist users were notably highly immersed in the design
process. For example, some made exaggerated faces, noises, and
spoke out loud to the characters while training. For example, an
artist used themes from the movie Jaws while training the “afraid”
behavior, and another commented “what a jerk!” when observing
the designed “bully” character.

Users generally expressed excitement about and satisfaction with
the capabilities of the system: “the system responded accurately
and behavior was smooth, human-like, with a human touch”, “it”s
even a better stalker than I am!”, “it almost looks as if someone
is controlling it.”, “it did exactly as I wanted! Very entertaining!
(maybe it”s just me?)”, “nailed it!”, “I like it! I can see its bright
future in entertainment, gaming, and teaching”, “the playful friend
is a hoot!” Several users also commented on the robustness of the
system, and one user was excited that the system “even reacted con-
sistently with what [he] thought of after the fact.” Also, most users
enjoyed the TUI tabletop system, with one user stating that it was
“super easy and intuitive to operate. Instant results.”

On the other hand, several users reported issues with the system,

commenting on the resulting generation as well as the simplicity
of our system: “it felt a bit mechanical with some movements”,
“as complexity of behavior rises it feels more mechanical”, “if you
pause to catch your breath, the system takes it as deliberate behav-
ior”, “I need to try more complicated behaviors”, “this setup cannot
interpret smaller actions that well”, “he doesn”t have hands so I
can”t punch”, “difficult to imagine what one pretty slime does to
bully another pretty slime.” Further, six of the ten users had issues
with occluding the Vicon markers on the controller puck.

5.4 End-User-Study Results

In the first part of the end-user study users were simply asked to
interact and describe prototype characters (without being prodded
to look at behaviors or emotions). Here, on a six point scale titled
“the character felt...” ranging from “extremely mechanical” (1) to
“somewhat mechanical” (3, 4) to “not mechanical at all” (6) the
average response across all behaviors was 4.04 (SD=1.19,Mode=4
at 36% frequency). On another scale ranging from “a human is
controlling it” (1) to “somewhat lifelike” (3, 4) to “not lifelike at
all” (6), the average response was 3.4 with a mode of 5 at 24%.

To our pleasant surprise, out of the 50 cases (5 behaviors across 10
participants), characters were identified using the exact keywords
used in the artist study 9 times, and 10 times using very similar
words (for example, “girlfriend” instead of “lover”, “naughty, try-
ing to bug me” instead of “bully”). Out of the 10 participants, 2 did
not match any behaviors, 2 matched 1 behavior, 3 matched 2 behav-
iors, 1 matched 3 behaviors, and 2 users matched 4 behaviors cor-
rectly. Furthermore, in the open-ended questionnaires 52% of all
end-users behavior descriptions were using social and behavioral
descriptions (28% purely social), 34% of all the descriptions were
using mechanical language (18% purely mechanical), with 14% be-
ing roughly a half-half mix.

For the second part of the end-user study, participants were asked
to match the five behaviors against the original keywords used. The
results are given in Table 1, with the diagonal showing the number
of end-users, out of 10, who managed to match the pre-designed
behavior to its exact keyword.

Overall, at the final open-ended questionnaires, 4 users agreed that
the characters actions were sometimes confusing (1 somewhat), 1
neither agreed nor disagreed, and 5 users disagreed (1 strongly, 1
somewhat). One strong observation throughout the entire end-user
study is that users tended to see social characteristics and used an-
thropomorphic language. For example, end users mentioned that:
“although they are just results of programming languages, they re-
flect social interactions and peoples” traits”, “exhibit human be-
havior somewhat naturally at 2D level”, “the guy who kept sucker-
punching”, “each one could bring to mind some real-life analogy”,
“he needs more confidence”, “I liked the part when it came close

Table 1: How participants matched behaviors to original designs.



to my character and kind of hugged it, kind of like a dog who is
happy to see you”, “He keeps trying to either hit you or kiss you”,
“like an annoying kid brother in my face”, “he [the stalker] seemed
like he wanted to approach me, but he was too shy”, “facing it and
watching it panic like it had been discovered somewhere where it
shouldn”t be was fun”, “she [playful friend] is like a little sister who
wants to talk to me.“

User were asked on the final questionnaire to describe the things
they liked and disliked about each character. While some of these
comments were analysis oriented, such as “it felt very mechanical
because I could figure out what it was going to do next” or “ac-
tions were vague, subject to interpretation”. Many of the comments
referred to the participant”s opinion of the character”s personal-
ity. For example, for the afraid character (which stayed away from
the participant”s character) one user wrote “I didn’t really like any-
thing, didn”t even give me a chance to get to know him”. Similarly,
participants mentioned behavioral-personality attributes when they
were asked what they disliked about characters, for example “tries
to invade my personal space. I like a nice personal space bubble”,
or “it doesn’t feel friendly!”

Similar to the artist study, some participants in the end-user study
also commented that the characters felt a bit fake when the jitter
was too noticeable and several participants complained that the per-
sonalities were too simple and wanted additions: “the personalities
were very blunt, they were easy to see”, “I wish they could touch
each other”.

All end-user participants reported enjoying the experiment (6
strongly agreeing). 7/10 users reported the pucks frustrating to use
(all of these users commented on how easy it was to occlude the
Vicon markers), with the remaining 30% disagreeing or strongly
disagreeing. However, several users commented that the table was
“easy to use” and “intuitive”.

6 Discussion

We believe that these results help to support several of our claims
about Puppet Master. The fact that 80% of our artist study par-
ticipants recognized 100% of their own behaviors and reported
strongly that they were satisfied with the results suggests that our
algorithm successfully supports some level of artistic expression
and captures a sufficient and valid set of details and personality-
related characteristics for recognition by the designer. Also, this
combined with the fact that this was accomplished with no training
at on average 32.5 seconds shows that, for even the slower outliers
(such as the 85-second case), our algorithm allows artists to create
recognizable behaviors in significantly less time than it would take
to program it. Finally, that this was accomplished in on-average
1.7 training attempts for the first time using this system shows that
the designers were able to satisfactorily create their behaviors fairly
easily and without several iterations, but also that the real-time re-
training and generation enabled the artists to flexibly explore de-
sign possibilities. For the two users who did not use orientation in
their training and got weak results, this exposes a drawback related
to the orientation input in our algorithm. We believe that a short
orientation-input training session could have resolved this issue, or
alternatively that the system could be modified to focus more on
orientation-independent features.

The end-user part of our study demonstrated that without telling
users to look for personalities, in 38% of the cases not only that
behaviors emerged, but they closely matched the artist keywords
based on motion only (Table 1). We believe that this supports our
claim that our algorithm captures the personality and style of the
demonstrated behavior. Further, the results in Figure 3 seem to
hint at crosstalk between similar behaviors: for example, afraid

and stalker are often mistook for each other while lover, bully, and
friend are rarely mistaken for stalker or afraid. This shows that,
even in the cases where behaviors are not matched properly, there
is still a strong component of feeling and style captured from the
demonstrated data.

Finally, both studies suggest a strong sense of user engagement.
The combination of the explicitly positive study results, the verbal
excitement, as well as the fact that people tended to extensively use
social and anthropomorphic language suggests that the participants
were interested and mentally involved with the design process and
the characters they interacted with.

7 Limitations and Future Work

Our current implementation does not handle behavioral dynamics
over a larger time scale. For example, our current algorithm will fail
to accurately represent an angry character gradually calming down.
We believe that such challenges can be approached by exploring
high-level features and multi-resolution similarity searches that can
potentially represent higher-level behavior patterns. It is also useful
to consider how this work can combine with other behavior models
and systems for a multi-level solution, and to understand the abso-
lute limitation of our approach, that is, when high-level behavior
changes may be better designed using scripting and explicit states.

Extending our system to account for environmental issues such as
barriers (wall, tree, etc) or terrain type would dramatically improve
its versatility and power. Related to this, extending our system to
several simultaneous entities (not just two) is an exciting prospect
that would allow swarm-like behavior with individual personalities
through demonstration, for example, to train a group of archers and
knights to storm a castle. There is a system that learns crowd be-
havior from examples [Lerner et al. 2007], but they mainly focuses
on collision avoidance. We are interested in allowing artists to in-
teractively design more intentional crowd behaviors.

An important future work is to apply our method to the design of
real robot behaviors. As an initial step, we are thinking of replac-
ing physical pucks and tabletop displays with mobile robots such as
curlybot [Frei et al. 2000]. The physical movement of these robots
can give stronger impression of personality and emotion than vir-
tual characters. Physical motion introduces severe constraints on
motion synthesis (e.g. robot cannot jump to distant position), but
many of the techniques developed in this work such as similarity-
coherence balancing and trajectory-texture separation should be ap-
plicable to real robots, too.

Our ultimate goal is to design all aspects of character behavior, not
just locomotion, responding to various input such as dancing to mu-
sic, sword-swing against an opponent, and meow noise of a cat re-
sponding other meow noise. These are all exciting prospects for
extending this work.

8 Conclusion

Believable, convincing, and stylistic interactive behavior is an im-
portant aspect of any computerized entity that must interact with
humans, such as avatars, video game characters, or even robots.
Traditionally, the creation of such a system has been left to logi-
cal, step-by-step computer algorithms; tools generally out-of-reach
for non-technical artists and ill-designed for the creation of stylistic
behaviors. In this paper we presented the first system that enables
the programming of interactive behaviors by demonstration with
real-time generation, making the creation of believable, stylistic in-
teractive characters accessible to the non-technical artist.
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