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ABSTRACT 

Four key observations associated with the formation of fire scars on trees are 

explained using fluid dynamics and heat transfer processes. (1) When a fire passes 

by a tree, its length increases on the tree's leeward side because two leeward vortices 

form. The flame. height increases once in the vortices because the turbulent mixing 

of fuel and air is suppressed. The flow of gaseous fuel in the vortices becomes 

greater than the rate of mixing with the air and hence there is an increased length 

along which combustion can occur. (2) Fire scars are found only on the leeward side 

of trees because the vortices increase the residence time of the standing leeward 

flame. (3) Small trees rarely have fire scars because their cambium is usually 

completely killed by the passing fire and/or their foliage is killed by crown scorch. 

(4) Fire scars are usually triangular because the temperature isotherms in the 

standing leeward flame are triangular. 
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INTRODUCTION 

The process-response approach to solving ecological problems couples a disturbance 

process to the biophysics of an organism and this in turn to an ecological effect 

(Johnson 1984). The advantage of this approach is that all parts of the causal 

pathway must be defined. One commonly observed ecological effect lacking this 

coupling is fire scars on trees (Figure 1). A fire scar is a result of partial cambial 

death at the base of a tree. There are at least four phenomena associated with the 

formation of fire scars on trees: 1) when a fire passes by a tree (either a head or 

backing fire) it increases in height on the leeward side of the tree (relative to the 

wind direction); 2) fire scars are found only on the leeward side of trees; 3) small 

trees rarely have fire scars; and 4) fire scars are usually triangular shaped, becoming 

narrower with height. 

Past studies investigating fire scar formation have explained some aspects of the 

above four phenomena; however there have been few causal mechanisms given. Gill 

(1974) and Gollahalli and Brzustowski (1971) found that when a fire passed by a 

tree, it increased in height on the leeward side of the tree. Gill (1974) recognized 

that the presence of this standing leeward flame was related to tree diameter, wind 

speed and position of the tree relative to the flame; however, he gave no explanation 

of the mechanisms that result in this increased flame height. Fahnestock and Hare 

(1964), Hare (1965a), and Tunstall et aL (1976) found, in wind blown fires, that the 
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Figure 1. A typical fire scar on Pinus banksiana. Notice the triangular shape, 

decreasing in width with height. Photo by E.A. Johnson. 
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temperature is significantly higher on the leeward side of a tree, compared to all 

other sides. Fahnestock and Hare (1964) recognized that the increased heating on 

the leeward side of a tree is due to the chimney effect of a convection column but 

there is no explanation given for how this chimney effect occurs. A number of other 

studies (Hare 1961, Martin 1963, Fahnestock and Hare 1964, Gill and Ashton 1968, 

Hare 1965b, Spalt and Reifsnyder 1962, Tunstall et aL 1976, Vines 1968) have found 

that bark is important in preventing cambial damage by fire. Specifically, Hare 

(1961), Martin (1963), Spalt and Reifsnyder (1962), Hare (1965b), Vines (1968) and 

Gill and Ashton (1968) showed that the thermal properties and thickness of bark are 

important in preventing cambial death. Spalt and Reifsnyder (1962) and Vines 

(1968) give a semi-infinite slab model for the conduction of heat through bark. The 

model shows that the time it takes to kill the cambium through the bark is directly 

related to the square of bark thickness. Hare (1965b) and Vines (1968) confirm 

empirically that the time required to raise the cambium to a lethal level of 60°C is 

directly proportional to the square of bark thickness. These studies will be addressed 

later within the heat transfer mechanisms. 

The purpose of this thesis is to present the mechanisms which lead to cambial death 

and the formation of fire scars on trees. First , I will present each of the mechanisms 

of fire scar formation, then I will give the methods used to test the proposed 

mechanisms and finally I will give evidence to show that the mechanisms proposed 

seem to explain all of the above four phenomena. 
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Mechanisms of Fire Scar Formation 

The mechanisms which cause cambial death at the base of a tree will be discussed 

as follows: 1) air flow around a tree and the formation of leeward vortices; 2) the 

position and flow pattern of leeward vortices; 3) the interaction of leeward vortices 

with a free moving turbulent diffusion flame, causing differential heating around the 

base of a tree; and 4) heat transfer through the bark, from the standing leeward 

flame, which kills the cambium. 

Air Flow and the Formation of Leeward Vortices 

As air flows around the bole of a tree, a reverse flow occurs on the leeward side of 

the tree which produces a pair of vortices. This phenomenon is a well described 

process of separated flow behind a cylinder (von Kármn 1921, Goldstein 1938). The 

formation of these vortices depends on the upstream wind velocity, U (m/s), 

diameter of the tree bole, d (m), and kinematic viscosity of the air, t. (m2/s). These 

variables can be combined to form the Reynolds number (Re), 

(1) 

The Reynolds number is a dimensionless number which characterizes air flow 

patterns and the formation of leeward vortices (Figure 2). Kinematic viscosity 

increases with an increase in air temperature as a fire approaches a tree; however 

the effect on the flow pattern is small relative to the effects caused by wind velocity 

and tree diameter. For example, at 0°C the kinematic viscosity is 1.32 x 1075 m2/s, 
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Figure 2. Flow patterns of air around a tree bole as characterized by the 

Reynolds number. 
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while at 40°C the kinematic viscosity is 1.69 x i0. If tree diameter = 0.2 m and 

wind speed = 0.6 m/s, then the Reynolds number at 0°C = 9.1 x iø, while the 

Reynolds number at 400 = 7.1 x iO. Notice the order of magnitude has not changed. 

Consequently, the flow pattern is governed primarily by wind velocity and tree 

diameter. When the Reynolds number is less than 5, the flow around a tree is 

laminar (Figure 2a). Between 5 and 40, a pair of adjacent vortices form on the 

leeward side of the tree (Figure 2b). Above 40, the vortices will alternately detach, 

producing a wake of vortices called a vortex Street (Figure 2c). Notice that, with a 

constant wind speed, trees with a smaller diameter will have lower Reynolds numbers 

than larger trees. 

The Position and Flow Pattern of Leeward Vortices 

The vortices on the leeward side of a tree are located between the two points of flow 

separation. Separation occurs where the air flow in the boundary layer along the 

surface of the tree bole no longer follows the contours of the tree (see Figure 2b). 

The point of separation depends on the value of the Reynolds number in the 

boundary layer along the tree. If the Reynolds number is less than 3 x iø, then the 

flow will separate at 82° (Potter and Foss 1975) from the front stagnation point 

(Figure 2b). The boundary layer undergoes a transition from laminar to turbulent 

flow when the Reynolds number is between 3 x W and 3.5 x 106 (Figure 2e). The 

increased turbulence in the boundary layer is trrn sported by momentum from the 

free moving air to the slowly moving air in the boundary layer. This moves the 
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separation point to a greater distance downstream on the tree, to 1100 (Figure 21). 

The position of the separation points at the base of a tree corresponds to the outer 

edges of the killed area on a fire scar. 

Each vortex on the leeward side of a tree consists of two zones of flow: an outer 

zone of flow which is irrotational and an inner zone of rotational (solid body) flow 

(Figure 3). In the irrotational zone, the flow is translated around the inner zone with 

little rotation, that is, with no change in the fluid's orientation. For this orientation 

to be maintained, the air particles in the outermost region must have a lower 

tangential velocity than the air particles nearer the centre (Figure 4). The tangential 

velocity and radius in the inner zone of rotational flow have the opposite 

relationship. The air nearer the centre has a lower tangential velocity than air 

towards the outer edge of the zone and angular momentum is conserved (Figure 4). 

Consequently, particles in the rotational zone will change their orientation as they 

rotate (Figure 3). Conservation of angular momentum simply means that no matter 

where you are in the vortex core, there will be a constant value of angular 

momentum, since momentum is a function of particle mass, tangential velocity and 

radius of the vortex core. These patterns of flow play an important role in explaining 

the presence of the standing leeward flame as a free moving flame passes by a tree. 

The Interaction of Leeward Vortices with a Turbulent Diffusion Flame 

In forest fires, the free moving flame is a turbulent diffusion flame. It is turbulent 
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Figure 3. The patterns of flow in a vortex showing the zones of irrotational and 

rotational flow. If we follow the path of a particle, we can see how 

particle movement is different in each flow region. Notice that the 

orientation of a particle changes as it moves around the zone of 

rotational flow while its orientation does not change in the irrotational 

zone (ie. it is translated). 
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Figure 4. The tangential velocity, U, distribution in a vortex (where U = 2irf, 

where f is frequency of rotation). Tangential velocity increases from 

the centre (radius = 0) of the vortex to the outer boundary of the 

rotational zone and then decreases through the zone of irrotational 

flow, following Chigier et aL (1970). The symbols represent different 

heights in the vortex at which tangential velocities were measured. 
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because the Reynolds number of the flame is greater than 3.5 x 106 (Ref = dfUf/u, 

where df is the diameter of the flame and Uf is the vertical velocity of the fuel). A 

diffusion flame is one in which the gaseous fuel and oxygen are brought together by 

molecular and/or turbulent diffusion and combustion occurs along the visible flame 

boundary. Another type of flame, a premixed flame, is one in which the gaseous fuel 

and oxygen are mixed before combustion occurs. The combustion reaction involves 

the chemical decomposition of fuel by heating (called pyrolysis), followed by ignition. 

A fire scar will form only on the leeward side of a tree because there is differential 

heating around the base of a tree when a free moving flame passes by the tree. 

Differential heating is a result of the leeward vortices increasing the residence time 

of the free moving flame on the tree's leeward side, compared to the residence time 

on the tree's windward side. The residence time, r f (sec), of a free moving diffusion 

flame on the windward side of a tree is a function of the depth of the flame, w (m), 

and its rate of spread, R (m/sec), and is given by 

(2) 

Figure 5 shows the passage of a free moving diffusion flame by a tree. As soon as 

the base of the flame reaches the centre of the periphery of the tree (Figure 5b), part 

of the flame is drawn up into the centres of the leeward vortices, producing a 

standing leeward flame. In effect, the flame depth is increased by a distance of one 

half tree diameter. The standing leeward flame increases in height as the free 



15 

Figure 5. A diagrammatic representation of what happens as a free moving 

diffusion flame passes by a tree. When the front (or back) of a free 

moving flame (a) reaches the centre of a tree, the flame increases in 

height on the leeward side of the tree, producing a standing leeward 

flame (b). The standing leeward flame increases in height as the flame 

passes by the tree (c) and then begins to decrease when only the 

trailing edge of the free moving diffusion flame is in the leeward 

vortices, up to one and a half tree diameters downstream of the tree 

(d). Once out of the vortices the standing leeward flame disappears 

(e). 
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moving flame passes by the tree (Figure Sc and 5d). It persists until the trailing end 

of the fire leaves the vortices on the leeward side of the tree (Figure 5e). In effect, 

the flame depth is increased by a distance of approximately one and a half tree 

diameters. In total, the flame depth is increased by a distance of two tree diameters 

when a free moving flame passes by a tree. Consequently, the residence time of the 

standing leeward flame is given by 

w2d 
- —+(-.--) 

£ R R 
(3) 

where d is diameter. (m) of the tree. The increase in depth of the free moving flame 

results in an increased residence time on the leeward side of the tree by a factor of 

2d/R (hereafter called the leeward factor). 

When the front of a free moving diffusion flame reaches the centre of the periphery 

of a tree, it is drawn horizontally into the tree's leeward vortices through the 

boundary layer along the ground. This horizontal draw is a result of the ground 

slowing down the rotational motion in the vortices, creating a radial pressure gradient 

in each vortex core. The lower pressure in the centre of each vortex core adds 

buoyancy to the core and pushes the gaseous fuel in the boundary layer toward the 

axis of each vortex. The gaseous fuel continues to add to the buoyancy as it burns, 

while rising in the vortex core (Emmons and Ying 1967). 
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The flame increases in height once it is in the vortex cores because the rotation of 

the gaseous fuel in and at the boundary of the vortex cores (see Figure 4) decreases 

the turbulent mixing of fuel and air (Emmons and Ying 1967). Turbulence is 

reduced because the centrifugal force in the zone of irrotational flow opposes the 

movement of gaseous fuel toward the axis of the vortex core by angular momentum. 

As a result, the buoyancy of the rising core is not rapidly decreased by mixing and 

therefore a large buoyant pressure difference is produced in the very high, relatively 

small diameter buoyant core. The rate of mixing with the air decreases in the 

standing leeward flame since the rotation restricts the entraimnent of air from the 

surroundings into the vortex cores and results in a confinement of the flames within 

the vortex cores. The consequent delay in the rate of mixing between the ground 

fuel and surrounding air results in a considerable increase in flame length (Chigier 

et al 1970). In effect, the flame length increases because the flow of gaseous fuel in 

the vortex cores is now greater than the rate of mixing with the surrounding air and 

hence there is a greater length along which combustion can take place (Emmons and 

Ying 1967, Chigier et al. 1970). 

Differential heating around the base of a tree is also due to a higher temperature in 

the standing leeward flame compared to the free moving diffusion flame. The 

rotation of the fuel in the vortex cores increases the combustion rate of fuel and air. 

The temperature through the centre of the standing leeward flame is higher because 

the flames in the two leeward vortices radiate towards each other. 
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Heat Transfer from the Standing Leeward Flame 

A fire scar is a result of partial cambial death at the base of a tree. Death in the 

cambium occurs when the heat flux from the standing leeward flame penetrates the 

bark and kills the cambium. It is assumed that heating of the leeward side of the 

tree is unidirectional, that is, the heat flux is from the leeward flame and not from 

heat penetrating the tree stem from the windward side of the tree. Further, because 

heating is only for a brief period (seconds to minutes) and the bark has low thermal 

conductivity, the time required for the stem to experience a temperature change will 

be a function of both the residence time of the flame and the thickness of the bark. 

After the flame is removed, the temperature in the cambium through the bark will 

decrease, as shown in Figure 6. 

Results from this trRmsient heating can be described by Fourier's Law of Conduction 

(Sucec 1985): 

(4) 

where the rate of change of the excess temperature ratio, 0, within the bark, x (m), 

is equal to the inverse of the thermal diffusivity, a (m2/s), multiplied by the rate of 

change of the excess temperature ratio with respect to time r (s). The excess 

temperature ratio is given by 
T-T cf 
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Figure 6. Temperatures in the cambium 'through the bark as a constant heat• 

source is applied to the outside of a tree and then removed, from Gill 

and Ashton (1968). 
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where T is the lethal cambium temperature (°C), Tf is the temperature (°C) in the 

flame and T. is the temperature (°C) of the cambium before heating occurs. 

Thermal diffusivity gives the rate at which temperature changes within the bark when 

its surface temperature changes. For equation 4, the following initial and boundary 

conditions were set: 

1) at x = 0 and r > 0, -bO = -k(aO /8x); 

2) as x - co  and r > 0, 0 remains finite; 

3)atr=0 and 0<x< co, 0=00=T0-Tf, 

where h is the surface coefficient of heat trRnsfer (W/m2 °C) and k is thermal 

conductivity (W/m °C). If we solve equation 4 according to the above conditions, we 

obtain the result for the excess temperature ratio of the bark. It is assumed that the 

bark: has a surface coefficient of heat trrnsfer h; is initially at temperature T0; and 

is then exposed to a flame of temperature Tf. This leads to the following equation: 

T,-Tferf ( X  )+exp(!E+ h2ar)x[l...e,f ( X  (5) 
00 TO-Tf 2/ Ic Ic2 2f k 

where erf is the Gaussian error function. Values of the error function, which defines 

the error associated with the excess temperature ratio, can be found in books with 

mathematical tables (eg. Abramowitz and Stegun 1964). Once the bark surface (x 

= 0) reaches the flame temperature, the surface coefficient of heat transfer 

approaches infinity (h -+ oo). This eliminates the terms to the right of erf(x/2Tar), 

on the right hand side of the equation. Thus, the heat flux required to kill the 

cambium can be calculated using 
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T x 
c-T ). (6) 

2 

In order to solve equation 6, the value of (x/21ar) must first be calculated. By 

knowing the lethal cambium temperature, T, temperature of the cambium before 

heating occurs, T0, bark thickness, x, thermal diffusivity, a, and residence time, r 

(calculated using equations 2 and 3), one can easily determine the flame 

temperature, T1, required to kill the cambium. Conversely, by knowing T, Tf, T. and 

a, one could similarly determine the residence time r required to kill the cambium 

over a range of bark thickness. For example, if T = 60°C, Tf = 500°C, To = 20°C, 

a = 1.35 x i0 m2/s and erf() = 0.917, then the residence time r (see), required to 

kill the cambium is given by 

v-1.24x1O6x2 (7) 

where the constant (1.24 x 106) is dependent on T, Tf, T. and a. This is the same 

scaling value (ie. 2 in equation 7) that was found empirically by Hare (1965b) and 

Vines (1968). By heating the bark on trees using various methods, and measuring 

the temperature reached on the bark surface and in the cambium, they observed that 

the time required to kill the cambium (ie. Tc ≥ 60°C (Kayll 1968)) was a function of 

the square of bark thickness. Given the above conditions, a tree with bark thickness, 

x = 0.01 m for example, would require a residence time, r = 122 s, to kill the 

cambium. 
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METHODS 

The mechanisms of partial cambial death were tested in a scaled down laboratory 

model (Figure 7), similar to that used by Gill (1974). The laboratory model is 

equivalent to tree boles in the field because the same air flow pattern can be 

obtained when the Reynolds number is the same. For example, a tree, 0.2 m in 

diameter, where the wind speed is 0.33 m/s (u is held constant at 1.5x10 5 m2/s) 

yields Re = 440, a flow pattern of alternately shedding vortices. In the laboratory, this 

same flow pattern (Re= 440) can be observed in a much smaller tree, 0.02 m, if the 

wind speed is increased to 3.3 m/s. 

The laboratory set-up consisted of an open circuit, open jet, low speed wind tunnel, 

equipped with two honeycomb screens which acted to reduce the swirl and 

turbulence of the air created by the fan. The working section of the wind tunnel 

consisted of an asbestos bench with a burner fitted through the bench such that the 

burning surface and bench top were part of the same plane. The flame through the 

burner was turbulent (Ref> 3.5 x 106, where df is diameter of the burner and Uf is 

vertical velocity of the gas). The surface was roughened by placing small pea-sized 

gravel from the fan through to the working section. Metal cylinders, 0.95 cm, 1.25 

cm and 1.9 cm in diameter, were used to simulate tree boles. The wind speed was 

regulated by a rheostat transformer and measured in the working section using a 

Datametrics 100 VT air flow meter and hot wire anemometer. Wind speed was 
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Figure 7. The laboratory set-up, including a wind tunnel equipped with a 

laboratory fan, diffusion flame and cylinder, used to simulate the 

passage of a free moving diffusion flame by a tree. 
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measured at 1 cm intervals of height from the burner mouth. The wind tunnel was 

found to have a logarithmic wind profile similar to that found under a forest canopy 

(Albini and Baughman 1979). The length of the wind tunnel allowed a steady state 

wind profile to develop. For a steady state wind profile, the length of the wind 

tunnel was 200x the height of the surface roughness element (Monteith 1975). Wind 

speed at 1 cm above the surface was used to calculate the Reynolds number for flows 

around the cylinder. 

To determine whether the points of flow separation correspond to the outer edges 

of a fire scar at the base of a tree, 242 discs were cut from fire scarred trees. The 

angle from the centre of the windward side of the tree to the outer edge of the killed 

area were measured on discs taken from fire scarred Pinus banksiana Lamb. from 

Prince Alberta National Park, Saskatchewan. Notice that angles were measured on 

discs from fire scarred trees since the entire killed area (especially the outer edges) 

are usually not visible from an intact tree. 

To determine the difference in temperature between a free moving diffusion flame 

and a standing leeward flame, the vertical temperature profile of each flame type was 

measured using an Omega 872A digital thermometer with Omega chromel alumel 

bare wire thermocouples and NMP miniature sized connectors. The thermocouple. 

wire was 1 mm in diameter and 31 cm in length and was encased in a cerRmic tube 

for insulation. The temperature of the flame was measured at the centre, starting 



28 

at the base and for every 1 cm in height. Re-radiation from the metal cylinder into 

the standing leeward flame was found to be negligible since temperature 

measurement was done before sufficient heating occurred. The temperature within 

the standing leeward flame was measured through the centre, 4 mm (horizontally) 

from centre, 8 mm from centre and 10 mm from centre, approximately 2 mm from 

the cylinder wall. 

RESULTS AND DISCUSSION 

The width of a fire scar at the base of a tree should be determined by the angle of 

separation of flow on the leeward side of a tree. This was established by comparing 

the theoretical angles of flow separation (82° when Re < 3 x i0 and 110° when Re 

> 3.5 x 106 (Potter and Foss 1975)) to the angle to the edge of the killed area on fire 

scarred trees in the field (Figure 8). 

Figure 9 shows a frequency distribution of angles from the centre of the windward 

side of the tree (see Figure 2b) to the outer edge of the killed area on 242 fire 

scarred Pinus banksiana. The distribution of angles appears to be bimodal, with the 

two modes at 85°-95° and 115°-125°. The theoretical angles of separation (82° in a 

laminar boundary layer and 110° in a turbulent boundary layer) do not fall exactly 

within the peaks of the two modes, rather the peaks are at slightly larger angles. 

This shift is not too surprising since we would expect the scar to extend, at most, to 
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• Figure 8: A diagram of a fire scarred tree disc showing how the.angle from the 

front and centre of the tree to the outer edge of the fire scar was 

measured on trees from the field. 
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Figure 9. Measures of the angle from the centre of the windward side of the tree 

to the outer edge of the fire sar on 242 fire scarred Pinus banksiana 

from Prince Albert National Park, Saskatchewan. The arrows indicate 

the theoretical angles of separation in a laminar (82°) and turbulent 

(1100) boundary layer. 
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the position of the separation points, since the leeward flame is killing the cambium. 

The spread around these two peaks seems to be a result of slight differences in the 

height at which angles were measured on the tree. 

The occurrence of fire scars on the leeward side of a tree is a result of the heat flux 

from the standing leeward flame penetrating the bark and killing the cambium. Fire 

scars form on the leeward side of a tree but not on the windward side because: 1) 

the residence time of the standing leeward flame is longer than the residence time 

of the free moving flame on the windward side of a tree; and 2) the temperature in 

the standing leeward flame is greater than in the free moving diffusion flame. 

The increase in residence time on the leeward side of a tree leads to differential 

heating around the base of a tree. In order to show this differential heating the 

critical flame temperature required to kill the cambium on the windward and leeward 

sides of a tree were plotted (see axes on Figure 10). The critical temperature 

required to kill the cambium was calculated using equation 7 over a range of bark 

thickness' (0.004 - 0.03 m). For each bark thickness, the critical flame temperature, 

T1, required to kill the cambium was calculated using thermal diffusivity a = 1.35 x 

'Equation 7 was solved for both the windward and leeward sides of a tree, over 
a range of bark thickness, to see how the critical temperature to cambial kill changes 
as bark thickness increases. Since tree diameter increases with an increase in bark 
thickness (eg. x = 0.037d + 0.004 for Pinus banksiana), the effect of an increasing 
tree diameter on the leeward residence time could also be determined (see equation 
3). 
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Figure 10. The critical temperatures for cambial kill were calculated using 

equation 7 (see text for explanation). Differential heating increases 

with a decrease in the rate of spread, except where tree diameter is 

very small. 
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i0 ma/sec (Spalt and Reifsnyder 1962), temperature of the cambium before heating, 

T. = 20'C, and lethal cambium temperature, T = 60°C. The residence time r on 

the windward and leeward sides were calculated using equations 2 and 3 respectively, 

where depth of the flame was held constant at 2 m. 

In Figure 10, where slope = 1, the temperature required to kill the cambium is the 

same on the windward and leeward sides of the tree (ie. there is no differential 

beating). This occurs when the rate of spread of the fire is very fast (residence time 

very low), regardless of the tree diameter. Examination of the leeward factor (2d/R) 

in equation 3 shows that a very high rate of spread will result ma very low leeward 

factor such that the increase in leeward residence time over the windward residence 

time becomes negligible, no matter how large the tree diameter. In effect, both the 

leeward and windward sides have the same residence times when the rate of spread 

is very fast. 

In Figure 10, where slope > 1, the temperature required to kill the cambium 

becomes higher for the windward side compared to the leeward side (ie. there is 

differential heating). This occurs when the rate of spread becomes slower than it is 

at slope = 1. As the rate of spread decreases further, differential heating increases, 

resulting in a steeper slope. Examination of equation 3 shows that as the rate of 

spread decreases, the leeward factor increases, causing a significantly greater leeward 

residence time compared to the windward residence time. Notice that the slope of 
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the curve will never be less than one since the windward residence time will never 

be greater than the leeward residence time. In other words, the windward 

temperature will always have to be the same or higher than the leeward temperature 

in order to kill the cambium on the windward side of a tree. 

Why do the lines in Figure 10, representing different rates of spread, converge at 

lower critical temperatures? Examination of equation 3 shows that small diameter 

trees will not significantly increase the residence time of the leeward flame and so 

the critical temperature to cambial kill will be almost the same on both the windward 

and leeward sides of the tree. Thus, if the flame temperature is high enough to kill 

the cambium on the leeward side of the tree, then the cambium on the windward 

side of the tree will also be killed. This will result in complete cambial kill around 

the base of the tree and rapid tree mortality. This seems likely to occur since small 

diameter trees also have thin bark. Consequently, it appears that we rarely see fire 

scars on small trees because their cambium is usually completely killed around the 

base of the tree which results in tree mortality. In addition to this explanation, 

Appendix 1 shows that small trees have crowns that are typically close to the ground 

such that even low intensity fires will cause tree mortality from crown scorch. 

In addition to an increased residence time of the standing leeward flame, the 

temperature in the standing leeward flame is higher than the free moving diffusion 

flame. Figure 11 shows the one dimensional vertical temperature, measured through 



38 

Figure 11. The vertical temperature distribution in a standing leeward flame 

compared to the free moving diffusion flame of the same height. The 

arrows indicate the average height of the flames. 
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the centre of a standing leeward flame, compared to a diffusion flame of the same 

height. In both the leeward flame and free moving diffusion flame, temperature 

increases from the base of the flame and reaches a maximum at a height 

approximately 40% of the height of the flame, and then decreases with a further 

increase in height. At all heights the standing leeward flame is higher in temperature 

than the diffusion flame. The increase in temperature in the standing leeward flame 

is due to an increase in the burning rate of fuel and air in the vortex cores (E=ons 

and Ying 1967). The mechanism responsible for this increased rate of combustion 

has not yet been studied and is beyond the scope of this paper. 

Why is the cambium often killed in a triangle shape? Figure 12 shows the two 

dimensional temperature distribution of the standing leeward flame in Figure 11. 

The temperature is highest at the centre of the flame, at a height approximately 40% 

of the height of the flame. Temperature decreases toward the sides and top, with 

isotherms approximating a triangular shape. Notice that the temperature is not 

higher through the centre of the vortices (± 4 mm radius), as may first be expected. 

Rather, the temperature is highest through the centre of the flame, between the two 

vortices. As shown by Emmons and Ying (1967), inside each vortex is a cool fuel 

rich core which burns as it rises from the ground surface. The highest flame 

temperatures occur at the vortex boundaries, where the rate of combustion is 

greatest. It appears that the heat from the flame boundaries in both vortices radiate 

towards each other, increasing the temperature in the centre of the flame. The outer 
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Figure 12. The two dimensional temperature distribution within the standing 

leeward flame shown in Figure 11. The innermost isotherm, 500°C, for 

example, encompasses all regions that are 500°C or higher. The 

temperature is highest at the centre of the flame, at a height 

approximately 40% of the height of the flame. Temperature decreases 

toward the sides and top. Notice the triangular shape of the isotherm 

for 200°C. 
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edges of the flame do not experience the same increase in temperature because of 

the cooling effect of the surrounding air. 

CONCLUSIONS 

The causal mechanisms have been given for four key observations associated with 

fire scar formation on trees. It is interesting that the present explanation uses largely 

existing understandings. Despite some excellent attempts at determining how fire 

scars form on trees, there has been some difficulty in determining how fires cause 

this ecological effect. Critical to determining the mechanisms was having a clear 

understanding of: the formation of vortices on the leeward side. of a tree; the 

interaction of rotational and irrotational motion in a vortex which suppresses 

turbulence and produces a standing leeward flame; and the heat tnrnsfer from the 

standing leeward flame which kills the cambium. It is clear from this explanation 

that much of the folklore surrounding fire scar formation can now be addressed. 

Trees survive fire and have fire scars because there is differential heating around the 

base of a tree. The cambium is not completely killed because, in most cases, the 

residence time and temperature is high enough only on the leeward side of the tree. 
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APPENDIX 1. 

Fire scars are rarely found on small trees because their cambium is completely 

killed around the base of a tree and/or their crowns are typically near the 

ground, such that their foliage is often killed by crown scorch. A well 

established relation (cf.Thomas 1963)1 shows that the temperature reached at 

any height, h (m), above a fire depends on the fire intensity, I (kW/m) and the 

ambient temperature To (°C): 

1213 
ha— 

T 

Using this relation, and empirical measures, Van Wagner (1.973)2 found that 

the height of crown scorch, where the temperature of foliage kill is T ≥ 60°C, 

is given by 

h-0.O9196 1213 

A tree 5 m in height, for example, would only require a fire intensity of I = 122 

kW/m to completely kill its crown. This corresponds to a flame height of 0.6 

m. As the height of a tree increases, a greater proportion of the foliage is 

likely to be above the height of lethal scorching. Clearly, there is some 

'Thomas, P.H. 1963. The size of flames from natural fires. Proceedings 
of the Ninth (International) Symposium on Combustion. William and Wilkin. 
844-859 pp. 

2Van Wagner, C.E. 1973. Height of crown scorch in forest fires. Canadian 
Journal of Forest Research 3: 373-378. 
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interaction between cambial and canopy mortality that will result in overall tree 

mortality, however at present, this interaction is poorly understood. 


