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ABSTRACT

Four key observations associated with the formation of fire scars on trees are
explained using fluid dynamics and heat transfer processes. (1) When a fire passes
by a tree, its length increases on the tree’s leeward side because two leeward vortices
form. The flame height increases once in the vortices because the turbulent mixing
of fuel and air is suppressed. The flow of gaseous fuel in the vortices\ becomes
greater than the rate of mixing with the air and hence there is an increased length
along which combustion can occur. (2) Fire scars are found only on the leeward side
of trees because the vortices increase the residence time of the standing leeward
flame. (3) Small trees rarely have fire scars because their cambium is usually
completely killed by the passing fire and/or their foliage is killed by crowh scorch.

(4) Fire scars are usually triangular because the temperature isotherms in the

standing leeward flame are triangular.
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INTRODUCTION

The process-response approach to solving ecological problems couples a disturbance
process to the biophysics of an organism and this in turn to an ecological effect
(Johnson 1984). The advantage of this approac;h is that all parts of the causal
pathway must be defined. One commonly observed ecological effect lacking this
coupling is fire scars on trees (Figure 1). A fire scar is a result of partial cambial
death at the base of a tree. Thére are at least four phenomena associated with the
formation of fire scars on trees: 1) when a fire passes by a tree (either a head or
backing fire) it increases in height on the leeward side of the tree (relative to the
" wind direction); 2) fire scars are found only on the leeward side of trees; 3) small
trees rarely have fire scars; and 4) fire scars are usually triangular shaped, becoming

narrower with height.

Past studies investigating fire scar formation have explained some aspects of the
above four phenomena; however there have been few causal mechanisms given. Gill
(1974) and Gollahalli and Brzustowski (1971) found th;t when a fire passed by a
tree, it increased in height on the leeward side of the tree. Gill (1974) recognized
that the presence of this standing leeward flame was related to tree diameter, wind
speed and position of the tree relative to the flame; however, he gave no explanation
of the mechanisms that result in this increased flame height. Fahnestock and Hare

(1964), Hare (1965a), and Tunstall ef al. (1976) found, in wind blown fires, that the



Figure 1. A typical fire scar on Pinus banksiana. Notice the triangular shape,

decreasing in width with height. Photo by E.A. Johnson.
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temperature is significantly higher on the leeward side of a tree, compared to all
other sides. Fahnestock and Haré (1964) recognized that the increased heating on
the leeward side of a tree is due to the chimney effect of a convection column but
there is no explanation given for how this chimney effect occurs. A number of other
studies (Hare 1961, Martin 1963, Fahnestock and Hare 1964, Gill and Ashton 1968,
Hare 1965b, Spalt and Reifsnyder 1962, Tunstall ef al. 1976, Vines 1968) have found
that bark is important in preventing cambial damage by fire. Specifically, Hare
(1961), Martin (1963), Spalt and Reifsnyder (1962), Hare (1965b), Vines (1968) and
Gill and Ashton (1968) showed that the thermal properties and thickness of bark are
important in preventing- cambial death. Spalt and Reifsnyder (1962) and Vines
" (1968) give a semi-infinite slab model for the conduction of heat through bark. The
model shows that the time it takes to kill the cambium through the bark is directly
related to the square of bark thickness. Hare (1965b) and Vines (1968) confirm
empirically that the time required to raise the cambium to a lethal level of 60°C is
directly proportional to the square of bark thickness. These studies will be addressed

later within the heat transfer mechanisms.

The purpose of this thesis is to present the mechanisms which lead to cambial death
and the formation of fire scars on trees. First, I will present each of the mechanisms
of fire scar formation, then I will give the methods used to test the proposed
mechanisms and finally I will give evidence to show that the mechanisms proposed

seem to explain all of the above four phenomena.



Mechanisms of Fire Scar Formation

The mechanisms which cause cambial death at the base of a tree will be discussed
as follows: 1) air flow around a tree and the formation of leeward vortices; 2) the
position and flow pattern of leeward vortices; 3) the interaction of leeward vortices
with a free moving turbulent diffusion flame, causing differential heating around the
base of a tree; and 4) heat transfer through the bark, from the standing leeward

flame, which kills the cambium.

Air Flow and the Formation of Leeward Vortices

As air flows around the bole of a tree, a reverse flow occurs on the leeward side of
the tree which produces a pair of vortices. This phenomenon is a well described
process of separated flow behind a cyﬁnder (von Kdrmén 1921, Goldstein 1938). The
formation of these vortices depends on the upstream wind velocity, U (m/s),
diameter of the tree bole, d (m), and kinematic viscosity of the air, v (m?/s). These

variables can be combined to form the Reynolds number (Re),

e dU @

v

The Reynolds number is a dimensionless number which characterizes air flow
patterns and the formation of leeward vortices (Figure 2). Kinematic viscosity
increases with an increase in air temperature as a fire approaches a tree; however
the effect on the flow pattern is small relative to the effects caused by wind velocity

and tree diameter. For example, at 0°C the kinematic viscosity is 1.32 x 10° m?/s,



Figure 2. Flow patterns of air around a tree bole as characterized by the

Reynolds number.
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while at 40°C the kinematic viscosity is 1.69 x 10>, If tree diameter = 0.2 m and

wind speed = 0.6 m/s, then the Reynolds number at 0°C = 9.1 x 10°, while the
Reynolds number at 40° = 7.1 x 10°. Notice the order of magnitude has not changed.
Consequently, the flow pattern is governed primarily by wind velocity and tree
diameter. When the Reynolds number is less than 5, the flow around a tree is
laminar (Figure 2a). Between 5 and 40, a pair of adjacent vortices form on the
leeward side of the tree (Figure 2b). Above 40, the vortices will alternately detach,
producing a wake of vortices called a vortex street (Figure 2¢). Notice that, with a
constant wind speed, trees with a smaller diameter will have lower Reynolds numbers

than larger trees.

The Position and Flow Pattern of Le@wd Vortices

The vortices on the leeward side of a tree are located between the two points of flow
separation. Separation occurs where the air flow in the boundary layer along the
surface of the tree bole no longer follows the contours of the tree (see Figure 2b).
The point of separation depends on the value of the Reyl-lolds number in the
boundary layer along the tree. If the Reynolds number is less than 3 x 10°, then the
flow will separate at 82° (Potter and Foss 1975) from the front stagnation point
(Figure 2b). The boundary layer undergoes a transition from laminar to turbulent
flow when the Reynolds number is between 3 x 10° and 3.5 x 10° (Figure 2e). The
increased turbulence in the boundary layer is transported by momentum from the

free moving air to the slowly moving air in the boundary layer. This moves the
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separation point to a greater distance downstream on the tree, to 110° (Figure 2f).
The position of the separation points at the base of a tree corresponds to the outer

edges of the killed area on a fire scar.

Each vortex on the leeward side of a tree consists of two zones of flow: an outer
zone of flow which is irrotational and an inner zone of rotational (solid body) flow
(Figure 3). In the irrotational zone, the flow is translated around the inner zone with
little rotation, that is, with no change in the fluid’s orientation. For this orientation
to be maintained, the air particles in the outermost region must have a lower
tangential velocity than the air particles nearer the centre (Figure 4). The tangential
velocity and radius in the innmer zome of rotational flow have the opposite
relationship. The air nearer the centre has a lower tangential veloci‘;y than air
towards the oﬁter edge of the zone and angular momentum is conserved (Figure 4).
Consequently, particles in the rotational zone will change their orientation as they
rotate (Figure 3). Conservation of angular momentum simply means that no matter
where you are in the vortex core, there will be a constant value of angular
momentum, since momentum is a function of particle mass, tangential Velocify and
radius of the vortex core. These patterns of flow play an important role in explaining

the presence of the standing leeward flame as a free moving flame passes by a tree.

The Interaction of Leeward Vortices with a Turbulent Diffusion Flame

In forest fires, the free moving flame is a turbulent diffusion flame. It is turbulent



Figure 3.
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The patterns of flow in a vortex showing the zones of irrotational and
rotational flow. If we follow the path of a parﬁclé, we can see how
particle movement is different in each flow region. Notice that the
orientation of a particle changes as it moves around the zone of
rotational flow while its orientation does not change in the irrotational

zone (fe. it is translated).
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Figure 4.
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The tangential velocity, U,, distribution in a vortex (where U; = 2rf,
where f is frequency of rotation). Tangential velocity increases from
the centre (radius = 0) of the vortex to the outer boundary of the
rotational zone and then decreases through the zone of irrotational
flow, following Chigier et al. (1970). The symbols represent different -

heights in the vortex at which tangential velocities were measured.
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because the Reynolds number of the flame is greater than 3.5 x 10° (Re; = dU;/v,

where d; is the diameter of the flame and Uy is the vertical velocity of the fuel). A
diffusion flame is one in which the gaseous fuel and oxygen are brought together by
molecular and/or turbulent diffusion and combustion occurs along the visible flame
boundary. Another type of flame, a premixed flame, is one in whith the gaseous fuel

and oxygen are mixed before combustion occurs. The combustion reaction involves

the chemical decomposition of fuel by heating (called pyrolysis), followed by ignition.

A fire scar will form only on the leeward side of a tree because there is differential
heating around the base of a tree when a free moving flame passes by the tree.
Differential heating is a result of the leeward vortices increasing the residence time
of the free moving flame on the tree’s leeward side, compared to the residence time
on the tree’s windward side. The residence time, 7 (sec), of a free moving diffusion
flame on the windward side of a tree is a function of the depth of the flame, w (m),

and its rate of spread, R (m/sec), and is given by

w
53 @)

Ty
Figure 5 shows the passage of a free moving diffusion flame by a tree. As soon as
the base of the flame reaches the centre of the periphery of the tree (Figure Sb), part
of the flame is drawn up into the centres of the leeward vortices, producing a

standing leeward flame. In effect, the flame depth is increased by a distance of one

half tree diameter. The standing leeward flame increases in height as the free



Figure 5.
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A diagrammatic representation of what happens as a free moving
diffusion flame passes by a tree. When the front (or back) of a free
moving flame (a) reaches the centre of a tree, the flame increases in
height on ;che leeward side of the tree, producing a standing leeward
flame (b). The standing leeward flame increases in height as the flame
passes by the tree (c) and then begins to decrease when only the
trailing edge of the free moving diffusion flame is in the lee_ward
vortices, up to one and a half tree diameters downstream of the tree

(d). Once out of the vortices the standing leeward flame disappears

(e).
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| moving flame passes by the tree (Figure Sc and 5d). It persists until the trailing end

of the fire leaves the vortices on the leeward side of the tree (Figure 5¢). In effect,
the flame depth is increased by a distance of approximately one and a half tree
diameters. In total, the flame depth is increased by a distance of two tree diameters
when a free moving flame passes by a tree. Consequently, the residence time of the

standing leeward flame is given by

T, - %+<—) A3)

where d is diameter (m) of the tree. The increase in depth of the free moving flame
results in an increased residence time on the leeward side of the tree by a fdctor of

2d/R (hereafter called the leeward factor).

Whel; the front of a free moving diffusion flame reaches the centre of the periphery
of a tree, it is drawn horizontally into the tree’s leeward vortices through the
boundary layer along the ground. This horizontal draw is a result of the ground
slowing down the rotational motion in the vortices, creating a radial pressure gradient
in each vortex core. The lower pressure in the centre of each vortex core adds
buoyancy to the core and pushes the gaseous fuel in the boundary layer toward the
axis of each vortex. The gaseous fuel continues to add to the buoyancy as it burns,

while rising in the vortex core (Emmons and Ying 1967).
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The flame increases in height once it is in the vortex cores because the rotation of
the gaseous fuel in and at the boundary of the vortex cores (see Figure 4) decreases
the turbulent mixing of fuel and air (Emmons and Ying 1967). Turbulence is
reduced because the centrifugal force in the zone of irrotational flow opposes the
movement of gaseous fuel toward the axis of the vortex core by angular momentum.
As a result, the buoyancy of the rising core is not rapidly decreased by mixing and
therefore a large buoyant pressure difference is produced in the very high, relatively
small diameter buoyant core. The rate of mixing with the air decreases in the
standin;g leeward flame since the rotation restricts the entrainment of air from the
surroundings into the vortex cores and results in a confinement of the flames within
" the vortex cores. The consequent delay in the rate of mixing between the ground
fuel and surrounding air results in a considerable increase in flame length (Chigier
et al. 1970). In effect, the flame length increases because the flow of gaseous fuel in
the vortex cores is now greater than the rate of mixing with the surrounding air and
hence there is a greater length along which combustion can take place (Emmons and

Ying 1967, Chigier ef al. 1970).

Differential heating around the base of a tree is also due to a higher temperature in
the standing leeward flame compared to the free moving diffusion flame. The
rotation of the fuel in the vortex cores increases the combustion rate of fuel and air.
The temperature through the centre of the standing leeward flame is higher because

the flames in the two leeward vortices radiate towards each other.
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Heat Transfer from the Standing Leeward Flame

A fire scar is a result of partial cambial death at the base of a tree. Death in the
cambium occurs when the heat flux from the standing leeward flame penetrates the
bark and kills the cambium. It is assumed that heating of the leeward side of the
tree is unidirectional, that is, the heat flux is from the leeward flame and not from
heat penetrating the tree stem from the windward side of the tree. Further, because
heating is only for a brief period (seconds to minutes) and the bark has low thermal
conductivity, the time required for the stem to experience a temperature change will
be a function of both the residence time of the flame and the thickness of the bark.
After the flame is removed, the temperature in the cambium through the bark will

decrease, as shown in Figure 6.

Results from this transient heating can be described by Fourier’s Law of Conduction

(Sucec 1985):

_Eafg-_l__iag ' 'C))
2 oot :

where the rate of change of the excess temperature ratio, 8, within the bark, x (m),
is equal to the inverse of the thermal diffusivity, @ (m?®/s), multiplied by the rate of
change of the excess temperature ratio with respect to time 7 (s). The excess

temperature ratio is given by
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Figure 6. Temperatures in the cambium through the bark as a constant heat"
source is applied to the outside of a tree and then removed, from Gill

and Ashton (1968).
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where T, is the lethal cambium temperature (°C), T; is the temperature (°C) in the

flame and T, is the temperature (°C) of the cambium before heating occurs.
‘Thermal diffusivity gives the rate at which temperature changes within the bark when
its surface temperature changes. For equation 4, the following initial and boundary
conditions were set:

1)atx =0andr > 0, -0 = -k(80 /ox);

2)asx-+o and 7 > 0, © remains finite;

3)atT =0and0<x<w, 8 =6, =T, -T;,

where h is the surface coefficient of heat transfer (W/m? °C) and k is thermal
conductivity (W/m °C). If we solve equation 4 according to the above conditions, we
obtain the result for the excess temperature ratio of the bark. It is assumed 'that the
bark: has a surface coefficient of hea;t transfer b; is initially at temperature T_; and

is then exposed to a flame of temperature T;. This leads to the following equation:

o TI.-T, x hx  her x Jat
- - =erf ( )rexp(—+ Yx[1-erf ( +h+—)] &)
6, T,-T, 2/ar kg2 2/ar Kk

where erf is the Gaussian error function. Values of the error function, which defines
the error associated with the excess temperature ratio, can be found in books with
mathematical tables (eg. Abramowitz and Stegun 1964). Once the bark surface (x
= 0) reaches the flame temperature, the surface coefficient of heat transfer
approaches infinity (h~+ «). This eliminates the terms to the right of erf(x/2/a7),
on the right hand side of the equation. Thus, the heat flux required to kill the

cambium can be calculated using
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Tl 2, 6)
T,-T; 2/at

In order to solve equation 6, the value of (x/2/a1) must first be calculated. By
knowing the lethal cambium temperature, T, temperature of the cambium before
heating occurs, T,, bark thickness, x, thermal diffusivity, @, and residence time, 7
(calculated using equations 2 and 3), one can easily determine the flame
temperature, T, required to kill the cambium. Conversely, by knowing T, T, T, and
@, one could similarly determine the residence time 7 required to kill the cambium
over a range of bark thickness. For example, if T, = 60°C, T; = 500°C, T, = 20°C,
a = 1.35x 107 m?/s and erf( ) = 0.917, then the residence time 7 (sec), required to

kill the cambium is given by

7=1.24x10%2 - ™)
where the constant (1.24x 10°) is dependent on T,, T;, T, and . This is the same
scaling value (fe. X* in equation 7) that was found empirically by Hare (1965b) and
Vines (1968). By heating the bark on trees using various methods, and measuring
the temperature reached on the bark surface and in the cambium, they observed that
the time required to kill the cambium (fe. T,> 60°C (Kayll 1968)) was a function of
the square of bark thickness. Given the above conditions, a tree with bark thickness,
x = 0.01 m for example, would require a residence time, 7 = 122 s., to kill the

cambium.
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METHODS

The mechanisms of partial cambial death were tested in a scaled down laboratory
model (Figure 7), similar to that used by Gill (1974). The laboratory model is
equivalent to tree boles in the field because the same air flow pattern can be
obtained when the Reynolds number is the same. For example, a tree, 0.2 m in
diar.neter, where the wind speed is 0.33 m/s (v is held constant at 1.5x10° m?/s)
yields Re =440, a flow pattern of alternately shedding vortices. In the laboratory, this
same flow pattern (Re=440) can be observed in a much smaller tree, 0.02 m, if the

wind speed is increased to 3.3 m/s.

The laboratory set-up consisted of an open circuit, open jet, low speed wind tunnel,
equipped with two honeycomb screens which acted to reduce the swirl and
turbulence of the air created by the fan. The working section of the wind tunnél
consisted of an asbestos bench with a burner fitted through the bench such that the
burning surface and bench top were part of the same plane. The flame through the
burner was turbulent (Re; > 3.5 x 10°, where d; is diameter of the burner and U is
vertical velocity of the gas). The surface was roughened by placing small pea-sized
gravel from the fan through to the working section. Metal cylinders, 0.95 cm, 1.25
cm and 1.9 cm in diameter, were used to simulate tree boles. The wind speed was
regulated by a rheostat transformer and measured in the working section using a

Datametrics 100 VT air flow meter and hot wire anemometer. Wind speed was
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Figure 7. The laboratory set-up, including a wind tunnel equipped with a
laboratory fan, diffusion flame and cylinder, used to simulate the

passage of a free moving diffusion flame by a tree.
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measured at 1 cm intervals of height from the burner mouth. The wind tunnel was
found to have a logarithmic wind profile similar to that found under a forest canopy
(Albini and Baughman 1979). The length of the wind tunnel allowed a steady state
wind profile to develop. For a steady state wind profile, the length of the wind
tunnel was 200x the height of the surface roughness element (Monteith 1975). Wind
speed at 1 cm above the surface was used to calculate the Reynolds number for flows

around the cylinder.

To determine whether the points of flow separation correspond to the outer edges
of a fire scar at the base of a tree, 242 discs were cut from fire scarred trees. The
angle from the centre of the windward side of the tree to the outer edge of the killed
area were measured on discs taken from fire scarred Pinus banksiana Lamb. from
Prince Alberta National Park, Saskatchewan. Notice that angles were measured on
discs from fire scarred trees sincé the entire killed area (especially the outer edges)

are usually not visible from an intact tree.

To determine the difference in temperature between a free moving diffusion flame
and a standing leeward flame, the vertical temperature profile of each flame type was
measured using an Omega 872A digital thermometer with Omega chromel alumel
bare wire thermocouples and NMP miniature sized connectors. The thermocouple .
wire was 1 mm in diameter and 31 cm in length and was encased in a ceramic tube

for insulation. The temperature of the flame was measured at the centre, starting
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at the base and for every 1 cm in height. Re-radiation from the metal cylinder into
the standing leeward flame was found to be negligible since temperature
measurement was done before sufficient heating occurred. The temperature within
the standing leeward flame was measured through the centre, 4 mm (horizontally)

from centre, 8 mm from centre and 10 mm from centre, approximately 2 mm from

the cylinder wall.
RESULTS AND DISCUSSION

The width of a fire scar at the base of a tree shoild be determined by the angle of
separation of flow on the leeward side of a tree. This was established by comparing
the theoretical angles of flow sepération (82° when Re < 3 x 10° and 110° when Re
> 3.5 x 10° (Potter and Foss 1975)) to the angle to the edge of the killed area on fire

scarred trees in the field (Figure 8). .

Figure 9 shows a frequency distribution of angles from the centre of the windward
side of the tree (see Figure 2b) to the outer edge of the killed area on 242 fire -
scarred Pinus banksiana. The distribution of angles appears to be bimodal, with the
two modes at 85°-95° and 115°-125°. The theoretical angles of separation (82° in a
laminar boundar.y layer and 110° in a turbulent boundary layer) do not fall exactly
within the peaks of the two modes, rather the peaks are at slightly larger angles.

This shift is not too surprising since we would expect the scar to extend, at most, to
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" Figure 8: A diagram of a fire scarred tree disc showing how the angle from the
front and centre of the tree to the outer edge of the fire scar was

measured on trees from the field.
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Figure 9.

31

Measures of the angle from the centre of the windward side of the tree
to the outer edge of the fire scar on 242 fire scarred Pinus banksiana
from Prinée Albert National Park, Saskatchewan. The arrows indicate
the tﬂeoretical angles of separation in a laminar (82°) and turbulent

(110°) boundary layer.
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the position of the separation points, since the leeward flame is killing the cambium.
The spread around these two peaks seems to be a result of slight differences in the

height at which angles were measured on the tree.

The occurrence of fire scars on the leeward side of a tree is a result of the heat flux
from the standing leeward flame penetrating the bark and killing the cambium. Fire
scars form on the leeward side of a tree but not on the windward side because: 1)
the residence time of the standing leeward flame is longer than the residence time
of the free moving flame on the windward side of a tree; and 2) the temperature in

the standing leeward flame is greater than in the free moving diffusion flame.

The increase in residence time on tile leeward side of a tree leads to differential
heating around the base of a tree. In order to show this differential heating the
critical flame temperature required to kill the cambium on the windward and leeward
sides of a tree were plotted (see axes on Figure 10). T.he; critical temperature
required to klll the cambium was calculated using equation 7 over a range of bark
thickness® (0.004 - 0.03 m). For each bark thickness, the critical flame temperature,

T, required to kill the cambium was calculated using thermal diffusivitye = 1.35 x

'Equation 7 was solved for both the windward and leeward sides of a tree, over
a range of bark thickness, to see how the critical temperature to cambial kill changes
as bark thickness increases. Since tree diameter increases with an increase in bark
thickness (eg. x = 0.037d + 0.004 for Pinus banksiana), the effect of an increasing

tree diameter on the leeward residence time could also be determined (see equation
3).
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Figure 10. The critical temperatures for cambial kill were calculated using
equation 7 (see text for explanation). Differential heating increases
with a decrease in the rate of spread, except where tree diameter is

very small.
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107 m?/sec (Spalt and Reifsnyder 1962), temperature of the cambium before heating,

T, =20°C, and lethal cambium temperature, T, = 60°C. The residence time 7 on
the windward and leeward sides were calculated using equations 2 and 3 respectively,

where depth of the flame was held constant at 2 m.

In Figure 10, where slope = 1, the temperature required to kill the cambium is the
same on the windward and leeward sides of the tree (fe. there is no differential
heating). This occurs when the rate of spread of the fire is very fast (residence time
very low), regardless of the tree diameter. Examination of the leeward factor (2d/R)
in equation 3 shows that a very high rate of spread will result in a very low leeward
factor such that the increase in leeward residence time over the windward residence
time becomes negligible, no matter ﬁow large the tree diameter. In effect, both the
leeward and windward sides have the same residence times when the rate of spread

is very fast.

In Figure 10, where slope > 1, the temperature required to kill the cambium
becomes higher for the windward side compared to the leeward side (ie. there is
differential heating). This occurs when the rate of spread becomes slower than it is
at slope = 1. As the rate of spread decreases further, differential heating increases,
resulting in a steeper slope. Examination of equation 3 shows that as the rate of
spread decreases, the leeward factor increases, causing a significantly greater leeward

residence time compared to the windward residence time. Notice that the slope of
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the curve will never be less than one since the windward residence time will never
be greater than the leeward residence time. In other words, the windward
temperature will always have to be the same or higher than the leeward temperature

in order to kill the cambium on the windward side of a tree.

Why do the lines in Figure 10, representing different rates of spread, converge at
lower critical temperatures? Examination of equation 3 shows that small diameter
trees will not significantly increase the residence time of the leeward flame and so
the critical temperature to cambial kill will be almost the same on both the windward
and leeward sides of the tree. Thus, if the flame temperaturé is high enough to kill
the cambium on the leeward side of the tree, then the cambium on the windward
side of the tree will also be killed. This will result in complete cambial kill around
the base of tﬁe tree and rapid tree mortality. This seems likely to occur since small
diameter trees also have thin bark. Consequently, it appears that we rarely see fire
scars on small trees because their cambium is usually completely killed around the
base of the tree which results in tree mortality. In addition to this explanation,
Appendix 1 shows that small trees have crowns that are typically close to the ground

such that even low intensity fires will cause tree mortality from crown scorch.

In addition to an increased residence time of the standing leeward flame, the
temperature in the standing leeward flame is higher than the free moving diffusion

flame. Figure 11 shows the one dimensional vertical temperature, measured through
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Figure 11. The vertical temperature distribution in a standing leeward flame
compared to the free moving diffusion flame of the same height. The

arrows indicate the average height of the flames.
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the centre of a standing leeward flame, compared to a diffusion flame of the same
height. In both the leeward flame and free moving diffusion flame, temperature
increases from the base of the flame and reaches a maximum at a height
approximately 40% of the height of the flame, and then decreases with a further
increase in height. At all heights the standing leeward flame is higher in temperature
than the diffusion flame. The increase in temperature in the standing leeward flame
is due to an increase in the burning rate of fuel and air in the vortex cores (Emmons
and Ying 1967). The mechanism responsible for this increased rate of combustion

has not yet been studied and is beyond the scope of this paper.

Why is the cambium often killed in a triangle shape? Figure 12 shows the two
dimensional temperature distribution of the standing leeward flame in Figure 11.
The temperature is highest at the centre of the flame, at a height approximately 40%
of the height of the flame. Temperature decreases toward the sides and top, with
isotherms approximating a triangular shape. Notice that the temperature is not
higher through the centre of the vortices (4 mm radius), as may first be expected.
Rather, the temperature is highest through the centre of the flame, between the two
vortices. As shown by Emmons and Ying (1967), inside each vortex is a cool fuel
rich core which burns as it rises from the ground surface. The highest flame
temperatures occur at the vortex boundaries, where the rate of combustion is
greatest. It appears that the heat from the flame boundaries in both vortices radiate

towards each other, increasing the temperature in the centre of the flame. The outer
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The two dimensional temperature distribution within the standing
leeward flame shown in Figure 11. The innermost isotherm, 500°C, for
example, encompasses all regions that are S00°C or higher. The
temperature is highest at the centre of the flame, at a height
approximately 40% of the height of the flame. Temperature decreases
toward the sides and top. Notice the triangular shape of the isotherm

for 200°C.
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edges of the flame do not experience the same increase in temperature because of

the cooling effect of the surrounding air.
CONCLUSIONS

The causal mechanisms have been given for four key observations associated with
fire scar formation on trees. It is interesting that the present explanation uses largely
existing understandings. Despite some excellent attempts at determining how fire
scars form on trees, there has been some difficulty in determining how fires cause
this ecological effect. Critical to determining the mechanisms was having a clear
understanding of: the formation of vortices on the leeward side of a tree; the
interaction of rotational and irrotational motion in a vortex which suppresses
turbulence and produces a standing leeward flame; and the heat transfer from the
standing leeward flame which kills the cambium. It is clear from this explanation
that much of the folklore surrounding fire scar formation can now be addressed.
Trees survive fire and have fire scars because there is differential heating around the
base of a tree. The cambium is not completely killed because, in most cases, the

residence time and temperature is high enough only on the leeward side of the tree.
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APPENDIX 1.

Fire scars are rarely found on small trees because their cambium is completely
killed around the base of a tree and/or their crowns are typically near the
ground, such that their foliage is often killed by crown scorch. A well
established relation (cf.Thomas 1963)" shows that the temperature reached at
any height, h, (m), above a fire depends on the fire intensity, I (kW/m) and the

ambient temperature T, (°C):

Using this relation, and empirical measures, Van Wagner (1973)? found that
the height of crown scorch, where the temperature of foliage kill is T, > 60°C,

is given by

h,~0.09196 I3

A tree 5 m in height, for example, would only require a fire intensity of I = 122
kW/m to completely kill its crown. This corresponds to a flame height of 0.6
m. As the height of a tree increases, a greater proportion of the foliage is

likely to be above the height of lethal scorching. Clearly, there is some

'Thomas, P.H. 1963. The size of flames from natural fires. Proceedings
of the Ninth (International) Symposium on Combustion. William and Wilkin.
844-859 pp.

?Van Wagner, C.E. 1973. Height of crown scorch in forest fires. Canadian
Journal of Forest Research 3: 373-378.
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interaction between cambial and canopy mortality that will result in overall tree

mortality, however at present, this interaction is poorly understood.



